Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
[deliverable/linux.git] / drivers / oprofile / cpu_buffer.c
1 /**
2 * @file cpu_buffer.c
3 *
4 * @remark Copyright 2002-2009 OProfile authors
5 * @remark Read the file COPYING
6 *
7 * @author John Levon <levon@movementarian.org>
8 * @author Barry Kasindorf <barry.kasindorf@amd.com>
9 * @author Robert Richter <robert.richter@amd.com>
10 *
11 * Each CPU has a local buffer that stores PC value/event
12 * pairs. We also log context switches when we notice them.
13 * Eventually each CPU's buffer is processed into the global
14 * event buffer by sync_buffer().
15 *
16 * We use a local buffer for two reasons: an NMI or similar
17 * interrupt cannot synchronise, and high sampling rates
18 * would lead to catastrophic global synchronisation if
19 * a global buffer was used.
20 */
21
22 #include <linux/sched.h>
23 #include <linux/oprofile.h>
24 #include <linux/errno.h>
25
26 #include "event_buffer.h"
27 #include "cpu_buffer.h"
28 #include "buffer_sync.h"
29 #include "oprof.h"
30
31 #define OP_BUFFER_FLAGS 0
32
33 static struct ring_buffer *op_ring_buffer;
34 DEFINE_PER_CPU(struct oprofile_cpu_buffer, op_cpu_buffer);
35
36 static void wq_sync_buffer(struct work_struct *work);
37
38 #define DEFAULT_TIMER_EXPIRE (HZ / 10)
39 static int work_enabled;
40
41 unsigned long oprofile_get_cpu_buffer_size(void)
42 {
43 return oprofile_cpu_buffer_size;
44 }
45
46 void oprofile_cpu_buffer_inc_smpl_lost(void)
47 {
48 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(op_cpu_buffer);
49
50 cpu_buf->sample_lost_overflow++;
51 }
52
53 void free_cpu_buffers(void)
54 {
55 if (op_ring_buffer)
56 ring_buffer_free(op_ring_buffer);
57 op_ring_buffer = NULL;
58 }
59
60 #define RB_EVENT_HDR_SIZE 4
61
62 int alloc_cpu_buffers(void)
63 {
64 int i;
65
66 unsigned long buffer_size = oprofile_cpu_buffer_size;
67 unsigned long byte_size = buffer_size * (sizeof(struct op_sample) +
68 RB_EVENT_HDR_SIZE);
69
70 op_ring_buffer = ring_buffer_alloc(byte_size, OP_BUFFER_FLAGS);
71 if (!op_ring_buffer)
72 goto fail;
73
74 for_each_possible_cpu(i) {
75 struct oprofile_cpu_buffer *b = &per_cpu(op_cpu_buffer, i);
76
77 b->last_task = NULL;
78 b->last_is_kernel = -1;
79 b->tracing = 0;
80 b->buffer_size = buffer_size;
81 b->sample_received = 0;
82 b->sample_lost_overflow = 0;
83 b->backtrace_aborted = 0;
84 b->sample_invalid_eip = 0;
85 b->cpu = i;
86 INIT_DELAYED_WORK(&b->work, wq_sync_buffer);
87 }
88 return 0;
89
90 fail:
91 free_cpu_buffers();
92 return -ENOMEM;
93 }
94
95 void start_cpu_work(void)
96 {
97 int i;
98
99 work_enabled = 1;
100
101 for_each_online_cpu(i) {
102 struct oprofile_cpu_buffer *b = &per_cpu(op_cpu_buffer, i);
103
104 /*
105 * Spread the work by 1 jiffy per cpu so they dont all
106 * fire at once.
107 */
108 schedule_delayed_work_on(i, &b->work, DEFAULT_TIMER_EXPIRE + i);
109 }
110 }
111
112 void end_cpu_work(void)
113 {
114 work_enabled = 0;
115 }
116
117 void flush_cpu_work(void)
118 {
119 int i;
120
121 for_each_online_cpu(i) {
122 struct oprofile_cpu_buffer *b = &per_cpu(op_cpu_buffer, i);
123
124 /* these works are per-cpu, no need for flush_sync */
125 flush_delayed_work(&b->work);
126 }
127 }
128
129 /*
130 * This function prepares the cpu buffer to write a sample.
131 *
132 * Struct op_entry is used during operations on the ring buffer while
133 * struct op_sample contains the data that is stored in the ring
134 * buffer. Struct entry can be uninitialized. The function reserves a
135 * data array that is specified by size. Use
136 * op_cpu_buffer_write_commit() after preparing the sample. In case of
137 * errors a null pointer is returned, otherwise the pointer to the
138 * sample.
139 *
140 */
141 struct op_sample
142 *op_cpu_buffer_write_reserve(struct op_entry *entry, unsigned long size)
143 {
144 entry->event = ring_buffer_lock_reserve
145 (op_ring_buffer, sizeof(struct op_sample) +
146 size * sizeof(entry->sample->data[0]));
147 if (!entry->event)
148 return NULL;
149 entry->sample = ring_buffer_event_data(entry->event);
150 entry->size = size;
151 entry->data = entry->sample->data;
152
153 return entry->sample;
154 }
155
156 int op_cpu_buffer_write_commit(struct op_entry *entry)
157 {
158 return ring_buffer_unlock_commit(op_ring_buffer, entry->event);
159 }
160
161 struct op_sample *op_cpu_buffer_read_entry(struct op_entry *entry, int cpu)
162 {
163 struct ring_buffer_event *e;
164 e = ring_buffer_consume(op_ring_buffer, cpu, NULL, NULL);
165 if (!e)
166 return NULL;
167
168 entry->event = e;
169 entry->sample = ring_buffer_event_data(e);
170 entry->size = (ring_buffer_event_length(e) - sizeof(struct op_sample))
171 / sizeof(entry->sample->data[0]);
172 entry->data = entry->sample->data;
173 return entry->sample;
174 }
175
176 unsigned long op_cpu_buffer_entries(int cpu)
177 {
178 return ring_buffer_entries_cpu(op_ring_buffer, cpu);
179 }
180
181 static int
182 op_add_code(struct oprofile_cpu_buffer *cpu_buf, unsigned long backtrace,
183 int is_kernel, struct task_struct *task)
184 {
185 struct op_entry entry;
186 struct op_sample *sample;
187 unsigned long flags;
188 int size;
189
190 flags = 0;
191
192 if (backtrace)
193 flags |= TRACE_BEGIN;
194
195 /* notice a switch from user->kernel or vice versa */
196 is_kernel = !!is_kernel;
197 if (cpu_buf->last_is_kernel != is_kernel) {
198 cpu_buf->last_is_kernel = is_kernel;
199 flags |= KERNEL_CTX_SWITCH;
200 if (is_kernel)
201 flags |= IS_KERNEL;
202 }
203
204 /* notice a task switch */
205 if (cpu_buf->last_task != task) {
206 cpu_buf->last_task = task;
207 flags |= USER_CTX_SWITCH;
208 }
209
210 if (!flags)
211 /* nothing to do */
212 return 0;
213
214 if (flags & USER_CTX_SWITCH)
215 size = 1;
216 else
217 size = 0;
218
219 sample = op_cpu_buffer_write_reserve(&entry, size);
220 if (!sample)
221 return -ENOMEM;
222
223 sample->eip = ESCAPE_CODE;
224 sample->event = flags;
225
226 if (size)
227 op_cpu_buffer_add_data(&entry, (unsigned long)task);
228
229 op_cpu_buffer_write_commit(&entry);
230
231 return 0;
232 }
233
234 static inline int
235 op_add_sample(struct oprofile_cpu_buffer *cpu_buf,
236 unsigned long pc, unsigned long event)
237 {
238 struct op_entry entry;
239 struct op_sample *sample;
240
241 sample = op_cpu_buffer_write_reserve(&entry, 0);
242 if (!sample)
243 return -ENOMEM;
244
245 sample->eip = pc;
246 sample->event = event;
247
248 return op_cpu_buffer_write_commit(&entry);
249 }
250
251 /*
252 * This must be safe from any context.
253 *
254 * is_kernel is needed because on some architectures you cannot
255 * tell if you are in kernel or user space simply by looking at
256 * pc. We tag this in the buffer by generating kernel enter/exit
257 * events whenever is_kernel changes
258 */
259 static int
260 log_sample(struct oprofile_cpu_buffer *cpu_buf, unsigned long pc,
261 unsigned long backtrace, int is_kernel, unsigned long event)
262 {
263 cpu_buf->sample_received++;
264
265 if (pc == ESCAPE_CODE) {
266 cpu_buf->sample_invalid_eip++;
267 return 0;
268 }
269
270 if (op_add_code(cpu_buf, backtrace, is_kernel, current))
271 goto fail;
272
273 if (op_add_sample(cpu_buf, pc, event))
274 goto fail;
275
276 return 1;
277
278 fail:
279 cpu_buf->sample_lost_overflow++;
280 return 0;
281 }
282
283 static inline void oprofile_begin_trace(struct oprofile_cpu_buffer *cpu_buf)
284 {
285 cpu_buf->tracing = 1;
286 }
287
288 static inline void oprofile_end_trace(struct oprofile_cpu_buffer *cpu_buf)
289 {
290 cpu_buf->tracing = 0;
291 }
292
293 static inline void
294 __oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
295 unsigned long event, int is_kernel)
296 {
297 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(op_cpu_buffer);
298 unsigned long backtrace = oprofile_backtrace_depth;
299
300 /*
301 * if log_sample() fail we can't backtrace since we lost the
302 * source of this event
303 */
304 if (!log_sample(cpu_buf, pc, backtrace, is_kernel, event))
305 /* failed */
306 return;
307
308 if (!backtrace)
309 return;
310
311 oprofile_begin_trace(cpu_buf);
312 oprofile_ops.backtrace(regs, backtrace);
313 oprofile_end_trace(cpu_buf);
314 }
315
316 void oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
317 unsigned long event, int is_kernel)
318 {
319 __oprofile_add_ext_sample(pc, regs, event, is_kernel);
320 }
321
322 void oprofile_add_sample(struct pt_regs * const regs, unsigned long event)
323 {
324 int is_kernel;
325 unsigned long pc;
326
327 if (likely(regs)) {
328 is_kernel = !user_mode(regs);
329 pc = profile_pc(regs);
330 } else {
331 is_kernel = 0; /* This value will not be used */
332 pc = ESCAPE_CODE; /* as this causes an early return. */
333 }
334
335 __oprofile_add_ext_sample(pc, regs, event, is_kernel);
336 }
337
338 /*
339 * Add samples with data to the ring buffer.
340 *
341 * Use oprofile_add_data(&entry, val) to add data and
342 * oprofile_write_commit(&entry) to commit the sample.
343 */
344 void
345 oprofile_write_reserve(struct op_entry *entry, struct pt_regs * const regs,
346 unsigned long pc, int code, int size)
347 {
348 struct op_sample *sample;
349 int is_kernel = !user_mode(regs);
350 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(op_cpu_buffer);
351
352 cpu_buf->sample_received++;
353
354 /* no backtraces for samples with data */
355 if (op_add_code(cpu_buf, 0, is_kernel, current))
356 goto fail;
357
358 sample = op_cpu_buffer_write_reserve(entry, size + 2);
359 if (!sample)
360 goto fail;
361 sample->eip = ESCAPE_CODE;
362 sample->event = 0; /* no flags */
363
364 op_cpu_buffer_add_data(entry, code);
365 op_cpu_buffer_add_data(entry, pc);
366
367 return;
368
369 fail:
370 entry->event = NULL;
371 cpu_buf->sample_lost_overflow++;
372 }
373
374 int oprofile_add_data(struct op_entry *entry, unsigned long val)
375 {
376 if (!entry->event)
377 return 0;
378 return op_cpu_buffer_add_data(entry, val);
379 }
380
381 int oprofile_add_data64(struct op_entry *entry, u64 val)
382 {
383 if (!entry->event)
384 return 0;
385 if (op_cpu_buffer_get_size(entry) < 2)
386 /*
387 * the function returns 0 to indicate a too small
388 * buffer, even if there is some space left
389 */
390 return 0;
391 if (!op_cpu_buffer_add_data(entry, (u32)val))
392 return 0;
393 return op_cpu_buffer_add_data(entry, (u32)(val >> 32));
394 }
395
396 int oprofile_write_commit(struct op_entry *entry)
397 {
398 if (!entry->event)
399 return -EINVAL;
400 return op_cpu_buffer_write_commit(entry);
401 }
402
403 void oprofile_add_pc(unsigned long pc, int is_kernel, unsigned long event)
404 {
405 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(op_cpu_buffer);
406 log_sample(cpu_buf, pc, 0, is_kernel, event);
407 }
408
409 void oprofile_add_trace(unsigned long pc)
410 {
411 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(op_cpu_buffer);
412
413 if (!cpu_buf->tracing)
414 return;
415
416 /*
417 * broken frame can give an eip with the same value as an
418 * escape code, abort the trace if we get it
419 */
420 if (pc == ESCAPE_CODE)
421 goto fail;
422
423 if (op_add_sample(cpu_buf, pc, 0))
424 goto fail;
425
426 return;
427 fail:
428 cpu_buf->tracing = 0;
429 cpu_buf->backtrace_aborted++;
430 return;
431 }
432
433 /*
434 * This serves to avoid cpu buffer overflow, and makes sure
435 * the task mortuary progresses
436 *
437 * By using schedule_delayed_work_on and then schedule_delayed_work
438 * we guarantee this will stay on the correct cpu
439 */
440 static void wq_sync_buffer(struct work_struct *work)
441 {
442 struct oprofile_cpu_buffer *b =
443 container_of(work, struct oprofile_cpu_buffer, work.work);
444 if (b->cpu != smp_processor_id()) {
445 printk(KERN_DEBUG "WQ on CPU%d, prefer CPU%d\n",
446 smp_processor_id(), b->cpu);
447
448 if (!cpu_online(b->cpu)) {
449 cancel_delayed_work(&b->work);
450 return;
451 }
452 }
453 sync_buffer(b->cpu);
454
455 /* don't re-add the work if we're shutting down */
456 if (work_enabled)
457 schedule_delayed_work(&b->work, DEFAULT_TIMER_EXPIRE);
458 }
This page took 0.078438 seconds and 6 git commands to generate.