dmar: Fix build failure without NUMA, warn on bogus RHSA tables and don't abort
[deliverable/linux.git] / drivers / pci / dmar.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 *
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24 * tables.
25 *
26 * These routines are used by both DMA-remapping and Interrupt-remapping
27 */
28
29 #include <linux/pci.h>
30 #include <linux/dmar.h>
31 #include <linux/iova.h>
32 #include <linux/intel-iommu.h>
33 #include <linux/timer.h>
34 #include <linux/irq.h>
35 #include <linux/interrupt.h>
36 #include <linux/tboot.h>
37 #include <linux/dmi.h>
38
39 #define PREFIX "DMAR: "
40
41 /* No locks are needed as DMA remapping hardware unit
42 * list is constructed at boot time and hotplug of
43 * these units are not supported by the architecture.
44 */
45 LIST_HEAD(dmar_drhd_units);
46
47 static struct acpi_table_header * __initdata dmar_tbl;
48 static acpi_size dmar_tbl_size;
49
50 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
51 {
52 /*
53 * add INCLUDE_ALL at the tail, so scan the list will find it at
54 * the very end.
55 */
56 if (drhd->include_all)
57 list_add_tail(&drhd->list, &dmar_drhd_units);
58 else
59 list_add(&drhd->list, &dmar_drhd_units);
60 }
61
62 static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
63 struct pci_dev **dev, u16 segment)
64 {
65 struct pci_bus *bus;
66 struct pci_dev *pdev = NULL;
67 struct acpi_dmar_pci_path *path;
68 int count;
69
70 bus = pci_find_bus(segment, scope->bus);
71 path = (struct acpi_dmar_pci_path *)(scope + 1);
72 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
73 / sizeof(struct acpi_dmar_pci_path);
74
75 while (count) {
76 if (pdev)
77 pci_dev_put(pdev);
78 /*
79 * Some BIOSes list non-exist devices in DMAR table, just
80 * ignore it
81 */
82 if (!bus) {
83 printk(KERN_WARNING
84 PREFIX "Device scope bus [%d] not found\n",
85 scope->bus);
86 break;
87 }
88 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
89 if (!pdev) {
90 printk(KERN_WARNING PREFIX
91 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
92 segment, bus->number, path->dev, path->fn);
93 break;
94 }
95 path ++;
96 count --;
97 bus = pdev->subordinate;
98 }
99 if (!pdev) {
100 printk(KERN_WARNING PREFIX
101 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
102 segment, scope->bus, path->dev, path->fn);
103 *dev = NULL;
104 return 0;
105 }
106 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
107 pdev->subordinate) || (scope->entry_type == \
108 ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
109 pci_dev_put(pdev);
110 printk(KERN_WARNING PREFIX
111 "Device scope type does not match for %s\n",
112 pci_name(pdev));
113 return -EINVAL;
114 }
115 *dev = pdev;
116 return 0;
117 }
118
119 static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
120 struct pci_dev ***devices, u16 segment)
121 {
122 struct acpi_dmar_device_scope *scope;
123 void * tmp = start;
124 int index;
125 int ret;
126
127 *cnt = 0;
128 while (start < end) {
129 scope = start;
130 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
131 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
132 (*cnt)++;
133 else
134 printk(KERN_WARNING PREFIX
135 "Unsupported device scope\n");
136 start += scope->length;
137 }
138 if (*cnt == 0)
139 return 0;
140
141 *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
142 if (!*devices)
143 return -ENOMEM;
144
145 start = tmp;
146 index = 0;
147 while (start < end) {
148 scope = start;
149 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
150 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
151 ret = dmar_parse_one_dev_scope(scope,
152 &(*devices)[index], segment);
153 if (ret) {
154 kfree(*devices);
155 return ret;
156 }
157 index ++;
158 }
159 start += scope->length;
160 }
161
162 return 0;
163 }
164
165 /**
166 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
167 * structure which uniquely represent one DMA remapping hardware unit
168 * present in the platform
169 */
170 static int __init
171 dmar_parse_one_drhd(struct acpi_dmar_header *header)
172 {
173 struct acpi_dmar_hardware_unit *drhd;
174 struct dmar_drhd_unit *dmaru;
175 int ret = 0;
176
177 drhd = (struct acpi_dmar_hardware_unit *)header;
178 if (!drhd->address) {
179 /* Promote an attitude of violence to a BIOS engineer today */
180 WARN(1, "Your BIOS is broken; DMAR reported at address zero!\n"
181 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
182 dmi_get_system_info(DMI_BIOS_VENDOR),
183 dmi_get_system_info(DMI_BIOS_VERSION),
184 dmi_get_system_info(DMI_PRODUCT_VERSION));
185 return -ENODEV;
186 }
187 dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
188 if (!dmaru)
189 return -ENOMEM;
190
191 dmaru->hdr = header;
192 dmaru->reg_base_addr = drhd->address;
193 dmaru->segment = drhd->segment;
194 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
195
196 ret = alloc_iommu(dmaru);
197 if (ret) {
198 kfree(dmaru);
199 return ret;
200 }
201 dmar_register_drhd_unit(dmaru);
202 return 0;
203 }
204
205 static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
206 {
207 struct acpi_dmar_hardware_unit *drhd;
208 int ret = 0;
209
210 drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
211
212 if (dmaru->include_all)
213 return 0;
214
215 ret = dmar_parse_dev_scope((void *)(drhd + 1),
216 ((void *)drhd) + drhd->header.length,
217 &dmaru->devices_cnt, &dmaru->devices,
218 drhd->segment);
219 if (ret) {
220 list_del(&dmaru->list);
221 kfree(dmaru);
222 }
223 return ret;
224 }
225
226 #ifdef CONFIG_DMAR
227 LIST_HEAD(dmar_rmrr_units);
228
229 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
230 {
231 list_add(&rmrr->list, &dmar_rmrr_units);
232 }
233
234
235 static int __init
236 dmar_parse_one_rmrr(struct acpi_dmar_header *header)
237 {
238 struct acpi_dmar_reserved_memory *rmrr;
239 struct dmar_rmrr_unit *rmrru;
240
241 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
242 if (!rmrru)
243 return -ENOMEM;
244
245 rmrru->hdr = header;
246 rmrr = (struct acpi_dmar_reserved_memory *)header;
247 rmrru->base_address = rmrr->base_address;
248 rmrru->end_address = rmrr->end_address;
249
250 dmar_register_rmrr_unit(rmrru);
251 return 0;
252 }
253
254 static int __init
255 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
256 {
257 struct acpi_dmar_reserved_memory *rmrr;
258 int ret;
259
260 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
261 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
262 ((void *)rmrr) + rmrr->header.length,
263 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
264
265 if (ret || (rmrru->devices_cnt == 0)) {
266 list_del(&rmrru->list);
267 kfree(rmrru);
268 }
269 return ret;
270 }
271
272 static LIST_HEAD(dmar_atsr_units);
273
274 static int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
275 {
276 struct acpi_dmar_atsr *atsr;
277 struct dmar_atsr_unit *atsru;
278
279 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
280 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
281 if (!atsru)
282 return -ENOMEM;
283
284 atsru->hdr = hdr;
285 atsru->include_all = atsr->flags & 0x1;
286
287 list_add(&atsru->list, &dmar_atsr_units);
288
289 return 0;
290 }
291
292 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
293 {
294 int rc;
295 struct acpi_dmar_atsr *atsr;
296
297 if (atsru->include_all)
298 return 0;
299
300 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
301 rc = dmar_parse_dev_scope((void *)(atsr + 1),
302 (void *)atsr + atsr->header.length,
303 &atsru->devices_cnt, &atsru->devices,
304 atsr->segment);
305 if (rc || !atsru->devices_cnt) {
306 list_del(&atsru->list);
307 kfree(atsru);
308 }
309
310 return rc;
311 }
312
313 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
314 {
315 int i;
316 struct pci_bus *bus;
317 struct acpi_dmar_atsr *atsr;
318 struct dmar_atsr_unit *atsru;
319
320 list_for_each_entry(atsru, &dmar_atsr_units, list) {
321 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
322 if (atsr->segment == pci_domain_nr(dev->bus))
323 goto found;
324 }
325
326 return 0;
327
328 found:
329 for (bus = dev->bus; bus; bus = bus->parent) {
330 struct pci_dev *bridge = bus->self;
331
332 if (!bridge || !bridge->is_pcie ||
333 bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
334 return 0;
335
336 if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
337 for (i = 0; i < atsru->devices_cnt; i++)
338 if (atsru->devices[i] == bridge)
339 return 1;
340 break;
341 }
342 }
343
344 if (atsru->include_all)
345 return 1;
346
347 return 0;
348 }
349 #endif
350
351 #ifdef CONFIG_ACPI_NUMA
352 static int __init
353 dmar_parse_one_rhsa(struct acpi_dmar_header *header)
354 {
355 struct acpi_dmar_rhsa *rhsa;
356 struct dmar_drhd_unit *drhd;
357
358 rhsa = (struct acpi_dmar_rhsa *)header;
359 for_each_drhd_unit(drhd) {
360 if (drhd->reg_base_addr == rhsa->base_address) {
361 int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
362
363 if (!node_online(node))
364 node = -1;
365 drhd->iommu->node = node;
366 return 0;
367 }
368 }
369 WARN(1, "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
370 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
371 drhd->reg_base_addr,
372 dmi_get_system_info(DMI_BIOS_VENDOR),
373 dmi_get_system_info(DMI_BIOS_VERSION),
374 dmi_get_system_info(DMI_PRODUCT_VERSION));
375
376 return 0;
377 }
378 #endif
379
380 static void __init
381 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
382 {
383 struct acpi_dmar_hardware_unit *drhd;
384 struct acpi_dmar_reserved_memory *rmrr;
385 struct acpi_dmar_atsr *atsr;
386 struct acpi_dmar_rhsa *rhsa;
387
388 switch (header->type) {
389 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
390 drhd = container_of(header, struct acpi_dmar_hardware_unit,
391 header);
392 printk (KERN_INFO PREFIX
393 "DRHD base: %#016Lx flags: %#x\n",
394 (unsigned long long)drhd->address, drhd->flags);
395 break;
396 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
397 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
398 header);
399 printk (KERN_INFO PREFIX
400 "RMRR base: %#016Lx end: %#016Lx\n",
401 (unsigned long long)rmrr->base_address,
402 (unsigned long long)rmrr->end_address);
403 break;
404 case ACPI_DMAR_TYPE_ATSR:
405 atsr = container_of(header, struct acpi_dmar_atsr, header);
406 printk(KERN_INFO PREFIX "ATSR flags: %#x\n", atsr->flags);
407 break;
408 case ACPI_DMAR_HARDWARE_AFFINITY:
409 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
410 printk(KERN_INFO PREFIX "RHSA base: %#016Lx proximity domain: %#x\n",
411 (unsigned long long)rhsa->base_address,
412 rhsa->proximity_domain);
413 break;
414 }
415 }
416
417 /**
418 * dmar_table_detect - checks to see if the platform supports DMAR devices
419 */
420 static int __init dmar_table_detect(void)
421 {
422 acpi_status status = AE_OK;
423
424 /* if we could find DMAR table, then there are DMAR devices */
425 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
426 (struct acpi_table_header **)&dmar_tbl,
427 &dmar_tbl_size);
428
429 if (ACPI_SUCCESS(status) && !dmar_tbl) {
430 printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
431 status = AE_NOT_FOUND;
432 }
433
434 return (ACPI_SUCCESS(status) ? 1 : 0);
435 }
436
437 /**
438 * parse_dmar_table - parses the DMA reporting table
439 */
440 static int __init
441 parse_dmar_table(void)
442 {
443 struct acpi_table_dmar *dmar;
444 struct acpi_dmar_header *entry_header;
445 int ret = 0;
446
447 /*
448 * Do it again, earlier dmar_tbl mapping could be mapped with
449 * fixed map.
450 */
451 dmar_table_detect();
452
453 /*
454 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
455 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
456 */
457 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
458
459 dmar = (struct acpi_table_dmar *)dmar_tbl;
460 if (!dmar)
461 return -ENODEV;
462
463 if (dmar->width < PAGE_SHIFT - 1) {
464 printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
465 return -EINVAL;
466 }
467
468 printk (KERN_INFO PREFIX "Host address width %d\n",
469 dmar->width + 1);
470
471 entry_header = (struct acpi_dmar_header *)(dmar + 1);
472 while (((unsigned long)entry_header) <
473 (((unsigned long)dmar) + dmar_tbl->length)) {
474 /* Avoid looping forever on bad ACPI tables */
475 if (entry_header->length == 0) {
476 printk(KERN_WARNING PREFIX
477 "Invalid 0-length structure\n");
478 ret = -EINVAL;
479 break;
480 }
481
482 dmar_table_print_dmar_entry(entry_header);
483
484 switch (entry_header->type) {
485 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
486 ret = dmar_parse_one_drhd(entry_header);
487 break;
488 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
489 #ifdef CONFIG_DMAR
490 ret = dmar_parse_one_rmrr(entry_header);
491 #endif
492 break;
493 case ACPI_DMAR_TYPE_ATSR:
494 #ifdef CONFIG_DMAR
495 ret = dmar_parse_one_atsr(entry_header);
496 #endif
497 break;
498 case ACPI_DMAR_HARDWARE_AFFINITY:
499 #ifdef CONFIG_ACPI_NUMA
500 ret = dmar_parse_one_rhsa(entry_header);
501 #endif
502 break;
503 default:
504 printk(KERN_WARNING PREFIX
505 "Unknown DMAR structure type %d\n",
506 entry_header->type);
507 ret = 0; /* for forward compatibility */
508 break;
509 }
510 if (ret)
511 break;
512
513 entry_header = ((void *)entry_header + entry_header->length);
514 }
515 return ret;
516 }
517
518 int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
519 struct pci_dev *dev)
520 {
521 int index;
522
523 while (dev) {
524 for (index = 0; index < cnt; index++)
525 if (dev == devices[index])
526 return 1;
527
528 /* Check our parent */
529 dev = dev->bus->self;
530 }
531
532 return 0;
533 }
534
535 struct dmar_drhd_unit *
536 dmar_find_matched_drhd_unit(struct pci_dev *dev)
537 {
538 struct dmar_drhd_unit *dmaru = NULL;
539 struct acpi_dmar_hardware_unit *drhd;
540
541 list_for_each_entry(dmaru, &dmar_drhd_units, list) {
542 drhd = container_of(dmaru->hdr,
543 struct acpi_dmar_hardware_unit,
544 header);
545
546 if (dmaru->include_all &&
547 drhd->segment == pci_domain_nr(dev->bus))
548 return dmaru;
549
550 if (dmar_pci_device_match(dmaru->devices,
551 dmaru->devices_cnt, dev))
552 return dmaru;
553 }
554
555 return NULL;
556 }
557
558 int __init dmar_dev_scope_init(void)
559 {
560 struct dmar_drhd_unit *drhd, *drhd_n;
561 int ret = -ENODEV;
562
563 list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
564 ret = dmar_parse_dev(drhd);
565 if (ret)
566 return ret;
567 }
568
569 #ifdef CONFIG_DMAR
570 {
571 struct dmar_rmrr_unit *rmrr, *rmrr_n;
572 struct dmar_atsr_unit *atsr, *atsr_n;
573
574 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
575 ret = rmrr_parse_dev(rmrr);
576 if (ret)
577 return ret;
578 }
579
580 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
581 ret = atsr_parse_dev(atsr);
582 if (ret)
583 return ret;
584 }
585 }
586 #endif
587
588 return ret;
589 }
590
591
592 int __init dmar_table_init(void)
593 {
594 static int dmar_table_initialized;
595 int ret;
596
597 if (dmar_table_initialized)
598 return 0;
599
600 dmar_table_initialized = 1;
601
602 ret = parse_dmar_table();
603 if (ret) {
604 if (ret != -ENODEV)
605 printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
606 return ret;
607 }
608
609 if (list_empty(&dmar_drhd_units)) {
610 printk(KERN_INFO PREFIX "No DMAR devices found\n");
611 return -ENODEV;
612 }
613
614 #ifdef CONFIG_DMAR
615 if (list_empty(&dmar_rmrr_units))
616 printk(KERN_INFO PREFIX "No RMRR found\n");
617
618 if (list_empty(&dmar_atsr_units))
619 printk(KERN_INFO PREFIX "No ATSR found\n");
620 #endif
621
622 return 0;
623 }
624
625 void __init detect_intel_iommu(void)
626 {
627 int ret;
628
629 ret = dmar_table_detect();
630
631 {
632 #ifdef CONFIG_INTR_REMAP
633 struct acpi_table_dmar *dmar;
634 /*
635 * for now we will disable dma-remapping when interrupt
636 * remapping is enabled.
637 * When support for queued invalidation for IOTLB invalidation
638 * is added, we will not need this any more.
639 */
640 dmar = (struct acpi_table_dmar *) dmar_tbl;
641 if (ret && cpu_has_x2apic && dmar->flags & 0x1)
642 printk(KERN_INFO
643 "Queued invalidation will be enabled to support "
644 "x2apic and Intr-remapping.\n");
645 #endif
646 #ifdef CONFIG_DMAR
647 if (ret && !no_iommu && !iommu_detected && !swiotlb &&
648 !dmar_disabled)
649 iommu_detected = 1;
650 #endif
651 }
652 early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
653 dmar_tbl = NULL;
654 }
655
656
657 int alloc_iommu(struct dmar_drhd_unit *drhd)
658 {
659 struct intel_iommu *iommu;
660 int map_size;
661 u32 ver;
662 static int iommu_allocated = 0;
663 int agaw = 0;
664 int msagaw = 0;
665
666 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
667 if (!iommu)
668 return -ENOMEM;
669
670 iommu->seq_id = iommu_allocated++;
671 sprintf (iommu->name, "dmar%d", iommu->seq_id);
672
673 iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
674 if (!iommu->reg) {
675 printk(KERN_ERR "IOMMU: can't map the region\n");
676 goto error;
677 }
678 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
679 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
680
681 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
682 /* Promote an attitude of violence to a BIOS engineer today */
683 WARN(1, "Your BIOS is broken; DMAR reported at address %llx returns all ones!\n"
684 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
685 drhd->reg_base_addr,
686 dmi_get_system_info(DMI_BIOS_VENDOR),
687 dmi_get_system_info(DMI_BIOS_VERSION),
688 dmi_get_system_info(DMI_PRODUCT_VERSION));
689 goto err_unmap;
690 }
691
692 #ifdef CONFIG_DMAR
693 agaw = iommu_calculate_agaw(iommu);
694 if (agaw < 0) {
695 printk(KERN_ERR
696 "Cannot get a valid agaw for iommu (seq_id = %d)\n",
697 iommu->seq_id);
698 goto err_unmap;
699 }
700 msagaw = iommu_calculate_max_sagaw(iommu);
701 if (msagaw < 0) {
702 printk(KERN_ERR
703 "Cannot get a valid max agaw for iommu (seq_id = %d)\n",
704 iommu->seq_id);
705 goto err_unmap;
706 }
707 #endif
708 iommu->agaw = agaw;
709 iommu->msagaw = msagaw;
710
711 iommu->node = -1;
712
713 /* the registers might be more than one page */
714 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
715 cap_max_fault_reg_offset(iommu->cap));
716 map_size = VTD_PAGE_ALIGN(map_size);
717 if (map_size > VTD_PAGE_SIZE) {
718 iounmap(iommu->reg);
719 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
720 if (!iommu->reg) {
721 printk(KERN_ERR "IOMMU: can't map the region\n");
722 goto error;
723 }
724 }
725
726 ver = readl(iommu->reg + DMAR_VER_REG);
727 pr_info("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
728 (unsigned long long)drhd->reg_base_addr,
729 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
730 (unsigned long long)iommu->cap,
731 (unsigned long long)iommu->ecap);
732
733 spin_lock_init(&iommu->register_lock);
734
735 drhd->iommu = iommu;
736 return 0;
737
738 err_unmap:
739 iounmap(iommu->reg);
740 error:
741 kfree(iommu);
742 return -1;
743 }
744
745 void free_iommu(struct intel_iommu *iommu)
746 {
747 if (!iommu)
748 return;
749
750 #ifdef CONFIG_DMAR
751 free_dmar_iommu(iommu);
752 #endif
753
754 if (iommu->reg)
755 iounmap(iommu->reg);
756 kfree(iommu);
757 }
758
759 /*
760 * Reclaim all the submitted descriptors which have completed its work.
761 */
762 static inline void reclaim_free_desc(struct q_inval *qi)
763 {
764 while (qi->desc_status[qi->free_tail] == QI_DONE ||
765 qi->desc_status[qi->free_tail] == QI_ABORT) {
766 qi->desc_status[qi->free_tail] = QI_FREE;
767 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
768 qi->free_cnt++;
769 }
770 }
771
772 static int qi_check_fault(struct intel_iommu *iommu, int index)
773 {
774 u32 fault;
775 int head, tail;
776 struct q_inval *qi = iommu->qi;
777 int wait_index = (index + 1) % QI_LENGTH;
778
779 if (qi->desc_status[wait_index] == QI_ABORT)
780 return -EAGAIN;
781
782 fault = readl(iommu->reg + DMAR_FSTS_REG);
783
784 /*
785 * If IQE happens, the head points to the descriptor associated
786 * with the error. No new descriptors are fetched until the IQE
787 * is cleared.
788 */
789 if (fault & DMA_FSTS_IQE) {
790 head = readl(iommu->reg + DMAR_IQH_REG);
791 if ((head >> DMAR_IQ_SHIFT) == index) {
792 printk(KERN_ERR "VT-d detected invalid descriptor: "
793 "low=%llx, high=%llx\n",
794 (unsigned long long)qi->desc[index].low,
795 (unsigned long long)qi->desc[index].high);
796 memcpy(&qi->desc[index], &qi->desc[wait_index],
797 sizeof(struct qi_desc));
798 __iommu_flush_cache(iommu, &qi->desc[index],
799 sizeof(struct qi_desc));
800 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
801 return -EINVAL;
802 }
803 }
804
805 /*
806 * If ITE happens, all pending wait_desc commands are aborted.
807 * No new descriptors are fetched until the ITE is cleared.
808 */
809 if (fault & DMA_FSTS_ITE) {
810 head = readl(iommu->reg + DMAR_IQH_REG);
811 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
812 head |= 1;
813 tail = readl(iommu->reg + DMAR_IQT_REG);
814 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
815
816 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
817
818 do {
819 if (qi->desc_status[head] == QI_IN_USE)
820 qi->desc_status[head] = QI_ABORT;
821 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
822 } while (head != tail);
823
824 if (qi->desc_status[wait_index] == QI_ABORT)
825 return -EAGAIN;
826 }
827
828 if (fault & DMA_FSTS_ICE)
829 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
830
831 return 0;
832 }
833
834 /*
835 * Submit the queued invalidation descriptor to the remapping
836 * hardware unit and wait for its completion.
837 */
838 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
839 {
840 int rc;
841 struct q_inval *qi = iommu->qi;
842 struct qi_desc *hw, wait_desc;
843 int wait_index, index;
844 unsigned long flags;
845
846 if (!qi)
847 return 0;
848
849 hw = qi->desc;
850
851 restart:
852 rc = 0;
853
854 spin_lock_irqsave(&qi->q_lock, flags);
855 while (qi->free_cnt < 3) {
856 spin_unlock_irqrestore(&qi->q_lock, flags);
857 cpu_relax();
858 spin_lock_irqsave(&qi->q_lock, flags);
859 }
860
861 index = qi->free_head;
862 wait_index = (index + 1) % QI_LENGTH;
863
864 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
865
866 hw[index] = *desc;
867
868 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
869 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
870 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
871
872 hw[wait_index] = wait_desc;
873
874 __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
875 __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
876
877 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
878 qi->free_cnt -= 2;
879
880 /*
881 * update the HW tail register indicating the presence of
882 * new descriptors.
883 */
884 writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
885
886 while (qi->desc_status[wait_index] != QI_DONE) {
887 /*
888 * We will leave the interrupts disabled, to prevent interrupt
889 * context to queue another cmd while a cmd is already submitted
890 * and waiting for completion on this cpu. This is to avoid
891 * a deadlock where the interrupt context can wait indefinitely
892 * for free slots in the queue.
893 */
894 rc = qi_check_fault(iommu, index);
895 if (rc)
896 break;
897
898 spin_unlock(&qi->q_lock);
899 cpu_relax();
900 spin_lock(&qi->q_lock);
901 }
902
903 qi->desc_status[index] = QI_DONE;
904
905 reclaim_free_desc(qi);
906 spin_unlock_irqrestore(&qi->q_lock, flags);
907
908 if (rc == -EAGAIN)
909 goto restart;
910
911 return rc;
912 }
913
914 /*
915 * Flush the global interrupt entry cache.
916 */
917 void qi_global_iec(struct intel_iommu *iommu)
918 {
919 struct qi_desc desc;
920
921 desc.low = QI_IEC_TYPE;
922 desc.high = 0;
923
924 /* should never fail */
925 qi_submit_sync(&desc, iommu);
926 }
927
928 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
929 u64 type)
930 {
931 struct qi_desc desc;
932
933 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
934 | QI_CC_GRAN(type) | QI_CC_TYPE;
935 desc.high = 0;
936
937 qi_submit_sync(&desc, iommu);
938 }
939
940 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
941 unsigned int size_order, u64 type)
942 {
943 u8 dw = 0, dr = 0;
944
945 struct qi_desc desc;
946 int ih = 0;
947
948 if (cap_write_drain(iommu->cap))
949 dw = 1;
950
951 if (cap_read_drain(iommu->cap))
952 dr = 1;
953
954 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
955 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
956 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
957 | QI_IOTLB_AM(size_order);
958
959 qi_submit_sync(&desc, iommu);
960 }
961
962 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
963 u64 addr, unsigned mask)
964 {
965 struct qi_desc desc;
966
967 if (mask) {
968 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
969 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
970 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
971 } else
972 desc.high = QI_DEV_IOTLB_ADDR(addr);
973
974 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
975 qdep = 0;
976
977 desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
978 QI_DIOTLB_TYPE;
979
980 qi_submit_sync(&desc, iommu);
981 }
982
983 /*
984 * Disable Queued Invalidation interface.
985 */
986 void dmar_disable_qi(struct intel_iommu *iommu)
987 {
988 unsigned long flags;
989 u32 sts;
990 cycles_t start_time = get_cycles();
991
992 if (!ecap_qis(iommu->ecap))
993 return;
994
995 spin_lock_irqsave(&iommu->register_lock, flags);
996
997 sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
998 if (!(sts & DMA_GSTS_QIES))
999 goto end;
1000
1001 /*
1002 * Give a chance to HW to complete the pending invalidation requests.
1003 */
1004 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1005 readl(iommu->reg + DMAR_IQH_REG)) &&
1006 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1007 cpu_relax();
1008
1009 iommu->gcmd &= ~DMA_GCMD_QIE;
1010 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1011
1012 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1013 !(sts & DMA_GSTS_QIES), sts);
1014 end:
1015 spin_unlock_irqrestore(&iommu->register_lock, flags);
1016 }
1017
1018 /*
1019 * Enable queued invalidation.
1020 */
1021 static void __dmar_enable_qi(struct intel_iommu *iommu)
1022 {
1023 u32 sts;
1024 unsigned long flags;
1025 struct q_inval *qi = iommu->qi;
1026
1027 qi->free_head = qi->free_tail = 0;
1028 qi->free_cnt = QI_LENGTH;
1029
1030 spin_lock_irqsave(&iommu->register_lock, flags);
1031
1032 /* write zero to the tail reg */
1033 writel(0, iommu->reg + DMAR_IQT_REG);
1034
1035 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
1036
1037 iommu->gcmd |= DMA_GCMD_QIE;
1038 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1039
1040 /* Make sure hardware complete it */
1041 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1042
1043 spin_unlock_irqrestore(&iommu->register_lock, flags);
1044 }
1045
1046 /*
1047 * Enable Queued Invalidation interface. This is a must to support
1048 * interrupt-remapping. Also used by DMA-remapping, which replaces
1049 * register based IOTLB invalidation.
1050 */
1051 int dmar_enable_qi(struct intel_iommu *iommu)
1052 {
1053 struct q_inval *qi;
1054 struct page *desc_page;
1055
1056 if (!ecap_qis(iommu->ecap))
1057 return -ENOENT;
1058
1059 /*
1060 * queued invalidation is already setup and enabled.
1061 */
1062 if (iommu->qi)
1063 return 0;
1064
1065 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1066 if (!iommu->qi)
1067 return -ENOMEM;
1068
1069 qi = iommu->qi;
1070
1071
1072 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
1073 if (!desc_page) {
1074 kfree(qi);
1075 iommu->qi = 0;
1076 return -ENOMEM;
1077 }
1078
1079 qi->desc = page_address(desc_page);
1080
1081 qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1082 if (!qi->desc_status) {
1083 free_page((unsigned long) qi->desc);
1084 kfree(qi);
1085 iommu->qi = 0;
1086 return -ENOMEM;
1087 }
1088
1089 qi->free_head = qi->free_tail = 0;
1090 qi->free_cnt = QI_LENGTH;
1091
1092 spin_lock_init(&qi->q_lock);
1093
1094 __dmar_enable_qi(iommu);
1095
1096 return 0;
1097 }
1098
1099 /* iommu interrupt handling. Most stuff are MSI-like. */
1100
1101 enum faulttype {
1102 DMA_REMAP,
1103 INTR_REMAP,
1104 UNKNOWN,
1105 };
1106
1107 static const char *dma_remap_fault_reasons[] =
1108 {
1109 "Software",
1110 "Present bit in root entry is clear",
1111 "Present bit in context entry is clear",
1112 "Invalid context entry",
1113 "Access beyond MGAW",
1114 "PTE Write access is not set",
1115 "PTE Read access is not set",
1116 "Next page table ptr is invalid",
1117 "Root table address invalid",
1118 "Context table ptr is invalid",
1119 "non-zero reserved fields in RTP",
1120 "non-zero reserved fields in CTP",
1121 "non-zero reserved fields in PTE",
1122 };
1123
1124 static const char *intr_remap_fault_reasons[] =
1125 {
1126 "Detected reserved fields in the decoded interrupt-remapped request",
1127 "Interrupt index exceeded the interrupt-remapping table size",
1128 "Present field in the IRTE entry is clear",
1129 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1130 "Detected reserved fields in the IRTE entry",
1131 "Blocked a compatibility format interrupt request",
1132 "Blocked an interrupt request due to source-id verification failure",
1133 };
1134
1135 #define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1)
1136
1137 const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1138 {
1139 if (fault_reason >= 0x20 && (fault_reason <= 0x20 +
1140 ARRAY_SIZE(intr_remap_fault_reasons))) {
1141 *fault_type = INTR_REMAP;
1142 return intr_remap_fault_reasons[fault_reason - 0x20];
1143 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1144 *fault_type = DMA_REMAP;
1145 return dma_remap_fault_reasons[fault_reason];
1146 } else {
1147 *fault_type = UNKNOWN;
1148 return "Unknown";
1149 }
1150 }
1151
1152 void dmar_msi_unmask(unsigned int irq)
1153 {
1154 struct intel_iommu *iommu = get_irq_data(irq);
1155 unsigned long flag;
1156
1157 /* unmask it */
1158 spin_lock_irqsave(&iommu->register_lock, flag);
1159 writel(0, iommu->reg + DMAR_FECTL_REG);
1160 /* Read a reg to force flush the post write */
1161 readl(iommu->reg + DMAR_FECTL_REG);
1162 spin_unlock_irqrestore(&iommu->register_lock, flag);
1163 }
1164
1165 void dmar_msi_mask(unsigned int irq)
1166 {
1167 unsigned long flag;
1168 struct intel_iommu *iommu = get_irq_data(irq);
1169
1170 /* mask it */
1171 spin_lock_irqsave(&iommu->register_lock, flag);
1172 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
1173 /* Read a reg to force flush the post write */
1174 readl(iommu->reg + DMAR_FECTL_REG);
1175 spin_unlock_irqrestore(&iommu->register_lock, flag);
1176 }
1177
1178 void dmar_msi_write(int irq, struct msi_msg *msg)
1179 {
1180 struct intel_iommu *iommu = get_irq_data(irq);
1181 unsigned long flag;
1182
1183 spin_lock_irqsave(&iommu->register_lock, flag);
1184 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
1185 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
1186 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1187 spin_unlock_irqrestore(&iommu->register_lock, flag);
1188 }
1189
1190 void dmar_msi_read(int irq, struct msi_msg *msg)
1191 {
1192 struct intel_iommu *iommu = get_irq_data(irq);
1193 unsigned long flag;
1194
1195 spin_lock_irqsave(&iommu->register_lock, flag);
1196 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
1197 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
1198 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1199 spin_unlock_irqrestore(&iommu->register_lock, flag);
1200 }
1201
1202 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1203 u8 fault_reason, u16 source_id, unsigned long long addr)
1204 {
1205 const char *reason;
1206 int fault_type;
1207
1208 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1209
1210 if (fault_type == INTR_REMAP)
1211 printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
1212 "fault index %llx\n"
1213 "INTR-REMAP:[fault reason %02d] %s\n",
1214 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1215 PCI_FUNC(source_id & 0xFF), addr >> 48,
1216 fault_reason, reason);
1217 else
1218 printk(KERN_ERR
1219 "DMAR:[%s] Request device [%02x:%02x.%d] "
1220 "fault addr %llx \n"
1221 "DMAR:[fault reason %02d] %s\n",
1222 (type ? "DMA Read" : "DMA Write"),
1223 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1224 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1225 return 0;
1226 }
1227
1228 #define PRIMARY_FAULT_REG_LEN (16)
1229 irqreturn_t dmar_fault(int irq, void *dev_id)
1230 {
1231 struct intel_iommu *iommu = dev_id;
1232 int reg, fault_index;
1233 u32 fault_status;
1234 unsigned long flag;
1235
1236 spin_lock_irqsave(&iommu->register_lock, flag);
1237 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1238 if (fault_status)
1239 printk(KERN_ERR "DRHD: handling fault status reg %x\n",
1240 fault_status);
1241
1242 /* TBD: ignore advanced fault log currently */
1243 if (!(fault_status & DMA_FSTS_PPF))
1244 goto clear_rest;
1245
1246 fault_index = dma_fsts_fault_record_index(fault_status);
1247 reg = cap_fault_reg_offset(iommu->cap);
1248 while (1) {
1249 u8 fault_reason;
1250 u16 source_id;
1251 u64 guest_addr;
1252 int type;
1253 u32 data;
1254
1255 /* highest 32 bits */
1256 data = readl(iommu->reg + reg +
1257 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1258 if (!(data & DMA_FRCD_F))
1259 break;
1260
1261 fault_reason = dma_frcd_fault_reason(data);
1262 type = dma_frcd_type(data);
1263
1264 data = readl(iommu->reg + reg +
1265 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1266 source_id = dma_frcd_source_id(data);
1267
1268 guest_addr = dmar_readq(iommu->reg + reg +
1269 fault_index * PRIMARY_FAULT_REG_LEN);
1270 guest_addr = dma_frcd_page_addr(guest_addr);
1271 /* clear the fault */
1272 writel(DMA_FRCD_F, iommu->reg + reg +
1273 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1274
1275 spin_unlock_irqrestore(&iommu->register_lock, flag);
1276
1277 dmar_fault_do_one(iommu, type, fault_reason,
1278 source_id, guest_addr);
1279
1280 fault_index++;
1281 if (fault_index >= cap_num_fault_regs(iommu->cap))
1282 fault_index = 0;
1283 spin_lock_irqsave(&iommu->register_lock, flag);
1284 }
1285 clear_rest:
1286 /* clear all the other faults */
1287 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1288 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1289
1290 spin_unlock_irqrestore(&iommu->register_lock, flag);
1291 return IRQ_HANDLED;
1292 }
1293
1294 int dmar_set_interrupt(struct intel_iommu *iommu)
1295 {
1296 int irq, ret;
1297
1298 /*
1299 * Check if the fault interrupt is already initialized.
1300 */
1301 if (iommu->irq)
1302 return 0;
1303
1304 irq = create_irq();
1305 if (!irq) {
1306 printk(KERN_ERR "IOMMU: no free vectors\n");
1307 return -EINVAL;
1308 }
1309
1310 set_irq_data(irq, iommu);
1311 iommu->irq = irq;
1312
1313 ret = arch_setup_dmar_msi(irq);
1314 if (ret) {
1315 set_irq_data(irq, NULL);
1316 iommu->irq = 0;
1317 destroy_irq(irq);
1318 return ret;
1319 }
1320
1321 ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu);
1322 if (ret)
1323 printk(KERN_ERR "IOMMU: can't request irq\n");
1324 return ret;
1325 }
1326
1327 int __init enable_drhd_fault_handling(void)
1328 {
1329 struct dmar_drhd_unit *drhd;
1330
1331 /*
1332 * Enable fault control interrupt.
1333 */
1334 for_each_drhd_unit(drhd) {
1335 int ret;
1336 struct intel_iommu *iommu = drhd->iommu;
1337 ret = dmar_set_interrupt(iommu);
1338
1339 if (ret) {
1340 printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
1341 " interrupt, ret %d\n",
1342 (unsigned long long)drhd->reg_base_addr, ret);
1343 return -1;
1344 }
1345 }
1346
1347 return 0;
1348 }
1349
1350 /*
1351 * Re-enable Queued Invalidation interface.
1352 */
1353 int dmar_reenable_qi(struct intel_iommu *iommu)
1354 {
1355 if (!ecap_qis(iommu->ecap))
1356 return -ENOENT;
1357
1358 if (!iommu->qi)
1359 return -ENOENT;
1360
1361 /*
1362 * First disable queued invalidation.
1363 */
1364 dmar_disable_qi(iommu);
1365 /*
1366 * Then enable queued invalidation again. Since there is no pending
1367 * invalidation requests now, it's safe to re-enable queued
1368 * invalidation.
1369 */
1370 __dmar_enable_qi(iommu);
1371
1372 return 0;
1373 }
1374
1375 /*
1376 * Check interrupt remapping support in DMAR table description.
1377 */
1378 int dmar_ir_support(void)
1379 {
1380 struct acpi_table_dmar *dmar;
1381 dmar = (struct acpi_table_dmar *)dmar_tbl;
1382 return dmar->flags & 0x1;
1383 }
This page took 0.077462 seconds and 5 git commands to generate.