x86, dmar: use atomic allocations for QI and Intr-remapping init
[deliverable/linux.git] / drivers / pci / dmar.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 *
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24 * tables.
25 *
26 * These routines are used by both DMA-remapping and Interrupt-remapping
27 */
28
29 #include <linux/pci.h>
30 #include <linux/dmar.h>
31 #include <linux/iova.h>
32 #include <linux/intel-iommu.h>
33 #include <linux/timer.h>
34 #include <linux/irq.h>
35 #include <linux/interrupt.h>
36
37 #undef PREFIX
38 #define PREFIX "DMAR:"
39
40 /* No locks are needed as DMA remapping hardware unit
41 * list is constructed at boot time and hotplug of
42 * these units are not supported by the architecture.
43 */
44 LIST_HEAD(dmar_drhd_units);
45
46 static struct acpi_table_header * __initdata dmar_tbl;
47 static acpi_size dmar_tbl_size;
48
49 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
50 {
51 /*
52 * add INCLUDE_ALL at the tail, so scan the list will find it at
53 * the very end.
54 */
55 if (drhd->include_all)
56 list_add_tail(&drhd->list, &dmar_drhd_units);
57 else
58 list_add(&drhd->list, &dmar_drhd_units);
59 }
60
61 static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
62 struct pci_dev **dev, u16 segment)
63 {
64 struct pci_bus *bus;
65 struct pci_dev *pdev = NULL;
66 struct acpi_dmar_pci_path *path;
67 int count;
68
69 bus = pci_find_bus(segment, scope->bus);
70 path = (struct acpi_dmar_pci_path *)(scope + 1);
71 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
72 / sizeof(struct acpi_dmar_pci_path);
73
74 while (count) {
75 if (pdev)
76 pci_dev_put(pdev);
77 /*
78 * Some BIOSes list non-exist devices in DMAR table, just
79 * ignore it
80 */
81 if (!bus) {
82 printk(KERN_WARNING
83 PREFIX "Device scope bus [%d] not found\n",
84 scope->bus);
85 break;
86 }
87 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
88 if (!pdev) {
89 printk(KERN_WARNING PREFIX
90 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
91 segment, bus->number, path->dev, path->fn);
92 break;
93 }
94 path ++;
95 count --;
96 bus = pdev->subordinate;
97 }
98 if (!pdev) {
99 printk(KERN_WARNING PREFIX
100 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
101 segment, scope->bus, path->dev, path->fn);
102 *dev = NULL;
103 return 0;
104 }
105 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
106 pdev->subordinate) || (scope->entry_type == \
107 ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
108 pci_dev_put(pdev);
109 printk(KERN_WARNING PREFIX
110 "Device scope type does not match for %s\n",
111 pci_name(pdev));
112 return -EINVAL;
113 }
114 *dev = pdev;
115 return 0;
116 }
117
118 static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
119 struct pci_dev ***devices, u16 segment)
120 {
121 struct acpi_dmar_device_scope *scope;
122 void * tmp = start;
123 int index;
124 int ret;
125
126 *cnt = 0;
127 while (start < end) {
128 scope = start;
129 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
130 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
131 (*cnt)++;
132 else
133 printk(KERN_WARNING PREFIX
134 "Unsupported device scope\n");
135 start += scope->length;
136 }
137 if (*cnt == 0)
138 return 0;
139
140 *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
141 if (!*devices)
142 return -ENOMEM;
143
144 start = tmp;
145 index = 0;
146 while (start < end) {
147 scope = start;
148 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
149 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
150 ret = dmar_parse_one_dev_scope(scope,
151 &(*devices)[index], segment);
152 if (ret) {
153 kfree(*devices);
154 return ret;
155 }
156 index ++;
157 }
158 start += scope->length;
159 }
160
161 return 0;
162 }
163
164 /**
165 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
166 * structure which uniquely represent one DMA remapping hardware unit
167 * present in the platform
168 */
169 static int __init
170 dmar_parse_one_drhd(struct acpi_dmar_header *header)
171 {
172 struct acpi_dmar_hardware_unit *drhd;
173 struct dmar_drhd_unit *dmaru;
174 int ret = 0;
175
176 dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
177 if (!dmaru)
178 return -ENOMEM;
179
180 dmaru->hdr = header;
181 drhd = (struct acpi_dmar_hardware_unit *)header;
182 dmaru->reg_base_addr = drhd->address;
183 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
184
185 ret = alloc_iommu(dmaru);
186 if (ret) {
187 kfree(dmaru);
188 return ret;
189 }
190 dmar_register_drhd_unit(dmaru);
191 return 0;
192 }
193
194 static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
195 {
196 struct acpi_dmar_hardware_unit *drhd;
197 int ret = 0;
198
199 drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
200
201 if (dmaru->include_all)
202 return 0;
203
204 ret = dmar_parse_dev_scope((void *)(drhd + 1),
205 ((void *)drhd) + drhd->header.length,
206 &dmaru->devices_cnt, &dmaru->devices,
207 drhd->segment);
208 if (ret) {
209 list_del(&dmaru->list);
210 kfree(dmaru);
211 }
212 return ret;
213 }
214
215 #ifdef CONFIG_DMAR
216 LIST_HEAD(dmar_rmrr_units);
217
218 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
219 {
220 list_add(&rmrr->list, &dmar_rmrr_units);
221 }
222
223
224 static int __init
225 dmar_parse_one_rmrr(struct acpi_dmar_header *header)
226 {
227 struct acpi_dmar_reserved_memory *rmrr;
228 struct dmar_rmrr_unit *rmrru;
229
230 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
231 if (!rmrru)
232 return -ENOMEM;
233
234 rmrru->hdr = header;
235 rmrr = (struct acpi_dmar_reserved_memory *)header;
236 rmrru->base_address = rmrr->base_address;
237 rmrru->end_address = rmrr->end_address;
238
239 dmar_register_rmrr_unit(rmrru);
240 return 0;
241 }
242
243 static int __init
244 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
245 {
246 struct acpi_dmar_reserved_memory *rmrr;
247 int ret;
248
249 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
250 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
251 ((void *)rmrr) + rmrr->header.length,
252 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
253
254 if (ret || (rmrru->devices_cnt == 0)) {
255 list_del(&rmrru->list);
256 kfree(rmrru);
257 }
258 return ret;
259 }
260 #endif
261
262 static void __init
263 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
264 {
265 struct acpi_dmar_hardware_unit *drhd;
266 struct acpi_dmar_reserved_memory *rmrr;
267
268 switch (header->type) {
269 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
270 drhd = (struct acpi_dmar_hardware_unit *)header;
271 printk (KERN_INFO PREFIX
272 "DRHD (flags: 0x%08x)base: 0x%016Lx\n",
273 drhd->flags, (unsigned long long)drhd->address);
274 break;
275 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
276 rmrr = (struct acpi_dmar_reserved_memory *)header;
277
278 printk (KERN_INFO PREFIX
279 "RMRR base: 0x%016Lx end: 0x%016Lx\n",
280 (unsigned long long)rmrr->base_address,
281 (unsigned long long)rmrr->end_address);
282 break;
283 }
284 }
285
286 /**
287 * dmar_table_detect - checks to see if the platform supports DMAR devices
288 */
289 static int __init dmar_table_detect(void)
290 {
291 acpi_status status = AE_OK;
292
293 /* if we could find DMAR table, then there are DMAR devices */
294 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
295 (struct acpi_table_header **)&dmar_tbl,
296 &dmar_tbl_size);
297
298 if (ACPI_SUCCESS(status) && !dmar_tbl) {
299 printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
300 status = AE_NOT_FOUND;
301 }
302
303 return (ACPI_SUCCESS(status) ? 1 : 0);
304 }
305
306 /**
307 * parse_dmar_table - parses the DMA reporting table
308 */
309 static int __init
310 parse_dmar_table(void)
311 {
312 struct acpi_table_dmar *dmar;
313 struct acpi_dmar_header *entry_header;
314 int ret = 0;
315
316 /*
317 * Do it again, earlier dmar_tbl mapping could be mapped with
318 * fixed map.
319 */
320 dmar_table_detect();
321
322 dmar = (struct acpi_table_dmar *)dmar_tbl;
323 if (!dmar)
324 return -ENODEV;
325
326 if (dmar->width < PAGE_SHIFT - 1) {
327 printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
328 return -EINVAL;
329 }
330
331 printk (KERN_INFO PREFIX "Host address width %d\n",
332 dmar->width + 1);
333
334 entry_header = (struct acpi_dmar_header *)(dmar + 1);
335 while (((unsigned long)entry_header) <
336 (((unsigned long)dmar) + dmar_tbl->length)) {
337 /* Avoid looping forever on bad ACPI tables */
338 if (entry_header->length == 0) {
339 printk(KERN_WARNING PREFIX
340 "Invalid 0-length structure\n");
341 ret = -EINVAL;
342 break;
343 }
344
345 dmar_table_print_dmar_entry(entry_header);
346
347 switch (entry_header->type) {
348 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
349 ret = dmar_parse_one_drhd(entry_header);
350 break;
351 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
352 #ifdef CONFIG_DMAR
353 ret = dmar_parse_one_rmrr(entry_header);
354 #endif
355 break;
356 default:
357 printk(KERN_WARNING PREFIX
358 "Unknown DMAR structure type\n");
359 ret = 0; /* for forward compatibility */
360 break;
361 }
362 if (ret)
363 break;
364
365 entry_header = ((void *)entry_header + entry_header->length);
366 }
367 return ret;
368 }
369
370 int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
371 struct pci_dev *dev)
372 {
373 int index;
374
375 while (dev) {
376 for (index = 0; index < cnt; index++)
377 if (dev == devices[index])
378 return 1;
379
380 /* Check our parent */
381 dev = dev->bus->self;
382 }
383
384 return 0;
385 }
386
387 struct dmar_drhd_unit *
388 dmar_find_matched_drhd_unit(struct pci_dev *dev)
389 {
390 struct dmar_drhd_unit *dmaru = NULL;
391 struct acpi_dmar_hardware_unit *drhd;
392
393 list_for_each_entry(dmaru, &dmar_drhd_units, list) {
394 drhd = container_of(dmaru->hdr,
395 struct acpi_dmar_hardware_unit,
396 header);
397
398 if (dmaru->include_all &&
399 drhd->segment == pci_domain_nr(dev->bus))
400 return dmaru;
401
402 if (dmar_pci_device_match(dmaru->devices,
403 dmaru->devices_cnt, dev))
404 return dmaru;
405 }
406
407 return NULL;
408 }
409
410 int __init dmar_dev_scope_init(void)
411 {
412 struct dmar_drhd_unit *drhd, *drhd_n;
413 int ret = -ENODEV;
414
415 list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
416 ret = dmar_parse_dev(drhd);
417 if (ret)
418 return ret;
419 }
420
421 #ifdef CONFIG_DMAR
422 {
423 struct dmar_rmrr_unit *rmrr, *rmrr_n;
424 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
425 ret = rmrr_parse_dev(rmrr);
426 if (ret)
427 return ret;
428 }
429 }
430 #endif
431
432 return ret;
433 }
434
435
436 int __init dmar_table_init(void)
437 {
438 static int dmar_table_initialized;
439 int ret;
440
441 if (dmar_table_initialized)
442 return 0;
443
444 dmar_table_initialized = 1;
445
446 ret = parse_dmar_table();
447 if (ret) {
448 if (ret != -ENODEV)
449 printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
450 return ret;
451 }
452
453 if (list_empty(&dmar_drhd_units)) {
454 printk(KERN_INFO PREFIX "No DMAR devices found\n");
455 return -ENODEV;
456 }
457
458 #ifdef CONFIG_DMAR
459 if (list_empty(&dmar_rmrr_units))
460 printk(KERN_INFO PREFIX "No RMRR found\n");
461 #endif
462
463 #ifdef CONFIG_INTR_REMAP
464 parse_ioapics_under_ir();
465 #endif
466 return 0;
467 }
468
469 void __init detect_intel_iommu(void)
470 {
471 int ret;
472
473 ret = dmar_table_detect();
474
475 {
476 #ifdef CONFIG_INTR_REMAP
477 struct acpi_table_dmar *dmar;
478 /*
479 * for now we will disable dma-remapping when interrupt
480 * remapping is enabled.
481 * When support for queued invalidation for IOTLB invalidation
482 * is added, we will not need this any more.
483 */
484 dmar = (struct acpi_table_dmar *) dmar_tbl;
485 if (ret && cpu_has_x2apic && dmar->flags & 0x1)
486 printk(KERN_INFO
487 "Queued invalidation will be enabled to support "
488 "x2apic and Intr-remapping.\n");
489 #endif
490 #ifdef CONFIG_DMAR
491 if (ret && !no_iommu && !iommu_detected && !swiotlb &&
492 !dmar_disabled)
493 iommu_detected = 1;
494 #endif
495 }
496 early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
497 dmar_tbl = NULL;
498 }
499
500
501 int alloc_iommu(struct dmar_drhd_unit *drhd)
502 {
503 struct intel_iommu *iommu;
504 int map_size;
505 u32 ver;
506 static int iommu_allocated = 0;
507 int agaw = 0;
508
509 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
510 if (!iommu)
511 return -ENOMEM;
512
513 iommu->seq_id = iommu_allocated++;
514 sprintf (iommu->name, "dmar%d", iommu->seq_id);
515
516 iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
517 if (!iommu->reg) {
518 printk(KERN_ERR "IOMMU: can't map the region\n");
519 goto error;
520 }
521 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
522 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
523
524 #ifdef CONFIG_DMAR
525 agaw = iommu_calculate_agaw(iommu);
526 if (agaw < 0) {
527 printk(KERN_ERR
528 "Cannot get a valid agaw for iommu (seq_id = %d)\n",
529 iommu->seq_id);
530 goto error;
531 }
532 #endif
533 iommu->agaw = agaw;
534
535 /* the registers might be more than one page */
536 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
537 cap_max_fault_reg_offset(iommu->cap));
538 map_size = VTD_PAGE_ALIGN(map_size);
539 if (map_size > VTD_PAGE_SIZE) {
540 iounmap(iommu->reg);
541 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
542 if (!iommu->reg) {
543 printk(KERN_ERR "IOMMU: can't map the region\n");
544 goto error;
545 }
546 }
547
548 ver = readl(iommu->reg + DMAR_VER_REG);
549 pr_debug("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
550 (unsigned long long)drhd->reg_base_addr,
551 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
552 (unsigned long long)iommu->cap,
553 (unsigned long long)iommu->ecap);
554
555 spin_lock_init(&iommu->register_lock);
556
557 drhd->iommu = iommu;
558 return 0;
559 error:
560 kfree(iommu);
561 return -1;
562 }
563
564 void free_iommu(struct intel_iommu *iommu)
565 {
566 if (!iommu)
567 return;
568
569 #ifdef CONFIG_DMAR
570 free_dmar_iommu(iommu);
571 #endif
572
573 if (iommu->reg)
574 iounmap(iommu->reg);
575 kfree(iommu);
576 }
577
578 /*
579 * Reclaim all the submitted descriptors which have completed its work.
580 */
581 static inline void reclaim_free_desc(struct q_inval *qi)
582 {
583 while (qi->desc_status[qi->free_tail] == QI_DONE) {
584 qi->desc_status[qi->free_tail] = QI_FREE;
585 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
586 qi->free_cnt++;
587 }
588 }
589
590 static int qi_check_fault(struct intel_iommu *iommu, int index)
591 {
592 u32 fault;
593 int head;
594 struct q_inval *qi = iommu->qi;
595 int wait_index = (index + 1) % QI_LENGTH;
596
597 fault = readl(iommu->reg + DMAR_FSTS_REG);
598
599 /*
600 * If IQE happens, the head points to the descriptor associated
601 * with the error. No new descriptors are fetched until the IQE
602 * is cleared.
603 */
604 if (fault & DMA_FSTS_IQE) {
605 head = readl(iommu->reg + DMAR_IQH_REG);
606 if ((head >> 4) == index) {
607 memcpy(&qi->desc[index], &qi->desc[wait_index],
608 sizeof(struct qi_desc));
609 __iommu_flush_cache(iommu, &qi->desc[index],
610 sizeof(struct qi_desc));
611 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
612 return -EINVAL;
613 }
614 }
615
616 return 0;
617 }
618
619 /*
620 * Submit the queued invalidation descriptor to the remapping
621 * hardware unit and wait for its completion.
622 */
623 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
624 {
625 int rc = 0;
626 struct q_inval *qi = iommu->qi;
627 struct qi_desc *hw, wait_desc;
628 int wait_index, index;
629 unsigned long flags;
630
631 if (!qi)
632 return 0;
633
634 hw = qi->desc;
635
636 spin_lock_irqsave(&qi->q_lock, flags);
637 while (qi->free_cnt < 3) {
638 spin_unlock_irqrestore(&qi->q_lock, flags);
639 cpu_relax();
640 spin_lock_irqsave(&qi->q_lock, flags);
641 }
642
643 index = qi->free_head;
644 wait_index = (index + 1) % QI_LENGTH;
645
646 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
647
648 hw[index] = *desc;
649
650 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
651 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
652 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
653
654 hw[wait_index] = wait_desc;
655
656 __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
657 __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
658
659 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
660 qi->free_cnt -= 2;
661
662 /*
663 * update the HW tail register indicating the presence of
664 * new descriptors.
665 */
666 writel(qi->free_head << 4, iommu->reg + DMAR_IQT_REG);
667
668 while (qi->desc_status[wait_index] != QI_DONE) {
669 /*
670 * We will leave the interrupts disabled, to prevent interrupt
671 * context to queue another cmd while a cmd is already submitted
672 * and waiting for completion on this cpu. This is to avoid
673 * a deadlock where the interrupt context can wait indefinitely
674 * for free slots in the queue.
675 */
676 rc = qi_check_fault(iommu, index);
677 if (rc)
678 goto out;
679
680 spin_unlock(&qi->q_lock);
681 cpu_relax();
682 spin_lock(&qi->q_lock);
683 }
684 out:
685 qi->desc_status[index] = qi->desc_status[wait_index] = QI_DONE;
686
687 reclaim_free_desc(qi);
688 spin_unlock_irqrestore(&qi->q_lock, flags);
689
690 return rc;
691 }
692
693 /*
694 * Flush the global interrupt entry cache.
695 */
696 void qi_global_iec(struct intel_iommu *iommu)
697 {
698 struct qi_desc desc;
699
700 desc.low = QI_IEC_TYPE;
701 desc.high = 0;
702
703 /* should never fail */
704 qi_submit_sync(&desc, iommu);
705 }
706
707 int qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
708 u64 type, int non_present_entry_flush)
709 {
710 struct qi_desc desc;
711
712 if (non_present_entry_flush) {
713 if (!cap_caching_mode(iommu->cap))
714 return 1;
715 else
716 did = 0;
717 }
718
719 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
720 | QI_CC_GRAN(type) | QI_CC_TYPE;
721 desc.high = 0;
722
723 return qi_submit_sync(&desc, iommu);
724 }
725
726 int qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
727 unsigned int size_order, u64 type,
728 int non_present_entry_flush)
729 {
730 u8 dw = 0, dr = 0;
731
732 struct qi_desc desc;
733 int ih = 0;
734
735 if (non_present_entry_flush) {
736 if (!cap_caching_mode(iommu->cap))
737 return 1;
738 else
739 did = 0;
740 }
741
742 if (cap_write_drain(iommu->cap))
743 dw = 1;
744
745 if (cap_read_drain(iommu->cap))
746 dr = 1;
747
748 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
749 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
750 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
751 | QI_IOTLB_AM(size_order);
752
753 return qi_submit_sync(&desc, iommu);
754 }
755
756 /*
757 * Disable Queued Invalidation interface.
758 */
759 void dmar_disable_qi(struct intel_iommu *iommu)
760 {
761 unsigned long flags;
762 u32 sts;
763 cycles_t start_time = get_cycles();
764
765 if (!ecap_qis(iommu->ecap))
766 return;
767
768 spin_lock_irqsave(&iommu->register_lock, flags);
769
770 sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
771 if (!(sts & DMA_GSTS_QIES))
772 goto end;
773
774 /*
775 * Give a chance to HW to complete the pending invalidation requests.
776 */
777 while ((readl(iommu->reg + DMAR_IQT_REG) !=
778 readl(iommu->reg + DMAR_IQH_REG)) &&
779 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
780 cpu_relax();
781
782 iommu->gcmd &= ~DMA_GCMD_QIE;
783
784 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
785
786 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
787 !(sts & DMA_GSTS_QIES), sts);
788 end:
789 spin_unlock_irqrestore(&iommu->register_lock, flags);
790 }
791
792 /*
793 * Enable Queued Invalidation interface. This is a must to support
794 * interrupt-remapping. Also used by DMA-remapping, which replaces
795 * register based IOTLB invalidation.
796 */
797 int dmar_enable_qi(struct intel_iommu *iommu)
798 {
799 u32 cmd, sts;
800 unsigned long flags;
801 struct q_inval *qi;
802
803 if (!ecap_qis(iommu->ecap))
804 return -ENOENT;
805
806 /*
807 * queued invalidation is already setup and enabled.
808 */
809 if (iommu->qi)
810 return 0;
811
812 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
813 if (!iommu->qi)
814 return -ENOMEM;
815
816 qi = iommu->qi;
817
818 qi->desc = (void *)(get_zeroed_page(GFP_ATOMIC));
819 if (!qi->desc) {
820 kfree(qi);
821 iommu->qi = 0;
822 return -ENOMEM;
823 }
824
825 qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
826 if (!qi->desc_status) {
827 free_page((unsigned long) qi->desc);
828 kfree(qi);
829 iommu->qi = 0;
830 return -ENOMEM;
831 }
832
833 qi->free_head = qi->free_tail = 0;
834 qi->free_cnt = QI_LENGTH;
835
836 spin_lock_init(&qi->q_lock);
837
838 spin_lock_irqsave(&iommu->register_lock, flags);
839 /* write zero to the tail reg */
840 writel(0, iommu->reg + DMAR_IQT_REG);
841
842 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
843
844 cmd = iommu->gcmd | DMA_GCMD_QIE;
845 iommu->gcmd |= DMA_GCMD_QIE;
846 writel(cmd, iommu->reg + DMAR_GCMD_REG);
847
848 /* Make sure hardware complete it */
849 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
850 spin_unlock_irqrestore(&iommu->register_lock, flags);
851
852 return 0;
853 }
854
855 /* iommu interrupt handling. Most stuff are MSI-like. */
856
857 enum faulttype {
858 DMA_REMAP,
859 INTR_REMAP,
860 UNKNOWN,
861 };
862
863 static const char *dma_remap_fault_reasons[] =
864 {
865 "Software",
866 "Present bit in root entry is clear",
867 "Present bit in context entry is clear",
868 "Invalid context entry",
869 "Access beyond MGAW",
870 "PTE Write access is not set",
871 "PTE Read access is not set",
872 "Next page table ptr is invalid",
873 "Root table address invalid",
874 "Context table ptr is invalid",
875 "non-zero reserved fields in RTP",
876 "non-zero reserved fields in CTP",
877 "non-zero reserved fields in PTE",
878 };
879
880 static const char *intr_remap_fault_reasons[] =
881 {
882 "Detected reserved fields in the decoded interrupt-remapped request",
883 "Interrupt index exceeded the interrupt-remapping table size",
884 "Present field in the IRTE entry is clear",
885 "Error accessing interrupt-remapping table pointed by IRTA_REG",
886 "Detected reserved fields in the IRTE entry",
887 "Blocked a compatibility format interrupt request",
888 "Blocked an interrupt request due to source-id verification failure",
889 };
890
891 #define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1)
892
893 const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
894 {
895 if (fault_reason >= 0x20 && (fault_reason <= 0x20 +
896 ARRAY_SIZE(intr_remap_fault_reasons))) {
897 *fault_type = INTR_REMAP;
898 return intr_remap_fault_reasons[fault_reason - 0x20];
899 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
900 *fault_type = DMA_REMAP;
901 return dma_remap_fault_reasons[fault_reason];
902 } else {
903 *fault_type = UNKNOWN;
904 return "Unknown";
905 }
906 }
907
908 void dmar_msi_unmask(unsigned int irq)
909 {
910 struct intel_iommu *iommu = get_irq_data(irq);
911 unsigned long flag;
912
913 /* unmask it */
914 spin_lock_irqsave(&iommu->register_lock, flag);
915 writel(0, iommu->reg + DMAR_FECTL_REG);
916 /* Read a reg to force flush the post write */
917 readl(iommu->reg + DMAR_FECTL_REG);
918 spin_unlock_irqrestore(&iommu->register_lock, flag);
919 }
920
921 void dmar_msi_mask(unsigned int irq)
922 {
923 unsigned long flag;
924 struct intel_iommu *iommu = get_irq_data(irq);
925
926 /* mask it */
927 spin_lock_irqsave(&iommu->register_lock, flag);
928 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
929 /* Read a reg to force flush the post write */
930 readl(iommu->reg + DMAR_FECTL_REG);
931 spin_unlock_irqrestore(&iommu->register_lock, flag);
932 }
933
934 void dmar_msi_write(int irq, struct msi_msg *msg)
935 {
936 struct intel_iommu *iommu = get_irq_data(irq);
937 unsigned long flag;
938
939 spin_lock_irqsave(&iommu->register_lock, flag);
940 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
941 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
942 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
943 spin_unlock_irqrestore(&iommu->register_lock, flag);
944 }
945
946 void dmar_msi_read(int irq, struct msi_msg *msg)
947 {
948 struct intel_iommu *iommu = get_irq_data(irq);
949 unsigned long flag;
950
951 spin_lock_irqsave(&iommu->register_lock, flag);
952 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
953 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
954 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
955 spin_unlock_irqrestore(&iommu->register_lock, flag);
956 }
957
958 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
959 u8 fault_reason, u16 source_id, unsigned long long addr)
960 {
961 const char *reason;
962 int fault_type;
963
964 reason = dmar_get_fault_reason(fault_reason, &fault_type);
965
966 if (fault_type == INTR_REMAP)
967 printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
968 "fault index %llx\n"
969 "INTR-REMAP:[fault reason %02d] %s\n",
970 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
971 PCI_FUNC(source_id & 0xFF), addr >> 48,
972 fault_reason, reason);
973 else
974 printk(KERN_ERR
975 "DMAR:[%s] Request device [%02x:%02x.%d] "
976 "fault addr %llx \n"
977 "DMAR:[fault reason %02d] %s\n",
978 (type ? "DMA Read" : "DMA Write"),
979 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
980 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
981 return 0;
982 }
983
984 #define PRIMARY_FAULT_REG_LEN (16)
985 irqreturn_t dmar_fault(int irq, void *dev_id)
986 {
987 struct intel_iommu *iommu = dev_id;
988 int reg, fault_index;
989 u32 fault_status;
990 unsigned long flag;
991
992 spin_lock_irqsave(&iommu->register_lock, flag);
993 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
994 if (fault_status)
995 printk(KERN_ERR "DRHD: handling fault status reg %x\n",
996 fault_status);
997
998 /* TBD: ignore advanced fault log currently */
999 if (!(fault_status & DMA_FSTS_PPF))
1000 goto clear_rest;
1001
1002 fault_index = dma_fsts_fault_record_index(fault_status);
1003 reg = cap_fault_reg_offset(iommu->cap);
1004 while (1) {
1005 u8 fault_reason;
1006 u16 source_id;
1007 u64 guest_addr;
1008 int type;
1009 u32 data;
1010
1011 /* highest 32 bits */
1012 data = readl(iommu->reg + reg +
1013 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1014 if (!(data & DMA_FRCD_F))
1015 break;
1016
1017 fault_reason = dma_frcd_fault_reason(data);
1018 type = dma_frcd_type(data);
1019
1020 data = readl(iommu->reg + reg +
1021 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1022 source_id = dma_frcd_source_id(data);
1023
1024 guest_addr = dmar_readq(iommu->reg + reg +
1025 fault_index * PRIMARY_FAULT_REG_LEN);
1026 guest_addr = dma_frcd_page_addr(guest_addr);
1027 /* clear the fault */
1028 writel(DMA_FRCD_F, iommu->reg + reg +
1029 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1030
1031 spin_unlock_irqrestore(&iommu->register_lock, flag);
1032
1033 dmar_fault_do_one(iommu, type, fault_reason,
1034 source_id, guest_addr);
1035
1036 fault_index++;
1037 if (fault_index > cap_num_fault_regs(iommu->cap))
1038 fault_index = 0;
1039 spin_lock_irqsave(&iommu->register_lock, flag);
1040 }
1041 clear_rest:
1042 /* clear all the other faults */
1043 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1044 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1045
1046 spin_unlock_irqrestore(&iommu->register_lock, flag);
1047 return IRQ_HANDLED;
1048 }
1049
1050 int dmar_set_interrupt(struct intel_iommu *iommu)
1051 {
1052 int irq, ret;
1053
1054 /*
1055 * Check if the fault interrupt is already initialized.
1056 */
1057 if (iommu->irq)
1058 return 0;
1059
1060 irq = create_irq();
1061 if (!irq) {
1062 printk(KERN_ERR "IOMMU: no free vectors\n");
1063 return -EINVAL;
1064 }
1065
1066 set_irq_data(irq, iommu);
1067 iommu->irq = irq;
1068
1069 ret = arch_setup_dmar_msi(irq);
1070 if (ret) {
1071 set_irq_data(irq, NULL);
1072 iommu->irq = 0;
1073 destroy_irq(irq);
1074 return 0;
1075 }
1076
1077 ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu);
1078 if (ret)
1079 printk(KERN_ERR "IOMMU: can't request irq\n");
1080 return ret;
1081 }
1082
1083 int __init enable_drhd_fault_handling(void)
1084 {
1085 struct dmar_drhd_unit *drhd;
1086
1087 /*
1088 * Enable fault control interrupt.
1089 */
1090 for_each_drhd_unit(drhd) {
1091 int ret;
1092 struct intel_iommu *iommu = drhd->iommu;
1093 ret = dmar_set_interrupt(iommu);
1094
1095 if (ret) {
1096 printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
1097 " interrupt, ret %d\n",
1098 (unsigned long long)drhd->reg_base_addr, ret);
1099 return -1;
1100 }
1101 }
1102
1103 return 0;
1104 }
This page took 0.087144 seconds and 5 git commands to generate.