Merge branch 'drm-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[deliverable/linux.git] / drivers / pci / dmar.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 *
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24 * tables.
25 *
26 * These routines are used by both DMA-remapping and Interrupt-remapping
27 */
28
29 #include <linux/pci.h>
30 #include <linux/dmar.h>
31 #include <linux/iova.h>
32 #include <linux/intel-iommu.h>
33 #include <linux/timer.h>
34 #include <linux/irq.h>
35 #include <linux/interrupt.h>
36 #include <linux/tboot.h>
37 #include <linux/dmi.h>
38
39 #define PREFIX "DMAR: "
40
41 /* No locks are needed as DMA remapping hardware unit
42 * list is constructed at boot time and hotplug of
43 * these units are not supported by the architecture.
44 */
45 LIST_HEAD(dmar_drhd_units);
46
47 static struct acpi_table_header * __initdata dmar_tbl;
48 static acpi_size dmar_tbl_size;
49
50 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
51 {
52 /*
53 * add INCLUDE_ALL at the tail, so scan the list will find it at
54 * the very end.
55 */
56 if (drhd->include_all)
57 list_add_tail(&drhd->list, &dmar_drhd_units);
58 else
59 list_add(&drhd->list, &dmar_drhd_units);
60 }
61
62 static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
63 struct pci_dev **dev, u16 segment)
64 {
65 struct pci_bus *bus;
66 struct pci_dev *pdev = NULL;
67 struct acpi_dmar_pci_path *path;
68 int count;
69
70 bus = pci_find_bus(segment, scope->bus);
71 path = (struct acpi_dmar_pci_path *)(scope + 1);
72 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
73 / sizeof(struct acpi_dmar_pci_path);
74
75 while (count) {
76 if (pdev)
77 pci_dev_put(pdev);
78 /*
79 * Some BIOSes list non-exist devices in DMAR table, just
80 * ignore it
81 */
82 if (!bus) {
83 printk(KERN_WARNING
84 PREFIX "Device scope bus [%d] not found\n",
85 scope->bus);
86 break;
87 }
88 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
89 if (!pdev) {
90 printk(KERN_WARNING PREFIX
91 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
92 segment, bus->number, path->dev, path->fn);
93 break;
94 }
95 path ++;
96 count --;
97 bus = pdev->subordinate;
98 }
99 if (!pdev) {
100 printk(KERN_WARNING PREFIX
101 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
102 segment, scope->bus, path->dev, path->fn);
103 *dev = NULL;
104 return 0;
105 }
106 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
107 pdev->subordinate) || (scope->entry_type == \
108 ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
109 pci_dev_put(pdev);
110 printk(KERN_WARNING PREFIX
111 "Device scope type does not match for %s\n",
112 pci_name(pdev));
113 return -EINVAL;
114 }
115 *dev = pdev;
116 return 0;
117 }
118
119 static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
120 struct pci_dev ***devices, u16 segment)
121 {
122 struct acpi_dmar_device_scope *scope;
123 void * tmp = start;
124 int index;
125 int ret;
126
127 *cnt = 0;
128 while (start < end) {
129 scope = start;
130 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
131 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
132 (*cnt)++;
133 else
134 printk(KERN_WARNING PREFIX
135 "Unsupported device scope\n");
136 start += scope->length;
137 }
138 if (*cnt == 0)
139 return 0;
140
141 *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
142 if (!*devices)
143 return -ENOMEM;
144
145 start = tmp;
146 index = 0;
147 while (start < end) {
148 scope = start;
149 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
150 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
151 ret = dmar_parse_one_dev_scope(scope,
152 &(*devices)[index], segment);
153 if (ret) {
154 kfree(*devices);
155 return ret;
156 }
157 index ++;
158 }
159 start += scope->length;
160 }
161
162 return 0;
163 }
164
165 /**
166 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
167 * structure which uniquely represent one DMA remapping hardware unit
168 * present in the platform
169 */
170 static int __init
171 dmar_parse_one_drhd(struct acpi_dmar_header *header)
172 {
173 struct acpi_dmar_hardware_unit *drhd;
174 struct dmar_drhd_unit *dmaru;
175 int ret = 0;
176
177 drhd = (struct acpi_dmar_hardware_unit *)header;
178 dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
179 if (!dmaru)
180 return -ENOMEM;
181
182 dmaru->hdr = header;
183 dmaru->reg_base_addr = drhd->address;
184 dmaru->segment = drhd->segment;
185 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
186
187 ret = alloc_iommu(dmaru);
188 if (ret) {
189 kfree(dmaru);
190 return ret;
191 }
192 dmar_register_drhd_unit(dmaru);
193 return 0;
194 }
195
196 static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
197 {
198 struct acpi_dmar_hardware_unit *drhd;
199 int ret = 0;
200
201 drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
202
203 if (dmaru->include_all)
204 return 0;
205
206 ret = dmar_parse_dev_scope((void *)(drhd + 1),
207 ((void *)drhd) + drhd->header.length,
208 &dmaru->devices_cnt, &dmaru->devices,
209 drhd->segment);
210 if (ret) {
211 list_del(&dmaru->list);
212 kfree(dmaru);
213 }
214 return ret;
215 }
216
217 #ifdef CONFIG_DMAR
218 LIST_HEAD(dmar_rmrr_units);
219
220 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
221 {
222 list_add(&rmrr->list, &dmar_rmrr_units);
223 }
224
225
226 static int __init
227 dmar_parse_one_rmrr(struct acpi_dmar_header *header)
228 {
229 struct acpi_dmar_reserved_memory *rmrr;
230 struct dmar_rmrr_unit *rmrru;
231
232 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
233 if (!rmrru)
234 return -ENOMEM;
235
236 rmrru->hdr = header;
237 rmrr = (struct acpi_dmar_reserved_memory *)header;
238 rmrru->base_address = rmrr->base_address;
239 rmrru->end_address = rmrr->end_address;
240
241 dmar_register_rmrr_unit(rmrru);
242 return 0;
243 }
244
245 static int __init
246 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
247 {
248 struct acpi_dmar_reserved_memory *rmrr;
249 int ret;
250
251 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
252 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
253 ((void *)rmrr) + rmrr->header.length,
254 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
255
256 if (ret || (rmrru->devices_cnt == 0)) {
257 list_del(&rmrru->list);
258 kfree(rmrru);
259 }
260 return ret;
261 }
262
263 static LIST_HEAD(dmar_atsr_units);
264
265 static int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
266 {
267 struct acpi_dmar_atsr *atsr;
268 struct dmar_atsr_unit *atsru;
269
270 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
271 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
272 if (!atsru)
273 return -ENOMEM;
274
275 atsru->hdr = hdr;
276 atsru->include_all = atsr->flags & 0x1;
277
278 list_add(&atsru->list, &dmar_atsr_units);
279
280 return 0;
281 }
282
283 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
284 {
285 int rc;
286 struct acpi_dmar_atsr *atsr;
287
288 if (atsru->include_all)
289 return 0;
290
291 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
292 rc = dmar_parse_dev_scope((void *)(atsr + 1),
293 (void *)atsr + atsr->header.length,
294 &atsru->devices_cnt, &atsru->devices,
295 atsr->segment);
296 if (rc || !atsru->devices_cnt) {
297 list_del(&atsru->list);
298 kfree(atsru);
299 }
300
301 return rc;
302 }
303
304 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
305 {
306 int i;
307 struct pci_bus *bus;
308 struct acpi_dmar_atsr *atsr;
309 struct dmar_atsr_unit *atsru;
310
311 list_for_each_entry(atsru, &dmar_atsr_units, list) {
312 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
313 if (atsr->segment == pci_domain_nr(dev->bus))
314 goto found;
315 }
316
317 return 0;
318
319 found:
320 for (bus = dev->bus; bus; bus = bus->parent) {
321 struct pci_dev *bridge = bus->self;
322
323 if (!bridge || !pci_is_pcie(bridge) ||
324 bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
325 return 0;
326
327 if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
328 for (i = 0; i < atsru->devices_cnt; i++)
329 if (atsru->devices[i] == bridge)
330 return 1;
331 break;
332 }
333 }
334
335 if (atsru->include_all)
336 return 1;
337
338 return 0;
339 }
340 #endif
341
342 #ifdef CONFIG_ACPI_NUMA
343 static int __init
344 dmar_parse_one_rhsa(struct acpi_dmar_header *header)
345 {
346 struct acpi_dmar_rhsa *rhsa;
347 struct dmar_drhd_unit *drhd;
348
349 rhsa = (struct acpi_dmar_rhsa *)header;
350 for_each_drhd_unit(drhd) {
351 if (drhd->reg_base_addr == rhsa->base_address) {
352 int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
353
354 if (!node_online(node))
355 node = -1;
356 drhd->iommu->node = node;
357 return 0;
358 }
359 }
360 WARN(1, "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
361 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
362 drhd->reg_base_addr,
363 dmi_get_system_info(DMI_BIOS_VENDOR),
364 dmi_get_system_info(DMI_BIOS_VERSION),
365 dmi_get_system_info(DMI_PRODUCT_VERSION));
366
367 return 0;
368 }
369 #endif
370
371 static void __init
372 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
373 {
374 struct acpi_dmar_hardware_unit *drhd;
375 struct acpi_dmar_reserved_memory *rmrr;
376 struct acpi_dmar_atsr *atsr;
377 struct acpi_dmar_rhsa *rhsa;
378
379 switch (header->type) {
380 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
381 drhd = container_of(header, struct acpi_dmar_hardware_unit,
382 header);
383 printk (KERN_INFO PREFIX
384 "DRHD base: %#016Lx flags: %#x\n",
385 (unsigned long long)drhd->address, drhd->flags);
386 break;
387 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
388 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
389 header);
390 printk (KERN_INFO PREFIX
391 "RMRR base: %#016Lx end: %#016Lx\n",
392 (unsigned long long)rmrr->base_address,
393 (unsigned long long)rmrr->end_address);
394 break;
395 case ACPI_DMAR_TYPE_ATSR:
396 atsr = container_of(header, struct acpi_dmar_atsr, header);
397 printk(KERN_INFO PREFIX "ATSR flags: %#x\n", atsr->flags);
398 break;
399 case ACPI_DMAR_HARDWARE_AFFINITY:
400 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
401 printk(KERN_INFO PREFIX "RHSA base: %#016Lx proximity domain: %#x\n",
402 (unsigned long long)rhsa->base_address,
403 rhsa->proximity_domain);
404 break;
405 }
406 }
407
408 /**
409 * dmar_table_detect - checks to see if the platform supports DMAR devices
410 */
411 static int __init dmar_table_detect(void)
412 {
413 acpi_status status = AE_OK;
414
415 /* if we could find DMAR table, then there are DMAR devices */
416 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
417 (struct acpi_table_header **)&dmar_tbl,
418 &dmar_tbl_size);
419
420 if (ACPI_SUCCESS(status) && !dmar_tbl) {
421 printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
422 status = AE_NOT_FOUND;
423 }
424
425 return (ACPI_SUCCESS(status) ? 1 : 0);
426 }
427
428 /**
429 * parse_dmar_table - parses the DMA reporting table
430 */
431 static int __init
432 parse_dmar_table(void)
433 {
434 struct acpi_table_dmar *dmar;
435 struct acpi_dmar_header *entry_header;
436 int ret = 0;
437
438 /*
439 * Do it again, earlier dmar_tbl mapping could be mapped with
440 * fixed map.
441 */
442 dmar_table_detect();
443
444 /*
445 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
446 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
447 */
448 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
449
450 dmar = (struct acpi_table_dmar *)dmar_tbl;
451 if (!dmar)
452 return -ENODEV;
453
454 if (dmar->width < PAGE_SHIFT - 1) {
455 printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
456 return -EINVAL;
457 }
458
459 printk (KERN_INFO PREFIX "Host address width %d\n",
460 dmar->width + 1);
461
462 entry_header = (struct acpi_dmar_header *)(dmar + 1);
463 while (((unsigned long)entry_header) <
464 (((unsigned long)dmar) + dmar_tbl->length)) {
465 /* Avoid looping forever on bad ACPI tables */
466 if (entry_header->length == 0) {
467 printk(KERN_WARNING PREFIX
468 "Invalid 0-length structure\n");
469 ret = -EINVAL;
470 break;
471 }
472
473 dmar_table_print_dmar_entry(entry_header);
474
475 switch (entry_header->type) {
476 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
477 ret = dmar_parse_one_drhd(entry_header);
478 break;
479 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
480 #ifdef CONFIG_DMAR
481 ret = dmar_parse_one_rmrr(entry_header);
482 #endif
483 break;
484 case ACPI_DMAR_TYPE_ATSR:
485 #ifdef CONFIG_DMAR
486 ret = dmar_parse_one_atsr(entry_header);
487 #endif
488 break;
489 case ACPI_DMAR_HARDWARE_AFFINITY:
490 #ifdef CONFIG_ACPI_NUMA
491 ret = dmar_parse_one_rhsa(entry_header);
492 #endif
493 break;
494 default:
495 printk(KERN_WARNING PREFIX
496 "Unknown DMAR structure type %d\n",
497 entry_header->type);
498 ret = 0; /* for forward compatibility */
499 break;
500 }
501 if (ret)
502 break;
503
504 entry_header = ((void *)entry_header + entry_header->length);
505 }
506 return ret;
507 }
508
509 int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
510 struct pci_dev *dev)
511 {
512 int index;
513
514 while (dev) {
515 for (index = 0; index < cnt; index++)
516 if (dev == devices[index])
517 return 1;
518
519 /* Check our parent */
520 dev = dev->bus->self;
521 }
522
523 return 0;
524 }
525
526 struct dmar_drhd_unit *
527 dmar_find_matched_drhd_unit(struct pci_dev *dev)
528 {
529 struct dmar_drhd_unit *dmaru = NULL;
530 struct acpi_dmar_hardware_unit *drhd;
531
532 list_for_each_entry(dmaru, &dmar_drhd_units, list) {
533 drhd = container_of(dmaru->hdr,
534 struct acpi_dmar_hardware_unit,
535 header);
536
537 if (dmaru->include_all &&
538 drhd->segment == pci_domain_nr(dev->bus))
539 return dmaru;
540
541 if (dmar_pci_device_match(dmaru->devices,
542 dmaru->devices_cnt, dev))
543 return dmaru;
544 }
545
546 return NULL;
547 }
548
549 int __init dmar_dev_scope_init(void)
550 {
551 struct dmar_drhd_unit *drhd, *drhd_n;
552 int ret = -ENODEV;
553
554 list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
555 ret = dmar_parse_dev(drhd);
556 if (ret)
557 return ret;
558 }
559
560 #ifdef CONFIG_DMAR
561 {
562 struct dmar_rmrr_unit *rmrr, *rmrr_n;
563 struct dmar_atsr_unit *atsr, *atsr_n;
564
565 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
566 ret = rmrr_parse_dev(rmrr);
567 if (ret)
568 return ret;
569 }
570
571 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
572 ret = atsr_parse_dev(atsr);
573 if (ret)
574 return ret;
575 }
576 }
577 #endif
578
579 return ret;
580 }
581
582
583 int __init dmar_table_init(void)
584 {
585 static int dmar_table_initialized;
586 int ret;
587
588 if (dmar_table_initialized)
589 return 0;
590
591 dmar_table_initialized = 1;
592
593 ret = parse_dmar_table();
594 if (ret) {
595 if (ret != -ENODEV)
596 printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
597 return ret;
598 }
599
600 if (list_empty(&dmar_drhd_units)) {
601 printk(KERN_INFO PREFIX "No DMAR devices found\n");
602 return -ENODEV;
603 }
604
605 #ifdef CONFIG_DMAR
606 if (list_empty(&dmar_rmrr_units))
607 printk(KERN_INFO PREFIX "No RMRR found\n");
608
609 if (list_empty(&dmar_atsr_units))
610 printk(KERN_INFO PREFIX "No ATSR found\n");
611 #endif
612
613 return 0;
614 }
615
616 static int bios_warned;
617
618 int __init check_zero_address(void)
619 {
620 struct acpi_table_dmar *dmar;
621 struct acpi_dmar_header *entry_header;
622 struct acpi_dmar_hardware_unit *drhd;
623
624 dmar = (struct acpi_table_dmar *)dmar_tbl;
625 entry_header = (struct acpi_dmar_header *)(dmar + 1);
626
627 while (((unsigned long)entry_header) <
628 (((unsigned long)dmar) + dmar_tbl->length)) {
629 /* Avoid looping forever on bad ACPI tables */
630 if (entry_header->length == 0) {
631 printk(KERN_WARNING PREFIX
632 "Invalid 0-length structure\n");
633 return 0;
634 }
635
636 if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
637 void __iomem *addr;
638 u64 cap, ecap;
639
640 drhd = (void *)entry_header;
641 if (!drhd->address) {
642 /* Promote an attitude of violence to a BIOS engineer today */
643 WARN(1, "Your BIOS is broken; DMAR reported at address zero!\n"
644 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
645 dmi_get_system_info(DMI_BIOS_VENDOR),
646 dmi_get_system_info(DMI_BIOS_VERSION),
647 dmi_get_system_info(DMI_PRODUCT_VERSION));
648 bios_warned = 1;
649 goto failed;
650 }
651
652 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
653 if (!addr ) {
654 printk("IOMMU: can't validate: %llx\n", drhd->address);
655 goto failed;
656 }
657 cap = dmar_readq(addr + DMAR_CAP_REG);
658 ecap = dmar_readq(addr + DMAR_ECAP_REG);
659 early_iounmap(addr, VTD_PAGE_SIZE);
660 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
661 /* Promote an attitude of violence to a BIOS engineer today */
662 WARN(1, "Your BIOS is broken; DMAR reported at address %llx returns all ones!\n"
663 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
664 drhd->address,
665 dmi_get_system_info(DMI_BIOS_VENDOR),
666 dmi_get_system_info(DMI_BIOS_VERSION),
667 dmi_get_system_info(DMI_PRODUCT_VERSION));
668 bios_warned = 1;
669 goto failed;
670 }
671 }
672
673 entry_header = ((void *)entry_header + entry_header->length);
674 }
675 return 1;
676
677 failed:
678 #ifdef CONFIG_DMAR
679 dmar_disabled = 1;
680 #endif
681 return 0;
682 }
683
684 void __init detect_intel_iommu(void)
685 {
686 int ret;
687
688 ret = dmar_table_detect();
689 if (ret)
690 ret = check_zero_address();
691 {
692 #ifdef CONFIG_INTR_REMAP
693 struct acpi_table_dmar *dmar;
694 /*
695 * for now we will disable dma-remapping when interrupt
696 * remapping is enabled.
697 * When support for queued invalidation for IOTLB invalidation
698 * is added, we will not need this any more.
699 */
700 dmar = (struct acpi_table_dmar *) dmar_tbl;
701 if (ret && cpu_has_x2apic && dmar->flags & 0x1)
702 printk(KERN_INFO
703 "Queued invalidation will be enabled to support "
704 "x2apic and Intr-remapping.\n");
705 #endif
706 #ifdef CONFIG_DMAR
707 if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
708 iommu_detected = 1;
709 /* Make sure ACS will be enabled */
710 pci_request_acs();
711 }
712 #endif
713 #ifdef CONFIG_X86
714 if (ret)
715 x86_init.iommu.iommu_init = intel_iommu_init;
716 #endif
717 }
718 early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
719 dmar_tbl = NULL;
720 }
721
722
723 int alloc_iommu(struct dmar_drhd_unit *drhd)
724 {
725 struct intel_iommu *iommu;
726 int map_size;
727 u32 ver;
728 static int iommu_allocated = 0;
729 int agaw = 0;
730 int msagaw = 0;
731
732 if (!drhd->reg_base_addr) {
733 if (!bios_warned) {
734 WARN(1, "Your BIOS is broken; DMAR reported at address zero!\n"
735 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
736 dmi_get_system_info(DMI_BIOS_VENDOR),
737 dmi_get_system_info(DMI_BIOS_VERSION),
738 dmi_get_system_info(DMI_PRODUCT_VERSION));
739 bios_warned = 1;
740 }
741 return -EINVAL;
742 }
743
744 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
745 if (!iommu)
746 return -ENOMEM;
747
748 iommu->seq_id = iommu_allocated++;
749 sprintf (iommu->name, "dmar%d", iommu->seq_id);
750
751 iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
752 if (!iommu->reg) {
753 printk(KERN_ERR "IOMMU: can't map the region\n");
754 goto error;
755 }
756 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
757 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
758
759 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
760 if (!bios_warned) {
761 /* Promote an attitude of violence to a BIOS engineer today */
762 WARN(1, "Your BIOS is broken; DMAR reported at address %llx returns all ones!\n"
763 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
764 drhd->reg_base_addr,
765 dmi_get_system_info(DMI_BIOS_VENDOR),
766 dmi_get_system_info(DMI_BIOS_VERSION),
767 dmi_get_system_info(DMI_PRODUCT_VERSION));
768 bios_warned = 1;
769 }
770 goto err_unmap;
771 }
772
773 #ifdef CONFIG_DMAR
774 agaw = iommu_calculate_agaw(iommu);
775 if (agaw < 0) {
776 printk(KERN_ERR
777 "Cannot get a valid agaw for iommu (seq_id = %d)\n",
778 iommu->seq_id);
779 goto err_unmap;
780 }
781 msagaw = iommu_calculate_max_sagaw(iommu);
782 if (msagaw < 0) {
783 printk(KERN_ERR
784 "Cannot get a valid max agaw for iommu (seq_id = %d)\n",
785 iommu->seq_id);
786 goto err_unmap;
787 }
788 #endif
789 iommu->agaw = agaw;
790 iommu->msagaw = msagaw;
791
792 iommu->node = -1;
793
794 /* the registers might be more than one page */
795 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
796 cap_max_fault_reg_offset(iommu->cap));
797 map_size = VTD_PAGE_ALIGN(map_size);
798 if (map_size > VTD_PAGE_SIZE) {
799 iounmap(iommu->reg);
800 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
801 if (!iommu->reg) {
802 printk(KERN_ERR "IOMMU: can't map the region\n");
803 goto error;
804 }
805 }
806
807 ver = readl(iommu->reg + DMAR_VER_REG);
808 pr_info("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
809 (unsigned long long)drhd->reg_base_addr,
810 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
811 (unsigned long long)iommu->cap,
812 (unsigned long long)iommu->ecap);
813
814 spin_lock_init(&iommu->register_lock);
815
816 drhd->iommu = iommu;
817 return 0;
818
819 err_unmap:
820 iounmap(iommu->reg);
821 error:
822 kfree(iommu);
823 return -1;
824 }
825
826 void free_iommu(struct intel_iommu *iommu)
827 {
828 if (!iommu)
829 return;
830
831 #ifdef CONFIG_DMAR
832 free_dmar_iommu(iommu);
833 #endif
834
835 if (iommu->reg)
836 iounmap(iommu->reg);
837 kfree(iommu);
838 }
839
840 /*
841 * Reclaim all the submitted descriptors which have completed its work.
842 */
843 static inline void reclaim_free_desc(struct q_inval *qi)
844 {
845 while (qi->desc_status[qi->free_tail] == QI_DONE ||
846 qi->desc_status[qi->free_tail] == QI_ABORT) {
847 qi->desc_status[qi->free_tail] = QI_FREE;
848 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
849 qi->free_cnt++;
850 }
851 }
852
853 static int qi_check_fault(struct intel_iommu *iommu, int index)
854 {
855 u32 fault;
856 int head, tail;
857 struct q_inval *qi = iommu->qi;
858 int wait_index = (index + 1) % QI_LENGTH;
859
860 if (qi->desc_status[wait_index] == QI_ABORT)
861 return -EAGAIN;
862
863 fault = readl(iommu->reg + DMAR_FSTS_REG);
864
865 /*
866 * If IQE happens, the head points to the descriptor associated
867 * with the error. No new descriptors are fetched until the IQE
868 * is cleared.
869 */
870 if (fault & DMA_FSTS_IQE) {
871 head = readl(iommu->reg + DMAR_IQH_REG);
872 if ((head >> DMAR_IQ_SHIFT) == index) {
873 printk(KERN_ERR "VT-d detected invalid descriptor: "
874 "low=%llx, high=%llx\n",
875 (unsigned long long)qi->desc[index].low,
876 (unsigned long long)qi->desc[index].high);
877 memcpy(&qi->desc[index], &qi->desc[wait_index],
878 sizeof(struct qi_desc));
879 __iommu_flush_cache(iommu, &qi->desc[index],
880 sizeof(struct qi_desc));
881 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
882 return -EINVAL;
883 }
884 }
885
886 /*
887 * If ITE happens, all pending wait_desc commands are aborted.
888 * No new descriptors are fetched until the ITE is cleared.
889 */
890 if (fault & DMA_FSTS_ITE) {
891 head = readl(iommu->reg + DMAR_IQH_REG);
892 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
893 head |= 1;
894 tail = readl(iommu->reg + DMAR_IQT_REG);
895 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
896
897 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
898
899 do {
900 if (qi->desc_status[head] == QI_IN_USE)
901 qi->desc_status[head] = QI_ABORT;
902 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
903 } while (head != tail);
904
905 if (qi->desc_status[wait_index] == QI_ABORT)
906 return -EAGAIN;
907 }
908
909 if (fault & DMA_FSTS_ICE)
910 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
911
912 return 0;
913 }
914
915 /*
916 * Submit the queued invalidation descriptor to the remapping
917 * hardware unit and wait for its completion.
918 */
919 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
920 {
921 int rc;
922 struct q_inval *qi = iommu->qi;
923 struct qi_desc *hw, wait_desc;
924 int wait_index, index;
925 unsigned long flags;
926
927 if (!qi)
928 return 0;
929
930 hw = qi->desc;
931
932 restart:
933 rc = 0;
934
935 spin_lock_irqsave(&qi->q_lock, flags);
936 while (qi->free_cnt < 3) {
937 spin_unlock_irqrestore(&qi->q_lock, flags);
938 cpu_relax();
939 spin_lock_irqsave(&qi->q_lock, flags);
940 }
941
942 index = qi->free_head;
943 wait_index = (index + 1) % QI_LENGTH;
944
945 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
946
947 hw[index] = *desc;
948
949 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
950 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
951 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
952
953 hw[wait_index] = wait_desc;
954
955 __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
956 __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
957
958 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
959 qi->free_cnt -= 2;
960
961 /*
962 * update the HW tail register indicating the presence of
963 * new descriptors.
964 */
965 writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
966
967 while (qi->desc_status[wait_index] != QI_DONE) {
968 /*
969 * We will leave the interrupts disabled, to prevent interrupt
970 * context to queue another cmd while a cmd is already submitted
971 * and waiting for completion on this cpu. This is to avoid
972 * a deadlock where the interrupt context can wait indefinitely
973 * for free slots in the queue.
974 */
975 rc = qi_check_fault(iommu, index);
976 if (rc)
977 break;
978
979 spin_unlock(&qi->q_lock);
980 cpu_relax();
981 spin_lock(&qi->q_lock);
982 }
983
984 qi->desc_status[index] = QI_DONE;
985
986 reclaim_free_desc(qi);
987 spin_unlock_irqrestore(&qi->q_lock, flags);
988
989 if (rc == -EAGAIN)
990 goto restart;
991
992 return rc;
993 }
994
995 /*
996 * Flush the global interrupt entry cache.
997 */
998 void qi_global_iec(struct intel_iommu *iommu)
999 {
1000 struct qi_desc desc;
1001
1002 desc.low = QI_IEC_TYPE;
1003 desc.high = 0;
1004
1005 /* should never fail */
1006 qi_submit_sync(&desc, iommu);
1007 }
1008
1009 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1010 u64 type)
1011 {
1012 struct qi_desc desc;
1013
1014 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1015 | QI_CC_GRAN(type) | QI_CC_TYPE;
1016 desc.high = 0;
1017
1018 qi_submit_sync(&desc, iommu);
1019 }
1020
1021 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1022 unsigned int size_order, u64 type)
1023 {
1024 u8 dw = 0, dr = 0;
1025
1026 struct qi_desc desc;
1027 int ih = 0;
1028
1029 if (cap_write_drain(iommu->cap))
1030 dw = 1;
1031
1032 if (cap_read_drain(iommu->cap))
1033 dr = 1;
1034
1035 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1036 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1037 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1038 | QI_IOTLB_AM(size_order);
1039
1040 qi_submit_sync(&desc, iommu);
1041 }
1042
1043 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
1044 u64 addr, unsigned mask)
1045 {
1046 struct qi_desc desc;
1047
1048 if (mask) {
1049 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
1050 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1051 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1052 } else
1053 desc.high = QI_DEV_IOTLB_ADDR(addr);
1054
1055 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1056 qdep = 0;
1057
1058 desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1059 QI_DIOTLB_TYPE;
1060
1061 qi_submit_sync(&desc, iommu);
1062 }
1063
1064 /*
1065 * Disable Queued Invalidation interface.
1066 */
1067 void dmar_disable_qi(struct intel_iommu *iommu)
1068 {
1069 unsigned long flags;
1070 u32 sts;
1071 cycles_t start_time = get_cycles();
1072
1073 if (!ecap_qis(iommu->ecap))
1074 return;
1075
1076 spin_lock_irqsave(&iommu->register_lock, flags);
1077
1078 sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
1079 if (!(sts & DMA_GSTS_QIES))
1080 goto end;
1081
1082 /*
1083 * Give a chance to HW to complete the pending invalidation requests.
1084 */
1085 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1086 readl(iommu->reg + DMAR_IQH_REG)) &&
1087 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1088 cpu_relax();
1089
1090 iommu->gcmd &= ~DMA_GCMD_QIE;
1091 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1092
1093 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1094 !(sts & DMA_GSTS_QIES), sts);
1095 end:
1096 spin_unlock_irqrestore(&iommu->register_lock, flags);
1097 }
1098
1099 /*
1100 * Enable queued invalidation.
1101 */
1102 static void __dmar_enable_qi(struct intel_iommu *iommu)
1103 {
1104 u32 sts;
1105 unsigned long flags;
1106 struct q_inval *qi = iommu->qi;
1107
1108 qi->free_head = qi->free_tail = 0;
1109 qi->free_cnt = QI_LENGTH;
1110
1111 spin_lock_irqsave(&iommu->register_lock, flags);
1112
1113 /* write zero to the tail reg */
1114 writel(0, iommu->reg + DMAR_IQT_REG);
1115
1116 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
1117
1118 iommu->gcmd |= DMA_GCMD_QIE;
1119 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1120
1121 /* Make sure hardware complete it */
1122 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1123
1124 spin_unlock_irqrestore(&iommu->register_lock, flags);
1125 }
1126
1127 /*
1128 * Enable Queued Invalidation interface. This is a must to support
1129 * interrupt-remapping. Also used by DMA-remapping, which replaces
1130 * register based IOTLB invalidation.
1131 */
1132 int dmar_enable_qi(struct intel_iommu *iommu)
1133 {
1134 struct q_inval *qi;
1135 struct page *desc_page;
1136
1137 if (!ecap_qis(iommu->ecap))
1138 return -ENOENT;
1139
1140 /*
1141 * queued invalidation is already setup and enabled.
1142 */
1143 if (iommu->qi)
1144 return 0;
1145
1146 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1147 if (!iommu->qi)
1148 return -ENOMEM;
1149
1150 qi = iommu->qi;
1151
1152
1153 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
1154 if (!desc_page) {
1155 kfree(qi);
1156 iommu->qi = 0;
1157 return -ENOMEM;
1158 }
1159
1160 qi->desc = page_address(desc_page);
1161
1162 qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1163 if (!qi->desc_status) {
1164 free_page((unsigned long) qi->desc);
1165 kfree(qi);
1166 iommu->qi = 0;
1167 return -ENOMEM;
1168 }
1169
1170 qi->free_head = qi->free_tail = 0;
1171 qi->free_cnt = QI_LENGTH;
1172
1173 spin_lock_init(&qi->q_lock);
1174
1175 __dmar_enable_qi(iommu);
1176
1177 return 0;
1178 }
1179
1180 /* iommu interrupt handling. Most stuff are MSI-like. */
1181
1182 enum faulttype {
1183 DMA_REMAP,
1184 INTR_REMAP,
1185 UNKNOWN,
1186 };
1187
1188 static const char *dma_remap_fault_reasons[] =
1189 {
1190 "Software",
1191 "Present bit in root entry is clear",
1192 "Present bit in context entry is clear",
1193 "Invalid context entry",
1194 "Access beyond MGAW",
1195 "PTE Write access is not set",
1196 "PTE Read access is not set",
1197 "Next page table ptr is invalid",
1198 "Root table address invalid",
1199 "Context table ptr is invalid",
1200 "non-zero reserved fields in RTP",
1201 "non-zero reserved fields in CTP",
1202 "non-zero reserved fields in PTE",
1203 };
1204
1205 static const char *intr_remap_fault_reasons[] =
1206 {
1207 "Detected reserved fields in the decoded interrupt-remapped request",
1208 "Interrupt index exceeded the interrupt-remapping table size",
1209 "Present field in the IRTE entry is clear",
1210 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1211 "Detected reserved fields in the IRTE entry",
1212 "Blocked a compatibility format interrupt request",
1213 "Blocked an interrupt request due to source-id verification failure",
1214 };
1215
1216 #define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1)
1217
1218 const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1219 {
1220 if (fault_reason >= 0x20 && (fault_reason <= 0x20 +
1221 ARRAY_SIZE(intr_remap_fault_reasons))) {
1222 *fault_type = INTR_REMAP;
1223 return intr_remap_fault_reasons[fault_reason - 0x20];
1224 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1225 *fault_type = DMA_REMAP;
1226 return dma_remap_fault_reasons[fault_reason];
1227 } else {
1228 *fault_type = UNKNOWN;
1229 return "Unknown";
1230 }
1231 }
1232
1233 void dmar_msi_unmask(unsigned int irq)
1234 {
1235 struct intel_iommu *iommu = get_irq_data(irq);
1236 unsigned long flag;
1237
1238 /* unmask it */
1239 spin_lock_irqsave(&iommu->register_lock, flag);
1240 writel(0, iommu->reg + DMAR_FECTL_REG);
1241 /* Read a reg to force flush the post write */
1242 readl(iommu->reg + DMAR_FECTL_REG);
1243 spin_unlock_irqrestore(&iommu->register_lock, flag);
1244 }
1245
1246 void dmar_msi_mask(unsigned int irq)
1247 {
1248 unsigned long flag;
1249 struct intel_iommu *iommu = get_irq_data(irq);
1250
1251 /* mask it */
1252 spin_lock_irqsave(&iommu->register_lock, flag);
1253 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
1254 /* Read a reg to force flush the post write */
1255 readl(iommu->reg + DMAR_FECTL_REG);
1256 spin_unlock_irqrestore(&iommu->register_lock, flag);
1257 }
1258
1259 void dmar_msi_write(int irq, struct msi_msg *msg)
1260 {
1261 struct intel_iommu *iommu = get_irq_data(irq);
1262 unsigned long flag;
1263
1264 spin_lock_irqsave(&iommu->register_lock, flag);
1265 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
1266 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
1267 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1268 spin_unlock_irqrestore(&iommu->register_lock, flag);
1269 }
1270
1271 void dmar_msi_read(int irq, struct msi_msg *msg)
1272 {
1273 struct intel_iommu *iommu = get_irq_data(irq);
1274 unsigned long flag;
1275
1276 spin_lock_irqsave(&iommu->register_lock, flag);
1277 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
1278 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
1279 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1280 spin_unlock_irqrestore(&iommu->register_lock, flag);
1281 }
1282
1283 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1284 u8 fault_reason, u16 source_id, unsigned long long addr)
1285 {
1286 const char *reason;
1287 int fault_type;
1288
1289 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1290
1291 if (fault_type == INTR_REMAP)
1292 printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
1293 "fault index %llx\n"
1294 "INTR-REMAP:[fault reason %02d] %s\n",
1295 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1296 PCI_FUNC(source_id & 0xFF), addr >> 48,
1297 fault_reason, reason);
1298 else
1299 printk(KERN_ERR
1300 "DMAR:[%s] Request device [%02x:%02x.%d] "
1301 "fault addr %llx \n"
1302 "DMAR:[fault reason %02d] %s\n",
1303 (type ? "DMA Read" : "DMA Write"),
1304 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1305 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1306 return 0;
1307 }
1308
1309 #define PRIMARY_FAULT_REG_LEN (16)
1310 irqreturn_t dmar_fault(int irq, void *dev_id)
1311 {
1312 struct intel_iommu *iommu = dev_id;
1313 int reg, fault_index;
1314 u32 fault_status;
1315 unsigned long flag;
1316
1317 spin_lock_irqsave(&iommu->register_lock, flag);
1318 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1319 if (fault_status)
1320 printk(KERN_ERR "DRHD: handling fault status reg %x\n",
1321 fault_status);
1322
1323 /* TBD: ignore advanced fault log currently */
1324 if (!(fault_status & DMA_FSTS_PPF))
1325 goto clear_rest;
1326
1327 fault_index = dma_fsts_fault_record_index(fault_status);
1328 reg = cap_fault_reg_offset(iommu->cap);
1329 while (1) {
1330 u8 fault_reason;
1331 u16 source_id;
1332 u64 guest_addr;
1333 int type;
1334 u32 data;
1335
1336 /* highest 32 bits */
1337 data = readl(iommu->reg + reg +
1338 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1339 if (!(data & DMA_FRCD_F))
1340 break;
1341
1342 fault_reason = dma_frcd_fault_reason(data);
1343 type = dma_frcd_type(data);
1344
1345 data = readl(iommu->reg + reg +
1346 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1347 source_id = dma_frcd_source_id(data);
1348
1349 guest_addr = dmar_readq(iommu->reg + reg +
1350 fault_index * PRIMARY_FAULT_REG_LEN);
1351 guest_addr = dma_frcd_page_addr(guest_addr);
1352 /* clear the fault */
1353 writel(DMA_FRCD_F, iommu->reg + reg +
1354 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1355
1356 spin_unlock_irqrestore(&iommu->register_lock, flag);
1357
1358 dmar_fault_do_one(iommu, type, fault_reason,
1359 source_id, guest_addr);
1360
1361 fault_index++;
1362 if (fault_index >= cap_num_fault_regs(iommu->cap))
1363 fault_index = 0;
1364 spin_lock_irqsave(&iommu->register_lock, flag);
1365 }
1366 clear_rest:
1367 /* clear all the other faults */
1368 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1369 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1370
1371 spin_unlock_irqrestore(&iommu->register_lock, flag);
1372 return IRQ_HANDLED;
1373 }
1374
1375 int dmar_set_interrupt(struct intel_iommu *iommu)
1376 {
1377 int irq, ret;
1378
1379 /*
1380 * Check if the fault interrupt is already initialized.
1381 */
1382 if (iommu->irq)
1383 return 0;
1384
1385 irq = create_irq();
1386 if (!irq) {
1387 printk(KERN_ERR "IOMMU: no free vectors\n");
1388 return -EINVAL;
1389 }
1390
1391 set_irq_data(irq, iommu);
1392 iommu->irq = irq;
1393
1394 ret = arch_setup_dmar_msi(irq);
1395 if (ret) {
1396 set_irq_data(irq, NULL);
1397 iommu->irq = 0;
1398 destroy_irq(irq);
1399 return ret;
1400 }
1401
1402 ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu);
1403 if (ret)
1404 printk(KERN_ERR "IOMMU: can't request irq\n");
1405 return ret;
1406 }
1407
1408 int __init enable_drhd_fault_handling(void)
1409 {
1410 struct dmar_drhd_unit *drhd;
1411
1412 /*
1413 * Enable fault control interrupt.
1414 */
1415 for_each_drhd_unit(drhd) {
1416 int ret;
1417 struct intel_iommu *iommu = drhd->iommu;
1418 ret = dmar_set_interrupt(iommu);
1419
1420 if (ret) {
1421 printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
1422 " interrupt, ret %d\n",
1423 (unsigned long long)drhd->reg_base_addr, ret);
1424 return -1;
1425 }
1426 }
1427
1428 return 0;
1429 }
1430
1431 /*
1432 * Re-enable Queued Invalidation interface.
1433 */
1434 int dmar_reenable_qi(struct intel_iommu *iommu)
1435 {
1436 if (!ecap_qis(iommu->ecap))
1437 return -ENOENT;
1438
1439 if (!iommu->qi)
1440 return -ENOENT;
1441
1442 /*
1443 * First disable queued invalidation.
1444 */
1445 dmar_disable_qi(iommu);
1446 /*
1447 * Then enable queued invalidation again. Since there is no pending
1448 * invalidation requests now, it's safe to re-enable queued
1449 * invalidation.
1450 */
1451 __dmar_enable_qi(iommu);
1452
1453 return 0;
1454 }
1455
1456 /*
1457 * Check interrupt remapping support in DMAR table description.
1458 */
1459 int dmar_ir_support(void)
1460 {
1461 struct acpi_table_dmar *dmar;
1462 dmar = (struct acpi_table_dmar *)dmar_tbl;
1463 return dmar->flags & 0x1;
1464 }
This page took 0.063611 seconds and 6 git commands to generate.