PCI: pciehp: ignore undefined bit in link status register
[deliverable/linux.git] / drivers / pci / hotplug / cpqphp_ctrl.c
1 /*
2 * Compaq Hot Plug Controller Driver
3 *
4 * Copyright (C) 1995,2001 Compaq Computer Corporation
5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6 * Copyright (C) 2001 IBM Corp.
7 *
8 * All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18 * NON INFRINGEMENT. See the GNU General Public License for more
19 * details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * Send feedback to <greg@kroah.com>
26 *
27 */
28
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/workqueue.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/wait.h>
37 #include <linux/smp_lock.h>
38 #include <linux/pci.h>
39 #include <linux/pci_hotplug.h>
40 #include <linux/kthread.h>
41 #include "cpqphp.h"
42
43 static u32 configure_new_device(struct controller* ctrl, struct pci_func *func,
44 u8 behind_bridge, struct resource_lists *resources);
45 static int configure_new_function(struct controller* ctrl, struct pci_func *func,
46 u8 behind_bridge, struct resource_lists *resources);
47 static void interrupt_event_handler(struct controller *ctrl);
48
49
50 static struct task_struct *cpqhp_event_thread;
51 static unsigned long pushbutton_pending; /* = 0 */
52
53 /* delay is in jiffies to wait for */
54 static void long_delay(int delay)
55 {
56 /*
57 * XXX(hch): if someone is bored please convert all callers
58 * to call msleep_interruptible directly. They really want
59 * to specify timeouts in natural units and spend a lot of
60 * effort converting them to jiffies..
61 */
62 msleep_interruptible(jiffies_to_msecs(delay));
63 }
64
65
66 /* FIXME: The following line needs to be somewhere else... */
67 #define WRONG_BUS_FREQUENCY 0x07
68 static u8 handle_switch_change(u8 change, struct controller * ctrl)
69 {
70 int hp_slot;
71 u8 rc = 0;
72 u16 temp_word;
73 struct pci_func *func;
74 struct event_info *taskInfo;
75
76 if (!change)
77 return 0;
78
79 /* Switch Change */
80 dbg("cpqsbd: Switch interrupt received.\n");
81
82 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
83 if (change & (0x1L << hp_slot)) {
84 /**********************************
85 * this one changed.
86 **********************************/
87 func = cpqhp_slot_find(ctrl->bus,
88 (hp_slot + ctrl->slot_device_offset), 0);
89
90 /* this is the structure that tells the worker thread
91 *what to do */
92 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
93 ctrl->next_event = (ctrl->next_event + 1) % 10;
94 taskInfo->hp_slot = hp_slot;
95
96 rc++;
97
98 temp_word = ctrl->ctrl_int_comp >> 16;
99 func->presence_save = (temp_word >> hp_slot) & 0x01;
100 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
101
102 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
103 /**********************************
104 * Switch opened
105 **********************************/
106
107 func->switch_save = 0;
108
109 taskInfo->event_type = INT_SWITCH_OPEN;
110 } else {
111 /**********************************
112 * Switch closed
113 **********************************/
114
115 func->switch_save = 0x10;
116
117 taskInfo->event_type = INT_SWITCH_CLOSE;
118 }
119 }
120 }
121
122 return rc;
123 }
124
125 /**
126 * cpqhp_find_slot - find the struct slot of given device
127 * @ctrl: scan lots of this controller
128 * @device: the device id to find
129 */
130 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
131 {
132 struct slot *slot = ctrl->slot;
133
134 while (slot && (slot->device != device)) {
135 slot = slot->next;
136 }
137
138 return slot;
139 }
140
141
142 static u8 handle_presence_change(u16 change, struct controller * ctrl)
143 {
144 int hp_slot;
145 u8 rc = 0;
146 u8 temp_byte;
147 u16 temp_word;
148 struct pci_func *func;
149 struct event_info *taskInfo;
150 struct slot *p_slot;
151
152 if (!change)
153 return 0;
154
155 /**********************************
156 * Presence Change
157 **********************************/
158 dbg("cpqsbd: Presence/Notify input change.\n");
159 dbg(" Changed bits are 0x%4.4x\n", change );
160
161 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
162 if (change & (0x0101 << hp_slot)) {
163 /**********************************
164 * this one changed.
165 **********************************/
166 func = cpqhp_slot_find(ctrl->bus,
167 (hp_slot + ctrl->slot_device_offset), 0);
168
169 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
170 ctrl->next_event = (ctrl->next_event + 1) % 10;
171 taskInfo->hp_slot = hp_slot;
172
173 rc++;
174
175 p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
176 if (!p_slot)
177 return 0;
178
179 /* If the switch closed, must be a button
180 * If not in button mode, nevermind */
181 if (func->switch_save && (ctrl->push_button == 1)) {
182 temp_word = ctrl->ctrl_int_comp >> 16;
183 temp_byte = (temp_word >> hp_slot) & 0x01;
184 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
185
186 if (temp_byte != func->presence_save) {
187 /**************************************
188 * button Pressed (doesn't do anything)
189 **************************************/
190 dbg("hp_slot %d button pressed\n", hp_slot);
191 taskInfo->event_type = INT_BUTTON_PRESS;
192 } else {
193 /**********************************
194 * button Released - TAKE ACTION!!!!
195 **********************************/
196 dbg("hp_slot %d button released\n", hp_slot);
197 taskInfo->event_type = INT_BUTTON_RELEASE;
198
199 /* Cancel if we are still blinking */
200 if ((p_slot->state == BLINKINGON_STATE)
201 || (p_slot->state == BLINKINGOFF_STATE)) {
202 taskInfo->event_type = INT_BUTTON_CANCEL;
203 dbg("hp_slot %d button cancel\n", hp_slot);
204 } else if ((p_slot->state == POWERON_STATE)
205 || (p_slot->state == POWEROFF_STATE)) {
206 /* info(msg_button_ignore, p_slot->number); */
207 taskInfo->event_type = INT_BUTTON_IGNORE;
208 dbg("hp_slot %d button ignore\n", hp_slot);
209 }
210 }
211 } else {
212 /* Switch is open, assume a presence change
213 * Save the presence state */
214 temp_word = ctrl->ctrl_int_comp >> 16;
215 func->presence_save = (temp_word >> hp_slot) & 0x01;
216 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
217
218 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
219 (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
220 /* Present */
221 taskInfo->event_type = INT_PRESENCE_ON;
222 } else {
223 /* Not Present */
224 taskInfo->event_type = INT_PRESENCE_OFF;
225 }
226 }
227 }
228 }
229
230 return rc;
231 }
232
233
234 static u8 handle_power_fault(u8 change, struct controller * ctrl)
235 {
236 int hp_slot;
237 u8 rc = 0;
238 struct pci_func *func;
239 struct event_info *taskInfo;
240
241 if (!change)
242 return 0;
243
244 /**********************************
245 * power fault
246 **********************************/
247
248 info("power fault interrupt\n");
249
250 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
251 if (change & (0x01 << hp_slot)) {
252 /**********************************
253 * this one changed.
254 **********************************/
255 func = cpqhp_slot_find(ctrl->bus,
256 (hp_slot + ctrl->slot_device_offset), 0);
257
258 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
259 ctrl->next_event = (ctrl->next_event + 1) % 10;
260 taskInfo->hp_slot = hp_slot;
261
262 rc++;
263
264 if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
265 /**********************************
266 * power fault Cleared
267 **********************************/
268 func->status = 0x00;
269
270 taskInfo->event_type = INT_POWER_FAULT_CLEAR;
271 } else {
272 /**********************************
273 * power fault
274 **********************************/
275 taskInfo->event_type = INT_POWER_FAULT;
276
277 if (ctrl->rev < 4) {
278 amber_LED_on (ctrl, hp_slot);
279 green_LED_off (ctrl, hp_slot);
280 set_SOGO (ctrl);
281
282 /* this is a fatal condition, we want
283 * to crash the machine to protect from
284 * data corruption. simulated_NMI
285 * shouldn't ever return */
286 /* FIXME
287 simulated_NMI(hp_slot, ctrl); */
288
289 /* The following code causes a software
290 * crash just in case simulated_NMI did
291 * return */
292 /*FIXME
293 panic(msg_power_fault); */
294 } else {
295 /* set power fault status for this board */
296 func->status = 0xFF;
297 info("power fault bit %x set\n", hp_slot);
298 }
299 }
300 }
301 }
302
303 return rc;
304 }
305
306
307 /**
308 * sort_by_size - sort nodes on the list by their length, smallest first.
309 * @head: list to sort
310 */
311 static int sort_by_size(struct pci_resource **head)
312 {
313 struct pci_resource *current_res;
314 struct pci_resource *next_res;
315 int out_of_order = 1;
316
317 if (!(*head))
318 return 1;
319
320 if (!((*head)->next))
321 return 0;
322
323 while (out_of_order) {
324 out_of_order = 0;
325
326 /* Special case for swapping list head */
327 if (((*head)->next) &&
328 ((*head)->length > (*head)->next->length)) {
329 out_of_order++;
330 current_res = *head;
331 *head = (*head)->next;
332 current_res->next = (*head)->next;
333 (*head)->next = current_res;
334 }
335
336 current_res = *head;
337
338 while (current_res->next && current_res->next->next) {
339 if (current_res->next->length > current_res->next->next->length) {
340 out_of_order++;
341 next_res = current_res->next;
342 current_res->next = current_res->next->next;
343 current_res = current_res->next;
344 next_res->next = current_res->next;
345 current_res->next = next_res;
346 } else
347 current_res = current_res->next;
348 }
349 } /* End of out_of_order loop */
350
351 return 0;
352 }
353
354
355 /**
356 * sort_by_max_size - sort nodes on the list by their length, largest first.
357 * @head: list to sort
358 */
359 static int sort_by_max_size(struct pci_resource **head)
360 {
361 struct pci_resource *current_res;
362 struct pci_resource *next_res;
363 int out_of_order = 1;
364
365 if (!(*head))
366 return 1;
367
368 if (!((*head)->next))
369 return 0;
370
371 while (out_of_order) {
372 out_of_order = 0;
373
374 /* Special case for swapping list head */
375 if (((*head)->next) &&
376 ((*head)->length < (*head)->next->length)) {
377 out_of_order++;
378 current_res = *head;
379 *head = (*head)->next;
380 current_res->next = (*head)->next;
381 (*head)->next = current_res;
382 }
383
384 current_res = *head;
385
386 while (current_res->next && current_res->next->next) {
387 if (current_res->next->length < current_res->next->next->length) {
388 out_of_order++;
389 next_res = current_res->next;
390 current_res->next = current_res->next->next;
391 current_res = current_res->next;
392 next_res->next = current_res->next;
393 current_res->next = next_res;
394 } else
395 current_res = current_res->next;
396 }
397 } /* End of out_of_order loop */
398
399 return 0;
400 }
401
402
403 /**
404 * do_pre_bridge_resource_split - find node of resources that are unused
405 * @head: new list head
406 * @orig_head: original list head
407 * @alignment: max node size (?)
408 */
409 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
410 struct pci_resource **orig_head, u32 alignment)
411 {
412 struct pci_resource *prevnode = NULL;
413 struct pci_resource *node;
414 struct pci_resource *split_node;
415 u32 rc;
416 u32 temp_dword;
417 dbg("do_pre_bridge_resource_split\n");
418
419 if (!(*head) || !(*orig_head))
420 return NULL;
421
422 rc = cpqhp_resource_sort_and_combine(head);
423
424 if (rc)
425 return NULL;
426
427 if ((*head)->base != (*orig_head)->base)
428 return NULL;
429
430 if ((*head)->length == (*orig_head)->length)
431 return NULL;
432
433
434 /* If we got here, there the bridge requires some of the resource, but
435 * we may be able to split some off of the front */
436
437 node = *head;
438
439 if (node->length & (alignment -1)) {
440 /* this one isn't an aligned length, so we'll make a new entry
441 * and split it up. */
442 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
443
444 if (!split_node)
445 return NULL;
446
447 temp_dword = (node->length | (alignment-1)) + 1 - alignment;
448
449 split_node->base = node->base;
450 split_node->length = temp_dword;
451
452 node->length -= temp_dword;
453 node->base += split_node->length;
454
455 /* Put it in the list */
456 *head = split_node;
457 split_node->next = node;
458 }
459
460 if (node->length < alignment)
461 return NULL;
462
463 /* Now unlink it */
464 if (*head == node) {
465 *head = node->next;
466 } else {
467 prevnode = *head;
468 while (prevnode->next != node)
469 prevnode = prevnode->next;
470
471 prevnode->next = node->next;
472 }
473 node->next = NULL;
474
475 return node;
476 }
477
478
479 /**
480 * do_bridge_resource_split - find one node of resources that aren't in use
481 * @head: list head
482 * @alignment: max node size (?)
483 */
484 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
485 {
486 struct pci_resource *prevnode = NULL;
487 struct pci_resource *node;
488 u32 rc;
489 u32 temp_dword;
490
491 rc = cpqhp_resource_sort_and_combine(head);
492
493 if (rc)
494 return NULL;
495
496 node = *head;
497
498 while (node->next) {
499 prevnode = node;
500 node = node->next;
501 kfree(prevnode);
502 }
503
504 if (node->length < alignment)
505 goto error;
506
507 if (node->base & (alignment - 1)) {
508 /* Short circuit if adjusted size is too small */
509 temp_dword = (node->base | (alignment-1)) + 1;
510 if ((node->length - (temp_dword - node->base)) < alignment)
511 goto error;
512
513 node->length -= (temp_dword - node->base);
514 node->base = temp_dword;
515 }
516
517 if (node->length & (alignment - 1))
518 /* There's stuff in use after this node */
519 goto error;
520
521 return node;
522 error:
523 kfree(node);
524 return NULL;
525 }
526
527
528 /**
529 * get_io_resource - find first node of given size not in ISA aliasing window.
530 * @head: list to search
531 * @size: size of node to find, must be a power of two.
532 *
533 * Description: This function sorts the resource list by size and then returns
534 * returns the first node of "size" length that is not in the ISA aliasing
535 * window. If it finds a node larger than "size" it will split it up.
536 */
537 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
538 {
539 struct pci_resource *prevnode;
540 struct pci_resource *node;
541 struct pci_resource *split_node;
542 u32 temp_dword;
543
544 if (!(*head))
545 return NULL;
546
547 if ( cpqhp_resource_sort_and_combine(head) )
548 return NULL;
549
550 if ( sort_by_size(head) )
551 return NULL;
552
553 for (node = *head; node; node = node->next) {
554 if (node->length < size)
555 continue;
556
557 if (node->base & (size - 1)) {
558 /* this one isn't base aligned properly
559 * so we'll make a new entry and split it up */
560 temp_dword = (node->base | (size-1)) + 1;
561
562 /* Short circuit if adjusted size is too small */
563 if ((node->length - (temp_dword - node->base)) < size)
564 continue;
565
566 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
567
568 if (!split_node)
569 return NULL;
570
571 split_node->base = node->base;
572 split_node->length = temp_dword - node->base;
573 node->base = temp_dword;
574 node->length -= split_node->length;
575
576 /* Put it in the list */
577 split_node->next = node->next;
578 node->next = split_node;
579 } /* End of non-aligned base */
580
581 /* Don't need to check if too small since we already did */
582 if (node->length > size) {
583 /* this one is longer than we need
584 * so we'll make a new entry and split it up */
585 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
586
587 if (!split_node)
588 return NULL;
589
590 split_node->base = node->base + size;
591 split_node->length = node->length - size;
592 node->length = size;
593
594 /* Put it in the list */
595 split_node->next = node->next;
596 node->next = split_node;
597 } /* End of too big on top end */
598
599 /* For IO make sure it's not in the ISA aliasing space */
600 if (node->base & 0x300L)
601 continue;
602
603 /* If we got here, then it is the right size
604 * Now take it out of the list and break */
605 if (*head == node) {
606 *head = node->next;
607 } else {
608 prevnode = *head;
609 while (prevnode->next != node)
610 prevnode = prevnode->next;
611
612 prevnode->next = node->next;
613 }
614 node->next = NULL;
615 break;
616 }
617
618 return node;
619 }
620
621
622 /**
623 * get_max_resource - get largest node which has at least the given size.
624 * @head: the list to search the node in
625 * @size: the minimum size of the node to find
626 *
627 * Description: Gets the largest node that is at least "size" big from the
628 * list pointed to by head. It aligns the node on top and bottom
629 * to "size" alignment before returning it.
630 */
631 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
632 {
633 struct pci_resource *max;
634 struct pci_resource *temp;
635 struct pci_resource *split_node;
636 u32 temp_dword;
637
638 if (cpqhp_resource_sort_and_combine(head))
639 return NULL;
640
641 if (sort_by_max_size(head))
642 return NULL;
643
644 for (max = *head; max; max = max->next) {
645 /* If not big enough we could probably just bail,
646 * instead we'll continue to the next. */
647 if (max->length < size)
648 continue;
649
650 if (max->base & (size - 1)) {
651 /* this one isn't base aligned properly
652 * so we'll make a new entry and split it up */
653 temp_dword = (max->base | (size-1)) + 1;
654
655 /* Short circuit if adjusted size is too small */
656 if ((max->length - (temp_dword - max->base)) < size)
657 continue;
658
659 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
660
661 if (!split_node)
662 return NULL;
663
664 split_node->base = max->base;
665 split_node->length = temp_dword - max->base;
666 max->base = temp_dword;
667 max->length -= split_node->length;
668
669 split_node->next = max->next;
670 max->next = split_node;
671 }
672
673 if ((max->base + max->length) & (size - 1)) {
674 /* this one isn't end aligned properly at the top
675 * so we'll make a new entry and split it up */
676 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
677
678 if (!split_node)
679 return NULL;
680 temp_dword = ((max->base + max->length) & ~(size - 1));
681 split_node->base = temp_dword;
682 split_node->length = max->length + max->base
683 - split_node->base;
684 max->length -= split_node->length;
685
686 split_node->next = max->next;
687 max->next = split_node;
688 }
689
690 /* Make sure it didn't shrink too much when we aligned it */
691 if (max->length < size)
692 continue;
693
694 /* Now take it out of the list */
695 temp = *head;
696 if (temp == max) {
697 *head = max->next;
698 } else {
699 while (temp && temp->next != max) {
700 temp = temp->next;
701 }
702
703 temp->next = max->next;
704 }
705
706 max->next = NULL;
707 break;
708 }
709
710 return max;
711 }
712
713
714 /**
715 * get_resource - find resource of given size and split up larger ones.
716 * @head: the list to search for resources
717 * @size: the size limit to use
718 *
719 * Description: This function sorts the resource list by size and then
720 * returns the first node of "size" length. If it finds a node
721 * larger than "size" it will split it up.
722 *
723 * size must be a power of two.
724 */
725 static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
726 {
727 struct pci_resource *prevnode;
728 struct pci_resource *node;
729 struct pci_resource *split_node;
730 u32 temp_dword;
731
732 if (cpqhp_resource_sort_and_combine(head))
733 return NULL;
734
735 if (sort_by_size(head))
736 return NULL;
737
738 for (node = *head; node; node = node->next) {
739 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
740 __func__, size, node, node->base, node->length);
741 if (node->length < size)
742 continue;
743
744 if (node->base & (size - 1)) {
745 dbg("%s: not aligned\n", __func__);
746 /* this one isn't base aligned properly
747 * so we'll make a new entry and split it up */
748 temp_dword = (node->base | (size-1)) + 1;
749
750 /* Short circuit if adjusted size is too small */
751 if ((node->length - (temp_dword - node->base)) < size)
752 continue;
753
754 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
755
756 if (!split_node)
757 return NULL;
758
759 split_node->base = node->base;
760 split_node->length = temp_dword - node->base;
761 node->base = temp_dword;
762 node->length -= split_node->length;
763
764 split_node->next = node->next;
765 node->next = split_node;
766 } /* End of non-aligned base */
767
768 /* Don't need to check if too small since we already did */
769 if (node->length > size) {
770 dbg("%s: too big\n", __func__);
771 /* this one is longer than we need
772 * so we'll make a new entry and split it up */
773 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
774
775 if (!split_node)
776 return NULL;
777
778 split_node->base = node->base + size;
779 split_node->length = node->length - size;
780 node->length = size;
781
782 /* Put it in the list */
783 split_node->next = node->next;
784 node->next = split_node;
785 } /* End of too big on top end */
786
787 dbg("%s: got one!!!\n", __func__);
788 /* If we got here, then it is the right size
789 * Now take it out of the list */
790 if (*head == node) {
791 *head = node->next;
792 } else {
793 prevnode = *head;
794 while (prevnode->next != node)
795 prevnode = prevnode->next;
796
797 prevnode->next = node->next;
798 }
799 node->next = NULL;
800 break;
801 }
802 return node;
803 }
804
805
806 /**
807 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
808 * @head: the list to sort and clean up
809 *
810 * Description: Sorts all of the nodes in the list in ascending order by
811 * their base addresses. Also does garbage collection by
812 * combining adjacent nodes.
813 *
814 * Returns %0 if success.
815 */
816 int cpqhp_resource_sort_and_combine(struct pci_resource **head)
817 {
818 struct pci_resource *node1;
819 struct pci_resource *node2;
820 int out_of_order = 1;
821
822 dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
823
824 if (!(*head))
825 return 1;
826
827 dbg("*head->next = %p\n",(*head)->next);
828
829 if (!(*head)->next)
830 return 0; /* only one item on the list, already sorted! */
831
832 dbg("*head->base = 0x%x\n",(*head)->base);
833 dbg("*head->next->base = 0x%x\n",(*head)->next->base);
834 while (out_of_order) {
835 out_of_order = 0;
836
837 /* Special case for swapping list head */
838 if (((*head)->next) &&
839 ((*head)->base > (*head)->next->base)) {
840 node1 = *head;
841 (*head) = (*head)->next;
842 node1->next = (*head)->next;
843 (*head)->next = node1;
844 out_of_order++;
845 }
846
847 node1 = (*head);
848
849 while (node1->next && node1->next->next) {
850 if (node1->next->base > node1->next->next->base) {
851 out_of_order++;
852 node2 = node1->next;
853 node1->next = node1->next->next;
854 node1 = node1->next;
855 node2->next = node1->next;
856 node1->next = node2;
857 } else
858 node1 = node1->next;
859 }
860 } /* End of out_of_order loop */
861
862 node1 = *head;
863
864 while (node1 && node1->next) {
865 if ((node1->base + node1->length) == node1->next->base) {
866 /* Combine */
867 dbg("8..\n");
868 node1->length += node1->next->length;
869 node2 = node1->next;
870 node1->next = node1->next->next;
871 kfree(node2);
872 } else
873 node1 = node1->next;
874 }
875
876 return 0;
877 }
878
879
880 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
881 {
882 struct controller *ctrl = data;
883 u8 schedule_flag = 0;
884 u8 reset;
885 u16 misc;
886 u32 Diff;
887 u32 temp_dword;
888
889
890 misc = readw(ctrl->hpc_reg + MISC);
891 /***************************************
892 * Check to see if it was our interrupt
893 ***************************************/
894 if (!(misc & 0x000C)) {
895 return IRQ_NONE;
896 }
897
898 if (misc & 0x0004) {
899 /**********************************
900 * Serial Output interrupt Pending
901 **********************************/
902
903 /* Clear the interrupt */
904 misc |= 0x0004;
905 writew(misc, ctrl->hpc_reg + MISC);
906
907 /* Read to clear posted writes */
908 misc = readw(ctrl->hpc_reg + MISC);
909
910 dbg ("%s - waking up\n", __func__);
911 wake_up_interruptible(&ctrl->queue);
912 }
913
914 if (misc & 0x0008) {
915 /* General-interrupt-input interrupt Pending */
916 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
917
918 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
919
920 /* Clear the interrupt */
921 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
922
923 /* Read it back to clear any posted writes */
924 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
925
926 if (!Diff)
927 /* Clear all interrupts */
928 writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
929
930 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
931 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
932 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
933 }
934
935 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
936 if (reset & 0x40) {
937 /* Bus reset has completed */
938 reset &= 0xCF;
939 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
940 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
941 wake_up_interruptible(&ctrl->queue);
942 }
943
944 if (schedule_flag) {
945 wake_up_process(cpqhp_event_thread);
946 dbg("Waking even thread");
947 }
948 return IRQ_HANDLED;
949 }
950
951
952 /**
953 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
954 * @busnumber: bus where new node is to be located
955 *
956 * Returns pointer to the new node or %NULL if unsuccessful.
957 */
958 struct pci_func *cpqhp_slot_create(u8 busnumber)
959 {
960 struct pci_func *new_slot;
961 struct pci_func *next;
962
963 new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
964 if (new_slot == NULL) {
965 /* I'm not dead yet!
966 * You will be. */
967 return new_slot;
968 }
969
970 new_slot->next = NULL;
971 new_slot->configured = 1;
972
973 if (cpqhp_slot_list[busnumber] == NULL) {
974 cpqhp_slot_list[busnumber] = new_slot;
975 } else {
976 next = cpqhp_slot_list[busnumber];
977 while (next->next != NULL)
978 next = next->next;
979 next->next = new_slot;
980 }
981 return new_slot;
982 }
983
984
985 /**
986 * slot_remove - Removes a node from the linked list of slots.
987 * @old_slot: slot to remove
988 *
989 * Returns %0 if successful, !0 otherwise.
990 */
991 static int slot_remove(struct pci_func * old_slot)
992 {
993 struct pci_func *next;
994
995 if (old_slot == NULL)
996 return 1;
997
998 next = cpqhp_slot_list[old_slot->bus];
999
1000 if (next == NULL) {
1001 return 1;
1002 }
1003
1004 if (next == old_slot) {
1005 cpqhp_slot_list[old_slot->bus] = old_slot->next;
1006 cpqhp_destroy_board_resources(old_slot);
1007 kfree(old_slot);
1008 return 0;
1009 }
1010
1011 while ((next->next != old_slot) && (next->next != NULL)) {
1012 next = next->next;
1013 }
1014
1015 if (next->next == old_slot) {
1016 next->next = old_slot->next;
1017 cpqhp_destroy_board_resources(old_slot);
1018 kfree(old_slot);
1019 return 0;
1020 } else
1021 return 2;
1022 }
1023
1024
1025 /**
1026 * bridge_slot_remove - Removes a node from the linked list of slots.
1027 * @bridge: bridge to remove
1028 *
1029 * Returns %0 if successful, !0 otherwise.
1030 */
1031 static int bridge_slot_remove(struct pci_func *bridge)
1032 {
1033 u8 subordinateBus, secondaryBus;
1034 u8 tempBus;
1035 struct pci_func *next;
1036
1037 secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1038 subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1039
1040 for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1041 next = cpqhp_slot_list[tempBus];
1042
1043 while (!slot_remove(next)) {
1044 next = cpqhp_slot_list[tempBus];
1045 }
1046 }
1047
1048 next = cpqhp_slot_list[bridge->bus];
1049
1050 if (next == NULL)
1051 return 1;
1052
1053 if (next == bridge) {
1054 cpqhp_slot_list[bridge->bus] = bridge->next;
1055 goto out;
1056 }
1057
1058 while ((next->next != bridge) && (next->next != NULL))
1059 next = next->next;
1060
1061 if (next->next != bridge)
1062 return 2;
1063 next->next = bridge->next;
1064 out:
1065 kfree(bridge);
1066 return 0;
1067 }
1068
1069
1070 /**
1071 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1072 * @bus: bus to find
1073 * @device: device to find
1074 * @index: is %0 for first function found, %1 for the second...
1075 *
1076 * Returns pointer to the node if successful, %NULL otherwise.
1077 */
1078 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1079 {
1080 int found = -1;
1081 struct pci_func *func;
1082
1083 func = cpqhp_slot_list[bus];
1084
1085 if ((func == NULL) || ((func->device == device) && (index == 0)))
1086 return func;
1087
1088 if (func->device == device)
1089 found++;
1090
1091 while (func->next != NULL) {
1092 func = func->next;
1093
1094 if (func->device == device)
1095 found++;
1096
1097 if (found == index)
1098 return func;
1099 }
1100
1101 return NULL;
1102 }
1103
1104
1105 /* DJZ: I don't think is_bridge will work as is.
1106 * FIXME */
1107 static int is_bridge(struct pci_func * func)
1108 {
1109 /* Check the header type */
1110 if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1111 return 1;
1112 else
1113 return 0;
1114 }
1115
1116
1117 /**
1118 * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1119 * @ctrl: controller to change frequency/mode for.
1120 * @adapter_speed: the speed of the adapter we want to match.
1121 * @hp_slot: the slot number where the adapter is installed.
1122 *
1123 * Returns %0 if we successfully change frequency and/or mode to match the
1124 * adapter speed.
1125 */
1126 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1127 {
1128 struct slot *slot;
1129 u8 reg;
1130 u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1131 u16 reg16;
1132 u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1133
1134 if (ctrl->speed == adapter_speed)
1135 return 0;
1136
1137 /* We don't allow freq/mode changes if we find another adapter running
1138 * in another slot on this controller */
1139 for(slot = ctrl->slot; slot; slot = slot->next) {
1140 if (slot->device == (hp_slot + ctrl->slot_device_offset))
1141 continue;
1142 if (!slot->hotplug_slot || !slot->hotplug_slot->info)
1143 continue;
1144 if (slot->hotplug_slot->info->adapter_status == 0)
1145 continue;
1146 /* If another adapter is running on the same segment but at a
1147 * lower speed/mode, we allow the new adapter to function at
1148 * this rate if supported */
1149 if (ctrl->speed < adapter_speed)
1150 return 0;
1151
1152 return 1;
1153 }
1154
1155 /* If the controller doesn't support freq/mode changes and the
1156 * controller is running at a higher mode, we bail */
1157 if ((ctrl->speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1158 return 1;
1159
1160 /* But we allow the adapter to run at a lower rate if possible */
1161 if ((ctrl->speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1162 return 0;
1163
1164 /* We try to set the max speed supported by both the adapter and
1165 * controller */
1166 if (ctrl->speed_capability < adapter_speed) {
1167 if (ctrl->speed == ctrl->speed_capability)
1168 return 0;
1169 adapter_speed = ctrl->speed_capability;
1170 }
1171
1172 writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1173 writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1174
1175 set_SOGO(ctrl);
1176 wait_for_ctrl_irq(ctrl);
1177
1178 if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1179 reg = 0xF5;
1180 else
1181 reg = 0xF4;
1182 pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1183
1184 reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1185 reg16 &= ~0x000F;
1186 switch(adapter_speed) {
1187 case(PCI_SPEED_133MHz_PCIX):
1188 reg = 0x75;
1189 reg16 |= 0xB;
1190 break;
1191 case(PCI_SPEED_100MHz_PCIX):
1192 reg = 0x74;
1193 reg16 |= 0xA;
1194 break;
1195 case(PCI_SPEED_66MHz_PCIX):
1196 reg = 0x73;
1197 reg16 |= 0x9;
1198 break;
1199 case(PCI_SPEED_66MHz):
1200 reg = 0x73;
1201 reg16 |= 0x1;
1202 break;
1203 default: /* 33MHz PCI 2.2 */
1204 reg = 0x71;
1205 break;
1206
1207 }
1208 reg16 |= 0xB << 12;
1209 writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1210
1211 mdelay(5);
1212
1213 /* Reenable interrupts */
1214 writel(0, ctrl->hpc_reg + INT_MASK);
1215
1216 pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1217
1218 /* Restart state machine */
1219 reg = ~0xF;
1220 pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1221 pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1222
1223 /* Only if mode change...*/
1224 if (((ctrl->speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1225 ((ctrl->speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1226 set_SOGO(ctrl);
1227
1228 wait_for_ctrl_irq(ctrl);
1229 mdelay(1100);
1230
1231 /* Restore LED/Slot state */
1232 writel(leds, ctrl->hpc_reg + LED_CONTROL);
1233 writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1234
1235 set_SOGO(ctrl);
1236 wait_for_ctrl_irq(ctrl);
1237
1238 ctrl->speed = adapter_speed;
1239 slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1240
1241 info("Successfully changed frequency/mode for adapter in slot %d\n",
1242 slot->number);
1243 return 0;
1244 }
1245
1246 /* the following routines constitute the bulk of the
1247 hotplug controller logic
1248 */
1249
1250
1251 /**
1252 * board_replaced - Called after a board has been replaced in the system.
1253 * @func: PCI device/function information
1254 * @ctrl: hotplug controller
1255 *
1256 * This is only used if we don't have resources for hot add.
1257 * Turns power on for the board.
1258 * Checks to see if board is the same.
1259 * If board is same, reconfigures it.
1260 * If board isn't same, turns it back off.
1261 */
1262 static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1263 {
1264 u8 hp_slot;
1265 u8 temp_byte;
1266 u8 adapter_speed;
1267 u32 rc = 0;
1268
1269 hp_slot = func->device - ctrl->slot_device_offset;
1270
1271 if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) {
1272 /**********************************
1273 * The switch is open.
1274 **********************************/
1275 rc = INTERLOCK_OPEN;
1276 } else if (is_slot_enabled (ctrl, hp_slot)) {
1277 /**********************************
1278 * The board is already on
1279 **********************************/
1280 rc = CARD_FUNCTIONING;
1281 } else {
1282 mutex_lock(&ctrl->crit_sect);
1283
1284 /* turn on board without attaching to the bus */
1285 enable_slot_power (ctrl, hp_slot);
1286
1287 set_SOGO(ctrl);
1288
1289 /* Wait for SOBS to be unset */
1290 wait_for_ctrl_irq (ctrl);
1291
1292 /* Change bits in slot power register to force another shift out
1293 * NOTE: this is to work around the timer bug */
1294 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1295 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1296 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1297
1298 set_SOGO(ctrl);
1299
1300 /* Wait for SOBS to be unset */
1301 wait_for_ctrl_irq (ctrl);
1302
1303 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1304 if (ctrl->speed != adapter_speed)
1305 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1306 rc = WRONG_BUS_FREQUENCY;
1307
1308 /* turn off board without attaching to the bus */
1309 disable_slot_power (ctrl, hp_slot);
1310
1311 set_SOGO(ctrl);
1312
1313 /* Wait for SOBS to be unset */
1314 wait_for_ctrl_irq (ctrl);
1315
1316 mutex_unlock(&ctrl->crit_sect);
1317
1318 if (rc)
1319 return rc;
1320
1321 mutex_lock(&ctrl->crit_sect);
1322
1323 slot_enable (ctrl, hp_slot);
1324 green_LED_blink (ctrl, hp_slot);
1325
1326 amber_LED_off (ctrl, hp_slot);
1327
1328 set_SOGO(ctrl);
1329
1330 /* Wait for SOBS to be unset */
1331 wait_for_ctrl_irq (ctrl);
1332
1333 mutex_unlock(&ctrl->crit_sect);
1334
1335 /* Wait for ~1 second because of hot plug spec */
1336 long_delay(1*HZ);
1337
1338 /* Check for a power fault */
1339 if (func->status == 0xFF) {
1340 /* power fault occurred, but it was benign */
1341 rc = POWER_FAILURE;
1342 func->status = 0;
1343 } else
1344 rc = cpqhp_valid_replace(ctrl, func);
1345
1346 if (!rc) {
1347 /* It must be the same board */
1348
1349 rc = cpqhp_configure_board(ctrl, func);
1350
1351 /* If configuration fails, turn it off
1352 * Get slot won't work for devices behind
1353 * bridges, but in this case it will always be
1354 * called for the "base" bus/dev/func of an
1355 * adapter. */
1356
1357 mutex_lock(&ctrl->crit_sect);
1358
1359 amber_LED_on (ctrl, hp_slot);
1360 green_LED_off (ctrl, hp_slot);
1361 slot_disable (ctrl, hp_slot);
1362
1363 set_SOGO(ctrl);
1364
1365 /* Wait for SOBS to be unset */
1366 wait_for_ctrl_irq (ctrl);
1367
1368 mutex_unlock(&ctrl->crit_sect);
1369
1370 if (rc)
1371 return rc;
1372 else
1373 return 1;
1374
1375 } else {
1376 /* Something is wrong
1377
1378 * Get slot won't work for devices behind bridges, but
1379 * in this case it will always be called for the "base"
1380 * bus/dev/func of an adapter. */
1381
1382 mutex_lock(&ctrl->crit_sect);
1383
1384 amber_LED_on (ctrl, hp_slot);
1385 green_LED_off (ctrl, hp_slot);
1386 slot_disable (ctrl, hp_slot);
1387
1388 set_SOGO(ctrl);
1389
1390 /* Wait for SOBS to be unset */
1391 wait_for_ctrl_irq (ctrl);
1392
1393 mutex_unlock(&ctrl->crit_sect);
1394 }
1395
1396 }
1397 return rc;
1398
1399 }
1400
1401
1402 /**
1403 * board_added - Called after a board has been added to the system.
1404 * @func: PCI device/function info
1405 * @ctrl: hotplug controller
1406 *
1407 * Turns power on for the board.
1408 * Configures board.
1409 */
1410 static u32 board_added(struct pci_func *func, struct controller *ctrl)
1411 {
1412 u8 hp_slot;
1413 u8 temp_byte;
1414 u8 adapter_speed;
1415 int index;
1416 u32 temp_register = 0xFFFFFFFF;
1417 u32 rc = 0;
1418 struct pci_func *new_slot = NULL;
1419 struct slot *p_slot;
1420 struct resource_lists res_lists;
1421
1422 hp_slot = func->device - ctrl->slot_device_offset;
1423 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1424 __func__, func->device, ctrl->slot_device_offset, hp_slot);
1425
1426 mutex_lock(&ctrl->crit_sect);
1427
1428 /* turn on board without attaching to the bus */
1429 enable_slot_power(ctrl, hp_slot);
1430
1431 set_SOGO(ctrl);
1432
1433 /* Wait for SOBS to be unset */
1434 wait_for_ctrl_irq (ctrl);
1435
1436 /* Change bits in slot power register to force another shift out
1437 * NOTE: this is to work around the timer bug */
1438 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1439 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1440 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1441
1442 set_SOGO(ctrl);
1443
1444 /* Wait for SOBS to be unset */
1445 wait_for_ctrl_irq (ctrl);
1446
1447 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1448 if (ctrl->speed != adapter_speed)
1449 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1450 rc = WRONG_BUS_FREQUENCY;
1451
1452 /* turn off board without attaching to the bus */
1453 disable_slot_power (ctrl, hp_slot);
1454
1455 set_SOGO(ctrl);
1456
1457 /* Wait for SOBS to be unset */
1458 wait_for_ctrl_irq(ctrl);
1459
1460 mutex_unlock(&ctrl->crit_sect);
1461
1462 if (rc)
1463 return rc;
1464
1465 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1466
1467 /* turn on board and blink green LED */
1468
1469 dbg("%s: before down\n", __func__);
1470 mutex_lock(&ctrl->crit_sect);
1471 dbg("%s: after down\n", __func__);
1472
1473 dbg("%s: before slot_enable\n", __func__);
1474 slot_enable (ctrl, hp_slot);
1475
1476 dbg("%s: before green_LED_blink\n", __func__);
1477 green_LED_blink (ctrl, hp_slot);
1478
1479 dbg("%s: before amber_LED_blink\n", __func__);
1480 amber_LED_off (ctrl, hp_slot);
1481
1482 dbg("%s: before set_SOGO\n", __func__);
1483 set_SOGO(ctrl);
1484
1485 /* Wait for SOBS to be unset */
1486 dbg("%s: before wait_for_ctrl_irq\n", __func__);
1487 wait_for_ctrl_irq (ctrl);
1488 dbg("%s: after wait_for_ctrl_irq\n", __func__);
1489
1490 dbg("%s: before up\n", __func__);
1491 mutex_unlock(&ctrl->crit_sect);
1492 dbg("%s: after up\n", __func__);
1493
1494 /* Wait for ~1 second because of hot plug spec */
1495 dbg("%s: before long_delay\n", __func__);
1496 long_delay(1*HZ);
1497 dbg("%s: after long_delay\n", __func__);
1498
1499 dbg("%s: func status = %x\n", __func__, func->status);
1500 /* Check for a power fault */
1501 if (func->status == 0xFF) {
1502 /* power fault occurred, but it was benign */
1503 temp_register = 0xFFFFFFFF;
1504 dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1505 rc = POWER_FAILURE;
1506 func->status = 0;
1507 } else {
1508 /* Get vendor/device ID u32 */
1509 ctrl->pci_bus->number = func->bus;
1510 rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1511 dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1512 dbg("%s: temp_register is %x\n", __func__, temp_register);
1513
1514 if (rc != 0) {
1515 /* Something's wrong here */
1516 temp_register = 0xFFFFFFFF;
1517 dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1518 }
1519 /* Preset return code. It will be changed later if things go okay. */
1520 rc = NO_ADAPTER_PRESENT;
1521 }
1522
1523 /* All F's is an empty slot or an invalid board */
1524 if (temp_register != 0xFFFFFFFF) { /* Check for a board in the slot */
1525 res_lists.io_head = ctrl->io_head;
1526 res_lists.mem_head = ctrl->mem_head;
1527 res_lists.p_mem_head = ctrl->p_mem_head;
1528 res_lists.bus_head = ctrl->bus_head;
1529 res_lists.irqs = NULL;
1530
1531 rc = configure_new_device(ctrl, func, 0, &res_lists);
1532
1533 dbg("%s: back from configure_new_device\n", __func__);
1534 ctrl->io_head = res_lists.io_head;
1535 ctrl->mem_head = res_lists.mem_head;
1536 ctrl->p_mem_head = res_lists.p_mem_head;
1537 ctrl->bus_head = res_lists.bus_head;
1538
1539 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1540 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1541 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1542 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1543
1544 if (rc) {
1545 mutex_lock(&ctrl->crit_sect);
1546
1547 amber_LED_on (ctrl, hp_slot);
1548 green_LED_off (ctrl, hp_slot);
1549 slot_disable (ctrl, hp_slot);
1550
1551 set_SOGO(ctrl);
1552
1553 /* Wait for SOBS to be unset */
1554 wait_for_ctrl_irq (ctrl);
1555
1556 mutex_unlock(&ctrl->crit_sect);
1557 return rc;
1558 } else {
1559 cpqhp_save_slot_config(ctrl, func);
1560 }
1561
1562
1563 func->status = 0;
1564 func->switch_save = 0x10;
1565 func->is_a_board = 0x01;
1566
1567 /* next, we will instantiate the linux pci_dev structures (with
1568 * appropriate driver notification, if already present) */
1569 dbg("%s: configure linux pci_dev structure\n", __func__);
1570 index = 0;
1571 do {
1572 new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1573 if (new_slot && !new_slot->pci_dev) {
1574 cpqhp_configure_device(ctrl, new_slot);
1575 }
1576 } while (new_slot);
1577
1578 mutex_lock(&ctrl->crit_sect);
1579
1580 green_LED_on (ctrl, hp_slot);
1581
1582 set_SOGO(ctrl);
1583
1584 /* Wait for SOBS to be unset */
1585 wait_for_ctrl_irq (ctrl);
1586
1587 mutex_unlock(&ctrl->crit_sect);
1588 } else {
1589 mutex_lock(&ctrl->crit_sect);
1590
1591 amber_LED_on (ctrl, hp_slot);
1592 green_LED_off (ctrl, hp_slot);
1593 slot_disable (ctrl, hp_slot);
1594
1595 set_SOGO(ctrl);
1596
1597 /* Wait for SOBS to be unset */
1598 wait_for_ctrl_irq (ctrl);
1599
1600 mutex_unlock(&ctrl->crit_sect);
1601
1602 return rc;
1603 }
1604 return 0;
1605 }
1606
1607
1608 /**
1609 * remove_board - Turns off slot and LEDs
1610 * @func: PCI device/function info
1611 * @replace_flag: whether replacing or adding a new device
1612 * @ctrl: target controller
1613 */
1614 static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl)
1615 {
1616 int index;
1617 u8 skip = 0;
1618 u8 device;
1619 u8 hp_slot;
1620 u8 temp_byte;
1621 u32 rc;
1622 struct resource_lists res_lists;
1623 struct pci_func *temp_func;
1624
1625 if (cpqhp_unconfigure_device(func))
1626 return 1;
1627
1628 device = func->device;
1629
1630 hp_slot = func->device - ctrl->slot_device_offset;
1631 dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1632
1633 /* When we get here, it is safe to change base address registers.
1634 * We will attempt to save the base address register lengths */
1635 if (replace_flag || !ctrl->add_support)
1636 rc = cpqhp_save_base_addr_length(ctrl, func);
1637 else if (!func->bus_head && !func->mem_head &&
1638 !func->p_mem_head && !func->io_head) {
1639 /* Here we check to see if we've saved any of the board's
1640 * resources already. If so, we'll skip the attempt to
1641 * determine what's being used. */
1642 index = 0;
1643 temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1644 while (temp_func) {
1645 if (temp_func->bus_head || temp_func->mem_head
1646 || temp_func->p_mem_head || temp_func->io_head) {
1647 skip = 1;
1648 break;
1649 }
1650 temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1651 }
1652
1653 if (!skip)
1654 rc = cpqhp_save_used_resources(ctrl, func);
1655 }
1656 /* Change status to shutdown */
1657 if (func->is_a_board)
1658 func->status = 0x01;
1659 func->configured = 0;
1660
1661 mutex_lock(&ctrl->crit_sect);
1662
1663 green_LED_off (ctrl, hp_slot);
1664 slot_disable (ctrl, hp_slot);
1665
1666 set_SOGO(ctrl);
1667
1668 /* turn off SERR for slot */
1669 temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1670 temp_byte &= ~(0x01 << hp_slot);
1671 writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1672
1673 /* Wait for SOBS to be unset */
1674 wait_for_ctrl_irq (ctrl);
1675
1676 mutex_unlock(&ctrl->crit_sect);
1677
1678 if (!replace_flag && ctrl->add_support) {
1679 while (func) {
1680 res_lists.io_head = ctrl->io_head;
1681 res_lists.mem_head = ctrl->mem_head;
1682 res_lists.p_mem_head = ctrl->p_mem_head;
1683 res_lists.bus_head = ctrl->bus_head;
1684
1685 cpqhp_return_board_resources(func, &res_lists);
1686
1687 ctrl->io_head = res_lists.io_head;
1688 ctrl->mem_head = res_lists.mem_head;
1689 ctrl->p_mem_head = res_lists.p_mem_head;
1690 ctrl->bus_head = res_lists.bus_head;
1691
1692 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1693 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1694 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1695 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1696
1697 if (is_bridge(func)) {
1698 bridge_slot_remove(func);
1699 } else
1700 slot_remove(func);
1701
1702 func = cpqhp_slot_find(ctrl->bus, device, 0);
1703 }
1704
1705 /* Setup slot structure with entry for empty slot */
1706 func = cpqhp_slot_create(ctrl->bus);
1707
1708 if (func == NULL)
1709 return 1;
1710
1711 func->bus = ctrl->bus;
1712 func->device = device;
1713 func->function = 0;
1714 func->configured = 0;
1715 func->switch_save = 0x10;
1716 func->is_a_board = 0;
1717 func->p_task_event = NULL;
1718 }
1719
1720 return 0;
1721 }
1722
1723 static void pushbutton_helper_thread(unsigned long data)
1724 {
1725 pushbutton_pending = data;
1726 wake_up_process(cpqhp_event_thread);
1727 }
1728
1729
1730 /* this is the main worker thread */
1731 static int event_thread(void* data)
1732 {
1733 struct controller *ctrl;
1734
1735 while (1) {
1736 dbg("!!!!event_thread sleeping\n");
1737 set_current_state(TASK_INTERRUPTIBLE);
1738 schedule();
1739
1740 if (kthread_should_stop())
1741 break;
1742 /* Do stuff here */
1743 if (pushbutton_pending)
1744 cpqhp_pushbutton_thread(pushbutton_pending);
1745 else
1746 for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next)
1747 interrupt_event_handler(ctrl);
1748 }
1749 dbg("event_thread signals exit\n");
1750 return 0;
1751 }
1752
1753 int cpqhp_event_start_thread(void)
1754 {
1755 cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1756 if (IS_ERR(cpqhp_event_thread)) {
1757 err ("Can't start up our event thread\n");
1758 return PTR_ERR(cpqhp_event_thread);
1759 }
1760
1761 return 0;
1762 }
1763
1764
1765 void cpqhp_event_stop_thread(void)
1766 {
1767 kthread_stop(cpqhp_event_thread);
1768 }
1769
1770
1771 static int update_slot_info(struct controller *ctrl, struct slot *slot)
1772 {
1773 struct hotplug_slot_info *info;
1774 int result;
1775
1776 info = kmalloc(sizeof(*info), GFP_KERNEL);
1777 if (!info)
1778 return -ENOMEM;
1779
1780 info->power_status = get_slot_enabled(ctrl, slot);
1781 info->attention_status = cpq_get_attention_status(ctrl, slot);
1782 info->latch_status = cpq_get_latch_status(ctrl, slot);
1783 info->adapter_status = get_presence_status(ctrl, slot);
1784 result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1785 kfree (info);
1786 return result;
1787 }
1788
1789 static void interrupt_event_handler(struct controller *ctrl)
1790 {
1791 int loop = 0;
1792 int change = 1;
1793 struct pci_func *func;
1794 u8 hp_slot;
1795 struct slot *p_slot;
1796
1797 while (change) {
1798 change = 0;
1799
1800 for (loop = 0; loop < 10; loop++) {
1801 /* dbg("loop %d\n", loop); */
1802 if (ctrl->event_queue[loop].event_type != 0) {
1803 hp_slot = ctrl->event_queue[loop].hp_slot;
1804
1805 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1806 if (!func)
1807 return;
1808
1809 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1810 if (!p_slot)
1811 return;
1812
1813 dbg("hp_slot %d, func %p, p_slot %p\n",
1814 hp_slot, func, p_slot);
1815
1816 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1817 dbg("button pressed\n");
1818 } else if (ctrl->event_queue[loop].event_type ==
1819 INT_BUTTON_CANCEL) {
1820 dbg("button cancel\n");
1821 del_timer(&p_slot->task_event);
1822
1823 mutex_lock(&ctrl->crit_sect);
1824
1825 if (p_slot->state == BLINKINGOFF_STATE) {
1826 /* slot is on */
1827 dbg("turn on green LED\n");
1828 green_LED_on (ctrl, hp_slot);
1829 } else if (p_slot->state == BLINKINGON_STATE) {
1830 /* slot is off */
1831 dbg("turn off green LED\n");
1832 green_LED_off (ctrl, hp_slot);
1833 }
1834
1835 info(msg_button_cancel, p_slot->number);
1836
1837 p_slot->state = STATIC_STATE;
1838
1839 amber_LED_off (ctrl, hp_slot);
1840
1841 set_SOGO(ctrl);
1842
1843 /* Wait for SOBS to be unset */
1844 wait_for_ctrl_irq (ctrl);
1845
1846 mutex_unlock(&ctrl->crit_sect);
1847 }
1848 /*** button Released (No action on press...) */
1849 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1850 dbg("button release\n");
1851
1852 if (is_slot_enabled (ctrl, hp_slot)) {
1853 dbg("slot is on\n");
1854 p_slot->state = BLINKINGOFF_STATE;
1855 info(msg_button_off, p_slot->number);
1856 } else {
1857 dbg("slot is off\n");
1858 p_slot->state = BLINKINGON_STATE;
1859 info(msg_button_on, p_slot->number);
1860 }
1861 mutex_lock(&ctrl->crit_sect);
1862
1863 dbg("blink green LED and turn off amber\n");
1864
1865 amber_LED_off (ctrl, hp_slot);
1866 green_LED_blink (ctrl, hp_slot);
1867
1868 set_SOGO(ctrl);
1869
1870 /* Wait for SOBS to be unset */
1871 wait_for_ctrl_irq (ctrl);
1872
1873 mutex_unlock(&ctrl->crit_sect);
1874 init_timer(&p_slot->task_event);
1875 p_slot->hp_slot = hp_slot;
1876 p_slot->ctrl = ctrl;
1877 /* p_slot->physical_slot = physical_slot; */
1878 p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */
1879 p_slot->task_event.function = pushbutton_helper_thread;
1880 p_slot->task_event.data = (u32) p_slot;
1881
1882 dbg("add_timer p_slot = %p\n", p_slot);
1883 add_timer(&p_slot->task_event);
1884 }
1885 /***********POWER FAULT */
1886 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1887 dbg("power fault\n");
1888 } else {
1889 /* refresh notification */
1890 if (p_slot)
1891 update_slot_info(ctrl, p_slot);
1892 }
1893
1894 ctrl->event_queue[loop].event_type = 0;
1895
1896 change = 1;
1897 }
1898 } /* End of FOR loop */
1899 }
1900
1901 return;
1902 }
1903
1904
1905 /**
1906 * cpqhp_pushbutton_thread - handle pushbutton events
1907 * @slot: target slot (struct)
1908 *
1909 * Scheduled procedure to handle blocking stuff for the pushbuttons.
1910 * Handles all pending events and exits.
1911 */
1912 void cpqhp_pushbutton_thread(unsigned long slot)
1913 {
1914 u8 hp_slot;
1915 u8 device;
1916 struct pci_func *func;
1917 struct slot *p_slot = (struct slot *) slot;
1918 struct controller *ctrl = (struct controller *) p_slot->ctrl;
1919
1920 pushbutton_pending = 0;
1921 hp_slot = p_slot->hp_slot;
1922
1923 device = p_slot->device;
1924
1925 if (is_slot_enabled(ctrl, hp_slot)) {
1926 p_slot->state = POWEROFF_STATE;
1927 /* power Down board */
1928 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1929 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1930 if (!func) {
1931 dbg("Error! func NULL in %s\n", __func__);
1932 return ;
1933 }
1934
1935 if (cpqhp_process_SS(ctrl, func) != 0) {
1936 amber_LED_on(ctrl, hp_slot);
1937 green_LED_on(ctrl, hp_slot);
1938
1939 set_SOGO(ctrl);
1940
1941 /* Wait for SOBS to be unset */
1942 wait_for_ctrl_irq(ctrl);
1943 }
1944
1945 p_slot->state = STATIC_STATE;
1946 } else {
1947 p_slot->state = POWERON_STATE;
1948 /* slot is off */
1949
1950 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1951 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1952 if (!func) {
1953 dbg("Error! func NULL in %s\n", __func__);
1954 return ;
1955 }
1956
1957 if (func != NULL && ctrl != NULL) {
1958 if (cpqhp_process_SI(ctrl, func) != 0) {
1959 amber_LED_on(ctrl, hp_slot);
1960 green_LED_off(ctrl, hp_slot);
1961
1962 set_SOGO(ctrl);
1963
1964 /* Wait for SOBS to be unset */
1965 wait_for_ctrl_irq (ctrl);
1966 }
1967 }
1968
1969 p_slot->state = STATIC_STATE;
1970 }
1971
1972 return;
1973 }
1974
1975
1976 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1977 {
1978 u8 device, hp_slot;
1979 u16 temp_word;
1980 u32 tempdword;
1981 int rc;
1982 struct slot* p_slot;
1983 int physical_slot = 0;
1984
1985 tempdword = 0;
1986
1987 device = func->device;
1988 hp_slot = device - ctrl->slot_device_offset;
1989 p_slot = cpqhp_find_slot(ctrl, device);
1990 if (p_slot)
1991 physical_slot = p_slot->number;
1992
1993 /* Check to see if the interlock is closed */
1994 tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
1995
1996 if (tempdword & (0x01 << hp_slot)) {
1997 return 1;
1998 }
1999
2000 if (func->is_a_board) {
2001 rc = board_replaced(func, ctrl);
2002 } else {
2003 /* add board */
2004 slot_remove(func);
2005
2006 func = cpqhp_slot_create(ctrl->bus);
2007 if (func == NULL)
2008 return 1;
2009
2010 func->bus = ctrl->bus;
2011 func->device = device;
2012 func->function = 0;
2013 func->configured = 0;
2014 func->is_a_board = 1;
2015
2016 /* We have to save the presence info for these slots */
2017 temp_word = ctrl->ctrl_int_comp >> 16;
2018 func->presence_save = (temp_word >> hp_slot) & 0x01;
2019 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2020
2021 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2022 func->switch_save = 0;
2023 } else {
2024 func->switch_save = 0x10;
2025 }
2026
2027 rc = board_added(func, ctrl);
2028 if (rc) {
2029 if (is_bridge(func)) {
2030 bridge_slot_remove(func);
2031 } else
2032 slot_remove(func);
2033
2034 /* Setup slot structure with entry for empty slot */
2035 func = cpqhp_slot_create(ctrl->bus);
2036
2037 if (func == NULL)
2038 return 1;
2039
2040 func->bus = ctrl->bus;
2041 func->device = device;
2042 func->function = 0;
2043 func->configured = 0;
2044 func->is_a_board = 0;
2045
2046 /* We have to save the presence info for these slots */
2047 temp_word = ctrl->ctrl_int_comp >> 16;
2048 func->presence_save = (temp_word >> hp_slot) & 0x01;
2049 func->presence_save |=
2050 (temp_word >> (hp_slot + 7)) & 0x02;
2051
2052 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2053 func->switch_save = 0;
2054 } else {
2055 func->switch_save = 0x10;
2056 }
2057 }
2058 }
2059
2060 if (rc) {
2061 dbg("%s: rc = %d\n", __func__, rc);
2062 }
2063
2064 if (p_slot)
2065 update_slot_info(ctrl, p_slot);
2066
2067 return rc;
2068 }
2069
2070
2071 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2072 {
2073 u8 device, class_code, header_type, BCR;
2074 u8 index = 0;
2075 u8 replace_flag;
2076 u32 rc = 0;
2077 unsigned int devfn;
2078 struct slot* p_slot;
2079 struct pci_bus *pci_bus = ctrl->pci_bus;
2080 int physical_slot=0;
2081
2082 device = func->device;
2083 func = cpqhp_slot_find(ctrl->bus, device, index++);
2084 p_slot = cpqhp_find_slot(ctrl, device);
2085 if (p_slot) {
2086 physical_slot = p_slot->number;
2087 }
2088
2089 /* Make sure there are no video controllers here */
2090 while (func && !rc) {
2091 pci_bus->number = func->bus;
2092 devfn = PCI_DEVFN(func->device, func->function);
2093
2094 /* Check the Class Code */
2095 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2096 if (rc)
2097 return rc;
2098
2099 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2100 /* Display/Video adapter (not supported) */
2101 rc = REMOVE_NOT_SUPPORTED;
2102 } else {
2103 /* See if it's a bridge */
2104 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2105 if (rc)
2106 return rc;
2107
2108 /* If it's a bridge, check the VGA Enable bit */
2109 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2110 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2111 if (rc)
2112 return rc;
2113
2114 /* If the VGA Enable bit is set, remove isn't
2115 * supported */
2116 if (BCR & PCI_BRIDGE_CTL_VGA) {
2117 rc = REMOVE_NOT_SUPPORTED;
2118 }
2119 }
2120 }
2121
2122 func = cpqhp_slot_find(ctrl->bus, device, index++);
2123 }
2124
2125 func = cpqhp_slot_find(ctrl->bus, device, 0);
2126 if ((func != NULL) && !rc) {
2127 /* FIXME: Replace flag should be passed into process_SS */
2128 replace_flag = !(ctrl->add_support);
2129 rc = remove_board(func, replace_flag, ctrl);
2130 } else if (!rc) {
2131 rc = 1;
2132 }
2133
2134 if (p_slot)
2135 update_slot_info(ctrl, p_slot);
2136
2137 return rc;
2138 }
2139
2140 /**
2141 * switch_leds - switch the leds, go from one site to the other.
2142 * @ctrl: controller to use
2143 * @num_of_slots: number of slots to use
2144 * @work_LED: LED control value
2145 * @direction: 1 to start from the left side, 0 to start right.
2146 */
2147 static void switch_leds(struct controller *ctrl, const int num_of_slots,
2148 u32 *work_LED, const int direction)
2149 {
2150 int loop;
2151
2152 for (loop = 0; loop < num_of_slots; loop++) {
2153 if (direction)
2154 *work_LED = *work_LED >> 1;
2155 else
2156 *work_LED = *work_LED << 1;
2157 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2158
2159 set_SOGO(ctrl);
2160
2161 /* Wait for SOGO interrupt */
2162 wait_for_ctrl_irq(ctrl);
2163
2164 /* Get ready for next iteration */
2165 long_delay((2*HZ)/10);
2166 }
2167 }
2168
2169 /**
2170 * cpqhp_hardware_test - runs hardware tests
2171 * @ctrl: target controller
2172 * @test_num: the number written to the "test" file in sysfs.
2173 *
2174 * For hot plug ctrl folks to play with.
2175 */
2176 int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2177 {
2178 u32 save_LED;
2179 u32 work_LED;
2180 int loop;
2181 int num_of_slots;
2182
2183 num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2184
2185 switch (test_num) {
2186 case 1:
2187 /* Do stuff here! */
2188
2189 /* Do that funky LED thing */
2190 /* so we can restore them later */
2191 save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2192 work_LED = 0x01010101;
2193 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2194 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2195 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2196 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2197
2198 work_LED = 0x01010000;
2199 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2200 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2201 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2202 work_LED = 0x00000101;
2203 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2204 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2205 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2206
2207 work_LED = 0x01010000;
2208 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2209 for (loop = 0; loop < num_of_slots; loop++) {
2210 set_SOGO(ctrl);
2211
2212 /* Wait for SOGO interrupt */
2213 wait_for_ctrl_irq (ctrl);
2214
2215 /* Get ready for next iteration */
2216 long_delay((3*HZ)/10);
2217 work_LED = work_LED >> 16;
2218 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2219
2220 set_SOGO(ctrl);
2221
2222 /* Wait for SOGO interrupt */
2223 wait_for_ctrl_irq (ctrl);
2224
2225 /* Get ready for next iteration */
2226 long_delay((3*HZ)/10);
2227 work_LED = work_LED << 16;
2228 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2229 work_LED = work_LED << 1;
2230 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2231 }
2232
2233 /* put it back the way it was */
2234 writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2235
2236 set_SOGO(ctrl);
2237
2238 /* Wait for SOBS to be unset */
2239 wait_for_ctrl_irq (ctrl);
2240 break;
2241 case 2:
2242 /* Do other stuff here! */
2243 break;
2244 case 3:
2245 /* and more... */
2246 break;
2247 }
2248 return 0;
2249 }
2250
2251
2252 /**
2253 * configure_new_device - Configures the PCI header information of one board.
2254 * @ctrl: pointer to controller structure
2255 * @func: pointer to function structure
2256 * @behind_bridge: 1 if this is a recursive call, 0 if not
2257 * @resources: pointer to set of resource lists
2258 *
2259 * Returns 0 if success.
2260 */
2261 static u32 configure_new_device(struct controller * ctrl, struct pci_func * func,
2262 u8 behind_bridge, struct resource_lists * resources)
2263 {
2264 u8 temp_byte, function, max_functions, stop_it;
2265 int rc;
2266 u32 ID;
2267 struct pci_func *new_slot;
2268 int index;
2269
2270 new_slot = func;
2271
2272 dbg("%s\n", __func__);
2273 /* Check for Multi-function device */
2274 ctrl->pci_bus->number = func->bus;
2275 rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2276 if (rc) {
2277 dbg("%s: rc = %d\n", __func__, rc);
2278 return rc;
2279 }
2280
2281 if (temp_byte & 0x80) /* Multi-function device */
2282 max_functions = 8;
2283 else
2284 max_functions = 1;
2285
2286 function = 0;
2287
2288 do {
2289 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2290
2291 if (rc) {
2292 dbg("configure_new_function failed %d\n",rc);
2293 index = 0;
2294
2295 while (new_slot) {
2296 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2297
2298 if (new_slot)
2299 cpqhp_return_board_resources(new_slot, resources);
2300 }
2301
2302 return rc;
2303 }
2304
2305 function++;
2306
2307 stop_it = 0;
2308
2309 /* The following loop skips to the next present function
2310 * and creates a board structure */
2311
2312 while ((function < max_functions) && (!stop_it)) {
2313 pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2314
2315 if (ID == 0xFFFFFFFF) { /* There's nothing there. */
2316 function++;
2317 } else { /* There's something there */
2318 /* Setup slot structure. */
2319 new_slot = cpqhp_slot_create(func->bus);
2320
2321 if (new_slot == NULL)
2322 return 1;
2323
2324 new_slot->bus = func->bus;
2325 new_slot->device = func->device;
2326 new_slot->function = function;
2327 new_slot->is_a_board = 1;
2328 new_slot->status = 0;
2329
2330 stop_it++;
2331 }
2332 }
2333
2334 } while (function < max_functions);
2335 dbg("returning from configure_new_device\n");
2336
2337 return 0;
2338 }
2339
2340
2341 /*
2342 Configuration logic that involves the hotplug data structures and
2343 their bookkeeping
2344 */
2345
2346
2347 /**
2348 * configure_new_function - Configures the PCI header information of one device
2349 * @ctrl: pointer to controller structure
2350 * @func: pointer to function structure
2351 * @behind_bridge: 1 if this is a recursive call, 0 if not
2352 * @resources: pointer to set of resource lists
2353 *
2354 * Calls itself recursively for bridged devices.
2355 * Returns 0 if success.
2356 */
2357 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2358 u8 behind_bridge,
2359 struct resource_lists *resources)
2360 {
2361 int cloop;
2362 u8 IRQ = 0;
2363 u8 temp_byte;
2364 u8 device;
2365 u8 class_code;
2366 u16 command;
2367 u16 temp_word;
2368 u32 temp_dword;
2369 u32 rc;
2370 u32 temp_register;
2371 u32 base;
2372 u32 ID;
2373 unsigned int devfn;
2374 struct pci_resource *mem_node;
2375 struct pci_resource *p_mem_node;
2376 struct pci_resource *io_node;
2377 struct pci_resource *bus_node;
2378 struct pci_resource *hold_mem_node;
2379 struct pci_resource *hold_p_mem_node;
2380 struct pci_resource *hold_IO_node;
2381 struct pci_resource *hold_bus_node;
2382 struct irq_mapping irqs;
2383 struct pci_func *new_slot;
2384 struct pci_bus *pci_bus;
2385 struct resource_lists temp_resources;
2386
2387 pci_bus = ctrl->pci_bus;
2388 pci_bus->number = func->bus;
2389 devfn = PCI_DEVFN(func->device, func->function);
2390
2391 /* Check for Bridge */
2392 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2393 if (rc)
2394 return rc;
2395
2396 if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* PCI-PCI Bridge */
2397 /* set Primary bus */
2398 dbg("set Primary bus = %d\n", func->bus);
2399 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2400 if (rc)
2401 return rc;
2402
2403 /* find range of busses to use */
2404 dbg("find ranges of buses to use\n");
2405 bus_node = get_max_resource(&(resources->bus_head), 1);
2406
2407 /* If we don't have any busses to allocate, we can't continue */
2408 if (!bus_node)
2409 return -ENOMEM;
2410
2411 /* set Secondary bus */
2412 temp_byte = bus_node->base;
2413 dbg("set Secondary bus = %d\n", bus_node->base);
2414 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2415 if (rc)
2416 return rc;
2417
2418 /* set subordinate bus */
2419 temp_byte = bus_node->base + bus_node->length - 1;
2420 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2421 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2422 if (rc)
2423 return rc;
2424
2425 /* set subordinate Latency Timer and base Latency Timer */
2426 temp_byte = 0x40;
2427 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2428 if (rc)
2429 return rc;
2430 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2431 if (rc)
2432 return rc;
2433
2434 /* set Cache Line size */
2435 temp_byte = 0x08;
2436 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2437 if (rc)
2438 return rc;
2439
2440 /* Setup the IO, memory, and prefetchable windows */
2441 io_node = get_max_resource(&(resources->io_head), 0x1000);
2442 if (!io_node)
2443 return -ENOMEM;
2444 mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2445 if (!mem_node)
2446 return -ENOMEM;
2447 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2448 if (!p_mem_node)
2449 return -ENOMEM;
2450 dbg("Setup the IO, memory, and prefetchable windows\n");
2451 dbg("io_node\n");
2452 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2453 io_node->length, io_node->next);
2454 dbg("mem_node\n");
2455 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2456 mem_node->length, mem_node->next);
2457 dbg("p_mem_node\n");
2458 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2459 p_mem_node->length, p_mem_node->next);
2460
2461 /* set up the IRQ info */
2462 if (!resources->irqs) {
2463 irqs.barber_pole = 0;
2464 irqs.interrupt[0] = 0;
2465 irqs.interrupt[1] = 0;
2466 irqs.interrupt[2] = 0;
2467 irqs.interrupt[3] = 0;
2468 irqs.valid_INT = 0;
2469 } else {
2470 irqs.barber_pole = resources->irqs->barber_pole;
2471 irqs.interrupt[0] = resources->irqs->interrupt[0];
2472 irqs.interrupt[1] = resources->irqs->interrupt[1];
2473 irqs.interrupt[2] = resources->irqs->interrupt[2];
2474 irqs.interrupt[3] = resources->irqs->interrupt[3];
2475 irqs.valid_INT = resources->irqs->valid_INT;
2476 }
2477
2478 /* set up resource lists that are now aligned on top and bottom
2479 * for anything behind the bridge. */
2480 temp_resources.bus_head = bus_node;
2481 temp_resources.io_head = io_node;
2482 temp_resources.mem_head = mem_node;
2483 temp_resources.p_mem_head = p_mem_node;
2484 temp_resources.irqs = &irqs;
2485
2486 /* Make copies of the nodes we are going to pass down so that
2487 * if there is a problem,we can just use these to free resources */
2488 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2489 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2490 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2491 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2492
2493 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2494 kfree(hold_bus_node);
2495 kfree(hold_IO_node);
2496 kfree(hold_mem_node);
2497 kfree(hold_p_mem_node);
2498
2499 return 1;
2500 }
2501
2502 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2503
2504 bus_node->base += 1;
2505 bus_node->length -= 1;
2506 bus_node->next = NULL;
2507
2508 /* If we have IO resources copy them and fill in the bridge's
2509 * IO range registers */
2510 if (io_node) {
2511 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2512 io_node->next = NULL;
2513
2514 /* set IO base and Limit registers */
2515 temp_byte = io_node->base >> 8;
2516 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2517
2518 temp_byte = (io_node->base + io_node->length - 1) >> 8;
2519 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2520 } else {
2521 kfree(hold_IO_node);
2522 hold_IO_node = NULL;
2523 }
2524
2525 /* If we have memory resources copy them and fill in the
2526 * bridge's memory range registers. Otherwise, fill in the
2527 * range registers with values that disable them. */
2528 if (mem_node) {
2529 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2530 mem_node->next = NULL;
2531
2532 /* set Mem base and Limit registers */
2533 temp_word = mem_node->base >> 16;
2534 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2535
2536 temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2537 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2538 } else {
2539 temp_word = 0xFFFF;
2540 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2541
2542 temp_word = 0x0000;
2543 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2544
2545 kfree(hold_mem_node);
2546 hold_mem_node = NULL;
2547 }
2548
2549 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2550 p_mem_node->next = NULL;
2551
2552 /* set Pre Mem base and Limit registers */
2553 temp_word = p_mem_node->base >> 16;
2554 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2555
2556 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2557 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2558
2559 /* Adjust this to compensate for extra adjustment in first loop */
2560 irqs.barber_pole--;
2561
2562 rc = 0;
2563
2564 /* Here we actually find the devices and configure them */
2565 for (device = 0; (device <= 0x1F) && !rc; device++) {
2566 irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2567
2568 ID = 0xFFFFFFFF;
2569 pci_bus->number = hold_bus_node->base;
2570 pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2571 pci_bus->number = func->bus;
2572
2573 if (ID != 0xFFFFFFFF) { /* device present */
2574 /* Setup slot structure. */
2575 new_slot = cpqhp_slot_create(hold_bus_node->base);
2576
2577 if (new_slot == NULL) {
2578 rc = -ENOMEM;
2579 continue;
2580 }
2581
2582 new_slot->bus = hold_bus_node->base;
2583 new_slot->device = device;
2584 new_slot->function = 0;
2585 new_slot->is_a_board = 1;
2586 new_slot->status = 0;
2587
2588 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2589 dbg("configure_new_device rc=0x%x\n",rc);
2590 } /* End of IF (device in slot?) */
2591 } /* End of FOR loop */
2592
2593 if (rc)
2594 goto free_and_out;
2595 /* save the interrupt routing information */
2596 if (resources->irqs) {
2597 resources->irqs->interrupt[0] = irqs.interrupt[0];
2598 resources->irqs->interrupt[1] = irqs.interrupt[1];
2599 resources->irqs->interrupt[2] = irqs.interrupt[2];
2600 resources->irqs->interrupt[3] = irqs.interrupt[3];
2601 resources->irqs->valid_INT = irqs.valid_INT;
2602 } else if (!behind_bridge) {
2603 /* We need to hook up the interrupts here */
2604 for (cloop = 0; cloop < 4; cloop++) {
2605 if (irqs.valid_INT & (0x01 << cloop)) {
2606 rc = cpqhp_set_irq(func->bus, func->device,
2607 cloop + 1, irqs.interrupt[cloop]);
2608 if (rc)
2609 goto free_and_out;
2610 }
2611 } /* end of for loop */
2612 }
2613 /* Return unused bus resources
2614 * First use the temporary node to store information for
2615 * the board */
2616 if (hold_bus_node && bus_node && temp_resources.bus_head) {
2617 hold_bus_node->length = bus_node->base - hold_bus_node->base;
2618
2619 hold_bus_node->next = func->bus_head;
2620 func->bus_head = hold_bus_node;
2621
2622 temp_byte = temp_resources.bus_head->base - 1;
2623
2624 /* set subordinate bus */
2625 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2626
2627 if (temp_resources.bus_head->length == 0) {
2628 kfree(temp_resources.bus_head);
2629 temp_resources.bus_head = NULL;
2630 } else {
2631 return_resource(&(resources->bus_head), temp_resources.bus_head);
2632 }
2633 }
2634
2635 /* If we have IO space available and there is some left,
2636 * return the unused portion */
2637 if (hold_IO_node && temp_resources.io_head) {
2638 io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2639 &hold_IO_node, 0x1000);
2640
2641 /* Check if we were able to split something off */
2642 if (io_node) {
2643 hold_IO_node->base = io_node->base + io_node->length;
2644
2645 temp_byte = (hold_IO_node->base) >> 8;
2646 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte);
2647
2648 return_resource(&(resources->io_head), io_node);
2649 }
2650
2651 io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2652
2653 /* Check if we were able to split something off */
2654 if (io_node) {
2655 /* First use the temporary node to store
2656 * information for the board */
2657 hold_IO_node->length = io_node->base - hold_IO_node->base;
2658
2659 /* If we used any, add it to the board's list */
2660 if (hold_IO_node->length) {
2661 hold_IO_node->next = func->io_head;
2662 func->io_head = hold_IO_node;
2663
2664 temp_byte = (io_node->base - 1) >> 8;
2665 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2666
2667 return_resource(&(resources->io_head), io_node);
2668 } else {
2669 /* it doesn't need any IO */
2670 temp_word = 0x0000;
2671 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2672
2673 return_resource(&(resources->io_head), io_node);
2674 kfree(hold_IO_node);
2675 }
2676 } else {
2677 /* it used most of the range */
2678 hold_IO_node->next = func->io_head;
2679 func->io_head = hold_IO_node;
2680 }
2681 } else if (hold_IO_node) {
2682 /* it used the whole range */
2683 hold_IO_node->next = func->io_head;
2684 func->io_head = hold_IO_node;
2685 }
2686 /* If we have memory space available and there is some left,
2687 * return the unused portion */
2688 if (hold_mem_node && temp_resources.mem_head) {
2689 mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head),
2690 &hold_mem_node, 0x100000);
2691
2692 /* Check if we were able to split something off */
2693 if (mem_node) {
2694 hold_mem_node->base = mem_node->base + mem_node->length;
2695
2696 temp_word = (hold_mem_node->base) >> 16;
2697 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2698
2699 return_resource(&(resources->mem_head), mem_node);
2700 }
2701
2702 mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2703
2704 /* Check if we were able to split something off */
2705 if (mem_node) {
2706 /* First use the temporary node to store
2707 * information for the board */
2708 hold_mem_node->length = mem_node->base - hold_mem_node->base;
2709
2710 if (hold_mem_node->length) {
2711 hold_mem_node->next = func->mem_head;
2712 func->mem_head = hold_mem_node;
2713
2714 /* configure end address */
2715 temp_word = (mem_node->base - 1) >> 16;
2716 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2717
2718 /* Return unused resources to the pool */
2719 return_resource(&(resources->mem_head), mem_node);
2720 } else {
2721 /* it doesn't need any Mem */
2722 temp_word = 0x0000;
2723 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2724
2725 return_resource(&(resources->mem_head), mem_node);
2726 kfree(hold_mem_node);
2727 }
2728 } else {
2729 /* it used most of the range */
2730 hold_mem_node->next = func->mem_head;
2731 func->mem_head = hold_mem_node;
2732 }
2733 } else if (hold_mem_node) {
2734 /* it used the whole range */
2735 hold_mem_node->next = func->mem_head;
2736 func->mem_head = hold_mem_node;
2737 }
2738 /* If we have prefetchable memory space available and there
2739 * is some left at the end, return the unused portion */
2740 if (hold_p_mem_node && temp_resources.p_mem_head) {
2741 p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2742 &hold_p_mem_node, 0x100000);
2743
2744 /* Check if we were able to split something off */
2745 if (p_mem_node) {
2746 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2747
2748 temp_word = (hold_p_mem_node->base) >> 16;
2749 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2750
2751 return_resource(&(resources->p_mem_head), p_mem_node);
2752 }
2753
2754 p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2755
2756 /* Check if we were able to split something off */
2757 if (p_mem_node) {
2758 /* First use the temporary node to store
2759 * information for the board */
2760 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2761
2762 /* If we used any, add it to the board's list */
2763 if (hold_p_mem_node->length) {
2764 hold_p_mem_node->next = func->p_mem_head;
2765 func->p_mem_head = hold_p_mem_node;
2766
2767 temp_word = (p_mem_node->base - 1) >> 16;
2768 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2769
2770 return_resource(&(resources->p_mem_head), p_mem_node);
2771 } else {
2772 /* it doesn't need any PMem */
2773 temp_word = 0x0000;
2774 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2775
2776 return_resource(&(resources->p_mem_head), p_mem_node);
2777 kfree(hold_p_mem_node);
2778 }
2779 } else {
2780 /* it used the most of the range */
2781 hold_p_mem_node->next = func->p_mem_head;
2782 func->p_mem_head = hold_p_mem_node;
2783 }
2784 } else if (hold_p_mem_node) {
2785 /* it used the whole range */
2786 hold_p_mem_node->next = func->p_mem_head;
2787 func->p_mem_head = hold_p_mem_node;
2788 }
2789 /* We should be configuring an IRQ and the bridge's base address
2790 * registers if it needs them. Although we have never seen such
2791 * a device */
2792
2793 /* enable card */
2794 command = 0x0157; /* = PCI_COMMAND_IO |
2795 * PCI_COMMAND_MEMORY |
2796 * PCI_COMMAND_MASTER |
2797 * PCI_COMMAND_INVALIDATE |
2798 * PCI_COMMAND_PARITY |
2799 * PCI_COMMAND_SERR */
2800 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command);
2801
2802 /* set Bridge Control Register */
2803 command = 0x07; /* = PCI_BRIDGE_CTL_PARITY |
2804 * PCI_BRIDGE_CTL_SERR |
2805 * PCI_BRIDGE_CTL_NO_ISA */
2806 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2807 } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2808 /* Standard device */
2809 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2810
2811 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2812 /* Display (video) adapter (not supported) */
2813 return DEVICE_TYPE_NOT_SUPPORTED;
2814 }
2815 /* Figure out IO and memory needs */
2816 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2817 temp_register = 0xFFFFFFFF;
2818
2819 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2820 rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
2821
2822 rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register);
2823 dbg("CND: base = 0x%x\n", temp_register);
2824
2825 if (temp_register) { /* If this register is implemented */
2826 if ((temp_register & 0x03L) == 0x01) {
2827 /* Map IO */
2828
2829 /* set base = amount of IO space */
2830 base = temp_register & 0xFFFFFFFC;
2831 base = ~base + 1;
2832
2833 dbg("CND: length = 0x%x\n", base);
2834 io_node = get_io_resource(&(resources->io_head), base);
2835 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2836 io_node->base, io_node->length, io_node->next);
2837 dbg("func (%p) io_head (%p)\n", func, func->io_head);
2838
2839 /* allocate the resource to the board */
2840 if (io_node) {
2841 base = io_node->base;
2842
2843 io_node->next = func->io_head;
2844 func->io_head = io_node;
2845 } else
2846 return -ENOMEM;
2847 } else if ((temp_register & 0x0BL) == 0x08) {
2848 /* Map prefetchable memory */
2849 base = temp_register & 0xFFFFFFF0;
2850 base = ~base + 1;
2851
2852 dbg("CND: length = 0x%x\n", base);
2853 p_mem_node = get_resource(&(resources->p_mem_head), base);
2854
2855 /* allocate the resource to the board */
2856 if (p_mem_node) {
2857 base = p_mem_node->base;
2858
2859 p_mem_node->next = func->p_mem_head;
2860 func->p_mem_head = p_mem_node;
2861 } else
2862 return -ENOMEM;
2863 } else if ((temp_register & 0x0BL) == 0x00) {
2864 /* Map memory */
2865 base = temp_register & 0xFFFFFFF0;
2866 base = ~base + 1;
2867
2868 dbg("CND: length = 0x%x\n", base);
2869 mem_node = get_resource(&(resources->mem_head), base);
2870
2871 /* allocate the resource to the board */
2872 if (mem_node) {
2873 base = mem_node->base;
2874
2875 mem_node->next = func->mem_head;
2876 func->mem_head = mem_node;
2877 } else
2878 return -ENOMEM;
2879 } else if ((temp_register & 0x0BL) == 0x04) {
2880 /* Map memory */
2881 base = temp_register & 0xFFFFFFF0;
2882 base = ~base + 1;
2883
2884 dbg("CND: length = 0x%x\n", base);
2885 mem_node = get_resource(&(resources->mem_head), base);
2886
2887 /* allocate the resource to the board */
2888 if (mem_node) {
2889 base = mem_node->base;
2890
2891 mem_node->next = func->mem_head;
2892 func->mem_head = mem_node;
2893 } else
2894 return -ENOMEM;
2895 } else if ((temp_register & 0x0BL) == 0x06) {
2896 /* Those bits are reserved, we can't handle this */
2897 return 1;
2898 } else {
2899 /* Requesting space below 1M */
2900 return NOT_ENOUGH_RESOURCES;
2901 }
2902
2903 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2904
2905 /* Check for 64-bit base */
2906 if ((temp_register & 0x07L) == 0x04) {
2907 cloop += 4;
2908
2909 /* Upper 32 bits of address always zero
2910 * on today's systems */
2911 /* FIXME this is probably not true on
2912 * Alpha and ia64??? */
2913 base = 0;
2914 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2915 }
2916 }
2917 } /* End of base register loop */
2918 if (cpqhp_legacy_mode) {
2919 /* Figure out which interrupt pin this function uses */
2920 rc = pci_bus_read_config_byte (pci_bus, devfn,
2921 PCI_INTERRUPT_PIN, &temp_byte);
2922
2923 /* If this function needs an interrupt and we are behind
2924 * a bridge and the pin is tied to something that's
2925 * alread mapped, set this one the same */
2926 if (temp_byte && resources->irqs &&
2927 (resources->irqs->valid_INT &
2928 (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2929 /* We have to share with something already set up */
2930 IRQ = resources->irqs->interrupt[(temp_byte +
2931 resources->irqs->barber_pole - 1) & 0x03];
2932 } else {
2933 /* Program IRQ based on card type */
2934 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2935
2936 if (class_code == PCI_BASE_CLASS_STORAGE) {
2937 IRQ = cpqhp_disk_irq;
2938 } else {
2939 IRQ = cpqhp_nic_irq;
2940 }
2941 }
2942
2943 /* IRQ Line */
2944 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2945 }
2946
2947 if (!behind_bridge) {
2948 rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2949 if (rc)
2950 return 1;
2951 } else {
2952 /* TBD - this code may also belong in the other clause
2953 * of this If statement */
2954 resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2955 resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2956 }
2957
2958 /* Latency Timer */
2959 temp_byte = 0x40;
2960 rc = pci_bus_write_config_byte(pci_bus, devfn,
2961 PCI_LATENCY_TIMER, temp_byte);
2962
2963 /* Cache Line size */
2964 temp_byte = 0x08;
2965 rc = pci_bus_write_config_byte(pci_bus, devfn,
2966 PCI_CACHE_LINE_SIZE, temp_byte);
2967
2968 /* disable ROM base Address */
2969 temp_dword = 0x00L;
2970 rc = pci_bus_write_config_word(pci_bus, devfn,
2971 PCI_ROM_ADDRESS, temp_dword);
2972
2973 /* enable card */
2974 temp_word = 0x0157; /* = PCI_COMMAND_IO |
2975 * PCI_COMMAND_MEMORY |
2976 * PCI_COMMAND_MASTER |
2977 * PCI_COMMAND_INVALIDATE |
2978 * PCI_COMMAND_PARITY |
2979 * PCI_COMMAND_SERR */
2980 rc = pci_bus_write_config_word (pci_bus, devfn,
2981 PCI_COMMAND, temp_word);
2982 } else { /* End of Not-A-Bridge else */
2983 /* It's some strange type of PCI adapter (Cardbus?) */
2984 return DEVICE_TYPE_NOT_SUPPORTED;
2985 }
2986
2987 func->configured = 1;
2988
2989 return 0;
2990 free_and_out:
2991 cpqhp_destroy_resource_list (&temp_resources);
2992
2993 return_resource(&(resources-> bus_head), hold_bus_node);
2994 return_resource(&(resources-> io_head), hold_IO_node);
2995 return_resource(&(resources-> mem_head), hold_mem_node);
2996 return_resource(&(resources-> p_mem_head), hold_p_mem_node);
2997 return rc;
2998 }
This page took 0.092968 seconds and 5 git commands to generate.