intel-iommu: Don't use identity mapping for PCI devices behind bridges
[deliverable/linux.git] / drivers / pci / intel-iommu.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
22 */
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <asm/cacheflush.h>
41 #include <asm/iommu.h>
42 #include "pci.h"
43
44 #define ROOT_SIZE VTD_PAGE_SIZE
45 #define CONTEXT_SIZE VTD_PAGE_SIZE
46
47 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
48 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
49
50 #define IOAPIC_RANGE_START (0xfee00000)
51 #define IOAPIC_RANGE_END (0xfeefffff)
52 #define IOVA_START_ADDR (0x1000)
53
54 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
55
56 #define MAX_AGAW_WIDTH 64
57
58 #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
59 #define DOMAIN_MAX_PFN(gaw) ((((u64)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
60
61 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
62 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
63 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
64
65
66 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
67 are never going to work. */
68 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
69 {
70 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
71 }
72
73 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
74 {
75 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
76 }
77 static inline unsigned long page_to_dma_pfn(struct page *pg)
78 {
79 return mm_to_dma_pfn(page_to_pfn(pg));
80 }
81 static inline unsigned long virt_to_dma_pfn(void *p)
82 {
83 return page_to_dma_pfn(virt_to_page(p));
84 }
85
86 /* global iommu list, set NULL for ignored DMAR units */
87 static struct intel_iommu **g_iommus;
88
89 static int rwbf_quirk;
90
91 /*
92 * 0: Present
93 * 1-11: Reserved
94 * 12-63: Context Ptr (12 - (haw-1))
95 * 64-127: Reserved
96 */
97 struct root_entry {
98 u64 val;
99 u64 rsvd1;
100 };
101 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
102 static inline bool root_present(struct root_entry *root)
103 {
104 return (root->val & 1);
105 }
106 static inline void set_root_present(struct root_entry *root)
107 {
108 root->val |= 1;
109 }
110 static inline void set_root_value(struct root_entry *root, unsigned long value)
111 {
112 root->val |= value & VTD_PAGE_MASK;
113 }
114
115 static inline struct context_entry *
116 get_context_addr_from_root(struct root_entry *root)
117 {
118 return (struct context_entry *)
119 (root_present(root)?phys_to_virt(
120 root->val & VTD_PAGE_MASK) :
121 NULL);
122 }
123
124 /*
125 * low 64 bits:
126 * 0: present
127 * 1: fault processing disable
128 * 2-3: translation type
129 * 12-63: address space root
130 * high 64 bits:
131 * 0-2: address width
132 * 3-6: aval
133 * 8-23: domain id
134 */
135 struct context_entry {
136 u64 lo;
137 u64 hi;
138 };
139
140 static inline bool context_present(struct context_entry *context)
141 {
142 return (context->lo & 1);
143 }
144 static inline void context_set_present(struct context_entry *context)
145 {
146 context->lo |= 1;
147 }
148
149 static inline void context_set_fault_enable(struct context_entry *context)
150 {
151 context->lo &= (((u64)-1) << 2) | 1;
152 }
153
154 static inline void context_set_translation_type(struct context_entry *context,
155 unsigned long value)
156 {
157 context->lo &= (((u64)-1) << 4) | 3;
158 context->lo |= (value & 3) << 2;
159 }
160
161 static inline void context_set_address_root(struct context_entry *context,
162 unsigned long value)
163 {
164 context->lo |= value & VTD_PAGE_MASK;
165 }
166
167 static inline void context_set_address_width(struct context_entry *context,
168 unsigned long value)
169 {
170 context->hi |= value & 7;
171 }
172
173 static inline void context_set_domain_id(struct context_entry *context,
174 unsigned long value)
175 {
176 context->hi |= (value & ((1 << 16) - 1)) << 8;
177 }
178
179 static inline void context_clear_entry(struct context_entry *context)
180 {
181 context->lo = 0;
182 context->hi = 0;
183 }
184
185 /*
186 * 0: readable
187 * 1: writable
188 * 2-6: reserved
189 * 7: super page
190 * 8-10: available
191 * 11: snoop behavior
192 * 12-63: Host physcial address
193 */
194 struct dma_pte {
195 u64 val;
196 };
197
198 static inline void dma_clear_pte(struct dma_pte *pte)
199 {
200 pte->val = 0;
201 }
202
203 static inline void dma_set_pte_readable(struct dma_pte *pte)
204 {
205 pte->val |= DMA_PTE_READ;
206 }
207
208 static inline void dma_set_pte_writable(struct dma_pte *pte)
209 {
210 pte->val |= DMA_PTE_WRITE;
211 }
212
213 static inline void dma_set_pte_snp(struct dma_pte *pte)
214 {
215 pte->val |= DMA_PTE_SNP;
216 }
217
218 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
219 {
220 pte->val = (pte->val & ~3) | (prot & 3);
221 }
222
223 static inline u64 dma_pte_addr(struct dma_pte *pte)
224 {
225 #ifdef CONFIG_64BIT
226 return pte->val & VTD_PAGE_MASK;
227 #else
228 /* Must have a full atomic 64-bit read */
229 return __cmpxchg64(pte, 0ULL, 0ULL) & VTD_PAGE_MASK;
230 #endif
231 }
232
233 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
234 {
235 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
236 }
237
238 static inline bool dma_pte_present(struct dma_pte *pte)
239 {
240 return (pte->val & 3) != 0;
241 }
242
243 static inline int first_pte_in_page(struct dma_pte *pte)
244 {
245 return !((unsigned long)pte & ~VTD_PAGE_MASK);
246 }
247
248 /*
249 * This domain is a statically identity mapping domain.
250 * 1. This domain creats a static 1:1 mapping to all usable memory.
251 * 2. It maps to each iommu if successful.
252 * 3. Each iommu mapps to this domain if successful.
253 */
254 struct dmar_domain *si_domain;
255
256 /* devices under the same p2p bridge are owned in one domain */
257 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
258
259 /* domain represents a virtual machine, more than one devices
260 * across iommus may be owned in one domain, e.g. kvm guest.
261 */
262 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
263
264 /* si_domain contains mulitple devices */
265 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
266
267 struct dmar_domain {
268 int id; /* domain id */
269 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
270
271 struct list_head devices; /* all devices' list */
272 struct iova_domain iovad; /* iova's that belong to this domain */
273
274 struct dma_pte *pgd; /* virtual address */
275 int gaw; /* max guest address width */
276
277 /* adjusted guest address width, 0 is level 2 30-bit */
278 int agaw;
279
280 int flags; /* flags to find out type of domain */
281
282 int iommu_coherency;/* indicate coherency of iommu access */
283 int iommu_snooping; /* indicate snooping control feature*/
284 int iommu_count; /* reference count of iommu */
285 spinlock_t iommu_lock; /* protect iommu set in domain */
286 u64 max_addr; /* maximum mapped address */
287 };
288
289 /* PCI domain-device relationship */
290 struct device_domain_info {
291 struct list_head link; /* link to domain siblings */
292 struct list_head global; /* link to global list */
293 int segment; /* PCI domain */
294 u8 bus; /* PCI bus number */
295 u8 devfn; /* PCI devfn number */
296 struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
297 struct intel_iommu *iommu; /* IOMMU used by this device */
298 struct dmar_domain *domain; /* pointer to domain */
299 };
300
301 static void flush_unmaps_timeout(unsigned long data);
302
303 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
304
305 #define HIGH_WATER_MARK 250
306 struct deferred_flush_tables {
307 int next;
308 struct iova *iova[HIGH_WATER_MARK];
309 struct dmar_domain *domain[HIGH_WATER_MARK];
310 };
311
312 static struct deferred_flush_tables *deferred_flush;
313
314 /* bitmap for indexing intel_iommus */
315 static int g_num_of_iommus;
316
317 static DEFINE_SPINLOCK(async_umap_flush_lock);
318 static LIST_HEAD(unmaps_to_do);
319
320 static int timer_on;
321 static long list_size;
322
323 static void domain_remove_dev_info(struct dmar_domain *domain);
324
325 #ifdef CONFIG_DMAR_DEFAULT_ON
326 int dmar_disabled = 0;
327 #else
328 int dmar_disabled = 1;
329 #endif /*CONFIG_DMAR_DEFAULT_ON*/
330
331 static int __initdata dmar_map_gfx = 1;
332 static int dmar_forcedac;
333 static int intel_iommu_strict;
334
335 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
336 static DEFINE_SPINLOCK(device_domain_lock);
337 static LIST_HEAD(device_domain_list);
338
339 static struct iommu_ops intel_iommu_ops;
340
341 static int __init intel_iommu_setup(char *str)
342 {
343 if (!str)
344 return -EINVAL;
345 while (*str) {
346 if (!strncmp(str, "on", 2)) {
347 dmar_disabled = 0;
348 printk(KERN_INFO "Intel-IOMMU: enabled\n");
349 } else if (!strncmp(str, "off", 3)) {
350 dmar_disabled = 1;
351 printk(KERN_INFO "Intel-IOMMU: disabled\n");
352 } else if (!strncmp(str, "igfx_off", 8)) {
353 dmar_map_gfx = 0;
354 printk(KERN_INFO
355 "Intel-IOMMU: disable GFX device mapping\n");
356 } else if (!strncmp(str, "forcedac", 8)) {
357 printk(KERN_INFO
358 "Intel-IOMMU: Forcing DAC for PCI devices\n");
359 dmar_forcedac = 1;
360 } else if (!strncmp(str, "strict", 6)) {
361 printk(KERN_INFO
362 "Intel-IOMMU: disable batched IOTLB flush\n");
363 intel_iommu_strict = 1;
364 }
365
366 str += strcspn(str, ",");
367 while (*str == ',')
368 str++;
369 }
370 return 0;
371 }
372 __setup("intel_iommu=", intel_iommu_setup);
373
374 static struct kmem_cache *iommu_domain_cache;
375 static struct kmem_cache *iommu_devinfo_cache;
376 static struct kmem_cache *iommu_iova_cache;
377
378 static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
379 {
380 unsigned int flags;
381 void *vaddr;
382
383 /* trying to avoid low memory issues */
384 flags = current->flags & PF_MEMALLOC;
385 current->flags |= PF_MEMALLOC;
386 vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
387 current->flags &= (~PF_MEMALLOC | flags);
388 return vaddr;
389 }
390
391
392 static inline void *alloc_pgtable_page(void)
393 {
394 unsigned int flags;
395 void *vaddr;
396
397 /* trying to avoid low memory issues */
398 flags = current->flags & PF_MEMALLOC;
399 current->flags |= PF_MEMALLOC;
400 vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
401 current->flags &= (~PF_MEMALLOC | flags);
402 return vaddr;
403 }
404
405 static inline void free_pgtable_page(void *vaddr)
406 {
407 free_page((unsigned long)vaddr);
408 }
409
410 static inline void *alloc_domain_mem(void)
411 {
412 return iommu_kmem_cache_alloc(iommu_domain_cache);
413 }
414
415 static void free_domain_mem(void *vaddr)
416 {
417 kmem_cache_free(iommu_domain_cache, vaddr);
418 }
419
420 static inline void * alloc_devinfo_mem(void)
421 {
422 return iommu_kmem_cache_alloc(iommu_devinfo_cache);
423 }
424
425 static inline void free_devinfo_mem(void *vaddr)
426 {
427 kmem_cache_free(iommu_devinfo_cache, vaddr);
428 }
429
430 struct iova *alloc_iova_mem(void)
431 {
432 return iommu_kmem_cache_alloc(iommu_iova_cache);
433 }
434
435 void free_iova_mem(struct iova *iova)
436 {
437 kmem_cache_free(iommu_iova_cache, iova);
438 }
439
440
441 static inline int width_to_agaw(int width);
442
443 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
444 {
445 unsigned long sagaw;
446 int agaw = -1;
447
448 sagaw = cap_sagaw(iommu->cap);
449 for (agaw = width_to_agaw(max_gaw);
450 agaw >= 0; agaw--) {
451 if (test_bit(agaw, &sagaw))
452 break;
453 }
454
455 return agaw;
456 }
457
458 /*
459 * Calculate max SAGAW for each iommu.
460 */
461 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
462 {
463 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
464 }
465
466 /*
467 * calculate agaw for each iommu.
468 * "SAGAW" may be different across iommus, use a default agaw, and
469 * get a supported less agaw for iommus that don't support the default agaw.
470 */
471 int iommu_calculate_agaw(struct intel_iommu *iommu)
472 {
473 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
474 }
475
476 /* This functionin only returns single iommu in a domain */
477 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
478 {
479 int iommu_id;
480
481 /* si_domain and vm domain should not get here. */
482 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
483 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
484
485 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
486 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
487 return NULL;
488
489 return g_iommus[iommu_id];
490 }
491
492 static void domain_update_iommu_coherency(struct dmar_domain *domain)
493 {
494 int i;
495
496 domain->iommu_coherency = 1;
497
498 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
499 for (; i < g_num_of_iommus; ) {
500 if (!ecap_coherent(g_iommus[i]->ecap)) {
501 domain->iommu_coherency = 0;
502 break;
503 }
504 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
505 }
506 }
507
508 static void domain_update_iommu_snooping(struct dmar_domain *domain)
509 {
510 int i;
511
512 domain->iommu_snooping = 1;
513
514 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
515 for (; i < g_num_of_iommus; ) {
516 if (!ecap_sc_support(g_iommus[i]->ecap)) {
517 domain->iommu_snooping = 0;
518 break;
519 }
520 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
521 }
522 }
523
524 /* Some capabilities may be different across iommus */
525 static void domain_update_iommu_cap(struct dmar_domain *domain)
526 {
527 domain_update_iommu_coherency(domain);
528 domain_update_iommu_snooping(domain);
529 }
530
531 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
532 {
533 struct dmar_drhd_unit *drhd = NULL;
534 int i;
535
536 for_each_drhd_unit(drhd) {
537 if (drhd->ignored)
538 continue;
539 if (segment != drhd->segment)
540 continue;
541
542 for (i = 0; i < drhd->devices_cnt; i++) {
543 if (drhd->devices[i] &&
544 drhd->devices[i]->bus->number == bus &&
545 drhd->devices[i]->devfn == devfn)
546 return drhd->iommu;
547 if (drhd->devices[i] &&
548 drhd->devices[i]->subordinate &&
549 drhd->devices[i]->subordinate->number <= bus &&
550 drhd->devices[i]->subordinate->subordinate >= bus)
551 return drhd->iommu;
552 }
553
554 if (drhd->include_all)
555 return drhd->iommu;
556 }
557
558 return NULL;
559 }
560
561 static void domain_flush_cache(struct dmar_domain *domain,
562 void *addr, int size)
563 {
564 if (!domain->iommu_coherency)
565 clflush_cache_range(addr, size);
566 }
567
568 /* Gets context entry for a given bus and devfn */
569 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
570 u8 bus, u8 devfn)
571 {
572 struct root_entry *root;
573 struct context_entry *context;
574 unsigned long phy_addr;
575 unsigned long flags;
576
577 spin_lock_irqsave(&iommu->lock, flags);
578 root = &iommu->root_entry[bus];
579 context = get_context_addr_from_root(root);
580 if (!context) {
581 context = (struct context_entry *)alloc_pgtable_page();
582 if (!context) {
583 spin_unlock_irqrestore(&iommu->lock, flags);
584 return NULL;
585 }
586 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
587 phy_addr = virt_to_phys((void *)context);
588 set_root_value(root, phy_addr);
589 set_root_present(root);
590 __iommu_flush_cache(iommu, root, sizeof(*root));
591 }
592 spin_unlock_irqrestore(&iommu->lock, flags);
593 return &context[devfn];
594 }
595
596 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
597 {
598 struct root_entry *root;
599 struct context_entry *context;
600 int ret;
601 unsigned long flags;
602
603 spin_lock_irqsave(&iommu->lock, flags);
604 root = &iommu->root_entry[bus];
605 context = get_context_addr_from_root(root);
606 if (!context) {
607 ret = 0;
608 goto out;
609 }
610 ret = context_present(&context[devfn]);
611 out:
612 spin_unlock_irqrestore(&iommu->lock, flags);
613 return ret;
614 }
615
616 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
617 {
618 struct root_entry *root;
619 struct context_entry *context;
620 unsigned long flags;
621
622 spin_lock_irqsave(&iommu->lock, flags);
623 root = &iommu->root_entry[bus];
624 context = get_context_addr_from_root(root);
625 if (context) {
626 context_clear_entry(&context[devfn]);
627 __iommu_flush_cache(iommu, &context[devfn], \
628 sizeof(*context));
629 }
630 spin_unlock_irqrestore(&iommu->lock, flags);
631 }
632
633 static void free_context_table(struct intel_iommu *iommu)
634 {
635 struct root_entry *root;
636 int i;
637 unsigned long flags;
638 struct context_entry *context;
639
640 spin_lock_irqsave(&iommu->lock, flags);
641 if (!iommu->root_entry) {
642 goto out;
643 }
644 for (i = 0; i < ROOT_ENTRY_NR; i++) {
645 root = &iommu->root_entry[i];
646 context = get_context_addr_from_root(root);
647 if (context)
648 free_pgtable_page(context);
649 }
650 free_pgtable_page(iommu->root_entry);
651 iommu->root_entry = NULL;
652 out:
653 spin_unlock_irqrestore(&iommu->lock, flags);
654 }
655
656 /* page table handling */
657 #define LEVEL_STRIDE (9)
658 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
659
660 static inline int agaw_to_level(int agaw)
661 {
662 return agaw + 2;
663 }
664
665 static inline int agaw_to_width(int agaw)
666 {
667 return 30 + agaw * LEVEL_STRIDE;
668
669 }
670
671 static inline int width_to_agaw(int width)
672 {
673 return (width - 30) / LEVEL_STRIDE;
674 }
675
676 static inline unsigned int level_to_offset_bits(int level)
677 {
678 return (level - 1) * LEVEL_STRIDE;
679 }
680
681 static inline int pfn_level_offset(unsigned long pfn, int level)
682 {
683 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
684 }
685
686 static inline unsigned long level_mask(int level)
687 {
688 return -1UL << level_to_offset_bits(level);
689 }
690
691 static inline unsigned long level_size(int level)
692 {
693 return 1UL << level_to_offset_bits(level);
694 }
695
696 static inline unsigned long align_to_level(unsigned long pfn, int level)
697 {
698 return (pfn + level_size(level) - 1) & level_mask(level);
699 }
700
701 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
702 unsigned long pfn)
703 {
704 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
705 struct dma_pte *parent, *pte = NULL;
706 int level = agaw_to_level(domain->agaw);
707 int offset;
708
709 BUG_ON(!domain->pgd);
710 BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
711 parent = domain->pgd;
712
713 while (level > 0) {
714 void *tmp_page;
715
716 offset = pfn_level_offset(pfn, level);
717 pte = &parent[offset];
718 if (level == 1)
719 break;
720
721 if (!dma_pte_present(pte)) {
722 uint64_t pteval;
723
724 tmp_page = alloc_pgtable_page();
725
726 if (!tmp_page)
727 return NULL;
728
729 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
730 pteval = (virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
731 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
732 /* Someone else set it while we were thinking; use theirs. */
733 free_pgtable_page(tmp_page);
734 } else {
735 dma_pte_addr(pte);
736 domain_flush_cache(domain, pte, sizeof(*pte));
737 }
738 }
739 parent = phys_to_virt(dma_pte_addr(pte));
740 level--;
741 }
742
743 return pte;
744 }
745
746 /* return address's pte at specific level */
747 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
748 unsigned long pfn,
749 int level)
750 {
751 struct dma_pte *parent, *pte = NULL;
752 int total = agaw_to_level(domain->agaw);
753 int offset;
754
755 parent = domain->pgd;
756 while (level <= total) {
757 offset = pfn_level_offset(pfn, total);
758 pte = &parent[offset];
759 if (level == total)
760 return pte;
761
762 if (!dma_pte_present(pte))
763 break;
764 parent = phys_to_virt(dma_pte_addr(pte));
765 total--;
766 }
767 return NULL;
768 }
769
770 /* clear last level pte, a tlb flush should be followed */
771 static void dma_pte_clear_range(struct dmar_domain *domain,
772 unsigned long start_pfn,
773 unsigned long last_pfn)
774 {
775 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
776 struct dma_pte *first_pte, *pte;
777
778 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
779 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
780
781 /* we don't need lock here; nobody else touches the iova range */
782 while (start_pfn <= last_pfn) {
783 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1);
784 if (!pte) {
785 start_pfn = align_to_level(start_pfn + 1, 2);
786 continue;
787 }
788 do {
789 dma_clear_pte(pte);
790 start_pfn++;
791 pte++;
792 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
793
794 domain_flush_cache(domain, first_pte,
795 (void *)pte - (void *)first_pte);
796 }
797 }
798
799 /* free page table pages. last level pte should already be cleared */
800 static void dma_pte_free_pagetable(struct dmar_domain *domain,
801 unsigned long start_pfn,
802 unsigned long last_pfn)
803 {
804 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
805 struct dma_pte *first_pte, *pte;
806 int total = agaw_to_level(domain->agaw);
807 int level;
808 unsigned long tmp;
809
810 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
811 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
812
813 /* We don't need lock here; nobody else touches the iova range */
814 level = 2;
815 while (level <= total) {
816 tmp = align_to_level(start_pfn, level);
817
818 /* If we can't even clear one PTE at this level, we're done */
819 if (tmp + level_size(level) - 1 > last_pfn)
820 return;
821
822 while (tmp + level_size(level) - 1 <= last_pfn) {
823 first_pte = pte = dma_pfn_level_pte(domain, tmp, level);
824 if (!pte) {
825 tmp = align_to_level(tmp + 1, level + 1);
826 continue;
827 }
828 do {
829 if (dma_pte_present(pte)) {
830 free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
831 dma_clear_pte(pte);
832 }
833 pte++;
834 tmp += level_size(level);
835 } while (!first_pte_in_page(pte) &&
836 tmp + level_size(level) - 1 <= last_pfn);
837
838 domain_flush_cache(domain, first_pte,
839 (void *)pte - (void *)first_pte);
840
841 }
842 level++;
843 }
844 /* free pgd */
845 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
846 free_pgtable_page(domain->pgd);
847 domain->pgd = NULL;
848 }
849 }
850
851 /* iommu handling */
852 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
853 {
854 struct root_entry *root;
855 unsigned long flags;
856
857 root = (struct root_entry *)alloc_pgtable_page();
858 if (!root)
859 return -ENOMEM;
860
861 __iommu_flush_cache(iommu, root, ROOT_SIZE);
862
863 spin_lock_irqsave(&iommu->lock, flags);
864 iommu->root_entry = root;
865 spin_unlock_irqrestore(&iommu->lock, flags);
866
867 return 0;
868 }
869
870 static void iommu_set_root_entry(struct intel_iommu *iommu)
871 {
872 void *addr;
873 u32 sts;
874 unsigned long flag;
875
876 addr = iommu->root_entry;
877
878 spin_lock_irqsave(&iommu->register_lock, flag);
879 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
880
881 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
882
883 /* Make sure hardware complete it */
884 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
885 readl, (sts & DMA_GSTS_RTPS), sts);
886
887 spin_unlock_irqrestore(&iommu->register_lock, flag);
888 }
889
890 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
891 {
892 u32 val;
893 unsigned long flag;
894
895 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
896 return;
897
898 spin_lock_irqsave(&iommu->register_lock, flag);
899 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
900
901 /* Make sure hardware complete it */
902 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
903 readl, (!(val & DMA_GSTS_WBFS)), val);
904
905 spin_unlock_irqrestore(&iommu->register_lock, flag);
906 }
907
908 /* return value determine if we need a write buffer flush */
909 static void __iommu_flush_context(struct intel_iommu *iommu,
910 u16 did, u16 source_id, u8 function_mask,
911 u64 type)
912 {
913 u64 val = 0;
914 unsigned long flag;
915
916 switch (type) {
917 case DMA_CCMD_GLOBAL_INVL:
918 val = DMA_CCMD_GLOBAL_INVL;
919 break;
920 case DMA_CCMD_DOMAIN_INVL:
921 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
922 break;
923 case DMA_CCMD_DEVICE_INVL:
924 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
925 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
926 break;
927 default:
928 BUG();
929 }
930 val |= DMA_CCMD_ICC;
931
932 spin_lock_irqsave(&iommu->register_lock, flag);
933 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
934
935 /* Make sure hardware complete it */
936 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
937 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
938
939 spin_unlock_irqrestore(&iommu->register_lock, flag);
940 }
941
942 /* return value determine if we need a write buffer flush */
943 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
944 u64 addr, unsigned int size_order, u64 type)
945 {
946 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
947 u64 val = 0, val_iva = 0;
948 unsigned long flag;
949
950 switch (type) {
951 case DMA_TLB_GLOBAL_FLUSH:
952 /* global flush doesn't need set IVA_REG */
953 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
954 break;
955 case DMA_TLB_DSI_FLUSH:
956 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
957 break;
958 case DMA_TLB_PSI_FLUSH:
959 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
960 /* Note: always flush non-leaf currently */
961 val_iva = size_order | addr;
962 break;
963 default:
964 BUG();
965 }
966 /* Note: set drain read/write */
967 #if 0
968 /*
969 * This is probably to be super secure.. Looks like we can
970 * ignore it without any impact.
971 */
972 if (cap_read_drain(iommu->cap))
973 val |= DMA_TLB_READ_DRAIN;
974 #endif
975 if (cap_write_drain(iommu->cap))
976 val |= DMA_TLB_WRITE_DRAIN;
977
978 spin_lock_irqsave(&iommu->register_lock, flag);
979 /* Note: Only uses first TLB reg currently */
980 if (val_iva)
981 dmar_writeq(iommu->reg + tlb_offset, val_iva);
982 dmar_writeq(iommu->reg + tlb_offset + 8, val);
983
984 /* Make sure hardware complete it */
985 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
986 dmar_readq, (!(val & DMA_TLB_IVT)), val);
987
988 spin_unlock_irqrestore(&iommu->register_lock, flag);
989
990 /* check IOTLB invalidation granularity */
991 if (DMA_TLB_IAIG(val) == 0)
992 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
993 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
994 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
995 (unsigned long long)DMA_TLB_IIRG(type),
996 (unsigned long long)DMA_TLB_IAIG(val));
997 }
998
999 static struct device_domain_info *iommu_support_dev_iotlb(
1000 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1001 {
1002 int found = 0;
1003 unsigned long flags;
1004 struct device_domain_info *info;
1005 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1006
1007 if (!ecap_dev_iotlb_support(iommu->ecap))
1008 return NULL;
1009
1010 if (!iommu->qi)
1011 return NULL;
1012
1013 spin_lock_irqsave(&device_domain_lock, flags);
1014 list_for_each_entry(info, &domain->devices, link)
1015 if (info->bus == bus && info->devfn == devfn) {
1016 found = 1;
1017 break;
1018 }
1019 spin_unlock_irqrestore(&device_domain_lock, flags);
1020
1021 if (!found || !info->dev)
1022 return NULL;
1023
1024 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1025 return NULL;
1026
1027 if (!dmar_find_matched_atsr_unit(info->dev))
1028 return NULL;
1029
1030 info->iommu = iommu;
1031
1032 return info;
1033 }
1034
1035 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1036 {
1037 if (!info)
1038 return;
1039
1040 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1041 }
1042
1043 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1044 {
1045 if (!info->dev || !pci_ats_enabled(info->dev))
1046 return;
1047
1048 pci_disable_ats(info->dev);
1049 }
1050
1051 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1052 u64 addr, unsigned mask)
1053 {
1054 u16 sid, qdep;
1055 unsigned long flags;
1056 struct device_domain_info *info;
1057
1058 spin_lock_irqsave(&device_domain_lock, flags);
1059 list_for_each_entry(info, &domain->devices, link) {
1060 if (!info->dev || !pci_ats_enabled(info->dev))
1061 continue;
1062
1063 sid = info->bus << 8 | info->devfn;
1064 qdep = pci_ats_queue_depth(info->dev);
1065 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1066 }
1067 spin_unlock_irqrestore(&device_domain_lock, flags);
1068 }
1069
1070 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1071 unsigned long pfn, unsigned int pages)
1072 {
1073 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1074 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1075
1076 BUG_ON(pages == 0);
1077
1078 /*
1079 * Fallback to domain selective flush if no PSI support or the size is
1080 * too big.
1081 * PSI requires page size to be 2 ^ x, and the base address is naturally
1082 * aligned to the size
1083 */
1084 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1085 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1086 DMA_TLB_DSI_FLUSH);
1087 else
1088 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1089 DMA_TLB_PSI_FLUSH);
1090
1091 /*
1092 * In caching mode, domain ID 0 is reserved for non-present to present
1093 * mapping flush. Device IOTLB doesn't need to be flushed in this case.
1094 */
1095 if (!cap_caching_mode(iommu->cap) || did)
1096 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1097 }
1098
1099 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1100 {
1101 u32 pmen;
1102 unsigned long flags;
1103
1104 spin_lock_irqsave(&iommu->register_lock, flags);
1105 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1106 pmen &= ~DMA_PMEN_EPM;
1107 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1108
1109 /* wait for the protected region status bit to clear */
1110 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1111 readl, !(pmen & DMA_PMEN_PRS), pmen);
1112
1113 spin_unlock_irqrestore(&iommu->register_lock, flags);
1114 }
1115
1116 static int iommu_enable_translation(struct intel_iommu *iommu)
1117 {
1118 u32 sts;
1119 unsigned long flags;
1120
1121 spin_lock_irqsave(&iommu->register_lock, flags);
1122 iommu->gcmd |= DMA_GCMD_TE;
1123 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1124
1125 /* Make sure hardware complete it */
1126 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1127 readl, (sts & DMA_GSTS_TES), sts);
1128
1129 spin_unlock_irqrestore(&iommu->register_lock, flags);
1130 return 0;
1131 }
1132
1133 static int iommu_disable_translation(struct intel_iommu *iommu)
1134 {
1135 u32 sts;
1136 unsigned long flag;
1137
1138 spin_lock_irqsave(&iommu->register_lock, flag);
1139 iommu->gcmd &= ~DMA_GCMD_TE;
1140 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1141
1142 /* Make sure hardware complete it */
1143 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1144 readl, (!(sts & DMA_GSTS_TES)), sts);
1145
1146 spin_unlock_irqrestore(&iommu->register_lock, flag);
1147 return 0;
1148 }
1149
1150
1151 static int iommu_init_domains(struct intel_iommu *iommu)
1152 {
1153 unsigned long ndomains;
1154 unsigned long nlongs;
1155
1156 ndomains = cap_ndoms(iommu->cap);
1157 pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1158 nlongs = BITS_TO_LONGS(ndomains);
1159
1160 /* TBD: there might be 64K domains,
1161 * consider other allocation for future chip
1162 */
1163 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1164 if (!iommu->domain_ids) {
1165 printk(KERN_ERR "Allocating domain id array failed\n");
1166 return -ENOMEM;
1167 }
1168 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1169 GFP_KERNEL);
1170 if (!iommu->domains) {
1171 printk(KERN_ERR "Allocating domain array failed\n");
1172 kfree(iommu->domain_ids);
1173 return -ENOMEM;
1174 }
1175
1176 spin_lock_init(&iommu->lock);
1177
1178 /*
1179 * if Caching mode is set, then invalid translations are tagged
1180 * with domainid 0. Hence we need to pre-allocate it.
1181 */
1182 if (cap_caching_mode(iommu->cap))
1183 set_bit(0, iommu->domain_ids);
1184 return 0;
1185 }
1186
1187
1188 static void domain_exit(struct dmar_domain *domain);
1189 static void vm_domain_exit(struct dmar_domain *domain);
1190
1191 void free_dmar_iommu(struct intel_iommu *iommu)
1192 {
1193 struct dmar_domain *domain;
1194 int i;
1195 unsigned long flags;
1196
1197 i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1198 for (; i < cap_ndoms(iommu->cap); ) {
1199 domain = iommu->domains[i];
1200 clear_bit(i, iommu->domain_ids);
1201
1202 spin_lock_irqsave(&domain->iommu_lock, flags);
1203 if (--domain->iommu_count == 0) {
1204 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1205 vm_domain_exit(domain);
1206 else
1207 domain_exit(domain);
1208 }
1209 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1210
1211 i = find_next_bit(iommu->domain_ids,
1212 cap_ndoms(iommu->cap), i+1);
1213 }
1214
1215 if (iommu->gcmd & DMA_GCMD_TE)
1216 iommu_disable_translation(iommu);
1217
1218 if (iommu->irq) {
1219 set_irq_data(iommu->irq, NULL);
1220 /* This will mask the irq */
1221 free_irq(iommu->irq, iommu);
1222 destroy_irq(iommu->irq);
1223 }
1224
1225 kfree(iommu->domains);
1226 kfree(iommu->domain_ids);
1227
1228 g_iommus[iommu->seq_id] = NULL;
1229
1230 /* if all iommus are freed, free g_iommus */
1231 for (i = 0; i < g_num_of_iommus; i++) {
1232 if (g_iommus[i])
1233 break;
1234 }
1235
1236 if (i == g_num_of_iommus)
1237 kfree(g_iommus);
1238
1239 /* free context mapping */
1240 free_context_table(iommu);
1241 }
1242
1243 static struct dmar_domain *alloc_domain(void)
1244 {
1245 struct dmar_domain *domain;
1246
1247 domain = alloc_domain_mem();
1248 if (!domain)
1249 return NULL;
1250
1251 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1252 domain->flags = 0;
1253
1254 return domain;
1255 }
1256
1257 static int iommu_attach_domain(struct dmar_domain *domain,
1258 struct intel_iommu *iommu)
1259 {
1260 int num;
1261 unsigned long ndomains;
1262 unsigned long flags;
1263
1264 ndomains = cap_ndoms(iommu->cap);
1265
1266 spin_lock_irqsave(&iommu->lock, flags);
1267
1268 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1269 if (num >= ndomains) {
1270 spin_unlock_irqrestore(&iommu->lock, flags);
1271 printk(KERN_ERR "IOMMU: no free domain ids\n");
1272 return -ENOMEM;
1273 }
1274
1275 domain->id = num;
1276 set_bit(num, iommu->domain_ids);
1277 set_bit(iommu->seq_id, &domain->iommu_bmp);
1278 iommu->domains[num] = domain;
1279 spin_unlock_irqrestore(&iommu->lock, flags);
1280
1281 return 0;
1282 }
1283
1284 static void iommu_detach_domain(struct dmar_domain *domain,
1285 struct intel_iommu *iommu)
1286 {
1287 unsigned long flags;
1288 int num, ndomains;
1289 int found = 0;
1290
1291 spin_lock_irqsave(&iommu->lock, flags);
1292 ndomains = cap_ndoms(iommu->cap);
1293 num = find_first_bit(iommu->domain_ids, ndomains);
1294 for (; num < ndomains; ) {
1295 if (iommu->domains[num] == domain) {
1296 found = 1;
1297 break;
1298 }
1299 num = find_next_bit(iommu->domain_ids,
1300 cap_ndoms(iommu->cap), num+1);
1301 }
1302
1303 if (found) {
1304 clear_bit(num, iommu->domain_ids);
1305 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1306 iommu->domains[num] = NULL;
1307 }
1308 spin_unlock_irqrestore(&iommu->lock, flags);
1309 }
1310
1311 static struct iova_domain reserved_iova_list;
1312 static struct lock_class_key reserved_alloc_key;
1313 static struct lock_class_key reserved_rbtree_key;
1314
1315 static void dmar_init_reserved_ranges(void)
1316 {
1317 struct pci_dev *pdev = NULL;
1318 struct iova *iova;
1319 int i;
1320
1321 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1322
1323 lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
1324 &reserved_alloc_key);
1325 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1326 &reserved_rbtree_key);
1327
1328 /* IOAPIC ranges shouldn't be accessed by DMA */
1329 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1330 IOVA_PFN(IOAPIC_RANGE_END));
1331 if (!iova)
1332 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1333
1334 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1335 for_each_pci_dev(pdev) {
1336 struct resource *r;
1337
1338 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1339 r = &pdev->resource[i];
1340 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1341 continue;
1342 iova = reserve_iova(&reserved_iova_list,
1343 IOVA_PFN(r->start),
1344 IOVA_PFN(r->end));
1345 if (!iova)
1346 printk(KERN_ERR "Reserve iova failed\n");
1347 }
1348 }
1349
1350 }
1351
1352 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1353 {
1354 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1355 }
1356
1357 static inline int guestwidth_to_adjustwidth(int gaw)
1358 {
1359 int agaw;
1360 int r = (gaw - 12) % 9;
1361
1362 if (r == 0)
1363 agaw = gaw;
1364 else
1365 agaw = gaw + 9 - r;
1366 if (agaw > 64)
1367 agaw = 64;
1368 return agaw;
1369 }
1370
1371 static int domain_init(struct dmar_domain *domain, int guest_width)
1372 {
1373 struct intel_iommu *iommu;
1374 int adjust_width, agaw;
1375 unsigned long sagaw;
1376
1377 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1378 spin_lock_init(&domain->iommu_lock);
1379
1380 domain_reserve_special_ranges(domain);
1381
1382 /* calculate AGAW */
1383 iommu = domain_get_iommu(domain);
1384 if (guest_width > cap_mgaw(iommu->cap))
1385 guest_width = cap_mgaw(iommu->cap);
1386 domain->gaw = guest_width;
1387 adjust_width = guestwidth_to_adjustwidth(guest_width);
1388 agaw = width_to_agaw(adjust_width);
1389 sagaw = cap_sagaw(iommu->cap);
1390 if (!test_bit(agaw, &sagaw)) {
1391 /* hardware doesn't support it, choose a bigger one */
1392 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1393 agaw = find_next_bit(&sagaw, 5, agaw);
1394 if (agaw >= 5)
1395 return -ENODEV;
1396 }
1397 domain->agaw = agaw;
1398 INIT_LIST_HEAD(&domain->devices);
1399
1400 if (ecap_coherent(iommu->ecap))
1401 domain->iommu_coherency = 1;
1402 else
1403 domain->iommu_coherency = 0;
1404
1405 if (ecap_sc_support(iommu->ecap))
1406 domain->iommu_snooping = 1;
1407 else
1408 domain->iommu_snooping = 0;
1409
1410 domain->iommu_count = 1;
1411
1412 /* always allocate the top pgd */
1413 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1414 if (!domain->pgd)
1415 return -ENOMEM;
1416 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1417 return 0;
1418 }
1419
1420 static void domain_exit(struct dmar_domain *domain)
1421 {
1422 struct dmar_drhd_unit *drhd;
1423 struct intel_iommu *iommu;
1424
1425 /* Domain 0 is reserved, so dont process it */
1426 if (!domain)
1427 return;
1428
1429 domain_remove_dev_info(domain);
1430 /* destroy iovas */
1431 put_iova_domain(&domain->iovad);
1432
1433 /* clear ptes */
1434 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1435
1436 /* free page tables */
1437 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1438
1439 for_each_active_iommu(iommu, drhd)
1440 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1441 iommu_detach_domain(domain, iommu);
1442
1443 free_domain_mem(domain);
1444 }
1445
1446 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1447 u8 bus, u8 devfn, int translation)
1448 {
1449 struct context_entry *context;
1450 unsigned long flags;
1451 struct intel_iommu *iommu;
1452 struct dma_pte *pgd;
1453 unsigned long num;
1454 unsigned long ndomains;
1455 int id;
1456 int agaw;
1457 struct device_domain_info *info = NULL;
1458
1459 pr_debug("Set context mapping for %02x:%02x.%d\n",
1460 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1461
1462 BUG_ON(!domain->pgd);
1463 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1464 translation != CONTEXT_TT_MULTI_LEVEL);
1465
1466 iommu = device_to_iommu(segment, bus, devfn);
1467 if (!iommu)
1468 return -ENODEV;
1469
1470 context = device_to_context_entry(iommu, bus, devfn);
1471 if (!context)
1472 return -ENOMEM;
1473 spin_lock_irqsave(&iommu->lock, flags);
1474 if (context_present(context)) {
1475 spin_unlock_irqrestore(&iommu->lock, flags);
1476 return 0;
1477 }
1478
1479 id = domain->id;
1480 pgd = domain->pgd;
1481
1482 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1483 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1484 int found = 0;
1485
1486 /* find an available domain id for this device in iommu */
1487 ndomains = cap_ndoms(iommu->cap);
1488 num = find_first_bit(iommu->domain_ids, ndomains);
1489 for (; num < ndomains; ) {
1490 if (iommu->domains[num] == domain) {
1491 id = num;
1492 found = 1;
1493 break;
1494 }
1495 num = find_next_bit(iommu->domain_ids,
1496 cap_ndoms(iommu->cap), num+1);
1497 }
1498
1499 if (found == 0) {
1500 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1501 if (num >= ndomains) {
1502 spin_unlock_irqrestore(&iommu->lock, flags);
1503 printk(KERN_ERR "IOMMU: no free domain ids\n");
1504 return -EFAULT;
1505 }
1506
1507 set_bit(num, iommu->domain_ids);
1508 set_bit(iommu->seq_id, &domain->iommu_bmp);
1509 iommu->domains[num] = domain;
1510 id = num;
1511 }
1512
1513 /* Skip top levels of page tables for
1514 * iommu which has less agaw than default.
1515 */
1516 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1517 pgd = phys_to_virt(dma_pte_addr(pgd));
1518 if (!dma_pte_present(pgd)) {
1519 spin_unlock_irqrestore(&iommu->lock, flags);
1520 return -ENOMEM;
1521 }
1522 }
1523 }
1524
1525 context_set_domain_id(context, id);
1526
1527 if (translation != CONTEXT_TT_PASS_THROUGH) {
1528 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1529 translation = info ? CONTEXT_TT_DEV_IOTLB :
1530 CONTEXT_TT_MULTI_LEVEL;
1531 }
1532 /*
1533 * In pass through mode, AW must be programmed to indicate the largest
1534 * AGAW value supported by hardware. And ASR is ignored by hardware.
1535 */
1536 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1537 context_set_address_width(context, iommu->msagaw);
1538 else {
1539 context_set_address_root(context, virt_to_phys(pgd));
1540 context_set_address_width(context, iommu->agaw);
1541 }
1542
1543 context_set_translation_type(context, translation);
1544 context_set_fault_enable(context);
1545 context_set_present(context);
1546 domain_flush_cache(domain, context, sizeof(*context));
1547
1548 /*
1549 * It's a non-present to present mapping. If hardware doesn't cache
1550 * non-present entry we only need to flush the write-buffer. If the
1551 * _does_ cache non-present entries, then it does so in the special
1552 * domain #0, which we have to flush:
1553 */
1554 if (cap_caching_mode(iommu->cap)) {
1555 iommu->flush.flush_context(iommu, 0,
1556 (((u16)bus) << 8) | devfn,
1557 DMA_CCMD_MASK_NOBIT,
1558 DMA_CCMD_DEVICE_INVL);
1559 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH);
1560 } else {
1561 iommu_flush_write_buffer(iommu);
1562 }
1563 iommu_enable_dev_iotlb(info);
1564 spin_unlock_irqrestore(&iommu->lock, flags);
1565
1566 spin_lock_irqsave(&domain->iommu_lock, flags);
1567 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1568 domain->iommu_count++;
1569 domain_update_iommu_cap(domain);
1570 }
1571 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1572 return 0;
1573 }
1574
1575 static int
1576 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1577 int translation)
1578 {
1579 int ret;
1580 struct pci_dev *tmp, *parent;
1581
1582 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1583 pdev->bus->number, pdev->devfn,
1584 translation);
1585 if (ret)
1586 return ret;
1587
1588 /* dependent device mapping */
1589 tmp = pci_find_upstream_pcie_bridge(pdev);
1590 if (!tmp)
1591 return 0;
1592 /* Secondary interface's bus number and devfn 0 */
1593 parent = pdev->bus->self;
1594 while (parent != tmp) {
1595 ret = domain_context_mapping_one(domain,
1596 pci_domain_nr(parent->bus),
1597 parent->bus->number,
1598 parent->devfn, translation);
1599 if (ret)
1600 return ret;
1601 parent = parent->bus->self;
1602 }
1603 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1604 return domain_context_mapping_one(domain,
1605 pci_domain_nr(tmp->subordinate),
1606 tmp->subordinate->number, 0,
1607 translation);
1608 else /* this is a legacy PCI bridge */
1609 return domain_context_mapping_one(domain,
1610 pci_domain_nr(tmp->bus),
1611 tmp->bus->number,
1612 tmp->devfn,
1613 translation);
1614 }
1615
1616 static int domain_context_mapped(struct pci_dev *pdev)
1617 {
1618 int ret;
1619 struct pci_dev *tmp, *parent;
1620 struct intel_iommu *iommu;
1621
1622 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1623 pdev->devfn);
1624 if (!iommu)
1625 return -ENODEV;
1626
1627 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1628 if (!ret)
1629 return ret;
1630 /* dependent device mapping */
1631 tmp = pci_find_upstream_pcie_bridge(pdev);
1632 if (!tmp)
1633 return ret;
1634 /* Secondary interface's bus number and devfn 0 */
1635 parent = pdev->bus->self;
1636 while (parent != tmp) {
1637 ret = device_context_mapped(iommu, parent->bus->number,
1638 parent->devfn);
1639 if (!ret)
1640 return ret;
1641 parent = parent->bus->self;
1642 }
1643 if (tmp->is_pcie)
1644 return device_context_mapped(iommu, tmp->subordinate->number,
1645 0);
1646 else
1647 return device_context_mapped(iommu, tmp->bus->number,
1648 tmp->devfn);
1649 }
1650
1651 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1652 struct scatterlist *sg, unsigned long phys_pfn,
1653 unsigned long nr_pages, int prot)
1654 {
1655 struct dma_pte *first_pte = NULL, *pte = NULL;
1656 phys_addr_t uninitialized_var(pteval);
1657 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1658 unsigned long sg_res;
1659
1660 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1661
1662 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1663 return -EINVAL;
1664
1665 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1666
1667 if (sg)
1668 sg_res = 0;
1669 else {
1670 sg_res = nr_pages + 1;
1671 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1672 }
1673
1674 while (nr_pages--) {
1675 uint64_t tmp;
1676
1677 if (!sg_res) {
1678 sg_res = (sg->offset + sg->length + VTD_PAGE_SIZE - 1) >> VTD_PAGE_SHIFT;
1679 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1680 sg->dma_length = sg->length;
1681 pteval = page_to_phys(sg_page(sg)) | prot;
1682 }
1683 if (!pte) {
1684 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn);
1685 if (!pte)
1686 return -ENOMEM;
1687 }
1688 /* We don't need lock here, nobody else
1689 * touches the iova range
1690 */
1691 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1692 if (tmp) {
1693 static int dumps = 5;
1694 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1695 iov_pfn, tmp, (unsigned long long)pteval);
1696 if (dumps) {
1697 dumps--;
1698 debug_dma_dump_mappings(NULL);
1699 }
1700 WARN_ON(1);
1701 }
1702 pte++;
1703 if (!nr_pages || first_pte_in_page(pte)) {
1704 domain_flush_cache(domain, first_pte,
1705 (void *)pte - (void *)first_pte);
1706 pte = NULL;
1707 }
1708 iov_pfn++;
1709 pteval += VTD_PAGE_SIZE;
1710 sg_res--;
1711 if (!sg_res)
1712 sg = sg_next(sg);
1713 }
1714 return 0;
1715 }
1716
1717 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1718 struct scatterlist *sg, unsigned long nr_pages,
1719 int prot)
1720 {
1721 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1722 }
1723
1724 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1725 unsigned long phys_pfn, unsigned long nr_pages,
1726 int prot)
1727 {
1728 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1729 }
1730
1731 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1732 {
1733 if (!iommu)
1734 return;
1735
1736 clear_context_table(iommu, bus, devfn);
1737 iommu->flush.flush_context(iommu, 0, 0, 0,
1738 DMA_CCMD_GLOBAL_INVL);
1739 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1740 }
1741
1742 static void domain_remove_dev_info(struct dmar_domain *domain)
1743 {
1744 struct device_domain_info *info;
1745 unsigned long flags;
1746 struct intel_iommu *iommu;
1747
1748 spin_lock_irqsave(&device_domain_lock, flags);
1749 while (!list_empty(&domain->devices)) {
1750 info = list_entry(domain->devices.next,
1751 struct device_domain_info, link);
1752 list_del(&info->link);
1753 list_del(&info->global);
1754 if (info->dev)
1755 info->dev->dev.archdata.iommu = NULL;
1756 spin_unlock_irqrestore(&device_domain_lock, flags);
1757
1758 iommu_disable_dev_iotlb(info);
1759 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1760 iommu_detach_dev(iommu, info->bus, info->devfn);
1761 free_devinfo_mem(info);
1762
1763 spin_lock_irqsave(&device_domain_lock, flags);
1764 }
1765 spin_unlock_irqrestore(&device_domain_lock, flags);
1766 }
1767
1768 /*
1769 * find_domain
1770 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1771 */
1772 static struct dmar_domain *
1773 find_domain(struct pci_dev *pdev)
1774 {
1775 struct device_domain_info *info;
1776
1777 /* No lock here, assumes no domain exit in normal case */
1778 info = pdev->dev.archdata.iommu;
1779 if (info)
1780 return info->domain;
1781 return NULL;
1782 }
1783
1784 /* domain is initialized */
1785 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1786 {
1787 struct dmar_domain *domain, *found = NULL;
1788 struct intel_iommu *iommu;
1789 struct dmar_drhd_unit *drhd;
1790 struct device_domain_info *info, *tmp;
1791 struct pci_dev *dev_tmp;
1792 unsigned long flags;
1793 int bus = 0, devfn = 0;
1794 int segment;
1795 int ret;
1796
1797 domain = find_domain(pdev);
1798 if (domain)
1799 return domain;
1800
1801 segment = pci_domain_nr(pdev->bus);
1802
1803 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1804 if (dev_tmp) {
1805 if (dev_tmp->is_pcie) {
1806 bus = dev_tmp->subordinate->number;
1807 devfn = 0;
1808 } else {
1809 bus = dev_tmp->bus->number;
1810 devfn = dev_tmp->devfn;
1811 }
1812 spin_lock_irqsave(&device_domain_lock, flags);
1813 list_for_each_entry(info, &device_domain_list, global) {
1814 if (info->segment == segment &&
1815 info->bus == bus && info->devfn == devfn) {
1816 found = info->domain;
1817 break;
1818 }
1819 }
1820 spin_unlock_irqrestore(&device_domain_lock, flags);
1821 /* pcie-pci bridge already has a domain, uses it */
1822 if (found) {
1823 domain = found;
1824 goto found_domain;
1825 }
1826 }
1827
1828 domain = alloc_domain();
1829 if (!domain)
1830 goto error;
1831
1832 /* Allocate new domain for the device */
1833 drhd = dmar_find_matched_drhd_unit(pdev);
1834 if (!drhd) {
1835 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1836 pci_name(pdev));
1837 return NULL;
1838 }
1839 iommu = drhd->iommu;
1840
1841 ret = iommu_attach_domain(domain, iommu);
1842 if (ret) {
1843 domain_exit(domain);
1844 goto error;
1845 }
1846
1847 if (domain_init(domain, gaw)) {
1848 domain_exit(domain);
1849 goto error;
1850 }
1851
1852 /* register pcie-to-pci device */
1853 if (dev_tmp) {
1854 info = alloc_devinfo_mem();
1855 if (!info) {
1856 domain_exit(domain);
1857 goto error;
1858 }
1859 info->segment = segment;
1860 info->bus = bus;
1861 info->devfn = devfn;
1862 info->dev = NULL;
1863 info->domain = domain;
1864 /* This domain is shared by devices under p2p bridge */
1865 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1866
1867 /* pcie-to-pci bridge already has a domain, uses it */
1868 found = NULL;
1869 spin_lock_irqsave(&device_domain_lock, flags);
1870 list_for_each_entry(tmp, &device_domain_list, global) {
1871 if (tmp->segment == segment &&
1872 tmp->bus == bus && tmp->devfn == devfn) {
1873 found = tmp->domain;
1874 break;
1875 }
1876 }
1877 if (found) {
1878 free_devinfo_mem(info);
1879 domain_exit(domain);
1880 domain = found;
1881 } else {
1882 list_add(&info->link, &domain->devices);
1883 list_add(&info->global, &device_domain_list);
1884 }
1885 spin_unlock_irqrestore(&device_domain_lock, flags);
1886 }
1887
1888 found_domain:
1889 info = alloc_devinfo_mem();
1890 if (!info)
1891 goto error;
1892 info->segment = segment;
1893 info->bus = pdev->bus->number;
1894 info->devfn = pdev->devfn;
1895 info->dev = pdev;
1896 info->domain = domain;
1897 spin_lock_irqsave(&device_domain_lock, flags);
1898 /* somebody is fast */
1899 found = find_domain(pdev);
1900 if (found != NULL) {
1901 spin_unlock_irqrestore(&device_domain_lock, flags);
1902 if (found != domain) {
1903 domain_exit(domain);
1904 domain = found;
1905 }
1906 free_devinfo_mem(info);
1907 return domain;
1908 }
1909 list_add(&info->link, &domain->devices);
1910 list_add(&info->global, &device_domain_list);
1911 pdev->dev.archdata.iommu = info;
1912 spin_unlock_irqrestore(&device_domain_lock, flags);
1913 return domain;
1914 error:
1915 /* recheck it here, maybe others set it */
1916 return find_domain(pdev);
1917 }
1918
1919 static int iommu_identity_mapping;
1920
1921 static int iommu_domain_identity_map(struct dmar_domain *domain,
1922 unsigned long long start,
1923 unsigned long long end)
1924 {
1925 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
1926 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
1927
1928 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
1929 dma_to_mm_pfn(last_vpfn))) {
1930 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1931 return -ENOMEM;
1932 }
1933
1934 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
1935 start, end, domain->id);
1936 /*
1937 * RMRR range might have overlap with physical memory range,
1938 * clear it first
1939 */
1940 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
1941
1942 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
1943 last_vpfn - first_vpfn + 1,
1944 DMA_PTE_READ|DMA_PTE_WRITE);
1945 }
1946
1947 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1948 unsigned long long start,
1949 unsigned long long end)
1950 {
1951 struct dmar_domain *domain;
1952 int ret;
1953
1954 printk(KERN_INFO
1955 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1956 pci_name(pdev), start, end);
1957
1958 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1959 if (!domain)
1960 return -ENOMEM;
1961
1962 ret = iommu_domain_identity_map(domain, start, end);
1963 if (ret)
1964 goto error;
1965
1966 /* context entry init */
1967 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
1968 if (ret)
1969 goto error;
1970
1971 return 0;
1972
1973 error:
1974 domain_exit(domain);
1975 return ret;
1976 }
1977
1978 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1979 struct pci_dev *pdev)
1980 {
1981 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
1982 return 0;
1983 return iommu_prepare_identity_map(pdev, rmrr->base_address,
1984 rmrr->end_address + 1);
1985 }
1986
1987 #ifdef CONFIG_DMAR_FLOPPY_WA
1988 static inline void iommu_prepare_isa(void)
1989 {
1990 struct pci_dev *pdev;
1991 int ret;
1992
1993 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1994 if (!pdev)
1995 return;
1996
1997 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
1998 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
1999
2000 if (ret)
2001 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2002 "floppy might not work\n");
2003
2004 }
2005 #else
2006 static inline void iommu_prepare_isa(void)
2007 {
2008 return;
2009 }
2010 #endif /* !CONFIG_DMAR_FLPY_WA */
2011
2012 /* Initialize each context entry as pass through.*/
2013 static int __init init_context_pass_through(void)
2014 {
2015 struct pci_dev *pdev = NULL;
2016 struct dmar_domain *domain;
2017 int ret;
2018
2019 for_each_pci_dev(pdev) {
2020 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2021 ret = domain_context_mapping(domain, pdev,
2022 CONTEXT_TT_PASS_THROUGH);
2023 if (ret)
2024 return ret;
2025 }
2026 return 0;
2027 }
2028
2029 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2030
2031 static int __init si_domain_work_fn(unsigned long start_pfn,
2032 unsigned long end_pfn, void *datax)
2033 {
2034 int *ret = datax;
2035
2036 *ret = iommu_domain_identity_map(si_domain,
2037 (uint64_t)start_pfn << PAGE_SHIFT,
2038 (uint64_t)end_pfn << PAGE_SHIFT);
2039 return *ret;
2040
2041 }
2042
2043 static int si_domain_init(void)
2044 {
2045 struct dmar_drhd_unit *drhd;
2046 struct intel_iommu *iommu;
2047 int nid, ret = 0;
2048
2049 si_domain = alloc_domain();
2050 if (!si_domain)
2051 return -EFAULT;
2052
2053 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2054
2055 for_each_active_iommu(iommu, drhd) {
2056 ret = iommu_attach_domain(si_domain, iommu);
2057 if (ret) {
2058 domain_exit(si_domain);
2059 return -EFAULT;
2060 }
2061 }
2062
2063 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2064 domain_exit(si_domain);
2065 return -EFAULT;
2066 }
2067
2068 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2069
2070 for_each_online_node(nid) {
2071 work_with_active_regions(nid, si_domain_work_fn, &ret);
2072 if (ret)
2073 return ret;
2074 }
2075
2076 return 0;
2077 }
2078
2079 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2080 struct pci_dev *pdev);
2081 static int identity_mapping(struct pci_dev *pdev)
2082 {
2083 struct device_domain_info *info;
2084
2085 if (likely(!iommu_identity_mapping))
2086 return 0;
2087
2088
2089 list_for_each_entry(info, &si_domain->devices, link)
2090 if (info->dev == pdev)
2091 return 1;
2092 return 0;
2093 }
2094
2095 static int domain_add_dev_info(struct dmar_domain *domain,
2096 struct pci_dev *pdev)
2097 {
2098 struct device_domain_info *info;
2099 unsigned long flags;
2100
2101 info = alloc_devinfo_mem();
2102 if (!info)
2103 return -ENOMEM;
2104
2105 info->segment = pci_domain_nr(pdev->bus);
2106 info->bus = pdev->bus->number;
2107 info->devfn = pdev->devfn;
2108 info->dev = pdev;
2109 info->domain = domain;
2110
2111 spin_lock_irqsave(&device_domain_lock, flags);
2112 list_add(&info->link, &domain->devices);
2113 list_add(&info->global, &device_domain_list);
2114 pdev->dev.archdata.iommu = info;
2115 spin_unlock_irqrestore(&device_domain_lock, flags);
2116
2117 return 0;
2118 }
2119
2120 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2121 {
2122 if (iommu_identity_mapping == 2)
2123 return IS_GFX_DEVICE(pdev);
2124
2125 /*
2126 * We want to start off with all devices in the 1:1 domain, and
2127 * take them out later if we find they can't access all of memory.
2128 *
2129 * However, we can't do this for PCI devices behind bridges,
2130 * because all PCI devices behind the same bridge will end up
2131 * with the same source-id on their transactions.
2132 *
2133 * Practically speaking, we can't change things around for these
2134 * devices at run-time, because we can't be sure there'll be no
2135 * DMA transactions in flight for any of their siblings.
2136 *
2137 * So PCI devices (unless they're on the root bus) as well as
2138 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2139 * the 1:1 domain, just in _case_ one of their siblings turns out
2140 * not to be able to map all of memory.
2141 */
2142 if (!pdev->is_pcie) {
2143 if (!pci_is_root_bus(pdev->bus))
2144 return 0;
2145 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2146 return 0;
2147 } else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
2148 return 0;
2149
2150 /*
2151 * At boot time, we don't yet know if devices will be 64-bit capable.
2152 * Assume that they will -- if they turn out not to be, then we can
2153 * take them out of the 1:1 domain later.
2154 */
2155 if (!startup)
2156 return pdev->dma_mask > DMA_BIT_MASK(32);
2157
2158 return 1;
2159 }
2160
2161 static int iommu_prepare_static_identity_mapping(void)
2162 {
2163 struct pci_dev *pdev = NULL;
2164 int ret;
2165
2166 ret = si_domain_init();
2167 if (ret)
2168 return -EFAULT;
2169
2170 for_each_pci_dev(pdev) {
2171 if (iommu_should_identity_map(pdev, 1)) {
2172 printk(KERN_INFO "IOMMU: identity mapping for device %s\n",
2173 pci_name(pdev));
2174
2175 ret = domain_context_mapping(si_domain, pdev,
2176 CONTEXT_TT_MULTI_LEVEL);
2177 if (ret)
2178 return ret;
2179 ret = domain_add_dev_info(si_domain, pdev);
2180 if (ret)
2181 return ret;
2182 }
2183 }
2184
2185 return 0;
2186 }
2187
2188 int __init init_dmars(void)
2189 {
2190 struct dmar_drhd_unit *drhd;
2191 struct dmar_rmrr_unit *rmrr;
2192 struct pci_dev *pdev;
2193 struct intel_iommu *iommu;
2194 int i, ret;
2195 int pass_through = 1;
2196
2197 /*
2198 * In case pass through can not be enabled, iommu tries to use identity
2199 * mapping.
2200 */
2201 if (iommu_pass_through)
2202 iommu_identity_mapping = 1;
2203
2204 /*
2205 * for each drhd
2206 * allocate root
2207 * initialize and program root entry to not present
2208 * endfor
2209 */
2210 for_each_drhd_unit(drhd) {
2211 g_num_of_iommus++;
2212 /*
2213 * lock not needed as this is only incremented in the single
2214 * threaded kernel __init code path all other access are read
2215 * only
2216 */
2217 }
2218
2219 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2220 GFP_KERNEL);
2221 if (!g_iommus) {
2222 printk(KERN_ERR "Allocating global iommu array failed\n");
2223 ret = -ENOMEM;
2224 goto error;
2225 }
2226
2227 deferred_flush = kzalloc(g_num_of_iommus *
2228 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2229 if (!deferred_flush) {
2230 kfree(g_iommus);
2231 ret = -ENOMEM;
2232 goto error;
2233 }
2234
2235 for_each_drhd_unit(drhd) {
2236 if (drhd->ignored)
2237 continue;
2238
2239 iommu = drhd->iommu;
2240 g_iommus[iommu->seq_id] = iommu;
2241
2242 ret = iommu_init_domains(iommu);
2243 if (ret)
2244 goto error;
2245
2246 /*
2247 * TBD:
2248 * we could share the same root & context tables
2249 * amoung all IOMMU's. Need to Split it later.
2250 */
2251 ret = iommu_alloc_root_entry(iommu);
2252 if (ret) {
2253 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2254 goto error;
2255 }
2256 if (!ecap_pass_through(iommu->ecap))
2257 pass_through = 0;
2258 }
2259 if (iommu_pass_through)
2260 if (!pass_through) {
2261 printk(KERN_INFO
2262 "Pass Through is not supported by hardware.\n");
2263 iommu_pass_through = 0;
2264 }
2265
2266 /*
2267 * Start from the sane iommu hardware state.
2268 */
2269 for_each_drhd_unit(drhd) {
2270 if (drhd->ignored)
2271 continue;
2272
2273 iommu = drhd->iommu;
2274
2275 /*
2276 * If the queued invalidation is already initialized by us
2277 * (for example, while enabling interrupt-remapping) then
2278 * we got the things already rolling from a sane state.
2279 */
2280 if (iommu->qi)
2281 continue;
2282
2283 /*
2284 * Clear any previous faults.
2285 */
2286 dmar_fault(-1, iommu);
2287 /*
2288 * Disable queued invalidation if supported and already enabled
2289 * before OS handover.
2290 */
2291 dmar_disable_qi(iommu);
2292 }
2293
2294 for_each_drhd_unit(drhd) {
2295 if (drhd->ignored)
2296 continue;
2297
2298 iommu = drhd->iommu;
2299
2300 if (dmar_enable_qi(iommu)) {
2301 /*
2302 * Queued Invalidate not enabled, use Register Based
2303 * Invalidate
2304 */
2305 iommu->flush.flush_context = __iommu_flush_context;
2306 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2307 printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
2308 "invalidation\n",
2309 (unsigned long long)drhd->reg_base_addr);
2310 } else {
2311 iommu->flush.flush_context = qi_flush_context;
2312 iommu->flush.flush_iotlb = qi_flush_iotlb;
2313 printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
2314 "invalidation\n",
2315 (unsigned long long)drhd->reg_base_addr);
2316 }
2317 }
2318
2319 /*
2320 * If pass through is set and enabled, context entries of all pci
2321 * devices are intialized by pass through translation type.
2322 */
2323 if (iommu_pass_through) {
2324 ret = init_context_pass_through();
2325 if (ret) {
2326 printk(KERN_ERR "IOMMU: Pass through init failed.\n");
2327 iommu_pass_through = 0;
2328 }
2329 }
2330
2331 /*
2332 * If pass through is not set or not enabled, setup context entries for
2333 * identity mappings for rmrr, gfx, and isa and may fall back to static
2334 * identity mapping if iommu_identity_mapping is set.
2335 */
2336 if (!iommu_pass_through) {
2337 #ifdef CONFIG_DMAR_BROKEN_GFX_WA
2338 if (!iommu_identity_mapping)
2339 iommu_identity_mapping = 2;
2340 #endif
2341 if (iommu_identity_mapping)
2342 iommu_prepare_static_identity_mapping();
2343 /*
2344 * For each rmrr
2345 * for each dev attached to rmrr
2346 * do
2347 * locate drhd for dev, alloc domain for dev
2348 * allocate free domain
2349 * allocate page table entries for rmrr
2350 * if context not allocated for bus
2351 * allocate and init context
2352 * set present in root table for this bus
2353 * init context with domain, translation etc
2354 * endfor
2355 * endfor
2356 */
2357 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2358 for_each_rmrr_units(rmrr) {
2359 for (i = 0; i < rmrr->devices_cnt; i++) {
2360 pdev = rmrr->devices[i];
2361 /*
2362 * some BIOS lists non-exist devices in DMAR
2363 * table.
2364 */
2365 if (!pdev)
2366 continue;
2367 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2368 if (ret)
2369 printk(KERN_ERR
2370 "IOMMU: mapping reserved region failed\n");
2371 }
2372 }
2373
2374 iommu_prepare_isa();
2375 }
2376
2377 /*
2378 * for each drhd
2379 * enable fault log
2380 * global invalidate context cache
2381 * global invalidate iotlb
2382 * enable translation
2383 */
2384 for_each_drhd_unit(drhd) {
2385 if (drhd->ignored)
2386 continue;
2387 iommu = drhd->iommu;
2388
2389 iommu_flush_write_buffer(iommu);
2390
2391 ret = dmar_set_interrupt(iommu);
2392 if (ret)
2393 goto error;
2394
2395 iommu_set_root_entry(iommu);
2396
2397 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2398 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2399 iommu_disable_protect_mem_regions(iommu);
2400
2401 ret = iommu_enable_translation(iommu);
2402 if (ret)
2403 goto error;
2404 }
2405
2406 return 0;
2407 error:
2408 for_each_drhd_unit(drhd) {
2409 if (drhd->ignored)
2410 continue;
2411 iommu = drhd->iommu;
2412 free_iommu(iommu);
2413 }
2414 kfree(g_iommus);
2415 return ret;
2416 }
2417
2418 /* Returns a number of VTD pages, but aligned to MM page size */
2419 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2420 size_t size)
2421 {
2422 host_addr &= ~PAGE_MASK;
2423 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
2424 }
2425
2426 /* This takes a number of _MM_ pages, not VTD pages */
2427 static struct iova *intel_alloc_iova(struct device *dev,
2428 struct dmar_domain *domain,
2429 unsigned long nrpages, uint64_t dma_mask)
2430 {
2431 struct pci_dev *pdev = to_pci_dev(dev);
2432 struct iova *iova = NULL;
2433
2434 /* Restrict dma_mask to the width that the iommu can handle */
2435 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2436
2437 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2438 /*
2439 * First try to allocate an io virtual address in
2440 * DMA_BIT_MASK(32) and if that fails then try allocating
2441 * from higher range
2442 */
2443 iova = alloc_iova(&domain->iovad, nrpages,
2444 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2445 if (iova)
2446 return iova;
2447 }
2448 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2449 if (unlikely(!iova)) {
2450 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2451 nrpages, pci_name(pdev));
2452 return NULL;
2453 }
2454
2455 return iova;
2456 }
2457
2458 static struct dmar_domain *
2459 get_valid_domain_for_dev(struct pci_dev *pdev)
2460 {
2461 struct dmar_domain *domain;
2462 int ret;
2463
2464 domain = get_domain_for_dev(pdev,
2465 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2466 if (!domain) {
2467 printk(KERN_ERR
2468 "Allocating domain for %s failed", pci_name(pdev));
2469 return NULL;
2470 }
2471
2472 /* make sure context mapping is ok */
2473 if (unlikely(!domain_context_mapped(pdev))) {
2474 ret = domain_context_mapping(domain, pdev,
2475 CONTEXT_TT_MULTI_LEVEL);
2476 if (ret) {
2477 printk(KERN_ERR
2478 "Domain context map for %s failed",
2479 pci_name(pdev));
2480 return NULL;
2481 }
2482 }
2483
2484 return domain;
2485 }
2486
2487 static int iommu_dummy(struct pci_dev *pdev)
2488 {
2489 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2490 }
2491
2492 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2493 static int iommu_no_mapping(struct device *dev)
2494 {
2495 struct pci_dev *pdev;
2496 int found;
2497
2498 if (unlikely(dev->bus != &pci_bus_type))
2499 return 1;
2500
2501 pdev = to_pci_dev(dev);
2502 if (iommu_dummy(pdev))
2503 return 1;
2504
2505 if (!iommu_identity_mapping)
2506 return 0;
2507
2508 found = identity_mapping(pdev);
2509 if (found) {
2510 if (iommu_should_identity_map(pdev, 0))
2511 return 1;
2512 else {
2513 /*
2514 * 32 bit DMA is removed from si_domain and fall back
2515 * to non-identity mapping.
2516 */
2517 domain_remove_one_dev_info(si_domain, pdev);
2518 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2519 pci_name(pdev));
2520 return 0;
2521 }
2522 } else {
2523 /*
2524 * In case of a detached 64 bit DMA device from vm, the device
2525 * is put into si_domain for identity mapping.
2526 */
2527 if (iommu_should_identity_map(pdev, 0)) {
2528 int ret;
2529 ret = domain_add_dev_info(si_domain, pdev);
2530 if (ret)
2531 return 0;
2532 ret = domain_context_mapping(si_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2533 if (!ret) {
2534 printk(KERN_INFO "64bit %s uses identity mapping\n",
2535 pci_name(pdev));
2536 return 1;
2537 }
2538 }
2539 }
2540
2541 return 0;
2542 }
2543
2544 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2545 size_t size, int dir, u64 dma_mask)
2546 {
2547 struct pci_dev *pdev = to_pci_dev(hwdev);
2548 struct dmar_domain *domain;
2549 phys_addr_t start_paddr;
2550 struct iova *iova;
2551 int prot = 0;
2552 int ret;
2553 struct intel_iommu *iommu;
2554
2555 BUG_ON(dir == DMA_NONE);
2556
2557 if (iommu_no_mapping(hwdev))
2558 return paddr;
2559
2560 domain = get_valid_domain_for_dev(pdev);
2561 if (!domain)
2562 return 0;
2563
2564 iommu = domain_get_iommu(domain);
2565 size = aligned_nrpages(paddr, size);
2566
2567 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2568 pdev->dma_mask);
2569 if (!iova)
2570 goto error;
2571
2572 /*
2573 * Check if DMAR supports zero-length reads on write only
2574 * mappings..
2575 */
2576 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2577 !cap_zlr(iommu->cap))
2578 prot |= DMA_PTE_READ;
2579 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2580 prot |= DMA_PTE_WRITE;
2581 /*
2582 * paddr - (paddr + size) might be partial page, we should map the whole
2583 * page. Note: if two part of one page are separately mapped, we
2584 * might have two guest_addr mapping to the same host paddr, but this
2585 * is not a big problem
2586 */
2587 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2588 paddr >> VTD_PAGE_SHIFT, size, prot);
2589 if (ret)
2590 goto error;
2591
2592 /* it's a non-present to present mapping. Only flush if caching mode */
2593 if (cap_caching_mode(iommu->cap))
2594 iommu_flush_iotlb_psi(iommu, 0, mm_to_dma_pfn(iova->pfn_lo), size);
2595 else
2596 iommu_flush_write_buffer(iommu);
2597
2598 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2599 start_paddr += paddr & ~PAGE_MASK;
2600 return start_paddr;
2601
2602 error:
2603 if (iova)
2604 __free_iova(&domain->iovad, iova);
2605 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2606 pci_name(pdev), size, (unsigned long long)paddr, dir);
2607 return 0;
2608 }
2609
2610 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2611 unsigned long offset, size_t size,
2612 enum dma_data_direction dir,
2613 struct dma_attrs *attrs)
2614 {
2615 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2616 dir, to_pci_dev(dev)->dma_mask);
2617 }
2618
2619 static void flush_unmaps(void)
2620 {
2621 int i, j;
2622
2623 timer_on = 0;
2624
2625 /* just flush them all */
2626 for (i = 0; i < g_num_of_iommus; i++) {
2627 struct intel_iommu *iommu = g_iommus[i];
2628 if (!iommu)
2629 continue;
2630
2631 if (!deferred_flush[i].next)
2632 continue;
2633
2634 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2635 DMA_TLB_GLOBAL_FLUSH);
2636 for (j = 0; j < deferred_flush[i].next; j++) {
2637 unsigned long mask;
2638 struct iova *iova = deferred_flush[i].iova[j];
2639
2640 mask = (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT;
2641 mask = ilog2(mask >> VTD_PAGE_SHIFT);
2642 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2643 iova->pfn_lo << PAGE_SHIFT, mask);
2644 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2645 }
2646 deferred_flush[i].next = 0;
2647 }
2648
2649 list_size = 0;
2650 }
2651
2652 static void flush_unmaps_timeout(unsigned long data)
2653 {
2654 unsigned long flags;
2655
2656 spin_lock_irqsave(&async_umap_flush_lock, flags);
2657 flush_unmaps();
2658 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2659 }
2660
2661 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2662 {
2663 unsigned long flags;
2664 int next, iommu_id;
2665 struct intel_iommu *iommu;
2666
2667 spin_lock_irqsave(&async_umap_flush_lock, flags);
2668 if (list_size == HIGH_WATER_MARK)
2669 flush_unmaps();
2670
2671 iommu = domain_get_iommu(dom);
2672 iommu_id = iommu->seq_id;
2673
2674 next = deferred_flush[iommu_id].next;
2675 deferred_flush[iommu_id].domain[next] = dom;
2676 deferred_flush[iommu_id].iova[next] = iova;
2677 deferred_flush[iommu_id].next++;
2678
2679 if (!timer_on) {
2680 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2681 timer_on = 1;
2682 }
2683 list_size++;
2684 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2685 }
2686
2687 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2688 size_t size, enum dma_data_direction dir,
2689 struct dma_attrs *attrs)
2690 {
2691 struct pci_dev *pdev = to_pci_dev(dev);
2692 struct dmar_domain *domain;
2693 unsigned long start_pfn, last_pfn;
2694 struct iova *iova;
2695 struct intel_iommu *iommu;
2696
2697 if (iommu_no_mapping(dev))
2698 return;
2699
2700 domain = find_domain(pdev);
2701 BUG_ON(!domain);
2702
2703 iommu = domain_get_iommu(domain);
2704
2705 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2706 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2707 (unsigned long long)dev_addr))
2708 return;
2709
2710 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2711 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2712
2713 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2714 pci_name(pdev), start_pfn, last_pfn);
2715
2716 /* clear the whole page */
2717 dma_pte_clear_range(domain, start_pfn, last_pfn);
2718
2719 /* free page tables */
2720 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2721
2722 if (intel_iommu_strict) {
2723 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2724 last_pfn - start_pfn + 1);
2725 /* free iova */
2726 __free_iova(&domain->iovad, iova);
2727 } else {
2728 add_unmap(domain, iova);
2729 /*
2730 * queue up the release of the unmap to save the 1/6th of the
2731 * cpu used up by the iotlb flush operation...
2732 */
2733 }
2734 }
2735
2736 static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
2737 int dir)
2738 {
2739 intel_unmap_page(dev, dev_addr, size, dir, NULL);
2740 }
2741
2742 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2743 dma_addr_t *dma_handle, gfp_t flags)
2744 {
2745 void *vaddr;
2746 int order;
2747
2748 size = PAGE_ALIGN(size);
2749 order = get_order(size);
2750 flags &= ~(GFP_DMA | GFP_DMA32);
2751
2752 vaddr = (void *)__get_free_pages(flags, order);
2753 if (!vaddr)
2754 return NULL;
2755 memset(vaddr, 0, size);
2756
2757 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2758 DMA_BIDIRECTIONAL,
2759 hwdev->coherent_dma_mask);
2760 if (*dma_handle)
2761 return vaddr;
2762 free_pages((unsigned long)vaddr, order);
2763 return NULL;
2764 }
2765
2766 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2767 dma_addr_t dma_handle)
2768 {
2769 int order;
2770
2771 size = PAGE_ALIGN(size);
2772 order = get_order(size);
2773
2774 intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
2775 free_pages((unsigned long)vaddr, order);
2776 }
2777
2778 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2779 int nelems, enum dma_data_direction dir,
2780 struct dma_attrs *attrs)
2781 {
2782 struct pci_dev *pdev = to_pci_dev(hwdev);
2783 struct dmar_domain *domain;
2784 unsigned long start_pfn, last_pfn;
2785 struct iova *iova;
2786 struct intel_iommu *iommu;
2787
2788 if (iommu_no_mapping(hwdev))
2789 return;
2790
2791 domain = find_domain(pdev);
2792 BUG_ON(!domain);
2793
2794 iommu = domain_get_iommu(domain);
2795
2796 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2797 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
2798 (unsigned long long)sglist[0].dma_address))
2799 return;
2800
2801 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2802 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2803
2804 /* clear the whole page */
2805 dma_pte_clear_range(domain, start_pfn, last_pfn);
2806
2807 /* free page tables */
2808 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2809
2810 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2811 (last_pfn - start_pfn + 1));
2812
2813 /* free iova */
2814 __free_iova(&domain->iovad, iova);
2815 }
2816
2817 static int intel_nontranslate_map_sg(struct device *hddev,
2818 struct scatterlist *sglist, int nelems, int dir)
2819 {
2820 int i;
2821 struct scatterlist *sg;
2822
2823 for_each_sg(sglist, sg, nelems, i) {
2824 BUG_ON(!sg_page(sg));
2825 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
2826 sg->dma_length = sg->length;
2827 }
2828 return nelems;
2829 }
2830
2831 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2832 enum dma_data_direction dir, struct dma_attrs *attrs)
2833 {
2834 int i;
2835 struct pci_dev *pdev = to_pci_dev(hwdev);
2836 struct dmar_domain *domain;
2837 size_t size = 0;
2838 int prot = 0;
2839 size_t offset_pfn = 0;
2840 struct iova *iova = NULL;
2841 int ret;
2842 struct scatterlist *sg;
2843 unsigned long start_vpfn;
2844 struct intel_iommu *iommu;
2845
2846 BUG_ON(dir == DMA_NONE);
2847 if (iommu_no_mapping(hwdev))
2848 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2849
2850 domain = get_valid_domain_for_dev(pdev);
2851 if (!domain)
2852 return 0;
2853
2854 iommu = domain_get_iommu(domain);
2855
2856 for_each_sg(sglist, sg, nelems, i)
2857 size += aligned_nrpages(sg->offset, sg->length);
2858
2859 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2860 pdev->dma_mask);
2861 if (!iova) {
2862 sglist->dma_length = 0;
2863 return 0;
2864 }
2865
2866 /*
2867 * Check if DMAR supports zero-length reads on write only
2868 * mappings..
2869 */
2870 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2871 !cap_zlr(iommu->cap))
2872 prot |= DMA_PTE_READ;
2873 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2874 prot |= DMA_PTE_WRITE;
2875
2876 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
2877
2878 ret = domain_sg_mapping(domain, start_vpfn, sglist, mm_to_dma_pfn(size), prot);
2879 if (unlikely(ret)) {
2880 /* clear the page */
2881 dma_pte_clear_range(domain, start_vpfn,
2882 start_vpfn + size - 1);
2883 /* free page tables */
2884 dma_pte_free_pagetable(domain, start_vpfn,
2885 start_vpfn + size - 1);
2886 /* free iova */
2887 __free_iova(&domain->iovad, iova);
2888 return 0;
2889 }
2890
2891 /* it's a non-present to present mapping. Only flush if caching mode */
2892 if (cap_caching_mode(iommu->cap))
2893 iommu_flush_iotlb_psi(iommu, 0, start_vpfn, offset_pfn);
2894 else
2895 iommu_flush_write_buffer(iommu);
2896
2897 return nelems;
2898 }
2899
2900 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2901 {
2902 return !dma_addr;
2903 }
2904
2905 struct dma_map_ops intel_dma_ops = {
2906 .alloc_coherent = intel_alloc_coherent,
2907 .free_coherent = intel_free_coherent,
2908 .map_sg = intel_map_sg,
2909 .unmap_sg = intel_unmap_sg,
2910 .map_page = intel_map_page,
2911 .unmap_page = intel_unmap_page,
2912 .mapping_error = intel_mapping_error,
2913 };
2914
2915 static inline int iommu_domain_cache_init(void)
2916 {
2917 int ret = 0;
2918
2919 iommu_domain_cache = kmem_cache_create("iommu_domain",
2920 sizeof(struct dmar_domain),
2921 0,
2922 SLAB_HWCACHE_ALIGN,
2923
2924 NULL);
2925 if (!iommu_domain_cache) {
2926 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2927 ret = -ENOMEM;
2928 }
2929
2930 return ret;
2931 }
2932
2933 static inline int iommu_devinfo_cache_init(void)
2934 {
2935 int ret = 0;
2936
2937 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2938 sizeof(struct device_domain_info),
2939 0,
2940 SLAB_HWCACHE_ALIGN,
2941 NULL);
2942 if (!iommu_devinfo_cache) {
2943 printk(KERN_ERR "Couldn't create devinfo cache\n");
2944 ret = -ENOMEM;
2945 }
2946
2947 return ret;
2948 }
2949
2950 static inline int iommu_iova_cache_init(void)
2951 {
2952 int ret = 0;
2953
2954 iommu_iova_cache = kmem_cache_create("iommu_iova",
2955 sizeof(struct iova),
2956 0,
2957 SLAB_HWCACHE_ALIGN,
2958 NULL);
2959 if (!iommu_iova_cache) {
2960 printk(KERN_ERR "Couldn't create iova cache\n");
2961 ret = -ENOMEM;
2962 }
2963
2964 return ret;
2965 }
2966
2967 static int __init iommu_init_mempool(void)
2968 {
2969 int ret;
2970 ret = iommu_iova_cache_init();
2971 if (ret)
2972 return ret;
2973
2974 ret = iommu_domain_cache_init();
2975 if (ret)
2976 goto domain_error;
2977
2978 ret = iommu_devinfo_cache_init();
2979 if (!ret)
2980 return ret;
2981
2982 kmem_cache_destroy(iommu_domain_cache);
2983 domain_error:
2984 kmem_cache_destroy(iommu_iova_cache);
2985
2986 return -ENOMEM;
2987 }
2988
2989 static void __init iommu_exit_mempool(void)
2990 {
2991 kmem_cache_destroy(iommu_devinfo_cache);
2992 kmem_cache_destroy(iommu_domain_cache);
2993 kmem_cache_destroy(iommu_iova_cache);
2994
2995 }
2996
2997 static void __init init_no_remapping_devices(void)
2998 {
2999 struct dmar_drhd_unit *drhd;
3000
3001 for_each_drhd_unit(drhd) {
3002 if (!drhd->include_all) {
3003 int i;
3004 for (i = 0; i < drhd->devices_cnt; i++)
3005 if (drhd->devices[i] != NULL)
3006 break;
3007 /* ignore DMAR unit if no pci devices exist */
3008 if (i == drhd->devices_cnt)
3009 drhd->ignored = 1;
3010 }
3011 }
3012
3013 if (dmar_map_gfx)
3014 return;
3015
3016 for_each_drhd_unit(drhd) {
3017 int i;
3018 if (drhd->ignored || drhd->include_all)
3019 continue;
3020
3021 for (i = 0; i < drhd->devices_cnt; i++)
3022 if (drhd->devices[i] &&
3023 !IS_GFX_DEVICE(drhd->devices[i]))
3024 break;
3025
3026 if (i < drhd->devices_cnt)
3027 continue;
3028
3029 /* bypass IOMMU if it is just for gfx devices */
3030 drhd->ignored = 1;
3031 for (i = 0; i < drhd->devices_cnt; i++) {
3032 if (!drhd->devices[i])
3033 continue;
3034 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3035 }
3036 }
3037 }
3038
3039 #ifdef CONFIG_SUSPEND
3040 static int init_iommu_hw(void)
3041 {
3042 struct dmar_drhd_unit *drhd;
3043 struct intel_iommu *iommu = NULL;
3044
3045 for_each_active_iommu(iommu, drhd)
3046 if (iommu->qi)
3047 dmar_reenable_qi(iommu);
3048
3049 for_each_active_iommu(iommu, drhd) {
3050 iommu_flush_write_buffer(iommu);
3051
3052 iommu_set_root_entry(iommu);
3053
3054 iommu->flush.flush_context(iommu, 0, 0, 0,
3055 DMA_CCMD_GLOBAL_INVL);
3056 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3057 DMA_TLB_GLOBAL_FLUSH);
3058 iommu_disable_protect_mem_regions(iommu);
3059 iommu_enable_translation(iommu);
3060 }
3061
3062 return 0;
3063 }
3064
3065 static void iommu_flush_all(void)
3066 {
3067 struct dmar_drhd_unit *drhd;
3068 struct intel_iommu *iommu;
3069
3070 for_each_active_iommu(iommu, drhd) {
3071 iommu->flush.flush_context(iommu, 0, 0, 0,
3072 DMA_CCMD_GLOBAL_INVL);
3073 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3074 DMA_TLB_GLOBAL_FLUSH);
3075 }
3076 }
3077
3078 static int iommu_suspend(struct sys_device *dev, pm_message_t state)
3079 {
3080 struct dmar_drhd_unit *drhd;
3081 struct intel_iommu *iommu = NULL;
3082 unsigned long flag;
3083
3084 for_each_active_iommu(iommu, drhd) {
3085 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3086 GFP_ATOMIC);
3087 if (!iommu->iommu_state)
3088 goto nomem;
3089 }
3090
3091 iommu_flush_all();
3092
3093 for_each_active_iommu(iommu, drhd) {
3094 iommu_disable_translation(iommu);
3095
3096 spin_lock_irqsave(&iommu->register_lock, flag);
3097
3098 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3099 readl(iommu->reg + DMAR_FECTL_REG);
3100 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3101 readl(iommu->reg + DMAR_FEDATA_REG);
3102 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3103 readl(iommu->reg + DMAR_FEADDR_REG);
3104 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3105 readl(iommu->reg + DMAR_FEUADDR_REG);
3106
3107 spin_unlock_irqrestore(&iommu->register_lock, flag);
3108 }
3109 return 0;
3110
3111 nomem:
3112 for_each_active_iommu(iommu, drhd)
3113 kfree(iommu->iommu_state);
3114
3115 return -ENOMEM;
3116 }
3117
3118 static int iommu_resume(struct sys_device *dev)
3119 {
3120 struct dmar_drhd_unit *drhd;
3121 struct intel_iommu *iommu = NULL;
3122 unsigned long flag;
3123
3124 if (init_iommu_hw()) {
3125 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3126 return -EIO;
3127 }
3128
3129 for_each_active_iommu(iommu, drhd) {
3130
3131 spin_lock_irqsave(&iommu->register_lock, flag);
3132
3133 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3134 iommu->reg + DMAR_FECTL_REG);
3135 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3136 iommu->reg + DMAR_FEDATA_REG);
3137 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3138 iommu->reg + DMAR_FEADDR_REG);
3139 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3140 iommu->reg + DMAR_FEUADDR_REG);
3141
3142 spin_unlock_irqrestore(&iommu->register_lock, flag);
3143 }
3144
3145 for_each_active_iommu(iommu, drhd)
3146 kfree(iommu->iommu_state);
3147
3148 return 0;
3149 }
3150
3151 static struct sysdev_class iommu_sysclass = {
3152 .name = "iommu",
3153 .resume = iommu_resume,
3154 .suspend = iommu_suspend,
3155 };
3156
3157 static struct sys_device device_iommu = {
3158 .cls = &iommu_sysclass,
3159 };
3160
3161 static int __init init_iommu_sysfs(void)
3162 {
3163 int error;
3164
3165 error = sysdev_class_register(&iommu_sysclass);
3166 if (error)
3167 return error;
3168
3169 error = sysdev_register(&device_iommu);
3170 if (error)
3171 sysdev_class_unregister(&iommu_sysclass);
3172
3173 return error;
3174 }
3175
3176 #else
3177 static int __init init_iommu_sysfs(void)
3178 {
3179 return 0;
3180 }
3181 #endif /* CONFIG_PM */
3182
3183 int __init intel_iommu_init(void)
3184 {
3185 int ret = 0;
3186
3187 if (dmar_table_init())
3188 return -ENODEV;
3189
3190 if (dmar_dev_scope_init())
3191 return -ENODEV;
3192
3193 /*
3194 * Check the need for DMA-remapping initialization now.
3195 * Above initialization will also be used by Interrupt-remapping.
3196 */
3197 if (no_iommu || (swiotlb && !iommu_pass_through) || dmar_disabled)
3198 return -ENODEV;
3199
3200 iommu_init_mempool();
3201 dmar_init_reserved_ranges();
3202
3203 init_no_remapping_devices();
3204
3205 ret = init_dmars();
3206 if (ret) {
3207 printk(KERN_ERR "IOMMU: dmar init failed\n");
3208 put_iova_domain(&reserved_iova_list);
3209 iommu_exit_mempool();
3210 return ret;
3211 }
3212 printk(KERN_INFO
3213 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3214
3215 init_timer(&unmap_timer);
3216 force_iommu = 1;
3217
3218 if (!iommu_pass_through) {
3219 printk(KERN_INFO
3220 "Multi-level page-table translation for DMAR.\n");
3221 dma_ops = &intel_dma_ops;
3222 } else
3223 printk(KERN_INFO
3224 "DMAR: Pass through translation for DMAR.\n");
3225
3226 init_iommu_sysfs();
3227
3228 register_iommu(&intel_iommu_ops);
3229
3230 return 0;
3231 }
3232
3233 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3234 struct pci_dev *pdev)
3235 {
3236 struct pci_dev *tmp, *parent;
3237
3238 if (!iommu || !pdev)
3239 return;
3240
3241 /* dependent device detach */
3242 tmp = pci_find_upstream_pcie_bridge(pdev);
3243 /* Secondary interface's bus number and devfn 0 */
3244 if (tmp) {
3245 parent = pdev->bus->self;
3246 while (parent != tmp) {
3247 iommu_detach_dev(iommu, parent->bus->number,
3248 parent->devfn);
3249 parent = parent->bus->self;
3250 }
3251 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
3252 iommu_detach_dev(iommu,
3253 tmp->subordinate->number, 0);
3254 else /* this is a legacy PCI bridge */
3255 iommu_detach_dev(iommu, tmp->bus->number,
3256 tmp->devfn);
3257 }
3258 }
3259
3260 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3261 struct pci_dev *pdev)
3262 {
3263 struct device_domain_info *info;
3264 struct intel_iommu *iommu;
3265 unsigned long flags;
3266 int found = 0;
3267 struct list_head *entry, *tmp;
3268
3269 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3270 pdev->devfn);
3271 if (!iommu)
3272 return;
3273
3274 spin_lock_irqsave(&device_domain_lock, flags);
3275 list_for_each_safe(entry, tmp, &domain->devices) {
3276 info = list_entry(entry, struct device_domain_info, link);
3277 /* No need to compare PCI domain; it has to be the same */
3278 if (info->bus == pdev->bus->number &&
3279 info->devfn == pdev->devfn) {
3280 list_del(&info->link);
3281 list_del(&info->global);
3282 if (info->dev)
3283 info->dev->dev.archdata.iommu = NULL;
3284 spin_unlock_irqrestore(&device_domain_lock, flags);
3285
3286 iommu_disable_dev_iotlb(info);
3287 iommu_detach_dev(iommu, info->bus, info->devfn);
3288 iommu_detach_dependent_devices(iommu, pdev);
3289 free_devinfo_mem(info);
3290
3291 spin_lock_irqsave(&device_domain_lock, flags);
3292
3293 if (found)
3294 break;
3295 else
3296 continue;
3297 }
3298
3299 /* if there is no other devices under the same iommu
3300 * owned by this domain, clear this iommu in iommu_bmp
3301 * update iommu count and coherency
3302 */
3303 if (iommu == device_to_iommu(info->segment, info->bus,
3304 info->devfn))
3305 found = 1;
3306 }
3307
3308 if (found == 0) {
3309 unsigned long tmp_flags;
3310 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3311 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3312 domain->iommu_count--;
3313 domain_update_iommu_cap(domain);
3314 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3315 }
3316
3317 spin_unlock_irqrestore(&device_domain_lock, flags);
3318 }
3319
3320 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3321 {
3322 struct device_domain_info *info;
3323 struct intel_iommu *iommu;
3324 unsigned long flags1, flags2;
3325
3326 spin_lock_irqsave(&device_domain_lock, flags1);
3327 while (!list_empty(&domain->devices)) {
3328 info = list_entry(domain->devices.next,
3329 struct device_domain_info, link);
3330 list_del(&info->link);
3331 list_del(&info->global);
3332 if (info->dev)
3333 info->dev->dev.archdata.iommu = NULL;
3334
3335 spin_unlock_irqrestore(&device_domain_lock, flags1);
3336
3337 iommu_disable_dev_iotlb(info);
3338 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3339 iommu_detach_dev(iommu, info->bus, info->devfn);
3340 iommu_detach_dependent_devices(iommu, info->dev);
3341
3342 /* clear this iommu in iommu_bmp, update iommu count
3343 * and capabilities
3344 */
3345 spin_lock_irqsave(&domain->iommu_lock, flags2);
3346 if (test_and_clear_bit(iommu->seq_id,
3347 &domain->iommu_bmp)) {
3348 domain->iommu_count--;
3349 domain_update_iommu_cap(domain);
3350 }
3351 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3352
3353 free_devinfo_mem(info);
3354 spin_lock_irqsave(&device_domain_lock, flags1);
3355 }
3356 spin_unlock_irqrestore(&device_domain_lock, flags1);
3357 }
3358
3359 /* domain id for virtual machine, it won't be set in context */
3360 static unsigned long vm_domid;
3361
3362 static int vm_domain_min_agaw(struct dmar_domain *domain)
3363 {
3364 int i;
3365 int min_agaw = domain->agaw;
3366
3367 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
3368 for (; i < g_num_of_iommus; ) {
3369 if (min_agaw > g_iommus[i]->agaw)
3370 min_agaw = g_iommus[i]->agaw;
3371
3372 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
3373 }
3374
3375 return min_agaw;
3376 }
3377
3378 static struct dmar_domain *iommu_alloc_vm_domain(void)
3379 {
3380 struct dmar_domain *domain;
3381
3382 domain = alloc_domain_mem();
3383 if (!domain)
3384 return NULL;
3385
3386 domain->id = vm_domid++;
3387 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3388 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3389
3390 return domain;
3391 }
3392
3393 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3394 {
3395 int adjust_width;
3396
3397 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3398 spin_lock_init(&domain->iommu_lock);
3399
3400 domain_reserve_special_ranges(domain);
3401
3402 /* calculate AGAW */
3403 domain->gaw = guest_width;
3404 adjust_width = guestwidth_to_adjustwidth(guest_width);
3405 domain->agaw = width_to_agaw(adjust_width);
3406
3407 INIT_LIST_HEAD(&domain->devices);
3408
3409 domain->iommu_count = 0;
3410 domain->iommu_coherency = 0;
3411 domain->max_addr = 0;
3412
3413 /* always allocate the top pgd */
3414 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
3415 if (!domain->pgd)
3416 return -ENOMEM;
3417 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3418 return 0;
3419 }
3420
3421 static void iommu_free_vm_domain(struct dmar_domain *domain)
3422 {
3423 unsigned long flags;
3424 struct dmar_drhd_unit *drhd;
3425 struct intel_iommu *iommu;
3426 unsigned long i;
3427 unsigned long ndomains;
3428
3429 for_each_drhd_unit(drhd) {
3430 if (drhd->ignored)
3431 continue;
3432 iommu = drhd->iommu;
3433
3434 ndomains = cap_ndoms(iommu->cap);
3435 i = find_first_bit(iommu->domain_ids, ndomains);
3436 for (; i < ndomains; ) {
3437 if (iommu->domains[i] == domain) {
3438 spin_lock_irqsave(&iommu->lock, flags);
3439 clear_bit(i, iommu->domain_ids);
3440 iommu->domains[i] = NULL;
3441 spin_unlock_irqrestore(&iommu->lock, flags);
3442 break;
3443 }
3444 i = find_next_bit(iommu->domain_ids, ndomains, i+1);
3445 }
3446 }
3447 }
3448
3449 static void vm_domain_exit(struct dmar_domain *domain)
3450 {
3451 /* Domain 0 is reserved, so dont process it */
3452 if (!domain)
3453 return;
3454
3455 vm_domain_remove_all_dev_info(domain);
3456 /* destroy iovas */
3457 put_iova_domain(&domain->iovad);
3458
3459 /* clear ptes */
3460 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3461
3462 /* free page tables */
3463 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3464
3465 iommu_free_vm_domain(domain);
3466 free_domain_mem(domain);
3467 }
3468
3469 static int intel_iommu_domain_init(struct iommu_domain *domain)
3470 {
3471 struct dmar_domain *dmar_domain;
3472
3473 dmar_domain = iommu_alloc_vm_domain();
3474 if (!dmar_domain) {
3475 printk(KERN_ERR
3476 "intel_iommu_domain_init: dmar_domain == NULL\n");
3477 return -ENOMEM;
3478 }
3479 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3480 printk(KERN_ERR
3481 "intel_iommu_domain_init() failed\n");
3482 vm_domain_exit(dmar_domain);
3483 return -ENOMEM;
3484 }
3485 domain->priv = dmar_domain;
3486
3487 return 0;
3488 }
3489
3490 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3491 {
3492 struct dmar_domain *dmar_domain = domain->priv;
3493
3494 domain->priv = NULL;
3495 vm_domain_exit(dmar_domain);
3496 }
3497
3498 static int intel_iommu_attach_device(struct iommu_domain *domain,
3499 struct device *dev)
3500 {
3501 struct dmar_domain *dmar_domain = domain->priv;
3502 struct pci_dev *pdev = to_pci_dev(dev);
3503 struct intel_iommu *iommu;
3504 int addr_width;
3505 u64 end;
3506 int ret;
3507
3508 /* normally pdev is not mapped */
3509 if (unlikely(domain_context_mapped(pdev))) {
3510 struct dmar_domain *old_domain;
3511
3512 old_domain = find_domain(pdev);
3513 if (old_domain) {
3514 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3515 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3516 domain_remove_one_dev_info(old_domain, pdev);
3517 else
3518 domain_remove_dev_info(old_domain);
3519 }
3520 }
3521
3522 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3523 pdev->devfn);
3524 if (!iommu)
3525 return -ENODEV;
3526
3527 /* check if this iommu agaw is sufficient for max mapped address */
3528 addr_width = agaw_to_width(iommu->agaw);
3529 end = DOMAIN_MAX_ADDR(addr_width);
3530 end = end & VTD_PAGE_MASK;
3531 if (end < dmar_domain->max_addr) {
3532 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3533 "sufficient for the mapped address (%llx)\n",
3534 __func__, iommu->agaw, dmar_domain->max_addr);
3535 return -EFAULT;
3536 }
3537
3538 ret = domain_add_dev_info(dmar_domain, pdev);
3539 if (ret)
3540 return ret;
3541
3542 ret = domain_context_mapping(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
3543 return ret;
3544 }
3545
3546 static void intel_iommu_detach_device(struct iommu_domain *domain,
3547 struct device *dev)
3548 {
3549 struct dmar_domain *dmar_domain = domain->priv;
3550 struct pci_dev *pdev = to_pci_dev(dev);
3551
3552 domain_remove_one_dev_info(dmar_domain, pdev);
3553 }
3554
3555 static int intel_iommu_map_range(struct iommu_domain *domain,
3556 unsigned long iova, phys_addr_t hpa,
3557 size_t size, int iommu_prot)
3558 {
3559 struct dmar_domain *dmar_domain = domain->priv;
3560 u64 max_addr;
3561 int addr_width;
3562 int prot = 0;
3563 int ret;
3564
3565 if (iommu_prot & IOMMU_READ)
3566 prot |= DMA_PTE_READ;
3567 if (iommu_prot & IOMMU_WRITE)
3568 prot |= DMA_PTE_WRITE;
3569 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3570 prot |= DMA_PTE_SNP;
3571
3572 max_addr = iova + size;
3573 if (dmar_domain->max_addr < max_addr) {
3574 int min_agaw;
3575 u64 end;
3576
3577 /* check if minimum agaw is sufficient for mapped address */
3578 min_agaw = vm_domain_min_agaw(dmar_domain);
3579 addr_width = agaw_to_width(min_agaw);
3580 end = DOMAIN_MAX_ADDR(addr_width);
3581 end = end & VTD_PAGE_MASK;
3582 if (end < max_addr) {
3583 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3584 "sufficient for the mapped address (%llx)\n",
3585 __func__, min_agaw, max_addr);
3586 return -EFAULT;
3587 }
3588 dmar_domain->max_addr = max_addr;
3589 }
3590 /* Round up size to next multiple of PAGE_SIZE, if it and
3591 the low bits of hpa would take us onto the next page */
3592 size = aligned_nrpages(hpa, size);
3593 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
3594 hpa >> VTD_PAGE_SHIFT, size, prot);
3595 return ret;
3596 }
3597
3598 static void intel_iommu_unmap_range(struct iommu_domain *domain,
3599 unsigned long iova, size_t size)
3600 {
3601 struct dmar_domain *dmar_domain = domain->priv;
3602
3603 dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
3604 (iova + size - 1) >> VTD_PAGE_SHIFT);
3605
3606 if (dmar_domain->max_addr == iova + size)
3607 dmar_domain->max_addr = iova;
3608 }
3609
3610 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3611 unsigned long iova)
3612 {
3613 struct dmar_domain *dmar_domain = domain->priv;
3614 struct dma_pte *pte;
3615 u64 phys = 0;
3616
3617 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT);
3618 if (pte)
3619 phys = dma_pte_addr(pte);
3620
3621 return phys;
3622 }
3623
3624 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
3625 unsigned long cap)
3626 {
3627 struct dmar_domain *dmar_domain = domain->priv;
3628
3629 if (cap == IOMMU_CAP_CACHE_COHERENCY)
3630 return dmar_domain->iommu_snooping;
3631
3632 return 0;
3633 }
3634
3635 static struct iommu_ops intel_iommu_ops = {
3636 .domain_init = intel_iommu_domain_init,
3637 .domain_destroy = intel_iommu_domain_destroy,
3638 .attach_dev = intel_iommu_attach_device,
3639 .detach_dev = intel_iommu_detach_device,
3640 .map = intel_iommu_map_range,
3641 .unmap = intel_iommu_unmap_range,
3642 .iova_to_phys = intel_iommu_iova_to_phys,
3643 .domain_has_cap = intel_iommu_domain_has_cap,
3644 };
3645
3646 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3647 {
3648 /*
3649 * Mobile 4 Series Chipset neglects to set RWBF capability,
3650 * but needs it:
3651 */
3652 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3653 rwbf_quirk = 1;
3654 }
3655
3656 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
This page took 0.108788 seconds and 5 git commands to generate.