PCI: use pci_is_pcie() in pci core
[deliverable/linux.git] / drivers / pci / intel-iommu.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
22 */
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <linux/tboot.h>
41 #include <linux/dmi.h>
42 #include <asm/cacheflush.h>
43 #include <asm/iommu.h>
44 #include "pci.h"
45
46 #define ROOT_SIZE VTD_PAGE_SIZE
47 #define CONTEXT_SIZE VTD_PAGE_SIZE
48
49 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
50 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
51 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
52
53 #define IOAPIC_RANGE_START (0xfee00000)
54 #define IOAPIC_RANGE_END (0xfeefffff)
55 #define IOVA_START_ADDR (0x1000)
56
57 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
58
59 #define MAX_AGAW_WIDTH 64
60
61 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
62 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
63
64 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
65 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
66 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
67 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
68 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
69
70 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
71 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
72 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
73
74
75 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
76 are never going to work. */
77 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
78 {
79 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
80 }
81
82 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
83 {
84 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
85 }
86 static inline unsigned long page_to_dma_pfn(struct page *pg)
87 {
88 return mm_to_dma_pfn(page_to_pfn(pg));
89 }
90 static inline unsigned long virt_to_dma_pfn(void *p)
91 {
92 return page_to_dma_pfn(virt_to_page(p));
93 }
94
95 /* global iommu list, set NULL for ignored DMAR units */
96 static struct intel_iommu **g_iommus;
97
98 static void __init check_tylersburg_isoch(void);
99 static int rwbf_quirk;
100
101 /*
102 * 0: Present
103 * 1-11: Reserved
104 * 12-63: Context Ptr (12 - (haw-1))
105 * 64-127: Reserved
106 */
107 struct root_entry {
108 u64 val;
109 u64 rsvd1;
110 };
111 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
112 static inline bool root_present(struct root_entry *root)
113 {
114 return (root->val & 1);
115 }
116 static inline void set_root_present(struct root_entry *root)
117 {
118 root->val |= 1;
119 }
120 static inline void set_root_value(struct root_entry *root, unsigned long value)
121 {
122 root->val |= value & VTD_PAGE_MASK;
123 }
124
125 static inline struct context_entry *
126 get_context_addr_from_root(struct root_entry *root)
127 {
128 return (struct context_entry *)
129 (root_present(root)?phys_to_virt(
130 root->val & VTD_PAGE_MASK) :
131 NULL);
132 }
133
134 /*
135 * low 64 bits:
136 * 0: present
137 * 1: fault processing disable
138 * 2-3: translation type
139 * 12-63: address space root
140 * high 64 bits:
141 * 0-2: address width
142 * 3-6: aval
143 * 8-23: domain id
144 */
145 struct context_entry {
146 u64 lo;
147 u64 hi;
148 };
149
150 static inline bool context_present(struct context_entry *context)
151 {
152 return (context->lo & 1);
153 }
154 static inline void context_set_present(struct context_entry *context)
155 {
156 context->lo |= 1;
157 }
158
159 static inline void context_set_fault_enable(struct context_entry *context)
160 {
161 context->lo &= (((u64)-1) << 2) | 1;
162 }
163
164 static inline void context_set_translation_type(struct context_entry *context,
165 unsigned long value)
166 {
167 context->lo &= (((u64)-1) << 4) | 3;
168 context->lo |= (value & 3) << 2;
169 }
170
171 static inline void context_set_address_root(struct context_entry *context,
172 unsigned long value)
173 {
174 context->lo |= value & VTD_PAGE_MASK;
175 }
176
177 static inline void context_set_address_width(struct context_entry *context,
178 unsigned long value)
179 {
180 context->hi |= value & 7;
181 }
182
183 static inline void context_set_domain_id(struct context_entry *context,
184 unsigned long value)
185 {
186 context->hi |= (value & ((1 << 16) - 1)) << 8;
187 }
188
189 static inline void context_clear_entry(struct context_entry *context)
190 {
191 context->lo = 0;
192 context->hi = 0;
193 }
194
195 /*
196 * 0: readable
197 * 1: writable
198 * 2-6: reserved
199 * 7: super page
200 * 8-10: available
201 * 11: snoop behavior
202 * 12-63: Host physcial address
203 */
204 struct dma_pte {
205 u64 val;
206 };
207
208 static inline void dma_clear_pte(struct dma_pte *pte)
209 {
210 pte->val = 0;
211 }
212
213 static inline void dma_set_pte_readable(struct dma_pte *pte)
214 {
215 pte->val |= DMA_PTE_READ;
216 }
217
218 static inline void dma_set_pte_writable(struct dma_pte *pte)
219 {
220 pte->val |= DMA_PTE_WRITE;
221 }
222
223 static inline void dma_set_pte_snp(struct dma_pte *pte)
224 {
225 pte->val |= DMA_PTE_SNP;
226 }
227
228 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
229 {
230 pte->val = (pte->val & ~3) | (prot & 3);
231 }
232
233 static inline u64 dma_pte_addr(struct dma_pte *pte)
234 {
235 #ifdef CONFIG_64BIT
236 return pte->val & VTD_PAGE_MASK;
237 #else
238 /* Must have a full atomic 64-bit read */
239 return __cmpxchg64(pte, 0ULL, 0ULL) & VTD_PAGE_MASK;
240 #endif
241 }
242
243 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
244 {
245 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
246 }
247
248 static inline bool dma_pte_present(struct dma_pte *pte)
249 {
250 return (pte->val & 3) != 0;
251 }
252
253 static inline int first_pte_in_page(struct dma_pte *pte)
254 {
255 return !((unsigned long)pte & ~VTD_PAGE_MASK);
256 }
257
258 /*
259 * This domain is a statically identity mapping domain.
260 * 1. This domain creats a static 1:1 mapping to all usable memory.
261 * 2. It maps to each iommu if successful.
262 * 3. Each iommu mapps to this domain if successful.
263 */
264 static struct dmar_domain *si_domain;
265 static int hw_pass_through = 1;
266
267 /* devices under the same p2p bridge are owned in one domain */
268 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
269
270 /* domain represents a virtual machine, more than one devices
271 * across iommus may be owned in one domain, e.g. kvm guest.
272 */
273 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
274
275 /* si_domain contains mulitple devices */
276 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
277
278 struct dmar_domain {
279 int id; /* domain id */
280 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
281
282 struct list_head devices; /* all devices' list */
283 struct iova_domain iovad; /* iova's that belong to this domain */
284
285 struct dma_pte *pgd; /* virtual address */
286 int gaw; /* max guest address width */
287
288 /* adjusted guest address width, 0 is level 2 30-bit */
289 int agaw;
290
291 int flags; /* flags to find out type of domain */
292
293 int iommu_coherency;/* indicate coherency of iommu access */
294 int iommu_snooping; /* indicate snooping control feature*/
295 int iommu_count; /* reference count of iommu */
296 spinlock_t iommu_lock; /* protect iommu set in domain */
297 u64 max_addr; /* maximum mapped address */
298 };
299
300 /* PCI domain-device relationship */
301 struct device_domain_info {
302 struct list_head link; /* link to domain siblings */
303 struct list_head global; /* link to global list */
304 int segment; /* PCI domain */
305 u8 bus; /* PCI bus number */
306 u8 devfn; /* PCI devfn number */
307 struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
308 struct intel_iommu *iommu; /* IOMMU used by this device */
309 struct dmar_domain *domain; /* pointer to domain */
310 };
311
312 static void flush_unmaps_timeout(unsigned long data);
313
314 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
315
316 #define HIGH_WATER_MARK 250
317 struct deferred_flush_tables {
318 int next;
319 struct iova *iova[HIGH_WATER_MARK];
320 struct dmar_domain *domain[HIGH_WATER_MARK];
321 };
322
323 static struct deferred_flush_tables *deferred_flush;
324
325 /* bitmap for indexing intel_iommus */
326 static int g_num_of_iommus;
327
328 static DEFINE_SPINLOCK(async_umap_flush_lock);
329 static LIST_HEAD(unmaps_to_do);
330
331 static int timer_on;
332 static long list_size;
333
334 static void domain_remove_dev_info(struct dmar_domain *domain);
335
336 #ifdef CONFIG_DMAR_DEFAULT_ON
337 int dmar_disabled = 0;
338 #else
339 int dmar_disabled = 1;
340 #endif /*CONFIG_DMAR_DEFAULT_ON*/
341
342 static int __initdata dmar_map_gfx = 1;
343 static int dmar_forcedac;
344 static int intel_iommu_strict;
345
346 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
347 static DEFINE_SPINLOCK(device_domain_lock);
348 static LIST_HEAD(device_domain_list);
349
350 static struct iommu_ops intel_iommu_ops;
351
352 static int __init intel_iommu_setup(char *str)
353 {
354 if (!str)
355 return -EINVAL;
356 while (*str) {
357 if (!strncmp(str, "on", 2)) {
358 dmar_disabled = 0;
359 printk(KERN_INFO "Intel-IOMMU: enabled\n");
360 } else if (!strncmp(str, "off", 3)) {
361 dmar_disabled = 1;
362 printk(KERN_INFO "Intel-IOMMU: disabled\n");
363 } else if (!strncmp(str, "igfx_off", 8)) {
364 dmar_map_gfx = 0;
365 printk(KERN_INFO
366 "Intel-IOMMU: disable GFX device mapping\n");
367 } else if (!strncmp(str, "forcedac", 8)) {
368 printk(KERN_INFO
369 "Intel-IOMMU: Forcing DAC for PCI devices\n");
370 dmar_forcedac = 1;
371 } else if (!strncmp(str, "strict", 6)) {
372 printk(KERN_INFO
373 "Intel-IOMMU: disable batched IOTLB flush\n");
374 intel_iommu_strict = 1;
375 }
376
377 str += strcspn(str, ",");
378 while (*str == ',')
379 str++;
380 }
381 return 0;
382 }
383 __setup("intel_iommu=", intel_iommu_setup);
384
385 static struct kmem_cache *iommu_domain_cache;
386 static struct kmem_cache *iommu_devinfo_cache;
387 static struct kmem_cache *iommu_iova_cache;
388
389 static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
390 {
391 unsigned int flags;
392 void *vaddr;
393
394 /* trying to avoid low memory issues */
395 flags = current->flags & PF_MEMALLOC;
396 current->flags |= PF_MEMALLOC;
397 vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
398 current->flags &= (~PF_MEMALLOC | flags);
399 return vaddr;
400 }
401
402
403 static inline void *alloc_pgtable_page(void)
404 {
405 unsigned int flags;
406 void *vaddr;
407
408 /* trying to avoid low memory issues */
409 flags = current->flags & PF_MEMALLOC;
410 current->flags |= PF_MEMALLOC;
411 vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
412 current->flags &= (~PF_MEMALLOC | flags);
413 return vaddr;
414 }
415
416 static inline void free_pgtable_page(void *vaddr)
417 {
418 free_page((unsigned long)vaddr);
419 }
420
421 static inline void *alloc_domain_mem(void)
422 {
423 return iommu_kmem_cache_alloc(iommu_domain_cache);
424 }
425
426 static void free_domain_mem(void *vaddr)
427 {
428 kmem_cache_free(iommu_domain_cache, vaddr);
429 }
430
431 static inline void * alloc_devinfo_mem(void)
432 {
433 return iommu_kmem_cache_alloc(iommu_devinfo_cache);
434 }
435
436 static inline void free_devinfo_mem(void *vaddr)
437 {
438 kmem_cache_free(iommu_devinfo_cache, vaddr);
439 }
440
441 struct iova *alloc_iova_mem(void)
442 {
443 return iommu_kmem_cache_alloc(iommu_iova_cache);
444 }
445
446 void free_iova_mem(struct iova *iova)
447 {
448 kmem_cache_free(iommu_iova_cache, iova);
449 }
450
451
452 static inline int width_to_agaw(int width);
453
454 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
455 {
456 unsigned long sagaw;
457 int agaw = -1;
458
459 sagaw = cap_sagaw(iommu->cap);
460 for (agaw = width_to_agaw(max_gaw);
461 agaw >= 0; agaw--) {
462 if (test_bit(agaw, &sagaw))
463 break;
464 }
465
466 return agaw;
467 }
468
469 /*
470 * Calculate max SAGAW for each iommu.
471 */
472 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
473 {
474 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
475 }
476
477 /*
478 * calculate agaw for each iommu.
479 * "SAGAW" may be different across iommus, use a default agaw, and
480 * get a supported less agaw for iommus that don't support the default agaw.
481 */
482 int iommu_calculate_agaw(struct intel_iommu *iommu)
483 {
484 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
485 }
486
487 /* This functionin only returns single iommu in a domain */
488 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
489 {
490 int iommu_id;
491
492 /* si_domain and vm domain should not get here. */
493 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
494 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
495
496 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
497 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
498 return NULL;
499
500 return g_iommus[iommu_id];
501 }
502
503 static void domain_update_iommu_coherency(struct dmar_domain *domain)
504 {
505 int i;
506
507 domain->iommu_coherency = 1;
508
509 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
510 for (; i < g_num_of_iommus; ) {
511 if (!ecap_coherent(g_iommus[i]->ecap)) {
512 domain->iommu_coherency = 0;
513 break;
514 }
515 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
516 }
517 }
518
519 static void domain_update_iommu_snooping(struct dmar_domain *domain)
520 {
521 int i;
522
523 domain->iommu_snooping = 1;
524
525 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
526 for (; i < g_num_of_iommus; ) {
527 if (!ecap_sc_support(g_iommus[i]->ecap)) {
528 domain->iommu_snooping = 0;
529 break;
530 }
531 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
532 }
533 }
534
535 /* Some capabilities may be different across iommus */
536 static void domain_update_iommu_cap(struct dmar_domain *domain)
537 {
538 domain_update_iommu_coherency(domain);
539 domain_update_iommu_snooping(domain);
540 }
541
542 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
543 {
544 struct dmar_drhd_unit *drhd = NULL;
545 int i;
546
547 for_each_drhd_unit(drhd) {
548 if (drhd->ignored)
549 continue;
550 if (segment != drhd->segment)
551 continue;
552
553 for (i = 0; i < drhd->devices_cnt; i++) {
554 if (drhd->devices[i] &&
555 drhd->devices[i]->bus->number == bus &&
556 drhd->devices[i]->devfn == devfn)
557 return drhd->iommu;
558 if (drhd->devices[i] &&
559 drhd->devices[i]->subordinate &&
560 drhd->devices[i]->subordinate->number <= bus &&
561 drhd->devices[i]->subordinate->subordinate >= bus)
562 return drhd->iommu;
563 }
564
565 if (drhd->include_all)
566 return drhd->iommu;
567 }
568
569 return NULL;
570 }
571
572 static void domain_flush_cache(struct dmar_domain *domain,
573 void *addr, int size)
574 {
575 if (!domain->iommu_coherency)
576 clflush_cache_range(addr, size);
577 }
578
579 /* Gets context entry for a given bus and devfn */
580 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
581 u8 bus, u8 devfn)
582 {
583 struct root_entry *root;
584 struct context_entry *context;
585 unsigned long phy_addr;
586 unsigned long flags;
587
588 spin_lock_irqsave(&iommu->lock, flags);
589 root = &iommu->root_entry[bus];
590 context = get_context_addr_from_root(root);
591 if (!context) {
592 context = (struct context_entry *)alloc_pgtable_page();
593 if (!context) {
594 spin_unlock_irqrestore(&iommu->lock, flags);
595 return NULL;
596 }
597 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
598 phy_addr = virt_to_phys((void *)context);
599 set_root_value(root, phy_addr);
600 set_root_present(root);
601 __iommu_flush_cache(iommu, root, sizeof(*root));
602 }
603 spin_unlock_irqrestore(&iommu->lock, flags);
604 return &context[devfn];
605 }
606
607 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
608 {
609 struct root_entry *root;
610 struct context_entry *context;
611 int ret;
612 unsigned long flags;
613
614 spin_lock_irqsave(&iommu->lock, flags);
615 root = &iommu->root_entry[bus];
616 context = get_context_addr_from_root(root);
617 if (!context) {
618 ret = 0;
619 goto out;
620 }
621 ret = context_present(&context[devfn]);
622 out:
623 spin_unlock_irqrestore(&iommu->lock, flags);
624 return ret;
625 }
626
627 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
628 {
629 struct root_entry *root;
630 struct context_entry *context;
631 unsigned long flags;
632
633 spin_lock_irqsave(&iommu->lock, flags);
634 root = &iommu->root_entry[bus];
635 context = get_context_addr_from_root(root);
636 if (context) {
637 context_clear_entry(&context[devfn]);
638 __iommu_flush_cache(iommu, &context[devfn], \
639 sizeof(*context));
640 }
641 spin_unlock_irqrestore(&iommu->lock, flags);
642 }
643
644 static void free_context_table(struct intel_iommu *iommu)
645 {
646 struct root_entry *root;
647 int i;
648 unsigned long flags;
649 struct context_entry *context;
650
651 spin_lock_irqsave(&iommu->lock, flags);
652 if (!iommu->root_entry) {
653 goto out;
654 }
655 for (i = 0; i < ROOT_ENTRY_NR; i++) {
656 root = &iommu->root_entry[i];
657 context = get_context_addr_from_root(root);
658 if (context)
659 free_pgtable_page(context);
660 }
661 free_pgtable_page(iommu->root_entry);
662 iommu->root_entry = NULL;
663 out:
664 spin_unlock_irqrestore(&iommu->lock, flags);
665 }
666
667 /* page table handling */
668 #define LEVEL_STRIDE (9)
669 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
670
671 static inline int agaw_to_level(int agaw)
672 {
673 return agaw + 2;
674 }
675
676 static inline int agaw_to_width(int agaw)
677 {
678 return 30 + agaw * LEVEL_STRIDE;
679
680 }
681
682 static inline int width_to_agaw(int width)
683 {
684 return (width - 30) / LEVEL_STRIDE;
685 }
686
687 static inline unsigned int level_to_offset_bits(int level)
688 {
689 return (level - 1) * LEVEL_STRIDE;
690 }
691
692 static inline int pfn_level_offset(unsigned long pfn, int level)
693 {
694 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
695 }
696
697 static inline unsigned long level_mask(int level)
698 {
699 return -1UL << level_to_offset_bits(level);
700 }
701
702 static inline unsigned long level_size(int level)
703 {
704 return 1UL << level_to_offset_bits(level);
705 }
706
707 static inline unsigned long align_to_level(unsigned long pfn, int level)
708 {
709 return (pfn + level_size(level) - 1) & level_mask(level);
710 }
711
712 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
713 unsigned long pfn)
714 {
715 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
716 struct dma_pte *parent, *pte = NULL;
717 int level = agaw_to_level(domain->agaw);
718 int offset;
719
720 BUG_ON(!domain->pgd);
721 BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
722 parent = domain->pgd;
723
724 while (level > 0) {
725 void *tmp_page;
726
727 offset = pfn_level_offset(pfn, level);
728 pte = &parent[offset];
729 if (level == 1)
730 break;
731
732 if (!dma_pte_present(pte)) {
733 uint64_t pteval;
734
735 tmp_page = alloc_pgtable_page();
736
737 if (!tmp_page)
738 return NULL;
739
740 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
741 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
742 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
743 /* Someone else set it while we were thinking; use theirs. */
744 free_pgtable_page(tmp_page);
745 } else {
746 dma_pte_addr(pte);
747 domain_flush_cache(domain, pte, sizeof(*pte));
748 }
749 }
750 parent = phys_to_virt(dma_pte_addr(pte));
751 level--;
752 }
753
754 return pte;
755 }
756
757 /* return address's pte at specific level */
758 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
759 unsigned long pfn,
760 int level)
761 {
762 struct dma_pte *parent, *pte = NULL;
763 int total = agaw_to_level(domain->agaw);
764 int offset;
765
766 parent = domain->pgd;
767 while (level <= total) {
768 offset = pfn_level_offset(pfn, total);
769 pte = &parent[offset];
770 if (level == total)
771 return pte;
772
773 if (!dma_pte_present(pte))
774 break;
775 parent = phys_to_virt(dma_pte_addr(pte));
776 total--;
777 }
778 return NULL;
779 }
780
781 /* clear last level pte, a tlb flush should be followed */
782 static void dma_pte_clear_range(struct dmar_domain *domain,
783 unsigned long start_pfn,
784 unsigned long last_pfn)
785 {
786 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
787 struct dma_pte *first_pte, *pte;
788
789 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
790 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
791 BUG_ON(start_pfn > last_pfn);
792
793 /* we don't need lock here; nobody else touches the iova range */
794 do {
795 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1);
796 if (!pte) {
797 start_pfn = align_to_level(start_pfn + 1, 2);
798 continue;
799 }
800 do {
801 dma_clear_pte(pte);
802 start_pfn++;
803 pte++;
804 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
805
806 domain_flush_cache(domain, first_pte,
807 (void *)pte - (void *)first_pte);
808
809 } while (start_pfn && start_pfn <= last_pfn);
810 }
811
812 /* free page table pages. last level pte should already be cleared */
813 static void dma_pte_free_pagetable(struct dmar_domain *domain,
814 unsigned long start_pfn,
815 unsigned long last_pfn)
816 {
817 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
818 struct dma_pte *first_pte, *pte;
819 int total = agaw_to_level(domain->agaw);
820 int level;
821 unsigned long tmp;
822
823 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
824 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
825 BUG_ON(start_pfn > last_pfn);
826
827 /* We don't need lock here; nobody else touches the iova range */
828 level = 2;
829 while (level <= total) {
830 tmp = align_to_level(start_pfn, level);
831
832 /* If we can't even clear one PTE at this level, we're done */
833 if (tmp + level_size(level) - 1 > last_pfn)
834 return;
835
836 do {
837 first_pte = pte = dma_pfn_level_pte(domain, tmp, level);
838 if (!pte) {
839 tmp = align_to_level(tmp + 1, level + 1);
840 continue;
841 }
842 do {
843 if (dma_pte_present(pte)) {
844 free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
845 dma_clear_pte(pte);
846 }
847 pte++;
848 tmp += level_size(level);
849 } while (!first_pte_in_page(pte) &&
850 tmp + level_size(level) - 1 <= last_pfn);
851
852 domain_flush_cache(domain, first_pte,
853 (void *)pte - (void *)first_pte);
854
855 } while (tmp && tmp + level_size(level) - 1 <= last_pfn);
856 level++;
857 }
858 /* free pgd */
859 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
860 free_pgtable_page(domain->pgd);
861 domain->pgd = NULL;
862 }
863 }
864
865 /* iommu handling */
866 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
867 {
868 struct root_entry *root;
869 unsigned long flags;
870
871 root = (struct root_entry *)alloc_pgtable_page();
872 if (!root)
873 return -ENOMEM;
874
875 __iommu_flush_cache(iommu, root, ROOT_SIZE);
876
877 spin_lock_irqsave(&iommu->lock, flags);
878 iommu->root_entry = root;
879 spin_unlock_irqrestore(&iommu->lock, flags);
880
881 return 0;
882 }
883
884 static void iommu_set_root_entry(struct intel_iommu *iommu)
885 {
886 void *addr;
887 u32 sts;
888 unsigned long flag;
889
890 addr = iommu->root_entry;
891
892 spin_lock_irqsave(&iommu->register_lock, flag);
893 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
894
895 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
896
897 /* Make sure hardware complete it */
898 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
899 readl, (sts & DMA_GSTS_RTPS), sts);
900
901 spin_unlock_irqrestore(&iommu->register_lock, flag);
902 }
903
904 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
905 {
906 u32 val;
907 unsigned long flag;
908
909 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
910 return;
911
912 spin_lock_irqsave(&iommu->register_lock, flag);
913 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
914
915 /* Make sure hardware complete it */
916 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
917 readl, (!(val & DMA_GSTS_WBFS)), val);
918
919 spin_unlock_irqrestore(&iommu->register_lock, flag);
920 }
921
922 /* return value determine if we need a write buffer flush */
923 static void __iommu_flush_context(struct intel_iommu *iommu,
924 u16 did, u16 source_id, u8 function_mask,
925 u64 type)
926 {
927 u64 val = 0;
928 unsigned long flag;
929
930 switch (type) {
931 case DMA_CCMD_GLOBAL_INVL:
932 val = DMA_CCMD_GLOBAL_INVL;
933 break;
934 case DMA_CCMD_DOMAIN_INVL:
935 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
936 break;
937 case DMA_CCMD_DEVICE_INVL:
938 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
939 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
940 break;
941 default:
942 BUG();
943 }
944 val |= DMA_CCMD_ICC;
945
946 spin_lock_irqsave(&iommu->register_lock, flag);
947 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
948
949 /* Make sure hardware complete it */
950 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
951 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
952
953 spin_unlock_irqrestore(&iommu->register_lock, flag);
954 }
955
956 /* return value determine if we need a write buffer flush */
957 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
958 u64 addr, unsigned int size_order, u64 type)
959 {
960 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
961 u64 val = 0, val_iva = 0;
962 unsigned long flag;
963
964 switch (type) {
965 case DMA_TLB_GLOBAL_FLUSH:
966 /* global flush doesn't need set IVA_REG */
967 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
968 break;
969 case DMA_TLB_DSI_FLUSH:
970 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
971 break;
972 case DMA_TLB_PSI_FLUSH:
973 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
974 /* Note: always flush non-leaf currently */
975 val_iva = size_order | addr;
976 break;
977 default:
978 BUG();
979 }
980 /* Note: set drain read/write */
981 #if 0
982 /*
983 * This is probably to be super secure.. Looks like we can
984 * ignore it without any impact.
985 */
986 if (cap_read_drain(iommu->cap))
987 val |= DMA_TLB_READ_DRAIN;
988 #endif
989 if (cap_write_drain(iommu->cap))
990 val |= DMA_TLB_WRITE_DRAIN;
991
992 spin_lock_irqsave(&iommu->register_lock, flag);
993 /* Note: Only uses first TLB reg currently */
994 if (val_iva)
995 dmar_writeq(iommu->reg + tlb_offset, val_iva);
996 dmar_writeq(iommu->reg + tlb_offset + 8, val);
997
998 /* Make sure hardware complete it */
999 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1000 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1001
1002 spin_unlock_irqrestore(&iommu->register_lock, flag);
1003
1004 /* check IOTLB invalidation granularity */
1005 if (DMA_TLB_IAIG(val) == 0)
1006 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1007 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1008 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1009 (unsigned long long)DMA_TLB_IIRG(type),
1010 (unsigned long long)DMA_TLB_IAIG(val));
1011 }
1012
1013 static struct device_domain_info *iommu_support_dev_iotlb(
1014 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1015 {
1016 int found = 0;
1017 unsigned long flags;
1018 struct device_domain_info *info;
1019 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1020
1021 if (!ecap_dev_iotlb_support(iommu->ecap))
1022 return NULL;
1023
1024 if (!iommu->qi)
1025 return NULL;
1026
1027 spin_lock_irqsave(&device_domain_lock, flags);
1028 list_for_each_entry(info, &domain->devices, link)
1029 if (info->bus == bus && info->devfn == devfn) {
1030 found = 1;
1031 break;
1032 }
1033 spin_unlock_irqrestore(&device_domain_lock, flags);
1034
1035 if (!found || !info->dev)
1036 return NULL;
1037
1038 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1039 return NULL;
1040
1041 if (!dmar_find_matched_atsr_unit(info->dev))
1042 return NULL;
1043
1044 info->iommu = iommu;
1045
1046 return info;
1047 }
1048
1049 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1050 {
1051 if (!info)
1052 return;
1053
1054 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1055 }
1056
1057 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1058 {
1059 if (!info->dev || !pci_ats_enabled(info->dev))
1060 return;
1061
1062 pci_disable_ats(info->dev);
1063 }
1064
1065 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1066 u64 addr, unsigned mask)
1067 {
1068 u16 sid, qdep;
1069 unsigned long flags;
1070 struct device_domain_info *info;
1071
1072 spin_lock_irqsave(&device_domain_lock, flags);
1073 list_for_each_entry(info, &domain->devices, link) {
1074 if (!info->dev || !pci_ats_enabled(info->dev))
1075 continue;
1076
1077 sid = info->bus << 8 | info->devfn;
1078 qdep = pci_ats_queue_depth(info->dev);
1079 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1080 }
1081 spin_unlock_irqrestore(&device_domain_lock, flags);
1082 }
1083
1084 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1085 unsigned long pfn, unsigned int pages)
1086 {
1087 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1088 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1089
1090 BUG_ON(pages == 0);
1091
1092 /*
1093 * Fallback to domain selective flush if no PSI support or the size is
1094 * too big.
1095 * PSI requires page size to be 2 ^ x, and the base address is naturally
1096 * aligned to the size
1097 */
1098 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1099 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1100 DMA_TLB_DSI_FLUSH);
1101 else
1102 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1103 DMA_TLB_PSI_FLUSH);
1104
1105 /*
1106 * In caching mode, domain ID 0 is reserved for non-present to present
1107 * mapping flush. Device IOTLB doesn't need to be flushed in this case.
1108 */
1109 if (!cap_caching_mode(iommu->cap) || did)
1110 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1111 }
1112
1113 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1114 {
1115 u32 pmen;
1116 unsigned long flags;
1117
1118 spin_lock_irqsave(&iommu->register_lock, flags);
1119 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1120 pmen &= ~DMA_PMEN_EPM;
1121 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1122
1123 /* wait for the protected region status bit to clear */
1124 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1125 readl, !(pmen & DMA_PMEN_PRS), pmen);
1126
1127 spin_unlock_irqrestore(&iommu->register_lock, flags);
1128 }
1129
1130 static int iommu_enable_translation(struct intel_iommu *iommu)
1131 {
1132 u32 sts;
1133 unsigned long flags;
1134
1135 spin_lock_irqsave(&iommu->register_lock, flags);
1136 iommu->gcmd |= DMA_GCMD_TE;
1137 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1138
1139 /* Make sure hardware complete it */
1140 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1141 readl, (sts & DMA_GSTS_TES), sts);
1142
1143 spin_unlock_irqrestore(&iommu->register_lock, flags);
1144 return 0;
1145 }
1146
1147 static int iommu_disable_translation(struct intel_iommu *iommu)
1148 {
1149 u32 sts;
1150 unsigned long flag;
1151
1152 spin_lock_irqsave(&iommu->register_lock, flag);
1153 iommu->gcmd &= ~DMA_GCMD_TE;
1154 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1155
1156 /* Make sure hardware complete it */
1157 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1158 readl, (!(sts & DMA_GSTS_TES)), sts);
1159
1160 spin_unlock_irqrestore(&iommu->register_lock, flag);
1161 return 0;
1162 }
1163
1164
1165 static int iommu_init_domains(struct intel_iommu *iommu)
1166 {
1167 unsigned long ndomains;
1168 unsigned long nlongs;
1169
1170 ndomains = cap_ndoms(iommu->cap);
1171 pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1172 nlongs = BITS_TO_LONGS(ndomains);
1173
1174 spin_lock_init(&iommu->lock);
1175
1176 /* TBD: there might be 64K domains,
1177 * consider other allocation for future chip
1178 */
1179 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1180 if (!iommu->domain_ids) {
1181 printk(KERN_ERR "Allocating domain id array failed\n");
1182 return -ENOMEM;
1183 }
1184 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1185 GFP_KERNEL);
1186 if (!iommu->domains) {
1187 printk(KERN_ERR "Allocating domain array failed\n");
1188 return -ENOMEM;
1189 }
1190
1191 /*
1192 * if Caching mode is set, then invalid translations are tagged
1193 * with domainid 0. Hence we need to pre-allocate it.
1194 */
1195 if (cap_caching_mode(iommu->cap))
1196 set_bit(0, iommu->domain_ids);
1197 return 0;
1198 }
1199
1200
1201 static void domain_exit(struct dmar_domain *domain);
1202 static void vm_domain_exit(struct dmar_domain *domain);
1203
1204 void free_dmar_iommu(struct intel_iommu *iommu)
1205 {
1206 struct dmar_domain *domain;
1207 int i;
1208 unsigned long flags;
1209
1210 if ((iommu->domains) && (iommu->domain_ids)) {
1211 i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1212 for (; i < cap_ndoms(iommu->cap); ) {
1213 domain = iommu->domains[i];
1214 clear_bit(i, iommu->domain_ids);
1215
1216 spin_lock_irqsave(&domain->iommu_lock, flags);
1217 if (--domain->iommu_count == 0) {
1218 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1219 vm_domain_exit(domain);
1220 else
1221 domain_exit(domain);
1222 }
1223 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1224
1225 i = find_next_bit(iommu->domain_ids,
1226 cap_ndoms(iommu->cap), i+1);
1227 }
1228 }
1229
1230 if (iommu->gcmd & DMA_GCMD_TE)
1231 iommu_disable_translation(iommu);
1232
1233 if (iommu->irq) {
1234 set_irq_data(iommu->irq, NULL);
1235 /* This will mask the irq */
1236 free_irq(iommu->irq, iommu);
1237 destroy_irq(iommu->irq);
1238 }
1239
1240 kfree(iommu->domains);
1241 kfree(iommu->domain_ids);
1242
1243 g_iommus[iommu->seq_id] = NULL;
1244
1245 /* if all iommus are freed, free g_iommus */
1246 for (i = 0; i < g_num_of_iommus; i++) {
1247 if (g_iommus[i])
1248 break;
1249 }
1250
1251 if (i == g_num_of_iommus)
1252 kfree(g_iommus);
1253
1254 /* free context mapping */
1255 free_context_table(iommu);
1256 }
1257
1258 static struct dmar_domain *alloc_domain(void)
1259 {
1260 struct dmar_domain *domain;
1261
1262 domain = alloc_domain_mem();
1263 if (!domain)
1264 return NULL;
1265
1266 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1267 domain->flags = 0;
1268
1269 return domain;
1270 }
1271
1272 static int iommu_attach_domain(struct dmar_domain *domain,
1273 struct intel_iommu *iommu)
1274 {
1275 int num;
1276 unsigned long ndomains;
1277 unsigned long flags;
1278
1279 ndomains = cap_ndoms(iommu->cap);
1280
1281 spin_lock_irqsave(&iommu->lock, flags);
1282
1283 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1284 if (num >= ndomains) {
1285 spin_unlock_irqrestore(&iommu->lock, flags);
1286 printk(KERN_ERR "IOMMU: no free domain ids\n");
1287 return -ENOMEM;
1288 }
1289
1290 domain->id = num;
1291 set_bit(num, iommu->domain_ids);
1292 set_bit(iommu->seq_id, &domain->iommu_bmp);
1293 iommu->domains[num] = domain;
1294 spin_unlock_irqrestore(&iommu->lock, flags);
1295
1296 return 0;
1297 }
1298
1299 static void iommu_detach_domain(struct dmar_domain *domain,
1300 struct intel_iommu *iommu)
1301 {
1302 unsigned long flags;
1303 int num, ndomains;
1304 int found = 0;
1305
1306 spin_lock_irqsave(&iommu->lock, flags);
1307 ndomains = cap_ndoms(iommu->cap);
1308 num = find_first_bit(iommu->domain_ids, ndomains);
1309 for (; num < ndomains; ) {
1310 if (iommu->domains[num] == domain) {
1311 found = 1;
1312 break;
1313 }
1314 num = find_next_bit(iommu->domain_ids,
1315 cap_ndoms(iommu->cap), num+1);
1316 }
1317
1318 if (found) {
1319 clear_bit(num, iommu->domain_ids);
1320 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1321 iommu->domains[num] = NULL;
1322 }
1323 spin_unlock_irqrestore(&iommu->lock, flags);
1324 }
1325
1326 static struct iova_domain reserved_iova_list;
1327 static struct lock_class_key reserved_rbtree_key;
1328
1329 static void dmar_init_reserved_ranges(void)
1330 {
1331 struct pci_dev *pdev = NULL;
1332 struct iova *iova;
1333 int i;
1334
1335 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1336
1337 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1338 &reserved_rbtree_key);
1339
1340 /* IOAPIC ranges shouldn't be accessed by DMA */
1341 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1342 IOVA_PFN(IOAPIC_RANGE_END));
1343 if (!iova)
1344 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1345
1346 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1347 for_each_pci_dev(pdev) {
1348 struct resource *r;
1349
1350 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1351 r = &pdev->resource[i];
1352 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1353 continue;
1354 iova = reserve_iova(&reserved_iova_list,
1355 IOVA_PFN(r->start),
1356 IOVA_PFN(r->end));
1357 if (!iova)
1358 printk(KERN_ERR "Reserve iova failed\n");
1359 }
1360 }
1361
1362 }
1363
1364 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1365 {
1366 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1367 }
1368
1369 static inline int guestwidth_to_adjustwidth(int gaw)
1370 {
1371 int agaw;
1372 int r = (gaw - 12) % 9;
1373
1374 if (r == 0)
1375 agaw = gaw;
1376 else
1377 agaw = gaw + 9 - r;
1378 if (agaw > 64)
1379 agaw = 64;
1380 return agaw;
1381 }
1382
1383 static int domain_init(struct dmar_domain *domain, int guest_width)
1384 {
1385 struct intel_iommu *iommu;
1386 int adjust_width, agaw;
1387 unsigned long sagaw;
1388
1389 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1390 spin_lock_init(&domain->iommu_lock);
1391
1392 domain_reserve_special_ranges(domain);
1393
1394 /* calculate AGAW */
1395 iommu = domain_get_iommu(domain);
1396 if (guest_width > cap_mgaw(iommu->cap))
1397 guest_width = cap_mgaw(iommu->cap);
1398 domain->gaw = guest_width;
1399 adjust_width = guestwidth_to_adjustwidth(guest_width);
1400 agaw = width_to_agaw(adjust_width);
1401 sagaw = cap_sagaw(iommu->cap);
1402 if (!test_bit(agaw, &sagaw)) {
1403 /* hardware doesn't support it, choose a bigger one */
1404 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1405 agaw = find_next_bit(&sagaw, 5, agaw);
1406 if (agaw >= 5)
1407 return -ENODEV;
1408 }
1409 domain->agaw = agaw;
1410 INIT_LIST_HEAD(&domain->devices);
1411
1412 if (ecap_coherent(iommu->ecap))
1413 domain->iommu_coherency = 1;
1414 else
1415 domain->iommu_coherency = 0;
1416
1417 if (ecap_sc_support(iommu->ecap))
1418 domain->iommu_snooping = 1;
1419 else
1420 domain->iommu_snooping = 0;
1421
1422 domain->iommu_count = 1;
1423
1424 /* always allocate the top pgd */
1425 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1426 if (!domain->pgd)
1427 return -ENOMEM;
1428 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1429 return 0;
1430 }
1431
1432 static void domain_exit(struct dmar_domain *domain)
1433 {
1434 struct dmar_drhd_unit *drhd;
1435 struct intel_iommu *iommu;
1436
1437 /* Domain 0 is reserved, so dont process it */
1438 if (!domain)
1439 return;
1440
1441 domain_remove_dev_info(domain);
1442 /* destroy iovas */
1443 put_iova_domain(&domain->iovad);
1444
1445 /* clear ptes */
1446 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1447
1448 /* free page tables */
1449 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1450
1451 for_each_active_iommu(iommu, drhd)
1452 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1453 iommu_detach_domain(domain, iommu);
1454
1455 free_domain_mem(domain);
1456 }
1457
1458 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1459 u8 bus, u8 devfn, int translation)
1460 {
1461 struct context_entry *context;
1462 unsigned long flags;
1463 struct intel_iommu *iommu;
1464 struct dma_pte *pgd;
1465 unsigned long num;
1466 unsigned long ndomains;
1467 int id;
1468 int agaw;
1469 struct device_domain_info *info = NULL;
1470
1471 pr_debug("Set context mapping for %02x:%02x.%d\n",
1472 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1473
1474 BUG_ON(!domain->pgd);
1475 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1476 translation != CONTEXT_TT_MULTI_LEVEL);
1477
1478 iommu = device_to_iommu(segment, bus, devfn);
1479 if (!iommu)
1480 return -ENODEV;
1481
1482 context = device_to_context_entry(iommu, bus, devfn);
1483 if (!context)
1484 return -ENOMEM;
1485 spin_lock_irqsave(&iommu->lock, flags);
1486 if (context_present(context)) {
1487 spin_unlock_irqrestore(&iommu->lock, flags);
1488 return 0;
1489 }
1490
1491 id = domain->id;
1492 pgd = domain->pgd;
1493
1494 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1495 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1496 int found = 0;
1497
1498 /* find an available domain id for this device in iommu */
1499 ndomains = cap_ndoms(iommu->cap);
1500 num = find_first_bit(iommu->domain_ids, ndomains);
1501 for (; num < ndomains; ) {
1502 if (iommu->domains[num] == domain) {
1503 id = num;
1504 found = 1;
1505 break;
1506 }
1507 num = find_next_bit(iommu->domain_ids,
1508 cap_ndoms(iommu->cap), num+1);
1509 }
1510
1511 if (found == 0) {
1512 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1513 if (num >= ndomains) {
1514 spin_unlock_irqrestore(&iommu->lock, flags);
1515 printk(KERN_ERR "IOMMU: no free domain ids\n");
1516 return -EFAULT;
1517 }
1518
1519 set_bit(num, iommu->domain_ids);
1520 iommu->domains[num] = domain;
1521 id = num;
1522 }
1523
1524 /* Skip top levels of page tables for
1525 * iommu which has less agaw than default.
1526 */
1527 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1528 pgd = phys_to_virt(dma_pte_addr(pgd));
1529 if (!dma_pte_present(pgd)) {
1530 spin_unlock_irqrestore(&iommu->lock, flags);
1531 return -ENOMEM;
1532 }
1533 }
1534 }
1535
1536 context_set_domain_id(context, id);
1537
1538 if (translation != CONTEXT_TT_PASS_THROUGH) {
1539 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1540 translation = info ? CONTEXT_TT_DEV_IOTLB :
1541 CONTEXT_TT_MULTI_LEVEL;
1542 }
1543 /*
1544 * In pass through mode, AW must be programmed to indicate the largest
1545 * AGAW value supported by hardware. And ASR is ignored by hardware.
1546 */
1547 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1548 context_set_address_width(context, iommu->msagaw);
1549 else {
1550 context_set_address_root(context, virt_to_phys(pgd));
1551 context_set_address_width(context, iommu->agaw);
1552 }
1553
1554 context_set_translation_type(context, translation);
1555 context_set_fault_enable(context);
1556 context_set_present(context);
1557 domain_flush_cache(domain, context, sizeof(*context));
1558
1559 /*
1560 * It's a non-present to present mapping. If hardware doesn't cache
1561 * non-present entry we only need to flush the write-buffer. If the
1562 * _does_ cache non-present entries, then it does so in the special
1563 * domain #0, which we have to flush:
1564 */
1565 if (cap_caching_mode(iommu->cap)) {
1566 iommu->flush.flush_context(iommu, 0,
1567 (((u16)bus) << 8) | devfn,
1568 DMA_CCMD_MASK_NOBIT,
1569 DMA_CCMD_DEVICE_INVL);
1570 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH);
1571 } else {
1572 iommu_flush_write_buffer(iommu);
1573 }
1574 iommu_enable_dev_iotlb(info);
1575 spin_unlock_irqrestore(&iommu->lock, flags);
1576
1577 spin_lock_irqsave(&domain->iommu_lock, flags);
1578 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1579 domain->iommu_count++;
1580 domain_update_iommu_cap(domain);
1581 }
1582 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1583 return 0;
1584 }
1585
1586 static int
1587 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1588 int translation)
1589 {
1590 int ret;
1591 struct pci_dev *tmp, *parent;
1592
1593 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1594 pdev->bus->number, pdev->devfn,
1595 translation);
1596 if (ret)
1597 return ret;
1598
1599 /* dependent device mapping */
1600 tmp = pci_find_upstream_pcie_bridge(pdev);
1601 if (!tmp)
1602 return 0;
1603 /* Secondary interface's bus number and devfn 0 */
1604 parent = pdev->bus->self;
1605 while (parent != tmp) {
1606 ret = domain_context_mapping_one(domain,
1607 pci_domain_nr(parent->bus),
1608 parent->bus->number,
1609 parent->devfn, translation);
1610 if (ret)
1611 return ret;
1612 parent = parent->bus->self;
1613 }
1614 if (pci_is_pcie(tmp)) /* this is a PCIE-to-PCI bridge */
1615 return domain_context_mapping_one(domain,
1616 pci_domain_nr(tmp->subordinate),
1617 tmp->subordinate->number, 0,
1618 translation);
1619 else /* this is a legacy PCI bridge */
1620 return domain_context_mapping_one(domain,
1621 pci_domain_nr(tmp->bus),
1622 tmp->bus->number,
1623 tmp->devfn,
1624 translation);
1625 }
1626
1627 static int domain_context_mapped(struct pci_dev *pdev)
1628 {
1629 int ret;
1630 struct pci_dev *tmp, *parent;
1631 struct intel_iommu *iommu;
1632
1633 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1634 pdev->devfn);
1635 if (!iommu)
1636 return -ENODEV;
1637
1638 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1639 if (!ret)
1640 return ret;
1641 /* dependent device mapping */
1642 tmp = pci_find_upstream_pcie_bridge(pdev);
1643 if (!tmp)
1644 return ret;
1645 /* Secondary interface's bus number and devfn 0 */
1646 parent = pdev->bus->self;
1647 while (parent != tmp) {
1648 ret = device_context_mapped(iommu, parent->bus->number,
1649 parent->devfn);
1650 if (!ret)
1651 return ret;
1652 parent = parent->bus->self;
1653 }
1654 if (pci_is_pcie(tmp))
1655 return device_context_mapped(iommu, tmp->subordinate->number,
1656 0);
1657 else
1658 return device_context_mapped(iommu, tmp->bus->number,
1659 tmp->devfn);
1660 }
1661
1662 /* Returns a number of VTD pages, but aligned to MM page size */
1663 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1664 size_t size)
1665 {
1666 host_addr &= ~PAGE_MASK;
1667 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1668 }
1669
1670 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1671 struct scatterlist *sg, unsigned long phys_pfn,
1672 unsigned long nr_pages, int prot)
1673 {
1674 struct dma_pte *first_pte = NULL, *pte = NULL;
1675 phys_addr_t uninitialized_var(pteval);
1676 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1677 unsigned long sg_res;
1678
1679 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1680
1681 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1682 return -EINVAL;
1683
1684 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1685
1686 if (sg)
1687 sg_res = 0;
1688 else {
1689 sg_res = nr_pages + 1;
1690 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1691 }
1692
1693 while (nr_pages--) {
1694 uint64_t tmp;
1695
1696 if (!sg_res) {
1697 sg_res = aligned_nrpages(sg->offset, sg->length);
1698 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1699 sg->dma_length = sg->length;
1700 pteval = page_to_phys(sg_page(sg)) | prot;
1701 }
1702 if (!pte) {
1703 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn);
1704 if (!pte)
1705 return -ENOMEM;
1706 }
1707 /* We don't need lock here, nobody else
1708 * touches the iova range
1709 */
1710 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1711 if (tmp) {
1712 static int dumps = 5;
1713 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1714 iov_pfn, tmp, (unsigned long long)pteval);
1715 if (dumps) {
1716 dumps--;
1717 debug_dma_dump_mappings(NULL);
1718 }
1719 WARN_ON(1);
1720 }
1721 pte++;
1722 if (!nr_pages || first_pte_in_page(pte)) {
1723 domain_flush_cache(domain, first_pte,
1724 (void *)pte - (void *)first_pte);
1725 pte = NULL;
1726 }
1727 iov_pfn++;
1728 pteval += VTD_PAGE_SIZE;
1729 sg_res--;
1730 if (!sg_res)
1731 sg = sg_next(sg);
1732 }
1733 return 0;
1734 }
1735
1736 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1737 struct scatterlist *sg, unsigned long nr_pages,
1738 int prot)
1739 {
1740 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1741 }
1742
1743 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1744 unsigned long phys_pfn, unsigned long nr_pages,
1745 int prot)
1746 {
1747 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1748 }
1749
1750 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1751 {
1752 if (!iommu)
1753 return;
1754
1755 clear_context_table(iommu, bus, devfn);
1756 iommu->flush.flush_context(iommu, 0, 0, 0,
1757 DMA_CCMD_GLOBAL_INVL);
1758 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1759 }
1760
1761 static void domain_remove_dev_info(struct dmar_domain *domain)
1762 {
1763 struct device_domain_info *info;
1764 unsigned long flags;
1765 struct intel_iommu *iommu;
1766
1767 spin_lock_irqsave(&device_domain_lock, flags);
1768 while (!list_empty(&domain->devices)) {
1769 info = list_entry(domain->devices.next,
1770 struct device_domain_info, link);
1771 list_del(&info->link);
1772 list_del(&info->global);
1773 if (info->dev)
1774 info->dev->dev.archdata.iommu = NULL;
1775 spin_unlock_irqrestore(&device_domain_lock, flags);
1776
1777 iommu_disable_dev_iotlb(info);
1778 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1779 iommu_detach_dev(iommu, info->bus, info->devfn);
1780 free_devinfo_mem(info);
1781
1782 spin_lock_irqsave(&device_domain_lock, flags);
1783 }
1784 spin_unlock_irqrestore(&device_domain_lock, flags);
1785 }
1786
1787 /*
1788 * find_domain
1789 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1790 */
1791 static struct dmar_domain *
1792 find_domain(struct pci_dev *pdev)
1793 {
1794 struct device_domain_info *info;
1795
1796 /* No lock here, assumes no domain exit in normal case */
1797 info = pdev->dev.archdata.iommu;
1798 if (info)
1799 return info->domain;
1800 return NULL;
1801 }
1802
1803 /* domain is initialized */
1804 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1805 {
1806 struct dmar_domain *domain, *found = NULL;
1807 struct intel_iommu *iommu;
1808 struct dmar_drhd_unit *drhd;
1809 struct device_domain_info *info, *tmp;
1810 struct pci_dev *dev_tmp;
1811 unsigned long flags;
1812 int bus = 0, devfn = 0;
1813 int segment;
1814 int ret;
1815
1816 domain = find_domain(pdev);
1817 if (domain)
1818 return domain;
1819
1820 segment = pci_domain_nr(pdev->bus);
1821
1822 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1823 if (dev_tmp) {
1824 if (pci_is_pcie(dev_tmp)) {
1825 bus = dev_tmp->subordinate->number;
1826 devfn = 0;
1827 } else {
1828 bus = dev_tmp->bus->number;
1829 devfn = dev_tmp->devfn;
1830 }
1831 spin_lock_irqsave(&device_domain_lock, flags);
1832 list_for_each_entry(info, &device_domain_list, global) {
1833 if (info->segment == segment &&
1834 info->bus == bus && info->devfn == devfn) {
1835 found = info->domain;
1836 break;
1837 }
1838 }
1839 spin_unlock_irqrestore(&device_domain_lock, flags);
1840 /* pcie-pci bridge already has a domain, uses it */
1841 if (found) {
1842 domain = found;
1843 goto found_domain;
1844 }
1845 }
1846
1847 domain = alloc_domain();
1848 if (!domain)
1849 goto error;
1850
1851 /* Allocate new domain for the device */
1852 drhd = dmar_find_matched_drhd_unit(pdev);
1853 if (!drhd) {
1854 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1855 pci_name(pdev));
1856 return NULL;
1857 }
1858 iommu = drhd->iommu;
1859
1860 ret = iommu_attach_domain(domain, iommu);
1861 if (ret) {
1862 domain_exit(domain);
1863 goto error;
1864 }
1865
1866 if (domain_init(domain, gaw)) {
1867 domain_exit(domain);
1868 goto error;
1869 }
1870
1871 /* register pcie-to-pci device */
1872 if (dev_tmp) {
1873 info = alloc_devinfo_mem();
1874 if (!info) {
1875 domain_exit(domain);
1876 goto error;
1877 }
1878 info->segment = segment;
1879 info->bus = bus;
1880 info->devfn = devfn;
1881 info->dev = NULL;
1882 info->domain = domain;
1883 /* This domain is shared by devices under p2p bridge */
1884 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1885
1886 /* pcie-to-pci bridge already has a domain, uses it */
1887 found = NULL;
1888 spin_lock_irqsave(&device_domain_lock, flags);
1889 list_for_each_entry(tmp, &device_domain_list, global) {
1890 if (tmp->segment == segment &&
1891 tmp->bus == bus && tmp->devfn == devfn) {
1892 found = tmp->domain;
1893 break;
1894 }
1895 }
1896 if (found) {
1897 free_devinfo_mem(info);
1898 domain_exit(domain);
1899 domain = found;
1900 } else {
1901 list_add(&info->link, &domain->devices);
1902 list_add(&info->global, &device_domain_list);
1903 }
1904 spin_unlock_irqrestore(&device_domain_lock, flags);
1905 }
1906
1907 found_domain:
1908 info = alloc_devinfo_mem();
1909 if (!info)
1910 goto error;
1911 info->segment = segment;
1912 info->bus = pdev->bus->number;
1913 info->devfn = pdev->devfn;
1914 info->dev = pdev;
1915 info->domain = domain;
1916 spin_lock_irqsave(&device_domain_lock, flags);
1917 /* somebody is fast */
1918 found = find_domain(pdev);
1919 if (found != NULL) {
1920 spin_unlock_irqrestore(&device_domain_lock, flags);
1921 if (found != domain) {
1922 domain_exit(domain);
1923 domain = found;
1924 }
1925 free_devinfo_mem(info);
1926 return domain;
1927 }
1928 list_add(&info->link, &domain->devices);
1929 list_add(&info->global, &device_domain_list);
1930 pdev->dev.archdata.iommu = info;
1931 spin_unlock_irqrestore(&device_domain_lock, flags);
1932 return domain;
1933 error:
1934 /* recheck it here, maybe others set it */
1935 return find_domain(pdev);
1936 }
1937
1938 static int iommu_identity_mapping;
1939 #define IDENTMAP_ALL 1
1940 #define IDENTMAP_GFX 2
1941 #define IDENTMAP_AZALIA 4
1942
1943 static int iommu_domain_identity_map(struct dmar_domain *domain,
1944 unsigned long long start,
1945 unsigned long long end)
1946 {
1947 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
1948 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
1949
1950 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
1951 dma_to_mm_pfn(last_vpfn))) {
1952 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1953 return -ENOMEM;
1954 }
1955
1956 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
1957 start, end, domain->id);
1958 /*
1959 * RMRR range might have overlap with physical memory range,
1960 * clear it first
1961 */
1962 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
1963
1964 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
1965 last_vpfn - first_vpfn + 1,
1966 DMA_PTE_READ|DMA_PTE_WRITE);
1967 }
1968
1969 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1970 unsigned long long start,
1971 unsigned long long end)
1972 {
1973 struct dmar_domain *domain;
1974 int ret;
1975
1976 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1977 if (!domain)
1978 return -ENOMEM;
1979
1980 /* For _hardware_ passthrough, don't bother. But for software
1981 passthrough, we do it anyway -- it may indicate a memory
1982 range which is reserved in E820, so which didn't get set
1983 up to start with in si_domain */
1984 if (domain == si_domain && hw_pass_through) {
1985 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
1986 pci_name(pdev), start, end);
1987 return 0;
1988 }
1989
1990 printk(KERN_INFO
1991 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1992 pci_name(pdev), start, end);
1993
1994 if (end >> agaw_to_width(domain->agaw)) {
1995 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
1996 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
1997 agaw_to_width(domain->agaw),
1998 dmi_get_system_info(DMI_BIOS_VENDOR),
1999 dmi_get_system_info(DMI_BIOS_VERSION),
2000 dmi_get_system_info(DMI_PRODUCT_VERSION));
2001 ret = -EIO;
2002 goto error;
2003 }
2004
2005 ret = iommu_domain_identity_map(domain, start, end);
2006 if (ret)
2007 goto error;
2008
2009 /* context entry init */
2010 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2011 if (ret)
2012 goto error;
2013
2014 return 0;
2015
2016 error:
2017 domain_exit(domain);
2018 return ret;
2019 }
2020
2021 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2022 struct pci_dev *pdev)
2023 {
2024 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2025 return 0;
2026 return iommu_prepare_identity_map(pdev, rmrr->base_address,
2027 rmrr->end_address + 1);
2028 }
2029
2030 #ifdef CONFIG_DMAR_FLOPPY_WA
2031 static inline void iommu_prepare_isa(void)
2032 {
2033 struct pci_dev *pdev;
2034 int ret;
2035
2036 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2037 if (!pdev)
2038 return;
2039
2040 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2041 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
2042
2043 if (ret)
2044 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2045 "floppy might not work\n");
2046
2047 }
2048 #else
2049 static inline void iommu_prepare_isa(void)
2050 {
2051 return;
2052 }
2053 #endif /* !CONFIG_DMAR_FLPY_WA */
2054
2055 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2056
2057 static int __init si_domain_work_fn(unsigned long start_pfn,
2058 unsigned long end_pfn, void *datax)
2059 {
2060 int *ret = datax;
2061
2062 *ret = iommu_domain_identity_map(si_domain,
2063 (uint64_t)start_pfn << PAGE_SHIFT,
2064 (uint64_t)end_pfn << PAGE_SHIFT);
2065 return *ret;
2066
2067 }
2068
2069 static int __init si_domain_init(int hw)
2070 {
2071 struct dmar_drhd_unit *drhd;
2072 struct intel_iommu *iommu;
2073 int nid, ret = 0;
2074
2075 si_domain = alloc_domain();
2076 if (!si_domain)
2077 return -EFAULT;
2078
2079 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2080
2081 for_each_active_iommu(iommu, drhd) {
2082 ret = iommu_attach_domain(si_domain, iommu);
2083 if (ret) {
2084 domain_exit(si_domain);
2085 return -EFAULT;
2086 }
2087 }
2088
2089 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2090 domain_exit(si_domain);
2091 return -EFAULT;
2092 }
2093
2094 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2095
2096 if (hw)
2097 return 0;
2098
2099 for_each_online_node(nid) {
2100 work_with_active_regions(nid, si_domain_work_fn, &ret);
2101 if (ret)
2102 return ret;
2103 }
2104
2105 return 0;
2106 }
2107
2108 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2109 struct pci_dev *pdev);
2110 static int identity_mapping(struct pci_dev *pdev)
2111 {
2112 struct device_domain_info *info;
2113
2114 if (likely(!iommu_identity_mapping))
2115 return 0;
2116
2117
2118 list_for_each_entry(info, &si_domain->devices, link)
2119 if (info->dev == pdev)
2120 return 1;
2121 return 0;
2122 }
2123
2124 static int domain_add_dev_info(struct dmar_domain *domain,
2125 struct pci_dev *pdev,
2126 int translation)
2127 {
2128 struct device_domain_info *info;
2129 unsigned long flags;
2130 int ret;
2131
2132 info = alloc_devinfo_mem();
2133 if (!info)
2134 return -ENOMEM;
2135
2136 ret = domain_context_mapping(domain, pdev, translation);
2137 if (ret) {
2138 free_devinfo_mem(info);
2139 return ret;
2140 }
2141
2142 info->segment = pci_domain_nr(pdev->bus);
2143 info->bus = pdev->bus->number;
2144 info->devfn = pdev->devfn;
2145 info->dev = pdev;
2146 info->domain = domain;
2147
2148 spin_lock_irqsave(&device_domain_lock, flags);
2149 list_add(&info->link, &domain->devices);
2150 list_add(&info->global, &device_domain_list);
2151 pdev->dev.archdata.iommu = info;
2152 spin_unlock_irqrestore(&device_domain_lock, flags);
2153
2154 return 0;
2155 }
2156
2157 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2158 {
2159 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2160 return 1;
2161
2162 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2163 return 1;
2164
2165 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2166 return 0;
2167
2168 /*
2169 * We want to start off with all devices in the 1:1 domain, and
2170 * take them out later if we find they can't access all of memory.
2171 *
2172 * However, we can't do this for PCI devices behind bridges,
2173 * because all PCI devices behind the same bridge will end up
2174 * with the same source-id on their transactions.
2175 *
2176 * Practically speaking, we can't change things around for these
2177 * devices at run-time, because we can't be sure there'll be no
2178 * DMA transactions in flight for any of their siblings.
2179 *
2180 * So PCI devices (unless they're on the root bus) as well as
2181 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2182 * the 1:1 domain, just in _case_ one of their siblings turns out
2183 * not to be able to map all of memory.
2184 */
2185 if (!pci_is_pcie(pdev)) {
2186 if (!pci_is_root_bus(pdev->bus))
2187 return 0;
2188 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2189 return 0;
2190 } else if (pdev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
2191 return 0;
2192
2193 /*
2194 * At boot time, we don't yet know if devices will be 64-bit capable.
2195 * Assume that they will -- if they turn out not to be, then we can
2196 * take them out of the 1:1 domain later.
2197 */
2198 if (!startup)
2199 return pdev->dma_mask > DMA_BIT_MASK(32);
2200
2201 return 1;
2202 }
2203
2204 static int __init iommu_prepare_static_identity_mapping(int hw)
2205 {
2206 struct pci_dev *pdev = NULL;
2207 int ret;
2208
2209 ret = si_domain_init(hw);
2210 if (ret)
2211 return -EFAULT;
2212
2213 for_each_pci_dev(pdev) {
2214 if (iommu_should_identity_map(pdev, 1)) {
2215 printk(KERN_INFO "IOMMU: %s identity mapping for device %s\n",
2216 hw ? "hardware" : "software", pci_name(pdev));
2217
2218 ret = domain_add_dev_info(si_domain, pdev,
2219 hw ? CONTEXT_TT_PASS_THROUGH :
2220 CONTEXT_TT_MULTI_LEVEL);
2221 if (ret)
2222 return ret;
2223 }
2224 }
2225
2226 return 0;
2227 }
2228
2229 int __init init_dmars(void)
2230 {
2231 struct dmar_drhd_unit *drhd;
2232 struct dmar_rmrr_unit *rmrr;
2233 struct pci_dev *pdev;
2234 struct intel_iommu *iommu;
2235 int i, ret;
2236
2237 /*
2238 * for each drhd
2239 * allocate root
2240 * initialize and program root entry to not present
2241 * endfor
2242 */
2243 for_each_drhd_unit(drhd) {
2244 g_num_of_iommus++;
2245 /*
2246 * lock not needed as this is only incremented in the single
2247 * threaded kernel __init code path all other access are read
2248 * only
2249 */
2250 }
2251
2252 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2253 GFP_KERNEL);
2254 if (!g_iommus) {
2255 printk(KERN_ERR "Allocating global iommu array failed\n");
2256 ret = -ENOMEM;
2257 goto error;
2258 }
2259
2260 deferred_flush = kzalloc(g_num_of_iommus *
2261 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2262 if (!deferred_flush) {
2263 ret = -ENOMEM;
2264 goto error;
2265 }
2266
2267 for_each_drhd_unit(drhd) {
2268 if (drhd->ignored)
2269 continue;
2270
2271 iommu = drhd->iommu;
2272 g_iommus[iommu->seq_id] = iommu;
2273
2274 ret = iommu_init_domains(iommu);
2275 if (ret)
2276 goto error;
2277
2278 /*
2279 * TBD:
2280 * we could share the same root & context tables
2281 * amoung all IOMMU's. Need to Split it later.
2282 */
2283 ret = iommu_alloc_root_entry(iommu);
2284 if (ret) {
2285 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2286 goto error;
2287 }
2288 if (!ecap_pass_through(iommu->ecap))
2289 hw_pass_through = 0;
2290 }
2291
2292 /*
2293 * Start from the sane iommu hardware state.
2294 */
2295 for_each_drhd_unit(drhd) {
2296 if (drhd->ignored)
2297 continue;
2298
2299 iommu = drhd->iommu;
2300
2301 /*
2302 * If the queued invalidation is already initialized by us
2303 * (for example, while enabling interrupt-remapping) then
2304 * we got the things already rolling from a sane state.
2305 */
2306 if (iommu->qi)
2307 continue;
2308
2309 /*
2310 * Clear any previous faults.
2311 */
2312 dmar_fault(-1, iommu);
2313 /*
2314 * Disable queued invalidation if supported and already enabled
2315 * before OS handover.
2316 */
2317 dmar_disable_qi(iommu);
2318 }
2319
2320 for_each_drhd_unit(drhd) {
2321 if (drhd->ignored)
2322 continue;
2323
2324 iommu = drhd->iommu;
2325
2326 if (dmar_enable_qi(iommu)) {
2327 /*
2328 * Queued Invalidate not enabled, use Register Based
2329 * Invalidate
2330 */
2331 iommu->flush.flush_context = __iommu_flush_context;
2332 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2333 printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
2334 "invalidation\n",
2335 (unsigned long long)drhd->reg_base_addr);
2336 } else {
2337 iommu->flush.flush_context = qi_flush_context;
2338 iommu->flush.flush_iotlb = qi_flush_iotlb;
2339 printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
2340 "invalidation\n",
2341 (unsigned long long)drhd->reg_base_addr);
2342 }
2343 }
2344
2345 if (iommu_pass_through)
2346 iommu_identity_mapping |= IDENTMAP_ALL;
2347
2348 #ifdef CONFIG_DMAR_BROKEN_GFX_WA
2349 iommu_identity_mapping |= IDENTMAP_GFX;
2350 #endif
2351
2352 check_tylersburg_isoch();
2353
2354 /*
2355 * If pass through is not set or not enabled, setup context entries for
2356 * identity mappings for rmrr, gfx, and isa and may fall back to static
2357 * identity mapping if iommu_identity_mapping is set.
2358 */
2359 if (iommu_identity_mapping) {
2360 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2361 if (ret) {
2362 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2363 goto error;
2364 }
2365 }
2366 /*
2367 * For each rmrr
2368 * for each dev attached to rmrr
2369 * do
2370 * locate drhd for dev, alloc domain for dev
2371 * allocate free domain
2372 * allocate page table entries for rmrr
2373 * if context not allocated for bus
2374 * allocate and init context
2375 * set present in root table for this bus
2376 * init context with domain, translation etc
2377 * endfor
2378 * endfor
2379 */
2380 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2381 for_each_rmrr_units(rmrr) {
2382 for (i = 0; i < rmrr->devices_cnt; i++) {
2383 pdev = rmrr->devices[i];
2384 /*
2385 * some BIOS lists non-exist devices in DMAR
2386 * table.
2387 */
2388 if (!pdev)
2389 continue;
2390 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2391 if (ret)
2392 printk(KERN_ERR
2393 "IOMMU: mapping reserved region failed\n");
2394 }
2395 }
2396
2397 iommu_prepare_isa();
2398
2399 /*
2400 * for each drhd
2401 * enable fault log
2402 * global invalidate context cache
2403 * global invalidate iotlb
2404 * enable translation
2405 */
2406 for_each_drhd_unit(drhd) {
2407 if (drhd->ignored)
2408 continue;
2409 iommu = drhd->iommu;
2410
2411 iommu_flush_write_buffer(iommu);
2412
2413 ret = dmar_set_interrupt(iommu);
2414 if (ret)
2415 goto error;
2416
2417 iommu_set_root_entry(iommu);
2418
2419 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2420 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2421
2422 ret = iommu_enable_translation(iommu);
2423 if (ret)
2424 goto error;
2425
2426 iommu_disable_protect_mem_regions(iommu);
2427 }
2428
2429 return 0;
2430 error:
2431 for_each_drhd_unit(drhd) {
2432 if (drhd->ignored)
2433 continue;
2434 iommu = drhd->iommu;
2435 free_iommu(iommu);
2436 }
2437 kfree(g_iommus);
2438 return ret;
2439 }
2440
2441 /* This takes a number of _MM_ pages, not VTD pages */
2442 static struct iova *intel_alloc_iova(struct device *dev,
2443 struct dmar_domain *domain,
2444 unsigned long nrpages, uint64_t dma_mask)
2445 {
2446 struct pci_dev *pdev = to_pci_dev(dev);
2447 struct iova *iova = NULL;
2448
2449 /* Restrict dma_mask to the width that the iommu can handle */
2450 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2451
2452 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2453 /*
2454 * First try to allocate an io virtual address in
2455 * DMA_BIT_MASK(32) and if that fails then try allocating
2456 * from higher range
2457 */
2458 iova = alloc_iova(&domain->iovad, nrpages,
2459 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2460 if (iova)
2461 return iova;
2462 }
2463 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2464 if (unlikely(!iova)) {
2465 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2466 nrpages, pci_name(pdev));
2467 return NULL;
2468 }
2469
2470 return iova;
2471 }
2472
2473 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2474 {
2475 struct dmar_domain *domain;
2476 int ret;
2477
2478 domain = get_domain_for_dev(pdev,
2479 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2480 if (!domain) {
2481 printk(KERN_ERR
2482 "Allocating domain for %s failed", pci_name(pdev));
2483 return NULL;
2484 }
2485
2486 /* make sure context mapping is ok */
2487 if (unlikely(!domain_context_mapped(pdev))) {
2488 ret = domain_context_mapping(domain, pdev,
2489 CONTEXT_TT_MULTI_LEVEL);
2490 if (ret) {
2491 printk(KERN_ERR
2492 "Domain context map for %s failed",
2493 pci_name(pdev));
2494 return NULL;
2495 }
2496 }
2497
2498 return domain;
2499 }
2500
2501 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2502 {
2503 struct device_domain_info *info;
2504
2505 /* No lock here, assumes no domain exit in normal case */
2506 info = dev->dev.archdata.iommu;
2507 if (likely(info))
2508 return info->domain;
2509
2510 return __get_valid_domain_for_dev(dev);
2511 }
2512
2513 static int iommu_dummy(struct pci_dev *pdev)
2514 {
2515 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2516 }
2517
2518 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2519 static int iommu_no_mapping(struct device *dev)
2520 {
2521 struct pci_dev *pdev;
2522 int found;
2523
2524 if (unlikely(dev->bus != &pci_bus_type))
2525 return 1;
2526
2527 pdev = to_pci_dev(dev);
2528 if (iommu_dummy(pdev))
2529 return 1;
2530
2531 if (!iommu_identity_mapping)
2532 return 0;
2533
2534 found = identity_mapping(pdev);
2535 if (found) {
2536 if (iommu_should_identity_map(pdev, 0))
2537 return 1;
2538 else {
2539 /*
2540 * 32 bit DMA is removed from si_domain and fall back
2541 * to non-identity mapping.
2542 */
2543 domain_remove_one_dev_info(si_domain, pdev);
2544 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2545 pci_name(pdev));
2546 return 0;
2547 }
2548 } else {
2549 /*
2550 * In case of a detached 64 bit DMA device from vm, the device
2551 * is put into si_domain for identity mapping.
2552 */
2553 if (iommu_should_identity_map(pdev, 0)) {
2554 int ret;
2555 ret = domain_add_dev_info(si_domain, pdev,
2556 hw_pass_through ?
2557 CONTEXT_TT_PASS_THROUGH :
2558 CONTEXT_TT_MULTI_LEVEL);
2559 if (!ret) {
2560 printk(KERN_INFO "64bit %s uses identity mapping\n",
2561 pci_name(pdev));
2562 return 1;
2563 }
2564 }
2565 }
2566
2567 return 0;
2568 }
2569
2570 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2571 size_t size, int dir, u64 dma_mask)
2572 {
2573 struct pci_dev *pdev = to_pci_dev(hwdev);
2574 struct dmar_domain *domain;
2575 phys_addr_t start_paddr;
2576 struct iova *iova;
2577 int prot = 0;
2578 int ret;
2579 struct intel_iommu *iommu;
2580 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2581
2582 BUG_ON(dir == DMA_NONE);
2583
2584 if (iommu_no_mapping(hwdev))
2585 return paddr;
2586
2587 domain = get_valid_domain_for_dev(pdev);
2588 if (!domain)
2589 return 0;
2590
2591 iommu = domain_get_iommu(domain);
2592 size = aligned_nrpages(paddr, size);
2593
2594 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2595 pdev->dma_mask);
2596 if (!iova)
2597 goto error;
2598
2599 /*
2600 * Check if DMAR supports zero-length reads on write only
2601 * mappings..
2602 */
2603 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2604 !cap_zlr(iommu->cap))
2605 prot |= DMA_PTE_READ;
2606 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2607 prot |= DMA_PTE_WRITE;
2608 /*
2609 * paddr - (paddr + size) might be partial page, we should map the whole
2610 * page. Note: if two part of one page are separately mapped, we
2611 * might have two guest_addr mapping to the same host paddr, but this
2612 * is not a big problem
2613 */
2614 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2615 mm_to_dma_pfn(paddr_pfn), size, prot);
2616 if (ret)
2617 goto error;
2618
2619 /* it's a non-present to present mapping. Only flush if caching mode */
2620 if (cap_caching_mode(iommu->cap))
2621 iommu_flush_iotlb_psi(iommu, 0, mm_to_dma_pfn(iova->pfn_lo), size);
2622 else
2623 iommu_flush_write_buffer(iommu);
2624
2625 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2626 start_paddr += paddr & ~PAGE_MASK;
2627 return start_paddr;
2628
2629 error:
2630 if (iova)
2631 __free_iova(&domain->iovad, iova);
2632 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2633 pci_name(pdev), size, (unsigned long long)paddr, dir);
2634 return 0;
2635 }
2636
2637 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2638 unsigned long offset, size_t size,
2639 enum dma_data_direction dir,
2640 struct dma_attrs *attrs)
2641 {
2642 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2643 dir, to_pci_dev(dev)->dma_mask);
2644 }
2645
2646 static void flush_unmaps(void)
2647 {
2648 int i, j;
2649
2650 timer_on = 0;
2651
2652 /* just flush them all */
2653 for (i = 0; i < g_num_of_iommus; i++) {
2654 struct intel_iommu *iommu = g_iommus[i];
2655 if (!iommu)
2656 continue;
2657
2658 if (!deferred_flush[i].next)
2659 continue;
2660
2661 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2662 DMA_TLB_GLOBAL_FLUSH);
2663 for (j = 0; j < deferred_flush[i].next; j++) {
2664 unsigned long mask;
2665 struct iova *iova = deferred_flush[i].iova[j];
2666
2667 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
2668 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2669 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
2670 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2671 }
2672 deferred_flush[i].next = 0;
2673 }
2674
2675 list_size = 0;
2676 }
2677
2678 static void flush_unmaps_timeout(unsigned long data)
2679 {
2680 unsigned long flags;
2681
2682 spin_lock_irqsave(&async_umap_flush_lock, flags);
2683 flush_unmaps();
2684 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2685 }
2686
2687 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2688 {
2689 unsigned long flags;
2690 int next, iommu_id;
2691 struct intel_iommu *iommu;
2692
2693 spin_lock_irqsave(&async_umap_flush_lock, flags);
2694 if (list_size == HIGH_WATER_MARK)
2695 flush_unmaps();
2696
2697 iommu = domain_get_iommu(dom);
2698 iommu_id = iommu->seq_id;
2699
2700 next = deferred_flush[iommu_id].next;
2701 deferred_flush[iommu_id].domain[next] = dom;
2702 deferred_flush[iommu_id].iova[next] = iova;
2703 deferred_flush[iommu_id].next++;
2704
2705 if (!timer_on) {
2706 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2707 timer_on = 1;
2708 }
2709 list_size++;
2710 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2711 }
2712
2713 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2714 size_t size, enum dma_data_direction dir,
2715 struct dma_attrs *attrs)
2716 {
2717 struct pci_dev *pdev = to_pci_dev(dev);
2718 struct dmar_domain *domain;
2719 unsigned long start_pfn, last_pfn;
2720 struct iova *iova;
2721 struct intel_iommu *iommu;
2722
2723 if (iommu_no_mapping(dev))
2724 return;
2725
2726 domain = find_domain(pdev);
2727 BUG_ON(!domain);
2728
2729 iommu = domain_get_iommu(domain);
2730
2731 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2732 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2733 (unsigned long long)dev_addr))
2734 return;
2735
2736 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2737 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2738
2739 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2740 pci_name(pdev), start_pfn, last_pfn);
2741
2742 /* clear the whole page */
2743 dma_pte_clear_range(domain, start_pfn, last_pfn);
2744
2745 /* free page tables */
2746 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2747
2748 if (intel_iommu_strict) {
2749 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2750 last_pfn - start_pfn + 1);
2751 /* free iova */
2752 __free_iova(&domain->iovad, iova);
2753 } else {
2754 add_unmap(domain, iova);
2755 /*
2756 * queue up the release of the unmap to save the 1/6th of the
2757 * cpu used up by the iotlb flush operation...
2758 */
2759 }
2760 }
2761
2762 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2763 dma_addr_t *dma_handle, gfp_t flags)
2764 {
2765 void *vaddr;
2766 int order;
2767
2768 size = PAGE_ALIGN(size);
2769 order = get_order(size);
2770 flags &= ~(GFP_DMA | GFP_DMA32);
2771
2772 vaddr = (void *)__get_free_pages(flags, order);
2773 if (!vaddr)
2774 return NULL;
2775 memset(vaddr, 0, size);
2776
2777 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2778 DMA_BIDIRECTIONAL,
2779 hwdev->coherent_dma_mask);
2780 if (*dma_handle)
2781 return vaddr;
2782 free_pages((unsigned long)vaddr, order);
2783 return NULL;
2784 }
2785
2786 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2787 dma_addr_t dma_handle)
2788 {
2789 int order;
2790
2791 size = PAGE_ALIGN(size);
2792 order = get_order(size);
2793
2794 intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
2795 free_pages((unsigned long)vaddr, order);
2796 }
2797
2798 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2799 int nelems, enum dma_data_direction dir,
2800 struct dma_attrs *attrs)
2801 {
2802 struct pci_dev *pdev = to_pci_dev(hwdev);
2803 struct dmar_domain *domain;
2804 unsigned long start_pfn, last_pfn;
2805 struct iova *iova;
2806 struct intel_iommu *iommu;
2807
2808 if (iommu_no_mapping(hwdev))
2809 return;
2810
2811 domain = find_domain(pdev);
2812 BUG_ON(!domain);
2813
2814 iommu = domain_get_iommu(domain);
2815
2816 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2817 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
2818 (unsigned long long)sglist[0].dma_address))
2819 return;
2820
2821 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2822 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2823
2824 /* clear the whole page */
2825 dma_pte_clear_range(domain, start_pfn, last_pfn);
2826
2827 /* free page tables */
2828 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2829
2830 if (intel_iommu_strict) {
2831 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2832 last_pfn - start_pfn + 1);
2833 /* free iova */
2834 __free_iova(&domain->iovad, iova);
2835 } else {
2836 add_unmap(domain, iova);
2837 /*
2838 * queue up the release of the unmap to save the 1/6th of the
2839 * cpu used up by the iotlb flush operation...
2840 */
2841 }
2842 }
2843
2844 static int intel_nontranslate_map_sg(struct device *hddev,
2845 struct scatterlist *sglist, int nelems, int dir)
2846 {
2847 int i;
2848 struct scatterlist *sg;
2849
2850 for_each_sg(sglist, sg, nelems, i) {
2851 BUG_ON(!sg_page(sg));
2852 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
2853 sg->dma_length = sg->length;
2854 }
2855 return nelems;
2856 }
2857
2858 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2859 enum dma_data_direction dir, struct dma_attrs *attrs)
2860 {
2861 int i;
2862 struct pci_dev *pdev = to_pci_dev(hwdev);
2863 struct dmar_domain *domain;
2864 size_t size = 0;
2865 int prot = 0;
2866 size_t offset_pfn = 0;
2867 struct iova *iova = NULL;
2868 int ret;
2869 struct scatterlist *sg;
2870 unsigned long start_vpfn;
2871 struct intel_iommu *iommu;
2872
2873 BUG_ON(dir == DMA_NONE);
2874 if (iommu_no_mapping(hwdev))
2875 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2876
2877 domain = get_valid_domain_for_dev(pdev);
2878 if (!domain)
2879 return 0;
2880
2881 iommu = domain_get_iommu(domain);
2882
2883 for_each_sg(sglist, sg, nelems, i)
2884 size += aligned_nrpages(sg->offset, sg->length);
2885
2886 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
2887 pdev->dma_mask);
2888 if (!iova) {
2889 sglist->dma_length = 0;
2890 return 0;
2891 }
2892
2893 /*
2894 * Check if DMAR supports zero-length reads on write only
2895 * mappings..
2896 */
2897 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2898 !cap_zlr(iommu->cap))
2899 prot |= DMA_PTE_READ;
2900 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2901 prot |= DMA_PTE_WRITE;
2902
2903 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
2904
2905 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
2906 if (unlikely(ret)) {
2907 /* clear the page */
2908 dma_pte_clear_range(domain, start_vpfn,
2909 start_vpfn + size - 1);
2910 /* free page tables */
2911 dma_pte_free_pagetable(domain, start_vpfn,
2912 start_vpfn + size - 1);
2913 /* free iova */
2914 __free_iova(&domain->iovad, iova);
2915 return 0;
2916 }
2917
2918 /* it's a non-present to present mapping. Only flush if caching mode */
2919 if (cap_caching_mode(iommu->cap))
2920 iommu_flush_iotlb_psi(iommu, 0, start_vpfn, offset_pfn);
2921 else
2922 iommu_flush_write_buffer(iommu);
2923
2924 return nelems;
2925 }
2926
2927 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2928 {
2929 return !dma_addr;
2930 }
2931
2932 struct dma_map_ops intel_dma_ops = {
2933 .alloc_coherent = intel_alloc_coherent,
2934 .free_coherent = intel_free_coherent,
2935 .map_sg = intel_map_sg,
2936 .unmap_sg = intel_unmap_sg,
2937 .map_page = intel_map_page,
2938 .unmap_page = intel_unmap_page,
2939 .mapping_error = intel_mapping_error,
2940 };
2941
2942 static inline int iommu_domain_cache_init(void)
2943 {
2944 int ret = 0;
2945
2946 iommu_domain_cache = kmem_cache_create("iommu_domain",
2947 sizeof(struct dmar_domain),
2948 0,
2949 SLAB_HWCACHE_ALIGN,
2950
2951 NULL);
2952 if (!iommu_domain_cache) {
2953 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2954 ret = -ENOMEM;
2955 }
2956
2957 return ret;
2958 }
2959
2960 static inline int iommu_devinfo_cache_init(void)
2961 {
2962 int ret = 0;
2963
2964 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2965 sizeof(struct device_domain_info),
2966 0,
2967 SLAB_HWCACHE_ALIGN,
2968 NULL);
2969 if (!iommu_devinfo_cache) {
2970 printk(KERN_ERR "Couldn't create devinfo cache\n");
2971 ret = -ENOMEM;
2972 }
2973
2974 return ret;
2975 }
2976
2977 static inline int iommu_iova_cache_init(void)
2978 {
2979 int ret = 0;
2980
2981 iommu_iova_cache = kmem_cache_create("iommu_iova",
2982 sizeof(struct iova),
2983 0,
2984 SLAB_HWCACHE_ALIGN,
2985 NULL);
2986 if (!iommu_iova_cache) {
2987 printk(KERN_ERR "Couldn't create iova cache\n");
2988 ret = -ENOMEM;
2989 }
2990
2991 return ret;
2992 }
2993
2994 static int __init iommu_init_mempool(void)
2995 {
2996 int ret;
2997 ret = iommu_iova_cache_init();
2998 if (ret)
2999 return ret;
3000
3001 ret = iommu_domain_cache_init();
3002 if (ret)
3003 goto domain_error;
3004
3005 ret = iommu_devinfo_cache_init();
3006 if (!ret)
3007 return ret;
3008
3009 kmem_cache_destroy(iommu_domain_cache);
3010 domain_error:
3011 kmem_cache_destroy(iommu_iova_cache);
3012
3013 return -ENOMEM;
3014 }
3015
3016 static void __init iommu_exit_mempool(void)
3017 {
3018 kmem_cache_destroy(iommu_devinfo_cache);
3019 kmem_cache_destroy(iommu_domain_cache);
3020 kmem_cache_destroy(iommu_iova_cache);
3021
3022 }
3023
3024 static void __init init_no_remapping_devices(void)
3025 {
3026 struct dmar_drhd_unit *drhd;
3027
3028 for_each_drhd_unit(drhd) {
3029 if (!drhd->include_all) {
3030 int i;
3031 for (i = 0; i < drhd->devices_cnt; i++)
3032 if (drhd->devices[i] != NULL)
3033 break;
3034 /* ignore DMAR unit if no pci devices exist */
3035 if (i == drhd->devices_cnt)
3036 drhd->ignored = 1;
3037 }
3038 }
3039
3040 if (dmar_map_gfx)
3041 return;
3042
3043 for_each_drhd_unit(drhd) {
3044 int i;
3045 if (drhd->ignored || drhd->include_all)
3046 continue;
3047
3048 for (i = 0; i < drhd->devices_cnt; i++)
3049 if (drhd->devices[i] &&
3050 !IS_GFX_DEVICE(drhd->devices[i]))
3051 break;
3052
3053 if (i < drhd->devices_cnt)
3054 continue;
3055
3056 /* bypass IOMMU if it is just for gfx devices */
3057 drhd->ignored = 1;
3058 for (i = 0; i < drhd->devices_cnt; i++) {
3059 if (!drhd->devices[i])
3060 continue;
3061 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3062 }
3063 }
3064 }
3065
3066 #ifdef CONFIG_SUSPEND
3067 static int init_iommu_hw(void)
3068 {
3069 struct dmar_drhd_unit *drhd;
3070 struct intel_iommu *iommu = NULL;
3071
3072 for_each_active_iommu(iommu, drhd)
3073 if (iommu->qi)
3074 dmar_reenable_qi(iommu);
3075
3076 for_each_active_iommu(iommu, drhd) {
3077 iommu_flush_write_buffer(iommu);
3078
3079 iommu_set_root_entry(iommu);
3080
3081 iommu->flush.flush_context(iommu, 0, 0, 0,
3082 DMA_CCMD_GLOBAL_INVL);
3083 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3084 DMA_TLB_GLOBAL_FLUSH);
3085 iommu_enable_translation(iommu);
3086 iommu_disable_protect_mem_regions(iommu);
3087 }
3088
3089 return 0;
3090 }
3091
3092 static void iommu_flush_all(void)
3093 {
3094 struct dmar_drhd_unit *drhd;
3095 struct intel_iommu *iommu;
3096
3097 for_each_active_iommu(iommu, drhd) {
3098 iommu->flush.flush_context(iommu, 0, 0, 0,
3099 DMA_CCMD_GLOBAL_INVL);
3100 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3101 DMA_TLB_GLOBAL_FLUSH);
3102 }
3103 }
3104
3105 static int iommu_suspend(struct sys_device *dev, pm_message_t state)
3106 {
3107 struct dmar_drhd_unit *drhd;
3108 struct intel_iommu *iommu = NULL;
3109 unsigned long flag;
3110
3111 for_each_active_iommu(iommu, drhd) {
3112 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3113 GFP_ATOMIC);
3114 if (!iommu->iommu_state)
3115 goto nomem;
3116 }
3117
3118 iommu_flush_all();
3119
3120 for_each_active_iommu(iommu, drhd) {
3121 iommu_disable_translation(iommu);
3122
3123 spin_lock_irqsave(&iommu->register_lock, flag);
3124
3125 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3126 readl(iommu->reg + DMAR_FECTL_REG);
3127 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3128 readl(iommu->reg + DMAR_FEDATA_REG);
3129 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3130 readl(iommu->reg + DMAR_FEADDR_REG);
3131 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3132 readl(iommu->reg + DMAR_FEUADDR_REG);
3133
3134 spin_unlock_irqrestore(&iommu->register_lock, flag);
3135 }
3136 return 0;
3137
3138 nomem:
3139 for_each_active_iommu(iommu, drhd)
3140 kfree(iommu->iommu_state);
3141
3142 return -ENOMEM;
3143 }
3144
3145 static int iommu_resume(struct sys_device *dev)
3146 {
3147 struct dmar_drhd_unit *drhd;
3148 struct intel_iommu *iommu = NULL;
3149 unsigned long flag;
3150
3151 if (init_iommu_hw()) {
3152 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3153 return -EIO;
3154 }
3155
3156 for_each_active_iommu(iommu, drhd) {
3157
3158 spin_lock_irqsave(&iommu->register_lock, flag);
3159
3160 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3161 iommu->reg + DMAR_FECTL_REG);
3162 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3163 iommu->reg + DMAR_FEDATA_REG);
3164 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3165 iommu->reg + DMAR_FEADDR_REG);
3166 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3167 iommu->reg + DMAR_FEUADDR_REG);
3168
3169 spin_unlock_irqrestore(&iommu->register_lock, flag);
3170 }
3171
3172 for_each_active_iommu(iommu, drhd)
3173 kfree(iommu->iommu_state);
3174
3175 return 0;
3176 }
3177
3178 static struct sysdev_class iommu_sysclass = {
3179 .name = "iommu",
3180 .resume = iommu_resume,
3181 .suspend = iommu_suspend,
3182 };
3183
3184 static struct sys_device device_iommu = {
3185 .cls = &iommu_sysclass,
3186 };
3187
3188 static int __init init_iommu_sysfs(void)
3189 {
3190 int error;
3191
3192 error = sysdev_class_register(&iommu_sysclass);
3193 if (error)
3194 return error;
3195
3196 error = sysdev_register(&device_iommu);
3197 if (error)
3198 sysdev_class_unregister(&iommu_sysclass);
3199
3200 return error;
3201 }
3202
3203 #else
3204 static int __init init_iommu_sysfs(void)
3205 {
3206 return 0;
3207 }
3208 #endif /* CONFIG_PM */
3209
3210 int __init intel_iommu_init(void)
3211 {
3212 int ret = 0;
3213 int force_on = 0;
3214
3215 /* VT-d is required for a TXT/tboot launch, so enforce that */
3216 force_on = tboot_force_iommu();
3217
3218 if (dmar_table_init()) {
3219 if (force_on)
3220 panic("tboot: Failed to initialize DMAR table\n");
3221 return -ENODEV;
3222 }
3223
3224 if (dmar_dev_scope_init()) {
3225 if (force_on)
3226 panic("tboot: Failed to initialize DMAR device scope\n");
3227 return -ENODEV;
3228 }
3229
3230 /*
3231 * Check the need for DMA-remapping initialization now.
3232 * Above initialization will also be used by Interrupt-remapping.
3233 */
3234 if (no_iommu || swiotlb || dmar_disabled)
3235 return -ENODEV;
3236
3237 iommu_init_mempool();
3238 dmar_init_reserved_ranges();
3239
3240 init_no_remapping_devices();
3241
3242 ret = init_dmars();
3243 if (ret) {
3244 if (force_on)
3245 panic("tboot: Failed to initialize DMARs\n");
3246 printk(KERN_ERR "IOMMU: dmar init failed\n");
3247 put_iova_domain(&reserved_iova_list);
3248 iommu_exit_mempool();
3249 return ret;
3250 }
3251 printk(KERN_INFO
3252 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3253
3254 init_timer(&unmap_timer);
3255 force_iommu = 1;
3256 dma_ops = &intel_dma_ops;
3257
3258 init_iommu_sysfs();
3259
3260 register_iommu(&intel_iommu_ops);
3261
3262 return 0;
3263 }
3264
3265 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3266 struct pci_dev *pdev)
3267 {
3268 struct pci_dev *tmp, *parent;
3269
3270 if (!iommu || !pdev)
3271 return;
3272
3273 /* dependent device detach */
3274 tmp = pci_find_upstream_pcie_bridge(pdev);
3275 /* Secondary interface's bus number and devfn 0 */
3276 if (tmp) {
3277 parent = pdev->bus->self;
3278 while (parent != tmp) {
3279 iommu_detach_dev(iommu, parent->bus->number,
3280 parent->devfn);
3281 parent = parent->bus->self;
3282 }
3283 if (pci_is_pcie(tmp)) /* this is a PCIE-to-PCI bridge */
3284 iommu_detach_dev(iommu,
3285 tmp->subordinate->number, 0);
3286 else /* this is a legacy PCI bridge */
3287 iommu_detach_dev(iommu, tmp->bus->number,
3288 tmp->devfn);
3289 }
3290 }
3291
3292 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3293 struct pci_dev *pdev)
3294 {
3295 struct device_domain_info *info;
3296 struct intel_iommu *iommu;
3297 unsigned long flags;
3298 int found = 0;
3299 struct list_head *entry, *tmp;
3300
3301 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3302 pdev->devfn);
3303 if (!iommu)
3304 return;
3305
3306 spin_lock_irqsave(&device_domain_lock, flags);
3307 list_for_each_safe(entry, tmp, &domain->devices) {
3308 info = list_entry(entry, struct device_domain_info, link);
3309 /* No need to compare PCI domain; it has to be the same */
3310 if (info->bus == pdev->bus->number &&
3311 info->devfn == pdev->devfn) {
3312 list_del(&info->link);
3313 list_del(&info->global);
3314 if (info->dev)
3315 info->dev->dev.archdata.iommu = NULL;
3316 spin_unlock_irqrestore(&device_domain_lock, flags);
3317
3318 iommu_disable_dev_iotlb(info);
3319 iommu_detach_dev(iommu, info->bus, info->devfn);
3320 iommu_detach_dependent_devices(iommu, pdev);
3321 free_devinfo_mem(info);
3322
3323 spin_lock_irqsave(&device_domain_lock, flags);
3324
3325 if (found)
3326 break;
3327 else
3328 continue;
3329 }
3330
3331 /* if there is no other devices under the same iommu
3332 * owned by this domain, clear this iommu in iommu_bmp
3333 * update iommu count and coherency
3334 */
3335 if (iommu == device_to_iommu(info->segment, info->bus,
3336 info->devfn))
3337 found = 1;
3338 }
3339
3340 if (found == 0) {
3341 unsigned long tmp_flags;
3342 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3343 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3344 domain->iommu_count--;
3345 domain_update_iommu_cap(domain);
3346 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3347 }
3348
3349 spin_unlock_irqrestore(&device_domain_lock, flags);
3350 }
3351
3352 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3353 {
3354 struct device_domain_info *info;
3355 struct intel_iommu *iommu;
3356 unsigned long flags1, flags2;
3357
3358 spin_lock_irqsave(&device_domain_lock, flags1);
3359 while (!list_empty(&domain->devices)) {
3360 info = list_entry(domain->devices.next,
3361 struct device_domain_info, link);
3362 list_del(&info->link);
3363 list_del(&info->global);
3364 if (info->dev)
3365 info->dev->dev.archdata.iommu = NULL;
3366
3367 spin_unlock_irqrestore(&device_domain_lock, flags1);
3368
3369 iommu_disable_dev_iotlb(info);
3370 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3371 iommu_detach_dev(iommu, info->bus, info->devfn);
3372 iommu_detach_dependent_devices(iommu, info->dev);
3373
3374 /* clear this iommu in iommu_bmp, update iommu count
3375 * and capabilities
3376 */
3377 spin_lock_irqsave(&domain->iommu_lock, flags2);
3378 if (test_and_clear_bit(iommu->seq_id,
3379 &domain->iommu_bmp)) {
3380 domain->iommu_count--;
3381 domain_update_iommu_cap(domain);
3382 }
3383 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3384
3385 free_devinfo_mem(info);
3386 spin_lock_irqsave(&device_domain_lock, flags1);
3387 }
3388 spin_unlock_irqrestore(&device_domain_lock, flags1);
3389 }
3390
3391 /* domain id for virtual machine, it won't be set in context */
3392 static unsigned long vm_domid;
3393
3394 static int vm_domain_min_agaw(struct dmar_domain *domain)
3395 {
3396 int i;
3397 int min_agaw = domain->agaw;
3398
3399 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
3400 for (; i < g_num_of_iommus; ) {
3401 if (min_agaw > g_iommus[i]->agaw)
3402 min_agaw = g_iommus[i]->agaw;
3403
3404 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
3405 }
3406
3407 return min_agaw;
3408 }
3409
3410 static struct dmar_domain *iommu_alloc_vm_domain(void)
3411 {
3412 struct dmar_domain *domain;
3413
3414 domain = alloc_domain_mem();
3415 if (!domain)
3416 return NULL;
3417
3418 domain->id = vm_domid++;
3419 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3420 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3421
3422 return domain;
3423 }
3424
3425 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3426 {
3427 int adjust_width;
3428
3429 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3430 spin_lock_init(&domain->iommu_lock);
3431
3432 domain_reserve_special_ranges(domain);
3433
3434 /* calculate AGAW */
3435 domain->gaw = guest_width;
3436 adjust_width = guestwidth_to_adjustwidth(guest_width);
3437 domain->agaw = width_to_agaw(adjust_width);
3438
3439 INIT_LIST_HEAD(&domain->devices);
3440
3441 domain->iommu_count = 0;
3442 domain->iommu_coherency = 0;
3443 domain->iommu_snooping = 0;
3444 domain->max_addr = 0;
3445
3446 /* always allocate the top pgd */
3447 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
3448 if (!domain->pgd)
3449 return -ENOMEM;
3450 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3451 return 0;
3452 }
3453
3454 static void iommu_free_vm_domain(struct dmar_domain *domain)
3455 {
3456 unsigned long flags;
3457 struct dmar_drhd_unit *drhd;
3458 struct intel_iommu *iommu;
3459 unsigned long i;
3460 unsigned long ndomains;
3461
3462 for_each_drhd_unit(drhd) {
3463 if (drhd->ignored)
3464 continue;
3465 iommu = drhd->iommu;
3466
3467 ndomains = cap_ndoms(iommu->cap);
3468 i = find_first_bit(iommu->domain_ids, ndomains);
3469 for (; i < ndomains; ) {
3470 if (iommu->domains[i] == domain) {
3471 spin_lock_irqsave(&iommu->lock, flags);
3472 clear_bit(i, iommu->domain_ids);
3473 iommu->domains[i] = NULL;
3474 spin_unlock_irqrestore(&iommu->lock, flags);
3475 break;
3476 }
3477 i = find_next_bit(iommu->domain_ids, ndomains, i+1);
3478 }
3479 }
3480 }
3481
3482 static void vm_domain_exit(struct dmar_domain *domain)
3483 {
3484 /* Domain 0 is reserved, so dont process it */
3485 if (!domain)
3486 return;
3487
3488 vm_domain_remove_all_dev_info(domain);
3489 /* destroy iovas */
3490 put_iova_domain(&domain->iovad);
3491
3492 /* clear ptes */
3493 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3494
3495 /* free page tables */
3496 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3497
3498 iommu_free_vm_domain(domain);
3499 free_domain_mem(domain);
3500 }
3501
3502 static int intel_iommu_domain_init(struct iommu_domain *domain)
3503 {
3504 struct dmar_domain *dmar_domain;
3505
3506 dmar_domain = iommu_alloc_vm_domain();
3507 if (!dmar_domain) {
3508 printk(KERN_ERR
3509 "intel_iommu_domain_init: dmar_domain == NULL\n");
3510 return -ENOMEM;
3511 }
3512 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3513 printk(KERN_ERR
3514 "intel_iommu_domain_init() failed\n");
3515 vm_domain_exit(dmar_domain);
3516 return -ENOMEM;
3517 }
3518 domain->priv = dmar_domain;
3519
3520 return 0;
3521 }
3522
3523 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3524 {
3525 struct dmar_domain *dmar_domain = domain->priv;
3526
3527 domain->priv = NULL;
3528 vm_domain_exit(dmar_domain);
3529 }
3530
3531 static int intel_iommu_attach_device(struct iommu_domain *domain,
3532 struct device *dev)
3533 {
3534 struct dmar_domain *dmar_domain = domain->priv;
3535 struct pci_dev *pdev = to_pci_dev(dev);
3536 struct intel_iommu *iommu;
3537 int addr_width;
3538 u64 end;
3539
3540 /* normally pdev is not mapped */
3541 if (unlikely(domain_context_mapped(pdev))) {
3542 struct dmar_domain *old_domain;
3543
3544 old_domain = find_domain(pdev);
3545 if (old_domain) {
3546 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3547 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3548 domain_remove_one_dev_info(old_domain, pdev);
3549 else
3550 domain_remove_dev_info(old_domain);
3551 }
3552 }
3553
3554 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3555 pdev->devfn);
3556 if (!iommu)
3557 return -ENODEV;
3558
3559 /* check if this iommu agaw is sufficient for max mapped address */
3560 addr_width = agaw_to_width(iommu->agaw);
3561 end = DOMAIN_MAX_ADDR(addr_width);
3562 end = end & VTD_PAGE_MASK;
3563 if (end < dmar_domain->max_addr) {
3564 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3565 "sufficient for the mapped address (%llx)\n",
3566 __func__, iommu->agaw, dmar_domain->max_addr);
3567 return -EFAULT;
3568 }
3569
3570 return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
3571 }
3572
3573 static void intel_iommu_detach_device(struct iommu_domain *domain,
3574 struct device *dev)
3575 {
3576 struct dmar_domain *dmar_domain = domain->priv;
3577 struct pci_dev *pdev = to_pci_dev(dev);
3578
3579 domain_remove_one_dev_info(dmar_domain, pdev);
3580 }
3581
3582 static int intel_iommu_map_range(struct iommu_domain *domain,
3583 unsigned long iova, phys_addr_t hpa,
3584 size_t size, int iommu_prot)
3585 {
3586 struct dmar_domain *dmar_domain = domain->priv;
3587 u64 max_addr;
3588 int addr_width;
3589 int prot = 0;
3590 int ret;
3591
3592 if (iommu_prot & IOMMU_READ)
3593 prot |= DMA_PTE_READ;
3594 if (iommu_prot & IOMMU_WRITE)
3595 prot |= DMA_PTE_WRITE;
3596 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3597 prot |= DMA_PTE_SNP;
3598
3599 max_addr = iova + size;
3600 if (dmar_domain->max_addr < max_addr) {
3601 int min_agaw;
3602 u64 end;
3603
3604 /* check if minimum agaw is sufficient for mapped address */
3605 min_agaw = vm_domain_min_agaw(dmar_domain);
3606 addr_width = agaw_to_width(min_agaw);
3607 end = DOMAIN_MAX_ADDR(addr_width);
3608 end = end & VTD_PAGE_MASK;
3609 if (end < max_addr) {
3610 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3611 "sufficient for the mapped address (%llx)\n",
3612 __func__, min_agaw, max_addr);
3613 return -EFAULT;
3614 }
3615 dmar_domain->max_addr = max_addr;
3616 }
3617 /* Round up size to next multiple of PAGE_SIZE, if it and
3618 the low bits of hpa would take us onto the next page */
3619 size = aligned_nrpages(hpa, size);
3620 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
3621 hpa >> VTD_PAGE_SHIFT, size, prot);
3622 return ret;
3623 }
3624
3625 static void intel_iommu_unmap_range(struct iommu_domain *domain,
3626 unsigned long iova, size_t size)
3627 {
3628 struct dmar_domain *dmar_domain = domain->priv;
3629
3630 if (!size)
3631 return;
3632
3633 dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
3634 (iova + size - 1) >> VTD_PAGE_SHIFT);
3635
3636 if (dmar_domain->max_addr == iova + size)
3637 dmar_domain->max_addr = iova;
3638 }
3639
3640 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3641 unsigned long iova)
3642 {
3643 struct dmar_domain *dmar_domain = domain->priv;
3644 struct dma_pte *pte;
3645 u64 phys = 0;
3646
3647 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT);
3648 if (pte)
3649 phys = dma_pte_addr(pte);
3650
3651 return phys;
3652 }
3653
3654 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
3655 unsigned long cap)
3656 {
3657 struct dmar_domain *dmar_domain = domain->priv;
3658
3659 if (cap == IOMMU_CAP_CACHE_COHERENCY)
3660 return dmar_domain->iommu_snooping;
3661
3662 return 0;
3663 }
3664
3665 static struct iommu_ops intel_iommu_ops = {
3666 .domain_init = intel_iommu_domain_init,
3667 .domain_destroy = intel_iommu_domain_destroy,
3668 .attach_dev = intel_iommu_attach_device,
3669 .detach_dev = intel_iommu_detach_device,
3670 .map = intel_iommu_map_range,
3671 .unmap = intel_iommu_unmap_range,
3672 .iova_to_phys = intel_iommu_iova_to_phys,
3673 .domain_has_cap = intel_iommu_domain_has_cap,
3674 };
3675
3676 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3677 {
3678 /*
3679 * Mobile 4 Series Chipset neglects to set RWBF capability,
3680 * but needs it:
3681 */
3682 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3683 rwbf_quirk = 1;
3684 }
3685
3686 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
3687
3688 /* On Tylersburg chipsets, some BIOSes have been known to enable the
3689 ISOCH DMAR unit for the Azalia sound device, but not give it any
3690 TLB entries, which causes it to deadlock. Check for that. We do
3691 this in a function called from init_dmars(), instead of in a PCI
3692 quirk, because we don't want to print the obnoxious "BIOS broken"
3693 message if VT-d is actually disabled.
3694 */
3695 static void __init check_tylersburg_isoch(void)
3696 {
3697 struct pci_dev *pdev;
3698 uint32_t vtisochctrl;
3699
3700 /* If there's no Azalia in the system anyway, forget it. */
3701 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
3702 if (!pdev)
3703 return;
3704 pci_dev_put(pdev);
3705
3706 /* System Management Registers. Might be hidden, in which case
3707 we can't do the sanity check. But that's OK, because the
3708 known-broken BIOSes _don't_ actually hide it, so far. */
3709 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
3710 if (!pdev)
3711 return;
3712
3713 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
3714 pci_dev_put(pdev);
3715 return;
3716 }
3717
3718 pci_dev_put(pdev);
3719
3720 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
3721 if (vtisochctrl & 1)
3722 return;
3723
3724 /* Drop all bits other than the number of TLB entries */
3725 vtisochctrl &= 0x1c;
3726
3727 /* If we have the recommended number of TLB entries (16), fine. */
3728 if (vtisochctrl == 0x10)
3729 return;
3730
3731 /* Zero TLB entries? You get to ride the short bus to school. */
3732 if (!vtisochctrl) {
3733 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
3734 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
3735 dmi_get_system_info(DMI_BIOS_VENDOR),
3736 dmi_get_system_info(DMI_BIOS_VERSION),
3737 dmi_get_system_info(DMI_PRODUCT_VERSION));
3738 iommu_identity_mapping |= IDENTMAP_AZALIA;
3739 return;
3740 }
3741
3742 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
3743 vtisochctrl);
3744 }
This page took 0.111488 seconds and 5 git commands to generate.