VT-d: remove now unused intel_iommu_found function
[deliverable/linux.git] / drivers / pci / intel-iommu.c
1 /*
2 * Copyright (c) 2006, Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
16 *
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
22 */
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <asm/cacheflush.h>
40 #include <asm/iommu.h>
41 #include "pci.h"
42
43 #define ROOT_SIZE VTD_PAGE_SIZE
44 #define CONTEXT_SIZE VTD_PAGE_SIZE
45
46 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
47 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
48
49 #define IOAPIC_RANGE_START (0xfee00000)
50 #define IOAPIC_RANGE_END (0xfeefffff)
51 #define IOVA_START_ADDR (0x1000)
52
53 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
54
55 #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
56
57 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
58 #define DMA_32BIT_PFN IOVA_PFN(DMA_32BIT_MASK)
59 #define DMA_64BIT_PFN IOVA_PFN(DMA_64BIT_MASK)
60
61 /* global iommu list, set NULL for ignored DMAR units */
62 static struct intel_iommu **g_iommus;
63
64 /*
65 * 0: Present
66 * 1-11: Reserved
67 * 12-63: Context Ptr (12 - (haw-1))
68 * 64-127: Reserved
69 */
70 struct root_entry {
71 u64 val;
72 u64 rsvd1;
73 };
74 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
75 static inline bool root_present(struct root_entry *root)
76 {
77 return (root->val & 1);
78 }
79 static inline void set_root_present(struct root_entry *root)
80 {
81 root->val |= 1;
82 }
83 static inline void set_root_value(struct root_entry *root, unsigned long value)
84 {
85 root->val |= value & VTD_PAGE_MASK;
86 }
87
88 static inline struct context_entry *
89 get_context_addr_from_root(struct root_entry *root)
90 {
91 return (struct context_entry *)
92 (root_present(root)?phys_to_virt(
93 root->val & VTD_PAGE_MASK) :
94 NULL);
95 }
96
97 /*
98 * low 64 bits:
99 * 0: present
100 * 1: fault processing disable
101 * 2-3: translation type
102 * 12-63: address space root
103 * high 64 bits:
104 * 0-2: address width
105 * 3-6: aval
106 * 8-23: domain id
107 */
108 struct context_entry {
109 u64 lo;
110 u64 hi;
111 };
112
113 static inline bool context_present(struct context_entry *context)
114 {
115 return (context->lo & 1);
116 }
117 static inline void context_set_present(struct context_entry *context)
118 {
119 context->lo |= 1;
120 }
121
122 static inline void context_set_fault_enable(struct context_entry *context)
123 {
124 context->lo &= (((u64)-1) << 2) | 1;
125 }
126
127 #define CONTEXT_TT_MULTI_LEVEL 0
128
129 static inline void context_set_translation_type(struct context_entry *context,
130 unsigned long value)
131 {
132 context->lo &= (((u64)-1) << 4) | 3;
133 context->lo |= (value & 3) << 2;
134 }
135
136 static inline void context_set_address_root(struct context_entry *context,
137 unsigned long value)
138 {
139 context->lo |= value & VTD_PAGE_MASK;
140 }
141
142 static inline void context_set_address_width(struct context_entry *context,
143 unsigned long value)
144 {
145 context->hi |= value & 7;
146 }
147
148 static inline void context_set_domain_id(struct context_entry *context,
149 unsigned long value)
150 {
151 context->hi |= (value & ((1 << 16) - 1)) << 8;
152 }
153
154 static inline void context_clear_entry(struct context_entry *context)
155 {
156 context->lo = 0;
157 context->hi = 0;
158 }
159
160 /*
161 * 0: readable
162 * 1: writable
163 * 2-6: reserved
164 * 7: super page
165 * 8-11: available
166 * 12-63: Host physcial address
167 */
168 struct dma_pte {
169 u64 val;
170 };
171
172 static inline void dma_clear_pte(struct dma_pte *pte)
173 {
174 pte->val = 0;
175 }
176
177 static inline void dma_set_pte_readable(struct dma_pte *pte)
178 {
179 pte->val |= DMA_PTE_READ;
180 }
181
182 static inline void dma_set_pte_writable(struct dma_pte *pte)
183 {
184 pte->val |= DMA_PTE_WRITE;
185 }
186
187 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
188 {
189 pte->val = (pte->val & ~3) | (prot & 3);
190 }
191
192 static inline u64 dma_pte_addr(struct dma_pte *pte)
193 {
194 return (pte->val & VTD_PAGE_MASK);
195 }
196
197 static inline void dma_set_pte_addr(struct dma_pte *pte, u64 addr)
198 {
199 pte->val |= (addr & VTD_PAGE_MASK);
200 }
201
202 static inline bool dma_pte_present(struct dma_pte *pte)
203 {
204 return (pte->val & 3) != 0;
205 }
206
207 /* devices under the same p2p bridge are owned in one domain */
208 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 < 0)
209
210 /* domain represents a virtual machine, more than one devices
211 * across iommus may be owned in one domain, e.g. kvm guest.
212 */
213 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
214
215 struct dmar_domain {
216 int id; /* domain id */
217 unsigned long iommu_bmp; /* bitmap of iommus this domain uses*/
218
219 struct list_head devices; /* all devices' list */
220 struct iova_domain iovad; /* iova's that belong to this domain */
221
222 struct dma_pte *pgd; /* virtual address */
223 spinlock_t mapping_lock; /* page table lock */
224 int gaw; /* max guest address width */
225
226 /* adjusted guest address width, 0 is level 2 30-bit */
227 int agaw;
228
229 int flags; /* flags to find out type of domain */
230
231 int iommu_coherency;/* indicate coherency of iommu access */
232 int iommu_count; /* reference count of iommu */
233 spinlock_t iommu_lock; /* protect iommu set in domain */
234 u64 max_addr; /* maximum mapped address */
235 };
236
237 /* PCI domain-device relationship */
238 struct device_domain_info {
239 struct list_head link; /* link to domain siblings */
240 struct list_head global; /* link to global list */
241 u8 bus; /* PCI bus numer */
242 u8 devfn; /* PCI devfn number */
243 struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
244 struct dmar_domain *domain; /* pointer to domain */
245 };
246
247 static void flush_unmaps_timeout(unsigned long data);
248
249 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
250
251 #define HIGH_WATER_MARK 250
252 struct deferred_flush_tables {
253 int next;
254 struct iova *iova[HIGH_WATER_MARK];
255 struct dmar_domain *domain[HIGH_WATER_MARK];
256 };
257
258 static struct deferred_flush_tables *deferred_flush;
259
260 /* bitmap for indexing intel_iommus */
261 static int g_num_of_iommus;
262
263 static DEFINE_SPINLOCK(async_umap_flush_lock);
264 static LIST_HEAD(unmaps_to_do);
265
266 static int timer_on;
267 static long list_size;
268
269 static void domain_remove_dev_info(struct dmar_domain *domain);
270
271 int dmar_disabled;
272 static int __initdata dmar_map_gfx = 1;
273 static int dmar_forcedac;
274 static int intel_iommu_strict;
275
276 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
277 static DEFINE_SPINLOCK(device_domain_lock);
278 static LIST_HEAD(device_domain_list);
279
280 static struct iommu_ops intel_iommu_ops;
281
282 static int __init intel_iommu_setup(char *str)
283 {
284 if (!str)
285 return -EINVAL;
286 while (*str) {
287 if (!strncmp(str, "off", 3)) {
288 dmar_disabled = 1;
289 printk(KERN_INFO"Intel-IOMMU: disabled\n");
290 } else if (!strncmp(str, "igfx_off", 8)) {
291 dmar_map_gfx = 0;
292 printk(KERN_INFO
293 "Intel-IOMMU: disable GFX device mapping\n");
294 } else if (!strncmp(str, "forcedac", 8)) {
295 printk(KERN_INFO
296 "Intel-IOMMU: Forcing DAC for PCI devices\n");
297 dmar_forcedac = 1;
298 } else if (!strncmp(str, "strict", 6)) {
299 printk(KERN_INFO
300 "Intel-IOMMU: disable batched IOTLB flush\n");
301 intel_iommu_strict = 1;
302 }
303
304 str += strcspn(str, ",");
305 while (*str == ',')
306 str++;
307 }
308 return 0;
309 }
310 __setup("intel_iommu=", intel_iommu_setup);
311
312 static struct kmem_cache *iommu_domain_cache;
313 static struct kmem_cache *iommu_devinfo_cache;
314 static struct kmem_cache *iommu_iova_cache;
315
316 static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
317 {
318 unsigned int flags;
319 void *vaddr;
320
321 /* trying to avoid low memory issues */
322 flags = current->flags & PF_MEMALLOC;
323 current->flags |= PF_MEMALLOC;
324 vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
325 current->flags &= (~PF_MEMALLOC | flags);
326 return vaddr;
327 }
328
329
330 static inline void *alloc_pgtable_page(void)
331 {
332 unsigned int flags;
333 void *vaddr;
334
335 /* trying to avoid low memory issues */
336 flags = current->flags & PF_MEMALLOC;
337 current->flags |= PF_MEMALLOC;
338 vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
339 current->flags &= (~PF_MEMALLOC | flags);
340 return vaddr;
341 }
342
343 static inline void free_pgtable_page(void *vaddr)
344 {
345 free_page((unsigned long)vaddr);
346 }
347
348 static inline void *alloc_domain_mem(void)
349 {
350 return iommu_kmem_cache_alloc(iommu_domain_cache);
351 }
352
353 static void free_domain_mem(void *vaddr)
354 {
355 kmem_cache_free(iommu_domain_cache, vaddr);
356 }
357
358 static inline void * alloc_devinfo_mem(void)
359 {
360 return iommu_kmem_cache_alloc(iommu_devinfo_cache);
361 }
362
363 static inline void free_devinfo_mem(void *vaddr)
364 {
365 kmem_cache_free(iommu_devinfo_cache, vaddr);
366 }
367
368 struct iova *alloc_iova_mem(void)
369 {
370 return iommu_kmem_cache_alloc(iommu_iova_cache);
371 }
372
373 void free_iova_mem(struct iova *iova)
374 {
375 kmem_cache_free(iommu_iova_cache, iova);
376 }
377
378
379 static inline int width_to_agaw(int width);
380
381 /* calculate agaw for each iommu.
382 * "SAGAW" may be different across iommus, use a default agaw, and
383 * get a supported less agaw for iommus that don't support the default agaw.
384 */
385 int iommu_calculate_agaw(struct intel_iommu *iommu)
386 {
387 unsigned long sagaw;
388 int agaw = -1;
389
390 sagaw = cap_sagaw(iommu->cap);
391 for (agaw = width_to_agaw(DEFAULT_DOMAIN_ADDRESS_WIDTH);
392 agaw >= 0; agaw--) {
393 if (test_bit(agaw, &sagaw))
394 break;
395 }
396
397 return agaw;
398 }
399
400 /* in native case, each domain is related to only one iommu */
401 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
402 {
403 int iommu_id;
404
405 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
406
407 iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
408 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
409 return NULL;
410
411 return g_iommus[iommu_id];
412 }
413
414 /* "Coherency" capability may be different across iommus */
415 static void domain_update_iommu_coherency(struct dmar_domain *domain)
416 {
417 int i;
418
419 domain->iommu_coherency = 1;
420
421 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
422 for (; i < g_num_of_iommus; ) {
423 if (!ecap_coherent(g_iommus[i]->ecap)) {
424 domain->iommu_coherency = 0;
425 break;
426 }
427 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
428 }
429 }
430
431 static struct intel_iommu *device_to_iommu(u8 bus, u8 devfn)
432 {
433 struct dmar_drhd_unit *drhd = NULL;
434 int i;
435
436 for_each_drhd_unit(drhd) {
437 if (drhd->ignored)
438 continue;
439
440 for (i = 0; i < drhd->devices_cnt; i++)
441 if (drhd->devices[i]->bus->number == bus &&
442 drhd->devices[i]->devfn == devfn)
443 return drhd->iommu;
444
445 if (drhd->include_all)
446 return drhd->iommu;
447 }
448
449 return NULL;
450 }
451
452 static void domain_flush_cache(struct dmar_domain *domain,
453 void *addr, int size)
454 {
455 if (!domain->iommu_coherency)
456 clflush_cache_range(addr, size);
457 }
458
459 /* Gets context entry for a given bus and devfn */
460 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
461 u8 bus, u8 devfn)
462 {
463 struct root_entry *root;
464 struct context_entry *context;
465 unsigned long phy_addr;
466 unsigned long flags;
467
468 spin_lock_irqsave(&iommu->lock, flags);
469 root = &iommu->root_entry[bus];
470 context = get_context_addr_from_root(root);
471 if (!context) {
472 context = (struct context_entry *)alloc_pgtable_page();
473 if (!context) {
474 spin_unlock_irqrestore(&iommu->lock, flags);
475 return NULL;
476 }
477 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
478 phy_addr = virt_to_phys((void *)context);
479 set_root_value(root, phy_addr);
480 set_root_present(root);
481 __iommu_flush_cache(iommu, root, sizeof(*root));
482 }
483 spin_unlock_irqrestore(&iommu->lock, flags);
484 return &context[devfn];
485 }
486
487 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
488 {
489 struct root_entry *root;
490 struct context_entry *context;
491 int ret;
492 unsigned long flags;
493
494 spin_lock_irqsave(&iommu->lock, flags);
495 root = &iommu->root_entry[bus];
496 context = get_context_addr_from_root(root);
497 if (!context) {
498 ret = 0;
499 goto out;
500 }
501 ret = context_present(&context[devfn]);
502 out:
503 spin_unlock_irqrestore(&iommu->lock, flags);
504 return ret;
505 }
506
507 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
508 {
509 struct root_entry *root;
510 struct context_entry *context;
511 unsigned long flags;
512
513 spin_lock_irqsave(&iommu->lock, flags);
514 root = &iommu->root_entry[bus];
515 context = get_context_addr_from_root(root);
516 if (context) {
517 context_clear_entry(&context[devfn]);
518 __iommu_flush_cache(iommu, &context[devfn], \
519 sizeof(*context));
520 }
521 spin_unlock_irqrestore(&iommu->lock, flags);
522 }
523
524 static void free_context_table(struct intel_iommu *iommu)
525 {
526 struct root_entry *root;
527 int i;
528 unsigned long flags;
529 struct context_entry *context;
530
531 spin_lock_irqsave(&iommu->lock, flags);
532 if (!iommu->root_entry) {
533 goto out;
534 }
535 for (i = 0; i < ROOT_ENTRY_NR; i++) {
536 root = &iommu->root_entry[i];
537 context = get_context_addr_from_root(root);
538 if (context)
539 free_pgtable_page(context);
540 }
541 free_pgtable_page(iommu->root_entry);
542 iommu->root_entry = NULL;
543 out:
544 spin_unlock_irqrestore(&iommu->lock, flags);
545 }
546
547 /* page table handling */
548 #define LEVEL_STRIDE (9)
549 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
550
551 static inline int agaw_to_level(int agaw)
552 {
553 return agaw + 2;
554 }
555
556 static inline int agaw_to_width(int agaw)
557 {
558 return 30 + agaw * LEVEL_STRIDE;
559
560 }
561
562 static inline int width_to_agaw(int width)
563 {
564 return (width - 30) / LEVEL_STRIDE;
565 }
566
567 static inline unsigned int level_to_offset_bits(int level)
568 {
569 return (12 + (level - 1) * LEVEL_STRIDE);
570 }
571
572 static inline int address_level_offset(u64 addr, int level)
573 {
574 return ((addr >> level_to_offset_bits(level)) & LEVEL_MASK);
575 }
576
577 static inline u64 level_mask(int level)
578 {
579 return ((u64)-1 << level_to_offset_bits(level));
580 }
581
582 static inline u64 level_size(int level)
583 {
584 return ((u64)1 << level_to_offset_bits(level));
585 }
586
587 static inline u64 align_to_level(u64 addr, int level)
588 {
589 return ((addr + level_size(level) - 1) & level_mask(level));
590 }
591
592 static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr)
593 {
594 int addr_width = agaw_to_width(domain->agaw);
595 struct dma_pte *parent, *pte = NULL;
596 int level = agaw_to_level(domain->agaw);
597 int offset;
598 unsigned long flags;
599
600 BUG_ON(!domain->pgd);
601
602 addr &= (((u64)1) << addr_width) - 1;
603 parent = domain->pgd;
604
605 spin_lock_irqsave(&domain->mapping_lock, flags);
606 while (level > 0) {
607 void *tmp_page;
608
609 offset = address_level_offset(addr, level);
610 pte = &parent[offset];
611 if (level == 1)
612 break;
613
614 if (!dma_pte_present(pte)) {
615 tmp_page = alloc_pgtable_page();
616
617 if (!tmp_page) {
618 spin_unlock_irqrestore(&domain->mapping_lock,
619 flags);
620 return NULL;
621 }
622 domain_flush_cache(domain, tmp_page, PAGE_SIZE);
623 dma_set_pte_addr(pte, virt_to_phys(tmp_page));
624 /*
625 * high level table always sets r/w, last level page
626 * table control read/write
627 */
628 dma_set_pte_readable(pte);
629 dma_set_pte_writable(pte);
630 domain_flush_cache(domain, pte, sizeof(*pte));
631 }
632 parent = phys_to_virt(dma_pte_addr(pte));
633 level--;
634 }
635
636 spin_unlock_irqrestore(&domain->mapping_lock, flags);
637 return pte;
638 }
639
640 /* return address's pte at specific level */
641 static struct dma_pte *dma_addr_level_pte(struct dmar_domain *domain, u64 addr,
642 int level)
643 {
644 struct dma_pte *parent, *pte = NULL;
645 int total = agaw_to_level(domain->agaw);
646 int offset;
647
648 parent = domain->pgd;
649 while (level <= total) {
650 offset = address_level_offset(addr, total);
651 pte = &parent[offset];
652 if (level == total)
653 return pte;
654
655 if (!dma_pte_present(pte))
656 break;
657 parent = phys_to_virt(dma_pte_addr(pte));
658 total--;
659 }
660 return NULL;
661 }
662
663 /* clear one page's page table */
664 static void dma_pte_clear_one(struct dmar_domain *domain, u64 addr)
665 {
666 struct dma_pte *pte = NULL;
667
668 /* get last level pte */
669 pte = dma_addr_level_pte(domain, addr, 1);
670
671 if (pte) {
672 dma_clear_pte(pte);
673 domain_flush_cache(domain, pte, sizeof(*pte));
674 }
675 }
676
677 /* clear last level pte, a tlb flush should be followed */
678 static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end)
679 {
680 int addr_width = agaw_to_width(domain->agaw);
681
682 start &= (((u64)1) << addr_width) - 1;
683 end &= (((u64)1) << addr_width) - 1;
684 /* in case it's partial page */
685 start = PAGE_ALIGN(start);
686 end &= PAGE_MASK;
687
688 /* we don't need lock here, nobody else touches the iova range */
689 while (start < end) {
690 dma_pte_clear_one(domain, start);
691 start += VTD_PAGE_SIZE;
692 }
693 }
694
695 /* free page table pages. last level pte should already be cleared */
696 static void dma_pte_free_pagetable(struct dmar_domain *domain,
697 u64 start, u64 end)
698 {
699 int addr_width = agaw_to_width(domain->agaw);
700 struct dma_pte *pte;
701 int total = agaw_to_level(domain->agaw);
702 int level;
703 u64 tmp;
704
705 start &= (((u64)1) << addr_width) - 1;
706 end &= (((u64)1) << addr_width) - 1;
707
708 /* we don't need lock here, nobody else touches the iova range */
709 level = 2;
710 while (level <= total) {
711 tmp = align_to_level(start, level);
712 if (tmp >= end || (tmp + level_size(level) > end))
713 return;
714
715 while (tmp < end) {
716 pte = dma_addr_level_pte(domain, tmp, level);
717 if (pte) {
718 free_pgtable_page(
719 phys_to_virt(dma_pte_addr(pte)));
720 dma_clear_pte(pte);
721 domain_flush_cache(domain, pte, sizeof(*pte));
722 }
723 tmp += level_size(level);
724 }
725 level++;
726 }
727 /* free pgd */
728 if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) {
729 free_pgtable_page(domain->pgd);
730 domain->pgd = NULL;
731 }
732 }
733
734 /* iommu handling */
735 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
736 {
737 struct root_entry *root;
738 unsigned long flags;
739
740 root = (struct root_entry *)alloc_pgtable_page();
741 if (!root)
742 return -ENOMEM;
743
744 __iommu_flush_cache(iommu, root, ROOT_SIZE);
745
746 spin_lock_irqsave(&iommu->lock, flags);
747 iommu->root_entry = root;
748 spin_unlock_irqrestore(&iommu->lock, flags);
749
750 return 0;
751 }
752
753 static void iommu_set_root_entry(struct intel_iommu *iommu)
754 {
755 void *addr;
756 u32 cmd, sts;
757 unsigned long flag;
758
759 addr = iommu->root_entry;
760
761 spin_lock_irqsave(&iommu->register_lock, flag);
762 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
763
764 cmd = iommu->gcmd | DMA_GCMD_SRTP;
765 writel(cmd, iommu->reg + DMAR_GCMD_REG);
766
767 /* Make sure hardware complete it */
768 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
769 readl, (sts & DMA_GSTS_RTPS), sts);
770
771 spin_unlock_irqrestore(&iommu->register_lock, flag);
772 }
773
774 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
775 {
776 u32 val;
777 unsigned long flag;
778
779 if (!cap_rwbf(iommu->cap))
780 return;
781 val = iommu->gcmd | DMA_GCMD_WBF;
782
783 spin_lock_irqsave(&iommu->register_lock, flag);
784 writel(val, iommu->reg + DMAR_GCMD_REG);
785
786 /* Make sure hardware complete it */
787 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
788 readl, (!(val & DMA_GSTS_WBFS)), val);
789
790 spin_unlock_irqrestore(&iommu->register_lock, flag);
791 }
792
793 /* return value determine if we need a write buffer flush */
794 static int __iommu_flush_context(struct intel_iommu *iommu,
795 u16 did, u16 source_id, u8 function_mask, u64 type,
796 int non_present_entry_flush)
797 {
798 u64 val = 0;
799 unsigned long flag;
800
801 /*
802 * In the non-present entry flush case, if hardware doesn't cache
803 * non-present entry we do nothing and if hardware cache non-present
804 * entry, we flush entries of domain 0 (the domain id is used to cache
805 * any non-present entries)
806 */
807 if (non_present_entry_flush) {
808 if (!cap_caching_mode(iommu->cap))
809 return 1;
810 else
811 did = 0;
812 }
813
814 switch (type) {
815 case DMA_CCMD_GLOBAL_INVL:
816 val = DMA_CCMD_GLOBAL_INVL;
817 break;
818 case DMA_CCMD_DOMAIN_INVL:
819 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
820 break;
821 case DMA_CCMD_DEVICE_INVL:
822 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
823 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
824 break;
825 default:
826 BUG();
827 }
828 val |= DMA_CCMD_ICC;
829
830 spin_lock_irqsave(&iommu->register_lock, flag);
831 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
832
833 /* Make sure hardware complete it */
834 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
835 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
836
837 spin_unlock_irqrestore(&iommu->register_lock, flag);
838
839 /* flush context entry will implicitly flush write buffer */
840 return 0;
841 }
842
843 /* return value determine if we need a write buffer flush */
844 static int __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
845 u64 addr, unsigned int size_order, u64 type,
846 int non_present_entry_flush)
847 {
848 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
849 u64 val = 0, val_iva = 0;
850 unsigned long flag;
851
852 /*
853 * In the non-present entry flush case, if hardware doesn't cache
854 * non-present entry we do nothing and if hardware cache non-present
855 * entry, we flush entries of domain 0 (the domain id is used to cache
856 * any non-present entries)
857 */
858 if (non_present_entry_flush) {
859 if (!cap_caching_mode(iommu->cap))
860 return 1;
861 else
862 did = 0;
863 }
864
865 switch (type) {
866 case DMA_TLB_GLOBAL_FLUSH:
867 /* global flush doesn't need set IVA_REG */
868 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
869 break;
870 case DMA_TLB_DSI_FLUSH:
871 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
872 break;
873 case DMA_TLB_PSI_FLUSH:
874 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
875 /* Note: always flush non-leaf currently */
876 val_iva = size_order | addr;
877 break;
878 default:
879 BUG();
880 }
881 /* Note: set drain read/write */
882 #if 0
883 /*
884 * This is probably to be super secure.. Looks like we can
885 * ignore it without any impact.
886 */
887 if (cap_read_drain(iommu->cap))
888 val |= DMA_TLB_READ_DRAIN;
889 #endif
890 if (cap_write_drain(iommu->cap))
891 val |= DMA_TLB_WRITE_DRAIN;
892
893 spin_lock_irqsave(&iommu->register_lock, flag);
894 /* Note: Only uses first TLB reg currently */
895 if (val_iva)
896 dmar_writeq(iommu->reg + tlb_offset, val_iva);
897 dmar_writeq(iommu->reg + tlb_offset + 8, val);
898
899 /* Make sure hardware complete it */
900 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
901 dmar_readq, (!(val & DMA_TLB_IVT)), val);
902
903 spin_unlock_irqrestore(&iommu->register_lock, flag);
904
905 /* check IOTLB invalidation granularity */
906 if (DMA_TLB_IAIG(val) == 0)
907 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
908 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
909 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
910 (unsigned long long)DMA_TLB_IIRG(type),
911 (unsigned long long)DMA_TLB_IAIG(val));
912 /* flush iotlb entry will implicitly flush write buffer */
913 return 0;
914 }
915
916 static int iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
917 u64 addr, unsigned int pages, int non_present_entry_flush)
918 {
919 unsigned int mask;
920
921 BUG_ON(addr & (~VTD_PAGE_MASK));
922 BUG_ON(pages == 0);
923
924 /* Fallback to domain selective flush if no PSI support */
925 if (!cap_pgsel_inv(iommu->cap))
926 return iommu->flush.flush_iotlb(iommu, did, 0, 0,
927 DMA_TLB_DSI_FLUSH,
928 non_present_entry_flush);
929
930 /*
931 * PSI requires page size to be 2 ^ x, and the base address is naturally
932 * aligned to the size
933 */
934 mask = ilog2(__roundup_pow_of_two(pages));
935 /* Fallback to domain selective flush if size is too big */
936 if (mask > cap_max_amask_val(iommu->cap))
937 return iommu->flush.flush_iotlb(iommu, did, 0, 0,
938 DMA_TLB_DSI_FLUSH, non_present_entry_flush);
939
940 return iommu->flush.flush_iotlb(iommu, did, addr, mask,
941 DMA_TLB_PSI_FLUSH,
942 non_present_entry_flush);
943 }
944
945 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
946 {
947 u32 pmen;
948 unsigned long flags;
949
950 spin_lock_irqsave(&iommu->register_lock, flags);
951 pmen = readl(iommu->reg + DMAR_PMEN_REG);
952 pmen &= ~DMA_PMEN_EPM;
953 writel(pmen, iommu->reg + DMAR_PMEN_REG);
954
955 /* wait for the protected region status bit to clear */
956 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
957 readl, !(pmen & DMA_PMEN_PRS), pmen);
958
959 spin_unlock_irqrestore(&iommu->register_lock, flags);
960 }
961
962 static int iommu_enable_translation(struct intel_iommu *iommu)
963 {
964 u32 sts;
965 unsigned long flags;
966
967 spin_lock_irqsave(&iommu->register_lock, flags);
968 writel(iommu->gcmd|DMA_GCMD_TE, iommu->reg + DMAR_GCMD_REG);
969
970 /* Make sure hardware complete it */
971 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
972 readl, (sts & DMA_GSTS_TES), sts);
973
974 iommu->gcmd |= DMA_GCMD_TE;
975 spin_unlock_irqrestore(&iommu->register_lock, flags);
976 return 0;
977 }
978
979 static int iommu_disable_translation(struct intel_iommu *iommu)
980 {
981 u32 sts;
982 unsigned long flag;
983
984 spin_lock_irqsave(&iommu->register_lock, flag);
985 iommu->gcmd &= ~DMA_GCMD_TE;
986 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
987
988 /* Make sure hardware complete it */
989 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
990 readl, (!(sts & DMA_GSTS_TES)), sts);
991
992 spin_unlock_irqrestore(&iommu->register_lock, flag);
993 return 0;
994 }
995
996 /* iommu interrupt handling. Most stuff are MSI-like. */
997
998 static const char *fault_reason_strings[] =
999 {
1000 "Software",
1001 "Present bit in root entry is clear",
1002 "Present bit in context entry is clear",
1003 "Invalid context entry",
1004 "Access beyond MGAW",
1005 "PTE Write access is not set",
1006 "PTE Read access is not set",
1007 "Next page table ptr is invalid",
1008 "Root table address invalid",
1009 "Context table ptr is invalid",
1010 "non-zero reserved fields in RTP",
1011 "non-zero reserved fields in CTP",
1012 "non-zero reserved fields in PTE",
1013 };
1014 #define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1)
1015
1016 const char *dmar_get_fault_reason(u8 fault_reason)
1017 {
1018 if (fault_reason > MAX_FAULT_REASON_IDX)
1019 return "Unknown";
1020 else
1021 return fault_reason_strings[fault_reason];
1022 }
1023
1024 void dmar_msi_unmask(unsigned int irq)
1025 {
1026 struct intel_iommu *iommu = get_irq_data(irq);
1027 unsigned long flag;
1028
1029 /* unmask it */
1030 spin_lock_irqsave(&iommu->register_lock, flag);
1031 writel(0, iommu->reg + DMAR_FECTL_REG);
1032 /* Read a reg to force flush the post write */
1033 readl(iommu->reg + DMAR_FECTL_REG);
1034 spin_unlock_irqrestore(&iommu->register_lock, flag);
1035 }
1036
1037 void dmar_msi_mask(unsigned int irq)
1038 {
1039 unsigned long flag;
1040 struct intel_iommu *iommu = get_irq_data(irq);
1041
1042 /* mask it */
1043 spin_lock_irqsave(&iommu->register_lock, flag);
1044 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
1045 /* Read a reg to force flush the post write */
1046 readl(iommu->reg + DMAR_FECTL_REG);
1047 spin_unlock_irqrestore(&iommu->register_lock, flag);
1048 }
1049
1050 void dmar_msi_write(int irq, struct msi_msg *msg)
1051 {
1052 struct intel_iommu *iommu = get_irq_data(irq);
1053 unsigned long flag;
1054
1055 spin_lock_irqsave(&iommu->register_lock, flag);
1056 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
1057 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
1058 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1059 spin_unlock_irqrestore(&iommu->register_lock, flag);
1060 }
1061
1062 void dmar_msi_read(int irq, struct msi_msg *msg)
1063 {
1064 struct intel_iommu *iommu = get_irq_data(irq);
1065 unsigned long flag;
1066
1067 spin_lock_irqsave(&iommu->register_lock, flag);
1068 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
1069 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
1070 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1071 spin_unlock_irqrestore(&iommu->register_lock, flag);
1072 }
1073
1074 static int iommu_page_fault_do_one(struct intel_iommu *iommu, int type,
1075 u8 fault_reason, u16 source_id, unsigned long long addr)
1076 {
1077 const char *reason;
1078
1079 reason = dmar_get_fault_reason(fault_reason);
1080
1081 printk(KERN_ERR
1082 "DMAR:[%s] Request device [%02x:%02x.%d] "
1083 "fault addr %llx \n"
1084 "DMAR:[fault reason %02d] %s\n",
1085 (type ? "DMA Read" : "DMA Write"),
1086 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1087 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1088 return 0;
1089 }
1090
1091 #define PRIMARY_FAULT_REG_LEN (16)
1092 static irqreturn_t iommu_page_fault(int irq, void *dev_id)
1093 {
1094 struct intel_iommu *iommu = dev_id;
1095 int reg, fault_index;
1096 u32 fault_status;
1097 unsigned long flag;
1098
1099 spin_lock_irqsave(&iommu->register_lock, flag);
1100 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1101
1102 /* TBD: ignore advanced fault log currently */
1103 if (!(fault_status & DMA_FSTS_PPF))
1104 goto clear_overflow;
1105
1106 fault_index = dma_fsts_fault_record_index(fault_status);
1107 reg = cap_fault_reg_offset(iommu->cap);
1108 while (1) {
1109 u8 fault_reason;
1110 u16 source_id;
1111 u64 guest_addr;
1112 int type;
1113 u32 data;
1114
1115 /* highest 32 bits */
1116 data = readl(iommu->reg + reg +
1117 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1118 if (!(data & DMA_FRCD_F))
1119 break;
1120
1121 fault_reason = dma_frcd_fault_reason(data);
1122 type = dma_frcd_type(data);
1123
1124 data = readl(iommu->reg + reg +
1125 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1126 source_id = dma_frcd_source_id(data);
1127
1128 guest_addr = dmar_readq(iommu->reg + reg +
1129 fault_index * PRIMARY_FAULT_REG_LEN);
1130 guest_addr = dma_frcd_page_addr(guest_addr);
1131 /* clear the fault */
1132 writel(DMA_FRCD_F, iommu->reg + reg +
1133 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1134
1135 spin_unlock_irqrestore(&iommu->register_lock, flag);
1136
1137 iommu_page_fault_do_one(iommu, type, fault_reason,
1138 source_id, guest_addr);
1139
1140 fault_index++;
1141 if (fault_index > cap_num_fault_regs(iommu->cap))
1142 fault_index = 0;
1143 spin_lock_irqsave(&iommu->register_lock, flag);
1144 }
1145 clear_overflow:
1146 /* clear primary fault overflow */
1147 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1148 if (fault_status & DMA_FSTS_PFO)
1149 writel(DMA_FSTS_PFO, iommu->reg + DMAR_FSTS_REG);
1150
1151 spin_unlock_irqrestore(&iommu->register_lock, flag);
1152 return IRQ_HANDLED;
1153 }
1154
1155 int dmar_set_interrupt(struct intel_iommu *iommu)
1156 {
1157 int irq, ret;
1158
1159 irq = create_irq();
1160 if (!irq) {
1161 printk(KERN_ERR "IOMMU: no free vectors\n");
1162 return -EINVAL;
1163 }
1164
1165 set_irq_data(irq, iommu);
1166 iommu->irq = irq;
1167
1168 ret = arch_setup_dmar_msi(irq);
1169 if (ret) {
1170 set_irq_data(irq, NULL);
1171 iommu->irq = 0;
1172 destroy_irq(irq);
1173 return 0;
1174 }
1175
1176 /* Force fault register is cleared */
1177 iommu_page_fault(irq, iommu);
1178
1179 ret = request_irq(irq, iommu_page_fault, 0, iommu->name, iommu);
1180 if (ret)
1181 printk(KERN_ERR "IOMMU: can't request irq\n");
1182 return ret;
1183 }
1184
1185 static int iommu_init_domains(struct intel_iommu *iommu)
1186 {
1187 unsigned long ndomains;
1188 unsigned long nlongs;
1189
1190 ndomains = cap_ndoms(iommu->cap);
1191 pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1192 nlongs = BITS_TO_LONGS(ndomains);
1193
1194 /* TBD: there might be 64K domains,
1195 * consider other allocation for future chip
1196 */
1197 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1198 if (!iommu->domain_ids) {
1199 printk(KERN_ERR "Allocating domain id array failed\n");
1200 return -ENOMEM;
1201 }
1202 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1203 GFP_KERNEL);
1204 if (!iommu->domains) {
1205 printk(KERN_ERR "Allocating domain array failed\n");
1206 kfree(iommu->domain_ids);
1207 return -ENOMEM;
1208 }
1209
1210 spin_lock_init(&iommu->lock);
1211
1212 /*
1213 * if Caching mode is set, then invalid translations are tagged
1214 * with domainid 0. Hence we need to pre-allocate it.
1215 */
1216 if (cap_caching_mode(iommu->cap))
1217 set_bit(0, iommu->domain_ids);
1218 return 0;
1219 }
1220
1221
1222 static void domain_exit(struct dmar_domain *domain);
1223 static void vm_domain_exit(struct dmar_domain *domain);
1224
1225 void free_dmar_iommu(struct intel_iommu *iommu)
1226 {
1227 struct dmar_domain *domain;
1228 int i;
1229 unsigned long flags;
1230
1231 i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1232 for (; i < cap_ndoms(iommu->cap); ) {
1233 domain = iommu->domains[i];
1234 clear_bit(i, iommu->domain_ids);
1235
1236 spin_lock_irqsave(&domain->iommu_lock, flags);
1237 if (--domain->iommu_count == 0) {
1238 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1239 vm_domain_exit(domain);
1240 else
1241 domain_exit(domain);
1242 }
1243 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1244
1245 i = find_next_bit(iommu->domain_ids,
1246 cap_ndoms(iommu->cap), i+1);
1247 }
1248
1249 if (iommu->gcmd & DMA_GCMD_TE)
1250 iommu_disable_translation(iommu);
1251
1252 if (iommu->irq) {
1253 set_irq_data(iommu->irq, NULL);
1254 /* This will mask the irq */
1255 free_irq(iommu->irq, iommu);
1256 destroy_irq(iommu->irq);
1257 }
1258
1259 kfree(iommu->domains);
1260 kfree(iommu->domain_ids);
1261
1262 g_iommus[iommu->seq_id] = NULL;
1263
1264 /* if all iommus are freed, free g_iommus */
1265 for (i = 0; i < g_num_of_iommus; i++) {
1266 if (g_iommus[i])
1267 break;
1268 }
1269
1270 if (i == g_num_of_iommus)
1271 kfree(g_iommus);
1272
1273 /* free context mapping */
1274 free_context_table(iommu);
1275 }
1276
1277 static struct dmar_domain * iommu_alloc_domain(struct intel_iommu *iommu)
1278 {
1279 unsigned long num;
1280 unsigned long ndomains;
1281 struct dmar_domain *domain;
1282 unsigned long flags;
1283
1284 domain = alloc_domain_mem();
1285 if (!domain)
1286 return NULL;
1287
1288 ndomains = cap_ndoms(iommu->cap);
1289
1290 spin_lock_irqsave(&iommu->lock, flags);
1291 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1292 if (num >= ndomains) {
1293 spin_unlock_irqrestore(&iommu->lock, flags);
1294 free_domain_mem(domain);
1295 printk(KERN_ERR "IOMMU: no free domain ids\n");
1296 return NULL;
1297 }
1298
1299 set_bit(num, iommu->domain_ids);
1300 domain->id = num;
1301 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1302 set_bit(iommu->seq_id, &domain->iommu_bmp);
1303 domain->flags = 0;
1304 iommu->domains[num] = domain;
1305 spin_unlock_irqrestore(&iommu->lock, flags);
1306
1307 return domain;
1308 }
1309
1310 static void iommu_free_domain(struct dmar_domain *domain)
1311 {
1312 unsigned long flags;
1313 struct intel_iommu *iommu;
1314
1315 iommu = domain_get_iommu(domain);
1316
1317 spin_lock_irqsave(&iommu->lock, flags);
1318 clear_bit(domain->id, iommu->domain_ids);
1319 spin_unlock_irqrestore(&iommu->lock, flags);
1320 }
1321
1322 static struct iova_domain reserved_iova_list;
1323 static struct lock_class_key reserved_alloc_key;
1324 static struct lock_class_key reserved_rbtree_key;
1325
1326 static void dmar_init_reserved_ranges(void)
1327 {
1328 struct pci_dev *pdev = NULL;
1329 struct iova *iova;
1330 int i;
1331 u64 addr, size;
1332
1333 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1334
1335 lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
1336 &reserved_alloc_key);
1337 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1338 &reserved_rbtree_key);
1339
1340 /* IOAPIC ranges shouldn't be accessed by DMA */
1341 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1342 IOVA_PFN(IOAPIC_RANGE_END));
1343 if (!iova)
1344 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1345
1346 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1347 for_each_pci_dev(pdev) {
1348 struct resource *r;
1349
1350 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1351 r = &pdev->resource[i];
1352 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1353 continue;
1354 addr = r->start;
1355 addr &= PAGE_MASK;
1356 size = r->end - addr;
1357 size = PAGE_ALIGN(size);
1358 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr),
1359 IOVA_PFN(size + addr) - 1);
1360 if (!iova)
1361 printk(KERN_ERR "Reserve iova failed\n");
1362 }
1363 }
1364
1365 }
1366
1367 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1368 {
1369 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1370 }
1371
1372 static inline int guestwidth_to_adjustwidth(int gaw)
1373 {
1374 int agaw;
1375 int r = (gaw - 12) % 9;
1376
1377 if (r == 0)
1378 agaw = gaw;
1379 else
1380 agaw = gaw + 9 - r;
1381 if (agaw > 64)
1382 agaw = 64;
1383 return agaw;
1384 }
1385
1386 static int domain_init(struct dmar_domain *domain, int guest_width)
1387 {
1388 struct intel_iommu *iommu;
1389 int adjust_width, agaw;
1390 unsigned long sagaw;
1391
1392 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1393 spin_lock_init(&domain->mapping_lock);
1394 spin_lock_init(&domain->iommu_lock);
1395
1396 domain_reserve_special_ranges(domain);
1397
1398 /* calculate AGAW */
1399 iommu = domain_get_iommu(domain);
1400 if (guest_width > cap_mgaw(iommu->cap))
1401 guest_width = cap_mgaw(iommu->cap);
1402 domain->gaw = guest_width;
1403 adjust_width = guestwidth_to_adjustwidth(guest_width);
1404 agaw = width_to_agaw(adjust_width);
1405 sagaw = cap_sagaw(iommu->cap);
1406 if (!test_bit(agaw, &sagaw)) {
1407 /* hardware doesn't support it, choose a bigger one */
1408 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1409 agaw = find_next_bit(&sagaw, 5, agaw);
1410 if (agaw >= 5)
1411 return -ENODEV;
1412 }
1413 domain->agaw = agaw;
1414 INIT_LIST_HEAD(&domain->devices);
1415
1416 if (ecap_coherent(iommu->ecap))
1417 domain->iommu_coherency = 1;
1418 else
1419 domain->iommu_coherency = 0;
1420
1421 domain->iommu_count = 1;
1422
1423 /* always allocate the top pgd */
1424 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1425 if (!domain->pgd)
1426 return -ENOMEM;
1427 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1428 return 0;
1429 }
1430
1431 static void domain_exit(struct dmar_domain *domain)
1432 {
1433 u64 end;
1434
1435 /* Domain 0 is reserved, so dont process it */
1436 if (!domain)
1437 return;
1438
1439 domain_remove_dev_info(domain);
1440 /* destroy iovas */
1441 put_iova_domain(&domain->iovad);
1442 end = DOMAIN_MAX_ADDR(domain->gaw);
1443 end = end & (~PAGE_MASK);
1444
1445 /* clear ptes */
1446 dma_pte_clear_range(domain, 0, end);
1447
1448 /* free page tables */
1449 dma_pte_free_pagetable(domain, 0, end);
1450
1451 iommu_free_domain(domain);
1452 free_domain_mem(domain);
1453 }
1454
1455 static int domain_context_mapping_one(struct dmar_domain *domain,
1456 u8 bus, u8 devfn)
1457 {
1458 struct context_entry *context;
1459 unsigned long flags;
1460 struct intel_iommu *iommu;
1461 struct dma_pte *pgd;
1462 unsigned long num;
1463 unsigned long ndomains;
1464 int id;
1465 int agaw;
1466
1467 pr_debug("Set context mapping for %02x:%02x.%d\n",
1468 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1469 BUG_ON(!domain->pgd);
1470
1471 iommu = device_to_iommu(bus, devfn);
1472 if (!iommu)
1473 return -ENODEV;
1474
1475 context = device_to_context_entry(iommu, bus, devfn);
1476 if (!context)
1477 return -ENOMEM;
1478 spin_lock_irqsave(&iommu->lock, flags);
1479 if (context_present(context)) {
1480 spin_unlock_irqrestore(&iommu->lock, flags);
1481 return 0;
1482 }
1483
1484 id = domain->id;
1485 pgd = domain->pgd;
1486
1487 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) {
1488 int found = 0;
1489
1490 /* find an available domain id for this device in iommu */
1491 ndomains = cap_ndoms(iommu->cap);
1492 num = find_first_bit(iommu->domain_ids, ndomains);
1493 for (; num < ndomains; ) {
1494 if (iommu->domains[num] == domain) {
1495 id = num;
1496 found = 1;
1497 break;
1498 }
1499 num = find_next_bit(iommu->domain_ids,
1500 cap_ndoms(iommu->cap), num+1);
1501 }
1502
1503 if (found == 0) {
1504 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1505 if (num >= ndomains) {
1506 spin_unlock_irqrestore(&iommu->lock, flags);
1507 printk(KERN_ERR "IOMMU: no free domain ids\n");
1508 return -EFAULT;
1509 }
1510
1511 set_bit(num, iommu->domain_ids);
1512 iommu->domains[num] = domain;
1513 id = num;
1514 }
1515
1516 /* Skip top levels of page tables for
1517 * iommu which has less agaw than default.
1518 */
1519 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1520 pgd = phys_to_virt(dma_pte_addr(pgd));
1521 if (!dma_pte_present(pgd)) {
1522 spin_unlock_irqrestore(&iommu->lock, flags);
1523 return -ENOMEM;
1524 }
1525 }
1526 }
1527
1528 context_set_domain_id(context, id);
1529 context_set_address_width(context, iommu->agaw);
1530 context_set_address_root(context, virt_to_phys(pgd));
1531 context_set_translation_type(context, CONTEXT_TT_MULTI_LEVEL);
1532 context_set_fault_enable(context);
1533 context_set_present(context);
1534 domain_flush_cache(domain, context, sizeof(*context));
1535
1536 /* it's a non-present to present mapping */
1537 if (iommu->flush.flush_context(iommu, domain->id,
1538 (((u16)bus) << 8) | devfn, DMA_CCMD_MASK_NOBIT,
1539 DMA_CCMD_DEVICE_INVL, 1))
1540 iommu_flush_write_buffer(iommu);
1541 else
1542 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH, 0);
1543
1544 spin_unlock_irqrestore(&iommu->lock, flags);
1545
1546 spin_lock_irqsave(&domain->iommu_lock, flags);
1547 if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1548 domain->iommu_count++;
1549 domain_update_iommu_coherency(domain);
1550 }
1551 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1552 return 0;
1553 }
1554
1555 static int
1556 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev)
1557 {
1558 int ret;
1559 struct pci_dev *tmp, *parent;
1560
1561 ret = domain_context_mapping_one(domain, pdev->bus->number,
1562 pdev->devfn);
1563 if (ret)
1564 return ret;
1565
1566 /* dependent device mapping */
1567 tmp = pci_find_upstream_pcie_bridge(pdev);
1568 if (!tmp)
1569 return 0;
1570 /* Secondary interface's bus number and devfn 0 */
1571 parent = pdev->bus->self;
1572 while (parent != tmp) {
1573 ret = domain_context_mapping_one(domain, parent->bus->number,
1574 parent->devfn);
1575 if (ret)
1576 return ret;
1577 parent = parent->bus->self;
1578 }
1579 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1580 return domain_context_mapping_one(domain,
1581 tmp->subordinate->number, 0);
1582 else /* this is a legacy PCI bridge */
1583 return domain_context_mapping_one(domain,
1584 tmp->bus->number, tmp->devfn);
1585 }
1586
1587 static int domain_context_mapped(struct pci_dev *pdev)
1588 {
1589 int ret;
1590 struct pci_dev *tmp, *parent;
1591 struct intel_iommu *iommu;
1592
1593 iommu = device_to_iommu(pdev->bus->number, pdev->devfn);
1594 if (!iommu)
1595 return -ENODEV;
1596
1597 ret = device_context_mapped(iommu,
1598 pdev->bus->number, pdev->devfn);
1599 if (!ret)
1600 return ret;
1601 /* dependent device mapping */
1602 tmp = pci_find_upstream_pcie_bridge(pdev);
1603 if (!tmp)
1604 return ret;
1605 /* Secondary interface's bus number and devfn 0 */
1606 parent = pdev->bus->self;
1607 while (parent != tmp) {
1608 ret = device_context_mapped(iommu, parent->bus->number,
1609 parent->devfn);
1610 if (!ret)
1611 return ret;
1612 parent = parent->bus->self;
1613 }
1614 if (tmp->is_pcie)
1615 return device_context_mapped(iommu,
1616 tmp->subordinate->number, 0);
1617 else
1618 return device_context_mapped(iommu,
1619 tmp->bus->number, tmp->devfn);
1620 }
1621
1622 static int
1623 domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova,
1624 u64 hpa, size_t size, int prot)
1625 {
1626 u64 start_pfn, end_pfn;
1627 struct dma_pte *pte;
1628 int index;
1629 int addr_width = agaw_to_width(domain->agaw);
1630
1631 hpa &= (((u64)1) << addr_width) - 1;
1632
1633 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1634 return -EINVAL;
1635 iova &= PAGE_MASK;
1636 start_pfn = ((u64)hpa) >> VTD_PAGE_SHIFT;
1637 end_pfn = (VTD_PAGE_ALIGN(((u64)hpa) + size)) >> VTD_PAGE_SHIFT;
1638 index = 0;
1639 while (start_pfn < end_pfn) {
1640 pte = addr_to_dma_pte(domain, iova + VTD_PAGE_SIZE * index);
1641 if (!pte)
1642 return -ENOMEM;
1643 /* We don't need lock here, nobody else
1644 * touches the iova range
1645 */
1646 BUG_ON(dma_pte_addr(pte));
1647 dma_set_pte_addr(pte, start_pfn << VTD_PAGE_SHIFT);
1648 dma_set_pte_prot(pte, prot);
1649 domain_flush_cache(domain, pte, sizeof(*pte));
1650 start_pfn++;
1651 index++;
1652 }
1653 return 0;
1654 }
1655
1656 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1657 {
1658 if (!iommu)
1659 return;
1660
1661 clear_context_table(iommu, bus, devfn);
1662 iommu->flush.flush_context(iommu, 0, 0, 0,
1663 DMA_CCMD_GLOBAL_INVL, 0);
1664 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
1665 DMA_TLB_GLOBAL_FLUSH, 0);
1666 }
1667
1668 static void domain_remove_dev_info(struct dmar_domain *domain)
1669 {
1670 struct device_domain_info *info;
1671 unsigned long flags;
1672 struct intel_iommu *iommu;
1673
1674 spin_lock_irqsave(&device_domain_lock, flags);
1675 while (!list_empty(&domain->devices)) {
1676 info = list_entry(domain->devices.next,
1677 struct device_domain_info, link);
1678 list_del(&info->link);
1679 list_del(&info->global);
1680 if (info->dev)
1681 info->dev->dev.archdata.iommu = NULL;
1682 spin_unlock_irqrestore(&device_domain_lock, flags);
1683
1684 iommu = device_to_iommu(info->bus, info->devfn);
1685 iommu_detach_dev(iommu, info->bus, info->devfn);
1686 free_devinfo_mem(info);
1687
1688 spin_lock_irqsave(&device_domain_lock, flags);
1689 }
1690 spin_unlock_irqrestore(&device_domain_lock, flags);
1691 }
1692
1693 /*
1694 * find_domain
1695 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1696 */
1697 static struct dmar_domain *
1698 find_domain(struct pci_dev *pdev)
1699 {
1700 struct device_domain_info *info;
1701
1702 /* No lock here, assumes no domain exit in normal case */
1703 info = pdev->dev.archdata.iommu;
1704 if (info)
1705 return info->domain;
1706 return NULL;
1707 }
1708
1709 /* domain is initialized */
1710 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1711 {
1712 struct dmar_domain *domain, *found = NULL;
1713 struct intel_iommu *iommu;
1714 struct dmar_drhd_unit *drhd;
1715 struct device_domain_info *info, *tmp;
1716 struct pci_dev *dev_tmp;
1717 unsigned long flags;
1718 int bus = 0, devfn = 0;
1719
1720 domain = find_domain(pdev);
1721 if (domain)
1722 return domain;
1723
1724 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1725 if (dev_tmp) {
1726 if (dev_tmp->is_pcie) {
1727 bus = dev_tmp->subordinate->number;
1728 devfn = 0;
1729 } else {
1730 bus = dev_tmp->bus->number;
1731 devfn = dev_tmp->devfn;
1732 }
1733 spin_lock_irqsave(&device_domain_lock, flags);
1734 list_for_each_entry(info, &device_domain_list, global) {
1735 if (info->bus == bus && info->devfn == devfn) {
1736 found = info->domain;
1737 break;
1738 }
1739 }
1740 spin_unlock_irqrestore(&device_domain_lock, flags);
1741 /* pcie-pci bridge already has a domain, uses it */
1742 if (found) {
1743 domain = found;
1744 goto found_domain;
1745 }
1746 }
1747
1748 /* Allocate new domain for the device */
1749 drhd = dmar_find_matched_drhd_unit(pdev);
1750 if (!drhd) {
1751 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1752 pci_name(pdev));
1753 return NULL;
1754 }
1755 iommu = drhd->iommu;
1756
1757 domain = iommu_alloc_domain(iommu);
1758 if (!domain)
1759 goto error;
1760
1761 if (domain_init(domain, gaw)) {
1762 domain_exit(domain);
1763 goto error;
1764 }
1765
1766 /* register pcie-to-pci device */
1767 if (dev_tmp) {
1768 info = alloc_devinfo_mem();
1769 if (!info) {
1770 domain_exit(domain);
1771 goto error;
1772 }
1773 info->bus = bus;
1774 info->devfn = devfn;
1775 info->dev = NULL;
1776 info->domain = domain;
1777 /* This domain is shared by devices under p2p bridge */
1778 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1779
1780 /* pcie-to-pci bridge already has a domain, uses it */
1781 found = NULL;
1782 spin_lock_irqsave(&device_domain_lock, flags);
1783 list_for_each_entry(tmp, &device_domain_list, global) {
1784 if (tmp->bus == bus && tmp->devfn == devfn) {
1785 found = tmp->domain;
1786 break;
1787 }
1788 }
1789 if (found) {
1790 free_devinfo_mem(info);
1791 domain_exit(domain);
1792 domain = found;
1793 } else {
1794 list_add(&info->link, &domain->devices);
1795 list_add(&info->global, &device_domain_list);
1796 }
1797 spin_unlock_irqrestore(&device_domain_lock, flags);
1798 }
1799
1800 found_domain:
1801 info = alloc_devinfo_mem();
1802 if (!info)
1803 goto error;
1804 info->bus = pdev->bus->number;
1805 info->devfn = pdev->devfn;
1806 info->dev = pdev;
1807 info->domain = domain;
1808 spin_lock_irqsave(&device_domain_lock, flags);
1809 /* somebody is fast */
1810 found = find_domain(pdev);
1811 if (found != NULL) {
1812 spin_unlock_irqrestore(&device_domain_lock, flags);
1813 if (found != domain) {
1814 domain_exit(domain);
1815 domain = found;
1816 }
1817 free_devinfo_mem(info);
1818 return domain;
1819 }
1820 list_add(&info->link, &domain->devices);
1821 list_add(&info->global, &device_domain_list);
1822 pdev->dev.archdata.iommu = info;
1823 spin_unlock_irqrestore(&device_domain_lock, flags);
1824 return domain;
1825 error:
1826 /* recheck it here, maybe others set it */
1827 return find_domain(pdev);
1828 }
1829
1830 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1831 unsigned long long start,
1832 unsigned long long end)
1833 {
1834 struct dmar_domain *domain;
1835 unsigned long size;
1836 unsigned long long base;
1837 int ret;
1838
1839 printk(KERN_INFO
1840 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1841 pci_name(pdev), start, end);
1842 /* page table init */
1843 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1844 if (!domain)
1845 return -ENOMEM;
1846
1847 /* The address might not be aligned */
1848 base = start & PAGE_MASK;
1849 size = end - base;
1850 size = PAGE_ALIGN(size);
1851 if (!reserve_iova(&domain->iovad, IOVA_PFN(base),
1852 IOVA_PFN(base + size) - 1)) {
1853 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1854 ret = -ENOMEM;
1855 goto error;
1856 }
1857
1858 pr_debug("Mapping reserved region %lx@%llx for %s\n",
1859 size, base, pci_name(pdev));
1860 /*
1861 * RMRR range might have overlap with physical memory range,
1862 * clear it first
1863 */
1864 dma_pte_clear_range(domain, base, base + size);
1865
1866 ret = domain_page_mapping(domain, base, base, size,
1867 DMA_PTE_READ|DMA_PTE_WRITE);
1868 if (ret)
1869 goto error;
1870
1871 /* context entry init */
1872 ret = domain_context_mapping(domain, pdev);
1873 if (!ret)
1874 return 0;
1875 error:
1876 domain_exit(domain);
1877 return ret;
1878
1879 }
1880
1881 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1882 struct pci_dev *pdev)
1883 {
1884 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
1885 return 0;
1886 return iommu_prepare_identity_map(pdev, rmrr->base_address,
1887 rmrr->end_address + 1);
1888 }
1889
1890 #ifdef CONFIG_DMAR_GFX_WA
1891 struct iommu_prepare_data {
1892 struct pci_dev *pdev;
1893 int ret;
1894 };
1895
1896 static int __init iommu_prepare_work_fn(unsigned long start_pfn,
1897 unsigned long end_pfn, void *datax)
1898 {
1899 struct iommu_prepare_data *data;
1900
1901 data = (struct iommu_prepare_data *)datax;
1902
1903 data->ret = iommu_prepare_identity_map(data->pdev,
1904 start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT);
1905 return data->ret;
1906
1907 }
1908
1909 static int __init iommu_prepare_with_active_regions(struct pci_dev *pdev)
1910 {
1911 int nid;
1912 struct iommu_prepare_data data;
1913
1914 data.pdev = pdev;
1915 data.ret = 0;
1916
1917 for_each_online_node(nid) {
1918 work_with_active_regions(nid, iommu_prepare_work_fn, &data);
1919 if (data.ret)
1920 return data.ret;
1921 }
1922 return data.ret;
1923 }
1924
1925 static void __init iommu_prepare_gfx_mapping(void)
1926 {
1927 struct pci_dev *pdev = NULL;
1928 int ret;
1929
1930 for_each_pci_dev(pdev) {
1931 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO ||
1932 !IS_GFX_DEVICE(pdev))
1933 continue;
1934 printk(KERN_INFO "IOMMU: gfx device %s 1-1 mapping\n",
1935 pci_name(pdev));
1936 ret = iommu_prepare_with_active_regions(pdev);
1937 if (ret)
1938 printk(KERN_ERR "IOMMU: mapping reserved region failed\n");
1939 }
1940 }
1941 #else /* !CONFIG_DMAR_GFX_WA */
1942 static inline void iommu_prepare_gfx_mapping(void)
1943 {
1944 return;
1945 }
1946 #endif
1947
1948 #ifdef CONFIG_DMAR_FLOPPY_WA
1949 static inline void iommu_prepare_isa(void)
1950 {
1951 struct pci_dev *pdev;
1952 int ret;
1953
1954 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1955 if (!pdev)
1956 return;
1957
1958 printk(KERN_INFO "IOMMU: Prepare 0-16M unity mapping for LPC\n");
1959 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
1960
1961 if (ret)
1962 printk("IOMMU: Failed to create 0-64M identity map, "
1963 "floppy might not work\n");
1964
1965 }
1966 #else
1967 static inline void iommu_prepare_isa(void)
1968 {
1969 return;
1970 }
1971 #endif /* !CONFIG_DMAR_FLPY_WA */
1972
1973 static int __init init_dmars(void)
1974 {
1975 struct dmar_drhd_unit *drhd;
1976 struct dmar_rmrr_unit *rmrr;
1977 struct pci_dev *pdev;
1978 struct intel_iommu *iommu;
1979 int i, ret, unit = 0;
1980
1981 /*
1982 * for each drhd
1983 * allocate root
1984 * initialize and program root entry to not present
1985 * endfor
1986 */
1987 for_each_drhd_unit(drhd) {
1988 g_num_of_iommus++;
1989 /*
1990 * lock not needed as this is only incremented in the single
1991 * threaded kernel __init code path all other access are read
1992 * only
1993 */
1994 }
1995
1996 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
1997 GFP_KERNEL);
1998 if (!g_iommus) {
1999 printk(KERN_ERR "Allocating global iommu array failed\n");
2000 ret = -ENOMEM;
2001 goto error;
2002 }
2003
2004 deferred_flush = kzalloc(g_num_of_iommus *
2005 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2006 if (!deferred_flush) {
2007 kfree(g_iommus);
2008 ret = -ENOMEM;
2009 goto error;
2010 }
2011
2012 for_each_drhd_unit(drhd) {
2013 if (drhd->ignored)
2014 continue;
2015
2016 iommu = drhd->iommu;
2017 g_iommus[iommu->seq_id] = iommu;
2018
2019 ret = iommu_init_domains(iommu);
2020 if (ret)
2021 goto error;
2022
2023 /*
2024 * TBD:
2025 * we could share the same root & context tables
2026 * amoung all IOMMU's. Need to Split it later.
2027 */
2028 ret = iommu_alloc_root_entry(iommu);
2029 if (ret) {
2030 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2031 goto error;
2032 }
2033 }
2034
2035 for_each_drhd_unit(drhd) {
2036 if (drhd->ignored)
2037 continue;
2038
2039 iommu = drhd->iommu;
2040 if (dmar_enable_qi(iommu)) {
2041 /*
2042 * Queued Invalidate not enabled, use Register Based
2043 * Invalidate
2044 */
2045 iommu->flush.flush_context = __iommu_flush_context;
2046 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2047 printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
2048 "invalidation\n",
2049 (unsigned long long)drhd->reg_base_addr);
2050 } else {
2051 iommu->flush.flush_context = qi_flush_context;
2052 iommu->flush.flush_iotlb = qi_flush_iotlb;
2053 printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
2054 "invalidation\n",
2055 (unsigned long long)drhd->reg_base_addr);
2056 }
2057 }
2058
2059 /*
2060 * For each rmrr
2061 * for each dev attached to rmrr
2062 * do
2063 * locate drhd for dev, alloc domain for dev
2064 * allocate free domain
2065 * allocate page table entries for rmrr
2066 * if context not allocated for bus
2067 * allocate and init context
2068 * set present in root table for this bus
2069 * init context with domain, translation etc
2070 * endfor
2071 * endfor
2072 */
2073 for_each_rmrr_units(rmrr) {
2074 for (i = 0; i < rmrr->devices_cnt; i++) {
2075 pdev = rmrr->devices[i];
2076 /* some BIOS lists non-exist devices in DMAR table */
2077 if (!pdev)
2078 continue;
2079 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2080 if (ret)
2081 printk(KERN_ERR
2082 "IOMMU: mapping reserved region failed\n");
2083 }
2084 }
2085
2086 iommu_prepare_gfx_mapping();
2087
2088 iommu_prepare_isa();
2089
2090 /*
2091 * for each drhd
2092 * enable fault log
2093 * global invalidate context cache
2094 * global invalidate iotlb
2095 * enable translation
2096 */
2097 for_each_drhd_unit(drhd) {
2098 if (drhd->ignored)
2099 continue;
2100 iommu = drhd->iommu;
2101 sprintf (iommu->name, "dmar%d", unit++);
2102
2103 iommu_flush_write_buffer(iommu);
2104
2105 ret = dmar_set_interrupt(iommu);
2106 if (ret)
2107 goto error;
2108
2109 iommu_set_root_entry(iommu);
2110
2111 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL,
2112 0);
2113 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH,
2114 0);
2115 iommu_disable_protect_mem_regions(iommu);
2116
2117 ret = iommu_enable_translation(iommu);
2118 if (ret)
2119 goto error;
2120 }
2121
2122 return 0;
2123 error:
2124 for_each_drhd_unit(drhd) {
2125 if (drhd->ignored)
2126 continue;
2127 iommu = drhd->iommu;
2128 free_iommu(iommu);
2129 }
2130 kfree(g_iommus);
2131 return ret;
2132 }
2133
2134 static inline u64 aligned_size(u64 host_addr, size_t size)
2135 {
2136 u64 addr;
2137 addr = (host_addr & (~PAGE_MASK)) + size;
2138 return PAGE_ALIGN(addr);
2139 }
2140
2141 struct iova *
2142 iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end)
2143 {
2144 struct iova *piova;
2145
2146 /* Make sure it's in range */
2147 end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end);
2148 if (!size || (IOVA_START_ADDR + size > end))
2149 return NULL;
2150
2151 piova = alloc_iova(&domain->iovad,
2152 size >> PAGE_SHIFT, IOVA_PFN(end), 1);
2153 return piova;
2154 }
2155
2156 static struct iova *
2157 __intel_alloc_iova(struct device *dev, struct dmar_domain *domain,
2158 size_t size, u64 dma_mask)
2159 {
2160 struct pci_dev *pdev = to_pci_dev(dev);
2161 struct iova *iova = NULL;
2162
2163 if (dma_mask <= DMA_32BIT_MASK || dmar_forcedac)
2164 iova = iommu_alloc_iova(domain, size, dma_mask);
2165 else {
2166 /*
2167 * First try to allocate an io virtual address in
2168 * DMA_32BIT_MASK and if that fails then try allocating
2169 * from higher range
2170 */
2171 iova = iommu_alloc_iova(domain, size, DMA_32BIT_MASK);
2172 if (!iova)
2173 iova = iommu_alloc_iova(domain, size, dma_mask);
2174 }
2175
2176 if (!iova) {
2177 printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev));
2178 return NULL;
2179 }
2180
2181 return iova;
2182 }
2183
2184 static struct dmar_domain *
2185 get_valid_domain_for_dev(struct pci_dev *pdev)
2186 {
2187 struct dmar_domain *domain;
2188 int ret;
2189
2190 domain = get_domain_for_dev(pdev,
2191 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2192 if (!domain) {
2193 printk(KERN_ERR
2194 "Allocating domain for %s failed", pci_name(pdev));
2195 return NULL;
2196 }
2197
2198 /* make sure context mapping is ok */
2199 if (unlikely(!domain_context_mapped(pdev))) {
2200 ret = domain_context_mapping(domain, pdev);
2201 if (ret) {
2202 printk(KERN_ERR
2203 "Domain context map for %s failed",
2204 pci_name(pdev));
2205 return NULL;
2206 }
2207 }
2208
2209 return domain;
2210 }
2211
2212 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2213 size_t size, int dir, u64 dma_mask)
2214 {
2215 struct pci_dev *pdev = to_pci_dev(hwdev);
2216 struct dmar_domain *domain;
2217 phys_addr_t start_paddr;
2218 struct iova *iova;
2219 int prot = 0;
2220 int ret;
2221 struct intel_iommu *iommu;
2222
2223 BUG_ON(dir == DMA_NONE);
2224 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2225 return paddr;
2226
2227 domain = get_valid_domain_for_dev(pdev);
2228 if (!domain)
2229 return 0;
2230
2231 iommu = domain_get_iommu(domain);
2232 size = aligned_size((u64)paddr, size);
2233
2234 iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2235 if (!iova)
2236 goto error;
2237
2238 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2239
2240 /*
2241 * Check if DMAR supports zero-length reads on write only
2242 * mappings..
2243 */
2244 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2245 !cap_zlr(iommu->cap))
2246 prot |= DMA_PTE_READ;
2247 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2248 prot |= DMA_PTE_WRITE;
2249 /*
2250 * paddr - (paddr + size) might be partial page, we should map the whole
2251 * page. Note: if two part of one page are separately mapped, we
2252 * might have two guest_addr mapping to the same host paddr, but this
2253 * is not a big problem
2254 */
2255 ret = domain_page_mapping(domain, start_paddr,
2256 ((u64)paddr) & PAGE_MASK, size, prot);
2257 if (ret)
2258 goto error;
2259
2260 /* it's a non-present to present mapping */
2261 ret = iommu_flush_iotlb_psi(iommu, domain->id,
2262 start_paddr, size >> VTD_PAGE_SHIFT, 1);
2263 if (ret)
2264 iommu_flush_write_buffer(iommu);
2265
2266 return start_paddr + ((u64)paddr & (~PAGE_MASK));
2267
2268 error:
2269 if (iova)
2270 __free_iova(&domain->iovad, iova);
2271 printk(KERN_ERR"Device %s request: %lx@%llx dir %d --- failed\n",
2272 pci_name(pdev), size, (unsigned long long)paddr, dir);
2273 return 0;
2274 }
2275
2276 dma_addr_t intel_map_single(struct device *hwdev, phys_addr_t paddr,
2277 size_t size, int dir)
2278 {
2279 return __intel_map_single(hwdev, paddr, size, dir,
2280 to_pci_dev(hwdev)->dma_mask);
2281 }
2282
2283 static void flush_unmaps(void)
2284 {
2285 int i, j;
2286
2287 timer_on = 0;
2288
2289 /* just flush them all */
2290 for (i = 0; i < g_num_of_iommus; i++) {
2291 struct intel_iommu *iommu = g_iommus[i];
2292 if (!iommu)
2293 continue;
2294
2295 if (deferred_flush[i].next) {
2296 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2297 DMA_TLB_GLOBAL_FLUSH, 0);
2298 for (j = 0; j < deferred_flush[i].next; j++) {
2299 __free_iova(&deferred_flush[i].domain[j]->iovad,
2300 deferred_flush[i].iova[j]);
2301 }
2302 deferred_flush[i].next = 0;
2303 }
2304 }
2305
2306 list_size = 0;
2307 }
2308
2309 static void flush_unmaps_timeout(unsigned long data)
2310 {
2311 unsigned long flags;
2312
2313 spin_lock_irqsave(&async_umap_flush_lock, flags);
2314 flush_unmaps();
2315 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2316 }
2317
2318 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2319 {
2320 unsigned long flags;
2321 int next, iommu_id;
2322 struct intel_iommu *iommu;
2323
2324 spin_lock_irqsave(&async_umap_flush_lock, flags);
2325 if (list_size == HIGH_WATER_MARK)
2326 flush_unmaps();
2327
2328 iommu = domain_get_iommu(dom);
2329 iommu_id = iommu->seq_id;
2330
2331 next = deferred_flush[iommu_id].next;
2332 deferred_flush[iommu_id].domain[next] = dom;
2333 deferred_flush[iommu_id].iova[next] = iova;
2334 deferred_flush[iommu_id].next++;
2335
2336 if (!timer_on) {
2337 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2338 timer_on = 1;
2339 }
2340 list_size++;
2341 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2342 }
2343
2344 void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
2345 int dir)
2346 {
2347 struct pci_dev *pdev = to_pci_dev(dev);
2348 struct dmar_domain *domain;
2349 unsigned long start_addr;
2350 struct iova *iova;
2351 struct intel_iommu *iommu;
2352
2353 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2354 return;
2355 domain = find_domain(pdev);
2356 BUG_ON(!domain);
2357
2358 iommu = domain_get_iommu(domain);
2359
2360 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2361 if (!iova)
2362 return;
2363
2364 start_addr = iova->pfn_lo << PAGE_SHIFT;
2365 size = aligned_size((u64)dev_addr, size);
2366
2367 pr_debug("Device %s unmapping: %lx@%llx\n",
2368 pci_name(pdev), size, (unsigned long long)start_addr);
2369
2370 /* clear the whole page */
2371 dma_pte_clear_range(domain, start_addr, start_addr + size);
2372 /* free page tables */
2373 dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2374 if (intel_iommu_strict) {
2375 if (iommu_flush_iotlb_psi(iommu,
2376 domain->id, start_addr, size >> VTD_PAGE_SHIFT, 0))
2377 iommu_flush_write_buffer(iommu);
2378 /* free iova */
2379 __free_iova(&domain->iovad, iova);
2380 } else {
2381 add_unmap(domain, iova);
2382 /*
2383 * queue up the release of the unmap to save the 1/6th of the
2384 * cpu used up by the iotlb flush operation...
2385 */
2386 }
2387 }
2388
2389 void *intel_alloc_coherent(struct device *hwdev, size_t size,
2390 dma_addr_t *dma_handle, gfp_t flags)
2391 {
2392 void *vaddr;
2393 int order;
2394
2395 size = PAGE_ALIGN(size);
2396 order = get_order(size);
2397 flags &= ~(GFP_DMA | GFP_DMA32);
2398
2399 vaddr = (void *)__get_free_pages(flags, order);
2400 if (!vaddr)
2401 return NULL;
2402 memset(vaddr, 0, size);
2403
2404 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2405 DMA_BIDIRECTIONAL,
2406 hwdev->coherent_dma_mask);
2407 if (*dma_handle)
2408 return vaddr;
2409 free_pages((unsigned long)vaddr, order);
2410 return NULL;
2411 }
2412
2413 void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2414 dma_addr_t dma_handle)
2415 {
2416 int order;
2417
2418 size = PAGE_ALIGN(size);
2419 order = get_order(size);
2420
2421 intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
2422 free_pages((unsigned long)vaddr, order);
2423 }
2424
2425 #define SG_ENT_VIRT_ADDRESS(sg) (sg_virt((sg)))
2426
2427 void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2428 int nelems, int dir)
2429 {
2430 int i;
2431 struct pci_dev *pdev = to_pci_dev(hwdev);
2432 struct dmar_domain *domain;
2433 unsigned long start_addr;
2434 struct iova *iova;
2435 size_t size = 0;
2436 void *addr;
2437 struct scatterlist *sg;
2438 struct intel_iommu *iommu;
2439
2440 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2441 return;
2442
2443 domain = find_domain(pdev);
2444 BUG_ON(!domain);
2445
2446 iommu = domain_get_iommu(domain);
2447
2448 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2449 if (!iova)
2450 return;
2451 for_each_sg(sglist, sg, nelems, i) {
2452 addr = SG_ENT_VIRT_ADDRESS(sg);
2453 size += aligned_size((u64)addr, sg->length);
2454 }
2455
2456 start_addr = iova->pfn_lo << PAGE_SHIFT;
2457
2458 /* clear the whole page */
2459 dma_pte_clear_range(domain, start_addr, start_addr + size);
2460 /* free page tables */
2461 dma_pte_free_pagetable(domain, start_addr, start_addr + size);
2462
2463 if (iommu_flush_iotlb_psi(iommu, domain->id, start_addr,
2464 size >> VTD_PAGE_SHIFT, 0))
2465 iommu_flush_write_buffer(iommu);
2466
2467 /* free iova */
2468 __free_iova(&domain->iovad, iova);
2469 }
2470
2471 static int intel_nontranslate_map_sg(struct device *hddev,
2472 struct scatterlist *sglist, int nelems, int dir)
2473 {
2474 int i;
2475 struct scatterlist *sg;
2476
2477 for_each_sg(sglist, sg, nelems, i) {
2478 BUG_ON(!sg_page(sg));
2479 sg->dma_address = virt_to_bus(SG_ENT_VIRT_ADDRESS(sg));
2480 sg->dma_length = sg->length;
2481 }
2482 return nelems;
2483 }
2484
2485 int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2486 int dir)
2487 {
2488 void *addr;
2489 int i;
2490 struct pci_dev *pdev = to_pci_dev(hwdev);
2491 struct dmar_domain *domain;
2492 size_t size = 0;
2493 int prot = 0;
2494 size_t offset = 0;
2495 struct iova *iova = NULL;
2496 int ret;
2497 struct scatterlist *sg;
2498 unsigned long start_addr;
2499 struct intel_iommu *iommu;
2500
2501 BUG_ON(dir == DMA_NONE);
2502 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2503 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2504
2505 domain = get_valid_domain_for_dev(pdev);
2506 if (!domain)
2507 return 0;
2508
2509 iommu = domain_get_iommu(domain);
2510
2511 for_each_sg(sglist, sg, nelems, i) {
2512 addr = SG_ENT_VIRT_ADDRESS(sg);
2513 addr = (void *)virt_to_phys(addr);
2514 size += aligned_size((u64)addr, sg->length);
2515 }
2516
2517 iova = __intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2518 if (!iova) {
2519 sglist->dma_length = 0;
2520 return 0;
2521 }
2522
2523 /*
2524 * Check if DMAR supports zero-length reads on write only
2525 * mappings..
2526 */
2527 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2528 !cap_zlr(iommu->cap))
2529 prot |= DMA_PTE_READ;
2530 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2531 prot |= DMA_PTE_WRITE;
2532
2533 start_addr = iova->pfn_lo << PAGE_SHIFT;
2534 offset = 0;
2535 for_each_sg(sglist, sg, nelems, i) {
2536 addr = SG_ENT_VIRT_ADDRESS(sg);
2537 addr = (void *)virt_to_phys(addr);
2538 size = aligned_size((u64)addr, sg->length);
2539 ret = domain_page_mapping(domain, start_addr + offset,
2540 ((u64)addr) & PAGE_MASK,
2541 size, prot);
2542 if (ret) {
2543 /* clear the page */
2544 dma_pte_clear_range(domain, start_addr,
2545 start_addr + offset);
2546 /* free page tables */
2547 dma_pte_free_pagetable(domain, start_addr,
2548 start_addr + offset);
2549 /* free iova */
2550 __free_iova(&domain->iovad, iova);
2551 return 0;
2552 }
2553 sg->dma_address = start_addr + offset +
2554 ((u64)addr & (~PAGE_MASK));
2555 sg->dma_length = sg->length;
2556 offset += size;
2557 }
2558
2559 /* it's a non-present to present mapping */
2560 if (iommu_flush_iotlb_psi(iommu, domain->id,
2561 start_addr, offset >> VTD_PAGE_SHIFT, 1))
2562 iommu_flush_write_buffer(iommu);
2563 return nelems;
2564 }
2565
2566 static struct dma_mapping_ops intel_dma_ops = {
2567 .alloc_coherent = intel_alloc_coherent,
2568 .free_coherent = intel_free_coherent,
2569 .map_single = intel_map_single,
2570 .unmap_single = intel_unmap_single,
2571 .map_sg = intel_map_sg,
2572 .unmap_sg = intel_unmap_sg,
2573 };
2574
2575 static inline int iommu_domain_cache_init(void)
2576 {
2577 int ret = 0;
2578
2579 iommu_domain_cache = kmem_cache_create("iommu_domain",
2580 sizeof(struct dmar_domain),
2581 0,
2582 SLAB_HWCACHE_ALIGN,
2583
2584 NULL);
2585 if (!iommu_domain_cache) {
2586 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2587 ret = -ENOMEM;
2588 }
2589
2590 return ret;
2591 }
2592
2593 static inline int iommu_devinfo_cache_init(void)
2594 {
2595 int ret = 0;
2596
2597 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2598 sizeof(struct device_domain_info),
2599 0,
2600 SLAB_HWCACHE_ALIGN,
2601 NULL);
2602 if (!iommu_devinfo_cache) {
2603 printk(KERN_ERR "Couldn't create devinfo cache\n");
2604 ret = -ENOMEM;
2605 }
2606
2607 return ret;
2608 }
2609
2610 static inline int iommu_iova_cache_init(void)
2611 {
2612 int ret = 0;
2613
2614 iommu_iova_cache = kmem_cache_create("iommu_iova",
2615 sizeof(struct iova),
2616 0,
2617 SLAB_HWCACHE_ALIGN,
2618 NULL);
2619 if (!iommu_iova_cache) {
2620 printk(KERN_ERR "Couldn't create iova cache\n");
2621 ret = -ENOMEM;
2622 }
2623
2624 return ret;
2625 }
2626
2627 static int __init iommu_init_mempool(void)
2628 {
2629 int ret;
2630 ret = iommu_iova_cache_init();
2631 if (ret)
2632 return ret;
2633
2634 ret = iommu_domain_cache_init();
2635 if (ret)
2636 goto domain_error;
2637
2638 ret = iommu_devinfo_cache_init();
2639 if (!ret)
2640 return ret;
2641
2642 kmem_cache_destroy(iommu_domain_cache);
2643 domain_error:
2644 kmem_cache_destroy(iommu_iova_cache);
2645
2646 return -ENOMEM;
2647 }
2648
2649 static void __init iommu_exit_mempool(void)
2650 {
2651 kmem_cache_destroy(iommu_devinfo_cache);
2652 kmem_cache_destroy(iommu_domain_cache);
2653 kmem_cache_destroy(iommu_iova_cache);
2654
2655 }
2656
2657 static void __init init_no_remapping_devices(void)
2658 {
2659 struct dmar_drhd_unit *drhd;
2660
2661 for_each_drhd_unit(drhd) {
2662 if (!drhd->include_all) {
2663 int i;
2664 for (i = 0; i < drhd->devices_cnt; i++)
2665 if (drhd->devices[i] != NULL)
2666 break;
2667 /* ignore DMAR unit if no pci devices exist */
2668 if (i == drhd->devices_cnt)
2669 drhd->ignored = 1;
2670 }
2671 }
2672
2673 if (dmar_map_gfx)
2674 return;
2675
2676 for_each_drhd_unit(drhd) {
2677 int i;
2678 if (drhd->ignored || drhd->include_all)
2679 continue;
2680
2681 for (i = 0; i < drhd->devices_cnt; i++)
2682 if (drhd->devices[i] &&
2683 !IS_GFX_DEVICE(drhd->devices[i]))
2684 break;
2685
2686 if (i < drhd->devices_cnt)
2687 continue;
2688
2689 /* bypass IOMMU if it is just for gfx devices */
2690 drhd->ignored = 1;
2691 for (i = 0; i < drhd->devices_cnt; i++) {
2692 if (!drhd->devices[i])
2693 continue;
2694 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
2695 }
2696 }
2697 }
2698
2699 int __init intel_iommu_init(void)
2700 {
2701 int ret = 0;
2702
2703 if (dmar_table_init())
2704 return -ENODEV;
2705
2706 if (dmar_dev_scope_init())
2707 return -ENODEV;
2708
2709 /*
2710 * Check the need for DMA-remapping initialization now.
2711 * Above initialization will also be used by Interrupt-remapping.
2712 */
2713 if (no_iommu || swiotlb || dmar_disabled)
2714 return -ENODEV;
2715
2716 iommu_init_mempool();
2717 dmar_init_reserved_ranges();
2718
2719 init_no_remapping_devices();
2720
2721 ret = init_dmars();
2722 if (ret) {
2723 printk(KERN_ERR "IOMMU: dmar init failed\n");
2724 put_iova_domain(&reserved_iova_list);
2725 iommu_exit_mempool();
2726 return ret;
2727 }
2728 printk(KERN_INFO
2729 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
2730
2731 init_timer(&unmap_timer);
2732 force_iommu = 1;
2733 dma_ops = &intel_dma_ops;
2734
2735 register_iommu(&intel_iommu_ops);
2736
2737 return 0;
2738 }
2739
2740 static int vm_domain_add_dev_info(struct dmar_domain *domain,
2741 struct pci_dev *pdev)
2742 {
2743 struct device_domain_info *info;
2744 unsigned long flags;
2745
2746 info = alloc_devinfo_mem();
2747 if (!info)
2748 return -ENOMEM;
2749
2750 info->bus = pdev->bus->number;
2751 info->devfn = pdev->devfn;
2752 info->dev = pdev;
2753 info->domain = domain;
2754
2755 spin_lock_irqsave(&device_domain_lock, flags);
2756 list_add(&info->link, &domain->devices);
2757 list_add(&info->global, &device_domain_list);
2758 pdev->dev.archdata.iommu = info;
2759 spin_unlock_irqrestore(&device_domain_lock, flags);
2760
2761 return 0;
2762 }
2763
2764 static void vm_domain_remove_one_dev_info(struct dmar_domain *domain,
2765 struct pci_dev *pdev)
2766 {
2767 struct device_domain_info *info;
2768 struct intel_iommu *iommu;
2769 unsigned long flags;
2770 int found = 0;
2771 struct list_head *entry, *tmp;
2772
2773 iommu = device_to_iommu(pdev->bus->number, pdev->devfn);
2774 if (!iommu)
2775 return;
2776
2777 spin_lock_irqsave(&device_domain_lock, flags);
2778 list_for_each_safe(entry, tmp, &domain->devices) {
2779 info = list_entry(entry, struct device_domain_info, link);
2780 if (info->bus == pdev->bus->number &&
2781 info->devfn == pdev->devfn) {
2782 list_del(&info->link);
2783 list_del(&info->global);
2784 if (info->dev)
2785 info->dev->dev.archdata.iommu = NULL;
2786 spin_unlock_irqrestore(&device_domain_lock, flags);
2787
2788 iommu_detach_dev(iommu, info->bus, info->devfn);
2789 free_devinfo_mem(info);
2790
2791 spin_lock_irqsave(&device_domain_lock, flags);
2792
2793 if (found)
2794 break;
2795 else
2796 continue;
2797 }
2798
2799 /* if there is no other devices under the same iommu
2800 * owned by this domain, clear this iommu in iommu_bmp
2801 * update iommu count and coherency
2802 */
2803 if (device_to_iommu(info->bus, info->devfn) == iommu)
2804 found = 1;
2805 }
2806
2807 if (found == 0) {
2808 unsigned long tmp_flags;
2809 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
2810 clear_bit(iommu->seq_id, &domain->iommu_bmp);
2811 domain->iommu_count--;
2812 domain_update_iommu_coherency(domain);
2813 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
2814 }
2815
2816 spin_unlock_irqrestore(&device_domain_lock, flags);
2817 }
2818
2819 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
2820 {
2821 struct device_domain_info *info;
2822 struct intel_iommu *iommu;
2823 unsigned long flags1, flags2;
2824
2825 spin_lock_irqsave(&device_domain_lock, flags1);
2826 while (!list_empty(&domain->devices)) {
2827 info = list_entry(domain->devices.next,
2828 struct device_domain_info, link);
2829 list_del(&info->link);
2830 list_del(&info->global);
2831 if (info->dev)
2832 info->dev->dev.archdata.iommu = NULL;
2833
2834 spin_unlock_irqrestore(&device_domain_lock, flags1);
2835
2836 iommu = device_to_iommu(info->bus, info->devfn);
2837 iommu_detach_dev(iommu, info->bus, info->devfn);
2838
2839 /* clear this iommu in iommu_bmp, update iommu count
2840 * and coherency
2841 */
2842 spin_lock_irqsave(&domain->iommu_lock, flags2);
2843 if (test_and_clear_bit(iommu->seq_id,
2844 &domain->iommu_bmp)) {
2845 domain->iommu_count--;
2846 domain_update_iommu_coherency(domain);
2847 }
2848 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
2849
2850 free_devinfo_mem(info);
2851 spin_lock_irqsave(&device_domain_lock, flags1);
2852 }
2853 spin_unlock_irqrestore(&device_domain_lock, flags1);
2854 }
2855
2856 /* domain id for virtual machine, it won't be set in context */
2857 static unsigned long vm_domid;
2858
2859 static int vm_domain_min_agaw(struct dmar_domain *domain)
2860 {
2861 int i;
2862 int min_agaw = domain->agaw;
2863
2864 i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
2865 for (; i < g_num_of_iommus; ) {
2866 if (min_agaw > g_iommus[i]->agaw)
2867 min_agaw = g_iommus[i]->agaw;
2868
2869 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
2870 }
2871
2872 return min_agaw;
2873 }
2874
2875 static struct dmar_domain *iommu_alloc_vm_domain(void)
2876 {
2877 struct dmar_domain *domain;
2878
2879 domain = alloc_domain_mem();
2880 if (!domain)
2881 return NULL;
2882
2883 domain->id = vm_domid++;
2884 memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
2885 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
2886
2887 return domain;
2888 }
2889
2890 static int vm_domain_init(struct dmar_domain *domain, int guest_width)
2891 {
2892 int adjust_width;
2893
2894 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
2895 spin_lock_init(&domain->mapping_lock);
2896 spin_lock_init(&domain->iommu_lock);
2897
2898 domain_reserve_special_ranges(domain);
2899
2900 /* calculate AGAW */
2901 domain->gaw = guest_width;
2902 adjust_width = guestwidth_to_adjustwidth(guest_width);
2903 domain->agaw = width_to_agaw(adjust_width);
2904
2905 INIT_LIST_HEAD(&domain->devices);
2906
2907 domain->iommu_count = 0;
2908 domain->iommu_coherency = 0;
2909 domain->max_addr = 0;
2910
2911 /* always allocate the top pgd */
2912 domain->pgd = (struct dma_pte *)alloc_pgtable_page();
2913 if (!domain->pgd)
2914 return -ENOMEM;
2915 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
2916 return 0;
2917 }
2918
2919 static void iommu_free_vm_domain(struct dmar_domain *domain)
2920 {
2921 unsigned long flags;
2922 struct dmar_drhd_unit *drhd;
2923 struct intel_iommu *iommu;
2924 unsigned long i;
2925 unsigned long ndomains;
2926
2927 for_each_drhd_unit(drhd) {
2928 if (drhd->ignored)
2929 continue;
2930 iommu = drhd->iommu;
2931
2932 ndomains = cap_ndoms(iommu->cap);
2933 i = find_first_bit(iommu->domain_ids, ndomains);
2934 for (; i < ndomains; ) {
2935 if (iommu->domains[i] == domain) {
2936 spin_lock_irqsave(&iommu->lock, flags);
2937 clear_bit(i, iommu->domain_ids);
2938 iommu->domains[i] = NULL;
2939 spin_unlock_irqrestore(&iommu->lock, flags);
2940 break;
2941 }
2942 i = find_next_bit(iommu->domain_ids, ndomains, i+1);
2943 }
2944 }
2945 }
2946
2947 static void vm_domain_exit(struct dmar_domain *domain)
2948 {
2949 u64 end;
2950
2951 /* Domain 0 is reserved, so dont process it */
2952 if (!domain)
2953 return;
2954
2955 vm_domain_remove_all_dev_info(domain);
2956 /* destroy iovas */
2957 put_iova_domain(&domain->iovad);
2958 end = DOMAIN_MAX_ADDR(domain->gaw);
2959 end = end & (~VTD_PAGE_MASK);
2960
2961 /* clear ptes */
2962 dma_pte_clear_range(domain, 0, end);
2963
2964 /* free page tables */
2965 dma_pte_free_pagetable(domain, 0, end);
2966
2967 iommu_free_vm_domain(domain);
2968 free_domain_mem(domain);
2969 }
2970
2971 static int intel_iommu_domain_init(struct iommu_domain *domain)
2972 {
2973 struct dmar_domain *dmar_domain;
2974
2975 dmar_domain = iommu_alloc_vm_domain();
2976 if (!dmar_domain) {
2977 printk(KERN_ERR
2978 "intel_iommu_domain_init: dmar_domain == NULL\n");
2979 return -ENOMEM;
2980 }
2981 if (vm_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2982 printk(KERN_ERR
2983 "intel_iommu_domain_init() failed\n");
2984 vm_domain_exit(dmar_domain);
2985 return -ENOMEM;
2986 }
2987 domain->priv = dmar_domain;
2988
2989 return 0;
2990 }
2991
2992 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
2993 {
2994 struct dmar_domain *dmar_domain = domain->priv;
2995
2996 domain->priv = NULL;
2997 vm_domain_exit(dmar_domain);
2998 }
2999
3000 static int intel_iommu_attach_device(struct iommu_domain *domain,
3001 struct device *dev)
3002 {
3003 struct dmar_domain *dmar_domain = domain->priv;
3004 struct pci_dev *pdev = to_pci_dev(dev);
3005 struct intel_iommu *iommu;
3006 int addr_width;
3007 u64 end;
3008 int ret;
3009
3010 /* normally pdev is not mapped */
3011 if (unlikely(domain_context_mapped(pdev))) {
3012 struct dmar_domain *old_domain;
3013
3014 old_domain = find_domain(pdev);
3015 if (old_domain) {
3016 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
3017 vm_domain_remove_one_dev_info(old_domain, pdev);
3018 else
3019 domain_remove_dev_info(old_domain);
3020 }
3021 }
3022
3023 iommu = device_to_iommu(pdev->bus->number, pdev->devfn);
3024 if (!iommu)
3025 return -ENODEV;
3026
3027 /* check if this iommu agaw is sufficient for max mapped address */
3028 addr_width = agaw_to_width(iommu->agaw);
3029 end = DOMAIN_MAX_ADDR(addr_width);
3030 end = end & VTD_PAGE_MASK;
3031 if (end < dmar_domain->max_addr) {
3032 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3033 "sufficient for the mapped address (%llx)\n",
3034 __func__, iommu->agaw, dmar_domain->max_addr);
3035 return -EFAULT;
3036 }
3037
3038 ret = domain_context_mapping(dmar_domain, pdev);
3039 if (ret)
3040 return ret;
3041
3042 ret = vm_domain_add_dev_info(dmar_domain, pdev);
3043 return ret;
3044 }
3045
3046 static void intel_iommu_detach_device(struct iommu_domain *domain,
3047 struct device *dev)
3048 {
3049 struct dmar_domain *dmar_domain = domain->priv;
3050 struct pci_dev *pdev = to_pci_dev(dev);
3051
3052 vm_domain_remove_one_dev_info(dmar_domain, pdev);
3053 }
3054
3055 static int intel_iommu_map_range(struct iommu_domain *domain,
3056 unsigned long iova, phys_addr_t hpa,
3057 size_t size, int iommu_prot)
3058 {
3059 struct dmar_domain *dmar_domain = domain->priv;
3060 u64 max_addr;
3061 int addr_width;
3062 int prot = 0;
3063 int ret;
3064
3065 if (iommu_prot & IOMMU_READ)
3066 prot |= DMA_PTE_READ;
3067 if (iommu_prot & IOMMU_WRITE)
3068 prot |= DMA_PTE_WRITE;
3069
3070 max_addr = (iova & VTD_PAGE_MASK) + VTD_PAGE_ALIGN(size);
3071 if (dmar_domain->max_addr < max_addr) {
3072 int min_agaw;
3073 u64 end;
3074
3075 /* check if minimum agaw is sufficient for mapped address */
3076 min_agaw = vm_domain_min_agaw(dmar_domain);
3077 addr_width = agaw_to_width(min_agaw);
3078 end = DOMAIN_MAX_ADDR(addr_width);
3079 end = end & VTD_PAGE_MASK;
3080 if (end < max_addr) {
3081 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3082 "sufficient for the mapped address (%llx)\n",
3083 __func__, min_agaw, max_addr);
3084 return -EFAULT;
3085 }
3086 dmar_domain->max_addr = max_addr;
3087 }
3088
3089 ret = domain_page_mapping(dmar_domain, iova, hpa, size, prot);
3090 return ret;
3091 }
3092
3093 static void intel_iommu_unmap_range(struct iommu_domain *domain,
3094 unsigned long iova, size_t size)
3095 {
3096 struct dmar_domain *dmar_domain = domain->priv;
3097 dma_addr_t base;
3098
3099 /* The address might not be aligned */
3100 base = iova & VTD_PAGE_MASK;
3101 size = VTD_PAGE_ALIGN(size);
3102 dma_pte_clear_range(dmar_domain, base, base + size);
3103
3104 if (dmar_domain->max_addr == base + size)
3105 dmar_domain->max_addr = base;
3106 }
3107
3108 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3109 unsigned long iova)
3110 {
3111 struct dmar_domain *dmar_domain = domain->priv;
3112 struct dma_pte *pte;
3113 u64 phys = 0;
3114
3115 pte = addr_to_dma_pte(dmar_domain, iova);
3116 if (pte)
3117 phys = dma_pte_addr(pte);
3118
3119 return phys;
3120 }
3121
3122 static struct iommu_ops intel_iommu_ops = {
3123 .domain_init = intel_iommu_domain_init,
3124 .domain_destroy = intel_iommu_domain_destroy,
3125 .attach_dev = intel_iommu_attach_device,
3126 .detach_dev = intel_iommu_detach_device,
3127 .map = intel_iommu_map_range,
3128 .unmap = intel_iommu_unmap_range,
3129 .iova_to_phys = intel_iommu_iova_to_phys,
3130 };
This page took 0.148598 seconds and 6 git commands to generate.