pinctrl: cherryview: Do not mask all interrupts in probe
[deliverable/linux.git] / drivers / pci / pci-driver.c
1 /*
2 * drivers/pci/pci-driver.c
3 *
4 * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com>
5 * (C) Copyright 2007 Novell Inc.
6 *
7 * Released under the GPL v2 only.
8 *
9 */
10
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/device.h>
15 #include <linux/mempolicy.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/cpu.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/suspend.h>
22 #include <linux/kexec.h>
23 #include "pci.h"
24
25 struct pci_dynid {
26 struct list_head node;
27 struct pci_device_id id;
28 };
29
30 /**
31 * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices
32 * @drv: target pci driver
33 * @vendor: PCI vendor ID
34 * @device: PCI device ID
35 * @subvendor: PCI subvendor ID
36 * @subdevice: PCI subdevice ID
37 * @class: PCI class
38 * @class_mask: PCI class mask
39 * @driver_data: private driver data
40 *
41 * Adds a new dynamic pci device ID to this driver and causes the
42 * driver to probe for all devices again. @drv must have been
43 * registered prior to calling this function.
44 *
45 * CONTEXT:
46 * Does GFP_KERNEL allocation.
47 *
48 * RETURNS:
49 * 0 on success, -errno on failure.
50 */
51 int pci_add_dynid(struct pci_driver *drv,
52 unsigned int vendor, unsigned int device,
53 unsigned int subvendor, unsigned int subdevice,
54 unsigned int class, unsigned int class_mask,
55 unsigned long driver_data)
56 {
57 struct pci_dynid *dynid;
58
59 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
60 if (!dynid)
61 return -ENOMEM;
62
63 dynid->id.vendor = vendor;
64 dynid->id.device = device;
65 dynid->id.subvendor = subvendor;
66 dynid->id.subdevice = subdevice;
67 dynid->id.class = class;
68 dynid->id.class_mask = class_mask;
69 dynid->id.driver_data = driver_data;
70
71 spin_lock(&drv->dynids.lock);
72 list_add_tail(&dynid->node, &drv->dynids.list);
73 spin_unlock(&drv->dynids.lock);
74
75 return driver_attach(&drv->driver);
76 }
77 EXPORT_SYMBOL_GPL(pci_add_dynid);
78
79 static void pci_free_dynids(struct pci_driver *drv)
80 {
81 struct pci_dynid *dynid, *n;
82
83 spin_lock(&drv->dynids.lock);
84 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
85 list_del(&dynid->node);
86 kfree(dynid);
87 }
88 spin_unlock(&drv->dynids.lock);
89 }
90
91 /**
92 * store_new_id - sysfs frontend to pci_add_dynid()
93 * @driver: target device driver
94 * @buf: buffer for scanning device ID data
95 * @count: input size
96 *
97 * Allow PCI IDs to be added to an existing driver via sysfs.
98 */
99 static ssize_t store_new_id(struct device_driver *driver, const char *buf,
100 size_t count)
101 {
102 struct pci_driver *pdrv = to_pci_driver(driver);
103 const struct pci_device_id *ids = pdrv->id_table;
104 __u32 vendor, device, subvendor = PCI_ANY_ID,
105 subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
106 unsigned long driver_data = 0;
107 int fields = 0;
108 int retval = 0;
109
110 fields = sscanf(buf, "%x %x %x %x %x %x %lx",
111 &vendor, &device, &subvendor, &subdevice,
112 &class, &class_mask, &driver_data);
113 if (fields < 2)
114 return -EINVAL;
115
116 if (fields != 7) {
117 struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
118 if (!pdev)
119 return -ENOMEM;
120
121 pdev->vendor = vendor;
122 pdev->device = device;
123 pdev->subsystem_vendor = subvendor;
124 pdev->subsystem_device = subdevice;
125 pdev->class = class;
126
127 if (pci_match_id(pdrv->id_table, pdev))
128 retval = -EEXIST;
129
130 kfree(pdev);
131
132 if (retval)
133 return retval;
134 }
135
136 /* Only accept driver_data values that match an existing id_table
137 entry */
138 if (ids) {
139 retval = -EINVAL;
140 while (ids->vendor || ids->subvendor || ids->class_mask) {
141 if (driver_data == ids->driver_data) {
142 retval = 0;
143 break;
144 }
145 ids++;
146 }
147 if (retval) /* No match */
148 return retval;
149 }
150
151 retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice,
152 class, class_mask, driver_data);
153 if (retval)
154 return retval;
155 return count;
156 }
157 static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
158
159 /**
160 * store_remove_id - remove a PCI device ID from this driver
161 * @driver: target device driver
162 * @buf: buffer for scanning device ID data
163 * @count: input size
164 *
165 * Removes a dynamic pci device ID to this driver.
166 */
167 static ssize_t store_remove_id(struct device_driver *driver, const char *buf,
168 size_t count)
169 {
170 struct pci_dynid *dynid, *n;
171 struct pci_driver *pdrv = to_pci_driver(driver);
172 __u32 vendor, device, subvendor = PCI_ANY_ID,
173 subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
174 int fields = 0;
175 size_t retval = -ENODEV;
176
177 fields = sscanf(buf, "%x %x %x %x %x %x",
178 &vendor, &device, &subvendor, &subdevice,
179 &class, &class_mask);
180 if (fields < 2)
181 return -EINVAL;
182
183 spin_lock(&pdrv->dynids.lock);
184 list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) {
185 struct pci_device_id *id = &dynid->id;
186 if ((id->vendor == vendor) &&
187 (id->device == device) &&
188 (subvendor == PCI_ANY_ID || id->subvendor == subvendor) &&
189 (subdevice == PCI_ANY_ID || id->subdevice == subdevice) &&
190 !((id->class ^ class) & class_mask)) {
191 list_del(&dynid->node);
192 kfree(dynid);
193 retval = count;
194 break;
195 }
196 }
197 spin_unlock(&pdrv->dynids.lock);
198
199 return retval;
200 }
201 static DRIVER_ATTR(remove_id, S_IWUSR, NULL, store_remove_id);
202
203 static struct attribute *pci_drv_attrs[] = {
204 &driver_attr_new_id.attr,
205 &driver_attr_remove_id.attr,
206 NULL,
207 };
208 ATTRIBUTE_GROUPS(pci_drv);
209
210 /**
211 * pci_match_id - See if a pci device matches a given pci_id table
212 * @ids: array of PCI device id structures to search in
213 * @dev: the PCI device structure to match against.
214 *
215 * Used by a driver to check whether a PCI device present in the
216 * system is in its list of supported devices. Returns the matching
217 * pci_device_id structure or %NULL if there is no match.
218 *
219 * Deprecated, don't use this as it will not catch any dynamic ids
220 * that a driver might want to check for.
221 */
222 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids,
223 struct pci_dev *dev)
224 {
225 if (ids) {
226 while (ids->vendor || ids->subvendor || ids->class_mask) {
227 if (pci_match_one_device(ids, dev))
228 return ids;
229 ids++;
230 }
231 }
232 return NULL;
233 }
234 EXPORT_SYMBOL(pci_match_id);
235
236 static const struct pci_device_id pci_device_id_any = {
237 .vendor = PCI_ANY_ID,
238 .device = PCI_ANY_ID,
239 .subvendor = PCI_ANY_ID,
240 .subdevice = PCI_ANY_ID,
241 };
242
243 /**
244 * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure
245 * @drv: the PCI driver to match against
246 * @dev: the PCI device structure to match against
247 *
248 * Used by a driver to check whether a PCI device present in the
249 * system is in its list of supported devices. Returns the matching
250 * pci_device_id structure or %NULL if there is no match.
251 */
252 static const struct pci_device_id *pci_match_device(struct pci_driver *drv,
253 struct pci_dev *dev)
254 {
255 struct pci_dynid *dynid;
256 const struct pci_device_id *found_id = NULL;
257
258 /* When driver_override is set, only bind to the matching driver */
259 if (dev->driver_override && strcmp(dev->driver_override, drv->name))
260 return NULL;
261
262 /* Look at the dynamic ids first, before the static ones */
263 spin_lock(&drv->dynids.lock);
264 list_for_each_entry(dynid, &drv->dynids.list, node) {
265 if (pci_match_one_device(&dynid->id, dev)) {
266 found_id = &dynid->id;
267 break;
268 }
269 }
270 spin_unlock(&drv->dynids.lock);
271
272 if (!found_id)
273 found_id = pci_match_id(drv->id_table, dev);
274
275 /* driver_override will always match, send a dummy id */
276 if (!found_id && dev->driver_override)
277 found_id = &pci_device_id_any;
278
279 return found_id;
280 }
281
282 struct drv_dev_and_id {
283 struct pci_driver *drv;
284 struct pci_dev *dev;
285 const struct pci_device_id *id;
286 };
287
288 static long local_pci_probe(void *_ddi)
289 {
290 struct drv_dev_and_id *ddi = _ddi;
291 struct pci_dev *pci_dev = ddi->dev;
292 struct pci_driver *pci_drv = ddi->drv;
293 struct device *dev = &pci_dev->dev;
294 int rc;
295
296 /*
297 * Unbound PCI devices are always put in D0, regardless of
298 * runtime PM status. During probe, the device is set to
299 * active and the usage count is incremented. If the driver
300 * supports runtime PM, it should call pm_runtime_put_noidle(),
301 * or any other runtime PM helper function decrementing the usage
302 * count, in its probe routine and pm_runtime_get_noresume() in
303 * its remove routine.
304 */
305 pm_runtime_get_sync(dev);
306 pci_dev->driver = pci_drv;
307 rc = pci_drv->probe(pci_dev, ddi->id);
308 if (!rc)
309 return rc;
310 if (rc < 0) {
311 pci_dev->driver = NULL;
312 pm_runtime_put_sync(dev);
313 return rc;
314 }
315 /*
316 * Probe function should return < 0 for failure, 0 for success
317 * Treat values > 0 as success, but warn.
318 */
319 dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc);
320 return 0;
321 }
322
323 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev,
324 const struct pci_device_id *id)
325 {
326 int error, node;
327 struct drv_dev_and_id ddi = { drv, dev, id };
328
329 /*
330 * Execute driver initialization on node where the device is
331 * attached. This way the driver likely allocates its local memory
332 * on the right node.
333 */
334 node = dev_to_node(&dev->dev);
335
336 /*
337 * On NUMA systems, we are likely to call a PF probe function using
338 * work_on_cpu(). If that probe calls pci_enable_sriov() (which
339 * adds the VF devices via pci_bus_add_device()), we may re-enter
340 * this function to call the VF probe function. Calling
341 * work_on_cpu() again will cause a lockdep warning. Since VFs are
342 * always on the same node as the PF, we can work around this by
343 * avoiding work_on_cpu() when we're already on the correct node.
344 *
345 * Preemption is enabled, so it's theoretically unsafe to use
346 * numa_node_id(), but even if we run the probe function on the
347 * wrong node, it should be functionally correct.
348 */
349 if (node >= 0 && node != numa_node_id()) {
350 int cpu;
351
352 get_online_cpus();
353 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
354 if (cpu < nr_cpu_ids)
355 error = work_on_cpu(cpu, local_pci_probe, &ddi);
356 else
357 error = local_pci_probe(&ddi);
358 put_online_cpus();
359 } else
360 error = local_pci_probe(&ddi);
361
362 return error;
363 }
364
365 /**
366 * __pci_device_probe - check if a driver wants to claim a specific PCI device
367 * @drv: driver to call to check if it wants the PCI device
368 * @pci_dev: PCI device being probed
369 *
370 * returns 0 on success, else error.
371 * side-effect: pci_dev->driver is set to drv when drv claims pci_dev.
372 */
373 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev)
374 {
375 const struct pci_device_id *id;
376 int error = 0;
377
378 if (!pci_dev->driver && drv->probe) {
379 error = -ENODEV;
380
381 id = pci_match_device(drv, pci_dev);
382 if (id)
383 error = pci_call_probe(drv, pci_dev, id);
384 if (error >= 0)
385 error = 0;
386 }
387 return error;
388 }
389
390 int __weak pcibios_alloc_irq(struct pci_dev *dev)
391 {
392 return 0;
393 }
394
395 void __weak pcibios_free_irq(struct pci_dev *dev)
396 {
397 }
398
399 static int pci_device_probe(struct device *dev)
400 {
401 int error;
402 struct pci_dev *pci_dev = to_pci_dev(dev);
403 struct pci_driver *drv = to_pci_driver(dev->driver);
404
405 error = pcibios_alloc_irq(pci_dev);
406 if (error < 0)
407 return error;
408
409 pci_dev_get(pci_dev);
410 error = __pci_device_probe(drv, pci_dev);
411 if (error) {
412 pcibios_free_irq(pci_dev);
413 pci_dev_put(pci_dev);
414 }
415
416 return error;
417 }
418
419 static int pci_device_remove(struct device *dev)
420 {
421 struct pci_dev *pci_dev = to_pci_dev(dev);
422 struct pci_driver *drv = pci_dev->driver;
423
424 if (drv) {
425 if (drv->remove) {
426 pm_runtime_get_sync(dev);
427 drv->remove(pci_dev);
428 pm_runtime_put_noidle(dev);
429 }
430 pcibios_free_irq(pci_dev);
431 pci_dev->driver = NULL;
432 }
433
434 /* Undo the runtime PM settings in local_pci_probe() */
435 pm_runtime_put_sync(dev);
436
437 /*
438 * If the device is still on, set the power state as "unknown",
439 * since it might change by the next time we load the driver.
440 */
441 if (pci_dev->current_state == PCI_D0)
442 pci_dev->current_state = PCI_UNKNOWN;
443
444 /*
445 * We would love to complain here if pci_dev->is_enabled is set, that
446 * the driver should have called pci_disable_device(), but the
447 * unfortunate fact is there are too many odd BIOS and bridge setups
448 * that don't like drivers doing that all of the time.
449 * Oh well, we can dream of sane hardware when we sleep, no matter how
450 * horrible the crap we have to deal with is when we are awake...
451 */
452
453 pci_dev_put(pci_dev);
454 return 0;
455 }
456
457 static void pci_device_shutdown(struct device *dev)
458 {
459 struct pci_dev *pci_dev = to_pci_dev(dev);
460 struct pci_driver *drv = pci_dev->driver;
461
462 pm_runtime_resume(dev);
463
464 if (drv && drv->shutdown)
465 drv->shutdown(pci_dev);
466 pci_msi_shutdown(pci_dev);
467 pci_msix_shutdown(pci_dev);
468
469 #ifdef CONFIG_KEXEC_CORE
470 /*
471 * If this is a kexec reboot, turn off Bus Master bit on the
472 * device to tell it to not continue to do DMA. Don't touch
473 * devices in D3cold or unknown states.
474 * If it is not a kexec reboot, firmware will hit the PCI
475 * devices with big hammer and stop their DMA any way.
476 */
477 if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot))
478 pci_clear_master(pci_dev);
479 #endif
480 }
481
482 #ifdef CONFIG_PM
483
484 /* Auxiliary functions used for system resume and run-time resume. */
485
486 /**
487 * pci_restore_standard_config - restore standard config registers of PCI device
488 * @pci_dev: PCI device to handle
489 */
490 static int pci_restore_standard_config(struct pci_dev *pci_dev)
491 {
492 pci_update_current_state(pci_dev, PCI_UNKNOWN);
493
494 if (pci_dev->current_state != PCI_D0) {
495 int error = pci_set_power_state(pci_dev, PCI_D0);
496 if (error)
497 return error;
498 }
499
500 pci_restore_state(pci_dev);
501 return 0;
502 }
503
504 #endif
505
506 #ifdef CONFIG_PM_SLEEP
507
508 static void pci_pm_default_resume_early(struct pci_dev *pci_dev)
509 {
510 pci_power_up(pci_dev);
511 pci_restore_state(pci_dev);
512 pci_fixup_device(pci_fixup_resume_early, pci_dev);
513 }
514
515 /*
516 * Default "suspend" method for devices that have no driver provided suspend,
517 * or not even a driver at all (second part).
518 */
519 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev)
520 {
521 /*
522 * mark its power state as "unknown", since we don't know if
523 * e.g. the BIOS will change its device state when we suspend.
524 */
525 if (pci_dev->current_state == PCI_D0)
526 pci_dev->current_state = PCI_UNKNOWN;
527 }
528
529 /*
530 * Default "resume" method for devices that have no driver provided resume,
531 * or not even a driver at all (second part).
532 */
533 static int pci_pm_reenable_device(struct pci_dev *pci_dev)
534 {
535 int retval;
536
537 /* if the device was enabled before suspend, reenable */
538 retval = pci_reenable_device(pci_dev);
539 /*
540 * if the device was busmaster before the suspend, make it busmaster
541 * again
542 */
543 if (pci_dev->is_busmaster)
544 pci_set_master(pci_dev);
545
546 return retval;
547 }
548
549 static int pci_legacy_suspend(struct device *dev, pm_message_t state)
550 {
551 struct pci_dev *pci_dev = to_pci_dev(dev);
552 struct pci_driver *drv = pci_dev->driver;
553
554 if (drv && drv->suspend) {
555 pci_power_t prev = pci_dev->current_state;
556 int error;
557
558 error = drv->suspend(pci_dev, state);
559 suspend_report_result(drv->suspend, error);
560 if (error)
561 return error;
562
563 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
564 && pci_dev->current_state != PCI_UNKNOWN) {
565 WARN_ONCE(pci_dev->current_state != prev,
566 "PCI PM: Device state not saved by %pF\n",
567 drv->suspend);
568 }
569 }
570
571 pci_fixup_device(pci_fixup_suspend, pci_dev);
572
573 return 0;
574 }
575
576 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state)
577 {
578 struct pci_dev *pci_dev = to_pci_dev(dev);
579 struct pci_driver *drv = pci_dev->driver;
580
581 if (drv && drv->suspend_late) {
582 pci_power_t prev = pci_dev->current_state;
583 int error;
584
585 error = drv->suspend_late(pci_dev, state);
586 suspend_report_result(drv->suspend_late, error);
587 if (error)
588 return error;
589
590 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
591 && pci_dev->current_state != PCI_UNKNOWN) {
592 WARN_ONCE(pci_dev->current_state != prev,
593 "PCI PM: Device state not saved by %pF\n",
594 drv->suspend_late);
595 goto Fixup;
596 }
597 }
598
599 if (!pci_dev->state_saved)
600 pci_save_state(pci_dev);
601
602 pci_pm_set_unknown_state(pci_dev);
603
604 Fixup:
605 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
606
607 return 0;
608 }
609
610 static int pci_legacy_resume_early(struct device *dev)
611 {
612 struct pci_dev *pci_dev = to_pci_dev(dev);
613 struct pci_driver *drv = pci_dev->driver;
614
615 return drv && drv->resume_early ?
616 drv->resume_early(pci_dev) : 0;
617 }
618
619 static int pci_legacy_resume(struct device *dev)
620 {
621 struct pci_dev *pci_dev = to_pci_dev(dev);
622 struct pci_driver *drv = pci_dev->driver;
623
624 pci_fixup_device(pci_fixup_resume, pci_dev);
625
626 return drv && drv->resume ?
627 drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev);
628 }
629
630 /* Auxiliary functions used by the new power management framework */
631
632 static void pci_pm_default_resume(struct pci_dev *pci_dev)
633 {
634 pci_fixup_device(pci_fixup_resume, pci_dev);
635
636 if (!pci_has_subordinate(pci_dev))
637 pci_enable_wake(pci_dev, PCI_D0, false);
638 }
639
640 static void pci_pm_default_suspend(struct pci_dev *pci_dev)
641 {
642 /* Disable non-bridge devices without PM support */
643 if (!pci_has_subordinate(pci_dev))
644 pci_disable_enabled_device(pci_dev);
645 }
646
647 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev)
648 {
649 struct pci_driver *drv = pci_dev->driver;
650 bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume
651 || drv->resume_early);
652
653 /*
654 * Legacy PM support is used by default, so warn if the new framework is
655 * supported as well. Drivers are supposed to support either the
656 * former, or the latter, but not both at the same time.
657 */
658 WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n",
659 drv->name, pci_dev->vendor, pci_dev->device);
660
661 return ret;
662 }
663
664 /* New power management framework */
665
666 static int pci_pm_prepare(struct device *dev)
667 {
668 struct device_driver *drv = dev->driver;
669
670 /*
671 * Devices having power.ignore_children set may still be necessary for
672 * suspending their children in the next phase of device suspend.
673 */
674 if (dev->power.ignore_children)
675 pm_runtime_resume(dev);
676
677 if (drv && drv->pm && drv->pm->prepare) {
678 int error = drv->pm->prepare(dev);
679 if (error)
680 return error;
681 }
682 return pci_dev_keep_suspended(to_pci_dev(dev));
683 }
684
685 static void pci_pm_complete(struct device *dev)
686 {
687 pci_dev_complete_resume(to_pci_dev(dev));
688 pm_complete_with_resume_check(dev);
689 }
690
691 #else /* !CONFIG_PM_SLEEP */
692
693 #define pci_pm_prepare NULL
694 #define pci_pm_complete NULL
695
696 #endif /* !CONFIG_PM_SLEEP */
697
698 #ifdef CONFIG_SUSPEND
699
700 static int pci_pm_suspend(struct device *dev)
701 {
702 struct pci_dev *pci_dev = to_pci_dev(dev);
703 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
704
705 if (pci_has_legacy_pm_support(pci_dev))
706 return pci_legacy_suspend(dev, PMSG_SUSPEND);
707
708 if (!pm) {
709 pci_pm_default_suspend(pci_dev);
710 goto Fixup;
711 }
712
713 /*
714 * PCI devices suspended at run time need to be resumed at this point,
715 * because in general it is necessary to reconfigure them for system
716 * suspend. Namely, if the device is supposed to wake up the system
717 * from the sleep state, we may need to reconfigure it for this purpose.
718 * In turn, if the device is not supposed to wake up the system from the
719 * sleep state, we'll have to prevent it from signaling wake-up.
720 */
721 pm_runtime_resume(dev);
722
723 pci_dev->state_saved = false;
724 if (pm->suspend) {
725 pci_power_t prev = pci_dev->current_state;
726 int error;
727
728 error = pm->suspend(dev);
729 suspend_report_result(pm->suspend, error);
730 if (error)
731 return error;
732
733 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
734 && pci_dev->current_state != PCI_UNKNOWN) {
735 WARN_ONCE(pci_dev->current_state != prev,
736 "PCI PM: State of device not saved by %pF\n",
737 pm->suspend);
738 }
739 }
740
741 Fixup:
742 pci_fixup_device(pci_fixup_suspend, pci_dev);
743
744 return 0;
745 }
746
747 static int pci_pm_suspend_noirq(struct device *dev)
748 {
749 struct pci_dev *pci_dev = to_pci_dev(dev);
750 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
751
752 if (pci_has_legacy_pm_support(pci_dev))
753 return pci_legacy_suspend_late(dev, PMSG_SUSPEND);
754
755 if (!pm) {
756 pci_save_state(pci_dev);
757 goto Fixup;
758 }
759
760 if (pm->suspend_noirq) {
761 pci_power_t prev = pci_dev->current_state;
762 int error;
763
764 error = pm->suspend_noirq(dev);
765 suspend_report_result(pm->suspend_noirq, error);
766 if (error)
767 return error;
768
769 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
770 && pci_dev->current_state != PCI_UNKNOWN) {
771 WARN_ONCE(pci_dev->current_state != prev,
772 "PCI PM: State of device not saved by %pF\n",
773 pm->suspend_noirq);
774 goto Fixup;
775 }
776 }
777
778 if (!pci_dev->state_saved) {
779 pci_save_state(pci_dev);
780 if (pci_power_manageable(pci_dev))
781 pci_prepare_to_sleep(pci_dev);
782 }
783
784 pci_pm_set_unknown_state(pci_dev);
785
786 /*
787 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's
788 * PCI COMMAND register isn't 0, the BIOS assumes that the controller
789 * hasn't been quiesced and tries to turn it off. If the controller
790 * is already in D3, this can hang or cause memory corruption.
791 *
792 * Since the value of the COMMAND register doesn't matter once the
793 * device has been suspended, we can safely set it to 0 here.
794 */
795 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
796 pci_write_config_word(pci_dev, PCI_COMMAND, 0);
797
798 Fixup:
799 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
800
801 return 0;
802 }
803
804 static int pci_pm_resume_noirq(struct device *dev)
805 {
806 struct pci_dev *pci_dev = to_pci_dev(dev);
807 struct device_driver *drv = dev->driver;
808 int error = 0;
809
810 pci_pm_default_resume_early(pci_dev);
811
812 if (pci_has_legacy_pm_support(pci_dev))
813 return pci_legacy_resume_early(dev);
814
815 if (drv && drv->pm && drv->pm->resume_noirq)
816 error = drv->pm->resume_noirq(dev);
817
818 return error;
819 }
820
821 static int pci_pm_resume(struct device *dev)
822 {
823 struct pci_dev *pci_dev = to_pci_dev(dev);
824 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
825 int error = 0;
826
827 /*
828 * This is necessary for the suspend error path in which resume is
829 * called without restoring the standard config registers of the device.
830 */
831 if (pci_dev->state_saved)
832 pci_restore_standard_config(pci_dev);
833
834 if (pci_has_legacy_pm_support(pci_dev))
835 return pci_legacy_resume(dev);
836
837 pci_pm_default_resume(pci_dev);
838
839 if (pm) {
840 if (pm->resume)
841 error = pm->resume(dev);
842 } else {
843 pci_pm_reenable_device(pci_dev);
844 }
845
846 return error;
847 }
848
849 #else /* !CONFIG_SUSPEND */
850
851 #define pci_pm_suspend NULL
852 #define pci_pm_suspend_noirq NULL
853 #define pci_pm_resume NULL
854 #define pci_pm_resume_noirq NULL
855
856 #endif /* !CONFIG_SUSPEND */
857
858 #ifdef CONFIG_HIBERNATE_CALLBACKS
859
860
861 /*
862 * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing
863 * a hibernate transition
864 */
865 struct dev_pm_ops __weak pcibios_pm_ops;
866
867 static int pci_pm_freeze(struct device *dev)
868 {
869 struct pci_dev *pci_dev = to_pci_dev(dev);
870 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
871
872 if (pci_has_legacy_pm_support(pci_dev))
873 return pci_legacy_suspend(dev, PMSG_FREEZE);
874
875 if (!pm) {
876 pci_pm_default_suspend(pci_dev);
877 return 0;
878 }
879
880 /*
881 * This used to be done in pci_pm_prepare() for all devices and some
882 * drivers may depend on it, so do it here. Ideally, runtime-suspended
883 * devices should not be touched during freeze/thaw transitions,
884 * however.
885 */
886 pm_runtime_resume(dev);
887
888 pci_dev->state_saved = false;
889 if (pm->freeze) {
890 int error;
891
892 error = pm->freeze(dev);
893 suspend_report_result(pm->freeze, error);
894 if (error)
895 return error;
896 }
897
898 if (pcibios_pm_ops.freeze)
899 return pcibios_pm_ops.freeze(dev);
900
901 return 0;
902 }
903
904 static int pci_pm_freeze_noirq(struct device *dev)
905 {
906 struct pci_dev *pci_dev = to_pci_dev(dev);
907 struct device_driver *drv = dev->driver;
908
909 if (pci_has_legacy_pm_support(pci_dev))
910 return pci_legacy_suspend_late(dev, PMSG_FREEZE);
911
912 if (drv && drv->pm && drv->pm->freeze_noirq) {
913 int error;
914
915 error = drv->pm->freeze_noirq(dev);
916 suspend_report_result(drv->pm->freeze_noirq, error);
917 if (error)
918 return error;
919 }
920
921 if (!pci_dev->state_saved)
922 pci_save_state(pci_dev);
923
924 pci_pm_set_unknown_state(pci_dev);
925
926 if (pcibios_pm_ops.freeze_noirq)
927 return pcibios_pm_ops.freeze_noirq(dev);
928
929 return 0;
930 }
931
932 static int pci_pm_thaw_noirq(struct device *dev)
933 {
934 struct pci_dev *pci_dev = to_pci_dev(dev);
935 struct device_driver *drv = dev->driver;
936 int error = 0;
937
938 if (pcibios_pm_ops.thaw_noirq) {
939 error = pcibios_pm_ops.thaw_noirq(dev);
940 if (error)
941 return error;
942 }
943
944 if (pci_has_legacy_pm_support(pci_dev))
945 return pci_legacy_resume_early(dev);
946
947 pci_update_current_state(pci_dev, PCI_D0);
948
949 if (drv && drv->pm && drv->pm->thaw_noirq)
950 error = drv->pm->thaw_noirq(dev);
951
952 return error;
953 }
954
955 static int pci_pm_thaw(struct device *dev)
956 {
957 struct pci_dev *pci_dev = to_pci_dev(dev);
958 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
959 int error = 0;
960
961 if (pcibios_pm_ops.thaw) {
962 error = pcibios_pm_ops.thaw(dev);
963 if (error)
964 return error;
965 }
966
967 if (pci_has_legacy_pm_support(pci_dev))
968 return pci_legacy_resume(dev);
969
970 if (pm) {
971 if (pm->thaw)
972 error = pm->thaw(dev);
973 } else {
974 pci_pm_reenable_device(pci_dev);
975 }
976
977 pci_dev->state_saved = false;
978
979 return error;
980 }
981
982 static int pci_pm_poweroff(struct device *dev)
983 {
984 struct pci_dev *pci_dev = to_pci_dev(dev);
985 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
986
987 if (pci_has_legacy_pm_support(pci_dev))
988 return pci_legacy_suspend(dev, PMSG_HIBERNATE);
989
990 if (!pm) {
991 pci_pm_default_suspend(pci_dev);
992 goto Fixup;
993 }
994
995 /* The reason to do that is the same as in pci_pm_suspend(). */
996 pm_runtime_resume(dev);
997
998 pci_dev->state_saved = false;
999 if (pm->poweroff) {
1000 int error;
1001
1002 error = pm->poweroff(dev);
1003 suspend_report_result(pm->poweroff, error);
1004 if (error)
1005 return error;
1006 }
1007
1008 Fixup:
1009 pci_fixup_device(pci_fixup_suspend, pci_dev);
1010
1011 if (pcibios_pm_ops.poweroff)
1012 return pcibios_pm_ops.poweroff(dev);
1013
1014 return 0;
1015 }
1016
1017 static int pci_pm_poweroff_noirq(struct device *dev)
1018 {
1019 struct pci_dev *pci_dev = to_pci_dev(dev);
1020 struct device_driver *drv = dev->driver;
1021
1022 if (pci_has_legacy_pm_support(to_pci_dev(dev)))
1023 return pci_legacy_suspend_late(dev, PMSG_HIBERNATE);
1024
1025 if (!drv || !drv->pm) {
1026 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1027 return 0;
1028 }
1029
1030 if (drv->pm->poweroff_noirq) {
1031 int error;
1032
1033 error = drv->pm->poweroff_noirq(dev);
1034 suspend_report_result(drv->pm->poweroff_noirq, error);
1035 if (error)
1036 return error;
1037 }
1038
1039 if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev))
1040 pci_prepare_to_sleep(pci_dev);
1041
1042 /*
1043 * The reason for doing this here is the same as for the analogous code
1044 * in pci_pm_suspend_noirq().
1045 */
1046 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1047 pci_write_config_word(pci_dev, PCI_COMMAND, 0);
1048
1049 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1050
1051 if (pcibios_pm_ops.poweroff_noirq)
1052 return pcibios_pm_ops.poweroff_noirq(dev);
1053
1054 return 0;
1055 }
1056
1057 static int pci_pm_restore_noirq(struct device *dev)
1058 {
1059 struct pci_dev *pci_dev = to_pci_dev(dev);
1060 struct device_driver *drv = dev->driver;
1061 int error = 0;
1062
1063 if (pcibios_pm_ops.restore_noirq) {
1064 error = pcibios_pm_ops.restore_noirq(dev);
1065 if (error)
1066 return error;
1067 }
1068
1069 pci_pm_default_resume_early(pci_dev);
1070
1071 if (pci_has_legacy_pm_support(pci_dev))
1072 return pci_legacy_resume_early(dev);
1073
1074 if (drv && drv->pm && drv->pm->restore_noirq)
1075 error = drv->pm->restore_noirq(dev);
1076
1077 return error;
1078 }
1079
1080 static int pci_pm_restore(struct device *dev)
1081 {
1082 struct pci_dev *pci_dev = to_pci_dev(dev);
1083 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1084 int error = 0;
1085
1086 if (pcibios_pm_ops.restore) {
1087 error = pcibios_pm_ops.restore(dev);
1088 if (error)
1089 return error;
1090 }
1091
1092 /*
1093 * This is necessary for the hibernation error path in which restore is
1094 * called without restoring the standard config registers of the device.
1095 */
1096 if (pci_dev->state_saved)
1097 pci_restore_standard_config(pci_dev);
1098
1099 if (pci_has_legacy_pm_support(pci_dev))
1100 return pci_legacy_resume(dev);
1101
1102 pci_pm_default_resume(pci_dev);
1103
1104 if (pm) {
1105 if (pm->restore)
1106 error = pm->restore(dev);
1107 } else {
1108 pci_pm_reenable_device(pci_dev);
1109 }
1110
1111 return error;
1112 }
1113
1114 #else /* !CONFIG_HIBERNATE_CALLBACKS */
1115
1116 #define pci_pm_freeze NULL
1117 #define pci_pm_freeze_noirq NULL
1118 #define pci_pm_thaw NULL
1119 #define pci_pm_thaw_noirq NULL
1120 #define pci_pm_poweroff NULL
1121 #define pci_pm_poweroff_noirq NULL
1122 #define pci_pm_restore NULL
1123 #define pci_pm_restore_noirq NULL
1124
1125 #endif /* !CONFIG_HIBERNATE_CALLBACKS */
1126
1127 #ifdef CONFIG_PM
1128
1129 static int pci_pm_runtime_suspend(struct device *dev)
1130 {
1131 struct pci_dev *pci_dev = to_pci_dev(dev);
1132 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1133 pci_power_t prev = pci_dev->current_state;
1134 int error;
1135
1136 /*
1137 * If pci_dev->driver is not set (unbound), the device should
1138 * always remain in D0 regardless of the runtime PM status
1139 */
1140 if (!pci_dev->driver)
1141 return 0;
1142
1143 if (!pm || !pm->runtime_suspend)
1144 return -ENOSYS;
1145
1146 pci_dev->state_saved = false;
1147 error = pm->runtime_suspend(dev);
1148 if (error) {
1149 /*
1150 * -EBUSY and -EAGAIN is used to request the runtime PM core
1151 * to schedule a new suspend, so log the event only with debug
1152 * log level.
1153 */
1154 if (error == -EBUSY || error == -EAGAIN)
1155 dev_dbg(dev, "can't suspend now (%pf returned %d)\n",
1156 pm->runtime_suspend, error);
1157 else
1158 dev_err(dev, "can't suspend (%pf returned %d)\n",
1159 pm->runtime_suspend, error);
1160
1161 return error;
1162 }
1163
1164 pci_fixup_device(pci_fixup_suspend, pci_dev);
1165
1166 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
1167 && pci_dev->current_state != PCI_UNKNOWN) {
1168 WARN_ONCE(pci_dev->current_state != prev,
1169 "PCI PM: State of device not saved by %pF\n",
1170 pm->runtime_suspend);
1171 return 0;
1172 }
1173
1174 if (!pci_dev->state_saved) {
1175 pci_save_state(pci_dev);
1176 pci_finish_runtime_suspend(pci_dev);
1177 }
1178
1179 return 0;
1180 }
1181
1182 static int pci_pm_runtime_resume(struct device *dev)
1183 {
1184 int rc;
1185 struct pci_dev *pci_dev = to_pci_dev(dev);
1186 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1187
1188 /*
1189 * If pci_dev->driver is not set (unbound), the device should
1190 * always remain in D0 regardless of the runtime PM status
1191 */
1192 if (!pci_dev->driver)
1193 return 0;
1194
1195 if (!pm || !pm->runtime_resume)
1196 return -ENOSYS;
1197
1198 pci_restore_standard_config(pci_dev);
1199 pci_fixup_device(pci_fixup_resume_early, pci_dev);
1200 __pci_enable_wake(pci_dev, PCI_D0, true, false);
1201 pci_fixup_device(pci_fixup_resume, pci_dev);
1202
1203 rc = pm->runtime_resume(dev);
1204
1205 pci_dev->runtime_d3cold = false;
1206
1207 return rc;
1208 }
1209
1210 static int pci_pm_runtime_idle(struct device *dev)
1211 {
1212 struct pci_dev *pci_dev = to_pci_dev(dev);
1213 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1214 int ret = 0;
1215
1216 /*
1217 * If pci_dev->driver is not set (unbound), the device should
1218 * always remain in D0 regardless of the runtime PM status
1219 */
1220 if (!pci_dev->driver)
1221 return 0;
1222
1223 if (!pm)
1224 return -ENOSYS;
1225
1226 if (pm->runtime_idle)
1227 ret = pm->runtime_idle(dev);
1228
1229 return ret;
1230 }
1231
1232 static const struct dev_pm_ops pci_dev_pm_ops = {
1233 .prepare = pci_pm_prepare,
1234 .complete = pci_pm_complete,
1235 .suspend = pci_pm_suspend,
1236 .resume = pci_pm_resume,
1237 .freeze = pci_pm_freeze,
1238 .thaw = pci_pm_thaw,
1239 .poweroff = pci_pm_poweroff,
1240 .restore = pci_pm_restore,
1241 .suspend_noirq = pci_pm_suspend_noirq,
1242 .resume_noirq = pci_pm_resume_noirq,
1243 .freeze_noirq = pci_pm_freeze_noirq,
1244 .thaw_noirq = pci_pm_thaw_noirq,
1245 .poweroff_noirq = pci_pm_poweroff_noirq,
1246 .restore_noirq = pci_pm_restore_noirq,
1247 .runtime_suspend = pci_pm_runtime_suspend,
1248 .runtime_resume = pci_pm_runtime_resume,
1249 .runtime_idle = pci_pm_runtime_idle,
1250 };
1251
1252 #define PCI_PM_OPS_PTR (&pci_dev_pm_ops)
1253
1254 #else /* !CONFIG_PM */
1255
1256 #define pci_pm_runtime_suspend NULL
1257 #define pci_pm_runtime_resume NULL
1258 #define pci_pm_runtime_idle NULL
1259
1260 #define PCI_PM_OPS_PTR NULL
1261
1262 #endif /* !CONFIG_PM */
1263
1264 /**
1265 * __pci_register_driver - register a new pci driver
1266 * @drv: the driver structure to register
1267 * @owner: owner module of drv
1268 * @mod_name: module name string
1269 *
1270 * Adds the driver structure to the list of registered drivers.
1271 * Returns a negative value on error, otherwise 0.
1272 * If no error occurred, the driver remains registered even if
1273 * no device was claimed during registration.
1274 */
1275 int __pci_register_driver(struct pci_driver *drv, struct module *owner,
1276 const char *mod_name)
1277 {
1278 /* initialize common driver fields */
1279 drv->driver.name = drv->name;
1280 drv->driver.bus = &pci_bus_type;
1281 drv->driver.owner = owner;
1282 drv->driver.mod_name = mod_name;
1283
1284 spin_lock_init(&drv->dynids.lock);
1285 INIT_LIST_HEAD(&drv->dynids.list);
1286
1287 /* register with core */
1288 return driver_register(&drv->driver);
1289 }
1290 EXPORT_SYMBOL(__pci_register_driver);
1291
1292 /**
1293 * pci_unregister_driver - unregister a pci driver
1294 * @drv: the driver structure to unregister
1295 *
1296 * Deletes the driver structure from the list of registered PCI drivers,
1297 * gives it a chance to clean up by calling its remove() function for
1298 * each device it was responsible for, and marks those devices as
1299 * driverless.
1300 */
1301
1302 void pci_unregister_driver(struct pci_driver *drv)
1303 {
1304 driver_unregister(&drv->driver);
1305 pci_free_dynids(drv);
1306 }
1307 EXPORT_SYMBOL(pci_unregister_driver);
1308
1309 static struct pci_driver pci_compat_driver = {
1310 .name = "compat"
1311 };
1312
1313 /**
1314 * pci_dev_driver - get the pci_driver of a device
1315 * @dev: the device to query
1316 *
1317 * Returns the appropriate pci_driver structure or %NULL if there is no
1318 * registered driver for the device.
1319 */
1320 struct pci_driver *pci_dev_driver(const struct pci_dev *dev)
1321 {
1322 if (dev->driver)
1323 return dev->driver;
1324 else {
1325 int i;
1326 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1327 if (dev->resource[i].flags & IORESOURCE_BUSY)
1328 return &pci_compat_driver;
1329 }
1330 return NULL;
1331 }
1332 EXPORT_SYMBOL(pci_dev_driver);
1333
1334 /**
1335 * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure
1336 * @dev: the PCI device structure to match against
1337 * @drv: the device driver to search for matching PCI device id structures
1338 *
1339 * Used by a driver to check whether a PCI device present in the
1340 * system is in its list of supported devices. Returns the matching
1341 * pci_device_id structure or %NULL if there is no match.
1342 */
1343 static int pci_bus_match(struct device *dev, struct device_driver *drv)
1344 {
1345 struct pci_dev *pci_dev = to_pci_dev(dev);
1346 struct pci_driver *pci_drv;
1347 const struct pci_device_id *found_id;
1348
1349 if (!pci_dev->match_driver)
1350 return 0;
1351
1352 pci_drv = to_pci_driver(drv);
1353 found_id = pci_match_device(pci_drv, pci_dev);
1354 if (found_id)
1355 return 1;
1356
1357 return 0;
1358 }
1359
1360 /**
1361 * pci_dev_get - increments the reference count of the pci device structure
1362 * @dev: the device being referenced
1363 *
1364 * Each live reference to a device should be refcounted.
1365 *
1366 * Drivers for PCI devices should normally record such references in
1367 * their probe() methods, when they bind to a device, and release
1368 * them by calling pci_dev_put(), in their disconnect() methods.
1369 *
1370 * A pointer to the device with the incremented reference counter is returned.
1371 */
1372 struct pci_dev *pci_dev_get(struct pci_dev *dev)
1373 {
1374 if (dev)
1375 get_device(&dev->dev);
1376 return dev;
1377 }
1378 EXPORT_SYMBOL(pci_dev_get);
1379
1380 /**
1381 * pci_dev_put - release a use of the pci device structure
1382 * @dev: device that's been disconnected
1383 *
1384 * Must be called when a user of a device is finished with it. When the last
1385 * user of the device calls this function, the memory of the device is freed.
1386 */
1387 void pci_dev_put(struct pci_dev *dev)
1388 {
1389 if (dev)
1390 put_device(&dev->dev);
1391 }
1392 EXPORT_SYMBOL(pci_dev_put);
1393
1394 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env)
1395 {
1396 struct pci_dev *pdev;
1397
1398 if (!dev)
1399 return -ENODEV;
1400
1401 pdev = to_pci_dev(dev);
1402
1403 if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class))
1404 return -ENOMEM;
1405
1406 if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device))
1407 return -ENOMEM;
1408
1409 if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor,
1410 pdev->subsystem_device))
1411 return -ENOMEM;
1412
1413 if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev)))
1414 return -ENOMEM;
1415
1416 if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X",
1417 pdev->vendor, pdev->device,
1418 pdev->subsystem_vendor, pdev->subsystem_device,
1419 (u8)(pdev->class >> 16), (u8)(pdev->class >> 8),
1420 (u8)(pdev->class)))
1421 return -ENOMEM;
1422
1423 return 0;
1424 }
1425
1426 struct bus_type pci_bus_type = {
1427 .name = "pci",
1428 .match = pci_bus_match,
1429 .uevent = pci_uevent,
1430 .probe = pci_device_probe,
1431 .remove = pci_device_remove,
1432 .shutdown = pci_device_shutdown,
1433 .dev_groups = pci_dev_groups,
1434 .bus_groups = pci_bus_groups,
1435 .drv_groups = pci_drv_groups,
1436 .pm = PCI_PM_OPS_PTR,
1437 };
1438 EXPORT_SYMBOL(pci_bus_type);
1439
1440 static int __init pci_driver_init(void)
1441 {
1442 return bus_register(&pci_bus_type);
1443 }
1444 postcore_initcall(pci_driver_init);
This page took 0.115522 seconds and 5 git commands to generate.