PCI: fix incorrect error return in pci_enable_wake
[deliverable/linux.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <linux/pm_wakeup.h>
21 #include <linux/interrupt.h>
22 #include <asm/dma.h> /* isa_dma_bridge_buggy */
23 #include "pci.h"
24
25 unsigned int pci_pm_d3_delay = 10;
26
27 #ifdef CONFIG_PCI_DOMAINS
28 int pci_domains_supported = 1;
29 #endif
30
31 #define DEFAULT_CARDBUS_IO_SIZE (256)
32 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
33 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
34 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
35 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
36
37 /**
38 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
39 * @bus: pointer to PCI bus structure to search
40 *
41 * Given a PCI bus, returns the highest PCI bus number present in the set
42 * including the given PCI bus and its list of child PCI buses.
43 */
44 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
45 {
46 struct list_head *tmp;
47 unsigned char max, n;
48
49 max = bus->subordinate;
50 list_for_each(tmp, &bus->children) {
51 n = pci_bus_max_busnr(pci_bus_b(tmp));
52 if(n > max)
53 max = n;
54 }
55 return max;
56 }
57 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
58
59 #if 0
60 /**
61 * pci_max_busnr - returns maximum PCI bus number
62 *
63 * Returns the highest PCI bus number present in the system global list of
64 * PCI buses.
65 */
66 unsigned char __devinit
67 pci_max_busnr(void)
68 {
69 struct pci_bus *bus = NULL;
70 unsigned char max, n;
71
72 max = 0;
73 while ((bus = pci_find_next_bus(bus)) != NULL) {
74 n = pci_bus_max_busnr(bus);
75 if(n > max)
76 max = n;
77 }
78 return max;
79 }
80
81 #endif /* 0 */
82
83 #define PCI_FIND_CAP_TTL 48
84
85 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
86 u8 pos, int cap, int *ttl)
87 {
88 u8 id;
89
90 while ((*ttl)--) {
91 pci_bus_read_config_byte(bus, devfn, pos, &pos);
92 if (pos < 0x40)
93 break;
94 pos &= ~3;
95 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
96 &id);
97 if (id == 0xff)
98 break;
99 if (id == cap)
100 return pos;
101 pos += PCI_CAP_LIST_NEXT;
102 }
103 return 0;
104 }
105
106 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
107 u8 pos, int cap)
108 {
109 int ttl = PCI_FIND_CAP_TTL;
110
111 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
112 }
113
114 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
115 {
116 return __pci_find_next_cap(dev->bus, dev->devfn,
117 pos + PCI_CAP_LIST_NEXT, cap);
118 }
119 EXPORT_SYMBOL_GPL(pci_find_next_capability);
120
121 static int __pci_bus_find_cap_start(struct pci_bus *bus,
122 unsigned int devfn, u8 hdr_type)
123 {
124 u16 status;
125
126 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
127 if (!(status & PCI_STATUS_CAP_LIST))
128 return 0;
129
130 switch (hdr_type) {
131 case PCI_HEADER_TYPE_NORMAL:
132 case PCI_HEADER_TYPE_BRIDGE:
133 return PCI_CAPABILITY_LIST;
134 case PCI_HEADER_TYPE_CARDBUS:
135 return PCI_CB_CAPABILITY_LIST;
136 default:
137 return 0;
138 }
139
140 return 0;
141 }
142
143 /**
144 * pci_find_capability - query for devices' capabilities
145 * @dev: PCI device to query
146 * @cap: capability code
147 *
148 * Tell if a device supports a given PCI capability.
149 * Returns the address of the requested capability structure within the
150 * device's PCI configuration space or 0 in case the device does not
151 * support it. Possible values for @cap:
152 *
153 * %PCI_CAP_ID_PM Power Management
154 * %PCI_CAP_ID_AGP Accelerated Graphics Port
155 * %PCI_CAP_ID_VPD Vital Product Data
156 * %PCI_CAP_ID_SLOTID Slot Identification
157 * %PCI_CAP_ID_MSI Message Signalled Interrupts
158 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
159 * %PCI_CAP_ID_PCIX PCI-X
160 * %PCI_CAP_ID_EXP PCI Express
161 */
162 int pci_find_capability(struct pci_dev *dev, int cap)
163 {
164 int pos;
165
166 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
167 if (pos)
168 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
169
170 return pos;
171 }
172
173 /**
174 * pci_bus_find_capability - query for devices' capabilities
175 * @bus: the PCI bus to query
176 * @devfn: PCI device to query
177 * @cap: capability code
178 *
179 * Like pci_find_capability() but works for pci devices that do not have a
180 * pci_dev structure set up yet.
181 *
182 * Returns the address of the requested capability structure within the
183 * device's PCI configuration space or 0 in case the device does not
184 * support it.
185 */
186 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
187 {
188 int pos;
189 u8 hdr_type;
190
191 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
192
193 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
194 if (pos)
195 pos = __pci_find_next_cap(bus, devfn, pos, cap);
196
197 return pos;
198 }
199
200 /**
201 * pci_find_ext_capability - Find an extended capability
202 * @dev: PCI device to query
203 * @cap: capability code
204 *
205 * Returns the address of the requested extended capability structure
206 * within the device's PCI configuration space or 0 if the device does
207 * not support it. Possible values for @cap:
208 *
209 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
210 * %PCI_EXT_CAP_ID_VC Virtual Channel
211 * %PCI_EXT_CAP_ID_DSN Device Serial Number
212 * %PCI_EXT_CAP_ID_PWR Power Budgeting
213 */
214 int pci_find_ext_capability(struct pci_dev *dev, int cap)
215 {
216 u32 header;
217 int ttl;
218 int pos = PCI_CFG_SPACE_SIZE;
219
220 /* minimum 8 bytes per capability */
221 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
222
223 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
224 return 0;
225
226 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
227 return 0;
228
229 /*
230 * If we have no capabilities, this is indicated by cap ID,
231 * cap version and next pointer all being 0.
232 */
233 if (header == 0)
234 return 0;
235
236 while (ttl-- > 0) {
237 if (PCI_EXT_CAP_ID(header) == cap)
238 return pos;
239
240 pos = PCI_EXT_CAP_NEXT(header);
241 if (pos < PCI_CFG_SPACE_SIZE)
242 break;
243
244 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
245 break;
246 }
247
248 return 0;
249 }
250 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
251
252 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
253 {
254 int rc, ttl = PCI_FIND_CAP_TTL;
255 u8 cap, mask;
256
257 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
258 mask = HT_3BIT_CAP_MASK;
259 else
260 mask = HT_5BIT_CAP_MASK;
261
262 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
263 PCI_CAP_ID_HT, &ttl);
264 while (pos) {
265 rc = pci_read_config_byte(dev, pos + 3, &cap);
266 if (rc != PCIBIOS_SUCCESSFUL)
267 return 0;
268
269 if ((cap & mask) == ht_cap)
270 return pos;
271
272 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
273 pos + PCI_CAP_LIST_NEXT,
274 PCI_CAP_ID_HT, &ttl);
275 }
276
277 return 0;
278 }
279 /**
280 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
281 * @dev: PCI device to query
282 * @pos: Position from which to continue searching
283 * @ht_cap: Hypertransport capability code
284 *
285 * To be used in conjunction with pci_find_ht_capability() to search for
286 * all capabilities matching @ht_cap. @pos should always be a value returned
287 * from pci_find_ht_capability().
288 *
289 * NB. To be 100% safe against broken PCI devices, the caller should take
290 * steps to avoid an infinite loop.
291 */
292 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
293 {
294 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
295 }
296 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
297
298 /**
299 * pci_find_ht_capability - query a device's Hypertransport capabilities
300 * @dev: PCI device to query
301 * @ht_cap: Hypertransport capability code
302 *
303 * Tell if a device supports a given Hypertransport capability.
304 * Returns an address within the device's PCI configuration space
305 * or 0 in case the device does not support the request capability.
306 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
307 * which has a Hypertransport capability matching @ht_cap.
308 */
309 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
310 {
311 int pos;
312
313 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
314 if (pos)
315 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
316
317 return pos;
318 }
319 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
320
321 /**
322 * pci_find_parent_resource - return resource region of parent bus of given region
323 * @dev: PCI device structure contains resources to be searched
324 * @res: child resource record for which parent is sought
325 *
326 * For given resource region of given device, return the resource
327 * region of parent bus the given region is contained in or where
328 * it should be allocated from.
329 */
330 struct resource *
331 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
332 {
333 const struct pci_bus *bus = dev->bus;
334 int i;
335 struct resource *best = NULL;
336
337 for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
338 struct resource *r = bus->resource[i];
339 if (!r)
340 continue;
341 if (res->start && !(res->start >= r->start && res->end <= r->end))
342 continue; /* Not contained */
343 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
344 continue; /* Wrong type */
345 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
346 return r; /* Exact match */
347 if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH))
348 best = r; /* Approximating prefetchable by non-prefetchable */
349 }
350 return best;
351 }
352
353 /**
354 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
355 * @dev: PCI device to have its BARs restored
356 *
357 * Restore the BAR values for a given device, so as to make it
358 * accessible by its driver.
359 */
360 static void
361 pci_restore_bars(struct pci_dev *dev)
362 {
363 int i, numres;
364
365 switch (dev->hdr_type) {
366 case PCI_HEADER_TYPE_NORMAL:
367 numres = 6;
368 break;
369 case PCI_HEADER_TYPE_BRIDGE:
370 numres = 2;
371 break;
372 case PCI_HEADER_TYPE_CARDBUS:
373 numres = 1;
374 break;
375 default:
376 /* Should never get here, but just in case... */
377 return;
378 }
379
380 for (i = 0; i < numres; i ++)
381 pci_update_resource(dev, &dev->resource[i], i);
382 }
383
384 static struct pci_platform_pm_ops *pci_platform_pm;
385
386 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
387 {
388 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
389 || !ops->sleep_wake || !ops->can_wakeup)
390 return -EINVAL;
391 pci_platform_pm = ops;
392 return 0;
393 }
394
395 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
396 {
397 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
398 }
399
400 static inline int platform_pci_set_power_state(struct pci_dev *dev,
401 pci_power_t t)
402 {
403 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
404 }
405
406 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
407 {
408 return pci_platform_pm ?
409 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
410 }
411
412 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
413 {
414 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
415 }
416
417 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
418 {
419 return pci_platform_pm ?
420 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
421 }
422
423 /**
424 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
425 * given PCI device
426 * @dev: PCI device to handle.
427 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
428 *
429 * RETURN VALUE:
430 * -EINVAL if the requested state is invalid.
431 * -EIO if device does not support PCI PM or its PM capabilities register has a
432 * wrong version, or device doesn't support the requested state.
433 * 0 if device already is in the requested state.
434 * 0 if device's power state has been successfully changed.
435 */
436 static int
437 pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
438 {
439 u16 pmcsr;
440 bool need_restore = false;
441
442 if (!dev->pm_cap)
443 return -EIO;
444
445 if (state < PCI_D0 || state > PCI_D3hot)
446 return -EINVAL;
447
448 /* Validate current state:
449 * Can enter D0 from any state, but if we can only go deeper
450 * to sleep if we're already in a low power state
451 */
452 if (dev->current_state == state) {
453 /* we're already there */
454 return 0;
455 } else if (state != PCI_D0 && dev->current_state <= PCI_D3cold
456 && dev->current_state > state) {
457 dev_err(&dev->dev, "invalid power transition "
458 "(from state %d to %d)\n", dev->current_state, state);
459 return -EINVAL;
460 }
461
462 /* check if this device supports the desired state */
463 if ((state == PCI_D1 && !dev->d1_support)
464 || (state == PCI_D2 && !dev->d2_support))
465 return -EIO;
466
467 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
468
469 /* If we're (effectively) in D3, force entire word to 0.
470 * This doesn't affect PME_Status, disables PME_En, and
471 * sets PowerState to 0.
472 */
473 switch (dev->current_state) {
474 case PCI_D0:
475 case PCI_D1:
476 case PCI_D2:
477 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
478 pmcsr |= state;
479 break;
480 case PCI_UNKNOWN: /* Boot-up */
481 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
482 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
483 need_restore = true;
484 /* Fall-through: force to D0 */
485 default:
486 pmcsr = 0;
487 break;
488 }
489
490 /* enter specified state */
491 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
492
493 /* Mandatory power management transition delays */
494 /* see PCI PM 1.1 5.6.1 table 18 */
495 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
496 msleep(pci_pm_d3_delay);
497 else if (state == PCI_D2 || dev->current_state == PCI_D2)
498 udelay(200);
499
500 dev->current_state = state;
501
502 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
503 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
504 * from D3hot to D0 _may_ perform an internal reset, thereby
505 * going to "D0 Uninitialized" rather than "D0 Initialized".
506 * For example, at least some versions of the 3c905B and the
507 * 3c556B exhibit this behaviour.
508 *
509 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
510 * devices in a D3hot state at boot. Consequently, we need to
511 * restore at least the BARs so that the device will be
512 * accessible to its driver.
513 */
514 if (need_restore)
515 pci_restore_bars(dev);
516
517 if (dev->bus->self)
518 pcie_aspm_pm_state_change(dev->bus->self);
519
520 return 0;
521 }
522
523 /**
524 * pci_update_current_state - Read PCI power state of given device from its
525 * PCI PM registers and cache it
526 * @dev: PCI device to handle.
527 */
528 static void pci_update_current_state(struct pci_dev *dev)
529 {
530 if (dev->pm_cap) {
531 u16 pmcsr;
532
533 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
534 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
535 }
536 }
537
538 /**
539 * pci_set_power_state - Set the power state of a PCI device
540 * @dev: PCI device to handle.
541 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
542 *
543 * Transition a device to a new power state, using the platform formware and/or
544 * the device's PCI PM registers.
545 *
546 * RETURN VALUE:
547 * -EINVAL if the requested state is invalid.
548 * -EIO if device does not support PCI PM or its PM capabilities register has a
549 * wrong version, or device doesn't support the requested state.
550 * 0 if device already is in the requested state.
551 * 0 if device's power state has been successfully changed.
552 */
553 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
554 {
555 int error;
556
557 /* bound the state we're entering */
558 if (state > PCI_D3hot)
559 state = PCI_D3hot;
560 else if (state < PCI_D0)
561 state = PCI_D0;
562 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
563 /*
564 * If the device or the parent bridge do not support PCI PM,
565 * ignore the request if we're doing anything other than putting
566 * it into D0 (which would only happen on boot).
567 */
568 return 0;
569
570 if (state == PCI_D0 && platform_pci_power_manageable(dev)) {
571 /*
572 * Allow the platform to change the state, for example via ACPI
573 * _PR0, _PS0 and some such, but do not trust it.
574 */
575 int ret = platform_pci_set_power_state(dev, PCI_D0);
576 if (!ret)
577 pci_update_current_state(dev);
578 }
579 /* This device is quirked not to be put into D3, so
580 don't put it in D3 */
581 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
582 return 0;
583
584 error = pci_raw_set_power_state(dev, state);
585
586 if (state > PCI_D0 && platform_pci_power_manageable(dev)) {
587 /* Allow the platform to finalize the transition */
588 int ret = platform_pci_set_power_state(dev, state);
589 if (!ret) {
590 pci_update_current_state(dev);
591 error = 0;
592 }
593 }
594
595 return error;
596 }
597
598 /**
599 * pci_choose_state - Choose the power state of a PCI device
600 * @dev: PCI device to be suspended
601 * @state: target sleep state for the whole system. This is the value
602 * that is passed to suspend() function.
603 *
604 * Returns PCI power state suitable for given device and given system
605 * message.
606 */
607
608 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
609 {
610 pci_power_t ret;
611
612 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
613 return PCI_D0;
614
615 ret = platform_pci_choose_state(dev);
616 if (ret != PCI_POWER_ERROR)
617 return ret;
618
619 switch (state.event) {
620 case PM_EVENT_ON:
621 return PCI_D0;
622 case PM_EVENT_FREEZE:
623 case PM_EVENT_PRETHAW:
624 /* REVISIT both freeze and pre-thaw "should" use D0 */
625 case PM_EVENT_SUSPEND:
626 case PM_EVENT_HIBERNATE:
627 return PCI_D3hot;
628 default:
629 dev_info(&dev->dev, "unrecognized suspend event %d\n",
630 state.event);
631 BUG();
632 }
633 return PCI_D0;
634 }
635
636 EXPORT_SYMBOL(pci_choose_state);
637
638 static int pci_save_pcie_state(struct pci_dev *dev)
639 {
640 int pos, i = 0;
641 struct pci_cap_saved_state *save_state;
642 u16 *cap;
643
644 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
645 if (pos <= 0)
646 return 0;
647
648 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
649 if (!save_state) {
650 dev_err(&dev->dev, "buffer not found in %s\n", __FUNCTION__);
651 return -ENOMEM;
652 }
653 cap = (u16 *)&save_state->data[0];
654
655 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
656 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
657 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
658 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
659
660 return 0;
661 }
662
663 static void pci_restore_pcie_state(struct pci_dev *dev)
664 {
665 int i = 0, pos;
666 struct pci_cap_saved_state *save_state;
667 u16 *cap;
668
669 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
670 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
671 if (!save_state || pos <= 0)
672 return;
673 cap = (u16 *)&save_state->data[0];
674
675 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
676 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
677 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
678 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
679 }
680
681
682 static int pci_save_pcix_state(struct pci_dev *dev)
683 {
684 int pos;
685 struct pci_cap_saved_state *save_state;
686
687 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
688 if (pos <= 0)
689 return 0;
690
691 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
692 if (!save_state) {
693 dev_err(&dev->dev, "buffer not found in %s\n", __FUNCTION__);
694 return -ENOMEM;
695 }
696
697 pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
698
699 return 0;
700 }
701
702 static void pci_restore_pcix_state(struct pci_dev *dev)
703 {
704 int i = 0, pos;
705 struct pci_cap_saved_state *save_state;
706 u16 *cap;
707
708 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
709 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
710 if (!save_state || pos <= 0)
711 return;
712 cap = (u16 *)&save_state->data[0];
713
714 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
715 }
716
717
718 /**
719 * pci_save_state - save the PCI configuration space of a device before suspending
720 * @dev: - PCI device that we're dealing with
721 */
722 int
723 pci_save_state(struct pci_dev *dev)
724 {
725 int i;
726 /* XXX: 100% dword access ok here? */
727 for (i = 0; i < 16; i++)
728 pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]);
729 if ((i = pci_save_pcie_state(dev)) != 0)
730 return i;
731 if ((i = pci_save_pcix_state(dev)) != 0)
732 return i;
733 return 0;
734 }
735
736 /**
737 * pci_restore_state - Restore the saved state of a PCI device
738 * @dev: - PCI device that we're dealing with
739 */
740 int
741 pci_restore_state(struct pci_dev *dev)
742 {
743 int i;
744 u32 val;
745
746 /* PCI Express register must be restored first */
747 pci_restore_pcie_state(dev);
748
749 /*
750 * The Base Address register should be programmed before the command
751 * register(s)
752 */
753 for (i = 15; i >= 0; i--) {
754 pci_read_config_dword(dev, i * 4, &val);
755 if (val != dev->saved_config_space[i]) {
756 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
757 "space at offset %#x (was %#x, writing %#x)\n",
758 i, val, (int)dev->saved_config_space[i]);
759 pci_write_config_dword(dev,i * 4,
760 dev->saved_config_space[i]);
761 }
762 }
763 pci_restore_pcix_state(dev);
764 pci_restore_msi_state(dev);
765
766 return 0;
767 }
768
769 static int do_pci_enable_device(struct pci_dev *dev, int bars)
770 {
771 int err;
772
773 err = pci_set_power_state(dev, PCI_D0);
774 if (err < 0 && err != -EIO)
775 return err;
776 err = pcibios_enable_device(dev, bars);
777 if (err < 0)
778 return err;
779 pci_fixup_device(pci_fixup_enable, dev);
780
781 return 0;
782 }
783
784 /**
785 * pci_reenable_device - Resume abandoned device
786 * @dev: PCI device to be resumed
787 *
788 * Note this function is a backend of pci_default_resume and is not supposed
789 * to be called by normal code, write proper resume handler and use it instead.
790 */
791 int pci_reenable_device(struct pci_dev *dev)
792 {
793 if (atomic_read(&dev->enable_cnt))
794 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
795 return 0;
796 }
797
798 static int __pci_enable_device_flags(struct pci_dev *dev,
799 resource_size_t flags)
800 {
801 int err;
802 int i, bars = 0;
803
804 if (atomic_add_return(1, &dev->enable_cnt) > 1)
805 return 0; /* already enabled */
806
807 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
808 if (dev->resource[i].flags & flags)
809 bars |= (1 << i);
810
811 err = do_pci_enable_device(dev, bars);
812 if (err < 0)
813 atomic_dec(&dev->enable_cnt);
814 return err;
815 }
816
817 /**
818 * pci_enable_device_io - Initialize a device for use with IO space
819 * @dev: PCI device to be initialized
820 *
821 * Initialize device before it's used by a driver. Ask low-level code
822 * to enable I/O resources. Wake up the device if it was suspended.
823 * Beware, this function can fail.
824 */
825 int pci_enable_device_io(struct pci_dev *dev)
826 {
827 return __pci_enable_device_flags(dev, IORESOURCE_IO);
828 }
829
830 /**
831 * pci_enable_device_mem - Initialize a device for use with Memory space
832 * @dev: PCI device to be initialized
833 *
834 * Initialize device before it's used by a driver. Ask low-level code
835 * to enable Memory resources. Wake up the device if it was suspended.
836 * Beware, this function can fail.
837 */
838 int pci_enable_device_mem(struct pci_dev *dev)
839 {
840 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
841 }
842
843 /**
844 * pci_enable_device - Initialize device before it's used by a driver.
845 * @dev: PCI device to be initialized
846 *
847 * Initialize device before it's used by a driver. Ask low-level code
848 * to enable I/O and memory. Wake up the device if it was suspended.
849 * Beware, this function can fail.
850 *
851 * Note we don't actually enable the device many times if we call
852 * this function repeatedly (we just increment the count).
853 */
854 int pci_enable_device(struct pci_dev *dev)
855 {
856 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
857 }
858
859 /*
860 * Managed PCI resources. This manages device on/off, intx/msi/msix
861 * on/off and BAR regions. pci_dev itself records msi/msix status, so
862 * there's no need to track it separately. pci_devres is initialized
863 * when a device is enabled using managed PCI device enable interface.
864 */
865 struct pci_devres {
866 unsigned int enabled:1;
867 unsigned int pinned:1;
868 unsigned int orig_intx:1;
869 unsigned int restore_intx:1;
870 u32 region_mask;
871 };
872
873 static void pcim_release(struct device *gendev, void *res)
874 {
875 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
876 struct pci_devres *this = res;
877 int i;
878
879 if (dev->msi_enabled)
880 pci_disable_msi(dev);
881 if (dev->msix_enabled)
882 pci_disable_msix(dev);
883
884 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
885 if (this->region_mask & (1 << i))
886 pci_release_region(dev, i);
887
888 if (this->restore_intx)
889 pci_intx(dev, this->orig_intx);
890
891 if (this->enabled && !this->pinned)
892 pci_disable_device(dev);
893 }
894
895 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
896 {
897 struct pci_devres *dr, *new_dr;
898
899 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
900 if (dr)
901 return dr;
902
903 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
904 if (!new_dr)
905 return NULL;
906 return devres_get(&pdev->dev, new_dr, NULL, NULL);
907 }
908
909 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
910 {
911 if (pci_is_managed(pdev))
912 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
913 return NULL;
914 }
915
916 /**
917 * pcim_enable_device - Managed pci_enable_device()
918 * @pdev: PCI device to be initialized
919 *
920 * Managed pci_enable_device().
921 */
922 int pcim_enable_device(struct pci_dev *pdev)
923 {
924 struct pci_devres *dr;
925 int rc;
926
927 dr = get_pci_dr(pdev);
928 if (unlikely(!dr))
929 return -ENOMEM;
930 if (dr->enabled)
931 return 0;
932
933 rc = pci_enable_device(pdev);
934 if (!rc) {
935 pdev->is_managed = 1;
936 dr->enabled = 1;
937 }
938 return rc;
939 }
940
941 /**
942 * pcim_pin_device - Pin managed PCI device
943 * @pdev: PCI device to pin
944 *
945 * Pin managed PCI device @pdev. Pinned device won't be disabled on
946 * driver detach. @pdev must have been enabled with
947 * pcim_enable_device().
948 */
949 void pcim_pin_device(struct pci_dev *pdev)
950 {
951 struct pci_devres *dr;
952
953 dr = find_pci_dr(pdev);
954 WARN_ON(!dr || !dr->enabled);
955 if (dr)
956 dr->pinned = 1;
957 }
958
959 /**
960 * pcibios_disable_device - disable arch specific PCI resources for device dev
961 * @dev: the PCI device to disable
962 *
963 * Disables architecture specific PCI resources for the device. This
964 * is the default implementation. Architecture implementations can
965 * override this.
966 */
967 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
968
969 /**
970 * pci_disable_device - Disable PCI device after use
971 * @dev: PCI device to be disabled
972 *
973 * Signal to the system that the PCI device is not in use by the system
974 * anymore. This only involves disabling PCI bus-mastering, if active.
975 *
976 * Note we don't actually disable the device until all callers of
977 * pci_device_enable() have called pci_device_disable().
978 */
979 void
980 pci_disable_device(struct pci_dev *dev)
981 {
982 struct pci_devres *dr;
983 u16 pci_command;
984
985 dr = find_pci_dr(dev);
986 if (dr)
987 dr->enabled = 0;
988
989 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
990 return;
991
992 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
993 if (pci_command & PCI_COMMAND_MASTER) {
994 pci_command &= ~PCI_COMMAND_MASTER;
995 pci_write_config_word(dev, PCI_COMMAND, pci_command);
996 }
997 dev->is_busmaster = 0;
998
999 pcibios_disable_device(dev);
1000 }
1001
1002 /**
1003 * pcibios_set_pcie_reset_state - set reset state for device dev
1004 * @dev: the PCI-E device reset
1005 * @state: Reset state to enter into
1006 *
1007 *
1008 * Sets the PCI-E reset state for the device. This is the default
1009 * implementation. Architecture implementations can override this.
1010 */
1011 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1012 enum pcie_reset_state state)
1013 {
1014 return -EINVAL;
1015 }
1016
1017 /**
1018 * pci_set_pcie_reset_state - set reset state for device dev
1019 * @dev: the PCI-E device reset
1020 * @state: Reset state to enter into
1021 *
1022 *
1023 * Sets the PCI reset state for the device.
1024 */
1025 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1026 {
1027 return pcibios_set_pcie_reset_state(dev, state);
1028 }
1029
1030 /**
1031 * pci_pme_capable - check the capability of PCI device to generate PME#
1032 * @dev: PCI device to handle.
1033 * @state: PCI state from which device will issue PME#.
1034 */
1035 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1036 {
1037 if (!dev->pm_cap)
1038 return false;
1039
1040 return !!(dev->pme_support & (1 << state));
1041 }
1042
1043 /**
1044 * pci_pme_active - enable or disable PCI device's PME# function
1045 * @dev: PCI device to handle.
1046 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1047 *
1048 * The caller must verify that the device is capable of generating PME# before
1049 * calling this function with @enable equal to 'true'.
1050 */
1051 void pci_pme_active(struct pci_dev *dev, bool enable)
1052 {
1053 u16 pmcsr;
1054
1055 if (!dev->pm_cap)
1056 return;
1057
1058 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1059 /* Clear PME_Status by writing 1 to it and enable PME# */
1060 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1061 if (!enable)
1062 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1063
1064 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1065
1066 dev_printk(KERN_INFO, &dev->dev, "PME# %s\n",
1067 enable ? "enabled" : "disabled");
1068 }
1069
1070 /**
1071 * pci_enable_wake - enable PCI device as wakeup event source
1072 * @dev: PCI device affected
1073 * @state: PCI state from which device will issue wakeup events
1074 * @enable: True to enable event generation; false to disable
1075 *
1076 * This enables the device as a wakeup event source, or disables it.
1077 * When such events involves platform-specific hooks, those hooks are
1078 * called automatically by this routine.
1079 *
1080 * Devices with legacy power management (no standard PCI PM capabilities)
1081 * always require such platform hooks.
1082 *
1083 * RETURN VALUE:
1084 * 0 is returned on success
1085 * -EINVAL is returned if device is not supposed to wake up the system
1086 * Error code depending on the platform is returned if both the platform and
1087 * the native mechanism fail to enable the generation of wake-up events
1088 */
1089 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, int enable)
1090 {
1091 int error = 0;
1092 bool pme_done = false;
1093
1094 if (enable && !device_may_wakeup(&dev->dev))
1095 return -EINVAL;
1096
1097 /*
1098 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1099 * Anderson we should be doing PME# wake enable followed by ACPI wake
1100 * enable. To disable wake-up we call the platform first, for symmetry.
1101 */
1102
1103 if (!enable && platform_pci_can_wakeup(dev))
1104 error = platform_pci_sleep_wake(dev, false);
1105
1106 if (!enable || pci_pme_capable(dev, state)) {
1107 pci_pme_active(dev, enable);
1108 pme_done = true;
1109 }
1110
1111 if (enable && platform_pci_can_wakeup(dev))
1112 error = platform_pci_sleep_wake(dev, true);
1113
1114 return pme_done ? 0 : error;
1115 }
1116
1117 /**
1118 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1119 * @dev: PCI device to prepare
1120 * @enable: True to enable wake-up event generation; false to disable
1121 *
1122 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1123 * and this function allows them to set that up cleanly - pci_enable_wake()
1124 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1125 * ordering constraints.
1126 *
1127 * This function only returns error code if the device is not capable of
1128 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1129 * enable wake-up power for it.
1130 */
1131 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1132 {
1133 return pci_pme_capable(dev, PCI_D3cold) ?
1134 pci_enable_wake(dev, PCI_D3cold, enable) :
1135 pci_enable_wake(dev, PCI_D3hot, enable);
1136 }
1137
1138 /**
1139 * pci_target_state - find an appropriate low power state for a given PCI dev
1140 * @dev: PCI device
1141 *
1142 * Use underlying platform code to find a supported low power state for @dev.
1143 * If the platform can't manage @dev, return the deepest state from which it
1144 * can generate wake events, based on any available PME info.
1145 */
1146 pci_power_t pci_target_state(struct pci_dev *dev)
1147 {
1148 pci_power_t target_state = PCI_D3hot;
1149
1150 if (platform_pci_power_manageable(dev)) {
1151 /*
1152 * Call the platform to choose the target state of the device
1153 * and enable wake-up from this state if supported.
1154 */
1155 pci_power_t state = platform_pci_choose_state(dev);
1156
1157 switch (state) {
1158 case PCI_POWER_ERROR:
1159 case PCI_UNKNOWN:
1160 break;
1161 case PCI_D1:
1162 case PCI_D2:
1163 if (pci_no_d1d2(dev))
1164 break;
1165 default:
1166 target_state = state;
1167 }
1168 } else if (device_may_wakeup(&dev->dev)) {
1169 /*
1170 * Find the deepest state from which the device can generate
1171 * wake-up events, make it the target state and enable device
1172 * to generate PME#.
1173 */
1174 if (!dev->pm_cap)
1175 return PCI_POWER_ERROR;
1176
1177 if (dev->pme_support) {
1178 while (target_state
1179 && !(dev->pme_support & (1 << target_state)))
1180 target_state--;
1181 }
1182 }
1183
1184 return target_state;
1185 }
1186
1187 /**
1188 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1189 * @dev: Device to handle.
1190 *
1191 * Choose the power state appropriate for the device depending on whether
1192 * it can wake up the system and/or is power manageable by the platform
1193 * (PCI_D3hot is the default) and put the device into that state.
1194 */
1195 int pci_prepare_to_sleep(struct pci_dev *dev)
1196 {
1197 pci_power_t target_state = pci_target_state(dev);
1198 int error;
1199
1200 if (target_state == PCI_POWER_ERROR)
1201 return -EIO;
1202
1203 pci_enable_wake(dev, target_state, true);
1204
1205 error = pci_set_power_state(dev, target_state);
1206
1207 if (error)
1208 pci_enable_wake(dev, target_state, false);
1209
1210 return error;
1211 }
1212
1213 /**
1214 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1215 * @dev: Device to handle.
1216 *
1217 * Disable device's sytem wake-up capability and put it into D0.
1218 */
1219 int pci_back_from_sleep(struct pci_dev *dev)
1220 {
1221 pci_enable_wake(dev, PCI_D0, false);
1222 return pci_set_power_state(dev, PCI_D0);
1223 }
1224
1225 /**
1226 * pci_pm_init - Initialize PM functions of given PCI device
1227 * @dev: PCI device to handle.
1228 */
1229 void pci_pm_init(struct pci_dev *dev)
1230 {
1231 int pm;
1232 u16 pmc;
1233
1234 dev->pm_cap = 0;
1235
1236 /* find PCI PM capability in list */
1237 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1238 if (!pm)
1239 return;
1240 /* Check device's ability to generate PME# */
1241 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1242
1243 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1244 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1245 pmc & PCI_PM_CAP_VER_MASK);
1246 return;
1247 }
1248
1249 dev->pm_cap = pm;
1250
1251 dev->d1_support = false;
1252 dev->d2_support = false;
1253 if (!pci_no_d1d2(dev)) {
1254 if (pmc & PCI_PM_CAP_D1)
1255 dev->d1_support = true;
1256 if (pmc & PCI_PM_CAP_D2)
1257 dev->d2_support = true;
1258
1259 if (dev->d1_support || dev->d2_support)
1260 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1261 dev->d1_support ? " D1" : "",
1262 dev->d2_support ? " D2" : "");
1263 }
1264
1265 pmc &= PCI_PM_CAP_PME_MASK;
1266 if (pmc) {
1267 dev_info(&dev->dev, "PME# supported from%s%s%s%s%s\n",
1268 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1269 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1270 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1271 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1272 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1273 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1274 /*
1275 * Make device's PM flags reflect the wake-up capability, but
1276 * let the user space enable it to wake up the system as needed.
1277 */
1278 device_set_wakeup_capable(&dev->dev, true);
1279 device_set_wakeup_enable(&dev->dev, false);
1280 /* Disable the PME# generation functionality */
1281 pci_pme_active(dev, false);
1282 } else {
1283 dev->pme_support = 0;
1284 }
1285 }
1286
1287 /**
1288 * pci_add_save_buffer - allocate buffer for saving given capability registers
1289 * @dev: the PCI device
1290 * @cap: the capability to allocate the buffer for
1291 * @size: requested size of the buffer
1292 */
1293 static int pci_add_cap_save_buffer(
1294 struct pci_dev *dev, char cap, unsigned int size)
1295 {
1296 int pos;
1297 struct pci_cap_saved_state *save_state;
1298
1299 pos = pci_find_capability(dev, cap);
1300 if (pos <= 0)
1301 return 0;
1302
1303 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1304 if (!save_state)
1305 return -ENOMEM;
1306
1307 save_state->cap_nr = cap;
1308 pci_add_saved_cap(dev, save_state);
1309
1310 return 0;
1311 }
1312
1313 /**
1314 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1315 * @dev: the PCI device
1316 */
1317 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1318 {
1319 int error;
1320
1321 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 4 * sizeof(u16));
1322 if (error)
1323 dev_err(&dev->dev,
1324 "unable to preallocate PCI Express save buffer\n");
1325
1326 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1327 if (error)
1328 dev_err(&dev->dev,
1329 "unable to preallocate PCI-X save buffer\n");
1330 }
1331
1332 /**
1333 * pci_enable_ari - enable ARI forwarding if hardware support it
1334 * @dev: the PCI device
1335 */
1336 void pci_enable_ari(struct pci_dev *dev)
1337 {
1338 int pos;
1339 u32 cap;
1340 u16 ctrl;
1341 struct pci_dev *bridge;
1342
1343 if (!dev->is_pcie || dev->devfn)
1344 return;
1345
1346 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1347 if (!pos)
1348 return;
1349
1350 bridge = dev->bus->self;
1351 if (!bridge || !bridge->is_pcie)
1352 return;
1353
1354 pos = pci_find_capability(bridge, PCI_CAP_ID_EXP);
1355 if (!pos)
1356 return;
1357
1358 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1359 if (!(cap & PCI_EXP_DEVCAP2_ARI))
1360 return;
1361
1362 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1363 ctrl |= PCI_EXP_DEVCTL2_ARI;
1364 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1365
1366 bridge->ari_enabled = 1;
1367 }
1368
1369 /**
1370 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1371 * @dev: the PCI device
1372 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1373 *
1374 * Perform INTx swizzling for a device behind one level of bridge. This is
1375 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1376 * behind bridges on add-in cards.
1377 */
1378 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1379 {
1380 return (((pin - 1) + PCI_SLOT(dev->devfn)) % 4) + 1;
1381 }
1382
1383 int
1384 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1385 {
1386 u8 pin;
1387
1388 pin = dev->pin;
1389 if (!pin)
1390 return -1;
1391
1392 while (dev->bus->self) {
1393 pin = pci_swizzle_interrupt_pin(dev, pin);
1394 dev = dev->bus->self;
1395 }
1396 *bridge = dev;
1397 return pin;
1398 }
1399
1400 /**
1401 * pci_release_region - Release a PCI bar
1402 * @pdev: PCI device whose resources were previously reserved by pci_request_region
1403 * @bar: BAR to release
1404 *
1405 * Releases the PCI I/O and memory resources previously reserved by a
1406 * successful call to pci_request_region. Call this function only
1407 * after all use of the PCI regions has ceased.
1408 */
1409 void pci_release_region(struct pci_dev *pdev, int bar)
1410 {
1411 struct pci_devres *dr;
1412
1413 if (pci_resource_len(pdev, bar) == 0)
1414 return;
1415 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1416 release_region(pci_resource_start(pdev, bar),
1417 pci_resource_len(pdev, bar));
1418 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1419 release_mem_region(pci_resource_start(pdev, bar),
1420 pci_resource_len(pdev, bar));
1421
1422 dr = find_pci_dr(pdev);
1423 if (dr)
1424 dr->region_mask &= ~(1 << bar);
1425 }
1426
1427 /**
1428 * pci_request_region - Reserved PCI I/O and memory resource
1429 * @pdev: PCI device whose resources are to be reserved
1430 * @bar: BAR to be reserved
1431 * @res_name: Name to be associated with resource.
1432 *
1433 * Mark the PCI region associated with PCI device @pdev BR @bar as
1434 * being reserved by owner @res_name. Do not access any
1435 * address inside the PCI regions unless this call returns
1436 * successfully.
1437 *
1438 * Returns 0 on success, or %EBUSY on error. A warning
1439 * message is also printed on failure.
1440 */
1441 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1442 int exclusive)
1443 {
1444 struct pci_devres *dr;
1445
1446 if (pci_resource_len(pdev, bar) == 0)
1447 return 0;
1448
1449 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1450 if (!request_region(pci_resource_start(pdev, bar),
1451 pci_resource_len(pdev, bar), res_name))
1452 goto err_out;
1453 }
1454 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1455 if (!__request_mem_region(pci_resource_start(pdev, bar),
1456 pci_resource_len(pdev, bar), res_name,
1457 exclusive))
1458 goto err_out;
1459 }
1460
1461 dr = find_pci_dr(pdev);
1462 if (dr)
1463 dr->region_mask |= 1 << bar;
1464
1465 return 0;
1466
1467 err_out:
1468 dev_warn(&pdev->dev, "BAR %d: can't reserve %s region %pR\n",
1469 bar,
1470 pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem",
1471 &pdev->resource[bar]);
1472 return -EBUSY;
1473 }
1474
1475 /**
1476 * pci_request_region - Reserved PCI I/O and memory resource
1477 * @pdev: PCI device whose resources are to be reserved
1478 * @bar: BAR to be reserved
1479 * @res_name: Name to be associated with resource.
1480 *
1481 * Mark the PCI region associated with PCI device @pdev BR @bar as
1482 * being reserved by owner @res_name. Do not access any
1483 * address inside the PCI regions unless this call returns
1484 * successfully.
1485 *
1486 * Returns 0 on success, or %EBUSY on error. A warning
1487 * message is also printed on failure.
1488 */
1489 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1490 {
1491 return __pci_request_region(pdev, bar, res_name, 0);
1492 }
1493
1494 /**
1495 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
1496 * @pdev: PCI device whose resources are to be reserved
1497 * @bar: BAR to be reserved
1498 * @res_name: Name to be associated with resource.
1499 *
1500 * Mark the PCI region associated with PCI device @pdev BR @bar as
1501 * being reserved by owner @res_name. Do not access any
1502 * address inside the PCI regions unless this call returns
1503 * successfully.
1504 *
1505 * Returns 0 on success, or %EBUSY on error. A warning
1506 * message is also printed on failure.
1507 *
1508 * The key difference that _exclusive makes it that userspace is
1509 * explicitly not allowed to map the resource via /dev/mem or
1510 * sysfs.
1511 */
1512 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
1513 {
1514 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
1515 }
1516 /**
1517 * pci_release_selected_regions - Release selected PCI I/O and memory resources
1518 * @pdev: PCI device whose resources were previously reserved
1519 * @bars: Bitmask of BARs to be released
1520 *
1521 * Release selected PCI I/O and memory resources previously reserved.
1522 * Call this function only after all use of the PCI regions has ceased.
1523 */
1524 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1525 {
1526 int i;
1527
1528 for (i = 0; i < 6; i++)
1529 if (bars & (1 << i))
1530 pci_release_region(pdev, i);
1531 }
1532
1533 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
1534 const char *res_name, int excl)
1535 {
1536 int i;
1537
1538 for (i = 0; i < 6; i++)
1539 if (bars & (1 << i))
1540 if (__pci_request_region(pdev, i, res_name, excl))
1541 goto err_out;
1542 return 0;
1543
1544 err_out:
1545 while(--i >= 0)
1546 if (bars & (1 << i))
1547 pci_release_region(pdev, i);
1548
1549 return -EBUSY;
1550 }
1551
1552
1553 /**
1554 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1555 * @pdev: PCI device whose resources are to be reserved
1556 * @bars: Bitmask of BARs to be requested
1557 * @res_name: Name to be associated with resource
1558 */
1559 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1560 const char *res_name)
1561 {
1562 return __pci_request_selected_regions(pdev, bars, res_name, 0);
1563 }
1564
1565 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
1566 int bars, const char *res_name)
1567 {
1568 return __pci_request_selected_regions(pdev, bars, res_name,
1569 IORESOURCE_EXCLUSIVE);
1570 }
1571
1572 /**
1573 * pci_release_regions - Release reserved PCI I/O and memory resources
1574 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
1575 *
1576 * Releases all PCI I/O and memory resources previously reserved by a
1577 * successful call to pci_request_regions. Call this function only
1578 * after all use of the PCI regions has ceased.
1579 */
1580
1581 void pci_release_regions(struct pci_dev *pdev)
1582 {
1583 pci_release_selected_regions(pdev, (1 << 6) - 1);
1584 }
1585
1586 /**
1587 * pci_request_regions - Reserved PCI I/O and memory resources
1588 * @pdev: PCI device whose resources are to be reserved
1589 * @res_name: Name to be associated with resource.
1590 *
1591 * Mark all PCI regions associated with PCI device @pdev as
1592 * being reserved by owner @res_name. Do not access any
1593 * address inside the PCI regions unless this call returns
1594 * successfully.
1595 *
1596 * Returns 0 on success, or %EBUSY on error. A warning
1597 * message is also printed on failure.
1598 */
1599 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1600 {
1601 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1602 }
1603
1604 /**
1605 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
1606 * @pdev: PCI device whose resources are to be reserved
1607 * @res_name: Name to be associated with resource.
1608 *
1609 * Mark all PCI regions associated with PCI device @pdev as
1610 * being reserved by owner @res_name. Do not access any
1611 * address inside the PCI regions unless this call returns
1612 * successfully.
1613 *
1614 * pci_request_regions_exclusive() will mark the region so that
1615 * /dev/mem and the sysfs MMIO access will not be allowed.
1616 *
1617 * Returns 0 on success, or %EBUSY on error. A warning
1618 * message is also printed on failure.
1619 */
1620 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
1621 {
1622 return pci_request_selected_regions_exclusive(pdev,
1623 ((1 << 6) - 1), res_name);
1624 }
1625
1626
1627 /**
1628 * pci_set_master - enables bus-mastering for device dev
1629 * @dev: the PCI device to enable
1630 *
1631 * Enables bus-mastering on the device and calls pcibios_set_master()
1632 * to do the needed arch specific settings.
1633 */
1634 void
1635 pci_set_master(struct pci_dev *dev)
1636 {
1637 u16 cmd;
1638
1639 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1640 if (! (cmd & PCI_COMMAND_MASTER)) {
1641 dev_dbg(&dev->dev, "enabling bus mastering\n");
1642 cmd |= PCI_COMMAND_MASTER;
1643 pci_write_config_word(dev, PCI_COMMAND, cmd);
1644 }
1645 dev->is_busmaster = 1;
1646 pcibios_set_master(dev);
1647 }
1648
1649 #ifdef PCI_DISABLE_MWI
1650 int pci_set_mwi(struct pci_dev *dev)
1651 {
1652 return 0;
1653 }
1654
1655 int pci_try_set_mwi(struct pci_dev *dev)
1656 {
1657 return 0;
1658 }
1659
1660 void pci_clear_mwi(struct pci_dev *dev)
1661 {
1662 }
1663
1664 #else
1665
1666 #ifndef PCI_CACHE_LINE_BYTES
1667 #define PCI_CACHE_LINE_BYTES L1_CACHE_BYTES
1668 #endif
1669
1670 /* This can be overridden by arch code. */
1671 /* Don't forget this is measured in 32-bit words, not bytes */
1672 u8 pci_cache_line_size = PCI_CACHE_LINE_BYTES / 4;
1673
1674 /**
1675 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
1676 * @dev: the PCI device for which MWI is to be enabled
1677 *
1678 * Helper function for pci_set_mwi.
1679 * Originally copied from drivers/net/acenic.c.
1680 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
1681 *
1682 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1683 */
1684 static int
1685 pci_set_cacheline_size(struct pci_dev *dev)
1686 {
1687 u8 cacheline_size;
1688
1689 if (!pci_cache_line_size)
1690 return -EINVAL; /* The system doesn't support MWI. */
1691
1692 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
1693 equal to or multiple of the right value. */
1694 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1695 if (cacheline_size >= pci_cache_line_size &&
1696 (cacheline_size % pci_cache_line_size) == 0)
1697 return 0;
1698
1699 /* Write the correct value. */
1700 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
1701 /* Read it back. */
1702 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1703 if (cacheline_size == pci_cache_line_size)
1704 return 0;
1705
1706 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
1707 "supported\n", pci_cache_line_size << 2);
1708
1709 return -EINVAL;
1710 }
1711
1712 /**
1713 * pci_set_mwi - enables memory-write-invalidate PCI transaction
1714 * @dev: the PCI device for which MWI is enabled
1715 *
1716 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1717 *
1718 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1719 */
1720 int
1721 pci_set_mwi(struct pci_dev *dev)
1722 {
1723 int rc;
1724 u16 cmd;
1725
1726 rc = pci_set_cacheline_size(dev);
1727 if (rc)
1728 return rc;
1729
1730 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1731 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
1732 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1733 cmd |= PCI_COMMAND_INVALIDATE;
1734 pci_write_config_word(dev, PCI_COMMAND, cmd);
1735 }
1736
1737 return 0;
1738 }
1739
1740 /**
1741 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
1742 * @dev: the PCI device for which MWI is enabled
1743 *
1744 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1745 * Callers are not required to check the return value.
1746 *
1747 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1748 */
1749 int pci_try_set_mwi(struct pci_dev *dev)
1750 {
1751 int rc = pci_set_mwi(dev);
1752 return rc;
1753 }
1754
1755 /**
1756 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
1757 * @dev: the PCI device to disable
1758 *
1759 * Disables PCI Memory-Write-Invalidate transaction on the device
1760 */
1761 void
1762 pci_clear_mwi(struct pci_dev *dev)
1763 {
1764 u16 cmd;
1765
1766 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1767 if (cmd & PCI_COMMAND_INVALIDATE) {
1768 cmd &= ~PCI_COMMAND_INVALIDATE;
1769 pci_write_config_word(dev, PCI_COMMAND, cmd);
1770 }
1771 }
1772 #endif /* ! PCI_DISABLE_MWI */
1773
1774 /**
1775 * pci_intx - enables/disables PCI INTx for device dev
1776 * @pdev: the PCI device to operate on
1777 * @enable: boolean: whether to enable or disable PCI INTx
1778 *
1779 * Enables/disables PCI INTx for device dev
1780 */
1781 void
1782 pci_intx(struct pci_dev *pdev, int enable)
1783 {
1784 u16 pci_command, new;
1785
1786 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1787
1788 if (enable) {
1789 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
1790 } else {
1791 new = pci_command | PCI_COMMAND_INTX_DISABLE;
1792 }
1793
1794 if (new != pci_command) {
1795 struct pci_devres *dr;
1796
1797 pci_write_config_word(pdev, PCI_COMMAND, new);
1798
1799 dr = find_pci_dr(pdev);
1800 if (dr && !dr->restore_intx) {
1801 dr->restore_intx = 1;
1802 dr->orig_intx = !enable;
1803 }
1804 }
1805 }
1806
1807 /**
1808 * pci_msi_off - disables any msi or msix capabilities
1809 * @dev: the PCI device to operate on
1810 *
1811 * If you want to use msi see pci_enable_msi and friends.
1812 * This is a lower level primitive that allows us to disable
1813 * msi operation at the device level.
1814 */
1815 void pci_msi_off(struct pci_dev *dev)
1816 {
1817 int pos;
1818 u16 control;
1819
1820 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
1821 if (pos) {
1822 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
1823 control &= ~PCI_MSI_FLAGS_ENABLE;
1824 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
1825 }
1826 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
1827 if (pos) {
1828 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
1829 control &= ~PCI_MSIX_FLAGS_ENABLE;
1830 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
1831 }
1832 }
1833
1834 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
1835 /*
1836 * These can be overridden by arch-specific implementations
1837 */
1838 int
1839 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
1840 {
1841 if (!pci_dma_supported(dev, mask))
1842 return -EIO;
1843
1844 dev->dma_mask = mask;
1845
1846 return 0;
1847 }
1848
1849 int
1850 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
1851 {
1852 if (!pci_dma_supported(dev, mask))
1853 return -EIO;
1854
1855 dev->dev.coherent_dma_mask = mask;
1856
1857 return 0;
1858 }
1859 #endif
1860
1861 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
1862 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
1863 {
1864 return dma_set_max_seg_size(&dev->dev, size);
1865 }
1866 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
1867 #endif
1868
1869 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
1870 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
1871 {
1872 return dma_set_seg_boundary(&dev->dev, mask);
1873 }
1874 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
1875 #endif
1876
1877 static int __pcie_flr(struct pci_dev *dev, int probe)
1878 {
1879 u16 status;
1880 u32 cap;
1881 int exppos = pci_find_capability(dev, PCI_CAP_ID_EXP);
1882
1883 if (!exppos)
1884 return -ENOTTY;
1885 pci_read_config_dword(dev, exppos + PCI_EXP_DEVCAP, &cap);
1886 if (!(cap & PCI_EXP_DEVCAP_FLR))
1887 return -ENOTTY;
1888
1889 if (probe)
1890 return 0;
1891
1892 pci_block_user_cfg_access(dev);
1893
1894 /* Wait for Transaction Pending bit clean */
1895 msleep(100);
1896 pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
1897 if (status & PCI_EXP_DEVSTA_TRPND) {
1898 dev_info(&dev->dev, "Busy after 100ms while trying to reset; "
1899 "sleeping for 1 second\n");
1900 ssleep(1);
1901 pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
1902 if (status & PCI_EXP_DEVSTA_TRPND)
1903 dev_info(&dev->dev, "Still busy after 1s; "
1904 "proceeding with reset anyway\n");
1905 }
1906
1907 pci_write_config_word(dev, exppos + PCI_EXP_DEVCTL,
1908 PCI_EXP_DEVCTL_BCR_FLR);
1909 mdelay(100);
1910
1911 pci_unblock_user_cfg_access(dev);
1912 return 0;
1913 }
1914
1915 static int __pci_af_flr(struct pci_dev *dev, int probe)
1916 {
1917 int cappos = pci_find_capability(dev, PCI_CAP_ID_AF);
1918 u8 status;
1919 u8 cap;
1920
1921 if (!cappos)
1922 return -ENOTTY;
1923 pci_read_config_byte(dev, cappos + PCI_AF_CAP, &cap);
1924 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
1925 return -ENOTTY;
1926
1927 if (probe)
1928 return 0;
1929
1930 pci_block_user_cfg_access(dev);
1931
1932 /* Wait for Transaction Pending bit clean */
1933 msleep(100);
1934 pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status);
1935 if (status & PCI_AF_STATUS_TP) {
1936 dev_info(&dev->dev, "Busy after 100ms while trying to"
1937 " reset; sleeping for 1 second\n");
1938 ssleep(1);
1939 pci_read_config_byte(dev,
1940 cappos + PCI_AF_STATUS, &status);
1941 if (status & PCI_AF_STATUS_TP)
1942 dev_info(&dev->dev, "Still busy after 1s; "
1943 "proceeding with reset anyway\n");
1944 }
1945 pci_write_config_byte(dev, cappos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
1946 mdelay(100);
1947
1948 pci_unblock_user_cfg_access(dev);
1949 return 0;
1950 }
1951
1952 static int __pci_reset_function(struct pci_dev *pdev, int probe)
1953 {
1954 int res;
1955
1956 res = __pcie_flr(pdev, probe);
1957 if (res != -ENOTTY)
1958 return res;
1959
1960 res = __pci_af_flr(pdev, probe);
1961 if (res != -ENOTTY)
1962 return res;
1963
1964 return res;
1965 }
1966
1967 /**
1968 * pci_execute_reset_function() - Reset a PCI device function
1969 * @dev: Device function to reset
1970 *
1971 * Some devices allow an individual function to be reset without affecting
1972 * other functions in the same device. The PCI device must be responsive
1973 * to PCI config space in order to use this function.
1974 *
1975 * The device function is presumed to be unused when this function is called.
1976 * Resetting the device will make the contents of PCI configuration space
1977 * random, so any caller of this must be prepared to reinitialise the
1978 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
1979 * etc.
1980 *
1981 * Returns 0 if the device function was successfully reset or -ENOTTY if the
1982 * device doesn't support resetting a single function.
1983 */
1984 int pci_execute_reset_function(struct pci_dev *dev)
1985 {
1986 return __pci_reset_function(dev, 0);
1987 }
1988 EXPORT_SYMBOL_GPL(pci_execute_reset_function);
1989
1990 /**
1991 * pci_reset_function() - quiesce and reset a PCI device function
1992 * @dev: Device function to reset
1993 *
1994 * Some devices allow an individual function to be reset without affecting
1995 * other functions in the same device. The PCI device must be responsive
1996 * to PCI config space in order to use this function.
1997 *
1998 * This function does not just reset the PCI portion of a device, but
1999 * clears all the state associated with the device. This function differs
2000 * from pci_execute_reset_function in that it saves and restores device state
2001 * over the reset.
2002 *
2003 * Returns 0 if the device function was successfully reset or -ENOTTY if the
2004 * device doesn't support resetting a single function.
2005 */
2006 int pci_reset_function(struct pci_dev *dev)
2007 {
2008 int r = __pci_reset_function(dev, 1);
2009
2010 if (r < 0)
2011 return r;
2012
2013 if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0)
2014 disable_irq(dev->irq);
2015 pci_save_state(dev);
2016
2017 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2018
2019 r = pci_execute_reset_function(dev);
2020
2021 pci_restore_state(dev);
2022 if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0)
2023 enable_irq(dev->irq);
2024
2025 return r;
2026 }
2027 EXPORT_SYMBOL_GPL(pci_reset_function);
2028
2029 /**
2030 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2031 * @dev: PCI device to query
2032 *
2033 * Returns mmrbc: maximum designed memory read count in bytes
2034 * or appropriate error value.
2035 */
2036 int pcix_get_max_mmrbc(struct pci_dev *dev)
2037 {
2038 int err, cap;
2039 u32 stat;
2040
2041 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2042 if (!cap)
2043 return -EINVAL;
2044
2045 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2046 if (err)
2047 return -EINVAL;
2048
2049 return (stat & PCI_X_STATUS_MAX_READ) >> 12;
2050 }
2051 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2052
2053 /**
2054 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2055 * @dev: PCI device to query
2056 *
2057 * Returns mmrbc: maximum memory read count in bytes
2058 * or appropriate error value.
2059 */
2060 int pcix_get_mmrbc(struct pci_dev *dev)
2061 {
2062 int ret, cap;
2063 u32 cmd;
2064
2065 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2066 if (!cap)
2067 return -EINVAL;
2068
2069 ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2070 if (!ret)
2071 ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2072
2073 return ret;
2074 }
2075 EXPORT_SYMBOL(pcix_get_mmrbc);
2076
2077 /**
2078 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2079 * @dev: PCI device to query
2080 * @mmrbc: maximum memory read count in bytes
2081 * valid values are 512, 1024, 2048, 4096
2082 *
2083 * If possible sets maximum memory read byte count, some bridges have erratas
2084 * that prevent this.
2085 */
2086 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2087 {
2088 int cap, err = -EINVAL;
2089 u32 stat, cmd, v, o;
2090
2091 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2092 goto out;
2093
2094 v = ffs(mmrbc) - 10;
2095
2096 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2097 if (!cap)
2098 goto out;
2099
2100 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2101 if (err)
2102 goto out;
2103
2104 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2105 return -E2BIG;
2106
2107 err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2108 if (err)
2109 goto out;
2110
2111 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2112 if (o != v) {
2113 if (v > o && dev->bus &&
2114 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2115 return -EIO;
2116
2117 cmd &= ~PCI_X_CMD_MAX_READ;
2118 cmd |= v << 2;
2119 err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
2120 }
2121 out:
2122 return err;
2123 }
2124 EXPORT_SYMBOL(pcix_set_mmrbc);
2125
2126 /**
2127 * pcie_get_readrq - get PCI Express read request size
2128 * @dev: PCI device to query
2129 *
2130 * Returns maximum memory read request in bytes
2131 * or appropriate error value.
2132 */
2133 int pcie_get_readrq(struct pci_dev *dev)
2134 {
2135 int ret, cap;
2136 u16 ctl;
2137
2138 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2139 if (!cap)
2140 return -EINVAL;
2141
2142 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2143 if (!ret)
2144 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2145
2146 return ret;
2147 }
2148 EXPORT_SYMBOL(pcie_get_readrq);
2149
2150 /**
2151 * pcie_set_readrq - set PCI Express maximum memory read request
2152 * @dev: PCI device to query
2153 * @rq: maximum memory read count in bytes
2154 * valid values are 128, 256, 512, 1024, 2048, 4096
2155 *
2156 * If possible sets maximum read byte count
2157 */
2158 int pcie_set_readrq(struct pci_dev *dev, int rq)
2159 {
2160 int cap, err = -EINVAL;
2161 u16 ctl, v;
2162
2163 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2164 goto out;
2165
2166 v = (ffs(rq) - 8) << 12;
2167
2168 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2169 if (!cap)
2170 goto out;
2171
2172 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2173 if (err)
2174 goto out;
2175
2176 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2177 ctl &= ~PCI_EXP_DEVCTL_READRQ;
2178 ctl |= v;
2179 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2180 }
2181
2182 out:
2183 return err;
2184 }
2185 EXPORT_SYMBOL(pcie_set_readrq);
2186
2187 /**
2188 * pci_select_bars - Make BAR mask from the type of resource
2189 * @dev: the PCI device for which BAR mask is made
2190 * @flags: resource type mask to be selected
2191 *
2192 * This helper routine makes bar mask from the type of resource.
2193 */
2194 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2195 {
2196 int i, bars = 0;
2197 for (i = 0; i < PCI_NUM_RESOURCES; i++)
2198 if (pci_resource_flags(dev, i) & flags)
2199 bars |= (1 << i);
2200 return bars;
2201 }
2202
2203 static void __devinit pci_no_domains(void)
2204 {
2205 #ifdef CONFIG_PCI_DOMAINS
2206 pci_domains_supported = 0;
2207 #endif
2208 }
2209
2210 /**
2211 * pci_ext_cfg_enabled - can we access extended PCI config space?
2212 * @dev: The PCI device of the root bridge.
2213 *
2214 * Returns 1 if we can access PCI extended config space (offsets
2215 * greater than 0xff). This is the default implementation. Architecture
2216 * implementations can override this.
2217 */
2218 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
2219 {
2220 return 1;
2221 }
2222
2223 static int __devinit pci_init(void)
2224 {
2225 struct pci_dev *dev = NULL;
2226
2227 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2228 pci_fixup_device(pci_fixup_final, dev);
2229 }
2230
2231 return 0;
2232 }
2233
2234 static int __init pci_setup(char *str)
2235 {
2236 while (str) {
2237 char *k = strchr(str, ',');
2238 if (k)
2239 *k++ = 0;
2240 if (*str && (str = pcibios_setup(str)) && *str) {
2241 if (!strcmp(str, "nomsi")) {
2242 pci_no_msi();
2243 } else if (!strcmp(str, "noaer")) {
2244 pci_no_aer();
2245 } else if (!strcmp(str, "nodomains")) {
2246 pci_no_domains();
2247 } else if (!strncmp(str, "cbiosize=", 9)) {
2248 pci_cardbus_io_size = memparse(str + 9, &str);
2249 } else if (!strncmp(str, "cbmemsize=", 10)) {
2250 pci_cardbus_mem_size = memparse(str + 10, &str);
2251 } else {
2252 printk(KERN_ERR "PCI: Unknown option `%s'\n",
2253 str);
2254 }
2255 }
2256 str = k;
2257 }
2258 return 0;
2259 }
2260 early_param("pci", pci_setup);
2261
2262 device_initcall(pci_init);
2263
2264 EXPORT_SYMBOL(pci_reenable_device);
2265 EXPORT_SYMBOL(pci_enable_device_io);
2266 EXPORT_SYMBOL(pci_enable_device_mem);
2267 EXPORT_SYMBOL(pci_enable_device);
2268 EXPORT_SYMBOL(pcim_enable_device);
2269 EXPORT_SYMBOL(pcim_pin_device);
2270 EXPORT_SYMBOL(pci_disable_device);
2271 EXPORT_SYMBOL(pci_find_capability);
2272 EXPORT_SYMBOL(pci_bus_find_capability);
2273 EXPORT_SYMBOL(pci_release_regions);
2274 EXPORT_SYMBOL(pci_request_regions);
2275 EXPORT_SYMBOL(pci_request_regions_exclusive);
2276 EXPORT_SYMBOL(pci_release_region);
2277 EXPORT_SYMBOL(pci_request_region);
2278 EXPORT_SYMBOL(pci_request_region_exclusive);
2279 EXPORT_SYMBOL(pci_release_selected_regions);
2280 EXPORT_SYMBOL(pci_request_selected_regions);
2281 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2282 EXPORT_SYMBOL(pci_set_master);
2283 EXPORT_SYMBOL(pci_set_mwi);
2284 EXPORT_SYMBOL(pci_try_set_mwi);
2285 EXPORT_SYMBOL(pci_clear_mwi);
2286 EXPORT_SYMBOL_GPL(pci_intx);
2287 EXPORT_SYMBOL(pci_set_dma_mask);
2288 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
2289 EXPORT_SYMBOL(pci_assign_resource);
2290 EXPORT_SYMBOL(pci_find_parent_resource);
2291 EXPORT_SYMBOL(pci_select_bars);
2292
2293 EXPORT_SYMBOL(pci_set_power_state);
2294 EXPORT_SYMBOL(pci_save_state);
2295 EXPORT_SYMBOL(pci_restore_state);
2296 EXPORT_SYMBOL(pci_pme_capable);
2297 EXPORT_SYMBOL(pci_pme_active);
2298 EXPORT_SYMBOL(pci_enable_wake);
2299 EXPORT_SYMBOL(pci_wake_from_d3);
2300 EXPORT_SYMBOL(pci_target_state);
2301 EXPORT_SYMBOL(pci_prepare_to_sleep);
2302 EXPORT_SYMBOL(pci_back_from_sleep);
2303 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2304
This page took 0.0974930000000001 seconds and 5 git commands to generate.