PCI: Remove unnecessary list_empty(&pci_pme_list) check
[deliverable/linux.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/pci_hotplug.h>
26 #include <asm-generic/pci-bridge.h>
27 #include <asm/setup.h>
28 #include "pci.h"
29
30 const char *pci_power_names[] = {
31 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
32 };
33 EXPORT_SYMBOL_GPL(pci_power_names);
34
35 int isa_dma_bridge_buggy;
36 EXPORT_SYMBOL(isa_dma_bridge_buggy);
37
38 int pci_pci_problems;
39 EXPORT_SYMBOL(pci_pci_problems);
40
41 unsigned int pci_pm_d3_delay;
42
43 static void pci_pme_list_scan(struct work_struct *work);
44
45 static LIST_HEAD(pci_pme_list);
46 static DEFINE_MUTEX(pci_pme_list_mutex);
47 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
48
49 struct pci_pme_device {
50 struct list_head list;
51 struct pci_dev *dev;
52 };
53
54 #define PME_TIMEOUT 1000 /* How long between PME checks */
55
56 static void pci_dev_d3_sleep(struct pci_dev *dev)
57 {
58 unsigned int delay = dev->d3_delay;
59
60 if (delay < pci_pm_d3_delay)
61 delay = pci_pm_d3_delay;
62
63 msleep(delay);
64 }
65
66 #ifdef CONFIG_PCI_DOMAINS
67 int pci_domains_supported = 1;
68 #endif
69
70 #define DEFAULT_CARDBUS_IO_SIZE (256)
71 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
72 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
73 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
74 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
75
76 #define DEFAULT_HOTPLUG_IO_SIZE (256)
77 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
78 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
79 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
80 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
81
82 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
83
84 /*
85 * The default CLS is used if arch didn't set CLS explicitly and not
86 * all pci devices agree on the same value. Arch can override either
87 * the dfl or actual value as it sees fit. Don't forget this is
88 * measured in 32-bit words, not bytes.
89 */
90 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
91 u8 pci_cache_line_size;
92
93 /*
94 * If we set up a device for bus mastering, we need to check the latency
95 * timer as certain BIOSes forget to set it properly.
96 */
97 unsigned int pcibios_max_latency = 255;
98
99 /* If set, the PCIe ARI capability will not be used. */
100 static bool pcie_ari_disabled;
101
102 /**
103 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
104 * @bus: pointer to PCI bus structure to search
105 *
106 * Given a PCI bus, returns the highest PCI bus number present in the set
107 * including the given PCI bus and its list of child PCI buses.
108 */
109 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
110 {
111 struct list_head *tmp;
112 unsigned char max, n;
113
114 max = bus->busn_res.end;
115 list_for_each(tmp, &bus->children) {
116 n = pci_bus_max_busnr(pci_bus_b(tmp));
117 if(n > max)
118 max = n;
119 }
120 return max;
121 }
122 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
123
124 #ifdef CONFIG_HAS_IOMEM
125 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
126 {
127 /*
128 * Make sure the BAR is actually a memory resource, not an IO resource
129 */
130 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
131 WARN_ON(1);
132 return NULL;
133 }
134 return ioremap_nocache(pci_resource_start(pdev, bar),
135 pci_resource_len(pdev, bar));
136 }
137 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
138 #endif
139
140 #define PCI_FIND_CAP_TTL 48
141
142 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
143 u8 pos, int cap, int *ttl)
144 {
145 u8 id;
146
147 while ((*ttl)--) {
148 pci_bus_read_config_byte(bus, devfn, pos, &pos);
149 if (pos < 0x40)
150 break;
151 pos &= ~3;
152 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
153 &id);
154 if (id == 0xff)
155 break;
156 if (id == cap)
157 return pos;
158 pos += PCI_CAP_LIST_NEXT;
159 }
160 return 0;
161 }
162
163 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
164 u8 pos, int cap)
165 {
166 int ttl = PCI_FIND_CAP_TTL;
167
168 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
169 }
170
171 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
172 {
173 return __pci_find_next_cap(dev->bus, dev->devfn,
174 pos + PCI_CAP_LIST_NEXT, cap);
175 }
176 EXPORT_SYMBOL_GPL(pci_find_next_capability);
177
178 static int __pci_bus_find_cap_start(struct pci_bus *bus,
179 unsigned int devfn, u8 hdr_type)
180 {
181 u16 status;
182
183 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
184 if (!(status & PCI_STATUS_CAP_LIST))
185 return 0;
186
187 switch (hdr_type) {
188 case PCI_HEADER_TYPE_NORMAL:
189 case PCI_HEADER_TYPE_BRIDGE:
190 return PCI_CAPABILITY_LIST;
191 case PCI_HEADER_TYPE_CARDBUS:
192 return PCI_CB_CAPABILITY_LIST;
193 default:
194 return 0;
195 }
196
197 return 0;
198 }
199
200 /**
201 * pci_find_capability - query for devices' capabilities
202 * @dev: PCI device to query
203 * @cap: capability code
204 *
205 * Tell if a device supports a given PCI capability.
206 * Returns the address of the requested capability structure within the
207 * device's PCI configuration space or 0 in case the device does not
208 * support it. Possible values for @cap:
209 *
210 * %PCI_CAP_ID_PM Power Management
211 * %PCI_CAP_ID_AGP Accelerated Graphics Port
212 * %PCI_CAP_ID_VPD Vital Product Data
213 * %PCI_CAP_ID_SLOTID Slot Identification
214 * %PCI_CAP_ID_MSI Message Signalled Interrupts
215 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
216 * %PCI_CAP_ID_PCIX PCI-X
217 * %PCI_CAP_ID_EXP PCI Express
218 */
219 int pci_find_capability(struct pci_dev *dev, int cap)
220 {
221 int pos;
222
223 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
224 if (pos)
225 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
226
227 return pos;
228 }
229
230 /**
231 * pci_bus_find_capability - query for devices' capabilities
232 * @bus: the PCI bus to query
233 * @devfn: PCI device to query
234 * @cap: capability code
235 *
236 * Like pci_find_capability() but works for pci devices that do not have a
237 * pci_dev structure set up yet.
238 *
239 * Returns the address of the requested capability structure within the
240 * device's PCI configuration space or 0 in case the device does not
241 * support it.
242 */
243 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
244 {
245 int pos;
246 u8 hdr_type;
247
248 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
249
250 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
251 if (pos)
252 pos = __pci_find_next_cap(bus, devfn, pos, cap);
253
254 return pos;
255 }
256
257 /**
258 * pci_find_next_ext_capability - Find an extended capability
259 * @dev: PCI device to query
260 * @start: address at which to start looking (0 to start at beginning of list)
261 * @cap: capability code
262 *
263 * Returns the address of the next matching extended capability structure
264 * within the device's PCI configuration space or 0 if the device does
265 * not support it. Some capabilities can occur several times, e.g., the
266 * vendor-specific capability, and this provides a way to find them all.
267 */
268 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
269 {
270 u32 header;
271 int ttl;
272 int pos = PCI_CFG_SPACE_SIZE;
273
274 /* minimum 8 bytes per capability */
275 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
276
277 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
278 return 0;
279
280 if (start)
281 pos = start;
282
283 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
284 return 0;
285
286 /*
287 * If we have no capabilities, this is indicated by cap ID,
288 * cap version and next pointer all being 0.
289 */
290 if (header == 0)
291 return 0;
292
293 while (ttl-- > 0) {
294 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
295 return pos;
296
297 pos = PCI_EXT_CAP_NEXT(header);
298 if (pos < PCI_CFG_SPACE_SIZE)
299 break;
300
301 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
302 break;
303 }
304
305 return 0;
306 }
307 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
308
309 /**
310 * pci_find_ext_capability - Find an extended capability
311 * @dev: PCI device to query
312 * @cap: capability code
313 *
314 * Returns the address of the requested extended capability structure
315 * within the device's PCI configuration space or 0 if the device does
316 * not support it. Possible values for @cap:
317 *
318 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
319 * %PCI_EXT_CAP_ID_VC Virtual Channel
320 * %PCI_EXT_CAP_ID_DSN Device Serial Number
321 * %PCI_EXT_CAP_ID_PWR Power Budgeting
322 */
323 int pci_find_ext_capability(struct pci_dev *dev, int cap)
324 {
325 return pci_find_next_ext_capability(dev, 0, cap);
326 }
327 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
328
329 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
330 {
331 int rc, ttl = PCI_FIND_CAP_TTL;
332 u8 cap, mask;
333
334 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
335 mask = HT_3BIT_CAP_MASK;
336 else
337 mask = HT_5BIT_CAP_MASK;
338
339 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
340 PCI_CAP_ID_HT, &ttl);
341 while (pos) {
342 rc = pci_read_config_byte(dev, pos + 3, &cap);
343 if (rc != PCIBIOS_SUCCESSFUL)
344 return 0;
345
346 if ((cap & mask) == ht_cap)
347 return pos;
348
349 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
350 pos + PCI_CAP_LIST_NEXT,
351 PCI_CAP_ID_HT, &ttl);
352 }
353
354 return 0;
355 }
356 /**
357 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
358 * @dev: PCI device to query
359 * @pos: Position from which to continue searching
360 * @ht_cap: Hypertransport capability code
361 *
362 * To be used in conjunction with pci_find_ht_capability() to search for
363 * all capabilities matching @ht_cap. @pos should always be a value returned
364 * from pci_find_ht_capability().
365 *
366 * NB. To be 100% safe against broken PCI devices, the caller should take
367 * steps to avoid an infinite loop.
368 */
369 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
370 {
371 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
372 }
373 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
374
375 /**
376 * pci_find_ht_capability - query a device's Hypertransport capabilities
377 * @dev: PCI device to query
378 * @ht_cap: Hypertransport capability code
379 *
380 * Tell if a device supports a given Hypertransport capability.
381 * Returns an address within the device's PCI configuration space
382 * or 0 in case the device does not support the request capability.
383 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
384 * which has a Hypertransport capability matching @ht_cap.
385 */
386 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
387 {
388 int pos;
389
390 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
391 if (pos)
392 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
393
394 return pos;
395 }
396 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
397
398 /**
399 * pci_find_parent_resource - return resource region of parent bus of given region
400 * @dev: PCI device structure contains resources to be searched
401 * @res: child resource record for which parent is sought
402 *
403 * For given resource region of given device, return the resource
404 * region of parent bus the given region is contained in or where
405 * it should be allocated from.
406 */
407 struct resource *
408 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
409 {
410 const struct pci_bus *bus = dev->bus;
411 int i;
412 struct resource *best = NULL, *r;
413
414 pci_bus_for_each_resource(bus, r, i) {
415 if (!r)
416 continue;
417 if (res->start && !(res->start >= r->start && res->end <= r->end))
418 continue; /* Not contained */
419 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
420 continue; /* Wrong type */
421 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
422 return r; /* Exact match */
423 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
424 if (r->flags & IORESOURCE_PREFETCH)
425 continue;
426 /* .. but we can put a prefetchable resource inside a non-prefetchable one */
427 if (!best)
428 best = r;
429 }
430 return best;
431 }
432
433 /**
434 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
435 * @dev: the PCI device to operate on
436 * @pos: config space offset of status word
437 * @mask: mask of bit(s) to care about in status word
438 *
439 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
440 */
441 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
442 {
443 int i;
444
445 /* Wait for Transaction Pending bit clean */
446 for (i = 0; i < 4; i++) {
447 u16 status;
448 if (i)
449 msleep((1 << (i - 1)) * 100);
450
451 pci_read_config_word(dev, pos, &status);
452 if (!(status & mask))
453 return 1;
454 }
455
456 return 0;
457 }
458
459 /**
460 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
461 * @dev: PCI device to have its BARs restored
462 *
463 * Restore the BAR values for a given device, so as to make it
464 * accessible by its driver.
465 */
466 static void
467 pci_restore_bars(struct pci_dev *dev)
468 {
469 int i;
470
471 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
472 pci_update_resource(dev, i);
473 }
474
475 static struct pci_platform_pm_ops *pci_platform_pm;
476
477 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
478 {
479 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
480 || !ops->sleep_wake)
481 return -EINVAL;
482 pci_platform_pm = ops;
483 return 0;
484 }
485
486 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
487 {
488 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
489 }
490
491 static inline int platform_pci_set_power_state(struct pci_dev *dev,
492 pci_power_t t)
493 {
494 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
495 }
496
497 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
498 {
499 return pci_platform_pm ?
500 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
501 }
502
503 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
504 {
505 return pci_platform_pm ?
506 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
507 }
508
509 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
510 {
511 return pci_platform_pm ?
512 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
513 }
514
515 /**
516 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
517 * given PCI device
518 * @dev: PCI device to handle.
519 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
520 *
521 * RETURN VALUE:
522 * -EINVAL if the requested state is invalid.
523 * -EIO if device does not support PCI PM or its PM capabilities register has a
524 * wrong version, or device doesn't support the requested state.
525 * 0 if device already is in the requested state.
526 * 0 if device's power state has been successfully changed.
527 */
528 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
529 {
530 u16 pmcsr;
531 bool need_restore = false;
532
533 /* Check if we're already there */
534 if (dev->current_state == state)
535 return 0;
536
537 if (!dev->pm_cap)
538 return -EIO;
539
540 if (state < PCI_D0 || state > PCI_D3hot)
541 return -EINVAL;
542
543 /* Validate current state:
544 * Can enter D0 from any state, but if we can only go deeper
545 * to sleep if we're already in a low power state
546 */
547 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
548 && dev->current_state > state) {
549 dev_err(&dev->dev, "invalid power transition "
550 "(from state %d to %d)\n", dev->current_state, state);
551 return -EINVAL;
552 }
553
554 /* check if this device supports the desired state */
555 if ((state == PCI_D1 && !dev->d1_support)
556 || (state == PCI_D2 && !dev->d2_support))
557 return -EIO;
558
559 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
560
561 /* If we're (effectively) in D3, force entire word to 0.
562 * This doesn't affect PME_Status, disables PME_En, and
563 * sets PowerState to 0.
564 */
565 switch (dev->current_state) {
566 case PCI_D0:
567 case PCI_D1:
568 case PCI_D2:
569 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
570 pmcsr |= state;
571 break;
572 case PCI_D3hot:
573 case PCI_D3cold:
574 case PCI_UNKNOWN: /* Boot-up */
575 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
576 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
577 need_restore = true;
578 /* Fall-through: force to D0 */
579 default:
580 pmcsr = 0;
581 break;
582 }
583
584 /* enter specified state */
585 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
586
587 /* Mandatory power management transition delays */
588 /* see PCI PM 1.1 5.6.1 table 18 */
589 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
590 pci_dev_d3_sleep(dev);
591 else if (state == PCI_D2 || dev->current_state == PCI_D2)
592 udelay(PCI_PM_D2_DELAY);
593
594 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
595 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
596 if (dev->current_state != state && printk_ratelimit())
597 dev_info(&dev->dev, "Refused to change power state, "
598 "currently in D%d\n", dev->current_state);
599
600 /*
601 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
602 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
603 * from D3hot to D0 _may_ perform an internal reset, thereby
604 * going to "D0 Uninitialized" rather than "D0 Initialized".
605 * For example, at least some versions of the 3c905B and the
606 * 3c556B exhibit this behaviour.
607 *
608 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
609 * devices in a D3hot state at boot. Consequently, we need to
610 * restore at least the BARs so that the device will be
611 * accessible to its driver.
612 */
613 if (need_restore)
614 pci_restore_bars(dev);
615
616 if (dev->bus->self)
617 pcie_aspm_pm_state_change(dev->bus->self);
618
619 return 0;
620 }
621
622 /**
623 * pci_update_current_state - Read PCI power state of given device from its
624 * PCI PM registers and cache it
625 * @dev: PCI device to handle.
626 * @state: State to cache in case the device doesn't have the PM capability
627 */
628 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
629 {
630 if (dev->pm_cap) {
631 u16 pmcsr;
632
633 /*
634 * Configuration space is not accessible for device in
635 * D3cold, so just keep or set D3cold for safety
636 */
637 if (dev->current_state == PCI_D3cold)
638 return;
639 if (state == PCI_D3cold) {
640 dev->current_state = PCI_D3cold;
641 return;
642 }
643 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
644 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
645 } else {
646 dev->current_state = state;
647 }
648 }
649
650 /**
651 * pci_power_up - Put the given device into D0 forcibly
652 * @dev: PCI device to power up
653 */
654 void pci_power_up(struct pci_dev *dev)
655 {
656 if (platform_pci_power_manageable(dev))
657 platform_pci_set_power_state(dev, PCI_D0);
658
659 pci_raw_set_power_state(dev, PCI_D0);
660 pci_update_current_state(dev, PCI_D0);
661 }
662
663 /**
664 * pci_platform_power_transition - Use platform to change device power state
665 * @dev: PCI device to handle.
666 * @state: State to put the device into.
667 */
668 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
669 {
670 int error;
671
672 if (platform_pci_power_manageable(dev)) {
673 error = platform_pci_set_power_state(dev, state);
674 if (!error)
675 pci_update_current_state(dev, state);
676 } else
677 error = -ENODEV;
678
679 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
680 dev->current_state = PCI_D0;
681
682 return error;
683 }
684
685 /**
686 * pci_wakeup - Wake up a PCI device
687 * @pci_dev: Device to handle.
688 * @ign: ignored parameter
689 */
690 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
691 {
692 pci_wakeup_event(pci_dev);
693 pm_request_resume(&pci_dev->dev);
694 return 0;
695 }
696
697 /**
698 * pci_wakeup_bus - Walk given bus and wake up devices on it
699 * @bus: Top bus of the subtree to walk.
700 */
701 static void pci_wakeup_bus(struct pci_bus *bus)
702 {
703 if (bus)
704 pci_walk_bus(bus, pci_wakeup, NULL);
705 }
706
707 /**
708 * __pci_start_power_transition - Start power transition of a PCI device
709 * @dev: PCI device to handle.
710 * @state: State to put the device into.
711 */
712 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
713 {
714 if (state == PCI_D0) {
715 pci_platform_power_transition(dev, PCI_D0);
716 /*
717 * Mandatory power management transition delays, see
718 * PCI Express Base Specification Revision 2.0 Section
719 * 6.6.1: Conventional Reset. Do not delay for
720 * devices powered on/off by corresponding bridge,
721 * because have already delayed for the bridge.
722 */
723 if (dev->runtime_d3cold) {
724 msleep(dev->d3cold_delay);
725 /*
726 * When powering on a bridge from D3cold, the
727 * whole hierarchy may be powered on into
728 * D0uninitialized state, resume them to give
729 * them a chance to suspend again
730 */
731 pci_wakeup_bus(dev->subordinate);
732 }
733 }
734 }
735
736 /**
737 * __pci_dev_set_current_state - Set current state of a PCI device
738 * @dev: Device to handle
739 * @data: pointer to state to be set
740 */
741 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
742 {
743 pci_power_t state = *(pci_power_t *)data;
744
745 dev->current_state = state;
746 return 0;
747 }
748
749 /**
750 * __pci_bus_set_current_state - Walk given bus and set current state of devices
751 * @bus: Top bus of the subtree to walk.
752 * @state: state to be set
753 */
754 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
755 {
756 if (bus)
757 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
758 }
759
760 /**
761 * __pci_complete_power_transition - Complete power transition of a PCI device
762 * @dev: PCI device to handle.
763 * @state: State to put the device into.
764 *
765 * This function should not be called directly by device drivers.
766 */
767 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
768 {
769 int ret;
770
771 if (state <= PCI_D0)
772 return -EINVAL;
773 ret = pci_platform_power_transition(dev, state);
774 /* Power off the bridge may power off the whole hierarchy */
775 if (!ret && state == PCI_D3cold)
776 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
777 return ret;
778 }
779 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
780
781 /**
782 * pci_set_power_state - Set the power state of a PCI device
783 * @dev: PCI device to handle.
784 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
785 *
786 * Transition a device to a new power state, using the platform firmware and/or
787 * the device's PCI PM registers.
788 *
789 * RETURN VALUE:
790 * -EINVAL if the requested state is invalid.
791 * -EIO if device does not support PCI PM or its PM capabilities register has a
792 * wrong version, or device doesn't support the requested state.
793 * 0 if device already is in the requested state.
794 * 0 if device's power state has been successfully changed.
795 */
796 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
797 {
798 int error;
799
800 /* bound the state we're entering */
801 if (state > PCI_D3cold)
802 state = PCI_D3cold;
803 else if (state < PCI_D0)
804 state = PCI_D0;
805 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
806 /*
807 * If the device or the parent bridge do not support PCI PM,
808 * ignore the request if we're doing anything other than putting
809 * it into D0 (which would only happen on boot).
810 */
811 return 0;
812
813 /* Check if we're already there */
814 if (dev->current_state == state)
815 return 0;
816
817 __pci_start_power_transition(dev, state);
818
819 /* This device is quirked not to be put into D3, so
820 don't put it in D3 */
821 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
822 return 0;
823
824 /*
825 * To put device in D3cold, we put device into D3hot in native
826 * way, then put device into D3cold with platform ops
827 */
828 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
829 PCI_D3hot : state);
830
831 if (!__pci_complete_power_transition(dev, state))
832 error = 0;
833 /*
834 * When aspm_policy is "powersave" this call ensures
835 * that ASPM is configured.
836 */
837 if (!error && dev->bus->self)
838 pcie_aspm_powersave_config_link(dev->bus->self);
839
840 return error;
841 }
842
843 /**
844 * pci_choose_state - Choose the power state of a PCI device
845 * @dev: PCI device to be suspended
846 * @state: target sleep state for the whole system. This is the value
847 * that is passed to suspend() function.
848 *
849 * Returns PCI power state suitable for given device and given system
850 * message.
851 */
852
853 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
854 {
855 pci_power_t ret;
856
857 if (!dev->pm_cap)
858 return PCI_D0;
859
860 ret = platform_pci_choose_state(dev);
861 if (ret != PCI_POWER_ERROR)
862 return ret;
863
864 switch (state.event) {
865 case PM_EVENT_ON:
866 return PCI_D0;
867 case PM_EVENT_FREEZE:
868 case PM_EVENT_PRETHAW:
869 /* REVISIT both freeze and pre-thaw "should" use D0 */
870 case PM_EVENT_SUSPEND:
871 case PM_EVENT_HIBERNATE:
872 return PCI_D3hot;
873 default:
874 dev_info(&dev->dev, "unrecognized suspend event %d\n",
875 state.event);
876 BUG();
877 }
878 return PCI_D0;
879 }
880
881 EXPORT_SYMBOL(pci_choose_state);
882
883 #define PCI_EXP_SAVE_REGS 7
884
885
886 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
887 u16 cap, bool extended)
888 {
889 struct pci_cap_saved_state *tmp;
890
891 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
892 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
893 return tmp;
894 }
895 return NULL;
896 }
897
898 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
899 {
900 return _pci_find_saved_cap(dev, cap, false);
901 }
902
903 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
904 {
905 return _pci_find_saved_cap(dev, cap, true);
906 }
907
908 static int pci_save_pcie_state(struct pci_dev *dev)
909 {
910 int i = 0;
911 struct pci_cap_saved_state *save_state;
912 u16 *cap;
913
914 if (!pci_is_pcie(dev))
915 return 0;
916
917 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
918 if (!save_state) {
919 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
920 return -ENOMEM;
921 }
922
923 cap = (u16 *)&save_state->cap.data[0];
924 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
925 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
926 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
927 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
928 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
929 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
930 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
931
932 return 0;
933 }
934
935 static void pci_restore_pcie_state(struct pci_dev *dev)
936 {
937 int i = 0;
938 struct pci_cap_saved_state *save_state;
939 u16 *cap;
940
941 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
942 if (!save_state)
943 return;
944
945 cap = (u16 *)&save_state->cap.data[0];
946 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
947 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
948 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
949 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
950 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
951 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
952 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
953 }
954
955
956 static int pci_save_pcix_state(struct pci_dev *dev)
957 {
958 int pos;
959 struct pci_cap_saved_state *save_state;
960
961 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
962 if (pos <= 0)
963 return 0;
964
965 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
966 if (!save_state) {
967 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
968 return -ENOMEM;
969 }
970
971 pci_read_config_word(dev, pos + PCI_X_CMD,
972 (u16 *)save_state->cap.data);
973
974 return 0;
975 }
976
977 static void pci_restore_pcix_state(struct pci_dev *dev)
978 {
979 int i = 0, pos;
980 struct pci_cap_saved_state *save_state;
981 u16 *cap;
982
983 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
984 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
985 if (!save_state || pos <= 0)
986 return;
987 cap = (u16 *)&save_state->cap.data[0];
988
989 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
990 }
991
992
993 /**
994 * pci_save_state - save the PCI configuration space of a device before suspending
995 * @dev: - PCI device that we're dealing with
996 */
997 int
998 pci_save_state(struct pci_dev *dev)
999 {
1000 int i;
1001 /* XXX: 100% dword access ok here? */
1002 for (i = 0; i < 16; i++)
1003 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1004 dev->state_saved = true;
1005 if ((i = pci_save_pcie_state(dev)) != 0)
1006 return i;
1007 if ((i = pci_save_pcix_state(dev)) != 0)
1008 return i;
1009 if ((i = pci_save_vc_state(dev)) != 0)
1010 return i;
1011 return 0;
1012 }
1013
1014 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1015 u32 saved_val, int retry)
1016 {
1017 u32 val;
1018
1019 pci_read_config_dword(pdev, offset, &val);
1020 if (val == saved_val)
1021 return;
1022
1023 for (;;) {
1024 dev_dbg(&pdev->dev, "restoring config space at offset "
1025 "%#x (was %#x, writing %#x)\n", offset, val, saved_val);
1026 pci_write_config_dword(pdev, offset, saved_val);
1027 if (retry-- <= 0)
1028 return;
1029
1030 pci_read_config_dword(pdev, offset, &val);
1031 if (val == saved_val)
1032 return;
1033
1034 mdelay(1);
1035 }
1036 }
1037
1038 static void pci_restore_config_space_range(struct pci_dev *pdev,
1039 int start, int end, int retry)
1040 {
1041 int index;
1042
1043 for (index = end; index >= start; index--)
1044 pci_restore_config_dword(pdev, 4 * index,
1045 pdev->saved_config_space[index],
1046 retry);
1047 }
1048
1049 static void pci_restore_config_space(struct pci_dev *pdev)
1050 {
1051 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1052 pci_restore_config_space_range(pdev, 10, 15, 0);
1053 /* Restore BARs before the command register. */
1054 pci_restore_config_space_range(pdev, 4, 9, 10);
1055 pci_restore_config_space_range(pdev, 0, 3, 0);
1056 } else {
1057 pci_restore_config_space_range(pdev, 0, 15, 0);
1058 }
1059 }
1060
1061 /**
1062 * pci_restore_state - Restore the saved state of a PCI device
1063 * @dev: - PCI device that we're dealing with
1064 */
1065 void pci_restore_state(struct pci_dev *dev)
1066 {
1067 if (!dev->state_saved)
1068 return;
1069
1070 /* PCI Express register must be restored first */
1071 pci_restore_pcie_state(dev);
1072 pci_restore_ats_state(dev);
1073 pci_restore_vc_state(dev);
1074
1075 pci_restore_config_space(dev);
1076
1077 pci_restore_pcix_state(dev);
1078 pci_restore_msi_state(dev);
1079 pci_restore_iov_state(dev);
1080
1081 dev->state_saved = false;
1082 }
1083
1084 struct pci_saved_state {
1085 u32 config_space[16];
1086 struct pci_cap_saved_data cap[0];
1087 };
1088
1089 /**
1090 * pci_store_saved_state - Allocate and return an opaque struct containing
1091 * the device saved state.
1092 * @dev: PCI device that we're dealing with
1093 *
1094 * Return NULL if no state or error.
1095 */
1096 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1097 {
1098 struct pci_saved_state *state;
1099 struct pci_cap_saved_state *tmp;
1100 struct pci_cap_saved_data *cap;
1101 size_t size;
1102
1103 if (!dev->state_saved)
1104 return NULL;
1105
1106 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1107
1108 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1109 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1110
1111 state = kzalloc(size, GFP_KERNEL);
1112 if (!state)
1113 return NULL;
1114
1115 memcpy(state->config_space, dev->saved_config_space,
1116 sizeof(state->config_space));
1117
1118 cap = state->cap;
1119 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1120 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1121 memcpy(cap, &tmp->cap, len);
1122 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1123 }
1124 /* Empty cap_save terminates list */
1125
1126 return state;
1127 }
1128 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1129
1130 /**
1131 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1132 * @dev: PCI device that we're dealing with
1133 * @state: Saved state returned from pci_store_saved_state()
1134 */
1135 static int pci_load_saved_state(struct pci_dev *dev,
1136 struct pci_saved_state *state)
1137 {
1138 struct pci_cap_saved_data *cap;
1139
1140 dev->state_saved = false;
1141
1142 if (!state)
1143 return 0;
1144
1145 memcpy(dev->saved_config_space, state->config_space,
1146 sizeof(state->config_space));
1147
1148 cap = state->cap;
1149 while (cap->size) {
1150 struct pci_cap_saved_state *tmp;
1151
1152 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1153 if (!tmp || tmp->cap.size != cap->size)
1154 return -EINVAL;
1155
1156 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1157 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1158 sizeof(struct pci_cap_saved_data) + cap->size);
1159 }
1160
1161 dev->state_saved = true;
1162 return 0;
1163 }
1164
1165 /**
1166 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1167 * and free the memory allocated for it.
1168 * @dev: PCI device that we're dealing with
1169 * @state: Pointer to saved state returned from pci_store_saved_state()
1170 */
1171 int pci_load_and_free_saved_state(struct pci_dev *dev,
1172 struct pci_saved_state **state)
1173 {
1174 int ret = pci_load_saved_state(dev, *state);
1175 kfree(*state);
1176 *state = NULL;
1177 return ret;
1178 }
1179 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1180
1181 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1182 {
1183 int err;
1184
1185 err = pci_set_power_state(dev, PCI_D0);
1186 if (err < 0 && err != -EIO)
1187 return err;
1188 err = pcibios_enable_device(dev, bars);
1189 if (err < 0)
1190 return err;
1191 pci_fixup_device(pci_fixup_enable, dev);
1192
1193 return 0;
1194 }
1195
1196 /**
1197 * pci_reenable_device - Resume abandoned device
1198 * @dev: PCI device to be resumed
1199 *
1200 * Note this function is a backend of pci_default_resume and is not supposed
1201 * to be called by normal code, write proper resume handler and use it instead.
1202 */
1203 int pci_reenable_device(struct pci_dev *dev)
1204 {
1205 if (pci_is_enabled(dev))
1206 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1207 return 0;
1208 }
1209
1210 static void pci_enable_bridge(struct pci_dev *dev)
1211 {
1212 struct pci_dev *bridge;
1213 int retval;
1214
1215 bridge = pci_upstream_bridge(dev);
1216 if (bridge)
1217 pci_enable_bridge(bridge);
1218
1219 if (pci_is_enabled(dev)) {
1220 if (!dev->is_busmaster)
1221 pci_set_master(dev);
1222 return;
1223 }
1224
1225 retval = pci_enable_device(dev);
1226 if (retval)
1227 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1228 retval);
1229 pci_set_master(dev);
1230 }
1231
1232 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1233 {
1234 struct pci_dev *bridge;
1235 int err;
1236 int i, bars = 0;
1237
1238 /*
1239 * Power state could be unknown at this point, either due to a fresh
1240 * boot or a device removal call. So get the current power state
1241 * so that things like MSI message writing will behave as expected
1242 * (e.g. if the device really is in D0 at enable time).
1243 */
1244 if (dev->pm_cap) {
1245 u16 pmcsr;
1246 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1247 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1248 }
1249
1250 if (atomic_inc_return(&dev->enable_cnt) > 1)
1251 return 0; /* already enabled */
1252
1253 bridge = pci_upstream_bridge(dev);
1254 if (bridge)
1255 pci_enable_bridge(bridge);
1256
1257 /* only skip sriov related */
1258 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1259 if (dev->resource[i].flags & flags)
1260 bars |= (1 << i);
1261 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1262 if (dev->resource[i].flags & flags)
1263 bars |= (1 << i);
1264
1265 err = do_pci_enable_device(dev, bars);
1266 if (err < 0)
1267 atomic_dec(&dev->enable_cnt);
1268 return err;
1269 }
1270
1271 /**
1272 * pci_enable_device_io - Initialize a device for use with IO space
1273 * @dev: PCI device to be initialized
1274 *
1275 * Initialize device before it's used by a driver. Ask low-level code
1276 * to enable I/O resources. Wake up the device if it was suspended.
1277 * Beware, this function can fail.
1278 */
1279 int pci_enable_device_io(struct pci_dev *dev)
1280 {
1281 return pci_enable_device_flags(dev, IORESOURCE_IO);
1282 }
1283
1284 /**
1285 * pci_enable_device_mem - Initialize a device for use with Memory space
1286 * @dev: PCI device to be initialized
1287 *
1288 * Initialize device before it's used by a driver. Ask low-level code
1289 * to enable Memory resources. Wake up the device if it was suspended.
1290 * Beware, this function can fail.
1291 */
1292 int pci_enable_device_mem(struct pci_dev *dev)
1293 {
1294 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1295 }
1296
1297 /**
1298 * pci_enable_device - Initialize device before it's used by a driver.
1299 * @dev: PCI device to be initialized
1300 *
1301 * Initialize device before it's used by a driver. Ask low-level code
1302 * to enable I/O and memory. Wake up the device if it was suspended.
1303 * Beware, this function can fail.
1304 *
1305 * Note we don't actually enable the device many times if we call
1306 * this function repeatedly (we just increment the count).
1307 */
1308 int pci_enable_device(struct pci_dev *dev)
1309 {
1310 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1311 }
1312
1313 /*
1314 * Managed PCI resources. This manages device on/off, intx/msi/msix
1315 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1316 * there's no need to track it separately. pci_devres is initialized
1317 * when a device is enabled using managed PCI device enable interface.
1318 */
1319 struct pci_devres {
1320 unsigned int enabled:1;
1321 unsigned int pinned:1;
1322 unsigned int orig_intx:1;
1323 unsigned int restore_intx:1;
1324 u32 region_mask;
1325 };
1326
1327 static void pcim_release(struct device *gendev, void *res)
1328 {
1329 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1330 struct pci_devres *this = res;
1331 int i;
1332
1333 if (dev->msi_enabled)
1334 pci_disable_msi(dev);
1335 if (dev->msix_enabled)
1336 pci_disable_msix(dev);
1337
1338 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1339 if (this->region_mask & (1 << i))
1340 pci_release_region(dev, i);
1341
1342 if (this->restore_intx)
1343 pci_intx(dev, this->orig_intx);
1344
1345 if (this->enabled && !this->pinned)
1346 pci_disable_device(dev);
1347 }
1348
1349 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1350 {
1351 struct pci_devres *dr, *new_dr;
1352
1353 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1354 if (dr)
1355 return dr;
1356
1357 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1358 if (!new_dr)
1359 return NULL;
1360 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1361 }
1362
1363 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1364 {
1365 if (pci_is_managed(pdev))
1366 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1367 return NULL;
1368 }
1369
1370 /**
1371 * pcim_enable_device - Managed pci_enable_device()
1372 * @pdev: PCI device to be initialized
1373 *
1374 * Managed pci_enable_device().
1375 */
1376 int pcim_enable_device(struct pci_dev *pdev)
1377 {
1378 struct pci_devres *dr;
1379 int rc;
1380
1381 dr = get_pci_dr(pdev);
1382 if (unlikely(!dr))
1383 return -ENOMEM;
1384 if (dr->enabled)
1385 return 0;
1386
1387 rc = pci_enable_device(pdev);
1388 if (!rc) {
1389 pdev->is_managed = 1;
1390 dr->enabled = 1;
1391 }
1392 return rc;
1393 }
1394
1395 /**
1396 * pcim_pin_device - Pin managed PCI device
1397 * @pdev: PCI device to pin
1398 *
1399 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1400 * driver detach. @pdev must have been enabled with
1401 * pcim_enable_device().
1402 */
1403 void pcim_pin_device(struct pci_dev *pdev)
1404 {
1405 struct pci_devres *dr;
1406
1407 dr = find_pci_dr(pdev);
1408 WARN_ON(!dr || !dr->enabled);
1409 if (dr)
1410 dr->pinned = 1;
1411 }
1412
1413 /*
1414 * pcibios_add_device - provide arch specific hooks when adding device dev
1415 * @dev: the PCI device being added
1416 *
1417 * Permits the platform to provide architecture specific functionality when
1418 * devices are added. This is the default implementation. Architecture
1419 * implementations can override this.
1420 */
1421 int __weak pcibios_add_device (struct pci_dev *dev)
1422 {
1423 return 0;
1424 }
1425
1426 /**
1427 * pcibios_release_device - provide arch specific hooks when releasing device dev
1428 * @dev: the PCI device being released
1429 *
1430 * Permits the platform to provide architecture specific functionality when
1431 * devices are released. This is the default implementation. Architecture
1432 * implementations can override this.
1433 */
1434 void __weak pcibios_release_device(struct pci_dev *dev) {}
1435
1436 /**
1437 * pcibios_disable_device - disable arch specific PCI resources for device dev
1438 * @dev: the PCI device to disable
1439 *
1440 * Disables architecture specific PCI resources for the device. This
1441 * is the default implementation. Architecture implementations can
1442 * override this.
1443 */
1444 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1445
1446 static void do_pci_disable_device(struct pci_dev *dev)
1447 {
1448 u16 pci_command;
1449
1450 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1451 if (pci_command & PCI_COMMAND_MASTER) {
1452 pci_command &= ~PCI_COMMAND_MASTER;
1453 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1454 }
1455
1456 pcibios_disable_device(dev);
1457 }
1458
1459 /**
1460 * pci_disable_enabled_device - Disable device without updating enable_cnt
1461 * @dev: PCI device to disable
1462 *
1463 * NOTE: This function is a backend of PCI power management routines and is
1464 * not supposed to be called drivers.
1465 */
1466 void pci_disable_enabled_device(struct pci_dev *dev)
1467 {
1468 if (pci_is_enabled(dev))
1469 do_pci_disable_device(dev);
1470 }
1471
1472 /**
1473 * pci_disable_device - Disable PCI device after use
1474 * @dev: PCI device to be disabled
1475 *
1476 * Signal to the system that the PCI device is not in use by the system
1477 * anymore. This only involves disabling PCI bus-mastering, if active.
1478 *
1479 * Note we don't actually disable the device until all callers of
1480 * pci_enable_device() have called pci_disable_device().
1481 */
1482 void
1483 pci_disable_device(struct pci_dev *dev)
1484 {
1485 struct pci_devres *dr;
1486
1487 dr = find_pci_dr(dev);
1488 if (dr)
1489 dr->enabled = 0;
1490
1491 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1492 "disabling already-disabled device");
1493
1494 if (atomic_dec_return(&dev->enable_cnt) != 0)
1495 return;
1496
1497 do_pci_disable_device(dev);
1498
1499 dev->is_busmaster = 0;
1500 }
1501
1502 /**
1503 * pcibios_set_pcie_reset_state - set reset state for device dev
1504 * @dev: the PCIe device reset
1505 * @state: Reset state to enter into
1506 *
1507 *
1508 * Sets the PCIe reset state for the device. This is the default
1509 * implementation. Architecture implementations can override this.
1510 */
1511 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1512 enum pcie_reset_state state)
1513 {
1514 return -EINVAL;
1515 }
1516
1517 /**
1518 * pci_set_pcie_reset_state - set reset state for device dev
1519 * @dev: the PCIe device reset
1520 * @state: Reset state to enter into
1521 *
1522 *
1523 * Sets the PCI reset state for the device.
1524 */
1525 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1526 {
1527 return pcibios_set_pcie_reset_state(dev, state);
1528 }
1529
1530 /**
1531 * pci_check_pme_status - Check if given device has generated PME.
1532 * @dev: Device to check.
1533 *
1534 * Check the PME status of the device and if set, clear it and clear PME enable
1535 * (if set). Return 'true' if PME status and PME enable were both set or
1536 * 'false' otherwise.
1537 */
1538 bool pci_check_pme_status(struct pci_dev *dev)
1539 {
1540 int pmcsr_pos;
1541 u16 pmcsr;
1542 bool ret = false;
1543
1544 if (!dev->pm_cap)
1545 return false;
1546
1547 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1548 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1549 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1550 return false;
1551
1552 /* Clear PME status. */
1553 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1554 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1555 /* Disable PME to avoid interrupt flood. */
1556 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1557 ret = true;
1558 }
1559
1560 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1561
1562 return ret;
1563 }
1564
1565 /**
1566 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1567 * @dev: Device to handle.
1568 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1569 *
1570 * Check if @dev has generated PME and queue a resume request for it in that
1571 * case.
1572 */
1573 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1574 {
1575 if (pme_poll_reset && dev->pme_poll)
1576 dev->pme_poll = false;
1577
1578 if (pci_check_pme_status(dev)) {
1579 pci_wakeup_event(dev);
1580 pm_request_resume(&dev->dev);
1581 }
1582 return 0;
1583 }
1584
1585 /**
1586 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1587 * @bus: Top bus of the subtree to walk.
1588 */
1589 void pci_pme_wakeup_bus(struct pci_bus *bus)
1590 {
1591 if (bus)
1592 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1593 }
1594
1595
1596 /**
1597 * pci_pme_capable - check the capability of PCI device to generate PME#
1598 * @dev: PCI device to handle.
1599 * @state: PCI state from which device will issue PME#.
1600 */
1601 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1602 {
1603 if (!dev->pm_cap)
1604 return false;
1605
1606 return !!(dev->pme_support & (1 << state));
1607 }
1608
1609 static void pci_pme_list_scan(struct work_struct *work)
1610 {
1611 struct pci_pme_device *pme_dev, *n;
1612
1613 mutex_lock(&pci_pme_list_mutex);
1614 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1615 if (pme_dev->dev->pme_poll) {
1616 struct pci_dev *bridge;
1617
1618 bridge = pme_dev->dev->bus->self;
1619 /*
1620 * If bridge is in low power state, the
1621 * configuration space of subordinate devices
1622 * may be not accessible
1623 */
1624 if (bridge && bridge->current_state != PCI_D0)
1625 continue;
1626 pci_pme_wakeup(pme_dev->dev, NULL);
1627 } else {
1628 list_del(&pme_dev->list);
1629 kfree(pme_dev);
1630 }
1631 }
1632 if (!list_empty(&pci_pme_list))
1633 schedule_delayed_work(&pci_pme_work,
1634 msecs_to_jiffies(PME_TIMEOUT));
1635 mutex_unlock(&pci_pme_list_mutex);
1636 }
1637
1638 /**
1639 * pci_pme_active - enable or disable PCI device's PME# function
1640 * @dev: PCI device to handle.
1641 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1642 *
1643 * The caller must verify that the device is capable of generating PME# before
1644 * calling this function with @enable equal to 'true'.
1645 */
1646 void pci_pme_active(struct pci_dev *dev, bool enable)
1647 {
1648 u16 pmcsr;
1649
1650 if (!dev->pme_support)
1651 return;
1652
1653 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1654 /* Clear PME_Status by writing 1 to it and enable PME# */
1655 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1656 if (!enable)
1657 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1658
1659 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1660
1661 /*
1662 * PCI (as opposed to PCIe) PME requires that the device have
1663 * its PME# line hooked up correctly. Not all hardware vendors
1664 * do this, so the PME never gets delivered and the device
1665 * remains asleep. The easiest way around this is to
1666 * periodically walk the list of suspended devices and check
1667 * whether any have their PME flag set. The assumption is that
1668 * we'll wake up often enough anyway that this won't be a huge
1669 * hit, and the power savings from the devices will still be a
1670 * win.
1671 *
1672 * Although PCIe uses in-band PME message instead of PME# line
1673 * to report PME, PME does not work for some PCIe devices in
1674 * reality. For example, there are devices that set their PME
1675 * status bits, but don't really bother to send a PME message;
1676 * there are PCI Express Root Ports that don't bother to
1677 * trigger interrupts when they receive PME messages from the
1678 * devices below. So PME poll is used for PCIe devices too.
1679 */
1680
1681 if (dev->pme_poll) {
1682 struct pci_pme_device *pme_dev;
1683 if (enable) {
1684 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1685 GFP_KERNEL);
1686 if (!pme_dev) {
1687 dev_warn(&dev->dev, "can't enable PME#\n");
1688 return;
1689 }
1690 pme_dev->dev = dev;
1691 mutex_lock(&pci_pme_list_mutex);
1692 list_add(&pme_dev->list, &pci_pme_list);
1693 if (list_is_singular(&pci_pme_list))
1694 schedule_delayed_work(&pci_pme_work,
1695 msecs_to_jiffies(PME_TIMEOUT));
1696 mutex_unlock(&pci_pme_list_mutex);
1697 } else {
1698 mutex_lock(&pci_pme_list_mutex);
1699 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1700 if (pme_dev->dev == dev) {
1701 list_del(&pme_dev->list);
1702 kfree(pme_dev);
1703 break;
1704 }
1705 }
1706 mutex_unlock(&pci_pme_list_mutex);
1707 }
1708 }
1709
1710 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1711 }
1712
1713 /**
1714 * __pci_enable_wake - enable PCI device as wakeup event source
1715 * @dev: PCI device affected
1716 * @state: PCI state from which device will issue wakeup events
1717 * @runtime: True if the events are to be generated at run time
1718 * @enable: True to enable event generation; false to disable
1719 *
1720 * This enables the device as a wakeup event source, or disables it.
1721 * When such events involves platform-specific hooks, those hooks are
1722 * called automatically by this routine.
1723 *
1724 * Devices with legacy power management (no standard PCI PM capabilities)
1725 * always require such platform hooks.
1726 *
1727 * RETURN VALUE:
1728 * 0 is returned on success
1729 * -EINVAL is returned if device is not supposed to wake up the system
1730 * Error code depending on the platform is returned if both the platform and
1731 * the native mechanism fail to enable the generation of wake-up events
1732 */
1733 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1734 bool runtime, bool enable)
1735 {
1736 int ret = 0;
1737
1738 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1739 return -EINVAL;
1740
1741 /* Don't do the same thing twice in a row for one device. */
1742 if (!!enable == !!dev->wakeup_prepared)
1743 return 0;
1744
1745 /*
1746 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1747 * Anderson we should be doing PME# wake enable followed by ACPI wake
1748 * enable. To disable wake-up we call the platform first, for symmetry.
1749 */
1750
1751 if (enable) {
1752 int error;
1753
1754 if (pci_pme_capable(dev, state))
1755 pci_pme_active(dev, true);
1756 else
1757 ret = 1;
1758 error = runtime ? platform_pci_run_wake(dev, true) :
1759 platform_pci_sleep_wake(dev, true);
1760 if (ret)
1761 ret = error;
1762 if (!ret)
1763 dev->wakeup_prepared = true;
1764 } else {
1765 if (runtime)
1766 platform_pci_run_wake(dev, false);
1767 else
1768 platform_pci_sleep_wake(dev, false);
1769 pci_pme_active(dev, false);
1770 dev->wakeup_prepared = false;
1771 }
1772
1773 return ret;
1774 }
1775 EXPORT_SYMBOL(__pci_enable_wake);
1776
1777 /**
1778 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1779 * @dev: PCI device to prepare
1780 * @enable: True to enable wake-up event generation; false to disable
1781 *
1782 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1783 * and this function allows them to set that up cleanly - pci_enable_wake()
1784 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1785 * ordering constraints.
1786 *
1787 * This function only returns error code if the device is not capable of
1788 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1789 * enable wake-up power for it.
1790 */
1791 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1792 {
1793 return pci_pme_capable(dev, PCI_D3cold) ?
1794 pci_enable_wake(dev, PCI_D3cold, enable) :
1795 pci_enable_wake(dev, PCI_D3hot, enable);
1796 }
1797
1798 /**
1799 * pci_target_state - find an appropriate low power state for a given PCI dev
1800 * @dev: PCI device
1801 *
1802 * Use underlying platform code to find a supported low power state for @dev.
1803 * If the platform can't manage @dev, return the deepest state from which it
1804 * can generate wake events, based on any available PME info.
1805 */
1806 static pci_power_t pci_target_state(struct pci_dev *dev)
1807 {
1808 pci_power_t target_state = PCI_D3hot;
1809
1810 if (platform_pci_power_manageable(dev)) {
1811 /*
1812 * Call the platform to choose the target state of the device
1813 * and enable wake-up from this state if supported.
1814 */
1815 pci_power_t state = platform_pci_choose_state(dev);
1816
1817 switch (state) {
1818 case PCI_POWER_ERROR:
1819 case PCI_UNKNOWN:
1820 break;
1821 case PCI_D1:
1822 case PCI_D2:
1823 if (pci_no_d1d2(dev))
1824 break;
1825 default:
1826 target_state = state;
1827 }
1828 } else if (!dev->pm_cap) {
1829 target_state = PCI_D0;
1830 } else if (device_may_wakeup(&dev->dev)) {
1831 /*
1832 * Find the deepest state from which the device can generate
1833 * wake-up events, make it the target state and enable device
1834 * to generate PME#.
1835 */
1836 if (dev->pme_support) {
1837 while (target_state
1838 && !(dev->pme_support & (1 << target_state)))
1839 target_state--;
1840 }
1841 }
1842
1843 return target_state;
1844 }
1845
1846 /**
1847 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1848 * @dev: Device to handle.
1849 *
1850 * Choose the power state appropriate for the device depending on whether
1851 * it can wake up the system and/or is power manageable by the platform
1852 * (PCI_D3hot is the default) and put the device into that state.
1853 */
1854 int pci_prepare_to_sleep(struct pci_dev *dev)
1855 {
1856 pci_power_t target_state = pci_target_state(dev);
1857 int error;
1858
1859 if (target_state == PCI_POWER_ERROR)
1860 return -EIO;
1861
1862 /* D3cold during system suspend/hibernate is not supported */
1863 if (target_state > PCI_D3hot)
1864 target_state = PCI_D3hot;
1865
1866 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1867
1868 error = pci_set_power_state(dev, target_state);
1869
1870 if (error)
1871 pci_enable_wake(dev, target_state, false);
1872
1873 return error;
1874 }
1875
1876 /**
1877 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1878 * @dev: Device to handle.
1879 *
1880 * Disable device's system wake-up capability and put it into D0.
1881 */
1882 int pci_back_from_sleep(struct pci_dev *dev)
1883 {
1884 pci_enable_wake(dev, PCI_D0, false);
1885 return pci_set_power_state(dev, PCI_D0);
1886 }
1887
1888 /**
1889 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1890 * @dev: PCI device being suspended.
1891 *
1892 * Prepare @dev to generate wake-up events at run time and put it into a low
1893 * power state.
1894 */
1895 int pci_finish_runtime_suspend(struct pci_dev *dev)
1896 {
1897 pci_power_t target_state = pci_target_state(dev);
1898 int error;
1899
1900 if (target_state == PCI_POWER_ERROR)
1901 return -EIO;
1902
1903 dev->runtime_d3cold = target_state == PCI_D3cold;
1904
1905 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1906
1907 error = pci_set_power_state(dev, target_state);
1908
1909 if (error) {
1910 __pci_enable_wake(dev, target_state, true, false);
1911 dev->runtime_d3cold = false;
1912 }
1913
1914 return error;
1915 }
1916
1917 /**
1918 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1919 * @dev: Device to check.
1920 *
1921 * Return true if the device itself is capable of generating wake-up events
1922 * (through the platform or using the native PCIe PME) or if the device supports
1923 * PME and one of its upstream bridges can generate wake-up events.
1924 */
1925 bool pci_dev_run_wake(struct pci_dev *dev)
1926 {
1927 struct pci_bus *bus = dev->bus;
1928
1929 if (device_run_wake(&dev->dev))
1930 return true;
1931
1932 if (!dev->pme_support)
1933 return false;
1934
1935 while (bus->parent) {
1936 struct pci_dev *bridge = bus->self;
1937
1938 if (device_run_wake(&bridge->dev))
1939 return true;
1940
1941 bus = bus->parent;
1942 }
1943
1944 /* We have reached the root bus. */
1945 if (bus->bridge)
1946 return device_run_wake(bus->bridge);
1947
1948 return false;
1949 }
1950 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1951
1952 void pci_config_pm_runtime_get(struct pci_dev *pdev)
1953 {
1954 struct device *dev = &pdev->dev;
1955 struct device *parent = dev->parent;
1956
1957 if (parent)
1958 pm_runtime_get_sync(parent);
1959 pm_runtime_get_noresume(dev);
1960 /*
1961 * pdev->current_state is set to PCI_D3cold during suspending,
1962 * so wait until suspending completes
1963 */
1964 pm_runtime_barrier(dev);
1965 /*
1966 * Only need to resume devices in D3cold, because config
1967 * registers are still accessible for devices suspended but
1968 * not in D3cold.
1969 */
1970 if (pdev->current_state == PCI_D3cold)
1971 pm_runtime_resume(dev);
1972 }
1973
1974 void pci_config_pm_runtime_put(struct pci_dev *pdev)
1975 {
1976 struct device *dev = &pdev->dev;
1977 struct device *parent = dev->parent;
1978
1979 pm_runtime_put(dev);
1980 if (parent)
1981 pm_runtime_put_sync(parent);
1982 }
1983
1984 /**
1985 * pci_pm_init - Initialize PM functions of given PCI device
1986 * @dev: PCI device to handle.
1987 */
1988 void pci_pm_init(struct pci_dev *dev)
1989 {
1990 int pm;
1991 u16 pmc;
1992
1993 pm_runtime_forbid(&dev->dev);
1994 pm_runtime_set_active(&dev->dev);
1995 pm_runtime_enable(&dev->dev);
1996 device_enable_async_suspend(&dev->dev);
1997 dev->wakeup_prepared = false;
1998
1999 dev->pm_cap = 0;
2000 dev->pme_support = 0;
2001
2002 /* find PCI PM capability in list */
2003 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2004 if (!pm)
2005 return;
2006 /* Check device's ability to generate PME# */
2007 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2008
2009 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2010 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2011 pmc & PCI_PM_CAP_VER_MASK);
2012 return;
2013 }
2014
2015 dev->pm_cap = pm;
2016 dev->d3_delay = PCI_PM_D3_WAIT;
2017 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2018 dev->d3cold_allowed = true;
2019
2020 dev->d1_support = false;
2021 dev->d2_support = false;
2022 if (!pci_no_d1d2(dev)) {
2023 if (pmc & PCI_PM_CAP_D1)
2024 dev->d1_support = true;
2025 if (pmc & PCI_PM_CAP_D2)
2026 dev->d2_support = true;
2027
2028 if (dev->d1_support || dev->d2_support)
2029 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2030 dev->d1_support ? " D1" : "",
2031 dev->d2_support ? " D2" : "");
2032 }
2033
2034 pmc &= PCI_PM_CAP_PME_MASK;
2035 if (pmc) {
2036 dev_printk(KERN_DEBUG, &dev->dev,
2037 "PME# supported from%s%s%s%s%s\n",
2038 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2039 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2040 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2041 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2042 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2043 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2044 dev->pme_poll = true;
2045 /*
2046 * Make device's PM flags reflect the wake-up capability, but
2047 * let the user space enable it to wake up the system as needed.
2048 */
2049 device_set_wakeup_capable(&dev->dev, true);
2050 /* Disable the PME# generation functionality */
2051 pci_pme_active(dev, false);
2052 }
2053 }
2054
2055 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2056 struct pci_cap_saved_state *new_cap)
2057 {
2058 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2059 }
2060
2061 /**
2062 * _pci_add_cap_save_buffer - allocate buffer for saving given
2063 * capability registers
2064 * @dev: the PCI device
2065 * @cap: the capability to allocate the buffer for
2066 * @extended: Standard or Extended capability ID
2067 * @size: requested size of the buffer
2068 */
2069 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2070 bool extended, unsigned int size)
2071 {
2072 int pos;
2073 struct pci_cap_saved_state *save_state;
2074
2075 if (extended)
2076 pos = pci_find_ext_capability(dev, cap);
2077 else
2078 pos = pci_find_capability(dev, cap);
2079
2080 if (pos <= 0)
2081 return 0;
2082
2083 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2084 if (!save_state)
2085 return -ENOMEM;
2086
2087 save_state->cap.cap_nr = cap;
2088 save_state->cap.cap_extended = extended;
2089 save_state->cap.size = size;
2090 pci_add_saved_cap(dev, save_state);
2091
2092 return 0;
2093 }
2094
2095 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2096 {
2097 return _pci_add_cap_save_buffer(dev, cap, false, size);
2098 }
2099
2100 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2101 {
2102 return _pci_add_cap_save_buffer(dev, cap, true, size);
2103 }
2104
2105 /**
2106 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2107 * @dev: the PCI device
2108 */
2109 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2110 {
2111 int error;
2112
2113 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2114 PCI_EXP_SAVE_REGS * sizeof(u16));
2115 if (error)
2116 dev_err(&dev->dev,
2117 "unable to preallocate PCI Express save buffer\n");
2118
2119 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2120 if (error)
2121 dev_err(&dev->dev,
2122 "unable to preallocate PCI-X save buffer\n");
2123
2124 pci_allocate_vc_save_buffers(dev);
2125 }
2126
2127 void pci_free_cap_save_buffers(struct pci_dev *dev)
2128 {
2129 struct pci_cap_saved_state *tmp;
2130 struct hlist_node *n;
2131
2132 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2133 kfree(tmp);
2134 }
2135
2136 /**
2137 * pci_configure_ari - enable or disable ARI forwarding
2138 * @dev: the PCI device
2139 *
2140 * If @dev and its upstream bridge both support ARI, enable ARI in the
2141 * bridge. Otherwise, disable ARI in the bridge.
2142 */
2143 void pci_configure_ari(struct pci_dev *dev)
2144 {
2145 u32 cap;
2146 struct pci_dev *bridge;
2147
2148 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2149 return;
2150
2151 bridge = dev->bus->self;
2152 if (!bridge)
2153 return;
2154
2155 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2156 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2157 return;
2158
2159 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2160 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2161 PCI_EXP_DEVCTL2_ARI);
2162 bridge->ari_enabled = 1;
2163 } else {
2164 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2165 PCI_EXP_DEVCTL2_ARI);
2166 bridge->ari_enabled = 0;
2167 }
2168 }
2169
2170 static int pci_acs_enable;
2171
2172 /**
2173 * pci_request_acs - ask for ACS to be enabled if supported
2174 */
2175 void pci_request_acs(void)
2176 {
2177 pci_acs_enable = 1;
2178 }
2179
2180 /**
2181 * pci_enable_acs - enable ACS if hardware support it
2182 * @dev: the PCI device
2183 */
2184 void pci_enable_acs(struct pci_dev *dev)
2185 {
2186 int pos;
2187 u16 cap;
2188 u16 ctrl;
2189
2190 if (!pci_acs_enable)
2191 return;
2192
2193 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2194 if (!pos)
2195 return;
2196
2197 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2198 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2199
2200 /* Source Validation */
2201 ctrl |= (cap & PCI_ACS_SV);
2202
2203 /* P2P Request Redirect */
2204 ctrl |= (cap & PCI_ACS_RR);
2205
2206 /* P2P Completion Redirect */
2207 ctrl |= (cap & PCI_ACS_CR);
2208
2209 /* Upstream Forwarding */
2210 ctrl |= (cap & PCI_ACS_UF);
2211
2212 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2213 }
2214
2215 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2216 {
2217 int pos;
2218 u16 cap, ctrl;
2219
2220 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2221 if (!pos)
2222 return false;
2223
2224 /*
2225 * Except for egress control, capabilities are either required
2226 * or only required if controllable. Features missing from the
2227 * capability field can therefore be assumed as hard-wired enabled.
2228 */
2229 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2230 acs_flags &= (cap | PCI_ACS_EC);
2231
2232 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2233 return (ctrl & acs_flags) == acs_flags;
2234 }
2235
2236 /**
2237 * pci_acs_enabled - test ACS against required flags for a given device
2238 * @pdev: device to test
2239 * @acs_flags: required PCI ACS flags
2240 *
2241 * Return true if the device supports the provided flags. Automatically
2242 * filters out flags that are not implemented on multifunction devices.
2243 *
2244 * Note that this interface checks the effective ACS capabilities of the
2245 * device rather than the actual capabilities. For instance, most single
2246 * function endpoints are not required to support ACS because they have no
2247 * opportunity for peer-to-peer access. We therefore return 'true'
2248 * regardless of whether the device exposes an ACS capability. This makes
2249 * it much easier for callers of this function to ignore the actual type
2250 * or topology of the device when testing ACS support.
2251 */
2252 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2253 {
2254 int ret;
2255
2256 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2257 if (ret >= 0)
2258 return ret > 0;
2259
2260 /*
2261 * Conventional PCI and PCI-X devices never support ACS, either
2262 * effectively or actually. The shared bus topology implies that
2263 * any device on the bus can receive or snoop DMA.
2264 */
2265 if (!pci_is_pcie(pdev))
2266 return false;
2267
2268 switch (pci_pcie_type(pdev)) {
2269 /*
2270 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2271 * but since their primary interface is PCI/X, we conservatively
2272 * handle them as we would a non-PCIe device.
2273 */
2274 case PCI_EXP_TYPE_PCIE_BRIDGE:
2275 /*
2276 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2277 * applicable... must never implement an ACS Extended Capability...".
2278 * This seems arbitrary, but we take a conservative interpretation
2279 * of this statement.
2280 */
2281 case PCI_EXP_TYPE_PCI_BRIDGE:
2282 case PCI_EXP_TYPE_RC_EC:
2283 return false;
2284 /*
2285 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2286 * implement ACS in order to indicate their peer-to-peer capabilities,
2287 * regardless of whether they are single- or multi-function devices.
2288 */
2289 case PCI_EXP_TYPE_DOWNSTREAM:
2290 case PCI_EXP_TYPE_ROOT_PORT:
2291 return pci_acs_flags_enabled(pdev, acs_flags);
2292 /*
2293 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2294 * implemented by the remaining PCIe types to indicate peer-to-peer
2295 * capabilities, but only when they are part of a multifunction
2296 * device. The footnote for section 6.12 indicates the specific
2297 * PCIe types included here.
2298 */
2299 case PCI_EXP_TYPE_ENDPOINT:
2300 case PCI_EXP_TYPE_UPSTREAM:
2301 case PCI_EXP_TYPE_LEG_END:
2302 case PCI_EXP_TYPE_RC_END:
2303 if (!pdev->multifunction)
2304 break;
2305
2306 return pci_acs_flags_enabled(pdev, acs_flags);
2307 }
2308
2309 /*
2310 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2311 * to single function devices with the exception of downstream ports.
2312 */
2313 return true;
2314 }
2315
2316 /**
2317 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2318 * @start: starting downstream device
2319 * @end: ending upstream device or NULL to search to the root bus
2320 * @acs_flags: required flags
2321 *
2322 * Walk up a device tree from start to end testing PCI ACS support. If
2323 * any step along the way does not support the required flags, return false.
2324 */
2325 bool pci_acs_path_enabled(struct pci_dev *start,
2326 struct pci_dev *end, u16 acs_flags)
2327 {
2328 struct pci_dev *pdev, *parent = start;
2329
2330 do {
2331 pdev = parent;
2332
2333 if (!pci_acs_enabled(pdev, acs_flags))
2334 return false;
2335
2336 if (pci_is_root_bus(pdev->bus))
2337 return (end == NULL);
2338
2339 parent = pdev->bus->self;
2340 } while (pdev != end);
2341
2342 return true;
2343 }
2344
2345 /**
2346 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2347 * @dev: the PCI device
2348 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2349 *
2350 * Perform INTx swizzling for a device behind one level of bridge. This is
2351 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2352 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2353 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2354 * the PCI Express Base Specification, Revision 2.1)
2355 */
2356 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2357 {
2358 int slot;
2359
2360 if (pci_ari_enabled(dev->bus))
2361 slot = 0;
2362 else
2363 slot = PCI_SLOT(dev->devfn);
2364
2365 return (((pin - 1) + slot) % 4) + 1;
2366 }
2367
2368 int
2369 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2370 {
2371 u8 pin;
2372
2373 pin = dev->pin;
2374 if (!pin)
2375 return -1;
2376
2377 while (!pci_is_root_bus(dev->bus)) {
2378 pin = pci_swizzle_interrupt_pin(dev, pin);
2379 dev = dev->bus->self;
2380 }
2381 *bridge = dev;
2382 return pin;
2383 }
2384
2385 /**
2386 * pci_common_swizzle - swizzle INTx all the way to root bridge
2387 * @dev: the PCI device
2388 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2389 *
2390 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2391 * bridges all the way up to a PCI root bus.
2392 */
2393 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2394 {
2395 u8 pin = *pinp;
2396
2397 while (!pci_is_root_bus(dev->bus)) {
2398 pin = pci_swizzle_interrupt_pin(dev, pin);
2399 dev = dev->bus->self;
2400 }
2401 *pinp = pin;
2402 return PCI_SLOT(dev->devfn);
2403 }
2404
2405 /**
2406 * pci_release_region - Release a PCI bar
2407 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2408 * @bar: BAR to release
2409 *
2410 * Releases the PCI I/O and memory resources previously reserved by a
2411 * successful call to pci_request_region. Call this function only
2412 * after all use of the PCI regions has ceased.
2413 */
2414 void pci_release_region(struct pci_dev *pdev, int bar)
2415 {
2416 struct pci_devres *dr;
2417
2418 if (pci_resource_len(pdev, bar) == 0)
2419 return;
2420 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2421 release_region(pci_resource_start(pdev, bar),
2422 pci_resource_len(pdev, bar));
2423 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2424 release_mem_region(pci_resource_start(pdev, bar),
2425 pci_resource_len(pdev, bar));
2426
2427 dr = find_pci_dr(pdev);
2428 if (dr)
2429 dr->region_mask &= ~(1 << bar);
2430 }
2431
2432 /**
2433 * __pci_request_region - Reserved PCI I/O and memory resource
2434 * @pdev: PCI device whose resources are to be reserved
2435 * @bar: BAR to be reserved
2436 * @res_name: Name to be associated with resource.
2437 * @exclusive: whether the region access is exclusive or not
2438 *
2439 * Mark the PCI region associated with PCI device @pdev BR @bar as
2440 * being reserved by owner @res_name. Do not access any
2441 * address inside the PCI regions unless this call returns
2442 * successfully.
2443 *
2444 * If @exclusive is set, then the region is marked so that userspace
2445 * is explicitly not allowed to map the resource via /dev/mem or
2446 * sysfs MMIO access.
2447 *
2448 * Returns 0 on success, or %EBUSY on error. A warning
2449 * message is also printed on failure.
2450 */
2451 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2452 int exclusive)
2453 {
2454 struct pci_devres *dr;
2455
2456 if (pci_resource_len(pdev, bar) == 0)
2457 return 0;
2458
2459 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2460 if (!request_region(pci_resource_start(pdev, bar),
2461 pci_resource_len(pdev, bar), res_name))
2462 goto err_out;
2463 }
2464 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2465 if (!__request_mem_region(pci_resource_start(pdev, bar),
2466 pci_resource_len(pdev, bar), res_name,
2467 exclusive))
2468 goto err_out;
2469 }
2470
2471 dr = find_pci_dr(pdev);
2472 if (dr)
2473 dr->region_mask |= 1 << bar;
2474
2475 return 0;
2476
2477 err_out:
2478 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2479 &pdev->resource[bar]);
2480 return -EBUSY;
2481 }
2482
2483 /**
2484 * pci_request_region - Reserve PCI I/O and memory resource
2485 * @pdev: PCI device whose resources are to be reserved
2486 * @bar: BAR to be reserved
2487 * @res_name: Name to be associated with resource
2488 *
2489 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2490 * being reserved by owner @res_name. Do not access any
2491 * address inside the PCI regions unless this call returns
2492 * successfully.
2493 *
2494 * Returns 0 on success, or %EBUSY on error. A warning
2495 * message is also printed on failure.
2496 */
2497 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2498 {
2499 return __pci_request_region(pdev, bar, res_name, 0);
2500 }
2501
2502 /**
2503 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2504 * @pdev: PCI device whose resources are to be reserved
2505 * @bar: BAR to be reserved
2506 * @res_name: Name to be associated with resource.
2507 *
2508 * Mark the PCI region associated with PCI device @pdev BR @bar as
2509 * being reserved by owner @res_name. Do not access any
2510 * address inside the PCI regions unless this call returns
2511 * successfully.
2512 *
2513 * Returns 0 on success, or %EBUSY on error. A warning
2514 * message is also printed on failure.
2515 *
2516 * The key difference that _exclusive makes it that userspace is
2517 * explicitly not allowed to map the resource via /dev/mem or
2518 * sysfs.
2519 */
2520 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2521 {
2522 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2523 }
2524 /**
2525 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2526 * @pdev: PCI device whose resources were previously reserved
2527 * @bars: Bitmask of BARs to be released
2528 *
2529 * Release selected PCI I/O and memory resources previously reserved.
2530 * Call this function only after all use of the PCI regions has ceased.
2531 */
2532 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2533 {
2534 int i;
2535
2536 for (i = 0; i < 6; i++)
2537 if (bars & (1 << i))
2538 pci_release_region(pdev, i);
2539 }
2540
2541 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2542 const char *res_name, int excl)
2543 {
2544 int i;
2545
2546 for (i = 0; i < 6; i++)
2547 if (bars & (1 << i))
2548 if (__pci_request_region(pdev, i, res_name, excl))
2549 goto err_out;
2550 return 0;
2551
2552 err_out:
2553 while(--i >= 0)
2554 if (bars & (1 << i))
2555 pci_release_region(pdev, i);
2556
2557 return -EBUSY;
2558 }
2559
2560
2561 /**
2562 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2563 * @pdev: PCI device whose resources are to be reserved
2564 * @bars: Bitmask of BARs to be requested
2565 * @res_name: Name to be associated with resource
2566 */
2567 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2568 const char *res_name)
2569 {
2570 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2571 }
2572
2573 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2574 int bars, const char *res_name)
2575 {
2576 return __pci_request_selected_regions(pdev, bars, res_name,
2577 IORESOURCE_EXCLUSIVE);
2578 }
2579
2580 /**
2581 * pci_release_regions - Release reserved PCI I/O and memory resources
2582 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2583 *
2584 * Releases all PCI I/O and memory resources previously reserved by a
2585 * successful call to pci_request_regions. Call this function only
2586 * after all use of the PCI regions has ceased.
2587 */
2588
2589 void pci_release_regions(struct pci_dev *pdev)
2590 {
2591 pci_release_selected_regions(pdev, (1 << 6) - 1);
2592 }
2593
2594 /**
2595 * pci_request_regions - Reserved PCI I/O and memory resources
2596 * @pdev: PCI device whose resources are to be reserved
2597 * @res_name: Name to be associated with resource.
2598 *
2599 * Mark all PCI regions associated with PCI device @pdev as
2600 * being reserved by owner @res_name. Do not access any
2601 * address inside the PCI regions unless this call returns
2602 * successfully.
2603 *
2604 * Returns 0 on success, or %EBUSY on error. A warning
2605 * message is also printed on failure.
2606 */
2607 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2608 {
2609 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2610 }
2611
2612 /**
2613 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2614 * @pdev: PCI device whose resources are to be reserved
2615 * @res_name: Name to be associated with resource.
2616 *
2617 * Mark all PCI regions associated with PCI device @pdev as
2618 * being reserved by owner @res_name. Do not access any
2619 * address inside the PCI regions unless this call returns
2620 * successfully.
2621 *
2622 * pci_request_regions_exclusive() will mark the region so that
2623 * /dev/mem and the sysfs MMIO access will not be allowed.
2624 *
2625 * Returns 0 on success, or %EBUSY on error. A warning
2626 * message is also printed on failure.
2627 */
2628 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2629 {
2630 return pci_request_selected_regions_exclusive(pdev,
2631 ((1 << 6) - 1), res_name);
2632 }
2633
2634 static void __pci_set_master(struct pci_dev *dev, bool enable)
2635 {
2636 u16 old_cmd, cmd;
2637
2638 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2639 if (enable)
2640 cmd = old_cmd | PCI_COMMAND_MASTER;
2641 else
2642 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2643 if (cmd != old_cmd) {
2644 dev_dbg(&dev->dev, "%s bus mastering\n",
2645 enable ? "enabling" : "disabling");
2646 pci_write_config_word(dev, PCI_COMMAND, cmd);
2647 }
2648 dev->is_busmaster = enable;
2649 }
2650
2651 /**
2652 * pcibios_setup - process "pci=" kernel boot arguments
2653 * @str: string used to pass in "pci=" kernel boot arguments
2654 *
2655 * Process kernel boot arguments. This is the default implementation.
2656 * Architecture specific implementations can override this as necessary.
2657 */
2658 char * __weak __init pcibios_setup(char *str)
2659 {
2660 return str;
2661 }
2662
2663 /**
2664 * pcibios_set_master - enable PCI bus-mastering for device dev
2665 * @dev: the PCI device to enable
2666 *
2667 * Enables PCI bus-mastering for the device. This is the default
2668 * implementation. Architecture specific implementations can override
2669 * this if necessary.
2670 */
2671 void __weak pcibios_set_master(struct pci_dev *dev)
2672 {
2673 u8 lat;
2674
2675 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2676 if (pci_is_pcie(dev))
2677 return;
2678
2679 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2680 if (lat < 16)
2681 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2682 else if (lat > pcibios_max_latency)
2683 lat = pcibios_max_latency;
2684 else
2685 return;
2686
2687 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2688 }
2689
2690 /**
2691 * pci_set_master - enables bus-mastering for device dev
2692 * @dev: the PCI device to enable
2693 *
2694 * Enables bus-mastering on the device and calls pcibios_set_master()
2695 * to do the needed arch specific settings.
2696 */
2697 void pci_set_master(struct pci_dev *dev)
2698 {
2699 __pci_set_master(dev, true);
2700 pcibios_set_master(dev);
2701 }
2702
2703 /**
2704 * pci_clear_master - disables bus-mastering for device dev
2705 * @dev: the PCI device to disable
2706 */
2707 void pci_clear_master(struct pci_dev *dev)
2708 {
2709 __pci_set_master(dev, false);
2710 }
2711
2712 /**
2713 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2714 * @dev: the PCI device for which MWI is to be enabled
2715 *
2716 * Helper function for pci_set_mwi.
2717 * Originally copied from drivers/net/acenic.c.
2718 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2719 *
2720 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2721 */
2722 int pci_set_cacheline_size(struct pci_dev *dev)
2723 {
2724 u8 cacheline_size;
2725
2726 if (!pci_cache_line_size)
2727 return -EINVAL;
2728
2729 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2730 equal to or multiple of the right value. */
2731 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2732 if (cacheline_size >= pci_cache_line_size &&
2733 (cacheline_size % pci_cache_line_size) == 0)
2734 return 0;
2735
2736 /* Write the correct value. */
2737 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2738 /* Read it back. */
2739 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2740 if (cacheline_size == pci_cache_line_size)
2741 return 0;
2742
2743 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2744 "supported\n", pci_cache_line_size << 2);
2745
2746 return -EINVAL;
2747 }
2748 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2749
2750 #ifdef PCI_DISABLE_MWI
2751 int pci_set_mwi(struct pci_dev *dev)
2752 {
2753 return 0;
2754 }
2755
2756 int pci_try_set_mwi(struct pci_dev *dev)
2757 {
2758 return 0;
2759 }
2760
2761 void pci_clear_mwi(struct pci_dev *dev)
2762 {
2763 }
2764
2765 #else
2766
2767 /**
2768 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2769 * @dev: the PCI device for which MWI is enabled
2770 *
2771 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2772 *
2773 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2774 */
2775 int
2776 pci_set_mwi(struct pci_dev *dev)
2777 {
2778 int rc;
2779 u16 cmd;
2780
2781 rc = pci_set_cacheline_size(dev);
2782 if (rc)
2783 return rc;
2784
2785 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2786 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2787 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2788 cmd |= PCI_COMMAND_INVALIDATE;
2789 pci_write_config_word(dev, PCI_COMMAND, cmd);
2790 }
2791
2792 return 0;
2793 }
2794
2795 /**
2796 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2797 * @dev: the PCI device for which MWI is enabled
2798 *
2799 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2800 * Callers are not required to check the return value.
2801 *
2802 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2803 */
2804 int pci_try_set_mwi(struct pci_dev *dev)
2805 {
2806 int rc = pci_set_mwi(dev);
2807 return rc;
2808 }
2809
2810 /**
2811 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2812 * @dev: the PCI device to disable
2813 *
2814 * Disables PCI Memory-Write-Invalidate transaction on the device
2815 */
2816 void
2817 pci_clear_mwi(struct pci_dev *dev)
2818 {
2819 u16 cmd;
2820
2821 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2822 if (cmd & PCI_COMMAND_INVALIDATE) {
2823 cmd &= ~PCI_COMMAND_INVALIDATE;
2824 pci_write_config_word(dev, PCI_COMMAND, cmd);
2825 }
2826 }
2827 #endif /* ! PCI_DISABLE_MWI */
2828
2829 /**
2830 * pci_intx - enables/disables PCI INTx for device dev
2831 * @pdev: the PCI device to operate on
2832 * @enable: boolean: whether to enable or disable PCI INTx
2833 *
2834 * Enables/disables PCI INTx for device dev
2835 */
2836 void
2837 pci_intx(struct pci_dev *pdev, int enable)
2838 {
2839 u16 pci_command, new;
2840
2841 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2842
2843 if (enable) {
2844 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2845 } else {
2846 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2847 }
2848
2849 if (new != pci_command) {
2850 struct pci_devres *dr;
2851
2852 pci_write_config_word(pdev, PCI_COMMAND, new);
2853
2854 dr = find_pci_dr(pdev);
2855 if (dr && !dr->restore_intx) {
2856 dr->restore_intx = 1;
2857 dr->orig_intx = !enable;
2858 }
2859 }
2860 }
2861
2862 /**
2863 * pci_intx_mask_supported - probe for INTx masking support
2864 * @dev: the PCI device to operate on
2865 *
2866 * Check if the device dev support INTx masking via the config space
2867 * command word.
2868 */
2869 bool pci_intx_mask_supported(struct pci_dev *dev)
2870 {
2871 bool mask_supported = false;
2872 u16 orig, new;
2873
2874 if (dev->broken_intx_masking)
2875 return false;
2876
2877 pci_cfg_access_lock(dev);
2878
2879 pci_read_config_word(dev, PCI_COMMAND, &orig);
2880 pci_write_config_word(dev, PCI_COMMAND,
2881 orig ^ PCI_COMMAND_INTX_DISABLE);
2882 pci_read_config_word(dev, PCI_COMMAND, &new);
2883
2884 /*
2885 * There's no way to protect against hardware bugs or detect them
2886 * reliably, but as long as we know what the value should be, let's
2887 * go ahead and check it.
2888 */
2889 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2890 dev_err(&dev->dev, "Command register changed from "
2891 "0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2892 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2893 mask_supported = true;
2894 pci_write_config_word(dev, PCI_COMMAND, orig);
2895 }
2896
2897 pci_cfg_access_unlock(dev);
2898 return mask_supported;
2899 }
2900 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2901
2902 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2903 {
2904 struct pci_bus *bus = dev->bus;
2905 bool mask_updated = true;
2906 u32 cmd_status_dword;
2907 u16 origcmd, newcmd;
2908 unsigned long flags;
2909 bool irq_pending;
2910
2911 /*
2912 * We do a single dword read to retrieve both command and status.
2913 * Document assumptions that make this possible.
2914 */
2915 BUILD_BUG_ON(PCI_COMMAND % 4);
2916 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
2917
2918 raw_spin_lock_irqsave(&pci_lock, flags);
2919
2920 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
2921
2922 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
2923
2924 /*
2925 * Check interrupt status register to see whether our device
2926 * triggered the interrupt (when masking) or the next IRQ is
2927 * already pending (when unmasking).
2928 */
2929 if (mask != irq_pending) {
2930 mask_updated = false;
2931 goto done;
2932 }
2933
2934 origcmd = cmd_status_dword;
2935 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
2936 if (mask)
2937 newcmd |= PCI_COMMAND_INTX_DISABLE;
2938 if (newcmd != origcmd)
2939 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
2940
2941 done:
2942 raw_spin_unlock_irqrestore(&pci_lock, flags);
2943
2944 return mask_updated;
2945 }
2946
2947 /**
2948 * pci_check_and_mask_intx - mask INTx on pending interrupt
2949 * @dev: the PCI device to operate on
2950 *
2951 * Check if the device dev has its INTx line asserted, mask it and
2952 * return true in that case. False is returned if not interrupt was
2953 * pending.
2954 */
2955 bool pci_check_and_mask_intx(struct pci_dev *dev)
2956 {
2957 return pci_check_and_set_intx_mask(dev, true);
2958 }
2959 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
2960
2961 /**
2962 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
2963 * @dev: the PCI device to operate on
2964 *
2965 * Check if the device dev has its INTx line asserted, unmask it if not
2966 * and return true. False is returned and the mask remains active if
2967 * there was still an interrupt pending.
2968 */
2969 bool pci_check_and_unmask_intx(struct pci_dev *dev)
2970 {
2971 return pci_check_and_set_intx_mask(dev, false);
2972 }
2973 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
2974
2975 /**
2976 * pci_msi_off - disables any MSI or MSI-X capabilities
2977 * @dev: the PCI device to operate on
2978 *
2979 * If you want to use MSI, see pci_enable_msi() and friends.
2980 * This is a lower-level primitive that allows us to disable
2981 * MSI operation at the device level.
2982 */
2983 void pci_msi_off(struct pci_dev *dev)
2984 {
2985 int pos;
2986 u16 control;
2987
2988 /*
2989 * This looks like it could go in msi.c, but we need it even when
2990 * CONFIG_PCI_MSI=n. For the same reason, we can't use
2991 * dev->msi_cap or dev->msix_cap here.
2992 */
2993 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2994 if (pos) {
2995 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2996 control &= ~PCI_MSI_FLAGS_ENABLE;
2997 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2998 }
2999 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3000 if (pos) {
3001 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3002 control &= ~PCI_MSIX_FLAGS_ENABLE;
3003 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3004 }
3005 }
3006 EXPORT_SYMBOL_GPL(pci_msi_off);
3007
3008 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3009 {
3010 return dma_set_max_seg_size(&dev->dev, size);
3011 }
3012 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3013
3014 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3015 {
3016 return dma_set_seg_boundary(&dev->dev, mask);
3017 }
3018 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3019
3020 /**
3021 * pci_wait_for_pending_transaction - waits for pending transaction
3022 * @dev: the PCI device to operate on
3023 *
3024 * Return 0 if transaction is pending 1 otherwise.
3025 */
3026 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3027 {
3028 if (!pci_is_pcie(dev))
3029 return 1;
3030
3031 return pci_wait_for_pending(dev, PCI_EXP_DEVSTA, PCI_EXP_DEVSTA_TRPND);
3032 }
3033 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3034
3035 static int pcie_flr(struct pci_dev *dev, int probe)
3036 {
3037 u32 cap;
3038
3039 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3040 if (!(cap & PCI_EXP_DEVCAP_FLR))
3041 return -ENOTTY;
3042
3043 if (probe)
3044 return 0;
3045
3046 if (!pci_wait_for_pending_transaction(dev))
3047 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
3048
3049 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3050
3051 msleep(100);
3052
3053 return 0;
3054 }
3055
3056 static int pci_af_flr(struct pci_dev *dev, int probe)
3057 {
3058 int pos;
3059 u8 cap;
3060
3061 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3062 if (!pos)
3063 return -ENOTTY;
3064
3065 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3066 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3067 return -ENOTTY;
3068
3069 if (probe)
3070 return 0;
3071
3072 /* Wait for Transaction Pending bit clean */
3073 if (pci_wait_for_pending(dev, PCI_AF_STATUS, PCI_AF_STATUS_TP))
3074 goto clear;
3075
3076 dev_err(&dev->dev, "transaction is not cleared; "
3077 "proceeding with reset anyway\n");
3078
3079 clear:
3080 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3081 msleep(100);
3082
3083 return 0;
3084 }
3085
3086 /**
3087 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3088 * @dev: Device to reset.
3089 * @probe: If set, only check if the device can be reset this way.
3090 *
3091 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3092 * unset, it will be reinitialized internally when going from PCI_D3hot to
3093 * PCI_D0. If that's the case and the device is not in a low-power state
3094 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3095 *
3096 * NOTE: This causes the caller to sleep for twice the device power transition
3097 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3098 * by default (i.e. unless the @dev's d3_delay field has a different value).
3099 * Moreover, only devices in D0 can be reset by this function.
3100 */
3101 static int pci_pm_reset(struct pci_dev *dev, int probe)
3102 {
3103 u16 csr;
3104
3105 if (!dev->pm_cap)
3106 return -ENOTTY;
3107
3108 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3109 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3110 return -ENOTTY;
3111
3112 if (probe)
3113 return 0;
3114
3115 if (dev->current_state != PCI_D0)
3116 return -EINVAL;
3117
3118 csr &= ~PCI_PM_CTRL_STATE_MASK;
3119 csr |= PCI_D3hot;
3120 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3121 pci_dev_d3_sleep(dev);
3122
3123 csr &= ~PCI_PM_CTRL_STATE_MASK;
3124 csr |= PCI_D0;
3125 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3126 pci_dev_d3_sleep(dev);
3127
3128 return 0;
3129 }
3130
3131 /**
3132 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3133 * @dev: Bridge device
3134 *
3135 * Use the bridge control register to assert reset on the secondary bus.
3136 * Devices on the secondary bus are left in power-on state.
3137 */
3138 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3139 {
3140 u16 ctrl;
3141
3142 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3143 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3144 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3145 /*
3146 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3147 * this to 2ms to ensure that we meet the minimum requirement.
3148 */
3149 msleep(2);
3150
3151 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3152 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3153
3154 /*
3155 * Trhfa for conventional PCI is 2^25 clock cycles.
3156 * Assuming a minimum 33MHz clock this results in a 1s
3157 * delay before we can consider subordinate devices to
3158 * be re-initialized. PCIe has some ways to shorten this,
3159 * but we don't make use of them yet.
3160 */
3161 ssleep(1);
3162 }
3163 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3164
3165 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3166 {
3167 struct pci_dev *pdev;
3168
3169 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3170 return -ENOTTY;
3171
3172 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3173 if (pdev != dev)
3174 return -ENOTTY;
3175
3176 if (probe)
3177 return 0;
3178
3179 pci_reset_bridge_secondary_bus(dev->bus->self);
3180
3181 return 0;
3182 }
3183
3184 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3185 {
3186 int rc = -ENOTTY;
3187
3188 if (!hotplug || !try_module_get(hotplug->ops->owner))
3189 return rc;
3190
3191 if (hotplug->ops->reset_slot)
3192 rc = hotplug->ops->reset_slot(hotplug, probe);
3193
3194 module_put(hotplug->ops->owner);
3195
3196 return rc;
3197 }
3198
3199 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3200 {
3201 struct pci_dev *pdev;
3202
3203 if (dev->subordinate || !dev->slot)
3204 return -ENOTTY;
3205
3206 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3207 if (pdev != dev && pdev->slot == dev->slot)
3208 return -ENOTTY;
3209
3210 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3211 }
3212
3213 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3214 {
3215 int rc;
3216
3217 might_sleep();
3218
3219 rc = pci_dev_specific_reset(dev, probe);
3220 if (rc != -ENOTTY)
3221 goto done;
3222
3223 rc = pcie_flr(dev, probe);
3224 if (rc != -ENOTTY)
3225 goto done;
3226
3227 rc = pci_af_flr(dev, probe);
3228 if (rc != -ENOTTY)
3229 goto done;
3230
3231 rc = pci_pm_reset(dev, probe);
3232 if (rc != -ENOTTY)
3233 goto done;
3234
3235 rc = pci_dev_reset_slot_function(dev, probe);
3236 if (rc != -ENOTTY)
3237 goto done;
3238
3239 rc = pci_parent_bus_reset(dev, probe);
3240 done:
3241 return rc;
3242 }
3243
3244 static void pci_dev_lock(struct pci_dev *dev)
3245 {
3246 pci_cfg_access_lock(dev);
3247 /* block PM suspend, driver probe, etc. */
3248 device_lock(&dev->dev);
3249 }
3250
3251 /* Return 1 on successful lock, 0 on contention */
3252 static int pci_dev_trylock(struct pci_dev *dev)
3253 {
3254 if (pci_cfg_access_trylock(dev)) {
3255 if (device_trylock(&dev->dev))
3256 return 1;
3257 pci_cfg_access_unlock(dev);
3258 }
3259
3260 return 0;
3261 }
3262
3263 static void pci_dev_unlock(struct pci_dev *dev)
3264 {
3265 device_unlock(&dev->dev);
3266 pci_cfg_access_unlock(dev);
3267 }
3268
3269 static void pci_dev_save_and_disable(struct pci_dev *dev)
3270 {
3271 /*
3272 * Wake-up device prior to save. PM registers default to D0 after
3273 * reset and a simple register restore doesn't reliably return
3274 * to a non-D0 state anyway.
3275 */
3276 pci_set_power_state(dev, PCI_D0);
3277
3278 pci_save_state(dev);
3279 /*
3280 * Disable the device by clearing the Command register, except for
3281 * INTx-disable which is set. This not only disables MMIO and I/O port
3282 * BARs, but also prevents the device from being Bus Master, preventing
3283 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
3284 * compliant devices, INTx-disable prevents legacy interrupts.
3285 */
3286 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3287 }
3288
3289 static void pci_dev_restore(struct pci_dev *dev)
3290 {
3291 pci_restore_state(dev);
3292 }
3293
3294 static int pci_dev_reset(struct pci_dev *dev, int probe)
3295 {
3296 int rc;
3297
3298 if (!probe)
3299 pci_dev_lock(dev);
3300
3301 rc = __pci_dev_reset(dev, probe);
3302
3303 if (!probe)
3304 pci_dev_unlock(dev);
3305
3306 return rc;
3307 }
3308 /**
3309 * __pci_reset_function - reset a PCI device function
3310 * @dev: PCI device to reset
3311 *
3312 * Some devices allow an individual function to be reset without affecting
3313 * other functions in the same device. The PCI device must be responsive
3314 * to PCI config space in order to use this function.
3315 *
3316 * The device function is presumed to be unused when this function is called.
3317 * Resetting the device will make the contents of PCI configuration space
3318 * random, so any caller of this must be prepared to reinitialise the
3319 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3320 * etc.
3321 *
3322 * Returns 0 if the device function was successfully reset or negative if the
3323 * device doesn't support resetting a single function.
3324 */
3325 int __pci_reset_function(struct pci_dev *dev)
3326 {
3327 return pci_dev_reset(dev, 0);
3328 }
3329 EXPORT_SYMBOL_GPL(__pci_reset_function);
3330
3331 /**
3332 * __pci_reset_function_locked - reset a PCI device function while holding
3333 * the @dev mutex lock.
3334 * @dev: PCI device to reset
3335 *
3336 * Some devices allow an individual function to be reset without affecting
3337 * other functions in the same device. The PCI device must be responsive
3338 * to PCI config space in order to use this function.
3339 *
3340 * The device function is presumed to be unused and the caller is holding
3341 * the device mutex lock when this function is called.
3342 * Resetting the device will make the contents of PCI configuration space
3343 * random, so any caller of this must be prepared to reinitialise the
3344 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3345 * etc.
3346 *
3347 * Returns 0 if the device function was successfully reset or negative if the
3348 * device doesn't support resetting a single function.
3349 */
3350 int __pci_reset_function_locked(struct pci_dev *dev)
3351 {
3352 return __pci_dev_reset(dev, 0);
3353 }
3354 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3355
3356 /**
3357 * pci_probe_reset_function - check whether the device can be safely reset
3358 * @dev: PCI device to reset
3359 *
3360 * Some devices allow an individual function to be reset without affecting
3361 * other functions in the same device. The PCI device must be responsive
3362 * to PCI config space in order to use this function.
3363 *
3364 * Returns 0 if the device function can be reset or negative if the
3365 * device doesn't support resetting a single function.
3366 */
3367 int pci_probe_reset_function(struct pci_dev *dev)
3368 {
3369 return pci_dev_reset(dev, 1);
3370 }
3371
3372 /**
3373 * pci_reset_function - quiesce and reset a PCI device function
3374 * @dev: PCI device to reset
3375 *
3376 * Some devices allow an individual function to be reset without affecting
3377 * other functions in the same device. The PCI device must be responsive
3378 * to PCI config space in order to use this function.
3379 *
3380 * This function does not just reset the PCI portion of a device, but
3381 * clears all the state associated with the device. This function differs
3382 * from __pci_reset_function in that it saves and restores device state
3383 * over the reset.
3384 *
3385 * Returns 0 if the device function was successfully reset or negative if the
3386 * device doesn't support resetting a single function.
3387 */
3388 int pci_reset_function(struct pci_dev *dev)
3389 {
3390 int rc;
3391
3392 rc = pci_dev_reset(dev, 1);
3393 if (rc)
3394 return rc;
3395
3396 pci_dev_save_and_disable(dev);
3397
3398 rc = pci_dev_reset(dev, 0);
3399
3400 pci_dev_restore(dev);
3401
3402 return rc;
3403 }
3404 EXPORT_SYMBOL_GPL(pci_reset_function);
3405
3406 /**
3407 * pci_try_reset_function - quiesce and reset a PCI device function
3408 * @dev: PCI device to reset
3409 *
3410 * Same as above, except return -EAGAIN if unable to lock device.
3411 */
3412 int pci_try_reset_function(struct pci_dev *dev)
3413 {
3414 int rc;
3415
3416 rc = pci_dev_reset(dev, 1);
3417 if (rc)
3418 return rc;
3419
3420 pci_dev_save_and_disable(dev);
3421
3422 if (pci_dev_trylock(dev)) {
3423 rc = __pci_dev_reset(dev, 0);
3424 pci_dev_unlock(dev);
3425 } else
3426 rc = -EAGAIN;
3427
3428 pci_dev_restore(dev);
3429
3430 return rc;
3431 }
3432 EXPORT_SYMBOL_GPL(pci_try_reset_function);
3433
3434 /* Lock devices from the top of the tree down */
3435 static void pci_bus_lock(struct pci_bus *bus)
3436 {
3437 struct pci_dev *dev;
3438
3439 list_for_each_entry(dev, &bus->devices, bus_list) {
3440 pci_dev_lock(dev);
3441 if (dev->subordinate)
3442 pci_bus_lock(dev->subordinate);
3443 }
3444 }
3445
3446 /* Unlock devices from the bottom of the tree up */
3447 static void pci_bus_unlock(struct pci_bus *bus)
3448 {
3449 struct pci_dev *dev;
3450
3451 list_for_each_entry(dev, &bus->devices, bus_list) {
3452 if (dev->subordinate)
3453 pci_bus_unlock(dev->subordinate);
3454 pci_dev_unlock(dev);
3455 }
3456 }
3457
3458 /* Return 1 on successful lock, 0 on contention */
3459 static int pci_bus_trylock(struct pci_bus *bus)
3460 {
3461 struct pci_dev *dev;
3462
3463 list_for_each_entry(dev, &bus->devices, bus_list) {
3464 if (!pci_dev_trylock(dev))
3465 goto unlock;
3466 if (dev->subordinate) {
3467 if (!pci_bus_trylock(dev->subordinate)) {
3468 pci_dev_unlock(dev);
3469 goto unlock;
3470 }
3471 }
3472 }
3473 return 1;
3474
3475 unlock:
3476 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3477 if (dev->subordinate)
3478 pci_bus_unlock(dev->subordinate);
3479 pci_dev_unlock(dev);
3480 }
3481 return 0;
3482 }
3483
3484 /* Lock devices from the top of the tree down */
3485 static void pci_slot_lock(struct pci_slot *slot)
3486 {
3487 struct pci_dev *dev;
3488
3489 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3490 if (!dev->slot || dev->slot != slot)
3491 continue;
3492 pci_dev_lock(dev);
3493 if (dev->subordinate)
3494 pci_bus_lock(dev->subordinate);
3495 }
3496 }
3497
3498 /* Unlock devices from the bottom of the tree up */
3499 static void pci_slot_unlock(struct pci_slot *slot)
3500 {
3501 struct pci_dev *dev;
3502
3503 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3504 if (!dev->slot || dev->slot != slot)
3505 continue;
3506 if (dev->subordinate)
3507 pci_bus_unlock(dev->subordinate);
3508 pci_dev_unlock(dev);
3509 }
3510 }
3511
3512 /* Return 1 on successful lock, 0 on contention */
3513 static int pci_slot_trylock(struct pci_slot *slot)
3514 {
3515 struct pci_dev *dev;
3516
3517 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3518 if (!dev->slot || dev->slot != slot)
3519 continue;
3520 if (!pci_dev_trylock(dev))
3521 goto unlock;
3522 if (dev->subordinate) {
3523 if (!pci_bus_trylock(dev->subordinate)) {
3524 pci_dev_unlock(dev);
3525 goto unlock;
3526 }
3527 }
3528 }
3529 return 1;
3530
3531 unlock:
3532 list_for_each_entry_continue_reverse(dev,
3533 &slot->bus->devices, bus_list) {
3534 if (!dev->slot || dev->slot != slot)
3535 continue;
3536 if (dev->subordinate)
3537 pci_bus_unlock(dev->subordinate);
3538 pci_dev_unlock(dev);
3539 }
3540 return 0;
3541 }
3542
3543 /* Save and disable devices from the top of the tree down */
3544 static void pci_bus_save_and_disable(struct pci_bus *bus)
3545 {
3546 struct pci_dev *dev;
3547
3548 list_for_each_entry(dev, &bus->devices, bus_list) {
3549 pci_dev_save_and_disable(dev);
3550 if (dev->subordinate)
3551 pci_bus_save_and_disable(dev->subordinate);
3552 }
3553 }
3554
3555 /*
3556 * Restore devices from top of the tree down - parent bridges need to be
3557 * restored before we can get to subordinate devices.
3558 */
3559 static void pci_bus_restore(struct pci_bus *bus)
3560 {
3561 struct pci_dev *dev;
3562
3563 list_for_each_entry(dev, &bus->devices, bus_list) {
3564 pci_dev_restore(dev);
3565 if (dev->subordinate)
3566 pci_bus_restore(dev->subordinate);
3567 }
3568 }
3569
3570 /* Save and disable devices from the top of the tree down */
3571 static void pci_slot_save_and_disable(struct pci_slot *slot)
3572 {
3573 struct pci_dev *dev;
3574
3575 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3576 if (!dev->slot || dev->slot != slot)
3577 continue;
3578 pci_dev_save_and_disable(dev);
3579 if (dev->subordinate)
3580 pci_bus_save_and_disable(dev->subordinate);
3581 }
3582 }
3583
3584 /*
3585 * Restore devices from top of the tree down - parent bridges need to be
3586 * restored before we can get to subordinate devices.
3587 */
3588 static void pci_slot_restore(struct pci_slot *slot)
3589 {
3590 struct pci_dev *dev;
3591
3592 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3593 if (!dev->slot || dev->slot != slot)
3594 continue;
3595 pci_dev_restore(dev);
3596 if (dev->subordinate)
3597 pci_bus_restore(dev->subordinate);
3598 }
3599 }
3600
3601 static int pci_slot_reset(struct pci_slot *slot, int probe)
3602 {
3603 int rc;
3604
3605 if (!slot)
3606 return -ENOTTY;
3607
3608 if (!probe)
3609 pci_slot_lock(slot);
3610
3611 might_sleep();
3612
3613 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3614
3615 if (!probe)
3616 pci_slot_unlock(slot);
3617
3618 return rc;
3619 }
3620
3621 /**
3622 * pci_probe_reset_slot - probe whether a PCI slot can be reset
3623 * @slot: PCI slot to probe
3624 *
3625 * Return 0 if slot can be reset, negative if a slot reset is not supported.
3626 */
3627 int pci_probe_reset_slot(struct pci_slot *slot)
3628 {
3629 return pci_slot_reset(slot, 1);
3630 }
3631 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3632
3633 /**
3634 * pci_reset_slot - reset a PCI slot
3635 * @slot: PCI slot to reset
3636 *
3637 * A PCI bus may host multiple slots, each slot may support a reset mechanism
3638 * independent of other slots. For instance, some slots may support slot power
3639 * control. In the case of a 1:1 bus to slot architecture, this function may
3640 * wrap the bus reset to avoid spurious slot related events such as hotplug.
3641 * Generally a slot reset should be attempted before a bus reset. All of the
3642 * function of the slot and any subordinate buses behind the slot are reset
3643 * through this function. PCI config space of all devices in the slot and
3644 * behind the slot is saved before and restored after reset.
3645 *
3646 * Return 0 on success, non-zero on error.
3647 */
3648 int pci_reset_slot(struct pci_slot *slot)
3649 {
3650 int rc;
3651
3652 rc = pci_slot_reset(slot, 1);
3653 if (rc)
3654 return rc;
3655
3656 pci_slot_save_and_disable(slot);
3657
3658 rc = pci_slot_reset(slot, 0);
3659
3660 pci_slot_restore(slot);
3661
3662 return rc;
3663 }
3664 EXPORT_SYMBOL_GPL(pci_reset_slot);
3665
3666 /**
3667 * pci_try_reset_slot - Try to reset a PCI slot
3668 * @slot: PCI slot to reset
3669 *
3670 * Same as above except return -EAGAIN if the slot cannot be locked
3671 */
3672 int pci_try_reset_slot(struct pci_slot *slot)
3673 {
3674 int rc;
3675
3676 rc = pci_slot_reset(slot, 1);
3677 if (rc)
3678 return rc;
3679
3680 pci_slot_save_and_disable(slot);
3681
3682 if (pci_slot_trylock(slot)) {
3683 might_sleep();
3684 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
3685 pci_slot_unlock(slot);
3686 } else
3687 rc = -EAGAIN;
3688
3689 pci_slot_restore(slot);
3690
3691 return rc;
3692 }
3693 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
3694
3695 static int pci_bus_reset(struct pci_bus *bus, int probe)
3696 {
3697 if (!bus->self)
3698 return -ENOTTY;
3699
3700 if (probe)
3701 return 0;
3702
3703 pci_bus_lock(bus);
3704
3705 might_sleep();
3706
3707 pci_reset_bridge_secondary_bus(bus->self);
3708
3709 pci_bus_unlock(bus);
3710
3711 return 0;
3712 }
3713
3714 /**
3715 * pci_probe_reset_bus - probe whether a PCI bus can be reset
3716 * @bus: PCI bus to probe
3717 *
3718 * Return 0 if bus can be reset, negative if a bus reset is not supported.
3719 */
3720 int pci_probe_reset_bus(struct pci_bus *bus)
3721 {
3722 return pci_bus_reset(bus, 1);
3723 }
3724 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3725
3726 /**
3727 * pci_reset_bus - reset a PCI bus
3728 * @bus: top level PCI bus to reset
3729 *
3730 * Do a bus reset on the given bus and any subordinate buses, saving
3731 * and restoring state of all devices.
3732 *
3733 * Return 0 on success, non-zero on error.
3734 */
3735 int pci_reset_bus(struct pci_bus *bus)
3736 {
3737 int rc;
3738
3739 rc = pci_bus_reset(bus, 1);
3740 if (rc)
3741 return rc;
3742
3743 pci_bus_save_and_disable(bus);
3744
3745 rc = pci_bus_reset(bus, 0);
3746
3747 pci_bus_restore(bus);
3748
3749 return rc;
3750 }
3751 EXPORT_SYMBOL_GPL(pci_reset_bus);
3752
3753 /**
3754 * pci_try_reset_bus - Try to reset a PCI bus
3755 * @bus: top level PCI bus to reset
3756 *
3757 * Same as above except return -EAGAIN if the bus cannot be locked
3758 */
3759 int pci_try_reset_bus(struct pci_bus *bus)
3760 {
3761 int rc;
3762
3763 rc = pci_bus_reset(bus, 1);
3764 if (rc)
3765 return rc;
3766
3767 pci_bus_save_and_disable(bus);
3768
3769 if (pci_bus_trylock(bus)) {
3770 might_sleep();
3771 pci_reset_bridge_secondary_bus(bus->self);
3772 pci_bus_unlock(bus);
3773 } else
3774 rc = -EAGAIN;
3775
3776 pci_bus_restore(bus);
3777
3778 return rc;
3779 }
3780 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
3781
3782 /**
3783 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3784 * @dev: PCI device to query
3785 *
3786 * Returns mmrbc: maximum designed memory read count in bytes
3787 * or appropriate error value.
3788 */
3789 int pcix_get_max_mmrbc(struct pci_dev *dev)
3790 {
3791 int cap;
3792 u32 stat;
3793
3794 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3795 if (!cap)
3796 return -EINVAL;
3797
3798 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3799 return -EINVAL;
3800
3801 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3802 }
3803 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3804
3805 /**
3806 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3807 * @dev: PCI device to query
3808 *
3809 * Returns mmrbc: maximum memory read count in bytes
3810 * or appropriate error value.
3811 */
3812 int pcix_get_mmrbc(struct pci_dev *dev)
3813 {
3814 int cap;
3815 u16 cmd;
3816
3817 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3818 if (!cap)
3819 return -EINVAL;
3820
3821 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3822 return -EINVAL;
3823
3824 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3825 }
3826 EXPORT_SYMBOL(pcix_get_mmrbc);
3827
3828 /**
3829 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3830 * @dev: PCI device to query
3831 * @mmrbc: maximum memory read count in bytes
3832 * valid values are 512, 1024, 2048, 4096
3833 *
3834 * If possible sets maximum memory read byte count, some bridges have erratas
3835 * that prevent this.
3836 */
3837 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3838 {
3839 int cap;
3840 u32 stat, v, o;
3841 u16 cmd;
3842
3843 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3844 return -EINVAL;
3845
3846 v = ffs(mmrbc) - 10;
3847
3848 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3849 if (!cap)
3850 return -EINVAL;
3851
3852 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3853 return -EINVAL;
3854
3855 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3856 return -E2BIG;
3857
3858 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3859 return -EINVAL;
3860
3861 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3862 if (o != v) {
3863 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3864 return -EIO;
3865
3866 cmd &= ~PCI_X_CMD_MAX_READ;
3867 cmd |= v << 2;
3868 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3869 return -EIO;
3870 }
3871 return 0;
3872 }
3873 EXPORT_SYMBOL(pcix_set_mmrbc);
3874
3875 /**
3876 * pcie_get_readrq - get PCI Express read request size
3877 * @dev: PCI device to query
3878 *
3879 * Returns maximum memory read request in bytes
3880 * or appropriate error value.
3881 */
3882 int pcie_get_readrq(struct pci_dev *dev)
3883 {
3884 u16 ctl;
3885
3886 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3887
3888 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3889 }
3890 EXPORT_SYMBOL(pcie_get_readrq);
3891
3892 /**
3893 * pcie_set_readrq - set PCI Express maximum memory read request
3894 * @dev: PCI device to query
3895 * @rq: maximum memory read count in bytes
3896 * valid values are 128, 256, 512, 1024, 2048, 4096
3897 *
3898 * If possible sets maximum memory read request in bytes
3899 */
3900 int pcie_set_readrq(struct pci_dev *dev, int rq)
3901 {
3902 u16 v;
3903
3904 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3905 return -EINVAL;
3906
3907 /*
3908 * If using the "performance" PCIe config, we clamp the
3909 * read rq size to the max packet size to prevent the
3910 * host bridge generating requests larger than we can
3911 * cope with
3912 */
3913 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3914 int mps = pcie_get_mps(dev);
3915
3916 if (mps < rq)
3917 rq = mps;
3918 }
3919
3920 v = (ffs(rq) - 8) << 12;
3921
3922 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3923 PCI_EXP_DEVCTL_READRQ, v);
3924 }
3925 EXPORT_SYMBOL(pcie_set_readrq);
3926
3927 /**
3928 * pcie_get_mps - get PCI Express maximum payload size
3929 * @dev: PCI device to query
3930 *
3931 * Returns maximum payload size in bytes
3932 */
3933 int pcie_get_mps(struct pci_dev *dev)
3934 {
3935 u16 ctl;
3936
3937 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3938
3939 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3940 }
3941 EXPORT_SYMBOL(pcie_get_mps);
3942
3943 /**
3944 * pcie_set_mps - set PCI Express maximum payload size
3945 * @dev: PCI device to query
3946 * @mps: maximum payload size in bytes
3947 * valid values are 128, 256, 512, 1024, 2048, 4096
3948 *
3949 * If possible sets maximum payload size
3950 */
3951 int pcie_set_mps(struct pci_dev *dev, int mps)
3952 {
3953 u16 v;
3954
3955 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3956 return -EINVAL;
3957
3958 v = ffs(mps) - 8;
3959 if (v > dev->pcie_mpss)
3960 return -EINVAL;
3961 v <<= 5;
3962
3963 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3964 PCI_EXP_DEVCTL_PAYLOAD, v);
3965 }
3966 EXPORT_SYMBOL(pcie_set_mps);
3967
3968 /**
3969 * pcie_get_minimum_link - determine minimum link settings of a PCI device
3970 * @dev: PCI device to query
3971 * @speed: storage for minimum speed
3972 * @width: storage for minimum width
3973 *
3974 * This function will walk up the PCI device chain and determine the minimum
3975 * link width and speed of the device.
3976 */
3977 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
3978 enum pcie_link_width *width)
3979 {
3980 int ret;
3981
3982 *speed = PCI_SPEED_UNKNOWN;
3983 *width = PCIE_LNK_WIDTH_UNKNOWN;
3984
3985 while (dev) {
3986 u16 lnksta;
3987 enum pci_bus_speed next_speed;
3988 enum pcie_link_width next_width;
3989
3990 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
3991 if (ret)
3992 return ret;
3993
3994 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
3995 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
3996 PCI_EXP_LNKSTA_NLW_SHIFT;
3997
3998 if (next_speed < *speed)
3999 *speed = next_speed;
4000
4001 if (next_width < *width)
4002 *width = next_width;
4003
4004 dev = dev->bus->self;
4005 }
4006
4007 return 0;
4008 }
4009 EXPORT_SYMBOL(pcie_get_minimum_link);
4010
4011 /**
4012 * pci_select_bars - Make BAR mask from the type of resource
4013 * @dev: the PCI device for which BAR mask is made
4014 * @flags: resource type mask to be selected
4015 *
4016 * This helper routine makes bar mask from the type of resource.
4017 */
4018 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4019 {
4020 int i, bars = 0;
4021 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4022 if (pci_resource_flags(dev, i) & flags)
4023 bars |= (1 << i);
4024 return bars;
4025 }
4026
4027 /**
4028 * pci_resource_bar - get position of the BAR associated with a resource
4029 * @dev: the PCI device
4030 * @resno: the resource number
4031 * @type: the BAR type to be filled in
4032 *
4033 * Returns BAR position in config space, or 0 if the BAR is invalid.
4034 */
4035 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4036 {
4037 int reg;
4038
4039 if (resno < PCI_ROM_RESOURCE) {
4040 *type = pci_bar_unknown;
4041 return PCI_BASE_ADDRESS_0 + 4 * resno;
4042 } else if (resno == PCI_ROM_RESOURCE) {
4043 *type = pci_bar_mem32;
4044 return dev->rom_base_reg;
4045 } else if (resno < PCI_BRIDGE_RESOURCES) {
4046 /* device specific resource */
4047 reg = pci_iov_resource_bar(dev, resno, type);
4048 if (reg)
4049 return reg;
4050 }
4051
4052 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4053 return 0;
4054 }
4055
4056 /* Some architectures require additional programming to enable VGA */
4057 static arch_set_vga_state_t arch_set_vga_state;
4058
4059 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4060 {
4061 arch_set_vga_state = func; /* NULL disables */
4062 }
4063
4064 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4065 unsigned int command_bits, u32 flags)
4066 {
4067 if (arch_set_vga_state)
4068 return arch_set_vga_state(dev, decode, command_bits,
4069 flags);
4070 return 0;
4071 }
4072
4073 /**
4074 * pci_set_vga_state - set VGA decode state on device and parents if requested
4075 * @dev: the PCI device
4076 * @decode: true = enable decoding, false = disable decoding
4077 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4078 * @flags: traverse ancestors and change bridges
4079 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4080 */
4081 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4082 unsigned int command_bits, u32 flags)
4083 {
4084 struct pci_bus *bus;
4085 struct pci_dev *bridge;
4086 u16 cmd;
4087 int rc;
4088
4089 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4090
4091 /* ARCH specific VGA enables */
4092 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4093 if (rc)
4094 return rc;
4095
4096 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4097 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4098 if (decode == true)
4099 cmd |= command_bits;
4100 else
4101 cmd &= ~command_bits;
4102 pci_write_config_word(dev, PCI_COMMAND, cmd);
4103 }
4104
4105 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4106 return 0;
4107
4108 bus = dev->bus;
4109 while (bus) {
4110 bridge = bus->self;
4111 if (bridge) {
4112 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4113 &cmd);
4114 if (decode == true)
4115 cmd |= PCI_BRIDGE_CTL_VGA;
4116 else
4117 cmd &= ~PCI_BRIDGE_CTL_VGA;
4118 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4119 cmd);
4120 }
4121 bus = bus->parent;
4122 }
4123 return 0;
4124 }
4125
4126 bool pci_device_is_present(struct pci_dev *pdev)
4127 {
4128 u32 v;
4129
4130 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4131 }
4132 EXPORT_SYMBOL_GPL(pci_device_is_present);
4133
4134 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4135 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4136 static DEFINE_SPINLOCK(resource_alignment_lock);
4137
4138 /**
4139 * pci_specified_resource_alignment - get resource alignment specified by user.
4140 * @dev: the PCI device to get
4141 *
4142 * RETURNS: Resource alignment if it is specified.
4143 * Zero if it is not specified.
4144 */
4145 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4146 {
4147 int seg, bus, slot, func, align_order, count;
4148 resource_size_t align = 0;
4149 char *p;
4150
4151 spin_lock(&resource_alignment_lock);
4152 p = resource_alignment_param;
4153 while (*p) {
4154 count = 0;
4155 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4156 p[count] == '@') {
4157 p += count + 1;
4158 } else {
4159 align_order = -1;
4160 }
4161 if (sscanf(p, "%x:%x:%x.%x%n",
4162 &seg, &bus, &slot, &func, &count) != 4) {
4163 seg = 0;
4164 if (sscanf(p, "%x:%x.%x%n",
4165 &bus, &slot, &func, &count) != 3) {
4166 /* Invalid format */
4167 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4168 p);
4169 break;
4170 }
4171 }
4172 p += count;
4173 if (seg == pci_domain_nr(dev->bus) &&
4174 bus == dev->bus->number &&
4175 slot == PCI_SLOT(dev->devfn) &&
4176 func == PCI_FUNC(dev->devfn)) {
4177 if (align_order == -1) {
4178 align = PAGE_SIZE;
4179 } else {
4180 align = 1 << align_order;
4181 }
4182 /* Found */
4183 break;
4184 }
4185 if (*p != ';' && *p != ',') {
4186 /* End of param or invalid format */
4187 break;
4188 }
4189 p++;
4190 }
4191 spin_unlock(&resource_alignment_lock);
4192 return align;
4193 }
4194
4195 /*
4196 * This function disables memory decoding and releases memory resources
4197 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4198 * It also rounds up size to specified alignment.
4199 * Later on, the kernel will assign page-aligned memory resource back
4200 * to the device.
4201 */
4202 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4203 {
4204 int i;
4205 struct resource *r;
4206 resource_size_t align, size;
4207 u16 command;
4208
4209 /* check if specified PCI is target device to reassign */
4210 align = pci_specified_resource_alignment(dev);
4211 if (!align)
4212 return;
4213
4214 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4215 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4216 dev_warn(&dev->dev,
4217 "Can't reassign resources to host bridge.\n");
4218 return;
4219 }
4220
4221 dev_info(&dev->dev,
4222 "Disabling memory decoding and releasing memory resources.\n");
4223 pci_read_config_word(dev, PCI_COMMAND, &command);
4224 command &= ~PCI_COMMAND_MEMORY;
4225 pci_write_config_word(dev, PCI_COMMAND, command);
4226
4227 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4228 r = &dev->resource[i];
4229 if (!(r->flags & IORESOURCE_MEM))
4230 continue;
4231 size = resource_size(r);
4232 if (size < align) {
4233 size = align;
4234 dev_info(&dev->dev,
4235 "Rounding up size of resource #%d to %#llx.\n",
4236 i, (unsigned long long)size);
4237 }
4238 r->end = size - 1;
4239 r->start = 0;
4240 }
4241 /* Need to disable bridge's resource window,
4242 * to enable the kernel to reassign new resource
4243 * window later on.
4244 */
4245 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4246 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4247 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4248 r = &dev->resource[i];
4249 if (!(r->flags & IORESOURCE_MEM))
4250 continue;
4251 r->end = resource_size(r) - 1;
4252 r->start = 0;
4253 }
4254 pci_disable_bridge_window(dev);
4255 }
4256 }
4257
4258 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4259 {
4260 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4261 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4262 spin_lock(&resource_alignment_lock);
4263 strncpy(resource_alignment_param, buf, count);
4264 resource_alignment_param[count] = '\0';
4265 spin_unlock(&resource_alignment_lock);
4266 return count;
4267 }
4268
4269 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4270 {
4271 size_t count;
4272 spin_lock(&resource_alignment_lock);
4273 count = snprintf(buf, size, "%s", resource_alignment_param);
4274 spin_unlock(&resource_alignment_lock);
4275 return count;
4276 }
4277
4278 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4279 {
4280 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4281 }
4282
4283 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4284 const char *buf, size_t count)
4285 {
4286 return pci_set_resource_alignment_param(buf, count);
4287 }
4288
4289 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4290 pci_resource_alignment_store);
4291
4292 static int __init pci_resource_alignment_sysfs_init(void)
4293 {
4294 return bus_create_file(&pci_bus_type,
4295 &bus_attr_resource_alignment);
4296 }
4297
4298 late_initcall(pci_resource_alignment_sysfs_init);
4299
4300 static void pci_no_domains(void)
4301 {
4302 #ifdef CONFIG_PCI_DOMAINS
4303 pci_domains_supported = 0;
4304 #endif
4305 }
4306
4307 /**
4308 * pci_ext_cfg_avail - can we access extended PCI config space?
4309 *
4310 * Returns 1 if we can access PCI extended config space (offsets
4311 * greater than 0xff). This is the default implementation. Architecture
4312 * implementations can override this.
4313 */
4314 int __weak pci_ext_cfg_avail(void)
4315 {
4316 return 1;
4317 }
4318
4319 void __weak pci_fixup_cardbus(struct pci_bus *bus)
4320 {
4321 }
4322 EXPORT_SYMBOL(pci_fixup_cardbus);
4323
4324 static int __init pci_setup(char *str)
4325 {
4326 while (str) {
4327 char *k = strchr(str, ',');
4328 if (k)
4329 *k++ = 0;
4330 if (*str && (str = pcibios_setup(str)) && *str) {
4331 if (!strcmp(str, "nomsi")) {
4332 pci_no_msi();
4333 } else if (!strcmp(str, "noaer")) {
4334 pci_no_aer();
4335 } else if (!strncmp(str, "realloc=", 8)) {
4336 pci_realloc_get_opt(str + 8);
4337 } else if (!strncmp(str, "realloc", 7)) {
4338 pci_realloc_get_opt("on");
4339 } else if (!strcmp(str, "nodomains")) {
4340 pci_no_domains();
4341 } else if (!strncmp(str, "noari", 5)) {
4342 pcie_ari_disabled = true;
4343 } else if (!strncmp(str, "cbiosize=", 9)) {
4344 pci_cardbus_io_size = memparse(str + 9, &str);
4345 } else if (!strncmp(str, "cbmemsize=", 10)) {
4346 pci_cardbus_mem_size = memparse(str + 10, &str);
4347 } else if (!strncmp(str, "resource_alignment=", 19)) {
4348 pci_set_resource_alignment_param(str + 19,
4349 strlen(str + 19));
4350 } else if (!strncmp(str, "ecrc=", 5)) {
4351 pcie_ecrc_get_policy(str + 5);
4352 } else if (!strncmp(str, "hpiosize=", 9)) {
4353 pci_hotplug_io_size = memparse(str + 9, &str);
4354 } else if (!strncmp(str, "hpmemsize=", 10)) {
4355 pci_hotplug_mem_size = memparse(str + 10, &str);
4356 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4357 pcie_bus_config = PCIE_BUS_TUNE_OFF;
4358 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
4359 pcie_bus_config = PCIE_BUS_SAFE;
4360 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
4361 pcie_bus_config = PCIE_BUS_PERFORMANCE;
4362 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4363 pcie_bus_config = PCIE_BUS_PEER2PEER;
4364 } else if (!strncmp(str, "pcie_scan_all", 13)) {
4365 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4366 } else {
4367 printk(KERN_ERR "PCI: Unknown option `%s'\n",
4368 str);
4369 }
4370 }
4371 str = k;
4372 }
4373 return 0;
4374 }
4375 early_param("pci", pci_setup);
4376
4377 EXPORT_SYMBOL(pci_reenable_device);
4378 EXPORT_SYMBOL(pci_enable_device_io);
4379 EXPORT_SYMBOL(pci_enable_device_mem);
4380 EXPORT_SYMBOL(pci_enable_device);
4381 EXPORT_SYMBOL(pcim_enable_device);
4382 EXPORT_SYMBOL(pcim_pin_device);
4383 EXPORT_SYMBOL(pci_disable_device);
4384 EXPORT_SYMBOL(pci_find_capability);
4385 EXPORT_SYMBOL(pci_bus_find_capability);
4386 EXPORT_SYMBOL(pci_release_regions);
4387 EXPORT_SYMBOL(pci_request_regions);
4388 EXPORT_SYMBOL(pci_request_regions_exclusive);
4389 EXPORT_SYMBOL(pci_release_region);
4390 EXPORT_SYMBOL(pci_request_region);
4391 EXPORT_SYMBOL(pci_request_region_exclusive);
4392 EXPORT_SYMBOL(pci_release_selected_regions);
4393 EXPORT_SYMBOL(pci_request_selected_regions);
4394 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4395 EXPORT_SYMBOL(pci_set_master);
4396 EXPORT_SYMBOL(pci_clear_master);
4397 EXPORT_SYMBOL(pci_set_mwi);
4398 EXPORT_SYMBOL(pci_try_set_mwi);
4399 EXPORT_SYMBOL(pci_clear_mwi);
4400 EXPORT_SYMBOL_GPL(pci_intx);
4401 EXPORT_SYMBOL(pci_assign_resource);
4402 EXPORT_SYMBOL(pci_find_parent_resource);
4403 EXPORT_SYMBOL(pci_select_bars);
4404
4405 EXPORT_SYMBOL(pci_set_power_state);
4406 EXPORT_SYMBOL(pci_save_state);
4407 EXPORT_SYMBOL(pci_restore_state);
4408 EXPORT_SYMBOL(pci_pme_capable);
4409 EXPORT_SYMBOL(pci_pme_active);
4410 EXPORT_SYMBOL(pci_wake_from_d3);
4411 EXPORT_SYMBOL(pci_prepare_to_sleep);
4412 EXPORT_SYMBOL(pci_back_from_sleep);
4413 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
This page took 0.126522 seconds and 5 git commands to generate.