Merge branch 'akpm-incoming-2'
[deliverable/linux.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <asm/setup.h>
26 #include "pci.h"
27
28 const char *pci_power_names[] = {
29 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
30 };
31 EXPORT_SYMBOL_GPL(pci_power_names);
32
33 int isa_dma_bridge_buggy;
34 EXPORT_SYMBOL(isa_dma_bridge_buggy);
35
36 int pci_pci_problems;
37 EXPORT_SYMBOL(pci_pci_problems);
38
39 unsigned int pci_pm_d3_delay;
40
41 static void pci_dev_d3_sleep(struct pci_dev *dev)
42 {
43 unsigned int delay = dev->d3_delay;
44
45 if (delay < pci_pm_d3_delay)
46 delay = pci_pm_d3_delay;
47
48 msleep(delay);
49 }
50
51 #ifdef CONFIG_PCI_DOMAINS
52 int pci_domains_supported = 1;
53 #endif
54
55 #define DEFAULT_CARDBUS_IO_SIZE (256)
56 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
57 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
58 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
59 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
60
61 #define DEFAULT_HOTPLUG_IO_SIZE (256)
62 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
63 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
64 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
65 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
66
67 /*
68 * The default CLS is used if arch didn't set CLS explicitly and not
69 * all pci devices agree on the same value. Arch can override either
70 * the dfl or actual value as it sees fit. Don't forget this is
71 * measured in 32-bit words, not bytes.
72 */
73 u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2;
74 u8 pci_cache_line_size;
75
76 /**
77 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
78 * @bus: pointer to PCI bus structure to search
79 *
80 * Given a PCI bus, returns the highest PCI bus number present in the set
81 * including the given PCI bus and its list of child PCI buses.
82 */
83 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
84 {
85 struct list_head *tmp;
86 unsigned char max, n;
87
88 max = bus->subordinate;
89 list_for_each(tmp, &bus->children) {
90 n = pci_bus_max_busnr(pci_bus_b(tmp));
91 if(n > max)
92 max = n;
93 }
94 return max;
95 }
96 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
97
98 #ifdef CONFIG_HAS_IOMEM
99 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
100 {
101 /*
102 * Make sure the BAR is actually a memory resource, not an IO resource
103 */
104 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
105 WARN_ON(1);
106 return NULL;
107 }
108 return ioremap_nocache(pci_resource_start(pdev, bar),
109 pci_resource_len(pdev, bar));
110 }
111 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
112 #endif
113
114 #if 0
115 /**
116 * pci_max_busnr - returns maximum PCI bus number
117 *
118 * Returns the highest PCI bus number present in the system global list of
119 * PCI buses.
120 */
121 unsigned char __devinit
122 pci_max_busnr(void)
123 {
124 struct pci_bus *bus = NULL;
125 unsigned char max, n;
126
127 max = 0;
128 while ((bus = pci_find_next_bus(bus)) != NULL) {
129 n = pci_bus_max_busnr(bus);
130 if(n > max)
131 max = n;
132 }
133 return max;
134 }
135
136 #endif /* 0 */
137
138 #define PCI_FIND_CAP_TTL 48
139
140 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
141 u8 pos, int cap, int *ttl)
142 {
143 u8 id;
144
145 while ((*ttl)--) {
146 pci_bus_read_config_byte(bus, devfn, pos, &pos);
147 if (pos < 0x40)
148 break;
149 pos &= ~3;
150 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
151 &id);
152 if (id == 0xff)
153 break;
154 if (id == cap)
155 return pos;
156 pos += PCI_CAP_LIST_NEXT;
157 }
158 return 0;
159 }
160
161 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
162 u8 pos, int cap)
163 {
164 int ttl = PCI_FIND_CAP_TTL;
165
166 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
167 }
168
169 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
170 {
171 return __pci_find_next_cap(dev->bus, dev->devfn,
172 pos + PCI_CAP_LIST_NEXT, cap);
173 }
174 EXPORT_SYMBOL_GPL(pci_find_next_capability);
175
176 static int __pci_bus_find_cap_start(struct pci_bus *bus,
177 unsigned int devfn, u8 hdr_type)
178 {
179 u16 status;
180
181 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
182 if (!(status & PCI_STATUS_CAP_LIST))
183 return 0;
184
185 switch (hdr_type) {
186 case PCI_HEADER_TYPE_NORMAL:
187 case PCI_HEADER_TYPE_BRIDGE:
188 return PCI_CAPABILITY_LIST;
189 case PCI_HEADER_TYPE_CARDBUS:
190 return PCI_CB_CAPABILITY_LIST;
191 default:
192 return 0;
193 }
194
195 return 0;
196 }
197
198 /**
199 * pci_find_capability - query for devices' capabilities
200 * @dev: PCI device to query
201 * @cap: capability code
202 *
203 * Tell if a device supports a given PCI capability.
204 * Returns the address of the requested capability structure within the
205 * device's PCI configuration space or 0 in case the device does not
206 * support it. Possible values for @cap:
207 *
208 * %PCI_CAP_ID_PM Power Management
209 * %PCI_CAP_ID_AGP Accelerated Graphics Port
210 * %PCI_CAP_ID_VPD Vital Product Data
211 * %PCI_CAP_ID_SLOTID Slot Identification
212 * %PCI_CAP_ID_MSI Message Signalled Interrupts
213 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
214 * %PCI_CAP_ID_PCIX PCI-X
215 * %PCI_CAP_ID_EXP PCI Express
216 */
217 int pci_find_capability(struct pci_dev *dev, int cap)
218 {
219 int pos;
220
221 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
222 if (pos)
223 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
224
225 return pos;
226 }
227
228 /**
229 * pci_bus_find_capability - query for devices' capabilities
230 * @bus: the PCI bus to query
231 * @devfn: PCI device to query
232 * @cap: capability code
233 *
234 * Like pci_find_capability() but works for pci devices that do not have a
235 * pci_dev structure set up yet.
236 *
237 * Returns the address of the requested capability structure within the
238 * device's PCI configuration space or 0 in case the device does not
239 * support it.
240 */
241 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
242 {
243 int pos;
244 u8 hdr_type;
245
246 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
247
248 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
249 if (pos)
250 pos = __pci_find_next_cap(bus, devfn, pos, cap);
251
252 return pos;
253 }
254
255 /**
256 * pci_find_ext_capability - Find an extended capability
257 * @dev: PCI device to query
258 * @cap: capability code
259 *
260 * Returns the address of the requested extended capability structure
261 * within the device's PCI configuration space or 0 if the device does
262 * not support it. Possible values for @cap:
263 *
264 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
265 * %PCI_EXT_CAP_ID_VC Virtual Channel
266 * %PCI_EXT_CAP_ID_DSN Device Serial Number
267 * %PCI_EXT_CAP_ID_PWR Power Budgeting
268 */
269 int pci_find_ext_capability(struct pci_dev *dev, int cap)
270 {
271 u32 header;
272 int ttl;
273 int pos = PCI_CFG_SPACE_SIZE;
274
275 /* minimum 8 bytes per capability */
276 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
277
278 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
279 return 0;
280
281 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
282 return 0;
283
284 /*
285 * If we have no capabilities, this is indicated by cap ID,
286 * cap version and next pointer all being 0.
287 */
288 if (header == 0)
289 return 0;
290
291 while (ttl-- > 0) {
292 if (PCI_EXT_CAP_ID(header) == cap)
293 return pos;
294
295 pos = PCI_EXT_CAP_NEXT(header);
296 if (pos < PCI_CFG_SPACE_SIZE)
297 break;
298
299 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
300 break;
301 }
302
303 return 0;
304 }
305 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
306
307 /**
308 * pci_bus_find_ext_capability - find an extended capability
309 * @bus: the PCI bus to query
310 * @devfn: PCI device to query
311 * @cap: capability code
312 *
313 * Like pci_find_ext_capability() but works for pci devices that do not have a
314 * pci_dev structure set up yet.
315 *
316 * Returns the address of the requested capability structure within the
317 * device's PCI configuration space or 0 in case the device does not
318 * support it.
319 */
320 int pci_bus_find_ext_capability(struct pci_bus *bus, unsigned int devfn,
321 int cap)
322 {
323 u32 header;
324 int ttl;
325 int pos = PCI_CFG_SPACE_SIZE;
326
327 /* minimum 8 bytes per capability */
328 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
329
330 if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
331 return 0;
332 if (header == 0xffffffff || header == 0)
333 return 0;
334
335 while (ttl-- > 0) {
336 if (PCI_EXT_CAP_ID(header) == cap)
337 return pos;
338
339 pos = PCI_EXT_CAP_NEXT(header);
340 if (pos < PCI_CFG_SPACE_SIZE)
341 break;
342
343 if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
344 break;
345 }
346
347 return 0;
348 }
349
350 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
351 {
352 int rc, ttl = PCI_FIND_CAP_TTL;
353 u8 cap, mask;
354
355 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
356 mask = HT_3BIT_CAP_MASK;
357 else
358 mask = HT_5BIT_CAP_MASK;
359
360 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
361 PCI_CAP_ID_HT, &ttl);
362 while (pos) {
363 rc = pci_read_config_byte(dev, pos + 3, &cap);
364 if (rc != PCIBIOS_SUCCESSFUL)
365 return 0;
366
367 if ((cap & mask) == ht_cap)
368 return pos;
369
370 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
371 pos + PCI_CAP_LIST_NEXT,
372 PCI_CAP_ID_HT, &ttl);
373 }
374
375 return 0;
376 }
377 /**
378 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
379 * @dev: PCI device to query
380 * @pos: Position from which to continue searching
381 * @ht_cap: Hypertransport capability code
382 *
383 * To be used in conjunction with pci_find_ht_capability() to search for
384 * all capabilities matching @ht_cap. @pos should always be a value returned
385 * from pci_find_ht_capability().
386 *
387 * NB. To be 100% safe against broken PCI devices, the caller should take
388 * steps to avoid an infinite loop.
389 */
390 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
391 {
392 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
393 }
394 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
395
396 /**
397 * pci_find_ht_capability - query a device's Hypertransport capabilities
398 * @dev: PCI device to query
399 * @ht_cap: Hypertransport capability code
400 *
401 * Tell if a device supports a given Hypertransport capability.
402 * Returns an address within the device's PCI configuration space
403 * or 0 in case the device does not support the request capability.
404 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
405 * which has a Hypertransport capability matching @ht_cap.
406 */
407 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
408 {
409 int pos;
410
411 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
412 if (pos)
413 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
414
415 return pos;
416 }
417 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
418
419 /**
420 * pci_find_parent_resource - return resource region of parent bus of given region
421 * @dev: PCI device structure contains resources to be searched
422 * @res: child resource record for which parent is sought
423 *
424 * For given resource region of given device, return the resource
425 * region of parent bus the given region is contained in or where
426 * it should be allocated from.
427 */
428 struct resource *
429 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
430 {
431 const struct pci_bus *bus = dev->bus;
432 int i;
433 struct resource *best = NULL, *r;
434
435 pci_bus_for_each_resource(bus, r, i) {
436 if (!r)
437 continue;
438 if (res->start && !(res->start >= r->start && res->end <= r->end))
439 continue; /* Not contained */
440 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
441 continue; /* Wrong type */
442 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
443 return r; /* Exact match */
444 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
445 if (r->flags & IORESOURCE_PREFETCH)
446 continue;
447 /* .. but we can put a prefetchable resource inside a non-prefetchable one */
448 if (!best)
449 best = r;
450 }
451 return best;
452 }
453
454 /**
455 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
456 * @dev: PCI device to have its BARs restored
457 *
458 * Restore the BAR values for a given device, so as to make it
459 * accessible by its driver.
460 */
461 static void
462 pci_restore_bars(struct pci_dev *dev)
463 {
464 int i;
465
466 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
467 pci_update_resource(dev, i);
468 }
469
470 static struct pci_platform_pm_ops *pci_platform_pm;
471
472 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
473 {
474 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
475 || !ops->sleep_wake || !ops->can_wakeup)
476 return -EINVAL;
477 pci_platform_pm = ops;
478 return 0;
479 }
480
481 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
482 {
483 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
484 }
485
486 static inline int platform_pci_set_power_state(struct pci_dev *dev,
487 pci_power_t t)
488 {
489 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
490 }
491
492 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
493 {
494 return pci_platform_pm ?
495 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
496 }
497
498 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
499 {
500 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
501 }
502
503 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
504 {
505 return pci_platform_pm ?
506 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
507 }
508
509 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
510 {
511 return pci_platform_pm ?
512 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
513 }
514
515 /**
516 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
517 * given PCI device
518 * @dev: PCI device to handle.
519 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
520 *
521 * RETURN VALUE:
522 * -EINVAL if the requested state is invalid.
523 * -EIO if device does not support PCI PM or its PM capabilities register has a
524 * wrong version, or device doesn't support the requested state.
525 * 0 if device already is in the requested state.
526 * 0 if device's power state has been successfully changed.
527 */
528 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
529 {
530 u16 pmcsr;
531 bool need_restore = false;
532
533 /* Check if we're already there */
534 if (dev->current_state == state)
535 return 0;
536
537 if (!dev->pm_cap)
538 return -EIO;
539
540 if (state < PCI_D0 || state > PCI_D3hot)
541 return -EINVAL;
542
543 /* Validate current state:
544 * Can enter D0 from any state, but if we can only go deeper
545 * to sleep if we're already in a low power state
546 */
547 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
548 && dev->current_state > state) {
549 dev_err(&dev->dev, "invalid power transition "
550 "(from state %d to %d)\n", dev->current_state, state);
551 return -EINVAL;
552 }
553
554 /* check if this device supports the desired state */
555 if ((state == PCI_D1 && !dev->d1_support)
556 || (state == PCI_D2 && !dev->d2_support))
557 return -EIO;
558
559 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
560
561 /* If we're (effectively) in D3, force entire word to 0.
562 * This doesn't affect PME_Status, disables PME_En, and
563 * sets PowerState to 0.
564 */
565 switch (dev->current_state) {
566 case PCI_D0:
567 case PCI_D1:
568 case PCI_D2:
569 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
570 pmcsr |= state;
571 break;
572 case PCI_D3hot:
573 case PCI_D3cold:
574 case PCI_UNKNOWN: /* Boot-up */
575 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
576 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
577 need_restore = true;
578 /* Fall-through: force to D0 */
579 default:
580 pmcsr = 0;
581 break;
582 }
583
584 /* enter specified state */
585 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
586
587 /* Mandatory power management transition delays */
588 /* see PCI PM 1.1 5.6.1 table 18 */
589 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
590 pci_dev_d3_sleep(dev);
591 else if (state == PCI_D2 || dev->current_state == PCI_D2)
592 udelay(PCI_PM_D2_DELAY);
593
594 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
595 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
596 if (dev->current_state != state && printk_ratelimit())
597 dev_info(&dev->dev, "Refused to change power state, "
598 "currently in D%d\n", dev->current_state);
599
600 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
601 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
602 * from D3hot to D0 _may_ perform an internal reset, thereby
603 * going to "D0 Uninitialized" rather than "D0 Initialized".
604 * For example, at least some versions of the 3c905B and the
605 * 3c556B exhibit this behaviour.
606 *
607 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
608 * devices in a D3hot state at boot. Consequently, we need to
609 * restore at least the BARs so that the device will be
610 * accessible to its driver.
611 */
612 if (need_restore)
613 pci_restore_bars(dev);
614
615 if (dev->bus->self)
616 pcie_aspm_pm_state_change(dev->bus->self);
617
618 return 0;
619 }
620
621 /**
622 * pci_update_current_state - Read PCI power state of given device from its
623 * PCI PM registers and cache it
624 * @dev: PCI device to handle.
625 * @state: State to cache in case the device doesn't have the PM capability
626 */
627 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
628 {
629 if (dev->pm_cap) {
630 u16 pmcsr;
631
632 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
633 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
634 } else {
635 dev->current_state = state;
636 }
637 }
638
639 /**
640 * pci_platform_power_transition - Use platform to change device power state
641 * @dev: PCI device to handle.
642 * @state: State to put the device into.
643 */
644 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
645 {
646 int error;
647
648 if (platform_pci_power_manageable(dev)) {
649 error = platform_pci_set_power_state(dev, state);
650 if (!error)
651 pci_update_current_state(dev, state);
652 } else {
653 error = -ENODEV;
654 /* Fall back to PCI_D0 if native PM is not supported */
655 if (!dev->pm_cap)
656 dev->current_state = PCI_D0;
657 }
658
659 return error;
660 }
661
662 /**
663 * __pci_start_power_transition - Start power transition of a PCI device
664 * @dev: PCI device to handle.
665 * @state: State to put the device into.
666 */
667 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
668 {
669 if (state == PCI_D0)
670 pci_platform_power_transition(dev, PCI_D0);
671 }
672
673 /**
674 * __pci_complete_power_transition - Complete power transition of a PCI device
675 * @dev: PCI device to handle.
676 * @state: State to put the device into.
677 *
678 * This function should not be called directly by device drivers.
679 */
680 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
681 {
682 return state >= PCI_D0 ?
683 pci_platform_power_transition(dev, state) : -EINVAL;
684 }
685 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
686
687 /**
688 * pci_set_power_state - Set the power state of a PCI device
689 * @dev: PCI device to handle.
690 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
691 *
692 * Transition a device to a new power state, using the platform firmware and/or
693 * the device's PCI PM registers.
694 *
695 * RETURN VALUE:
696 * -EINVAL if the requested state is invalid.
697 * -EIO if device does not support PCI PM or its PM capabilities register has a
698 * wrong version, or device doesn't support the requested state.
699 * 0 if device already is in the requested state.
700 * 0 if device's power state has been successfully changed.
701 */
702 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
703 {
704 int error;
705
706 /* bound the state we're entering */
707 if (state > PCI_D3hot)
708 state = PCI_D3hot;
709 else if (state < PCI_D0)
710 state = PCI_D0;
711 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
712 /*
713 * If the device or the parent bridge do not support PCI PM,
714 * ignore the request if we're doing anything other than putting
715 * it into D0 (which would only happen on boot).
716 */
717 return 0;
718
719 __pci_start_power_transition(dev, state);
720
721 /* This device is quirked not to be put into D3, so
722 don't put it in D3 */
723 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
724 return 0;
725
726 error = pci_raw_set_power_state(dev, state);
727
728 if (!__pci_complete_power_transition(dev, state))
729 error = 0;
730
731 return error;
732 }
733
734 /**
735 * pci_choose_state - Choose the power state of a PCI device
736 * @dev: PCI device to be suspended
737 * @state: target sleep state for the whole system. This is the value
738 * that is passed to suspend() function.
739 *
740 * Returns PCI power state suitable for given device and given system
741 * message.
742 */
743
744 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
745 {
746 pci_power_t ret;
747
748 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
749 return PCI_D0;
750
751 ret = platform_pci_choose_state(dev);
752 if (ret != PCI_POWER_ERROR)
753 return ret;
754
755 switch (state.event) {
756 case PM_EVENT_ON:
757 return PCI_D0;
758 case PM_EVENT_FREEZE:
759 case PM_EVENT_PRETHAW:
760 /* REVISIT both freeze and pre-thaw "should" use D0 */
761 case PM_EVENT_SUSPEND:
762 case PM_EVENT_HIBERNATE:
763 return PCI_D3hot;
764 default:
765 dev_info(&dev->dev, "unrecognized suspend event %d\n",
766 state.event);
767 BUG();
768 }
769 return PCI_D0;
770 }
771
772 EXPORT_SYMBOL(pci_choose_state);
773
774 #define PCI_EXP_SAVE_REGS 7
775
776 #define pcie_cap_has_devctl(type, flags) 1
777 #define pcie_cap_has_lnkctl(type, flags) \
778 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
779 (type == PCI_EXP_TYPE_ROOT_PORT || \
780 type == PCI_EXP_TYPE_ENDPOINT || \
781 type == PCI_EXP_TYPE_LEG_END))
782 #define pcie_cap_has_sltctl(type, flags) \
783 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
784 ((type == PCI_EXP_TYPE_ROOT_PORT) || \
785 (type == PCI_EXP_TYPE_DOWNSTREAM && \
786 (flags & PCI_EXP_FLAGS_SLOT))))
787 #define pcie_cap_has_rtctl(type, flags) \
788 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
789 (type == PCI_EXP_TYPE_ROOT_PORT || \
790 type == PCI_EXP_TYPE_RC_EC))
791 #define pcie_cap_has_devctl2(type, flags) \
792 ((flags & PCI_EXP_FLAGS_VERS) > 1)
793 #define pcie_cap_has_lnkctl2(type, flags) \
794 ((flags & PCI_EXP_FLAGS_VERS) > 1)
795 #define pcie_cap_has_sltctl2(type, flags) \
796 ((flags & PCI_EXP_FLAGS_VERS) > 1)
797
798 static int pci_save_pcie_state(struct pci_dev *dev)
799 {
800 int pos, i = 0;
801 struct pci_cap_saved_state *save_state;
802 u16 *cap;
803 u16 flags;
804
805 pos = pci_pcie_cap(dev);
806 if (!pos)
807 return 0;
808
809 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
810 if (!save_state) {
811 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
812 return -ENOMEM;
813 }
814 cap = (u16 *)&save_state->data[0];
815
816 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
817
818 if (pcie_cap_has_devctl(dev->pcie_type, flags))
819 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
820 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
821 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
822 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
823 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
824 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
825 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
826 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
827 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
828 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
829 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
830 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
831 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
832
833 return 0;
834 }
835
836 static void pci_restore_pcie_state(struct pci_dev *dev)
837 {
838 int i = 0, pos;
839 struct pci_cap_saved_state *save_state;
840 u16 *cap;
841 u16 flags;
842
843 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
844 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
845 if (!save_state || pos <= 0)
846 return;
847 cap = (u16 *)&save_state->data[0];
848
849 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
850
851 if (pcie_cap_has_devctl(dev->pcie_type, flags))
852 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
853 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
854 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
855 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
856 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
857 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
858 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
859 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
860 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
861 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
862 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
863 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
864 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
865 }
866
867
868 static int pci_save_pcix_state(struct pci_dev *dev)
869 {
870 int pos;
871 struct pci_cap_saved_state *save_state;
872
873 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
874 if (pos <= 0)
875 return 0;
876
877 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
878 if (!save_state) {
879 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
880 return -ENOMEM;
881 }
882
883 pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
884
885 return 0;
886 }
887
888 static void pci_restore_pcix_state(struct pci_dev *dev)
889 {
890 int i = 0, pos;
891 struct pci_cap_saved_state *save_state;
892 u16 *cap;
893
894 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
895 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
896 if (!save_state || pos <= 0)
897 return;
898 cap = (u16 *)&save_state->data[0];
899
900 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
901 }
902
903
904 /**
905 * pci_save_state - save the PCI configuration space of a device before suspending
906 * @dev: - PCI device that we're dealing with
907 */
908 int
909 pci_save_state(struct pci_dev *dev)
910 {
911 int i;
912 /* XXX: 100% dword access ok here? */
913 for (i = 0; i < 16; i++)
914 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
915 dev->state_saved = true;
916 if ((i = pci_save_pcie_state(dev)) != 0)
917 return i;
918 if ((i = pci_save_pcix_state(dev)) != 0)
919 return i;
920 return 0;
921 }
922
923 /**
924 * pci_restore_state - Restore the saved state of a PCI device
925 * @dev: - PCI device that we're dealing with
926 */
927 int
928 pci_restore_state(struct pci_dev *dev)
929 {
930 int i;
931 u32 val;
932
933 if (!dev->state_saved)
934 return 0;
935
936 /* PCI Express register must be restored first */
937 pci_restore_pcie_state(dev);
938
939 /*
940 * The Base Address register should be programmed before the command
941 * register(s)
942 */
943 for (i = 15; i >= 0; i--) {
944 pci_read_config_dword(dev, i * 4, &val);
945 if (val != dev->saved_config_space[i]) {
946 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
947 "space at offset %#x (was %#x, writing %#x)\n",
948 i, val, (int)dev->saved_config_space[i]);
949 pci_write_config_dword(dev,i * 4,
950 dev->saved_config_space[i]);
951 }
952 }
953 pci_restore_pcix_state(dev);
954 pci_restore_msi_state(dev);
955 pci_restore_iov_state(dev);
956
957 dev->state_saved = false;
958
959 return 0;
960 }
961
962 static int do_pci_enable_device(struct pci_dev *dev, int bars)
963 {
964 int err;
965
966 err = pci_set_power_state(dev, PCI_D0);
967 if (err < 0 && err != -EIO)
968 return err;
969 err = pcibios_enable_device(dev, bars);
970 if (err < 0)
971 return err;
972 pci_fixup_device(pci_fixup_enable, dev);
973
974 return 0;
975 }
976
977 /**
978 * pci_reenable_device - Resume abandoned device
979 * @dev: PCI device to be resumed
980 *
981 * Note this function is a backend of pci_default_resume and is not supposed
982 * to be called by normal code, write proper resume handler and use it instead.
983 */
984 int pci_reenable_device(struct pci_dev *dev)
985 {
986 if (pci_is_enabled(dev))
987 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
988 return 0;
989 }
990
991 static int __pci_enable_device_flags(struct pci_dev *dev,
992 resource_size_t flags)
993 {
994 int err;
995 int i, bars = 0;
996
997 if (atomic_add_return(1, &dev->enable_cnt) > 1)
998 return 0; /* already enabled */
999
1000 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1001 if (dev->resource[i].flags & flags)
1002 bars |= (1 << i);
1003
1004 err = do_pci_enable_device(dev, bars);
1005 if (err < 0)
1006 atomic_dec(&dev->enable_cnt);
1007 return err;
1008 }
1009
1010 /**
1011 * pci_enable_device_io - Initialize a device for use with IO space
1012 * @dev: PCI device to be initialized
1013 *
1014 * Initialize device before it's used by a driver. Ask low-level code
1015 * to enable I/O resources. Wake up the device if it was suspended.
1016 * Beware, this function can fail.
1017 */
1018 int pci_enable_device_io(struct pci_dev *dev)
1019 {
1020 return __pci_enable_device_flags(dev, IORESOURCE_IO);
1021 }
1022
1023 /**
1024 * pci_enable_device_mem - Initialize a device for use with Memory space
1025 * @dev: PCI device to be initialized
1026 *
1027 * Initialize device before it's used by a driver. Ask low-level code
1028 * to enable Memory resources. Wake up the device if it was suspended.
1029 * Beware, this function can fail.
1030 */
1031 int pci_enable_device_mem(struct pci_dev *dev)
1032 {
1033 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
1034 }
1035
1036 /**
1037 * pci_enable_device - Initialize device before it's used by a driver.
1038 * @dev: PCI device to be initialized
1039 *
1040 * Initialize device before it's used by a driver. Ask low-level code
1041 * to enable I/O and memory. Wake up the device if it was suspended.
1042 * Beware, this function can fail.
1043 *
1044 * Note we don't actually enable the device many times if we call
1045 * this function repeatedly (we just increment the count).
1046 */
1047 int pci_enable_device(struct pci_dev *dev)
1048 {
1049 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1050 }
1051
1052 /*
1053 * Managed PCI resources. This manages device on/off, intx/msi/msix
1054 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1055 * there's no need to track it separately. pci_devres is initialized
1056 * when a device is enabled using managed PCI device enable interface.
1057 */
1058 struct pci_devres {
1059 unsigned int enabled:1;
1060 unsigned int pinned:1;
1061 unsigned int orig_intx:1;
1062 unsigned int restore_intx:1;
1063 u32 region_mask;
1064 };
1065
1066 static void pcim_release(struct device *gendev, void *res)
1067 {
1068 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1069 struct pci_devres *this = res;
1070 int i;
1071
1072 if (dev->msi_enabled)
1073 pci_disable_msi(dev);
1074 if (dev->msix_enabled)
1075 pci_disable_msix(dev);
1076
1077 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1078 if (this->region_mask & (1 << i))
1079 pci_release_region(dev, i);
1080
1081 if (this->restore_intx)
1082 pci_intx(dev, this->orig_intx);
1083
1084 if (this->enabled && !this->pinned)
1085 pci_disable_device(dev);
1086 }
1087
1088 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1089 {
1090 struct pci_devres *dr, *new_dr;
1091
1092 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1093 if (dr)
1094 return dr;
1095
1096 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1097 if (!new_dr)
1098 return NULL;
1099 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1100 }
1101
1102 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1103 {
1104 if (pci_is_managed(pdev))
1105 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1106 return NULL;
1107 }
1108
1109 /**
1110 * pcim_enable_device - Managed pci_enable_device()
1111 * @pdev: PCI device to be initialized
1112 *
1113 * Managed pci_enable_device().
1114 */
1115 int pcim_enable_device(struct pci_dev *pdev)
1116 {
1117 struct pci_devres *dr;
1118 int rc;
1119
1120 dr = get_pci_dr(pdev);
1121 if (unlikely(!dr))
1122 return -ENOMEM;
1123 if (dr->enabled)
1124 return 0;
1125
1126 rc = pci_enable_device(pdev);
1127 if (!rc) {
1128 pdev->is_managed = 1;
1129 dr->enabled = 1;
1130 }
1131 return rc;
1132 }
1133
1134 /**
1135 * pcim_pin_device - Pin managed PCI device
1136 * @pdev: PCI device to pin
1137 *
1138 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1139 * driver detach. @pdev must have been enabled with
1140 * pcim_enable_device().
1141 */
1142 void pcim_pin_device(struct pci_dev *pdev)
1143 {
1144 struct pci_devres *dr;
1145
1146 dr = find_pci_dr(pdev);
1147 WARN_ON(!dr || !dr->enabled);
1148 if (dr)
1149 dr->pinned = 1;
1150 }
1151
1152 /**
1153 * pcibios_disable_device - disable arch specific PCI resources for device dev
1154 * @dev: the PCI device to disable
1155 *
1156 * Disables architecture specific PCI resources for the device. This
1157 * is the default implementation. Architecture implementations can
1158 * override this.
1159 */
1160 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1161
1162 static void do_pci_disable_device(struct pci_dev *dev)
1163 {
1164 u16 pci_command;
1165
1166 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1167 if (pci_command & PCI_COMMAND_MASTER) {
1168 pci_command &= ~PCI_COMMAND_MASTER;
1169 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1170 }
1171
1172 pcibios_disable_device(dev);
1173 }
1174
1175 /**
1176 * pci_disable_enabled_device - Disable device without updating enable_cnt
1177 * @dev: PCI device to disable
1178 *
1179 * NOTE: This function is a backend of PCI power management routines and is
1180 * not supposed to be called drivers.
1181 */
1182 void pci_disable_enabled_device(struct pci_dev *dev)
1183 {
1184 if (pci_is_enabled(dev))
1185 do_pci_disable_device(dev);
1186 }
1187
1188 /**
1189 * pci_disable_device - Disable PCI device after use
1190 * @dev: PCI device to be disabled
1191 *
1192 * Signal to the system that the PCI device is not in use by the system
1193 * anymore. This only involves disabling PCI bus-mastering, if active.
1194 *
1195 * Note we don't actually disable the device until all callers of
1196 * pci_enable_device() have called pci_disable_device().
1197 */
1198 void
1199 pci_disable_device(struct pci_dev *dev)
1200 {
1201 struct pci_devres *dr;
1202
1203 dr = find_pci_dr(dev);
1204 if (dr)
1205 dr->enabled = 0;
1206
1207 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1208 return;
1209
1210 do_pci_disable_device(dev);
1211
1212 dev->is_busmaster = 0;
1213 }
1214
1215 /**
1216 * pcibios_set_pcie_reset_state - set reset state for device dev
1217 * @dev: the PCIe device reset
1218 * @state: Reset state to enter into
1219 *
1220 *
1221 * Sets the PCIe reset state for the device. This is the default
1222 * implementation. Architecture implementations can override this.
1223 */
1224 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1225 enum pcie_reset_state state)
1226 {
1227 return -EINVAL;
1228 }
1229
1230 /**
1231 * pci_set_pcie_reset_state - set reset state for device dev
1232 * @dev: the PCIe device reset
1233 * @state: Reset state to enter into
1234 *
1235 *
1236 * Sets the PCI reset state for the device.
1237 */
1238 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1239 {
1240 return pcibios_set_pcie_reset_state(dev, state);
1241 }
1242
1243 /**
1244 * pci_check_pme_status - Check if given device has generated PME.
1245 * @dev: Device to check.
1246 *
1247 * Check the PME status of the device and if set, clear it and clear PME enable
1248 * (if set). Return 'true' if PME status and PME enable were both set or
1249 * 'false' otherwise.
1250 */
1251 bool pci_check_pme_status(struct pci_dev *dev)
1252 {
1253 int pmcsr_pos;
1254 u16 pmcsr;
1255 bool ret = false;
1256
1257 if (!dev->pm_cap)
1258 return false;
1259
1260 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1261 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1262 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1263 return false;
1264
1265 /* Clear PME status. */
1266 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1267 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1268 /* Disable PME to avoid interrupt flood. */
1269 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1270 ret = true;
1271 }
1272
1273 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1274
1275 return ret;
1276 }
1277
1278 /*
1279 * Time to wait before the system can be put into a sleep state after reporting
1280 * a wakeup event signaled by a PCI device.
1281 */
1282 #define PCI_WAKEUP_COOLDOWN 100
1283
1284 /**
1285 * pci_wakeup_event - Report a wakeup event related to a given PCI device.
1286 * @dev: Device to report the wakeup event for.
1287 */
1288 void pci_wakeup_event(struct pci_dev *dev)
1289 {
1290 if (device_may_wakeup(&dev->dev))
1291 pm_wakeup_event(&dev->dev, PCI_WAKEUP_COOLDOWN);
1292 }
1293
1294 /**
1295 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1296 * @dev: Device to handle.
1297 * @ign: Ignored.
1298 *
1299 * Check if @dev has generated PME and queue a resume request for it in that
1300 * case.
1301 */
1302 static int pci_pme_wakeup(struct pci_dev *dev, void *ign)
1303 {
1304 if (pci_check_pme_status(dev)) {
1305 pm_request_resume(&dev->dev);
1306 pci_wakeup_event(dev);
1307 }
1308 return 0;
1309 }
1310
1311 /**
1312 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1313 * @bus: Top bus of the subtree to walk.
1314 */
1315 void pci_pme_wakeup_bus(struct pci_bus *bus)
1316 {
1317 if (bus)
1318 pci_walk_bus(bus, pci_pme_wakeup, NULL);
1319 }
1320
1321 /**
1322 * pci_pme_capable - check the capability of PCI device to generate PME#
1323 * @dev: PCI device to handle.
1324 * @state: PCI state from which device will issue PME#.
1325 */
1326 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1327 {
1328 if (!dev->pm_cap)
1329 return false;
1330
1331 return !!(dev->pme_support & (1 << state));
1332 }
1333
1334 /**
1335 * pci_pme_active - enable or disable PCI device's PME# function
1336 * @dev: PCI device to handle.
1337 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1338 *
1339 * The caller must verify that the device is capable of generating PME# before
1340 * calling this function with @enable equal to 'true'.
1341 */
1342 void pci_pme_active(struct pci_dev *dev, bool enable)
1343 {
1344 u16 pmcsr;
1345
1346 if (!dev->pm_cap)
1347 return;
1348
1349 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1350 /* Clear PME_Status by writing 1 to it and enable PME# */
1351 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1352 if (!enable)
1353 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1354
1355 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1356
1357 dev_printk(KERN_DEBUG, &dev->dev, "PME# %s\n",
1358 enable ? "enabled" : "disabled");
1359 }
1360
1361 /**
1362 * __pci_enable_wake - enable PCI device as wakeup event source
1363 * @dev: PCI device affected
1364 * @state: PCI state from which device will issue wakeup events
1365 * @runtime: True if the events are to be generated at run time
1366 * @enable: True to enable event generation; false to disable
1367 *
1368 * This enables the device as a wakeup event source, or disables it.
1369 * When such events involves platform-specific hooks, those hooks are
1370 * called automatically by this routine.
1371 *
1372 * Devices with legacy power management (no standard PCI PM capabilities)
1373 * always require such platform hooks.
1374 *
1375 * RETURN VALUE:
1376 * 0 is returned on success
1377 * -EINVAL is returned if device is not supposed to wake up the system
1378 * Error code depending on the platform is returned if both the platform and
1379 * the native mechanism fail to enable the generation of wake-up events
1380 */
1381 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1382 bool runtime, bool enable)
1383 {
1384 int ret = 0;
1385
1386 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1387 return -EINVAL;
1388
1389 /* Don't do the same thing twice in a row for one device. */
1390 if (!!enable == !!dev->wakeup_prepared)
1391 return 0;
1392
1393 /*
1394 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1395 * Anderson we should be doing PME# wake enable followed by ACPI wake
1396 * enable. To disable wake-up we call the platform first, for symmetry.
1397 */
1398
1399 if (enable) {
1400 int error;
1401
1402 if (pci_pme_capable(dev, state))
1403 pci_pme_active(dev, true);
1404 else
1405 ret = 1;
1406 error = runtime ? platform_pci_run_wake(dev, true) :
1407 platform_pci_sleep_wake(dev, true);
1408 if (ret)
1409 ret = error;
1410 if (!ret)
1411 dev->wakeup_prepared = true;
1412 } else {
1413 if (runtime)
1414 platform_pci_run_wake(dev, false);
1415 else
1416 platform_pci_sleep_wake(dev, false);
1417 pci_pme_active(dev, false);
1418 dev->wakeup_prepared = false;
1419 }
1420
1421 return ret;
1422 }
1423 EXPORT_SYMBOL(__pci_enable_wake);
1424
1425 /**
1426 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1427 * @dev: PCI device to prepare
1428 * @enable: True to enable wake-up event generation; false to disable
1429 *
1430 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1431 * and this function allows them to set that up cleanly - pci_enable_wake()
1432 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1433 * ordering constraints.
1434 *
1435 * This function only returns error code if the device is not capable of
1436 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1437 * enable wake-up power for it.
1438 */
1439 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1440 {
1441 return pci_pme_capable(dev, PCI_D3cold) ?
1442 pci_enable_wake(dev, PCI_D3cold, enable) :
1443 pci_enable_wake(dev, PCI_D3hot, enable);
1444 }
1445
1446 /**
1447 * pci_target_state - find an appropriate low power state for a given PCI dev
1448 * @dev: PCI device
1449 *
1450 * Use underlying platform code to find a supported low power state for @dev.
1451 * If the platform can't manage @dev, return the deepest state from which it
1452 * can generate wake events, based on any available PME info.
1453 */
1454 pci_power_t pci_target_state(struct pci_dev *dev)
1455 {
1456 pci_power_t target_state = PCI_D3hot;
1457
1458 if (platform_pci_power_manageable(dev)) {
1459 /*
1460 * Call the platform to choose the target state of the device
1461 * and enable wake-up from this state if supported.
1462 */
1463 pci_power_t state = platform_pci_choose_state(dev);
1464
1465 switch (state) {
1466 case PCI_POWER_ERROR:
1467 case PCI_UNKNOWN:
1468 break;
1469 case PCI_D1:
1470 case PCI_D2:
1471 if (pci_no_d1d2(dev))
1472 break;
1473 default:
1474 target_state = state;
1475 }
1476 } else if (!dev->pm_cap) {
1477 target_state = PCI_D0;
1478 } else if (device_may_wakeup(&dev->dev)) {
1479 /*
1480 * Find the deepest state from which the device can generate
1481 * wake-up events, make it the target state and enable device
1482 * to generate PME#.
1483 */
1484 if (dev->pme_support) {
1485 while (target_state
1486 && !(dev->pme_support & (1 << target_state)))
1487 target_state--;
1488 }
1489 }
1490
1491 return target_state;
1492 }
1493
1494 /**
1495 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1496 * @dev: Device to handle.
1497 *
1498 * Choose the power state appropriate for the device depending on whether
1499 * it can wake up the system and/or is power manageable by the platform
1500 * (PCI_D3hot is the default) and put the device into that state.
1501 */
1502 int pci_prepare_to_sleep(struct pci_dev *dev)
1503 {
1504 pci_power_t target_state = pci_target_state(dev);
1505 int error;
1506
1507 if (target_state == PCI_POWER_ERROR)
1508 return -EIO;
1509
1510 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1511
1512 error = pci_set_power_state(dev, target_state);
1513
1514 if (error)
1515 pci_enable_wake(dev, target_state, false);
1516
1517 return error;
1518 }
1519
1520 /**
1521 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1522 * @dev: Device to handle.
1523 *
1524 * Disable device's system wake-up capability and put it into D0.
1525 */
1526 int pci_back_from_sleep(struct pci_dev *dev)
1527 {
1528 pci_enable_wake(dev, PCI_D0, false);
1529 return pci_set_power_state(dev, PCI_D0);
1530 }
1531
1532 /**
1533 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1534 * @dev: PCI device being suspended.
1535 *
1536 * Prepare @dev to generate wake-up events at run time and put it into a low
1537 * power state.
1538 */
1539 int pci_finish_runtime_suspend(struct pci_dev *dev)
1540 {
1541 pci_power_t target_state = pci_target_state(dev);
1542 int error;
1543
1544 if (target_state == PCI_POWER_ERROR)
1545 return -EIO;
1546
1547 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1548
1549 error = pci_set_power_state(dev, target_state);
1550
1551 if (error)
1552 __pci_enable_wake(dev, target_state, true, false);
1553
1554 return error;
1555 }
1556
1557 /**
1558 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1559 * @dev: Device to check.
1560 *
1561 * Return true if the device itself is cabable of generating wake-up events
1562 * (through the platform or using the native PCIe PME) or if the device supports
1563 * PME and one of its upstream bridges can generate wake-up events.
1564 */
1565 bool pci_dev_run_wake(struct pci_dev *dev)
1566 {
1567 struct pci_bus *bus = dev->bus;
1568
1569 if (device_run_wake(&dev->dev))
1570 return true;
1571
1572 if (!dev->pme_support)
1573 return false;
1574
1575 while (bus->parent) {
1576 struct pci_dev *bridge = bus->self;
1577
1578 if (device_run_wake(&bridge->dev))
1579 return true;
1580
1581 bus = bus->parent;
1582 }
1583
1584 /* We have reached the root bus. */
1585 if (bus->bridge)
1586 return device_run_wake(bus->bridge);
1587
1588 return false;
1589 }
1590 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1591
1592 /**
1593 * pci_pm_init - Initialize PM functions of given PCI device
1594 * @dev: PCI device to handle.
1595 */
1596 void pci_pm_init(struct pci_dev *dev)
1597 {
1598 int pm;
1599 u16 pmc;
1600
1601 pm_runtime_forbid(&dev->dev);
1602 device_enable_async_suspend(&dev->dev);
1603 dev->wakeup_prepared = false;
1604
1605 dev->pm_cap = 0;
1606
1607 /* find PCI PM capability in list */
1608 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1609 if (!pm)
1610 return;
1611 /* Check device's ability to generate PME# */
1612 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1613
1614 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1615 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1616 pmc & PCI_PM_CAP_VER_MASK);
1617 return;
1618 }
1619
1620 dev->pm_cap = pm;
1621 dev->d3_delay = PCI_PM_D3_WAIT;
1622
1623 dev->d1_support = false;
1624 dev->d2_support = false;
1625 if (!pci_no_d1d2(dev)) {
1626 if (pmc & PCI_PM_CAP_D1)
1627 dev->d1_support = true;
1628 if (pmc & PCI_PM_CAP_D2)
1629 dev->d2_support = true;
1630
1631 if (dev->d1_support || dev->d2_support)
1632 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1633 dev->d1_support ? " D1" : "",
1634 dev->d2_support ? " D2" : "");
1635 }
1636
1637 pmc &= PCI_PM_CAP_PME_MASK;
1638 if (pmc) {
1639 dev_printk(KERN_DEBUG, &dev->dev,
1640 "PME# supported from%s%s%s%s%s\n",
1641 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1642 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1643 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1644 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1645 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1646 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1647 /*
1648 * Make device's PM flags reflect the wake-up capability, but
1649 * let the user space enable it to wake up the system as needed.
1650 */
1651 device_set_wakeup_capable(&dev->dev, true);
1652 /* Disable the PME# generation functionality */
1653 pci_pme_active(dev, false);
1654 } else {
1655 dev->pme_support = 0;
1656 }
1657 }
1658
1659 /**
1660 * platform_pci_wakeup_init - init platform wakeup if present
1661 * @dev: PCI device
1662 *
1663 * Some devices don't have PCI PM caps but can still generate wakeup
1664 * events through platform methods (like ACPI events). If @dev supports
1665 * platform wakeup events, set the device flag to indicate as much. This
1666 * may be redundant if the device also supports PCI PM caps, but double
1667 * initialization should be safe in that case.
1668 */
1669 void platform_pci_wakeup_init(struct pci_dev *dev)
1670 {
1671 if (!platform_pci_can_wakeup(dev))
1672 return;
1673
1674 device_set_wakeup_capable(&dev->dev, true);
1675 platform_pci_sleep_wake(dev, false);
1676 }
1677
1678 /**
1679 * pci_add_save_buffer - allocate buffer for saving given capability registers
1680 * @dev: the PCI device
1681 * @cap: the capability to allocate the buffer for
1682 * @size: requested size of the buffer
1683 */
1684 static int pci_add_cap_save_buffer(
1685 struct pci_dev *dev, char cap, unsigned int size)
1686 {
1687 int pos;
1688 struct pci_cap_saved_state *save_state;
1689
1690 pos = pci_find_capability(dev, cap);
1691 if (pos <= 0)
1692 return 0;
1693
1694 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1695 if (!save_state)
1696 return -ENOMEM;
1697
1698 save_state->cap_nr = cap;
1699 pci_add_saved_cap(dev, save_state);
1700
1701 return 0;
1702 }
1703
1704 /**
1705 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1706 * @dev: the PCI device
1707 */
1708 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1709 {
1710 int error;
1711
1712 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1713 PCI_EXP_SAVE_REGS * sizeof(u16));
1714 if (error)
1715 dev_err(&dev->dev,
1716 "unable to preallocate PCI Express save buffer\n");
1717
1718 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1719 if (error)
1720 dev_err(&dev->dev,
1721 "unable to preallocate PCI-X save buffer\n");
1722 }
1723
1724 /**
1725 * pci_enable_ari - enable ARI forwarding if hardware support it
1726 * @dev: the PCI device
1727 */
1728 void pci_enable_ari(struct pci_dev *dev)
1729 {
1730 int pos;
1731 u32 cap;
1732 u16 ctrl;
1733 struct pci_dev *bridge;
1734
1735 if (!pci_is_pcie(dev) || dev->devfn)
1736 return;
1737
1738 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1739 if (!pos)
1740 return;
1741
1742 bridge = dev->bus->self;
1743 if (!bridge || !pci_is_pcie(bridge))
1744 return;
1745
1746 pos = pci_pcie_cap(bridge);
1747 if (!pos)
1748 return;
1749
1750 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1751 if (!(cap & PCI_EXP_DEVCAP2_ARI))
1752 return;
1753
1754 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1755 ctrl |= PCI_EXP_DEVCTL2_ARI;
1756 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1757
1758 bridge->ari_enabled = 1;
1759 }
1760
1761 static int pci_acs_enable;
1762
1763 /**
1764 * pci_request_acs - ask for ACS to be enabled if supported
1765 */
1766 void pci_request_acs(void)
1767 {
1768 pci_acs_enable = 1;
1769 }
1770
1771 /**
1772 * pci_enable_acs - enable ACS if hardware support it
1773 * @dev: the PCI device
1774 */
1775 void pci_enable_acs(struct pci_dev *dev)
1776 {
1777 int pos;
1778 u16 cap;
1779 u16 ctrl;
1780
1781 if (!pci_acs_enable)
1782 return;
1783
1784 if (!pci_is_pcie(dev))
1785 return;
1786
1787 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
1788 if (!pos)
1789 return;
1790
1791 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
1792 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
1793
1794 /* Source Validation */
1795 ctrl |= (cap & PCI_ACS_SV);
1796
1797 /* P2P Request Redirect */
1798 ctrl |= (cap & PCI_ACS_RR);
1799
1800 /* P2P Completion Redirect */
1801 ctrl |= (cap & PCI_ACS_CR);
1802
1803 /* Upstream Forwarding */
1804 ctrl |= (cap & PCI_ACS_UF);
1805
1806 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
1807 }
1808
1809 /**
1810 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1811 * @dev: the PCI device
1812 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1813 *
1814 * Perform INTx swizzling for a device behind one level of bridge. This is
1815 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1816 * behind bridges on add-in cards. For devices with ARI enabled, the slot
1817 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
1818 * the PCI Express Base Specification, Revision 2.1)
1819 */
1820 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1821 {
1822 int slot;
1823
1824 if (pci_ari_enabled(dev->bus))
1825 slot = 0;
1826 else
1827 slot = PCI_SLOT(dev->devfn);
1828
1829 return (((pin - 1) + slot) % 4) + 1;
1830 }
1831
1832 int
1833 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1834 {
1835 u8 pin;
1836
1837 pin = dev->pin;
1838 if (!pin)
1839 return -1;
1840
1841 while (!pci_is_root_bus(dev->bus)) {
1842 pin = pci_swizzle_interrupt_pin(dev, pin);
1843 dev = dev->bus->self;
1844 }
1845 *bridge = dev;
1846 return pin;
1847 }
1848
1849 /**
1850 * pci_common_swizzle - swizzle INTx all the way to root bridge
1851 * @dev: the PCI device
1852 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1853 *
1854 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
1855 * bridges all the way up to a PCI root bus.
1856 */
1857 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
1858 {
1859 u8 pin = *pinp;
1860
1861 while (!pci_is_root_bus(dev->bus)) {
1862 pin = pci_swizzle_interrupt_pin(dev, pin);
1863 dev = dev->bus->self;
1864 }
1865 *pinp = pin;
1866 return PCI_SLOT(dev->devfn);
1867 }
1868
1869 /**
1870 * pci_release_region - Release a PCI bar
1871 * @pdev: PCI device whose resources were previously reserved by pci_request_region
1872 * @bar: BAR to release
1873 *
1874 * Releases the PCI I/O and memory resources previously reserved by a
1875 * successful call to pci_request_region. Call this function only
1876 * after all use of the PCI regions has ceased.
1877 */
1878 void pci_release_region(struct pci_dev *pdev, int bar)
1879 {
1880 struct pci_devres *dr;
1881
1882 if (pci_resource_len(pdev, bar) == 0)
1883 return;
1884 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1885 release_region(pci_resource_start(pdev, bar),
1886 pci_resource_len(pdev, bar));
1887 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1888 release_mem_region(pci_resource_start(pdev, bar),
1889 pci_resource_len(pdev, bar));
1890
1891 dr = find_pci_dr(pdev);
1892 if (dr)
1893 dr->region_mask &= ~(1 << bar);
1894 }
1895
1896 /**
1897 * __pci_request_region - Reserved PCI I/O and memory resource
1898 * @pdev: PCI device whose resources are to be reserved
1899 * @bar: BAR to be reserved
1900 * @res_name: Name to be associated with resource.
1901 * @exclusive: whether the region access is exclusive or not
1902 *
1903 * Mark the PCI region associated with PCI device @pdev BR @bar as
1904 * being reserved by owner @res_name. Do not access any
1905 * address inside the PCI regions unless this call returns
1906 * successfully.
1907 *
1908 * If @exclusive is set, then the region is marked so that userspace
1909 * is explicitly not allowed to map the resource via /dev/mem or
1910 * sysfs MMIO access.
1911 *
1912 * Returns 0 on success, or %EBUSY on error. A warning
1913 * message is also printed on failure.
1914 */
1915 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1916 int exclusive)
1917 {
1918 struct pci_devres *dr;
1919
1920 if (pci_resource_len(pdev, bar) == 0)
1921 return 0;
1922
1923 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1924 if (!request_region(pci_resource_start(pdev, bar),
1925 pci_resource_len(pdev, bar), res_name))
1926 goto err_out;
1927 }
1928 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1929 if (!__request_mem_region(pci_resource_start(pdev, bar),
1930 pci_resource_len(pdev, bar), res_name,
1931 exclusive))
1932 goto err_out;
1933 }
1934
1935 dr = find_pci_dr(pdev);
1936 if (dr)
1937 dr->region_mask |= 1 << bar;
1938
1939 return 0;
1940
1941 err_out:
1942 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
1943 &pdev->resource[bar]);
1944 return -EBUSY;
1945 }
1946
1947 /**
1948 * pci_request_region - Reserve PCI I/O and memory resource
1949 * @pdev: PCI device whose resources are to be reserved
1950 * @bar: BAR to be reserved
1951 * @res_name: Name to be associated with resource
1952 *
1953 * Mark the PCI region associated with PCI device @pdev BAR @bar as
1954 * being reserved by owner @res_name. Do not access any
1955 * address inside the PCI regions unless this call returns
1956 * successfully.
1957 *
1958 * Returns 0 on success, or %EBUSY on error. A warning
1959 * message is also printed on failure.
1960 */
1961 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1962 {
1963 return __pci_request_region(pdev, bar, res_name, 0);
1964 }
1965
1966 /**
1967 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
1968 * @pdev: PCI device whose resources are to be reserved
1969 * @bar: BAR to be reserved
1970 * @res_name: Name to be associated with resource.
1971 *
1972 * Mark the PCI region associated with PCI device @pdev BR @bar as
1973 * being reserved by owner @res_name. Do not access any
1974 * address inside the PCI regions unless this call returns
1975 * successfully.
1976 *
1977 * Returns 0 on success, or %EBUSY on error. A warning
1978 * message is also printed on failure.
1979 *
1980 * The key difference that _exclusive makes it that userspace is
1981 * explicitly not allowed to map the resource via /dev/mem or
1982 * sysfs.
1983 */
1984 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
1985 {
1986 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
1987 }
1988 /**
1989 * pci_release_selected_regions - Release selected PCI I/O and memory resources
1990 * @pdev: PCI device whose resources were previously reserved
1991 * @bars: Bitmask of BARs to be released
1992 *
1993 * Release selected PCI I/O and memory resources previously reserved.
1994 * Call this function only after all use of the PCI regions has ceased.
1995 */
1996 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1997 {
1998 int i;
1999
2000 for (i = 0; i < 6; i++)
2001 if (bars & (1 << i))
2002 pci_release_region(pdev, i);
2003 }
2004
2005 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2006 const char *res_name, int excl)
2007 {
2008 int i;
2009
2010 for (i = 0; i < 6; i++)
2011 if (bars & (1 << i))
2012 if (__pci_request_region(pdev, i, res_name, excl))
2013 goto err_out;
2014 return 0;
2015
2016 err_out:
2017 while(--i >= 0)
2018 if (bars & (1 << i))
2019 pci_release_region(pdev, i);
2020
2021 return -EBUSY;
2022 }
2023
2024
2025 /**
2026 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2027 * @pdev: PCI device whose resources are to be reserved
2028 * @bars: Bitmask of BARs to be requested
2029 * @res_name: Name to be associated with resource
2030 */
2031 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2032 const char *res_name)
2033 {
2034 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2035 }
2036
2037 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2038 int bars, const char *res_name)
2039 {
2040 return __pci_request_selected_regions(pdev, bars, res_name,
2041 IORESOURCE_EXCLUSIVE);
2042 }
2043
2044 /**
2045 * pci_release_regions - Release reserved PCI I/O and memory resources
2046 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2047 *
2048 * Releases all PCI I/O and memory resources previously reserved by a
2049 * successful call to pci_request_regions. Call this function only
2050 * after all use of the PCI regions has ceased.
2051 */
2052
2053 void pci_release_regions(struct pci_dev *pdev)
2054 {
2055 pci_release_selected_regions(pdev, (1 << 6) - 1);
2056 }
2057
2058 /**
2059 * pci_request_regions - Reserved PCI I/O and memory resources
2060 * @pdev: PCI device whose resources are to be reserved
2061 * @res_name: Name to be associated with resource.
2062 *
2063 * Mark all PCI regions associated with PCI device @pdev as
2064 * being reserved by owner @res_name. Do not access any
2065 * address inside the PCI regions unless this call returns
2066 * successfully.
2067 *
2068 * Returns 0 on success, or %EBUSY on error. A warning
2069 * message is also printed on failure.
2070 */
2071 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2072 {
2073 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2074 }
2075
2076 /**
2077 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2078 * @pdev: PCI device whose resources are to be reserved
2079 * @res_name: Name to be associated with resource.
2080 *
2081 * Mark all PCI regions associated with PCI device @pdev as
2082 * being reserved by owner @res_name. Do not access any
2083 * address inside the PCI regions unless this call returns
2084 * successfully.
2085 *
2086 * pci_request_regions_exclusive() will mark the region so that
2087 * /dev/mem and the sysfs MMIO access will not be allowed.
2088 *
2089 * Returns 0 on success, or %EBUSY on error. A warning
2090 * message is also printed on failure.
2091 */
2092 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2093 {
2094 return pci_request_selected_regions_exclusive(pdev,
2095 ((1 << 6) - 1), res_name);
2096 }
2097
2098 static void __pci_set_master(struct pci_dev *dev, bool enable)
2099 {
2100 u16 old_cmd, cmd;
2101
2102 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2103 if (enable)
2104 cmd = old_cmd | PCI_COMMAND_MASTER;
2105 else
2106 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2107 if (cmd != old_cmd) {
2108 dev_dbg(&dev->dev, "%s bus mastering\n",
2109 enable ? "enabling" : "disabling");
2110 pci_write_config_word(dev, PCI_COMMAND, cmd);
2111 }
2112 dev->is_busmaster = enable;
2113 }
2114
2115 /**
2116 * pci_set_master - enables bus-mastering for device dev
2117 * @dev: the PCI device to enable
2118 *
2119 * Enables bus-mastering on the device and calls pcibios_set_master()
2120 * to do the needed arch specific settings.
2121 */
2122 void pci_set_master(struct pci_dev *dev)
2123 {
2124 __pci_set_master(dev, true);
2125 pcibios_set_master(dev);
2126 }
2127
2128 /**
2129 * pci_clear_master - disables bus-mastering for device dev
2130 * @dev: the PCI device to disable
2131 */
2132 void pci_clear_master(struct pci_dev *dev)
2133 {
2134 __pci_set_master(dev, false);
2135 }
2136
2137 /**
2138 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2139 * @dev: the PCI device for which MWI is to be enabled
2140 *
2141 * Helper function for pci_set_mwi.
2142 * Originally copied from drivers/net/acenic.c.
2143 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2144 *
2145 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2146 */
2147 int pci_set_cacheline_size(struct pci_dev *dev)
2148 {
2149 u8 cacheline_size;
2150
2151 if (!pci_cache_line_size)
2152 return -EINVAL;
2153
2154 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2155 equal to or multiple of the right value. */
2156 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2157 if (cacheline_size >= pci_cache_line_size &&
2158 (cacheline_size % pci_cache_line_size) == 0)
2159 return 0;
2160
2161 /* Write the correct value. */
2162 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2163 /* Read it back. */
2164 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2165 if (cacheline_size == pci_cache_line_size)
2166 return 0;
2167
2168 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2169 "supported\n", pci_cache_line_size << 2);
2170
2171 return -EINVAL;
2172 }
2173 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2174
2175 #ifdef PCI_DISABLE_MWI
2176 int pci_set_mwi(struct pci_dev *dev)
2177 {
2178 return 0;
2179 }
2180
2181 int pci_try_set_mwi(struct pci_dev *dev)
2182 {
2183 return 0;
2184 }
2185
2186 void pci_clear_mwi(struct pci_dev *dev)
2187 {
2188 }
2189
2190 #else
2191
2192 /**
2193 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2194 * @dev: the PCI device for which MWI is enabled
2195 *
2196 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2197 *
2198 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2199 */
2200 int
2201 pci_set_mwi(struct pci_dev *dev)
2202 {
2203 int rc;
2204 u16 cmd;
2205
2206 rc = pci_set_cacheline_size(dev);
2207 if (rc)
2208 return rc;
2209
2210 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2211 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2212 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2213 cmd |= PCI_COMMAND_INVALIDATE;
2214 pci_write_config_word(dev, PCI_COMMAND, cmd);
2215 }
2216
2217 return 0;
2218 }
2219
2220 /**
2221 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2222 * @dev: the PCI device for which MWI is enabled
2223 *
2224 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2225 * Callers are not required to check the return value.
2226 *
2227 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2228 */
2229 int pci_try_set_mwi(struct pci_dev *dev)
2230 {
2231 int rc = pci_set_mwi(dev);
2232 return rc;
2233 }
2234
2235 /**
2236 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2237 * @dev: the PCI device to disable
2238 *
2239 * Disables PCI Memory-Write-Invalidate transaction on the device
2240 */
2241 void
2242 pci_clear_mwi(struct pci_dev *dev)
2243 {
2244 u16 cmd;
2245
2246 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2247 if (cmd & PCI_COMMAND_INVALIDATE) {
2248 cmd &= ~PCI_COMMAND_INVALIDATE;
2249 pci_write_config_word(dev, PCI_COMMAND, cmd);
2250 }
2251 }
2252 #endif /* ! PCI_DISABLE_MWI */
2253
2254 /**
2255 * pci_intx - enables/disables PCI INTx for device dev
2256 * @pdev: the PCI device to operate on
2257 * @enable: boolean: whether to enable or disable PCI INTx
2258 *
2259 * Enables/disables PCI INTx for device dev
2260 */
2261 void
2262 pci_intx(struct pci_dev *pdev, int enable)
2263 {
2264 u16 pci_command, new;
2265
2266 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2267
2268 if (enable) {
2269 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2270 } else {
2271 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2272 }
2273
2274 if (new != pci_command) {
2275 struct pci_devres *dr;
2276
2277 pci_write_config_word(pdev, PCI_COMMAND, new);
2278
2279 dr = find_pci_dr(pdev);
2280 if (dr && !dr->restore_intx) {
2281 dr->restore_intx = 1;
2282 dr->orig_intx = !enable;
2283 }
2284 }
2285 }
2286
2287 /**
2288 * pci_msi_off - disables any msi or msix capabilities
2289 * @dev: the PCI device to operate on
2290 *
2291 * If you want to use msi see pci_enable_msi and friends.
2292 * This is a lower level primitive that allows us to disable
2293 * msi operation at the device level.
2294 */
2295 void pci_msi_off(struct pci_dev *dev)
2296 {
2297 int pos;
2298 u16 control;
2299
2300 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2301 if (pos) {
2302 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2303 control &= ~PCI_MSI_FLAGS_ENABLE;
2304 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2305 }
2306 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2307 if (pos) {
2308 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2309 control &= ~PCI_MSIX_FLAGS_ENABLE;
2310 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2311 }
2312 }
2313 EXPORT_SYMBOL_GPL(pci_msi_off);
2314
2315 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2316 {
2317 return dma_set_max_seg_size(&dev->dev, size);
2318 }
2319 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2320
2321 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2322 {
2323 return dma_set_seg_boundary(&dev->dev, mask);
2324 }
2325 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2326
2327 static int pcie_flr(struct pci_dev *dev, int probe)
2328 {
2329 int i;
2330 int pos;
2331 u32 cap;
2332 u16 status, control;
2333
2334 pos = pci_pcie_cap(dev);
2335 if (!pos)
2336 return -ENOTTY;
2337
2338 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
2339 if (!(cap & PCI_EXP_DEVCAP_FLR))
2340 return -ENOTTY;
2341
2342 if (probe)
2343 return 0;
2344
2345 /* Wait for Transaction Pending bit clean */
2346 for (i = 0; i < 4; i++) {
2347 if (i)
2348 msleep((1 << (i - 1)) * 100);
2349
2350 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
2351 if (!(status & PCI_EXP_DEVSTA_TRPND))
2352 goto clear;
2353 }
2354
2355 dev_err(&dev->dev, "transaction is not cleared; "
2356 "proceeding with reset anyway\n");
2357
2358 clear:
2359 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &control);
2360 control |= PCI_EXP_DEVCTL_BCR_FLR;
2361 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, control);
2362
2363 msleep(100);
2364
2365 return 0;
2366 }
2367
2368 static int pci_af_flr(struct pci_dev *dev, int probe)
2369 {
2370 int i;
2371 int pos;
2372 u8 cap;
2373 u8 status;
2374
2375 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
2376 if (!pos)
2377 return -ENOTTY;
2378
2379 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
2380 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2381 return -ENOTTY;
2382
2383 if (probe)
2384 return 0;
2385
2386 /* Wait for Transaction Pending bit clean */
2387 for (i = 0; i < 4; i++) {
2388 if (i)
2389 msleep((1 << (i - 1)) * 100);
2390
2391 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
2392 if (!(status & PCI_AF_STATUS_TP))
2393 goto clear;
2394 }
2395
2396 dev_err(&dev->dev, "transaction is not cleared; "
2397 "proceeding with reset anyway\n");
2398
2399 clear:
2400 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2401 msleep(100);
2402
2403 return 0;
2404 }
2405
2406 static int pci_pm_reset(struct pci_dev *dev, int probe)
2407 {
2408 u16 csr;
2409
2410 if (!dev->pm_cap)
2411 return -ENOTTY;
2412
2413 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
2414 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
2415 return -ENOTTY;
2416
2417 if (probe)
2418 return 0;
2419
2420 if (dev->current_state != PCI_D0)
2421 return -EINVAL;
2422
2423 csr &= ~PCI_PM_CTRL_STATE_MASK;
2424 csr |= PCI_D3hot;
2425 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2426 pci_dev_d3_sleep(dev);
2427
2428 csr &= ~PCI_PM_CTRL_STATE_MASK;
2429 csr |= PCI_D0;
2430 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2431 pci_dev_d3_sleep(dev);
2432
2433 return 0;
2434 }
2435
2436 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
2437 {
2438 u16 ctrl;
2439 struct pci_dev *pdev;
2440
2441 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
2442 return -ENOTTY;
2443
2444 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
2445 if (pdev != dev)
2446 return -ENOTTY;
2447
2448 if (probe)
2449 return 0;
2450
2451 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
2452 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
2453 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2454 msleep(100);
2455
2456 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
2457 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2458 msleep(100);
2459
2460 return 0;
2461 }
2462
2463 static int pci_dev_reset(struct pci_dev *dev, int probe)
2464 {
2465 int rc;
2466
2467 might_sleep();
2468
2469 if (!probe) {
2470 pci_block_user_cfg_access(dev);
2471 /* block PM suspend, driver probe, etc. */
2472 device_lock(&dev->dev);
2473 }
2474
2475 rc = pci_dev_specific_reset(dev, probe);
2476 if (rc != -ENOTTY)
2477 goto done;
2478
2479 rc = pcie_flr(dev, probe);
2480 if (rc != -ENOTTY)
2481 goto done;
2482
2483 rc = pci_af_flr(dev, probe);
2484 if (rc != -ENOTTY)
2485 goto done;
2486
2487 rc = pci_pm_reset(dev, probe);
2488 if (rc != -ENOTTY)
2489 goto done;
2490
2491 rc = pci_parent_bus_reset(dev, probe);
2492 done:
2493 if (!probe) {
2494 device_unlock(&dev->dev);
2495 pci_unblock_user_cfg_access(dev);
2496 }
2497
2498 return rc;
2499 }
2500
2501 /**
2502 * __pci_reset_function - reset a PCI device function
2503 * @dev: PCI device to reset
2504 *
2505 * Some devices allow an individual function to be reset without affecting
2506 * other functions in the same device. The PCI device must be responsive
2507 * to PCI config space in order to use this function.
2508 *
2509 * The device function is presumed to be unused when this function is called.
2510 * Resetting the device will make the contents of PCI configuration space
2511 * random, so any caller of this must be prepared to reinitialise the
2512 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
2513 * etc.
2514 *
2515 * Returns 0 if the device function was successfully reset or negative if the
2516 * device doesn't support resetting a single function.
2517 */
2518 int __pci_reset_function(struct pci_dev *dev)
2519 {
2520 return pci_dev_reset(dev, 0);
2521 }
2522 EXPORT_SYMBOL_GPL(__pci_reset_function);
2523
2524 /**
2525 * pci_probe_reset_function - check whether the device can be safely reset
2526 * @dev: PCI device to reset
2527 *
2528 * Some devices allow an individual function to be reset without affecting
2529 * other functions in the same device. The PCI device must be responsive
2530 * to PCI config space in order to use this function.
2531 *
2532 * Returns 0 if the device function can be reset or negative if the
2533 * device doesn't support resetting a single function.
2534 */
2535 int pci_probe_reset_function(struct pci_dev *dev)
2536 {
2537 return pci_dev_reset(dev, 1);
2538 }
2539
2540 /**
2541 * pci_reset_function - quiesce and reset a PCI device function
2542 * @dev: PCI device to reset
2543 *
2544 * Some devices allow an individual function to be reset without affecting
2545 * other functions in the same device. The PCI device must be responsive
2546 * to PCI config space in order to use this function.
2547 *
2548 * This function does not just reset the PCI portion of a device, but
2549 * clears all the state associated with the device. This function differs
2550 * from __pci_reset_function in that it saves and restores device state
2551 * over the reset.
2552 *
2553 * Returns 0 if the device function was successfully reset or negative if the
2554 * device doesn't support resetting a single function.
2555 */
2556 int pci_reset_function(struct pci_dev *dev)
2557 {
2558 int rc;
2559
2560 rc = pci_dev_reset(dev, 1);
2561 if (rc)
2562 return rc;
2563
2564 pci_save_state(dev);
2565
2566 /*
2567 * both INTx and MSI are disabled after the Interrupt Disable bit
2568 * is set and the Bus Master bit is cleared.
2569 */
2570 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2571
2572 rc = pci_dev_reset(dev, 0);
2573
2574 pci_restore_state(dev);
2575
2576 return rc;
2577 }
2578 EXPORT_SYMBOL_GPL(pci_reset_function);
2579
2580 /**
2581 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2582 * @dev: PCI device to query
2583 *
2584 * Returns mmrbc: maximum designed memory read count in bytes
2585 * or appropriate error value.
2586 */
2587 int pcix_get_max_mmrbc(struct pci_dev *dev)
2588 {
2589 int cap;
2590 u32 stat;
2591
2592 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2593 if (!cap)
2594 return -EINVAL;
2595
2596 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
2597 return -EINVAL;
2598
2599 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
2600 }
2601 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2602
2603 /**
2604 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2605 * @dev: PCI device to query
2606 *
2607 * Returns mmrbc: maximum memory read count in bytes
2608 * or appropriate error value.
2609 */
2610 int pcix_get_mmrbc(struct pci_dev *dev)
2611 {
2612 int cap;
2613 u16 cmd;
2614
2615 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2616 if (!cap)
2617 return -EINVAL;
2618
2619 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
2620 return -EINVAL;
2621
2622 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2623 }
2624 EXPORT_SYMBOL(pcix_get_mmrbc);
2625
2626 /**
2627 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2628 * @dev: PCI device to query
2629 * @mmrbc: maximum memory read count in bytes
2630 * valid values are 512, 1024, 2048, 4096
2631 *
2632 * If possible sets maximum memory read byte count, some bridges have erratas
2633 * that prevent this.
2634 */
2635 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2636 {
2637 int cap;
2638 u32 stat, v, o;
2639 u16 cmd;
2640
2641 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2642 return -EINVAL;
2643
2644 v = ffs(mmrbc) - 10;
2645
2646 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2647 if (!cap)
2648 return -EINVAL;
2649
2650 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
2651 return -EINVAL;
2652
2653 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2654 return -E2BIG;
2655
2656 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
2657 return -EINVAL;
2658
2659 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2660 if (o != v) {
2661 if (v > o && dev->bus &&
2662 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2663 return -EIO;
2664
2665 cmd &= ~PCI_X_CMD_MAX_READ;
2666 cmd |= v << 2;
2667 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
2668 return -EIO;
2669 }
2670 return 0;
2671 }
2672 EXPORT_SYMBOL(pcix_set_mmrbc);
2673
2674 /**
2675 * pcie_get_readrq - get PCI Express read request size
2676 * @dev: PCI device to query
2677 *
2678 * Returns maximum memory read request in bytes
2679 * or appropriate error value.
2680 */
2681 int pcie_get_readrq(struct pci_dev *dev)
2682 {
2683 int ret, cap;
2684 u16 ctl;
2685
2686 cap = pci_pcie_cap(dev);
2687 if (!cap)
2688 return -EINVAL;
2689
2690 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2691 if (!ret)
2692 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2693
2694 return ret;
2695 }
2696 EXPORT_SYMBOL(pcie_get_readrq);
2697
2698 /**
2699 * pcie_set_readrq - set PCI Express maximum memory read request
2700 * @dev: PCI device to query
2701 * @rq: maximum memory read count in bytes
2702 * valid values are 128, 256, 512, 1024, 2048, 4096
2703 *
2704 * If possible sets maximum read byte count
2705 */
2706 int pcie_set_readrq(struct pci_dev *dev, int rq)
2707 {
2708 int cap, err = -EINVAL;
2709 u16 ctl, v;
2710
2711 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2712 goto out;
2713
2714 v = (ffs(rq) - 8) << 12;
2715
2716 cap = pci_pcie_cap(dev);
2717 if (!cap)
2718 goto out;
2719
2720 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2721 if (err)
2722 goto out;
2723
2724 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2725 ctl &= ~PCI_EXP_DEVCTL_READRQ;
2726 ctl |= v;
2727 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2728 }
2729
2730 out:
2731 return err;
2732 }
2733 EXPORT_SYMBOL(pcie_set_readrq);
2734
2735 /**
2736 * pci_select_bars - Make BAR mask from the type of resource
2737 * @dev: the PCI device for which BAR mask is made
2738 * @flags: resource type mask to be selected
2739 *
2740 * This helper routine makes bar mask from the type of resource.
2741 */
2742 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2743 {
2744 int i, bars = 0;
2745 for (i = 0; i < PCI_NUM_RESOURCES; i++)
2746 if (pci_resource_flags(dev, i) & flags)
2747 bars |= (1 << i);
2748 return bars;
2749 }
2750
2751 /**
2752 * pci_resource_bar - get position of the BAR associated with a resource
2753 * @dev: the PCI device
2754 * @resno: the resource number
2755 * @type: the BAR type to be filled in
2756 *
2757 * Returns BAR position in config space, or 0 if the BAR is invalid.
2758 */
2759 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2760 {
2761 int reg;
2762
2763 if (resno < PCI_ROM_RESOURCE) {
2764 *type = pci_bar_unknown;
2765 return PCI_BASE_ADDRESS_0 + 4 * resno;
2766 } else if (resno == PCI_ROM_RESOURCE) {
2767 *type = pci_bar_mem32;
2768 return dev->rom_base_reg;
2769 } else if (resno < PCI_BRIDGE_RESOURCES) {
2770 /* device specific resource */
2771 reg = pci_iov_resource_bar(dev, resno, type);
2772 if (reg)
2773 return reg;
2774 }
2775
2776 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
2777 return 0;
2778 }
2779
2780 /* Some architectures require additional programming to enable VGA */
2781 static arch_set_vga_state_t arch_set_vga_state;
2782
2783 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
2784 {
2785 arch_set_vga_state = func; /* NULL disables */
2786 }
2787
2788 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
2789 unsigned int command_bits, bool change_bridge)
2790 {
2791 if (arch_set_vga_state)
2792 return arch_set_vga_state(dev, decode, command_bits,
2793 change_bridge);
2794 return 0;
2795 }
2796
2797 /**
2798 * pci_set_vga_state - set VGA decode state on device and parents if requested
2799 * @dev: the PCI device
2800 * @decode: true = enable decoding, false = disable decoding
2801 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
2802 * @change_bridge: traverse ancestors and change bridges
2803 */
2804 int pci_set_vga_state(struct pci_dev *dev, bool decode,
2805 unsigned int command_bits, bool change_bridge)
2806 {
2807 struct pci_bus *bus;
2808 struct pci_dev *bridge;
2809 u16 cmd;
2810 int rc;
2811
2812 WARN_ON(command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY));
2813
2814 /* ARCH specific VGA enables */
2815 rc = pci_set_vga_state_arch(dev, decode, command_bits, change_bridge);
2816 if (rc)
2817 return rc;
2818
2819 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2820 if (decode == true)
2821 cmd |= command_bits;
2822 else
2823 cmd &= ~command_bits;
2824 pci_write_config_word(dev, PCI_COMMAND, cmd);
2825
2826 if (change_bridge == false)
2827 return 0;
2828
2829 bus = dev->bus;
2830 while (bus) {
2831 bridge = bus->self;
2832 if (bridge) {
2833 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
2834 &cmd);
2835 if (decode == true)
2836 cmd |= PCI_BRIDGE_CTL_VGA;
2837 else
2838 cmd &= ~PCI_BRIDGE_CTL_VGA;
2839 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
2840 cmd);
2841 }
2842 bus = bus->parent;
2843 }
2844 return 0;
2845 }
2846
2847 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
2848 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
2849 static DEFINE_SPINLOCK(resource_alignment_lock);
2850
2851 /**
2852 * pci_specified_resource_alignment - get resource alignment specified by user.
2853 * @dev: the PCI device to get
2854 *
2855 * RETURNS: Resource alignment if it is specified.
2856 * Zero if it is not specified.
2857 */
2858 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
2859 {
2860 int seg, bus, slot, func, align_order, count;
2861 resource_size_t align = 0;
2862 char *p;
2863
2864 spin_lock(&resource_alignment_lock);
2865 p = resource_alignment_param;
2866 while (*p) {
2867 count = 0;
2868 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
2869 p[count] == '@') {
2870 p += count + 1;
2871 } else {
2872 align_order = -1;
2873 }
2874 if (sscanf(p, "%x:%x:%x.%x%n",
2875 &seg, &bus, &slot, &func, &count) != 4) {
2876 seg = 0;
2877 if (sscanf(p, "%x:%x.%x%n",
2878 &bus, &slot, &func, &count) != 3) {
2879 /* Invalid format */
2880 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
2881 p);
2882 break;
2883 }
2884 }
2885 p += count;
2886 if (seg == pci_domain_nr(dev->bus) &&
2887 bus == dev->bus->number &&
2888 slot == PCI_SLOT(dev->devfn) &&
2889 func == PCI_FUNC(dev->devfn)) {
2890 if (align_order == -1) {
2891 align = PAGE_SIZE;
2892 } else {
2893 align = 1 << align_order;
2894 }
2895 /* Found */
2896 break;
2897 }
2898 if (*p != ';' && *p != ',') {
2899 /* End of param or invalid format */
2900 break;
2901 }
2902 p++;
2903 }
2904 spin_unlock(&resource_alignment_lock);
2905 return align;
2906 }
2907
2908 /**
2909 * pci_is_reassigndev - check if specified PCI is target device to reassign
2910 * @dev: the PCI device to check
2911 *
2912 * RETURNS: non-zero for PCI device is a target device to reassign,
2913 * or zero is not.
2914 */
2915 int pci_is_reassigndev(struct pci_dev *dev)
2916 {
2917 return (pci_specified_resource_alignment(dev) != 0);
2918 }
2919
2920 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
2921 {
2922 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
2923 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
2924 spin_lock(&resource_alignment_lock);
2925 strncpy(resource_alignment_param, buf, count);
2926 resource_alignment_param[count] = '\0';
2927 spin_unlock(&resource_alignment_lock);
2928 return count;
2929 }
2930
2931 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
2932 {
2933 size_t count;
2934 spin_lock(&resource_alignment_lock);
2935 count = snprintf(buf, size, "%s", resource_alignment_param);
2936 spin_unlock(&resource_alignment_lock);
2937 return count;
2938 }
2939
2940 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
2941 {
2942 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
2943 }
2944
2945 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
2946 const char *buf, size_t count)
2947 {
2948 return pci_set_resource_alignment_param(buf, count);
2949 }
2950
2951 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
2952 pci_resource_alignment_store);
2953
2954 static int __init pci_resource_alignment_sysfs_init(void)
2955 {
2956 return bus_create_file(&pci_bus_type,
2957 &bus_attr_resource_alignment);
2958 }
2959
2960 late_initcall(pci_resource_alignment_sysfs_init);
2961
2962 static void __devinit pci_no_domains(void)
2963 {
2964 #ifdef CONFIG_PCI_DOMAINS
2965 pci_domains_supported = 0;
2966 #endif
2967 }
2968
2969 /**
2970 * pci_ext_cfg_enabled - can we access extended PCI config space?
2971 * @dev: The PCI device of the root bridge.
2972 *
2973 * Returns 1 if we can access PCI extended config space (offsets
2974 * greater than 0xff). This is the default implementation. Architecture
2975 * implementations can override this.
2976 */
2977 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
2978 {
2979 return 1;
2980 }
2981
2982 void __weak pci_fixup_cardbus(struct pci_bus *bus)
2983 {
2984 }
2985 EXPORT_SYMBOL(pci_fixup_cardbus);
2986
2987 static int __init pci_setup(char *str)
2988 {
2989 while (str) {
2990 char *k = strchr(str, ',');
2991 if (k)
2992 *k++ = 0;
2993 if (*str && (str = pcibios_setup(str)) && *str) {
2994 if (!strcmp(str, "nomsi")) {
2995 pci_no_msi();
2996 } else if (!strcmp(str, "noaer")) {
2997 pci_no_aer();
2998 } else if (!strcmp(str, "nodomains")) {
2999 pci_no_domains();
3000 } else if (!strncmp(str, "cbiosize=", 9)) {
3001 pci_cardbus_io_size = memparse(str + 9, &str);
3002 } else if (!strncmp(str, "cbmemsize=", 10)) {
3003 pci_cardbus_mem_size = memparse(str + 10, &str);
3004 } else if (!strncmp(str, "resource_alignment=", 19)) {
3005 pci_set_resource_alignment_param(str + 19,
3006 strlen(str + 19));
3007 } else if (!strncmp(str, "ecrc=", 5)) {
3008 pcie_ecrc_get_policy(str + 5);
3009 } else if (!strncmp(str, "hpiosize=", 9)) {
3010 pci_hotplug_io_size = memparse(str + 9, &str);
3011 } else if (!strncmp(str, "hpmemsize=", 10)) {
3012 pci_hotplug_mem_size = memparse(str + 10, &str);
3013 } else {
3014 printk(KERN_ERR "PCI: Unknown option `%s'\n",
3015 str);
3016 }
3017 }
3018 str = k;
3019 }
3020 return 0;
3021 }
3022 early_param("pci", pci_setup);
3023
3024 EXPORT_SYMBOL(pci_reenable_device);
3025 EXPORT_SYMBOL(pci_enable_device_io);
3026 EXPORT_SYMBOL(pci_enable_device_mem);
3027 EXPORT_SYMBOL(pci_enable_device);
3028 EXPORT_SYMBOL(pcim_enable_device);
3029 EXPORT_SYMBOL(pcim_pin_device);
3030 EXPORT_SYMBOL(pci_disable_device);
3031 EXPORT_SYMBOL(pci_find_capability);
3032 EXPORT_SYMBOL(pci_bus_find_capability);
3033 EXPORT_SYMBOL(pci_release_regions);
3034 EXPORT_SYMBOL(pci_request_regions);
3035 EXPORT_SYMBOL(pci_request_regions_exclusive);
3036 EXPORT_SYMBOL(pci_release_region);
3037 EXPORT_SYMBOL(pci_request_region);
3038 EXPORT_SYMBOL(pci_request_region_exclusive);
3039 EXPORT_SYMBOL(pci_release_selected_regions);
3040 EXPORT_SYMBOL(pci_request_selected_regions);
3041 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3042 EXPORT_SYMBOL(pci_set_master);
3043 EXPORT_SYMBOL(pci_clear_master);
3044 EXPORT_SYMBOL(pci_set_mwi);
3045 EXPORT_SYMBOL(pci_try_set_mwi);
3046 EXPORT_SYMBOL(pci_clear_mwi);
3047 EXPORT_SYMBOL_GPL(pci_intx);
3048 EXPORT_SYMBOL(pci_assign_resource);
3049 EXPORT_SYMBOL(pci_find_parent_resource);
3050 EXPORT_SYMBOL(pci_select_bars);
3051
3052 EXPORT_SYMBOL(pci_set_power_state);
3053 EXPORT_SYMBOL(pci_save_state);
3054 EXPORT_SYMBOL(pci_restore_state);
3055 EXPORT_SYMBOL(pci_pme_capable);
3056 EXPORT_SYMBOL(pci_pme_active);
3057 EXPORT_SYMBOL(pci_wake_from_d3);
3058 EXPORT_SYMBOL(pci_target_state);
3059 EXPORT_SYMBOL(pci_prepare_to_sleep);
3060 EXPORT_SYMBOL(pci_back_from_sleep);
3061 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
This page took 0.130431 seconds and 5 git commands to generate.