PCI PM: Introduce device flag wakeup_prepared
[deliverable/linux.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <linux/pm_wakeup.h>
21 #include <linux/interrupt.h>
22 #include <asm/dma.h> /* isa_dma_bridge_buggy */
23 #include <linux/device.h>
24 #include <asm/setup.h>
25 #include "pci.h"
26
27 const char *pci_power_names[] = {
28 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
29 };
30 EXPORT_SYMBOL_GPL(pci_power_names);
31
32 unsigned int pci_pm_d3_delay = PCI_PM_D3_WAIT;
33
34 #ifdef CONFIG_PCI_DOMAINS
35 int pci_domains_supported = 1;
36 #endif
37
38 #define DEFAULT_CARDBUS_IO_SIZE (256)
39 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
40 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
41 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
42 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
43
44 #define DEFAULT_HOTPLUG_IO_SIZE (256)
45 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
46 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
47 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
48 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
49
50 /**
51 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
52 * @bus: pointer to PCI bus structure to search
53 *
54 * Given a PCI bus, returns the highest PCI bus number present in the set
55 * including the given PCI bus and its list of child PCI buses.
56 */
57 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
58 {
59 struct list_head *tmp;
60 unsigned char max, n;
61
62 max = bus->subordinate;
63 list_for_each(tmp, &bus->children) {
64 n = pci_bus_max_busnr(pci_bus_b(tmp));
65 if(n > max)
66 max = n;
67 }
68 return max;
69 }
70 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
71
72 #ifdef CONFIG_HAS_IOMEM
73 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
74 {
75 /*
76 * Make sure the BAR is actually a memory resource, not an IO resource
77 */
78 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
79 WARN_ON(1);
80 return NULL;
81 }
82 return ioremap_nocache(pci_resource_start(pdev, bar),
83 pci_resource_len(pdev, bar));
84 }
85 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
86 #endif
87
88 #if 0
89 /**
90 * pci_max_busnr - returns maximum PCI bus number
91 *
92 * Returns the highest PCI bus number present in the system global list of
93 * PCI buses.
94 */
95 unsigned char __devinit
96 pci_max_busnr(void)
97 {
98 struct pci_bus *bus = NULL;
99 unsigned char max, n;
100
101 max = 0;
102 while ((bus = pci_find_next_bus(bus)) != NULL) {
103 n = pci_bus_max_busnr(bus);
104 if(n > max)
105 max = n;
106 }
107 return max;
108 }
109
110 #endif /* 0 */
111
112 #define PCI_FIND_CAP_TTL 48
113
114 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
115 u8 pos, int cap, int *ttl)
116 {
117 u8 id;
118
119 while ((*ttl)--) {
120 pci_bus_read_config_byte(bus, devfn, pos, &pos);
121 if (pos < 0x40)
122 break;
123 pos &= ~3;
124 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
125 &id);
126 if (id == 0xff)
127 break;
128 if (id == cap)
129 return pos;
130 pos += PCI_CAP_LIST_NEXT;
131 }
132 return 0;
133 }
134
135 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
136 u8 pos, int cap)
137 {
138 int ttl = PCI_FIND_CAP_TTL;
139
140 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
141 }
142
143 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
144 {
145 return __pci_find_next_cap(dev->bus, dev->devfn,
146 pos + PCI_CAP_LIST_NEXT, cap);
147 }
148 EXPORT_SYMBOL_GPL(pci_find_next_capability);
149
150 static int __pci_bus_find_cap_start(struct pci_bus *bus,
151 unsigned int devfn, u8 hdr_type)
152 {
153 u16 status;
154
155 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
156 if (!(status & PCI_STATUS_CAP_LIST))
157 return 0;
158
159 switch (hdr_type) {
160 case PCI_HEADER_TYPE_NORMAL:
161 case PCI_HEADER_TYPE_BRIDGE:
162 return PCI_CAPABILITY_LIST;
163 case PCI_HEADER_TYPE_CARDBUS:
164 return PCI_CB_CAPABILITY_LIST;
165 default:
166 return 0;
167 }
168
169 return 0;
170 }
171
172 /**
173 * pci_find_capability - query for devices' capabilities
174 * @dev: PCI device to query
175 * @cap: capability code
176 *
177 * Tell if a device supports a given PCI capability.
178 * Returns the address of the requested capability structure within the
179 * device's PCI configuration space or 0 in case the device does not
180 * support it. Possible values for @cap:
181 *
182 * %PCI_CAP_ID_PM Power Management
183 * %PCI_CAP_ID_AGP Accelerated Graphics Port
184 * %PCI_CAP_ID_VPD Vital Product Data
185 * %PCI_CAP_ID_SLOTID Slot Identification
186 * %PCI_CAP_ID_MSI Message Signalled Interrupts
187 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
188 * %PCI_CAP_ID_PCIX PCI-X
189 * %PCI_CAP_ID_EXP PCI Express
190 */
191 int pci_find_capability(struct pci_dev *dev, int cap)
192 {
193 int pos;
194
195 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
196 if (pos)
197 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
198
199 return pos;
200 }
201
202 /**
203 * pci_bus_find_capability - query for devices' capabilities
204 * @bus: the PCI bus to query
205 * @devfn: PCI device to query
206 * @cap: capability code
207 *
208 * Like pci_find_capability() but works for pci devices that do not have a
209 * pci_dev structure set up yet.
210 *
211 * Returns the address of the requested capability structure within the
212 * device's PCI configuration space or 0 in case the device does not
213 * support it.
214 */
215 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
216 {
217 int pos;
218 u8 hdr_type;
219
220 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
221
222 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
223 if (pos)
224 pos = __pci_find_next_cap(bus, devfn, pos, cap);
225
226 return pos;
227 }
228
229 /**
230 * pci_find_ext_capability - Find an extended capability
231 * @dev: PCI device to query
232 * @cap: capability code
233 *
234 * Returns the address of the requested extended capability structure
235 * within the device's PCI configuration space or 0 if the device does
236 * not support it. Possible values for @cap:
237 *
238 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
239 * %PCI_EXT_CAP_ID_VC Virtual Channel
240 * %PCI_EXT_CAP_ID_DSN Device Serial Number
241 * %PCI_EXT_CAP_ID_PWR Power Budgeting
242 */
243 int pci_find_ext_capability(struct pci_dev *dev, int cap)
244 {
245 u32 header;
246 int ttl;
247 int pos = PCI_CFG_SPACE_SIZE;
248
249 /* minimum 8 bytes per capability */
250 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
251
252 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
253 return 0;
254
255 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
256 return 0;
257
258 /*
259 * If we have no capabilities, this is indicated by cap ID,
260 * cap version and next pointer all being 0.
261 */
262 if (header == 0)
263 return 0;
264
265 while (ttl-- > 0) {
266 if (PCI_EXT_CAP_ID(header) == cap)
267 return pos;
268
269 pos = PCI_EXT_CAP_NEXT(header);
270 if (pos < PCI_CFG_SPACE_SIZE)
271 break;
272
273 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
274 break;
275 }
276
277 return 0;
278 }
279 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
280
281 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
282 {
283 int rc, ttl = PCI_FIND_CAP_TTL;
284 u8 cap, mask;
285
286 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
287 mask = HT_3BIT_CAP_MASK;
288 else
289 mask = HT_5BIT_CAP_MASK;
290
291 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
292 PCI_CAP_ID_HT, &ttl);
293 while (pos) {
294 rc = pci_read_config_byte(dev, pos + 3, &cap);
295 if (rc != PCIBIOS_SUCCESSFUL)
296 return 0;
297
298 if ((cap & mask) == ht_cap)
299 return pos;
300
301 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
302 pos + PCI_CAP_LIST_NEXT,
303 PCI_CAP_ID_HT, &ttl);
304 }
305
306 return 0;
307 }
308 /**
309 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
310 * @dev: PCI device to query
311 * @pos: Position from which to continue searching
312 * @ht_cap: Hypertransport capability code
313 *
314 * To be used in conjunction with pci_find_ht_capability() to search for
315 * all capabilities matching @ht_cap. @pos should always be a value returned
316 * from pci_find_ht_capability().
317 *
318 * NB. To be 100% safe against broken PCI devices, the caller should take
319 * steps to avoid an infinite loop.
320 */
321 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
322 {
323 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
324 }
325 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
326
327 /**
328 * pci_find_ht_capability - query a device's Hypertransport capabilities
329 * @dev: PCI device to query
330 * @ht_cap: Hypertransport capability code
331 *
332 * Tell if a device supports a given Hypertransport capability.
333 * Returns an address within the device's PCI configuration space
334 * or 0 in case the device does not support the request capability.
335 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
336 * which has a Hypertransport capability matching @ht_cap.
337 */
338 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
339 {
340 int pos;
341
342 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
343 if (pos)
344 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
345
346 return pos;
347 }
348 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
349
350 /**
351 * pci_find_parent_resource - return resource region of parent bus of given region
352 * @dev: PCI device structure contains resources to be searched
353 * @res: child resource record for which parent is sought
354 *
355 * For given resource region of given device, return the resource
356 * region of parent bus the given region is contained in or where
357 * it should be allocated from.
358 */
359 struct resource *
360 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
361 {
362 const struct pci_bus *bus = dev->bus;
363 int i;
364 struct resource *best = NULL;
365
366 for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
367 struct resource *r = bus->resource[i];
368 if (!r)
369 continue;
370 if (res->start && !(res->start >= r->start && res->end <= r->end))
371 continue; /* Not contained */
372 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
373 continue; /* Wrong type */
374 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
375 return r; /* Exact match */
376 if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH))
377 best = r; /* Approximating prefetchable by non-prefetchable */
378 }
379 return best;
380 }
381
382 /**
383 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
384 * @dev: PCI device to have its BARs restored
385 *
386 * Restore the BAR values for a given device, so as to make it
387 * accessible by its driver.
388 */
389 static void
390 pci_restore_bars(struct pci_dev *dev)
391 {
392 int i;
393
394 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
395 pci_update_resource(dev, i);
396 }
397
398 static struct pci_platform_pm_ops *pci_platform_pm;
399
400 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
401 {
402 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
403 || !ops->sleep_wake || !ops->can_wakeup)
404 return -EINVAL;
405 pci_platform_pm = ops;
406 return 0;
407 }
408
409 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
410 {
411 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
412 }
413
414 static inline int platform_pci_set_power_state(struct pci_dev *dev,
415 pci_power_t t)
416 {
417 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
418 }
419
420 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
421 {
422 return pci_platform_pm ?
423 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
424 }
425
426 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
427 {
428 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
429 }
430
431 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
432 {
433 return pci_platform_pm ?
434 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
435 }
436
437 /**
438 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
439 * given PCI device
440 * @dev: PCI device to handle.
441 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
442 *
443 * RETURN VALUE:
444 * -EINVAL if the requested state is invalid.
445 * -EIO if device does not support PCI PM or its PM capabilities register has a
446 * wrong version, or device doesn't support the requested state.
447 * 0 if device already is in the requested state.
448 * 0 if device's power state has been successfully changed.
449 */
450 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
451 {
452 u16 pmcsr;
453 bool need_restore = false;
454
455 /* Check if we're already there */
456 if (dev->current_state == state)
457 return 0;
458
459 if (!dev->pm_cap)
460 return -EIO;
461
462 if (state < PCI_D0 || state > PCI_D3hot)
463 return -EINVAL;
464
465 /* Validate current state:
466 * Can enter D0 from any state, but if we can only go deeper
467 * to sleep if we're already in a low power state
468 */
469 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
470 && dev->current_state > state) {
471 dev_err(&dev->dev, "invalid power transition "
472 "(from state %d to %d)\n", dev->current_state, state);
473 return -EINVAL;
474 }
475
476 /* check if this device supports the desired state */
477 if ((state == PCI_D1 && !dev->d1_support)
478 || (state == PCI_D2 && !dev->d2_support))
479 return -EIO;
480
481 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
482
483 /* If we're (effectively) in D3, force entire word to 0.
484 * This doesn't affect PME_Status, disables PME_En, and
485 * sets PowerState to 0.
486 */
487 switch (dev->current_state) {
488 case PCI_D0:
489 case PCI_D1:
490 case PCI_D2:
491 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
492 pmcsr |= state;
493 break;
494 case PCI_D3hot:
495 case PCI_D3cold:
496 case PCI_UNKNOWN: /* Boot-up */
497 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
498 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
499 need_restore = true;
500 /* Fall-through: force to D0 */
501 default:
502 pmcsr = 0;
503 break;
504 }
505
506 /* enter specified state */
507 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
508
509 /* Mandatory power management transition delays */
510 /* see PCI PM 1.1 5.6.1 table 18 */
511 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
512 msleep(pci_pm_d3_delay);
513 else if (state == PCI_D2 || dev->current_state == PCI_D2)
514 udelay(PCI_PM_D2_DELAY);
515
516 dev->current_state = state;
517
518 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
519 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
520 * from D3hot to D0 _may_ perform an internal reset, thereby
521 * going to "D0 Uninitialized" rather than "D0 Initialized".
522 * For example, at least some versions of the 3c905B and the
523 * 3c556B exhibit this behaviour.
524 *
525 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
526 * devices in a D3hot state at boot. Consequently, we need to
527 * restore at least the BARs so that the device will be
528 * accessible to its driver.
529 */
530 if (need_restore)
531 pci_restore_bars(dev);
532
533 if (dev->bus->self)
534 pcie_aspm_pm_state_change(dev->bus->self);
535
536 return 0;
537 }
538
539 /**
540 * pci_update_current_state - Read PCI power state of given device from its
541 * PCI PM registers and cache it
542 * @dev: PCI device to handle.
543 * @state: State to cache in case the device doesn't have the PM capability
544 */
545 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
546 {
547 if (dev->pm_cap) {
548 u16 pmcsr;
549
550 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
551 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
552 } else {
553 dev->current_state = state;
554 }
555 }
556
557 /**
558 * pci_platform_power_transition - Use platform to change device power state
559 * @dev: PCI device to handle.
560 * @state: State to put the device into.
561 */
562 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
563 {
564 int error;
565
566 if (platform_pci_power_manageable(dev)) {
567 error = platform_pci_set_power_state(dev, state);
568 if (!error)
569 pci_update_current_state(dev, state);
570 } else {
571 error = -ENODEV;
572 /* Fall back to PCI_D0 if native PM is not supported */
573 if (!dev->pm_cap)
574 dev->current_state = PCI_D0;
575 }
576
577 return error;
578 }
579
580 /**
581 * __pci_start_power_transition - Start power transition of a PCI device
582 * @dev: PCI device to handle.
583 * @state: State to put the device into.
584 */
585 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
586 {
587 if (state == PCI_D0)
588 pci_platform_power_transition(dev, PCI_D0);
589 }
590
591 /**
592 * __pci_complete_power_transition - Complete power transition of a PCI device
593 * @dev: PCI device to handle.
594 * @state: State to put the device into.
595 *
596 * This function should not be called directly by device drivers.
597 */
598 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
599 {
600 return state > PCI_D0 ?
601 pci_platform_power_transition(dev, state) : -EINVAL;
602 }
603 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
604
605 /**
606 * pci_set_power_state - Set the power state of a PCI device
607 * @dev: PCI device to handle.
608 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
609 *
610 * Transition a device to a new power state, using the platform firmware and/or
611 * the device's PCI PM registers.
612 *
613 * RETURN VALUE:
614 * -EINVAL if the requested state is invalid.
615 * -EIO if device does not support PCI PM or its PM capabilities register has a
616 * wrong version, or device doesn't support the requested state.
617 * 0 if device already is in the requested state.
618 * 0 if device's power state has been successfully changed.
619 */
620 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
621 {
622 int error;
623
624 /* bound the state we're entering */
625 if (state > PCI_D3hot)
626 state = PCI_D3hot;
627 else if (state < PCI_D0)
628 state = PCI_D0;
629 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
630 /*
631 * If the device or the parent bridge do not support PCI PM,
632 * ignore the request if we're doing anything other than putting
633 * it into D0 (which would only happen on boot).
634 */
635 return 0;
636
637 /* Check if we're already there */
638 if (dev->current_state == state)
639 return 0;
640
641 __pci_start_power_transition(dev, state);
642
643 /* This device is quirked not to be put into D3, so
644 don't put it in D3 */
645 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
646 return 0;
647
648 error = pci_raw_set_power_state(dev, state);
649
650 if (!__pci_complete_power_transition(dev, state))
651 error = 0;
652
653 return error;
654 }
655
656 /**
657 * pci_choose_state - Choose the power state of a PCI device
658 * @dev: PCI device to be suspended
659 * @state: target sleep state for the whole system. This is the value
660 * that is passed to suspend() function.
661 *
662 * Returns PCI power state suitable for given device and given system
663 * message.
664 */
665
666 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
667 {
668 pci_power_t ret;
669
670 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
671 return PCI_D0;
672
673 ret = platform_pci_choose_state(dev);
674 if (ret != PCI_POWER_ERROR)
675 return ret;
676
677 switch (state.event) {
678 case PM_EVENT_ON:
679 return PCI_D0;
680 case PM_EVENT_FREEZE:
681 case PM_EVENT_PRETHAW:
682 /* REVISIT both freeze and pre-thaw "should" use D0 */
683 case PM_EVENT_SUSPEND:
684 case PM_EVENT_HIBERNATE:
685 return PCI_D3hot;
686 default:
687 dev_info(&dev->dev, "unrecognized suspend event %d\n",
688 state.event);
689 BUG();
690 }
691 return PCI_D0;
692 }
693
694 EXPORT_SYMBOL(pci_choose_state);
695
696 #define PCI_EXP_SAVE_REGS 7
697
698 #define pcie_cap_has_devctl(type, flags) 1
699 #define pcie_cap_has_lnkctl(type, flags) \
700 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
701 (type == PCI_EXP_TYPE_ROOT_PORT || \
702 type == PCI_EXP_TYPE_ENDPOINT || \
703 type == PCI_EXP_TYPE_LEG_END))
704 #define pcie_cap_has_sltctl(type, flags) \
705 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
706 ((type == PCI_EXP_TYPE_ROOT_PORT) || \
707 (type == PCI_EXP_TYPE_DOWNSTREAM && \
708 (flags & PCI_EXP_FLAGS_SLOT))))
709 #define pcie_cap_has_rtctl(type, flags) \
710 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
711 (type == PCI_EXP_TYPE_ROOT_PORT || \
712 type == PCI_EXP_TYPE_RC_EC))
713 #define pcie_cap_has_devctl2(type, flags) \
714 ((flags & PCI_EXP_FLAGS_VERS) > 1)
715 #define pcie_cap_has_lnkctl2(type, flags) \
716 ((flags & PCI_EXP_FLAGS_VERS) > 1)
717 #define pcie_cap_has_sltctl2(type, flags) \
718 ((flags & PCI_EXP_FLAGS_VERS) > 1)
719
720 static int pci_save_pcie_state(struct pci_dev *dev)
721 {
722 int pos, i = 0;
723 struct pci_cap_saved_state *save_state;
724 u16 *cap;
725 u16 flags;
726
727 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
728 if (pos <= 0)
729 return 0;
730
731 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
732 if (!save_state) {
733 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
734 return -ENOMEM;
735 }
736 cap = (u16 *)&save_state->data[0];
737
738 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
739
740 if (pcie_cap_has_devctl(dev->pcie_type, flags))
741 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
742 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
743 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
744 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
745 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
746 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
747 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
748 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
749 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
750 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
751 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
752 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
753 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
754
755 return 0;
756 }
757
758 static void pci_restore_pcie_state(struct pci_dev *dev)
759 {
760 int i = 0, pos;
761 struct pci_cap_saved_state *save_state;
762 u16 *cap;
763 u16 flags;
764
765 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
766 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
767 if (!save_state || pos <= 0)
768 return;
769 cap = (u16 *)&save_state->data[0];
770
771 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
772
773 if (pcie_cap_has_devctl(dev->pcie_type, flags))
774 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
775 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
776 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
777 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
778 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
779 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
780 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
781 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
782 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
783 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
784 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
785 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
786 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
787 }
788
789
790 static int pci_save_pcix_state(struct pci_dev *dev)
791 {
792 int pos;
793 struct pci_cap_saved_state *save_state;
794
795 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
796 if (pos <= 0)
797 return 0;
798
799 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
800 if (!save_state) {
801 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
802 return -ENOMEM;
803 }
804
805 pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
806
807 return 0;
808 }
809
810 static void pci_restore_pcix_state(struct pci_dev *dev)
811 {
812 int i = 0, pos;
813 struct pci_cap_saved_state *save_state;
814 u16 *cap;
815
816 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
817 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
818 if (!save_state || pos <= 0)
819 return;
820 cap = (u16 *)&save_state->data[0];
821
822 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
823 }
824
825
826 /**
827 * pci_save_state - save the PCI configuration space of a device before suspending
828 * @dev: - PCI device that we're dealing with
829 */
830 int
831 pci_save_state(struct pci_dev *dev)
832 {
833 int i;
834 /* XXX: 100% dword access ok here? */
835 for (i = 0; i < 16; i++)
836 pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]);
837 dev->state_saved = true;
838 if ((i = pci_save_pcie_state(dev)) != 0)
839 return i;
840 if ((i = pci_save_pcix_state(dev)) != 0)
841 return i;
842 return 0;
843 }
844
845 /**
846 * pci_restore_state - Restore the saved state of a PCI device
847 * @dev: - PCI device that we're dealing with
848 */
849 int
850 pci_restore_state(struct pci_dev *dev)
851 {
852 int i;
853 u32 val;
854
855 if (!dev->state_saved)
856 return 0;
857 /* PCI Express register must be restored first */
858 pci_restore_pcie_state(dev);
859
860 /*
861 * The Base Address register should be programmed before the command
862 * register(s)
863 */
864 for (i = 15; i >= 0; i--) {
865 pci_read_config_dword(dev, i * 4, &val);
866 if (val != dev->saved_config_space[i]) {
867 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
868 "space at offset %#x (was %#x, writing %#x)\n",
869 i, val, (int)dev->saved_config_space[i]);
870 pci_write_config_dword(dev,i * 4,
871 dev->saved_config_space[i]);
872 }
873 }
874 pci_restore_pcix_state(dev);
875 pci_restore_msi_state(dev);
876 pci_restore_iov_state(dev);
877
878 return 0;
879 }
880
881 static int do_pci_enable_device(struct pci_dev *dev, int bars)
882 {
883 int err;
884
885 err = pci_set_power_state(dev, PCI_D0);
886 if (err < 0 && err != -EIO)
887 return err;
888 err = pcibios_enable_device(dev, bars);
889 if (err < 0)
890 return err;
891 pci_fixup_device(pci_fixup_enable, dev);
892
893 return 0;
894 }
895
896 /**
897 * pci_reenable_device - Resume abandoned device
898 * @dev: PCI device to be resumed
899 *
900 * Note this function is a backend of pci_default_resume and is not supposed
901 * to be called by normal code, write proper resume handler and use it instead.
902 */
903 int pci_reenable_device(struct pci_dev *dev)
904 {
905 if (pci_is_enabled(dev))
906 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
907 return 0;
908 }
909
910 static int __pci_enable_device_flags(struct pci_dev *dev,
911 resource_size_t flags)
912 {
913 int err;
914 int i, bars = 0;
915
916 if (atomic_add_return(1, &dev->enable_cnt) > 1)
917 return 0; /* already enabled */
918
919 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
920 if (dev->resource[i].flags & flags)
921 bars |= (1 << i);
922
923 err = do_pci_enable_device(dev, bars);
924 if (err < 0)
925 atomic_dec(&dev->enable_cnt);
926 return err;
927 }
928
929 /**
930 * pci_enable_device_io - Initialize a device for use with IO space
931 * @dev: PCI device to be initialized
932 *
933 * Initialize device before it's used by a driver. Ask low-level code
934 * to enable I/O resources. Wake up the device if it was suspended.
935 * Beware, this function can fail.
936 */
937 int pci_enable_device_io(struct pci_dev *dev)
938 {
939 return __pci_enable_device_flags(dev, IORESOURCE_IO);
940 }
941
942 /**
943 * pci_enable_device_mem - Initialize a device for use with Memory space
944 * @dev: PCI device to be initialized
945 *
946 * Initialize device before it's used by a driver. Ask low-level code
947 * to enable Memory resources. Wake up the device if it was suspended.
948 * Beware, this function can fail.
949 */
950 int pci_enable_device_mem(struct pci_dev *dev)
951 {
952 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
953 }
954
955 /**
956 * pci_enable_device - Initialize device before it's used by a driver.
957 * @dev: PCI device to be initialized
958 *
959 * Initialize device before it's used by a driver. Ask low-level code
960 * to enable I/O and memory. Wake up the device if it was suspended.
961 * Beware, this function can fail.
962 *
963 * Note we don't actually enable the device many times if we call
964 * this function repeatedly (we just increment the count).
965 */
966 int pci_enable_device(struct pci_dev *dev)
967 {
968 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
969 }
970
971 /*
972 * Managed PCI resources. This manages device on/off, intx/msi/msix
973 * on/off and BAR regions. pci_dev itself records msi/msix status, so
974 * there's no need to track it separately. pci_devres is initialized
975 * when a device is enabled using managed PCI device enable interface.
976 */
977 struct pci_devres {
978 unsigned int enabled:1;
979 unsigned int pinned:1;
980 unsigned int orig_intx:1;
981 unsigned int restore_intx:1;
982 u32 region_mask;
983 };
984
985 static void pcim_release(struct device *gendev, void *res)
986 {
987 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
988 struct pci_devres *this = res;
989 int i;
990
991 if (dev->msi_enabled)
992 pci_disable_msi(dev);
993 if (dev->msix_enabled)
994 pci_disable_msix(dev);
995
996 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
997 if (this->region_mask & (1 << i))
998 pci_release_region(dev, i);
999
1000 if (this->restore_intx)
1001 pci_intx(dev, this->orig_intx);
1002
1003 if (this->enabled && !this->pinned)
1004 pci_disable_device(dev);
1005 }
1006
1007 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1008 {
1009 struct pci_devres *dr, *new_dr;
1010
1011 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1012 if (dr)
1013 return dr;
1014
1015 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1016 if (!new_dr)
1017 return NULL;
1018 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1019 }
1020
1021 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1022 {
1023 if (pci_is_managed(pdev))
1024 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1025 return NULL;
1026 }
1027
1028 /**
1029 * pcim_enable_device - Managed pci_enable_device()
1030 * @pdev: PCI device to be initialized
1031 *
1032 * Managed pci_enable_device().
1033 */
1034 int pcim_enable_device(struct pci_dev *pdev)
1035 {
1036 struct pci_devres *dr;
1037 int rc;
1038
1039 dr = get_pci_dr(pdev);
1040 if (unlikely(!dr))
1041 return -ENOMEM;
1042 if (dr->enabled)
1043 return 0;
1044
1045 rc = pci_enable_device(pdev);
1046 if (!rc) {
1047 pdev->is_managed = 1;
1048 dr->enabled = 1;
1049 }
1050 return rc;
1051 }
1052
1053 /**
1054 * pcim_pin_device - Pin managed PCI device
1055 * @pdev: PCI device to pin
1056 *
1057 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1058 * driver detach. @pdev must have been enabled with
1059 * pcim_enable_device().
1060 */
1061 void pcim_pin_device(struct pci_dev *pdev)
1062 {
1063 struct pci_devres *dr;
1064
1065 dr = find_pci_dr(pdev);
1066 WARN_ON(!dr || !dr->enabled);
1067 if (dr)
1068 dr->pinned = 1;
1069 }
1070
1071 /**
1072 * pcibios_disable_device - disable arch specific PCI resources for device dev
1073 * @dev: the PCI device to disable
1074 *
1075 * Disables architecture specific PCI resources for the device. This
1076 * is the default implementation. Architecture implementations can
1077 * override this.
1078 */
1079 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1080
1081 static void do_pci_disable_device(struct pci_dev *dev)
1082 {
1083 u16 pci_command;
1084
1085 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1086 if (pci_command & PCI_COMMAND_MASTER) {
1087 pci_command &= ~PCI_COMMAND_MASTER;
1088 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1089 }
1090
1091 pcibios_disable_device(dev);
1092 }
1093
1094 /**
1095 * pci_disable_enabled_device - Disable device without updating enable_cnt
1096 * @dev: PCI device to disable
1097 *
1098 * NOTE: This function is a backend of PCI power management routines and is
1099 * not supposed to be called drivers.
1100 */
1101 void pci_disable_enabled_device(struct pci_dev *dev)
1102 {
1103 if (pci_is_enabled(dev))
1104 do_pci_disable_device(dev);
1105 }
1106
1107 /**
1108 * pci_disable_device - Disable PCI device after use
1109 * @dev: PCI device to be disabled
1110 *
1111 * Signal to the system that the PCI device is not in use by the system
1112 * anymore. This only involves disabling PCI bus-mastering, if active.
1113 *
1114 * Note we don't actually disable the device until all callers of
1115 * pci_device_enable() have called pci_device_disable().
1116 */
1117 void
1118 pci_disable_device(struct pci_dev *dev)
1119 {
1120 struct pci_devres *dr;
1121
1122 dr = find_pci_dr(dev);
1123 if (dr)
1124 dr->enabled = 0;
1125
1126 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1127 return;
1128
1129 do_pci_disable_device(dev);
1130
1131 dev->is_busmaster = 0;
1132 }
1133
1134 /**
1135 * pcibios_set_pcie_reset_state - set reset state for device dev
1136 * @dev: the PCI-E device reset
1137 * @state: Reset state to enter into
1138 *
1139 *
1140 * Sets the PCI-E reset state for the device. This is the default
1141 * implementation. Architecture implementations can override this.
1142 */
1143 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1144 enum pcie_reset_state state)
1145 {
1146 return -EINVAL;
1147 }
1148
1149 /**
1150 * pci_set_pcie_reset_state - set reset state for device dev
1151 * @dev: the PCI-E device reset
1152 * @state: Reset state to enter into
1153 *
1154 *
1155 * Sets the PCI reset state for the device.
1156 */
1157 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1158 {
1159 return pcibios_set_pcie_reset_state(dev, state);
1160 }
1161
1162 /**
1163 * pci_pme_capable - check the capability of PCI device to generate PME#
1164 * @dev: PCI device to handle.
1165 * @state: PCI state from which device will issue PME#.
1166 */
1167 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1168 {
1169 if (!dev->pm_cap)
1170 return false;
1171
1172 return !!(dev->pme_support & (1 << state));
1173 }
1174
1175 /**
1176 * pci_pme_active - enable or disable PCI device's PME# function
1177 * @dev: PCI device to handle.
1178 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1179 *
1180 * The caller must verify that the device is capable of generating PME# before
1181 * calling this function with @enable equal to 'true'.
1182 */
1183 void pci_pme_active(struct pci_dev *dev, bool enable)
1184 {
1185 u16 pmcsr;
1186
1187 if (!dev->pm_cap)
1188 return;
1189
1190 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1191 /* Clear PME_Status by writing 1 to it and enable PME# */
1192 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1193 if (!enable)
1194 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1195
1196 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1197
1198 dev_printk(KERN_INFO, &dev->dev, "PME# %s\n",
1199 enable ? "enabled" : "disabled");
1200 }
1201
1202 /**
1203 * pci_enable_wake - enable PCI device as wakeup event source
1204 * @dev: PCI device affected
1205 * @state: PCI state from which device will issue wakeup events
1206 * @enable: True to enable event generation; false to disable
1207 *
1208 * This enables the device as a wakeup event source, or disables it.
1209 * When such events involves platform-specific hooks, those hooks are
1210 * called automatically by this routine.
1211 *
1212 * Devices with legacy power management (no standard PCI PM capabilities)
1213 * always require such platform hooks.
1214 *
1215 * RETURN VALUE:
1216 * 0 is returned on success
1217 * -EINVAL is returned if device is not supposed to wake up the system
1218 * Error code depending on the platform is returned if both the platform and
1219 * the native mechanism fail to enable the generation of wake-up events
1220 */
1221 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1222 {
1223 int ret = 0;
1224
1225 if (enable && !device_may_wakeup(&dev->dev))
1226 return -EINVAL;
1227
1228 /* Don't do the same thing twice in a row for one device. */
1229 if (!!enable == !!dev->wakeup_prepared)
1230 return 0;
1231
1232 /*
1233 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1234 * Anderson we should be doing PME# wake enable followed by ACPI wake
1235 * enable. To disable wake-up we call the platform first, for symmetry.
1236 */
1237
1238 if (enable) {
1239 int error;
1240
1241 if (pci_pme_capable(dev, state))
1242 pci_pme_active(dev, true);
1243 else
1244 ret = 1;
1245 error = platform_pci_sleep_wake(dev, true);
1246 if (ret)
1247 ret = error;
1248 if (!ret)
1249 dev->wakeup_prepared = true;
1250 } else {
1251 platform_pci_sleep_wake(dev, false);
1252 pci_pme_active(dev, false);
1253 dev->wakeup_prepared = false;
1254 }
1255
1256 return ret;
1257 }
1258
1259 /**
1260 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1261 * @dev: PCI device to prepare
1262 * @enable: True to enable wake-up event generation; false to disable
1263 *
1264 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1265 * and this function allows them to set that up cleanly - pci_enable_wake()
1266 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1267 * ordering constraints.
1268 *
1269 * This function only returns error code if the device is not capable of
1270 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1271 * enable wake-up power for it.
1272 */
1273 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1274 {
1275 return pci_pme_capable(dev, PCI_D3cold) ?
1276 pci_enable_wake(dev, PCI_D3cold, enable) :
1277 pci_enable_wake(dev, PCI_D3hot, enable);
1278 }
1279
1280 /**
1281 * pci_target_state - find an appropriate low power state for a given PCI dev
1282 * @dev: PCI device
1283 *
1284 * Use underlying platform code to find a supported low power state for @dev.
1285 * If the platform can't manage @dev, return the deepest state from which it
1286 * can generate wake events, based on any available PME info.
1287 */
1288 pci_power_t pci_target_state(struct pci_dev *dev)
1289 {
1290 pci_power_t target_state = PCI_D3hot;
1291
1292 if (platform_pci_power_manageable(dev)) {
1293 /*
1294 * Call the platform to choose the target state of the device
1295 * and enable wake-up from this state if supported.
1296 */
1297 pci_power_t state = platform_pci_choose_state(dev);
1298
1299 switch (state) {
1300 case PCI_POWER_ERROR:
1301 case PCI_UNKNOWN:
1302 break;
1303 case PCI_D1:
1304 case PCI_D2:
1305 if (pci_no_d1d2(dev))
1306 break;
1307 default:
1308 target_state = state;
1309 }
1310 } else if (!dev->pm_cap) {
1311 target_state = PCI_D0;
1312 } else if (device_may_wakeup(&dev->dev)) {
1313 /*
1314 * Find the deepest state from which the device can generate
1315 * wake-up events, make it the target state and enable device
1316 * to generate PME#.
1317 */
1318 if (dev->pme_support) {
1319 while (target_state
1320 && !(dev->pme_support & (1 << target_state)))
1321 target_state--;
1322 }
1323 }
1324
1325 return target_state;
1326 }
1327
1328 /**
1329 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1330 * @dev: Device to handle.
1331 *
1332 * Choose the power state appropriate for the device depending on whether
1333 * it can wake up the system and/or is power manageable by the platform
1334 * (PCI_D3hot is the default) and put the device into that state.
1335 */
1336 int pci_prepare_to_sleep(struct pci_dev *dev)
1337 {
1338 pci_power_t target_state = pci_target_state(dev);
1339 int error;
1340
1341 if (target_state == PCI_POWER_ERROR)
1342 return -EIO;
1343
1344 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1345
1346 error = pci_set_power_state(dev, target_state);
1347
1348 if (error)
1349 pci_enable_wake(dev, target_state, false);
1350
1351 return error;
1352 }
1353
1354 /**
1355 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1356 * @dev: Device to handle.
1357 *
1358 * Disable device's sytem wake-up capability and put it into D0.
1359 */
1360 int pci_back_from_sleep(struct pci_dev *dev)
1361 {
1362 pci_enable_wake(dev, PCI_D0, false);
1363 return pci_set_power_state(dev, PCI_D0);
1364 }
1365
1366 /**
1367 * pci_pm_init - Initialize PM functions of given PCI device
1368 * @dev: PCI device to handle.
1369 */
1370 void pci_pm_init(struct pci_dev *dev)
1371 {
1372 int pm;
1373 u16 pmc;
1374
1375 dev->wakeup_prepared = false;
1376 dev->pm_cap = 0;
1377
1378 /* find PCI PM capability in list */
1379 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1380 if (!pm)
1381 return;
1382 /* Check device's ability to generate PME# */
1383 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1384
1385 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1386 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1387 pmc & PCI_PM_CAP_VER_MASK);
1388 return;
1389 }
1390
1391 dev->pm_cap = pm;
1392
1393 dev->d1_support = false;
1394 dev->d2_support = false;
1395 if (!pci_no_d1d2(dev)) {
1396 if (pmc & PCI_PM_CAP_D1)
1397 dev->d1_support = true;
1398 if (pmc & PCI_PM_CAP_D2)
1399 dev->d2_support = true;
1400
1401 if (dev->d1_support || dev->d2_support)
1402 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1403 dev->d1_support ? " D1" : "",
1404 dev->d2_support ? " D2" : "");
1405 }
1406
1407 pmc &= PCI_PM_CAP_PME_MASK;
1408 if (pmc) {
1409 dev_info(&dev->dev, "PME# supported from%s%s%s%s%s\n",
1410 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1411 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1412 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1413 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1414 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1415 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1416 /*
1417 * Make device's PM flags reflect the wake-up capability, but
1418 * let the user space enable it to wake up the system as needed.
1419 */
1420 device_set_wakeup_capable(&dev->dev, true);
1421 device_set_wakeup_enable(&dev->dev, false);
1422 /* Disable the PME# generation functionality */
1423 pci_pme_active(dev, false);
1424 } else {
1425 dev->pme_support = 0;
1426 }
1427 }
1428
1429 /**
1430 * platform_pci_wakeup_init - init platform wakeup if present
1431 * @dev: PCI device
1432 *
1433 * Some devices don't have PCI PM caps but can still generate wakeup
1434 * events through platform methods (like ACPI events). If @dev supports
1435 * platform wakeup events, set the device flag to indicate as much. This
1436 * may be redundant if the device also supports PCI PM caps, but double
1437 * initialization should be safe in that case.
1438 */
1439 void platform_pci_wakeup_init(struct pci_dev *dev)
1440 {
1441 if (!platform_pci_can_wakeup(dev))
1442 return;
1443
1444 device_set_wakeup_capable(&dev->dev, true);
1445 device_set_wakeup_enable(&dev->dev, false);
1446 platform_pci_sleep_wake(dev, false);
1447 }
1448
1449 /**
1450 * pci_add_save_buffer - allocate buffer for saving given capability registers
1451 * @dev: the PCI device
1452 * @cap: the capability to allocate the buffer for
1453 * @size: requested size of the buffer
1454 */
1455 static int pci_add_cap_save_buffer(
1456 struct pci_dev *dev, char cap, unsigned int size)
1457 {
1458 int pos;
1459 struct pci_cap_saved_state *save_state;
1460
1461 pos = pci_find_capability(dev, cap);
1462 if (pos <= 0)
1463 return 0;
1464
1465 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1466 if (!save_state)
1467 return -ENOMEM;
1468
1469 save_state->cap_nr = cap;
1470 pci_add_saved_cap(dev, save_state);
1471
1472 return 0;
1473 }
1474
1475 /**
1476 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1477 * @dev: the PCI device
1478 */
1479 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1480 {
1481 int error;
1482
1483 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1484 PCI_EXP_SAVE_REGS * sizeof(u16));
1485 if (error)
1486 dev_err(&dev->dev,
1487 "unable to preallocate PCI Express save buffer\n");
1488
1489 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1490 if (error)
1491 dev_err(&dev->dev,
1492 "unable to preallocate PCI-X save buffer\n");
1493 }
1494
1495 /**
1496 * pci_enable_ari - enable ARI forwarding if hardware support it
1497 * @dev: the PCI device
1498 */
1499 void pci_enable_ari(struct pci_dev *dev)
1500 {
1501 int pos;
1502 u32 cap;
1503 u16 ctrl;
1504 struct pci_dev *bridge;
1505
1506 if (!dev->is_pcie || dev->devfn)
1507 return;
1508
1509 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1510 if (!pos)
1511 return;
1512
1513 bridge = dev->bus->self;
1514 if (!bridge || !bridge->is_pcie)
1515 return;
1516
1517 pos = pci_find_capability(bridge, PCI_CAP_ID_EXP);
1518 if (!pos)
1519 return;
1520
1521 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1522 if (!(cap & PCI_EXP_DEVCAP2_ARI))
1523 return;
1524
1525 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1526 ctrl |= PCI_EXP_DEVCTL2_ARI;
1527 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1528
1529 bridge->ari_enabled = 1;
1530 }
1531
1532 /**
1533 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1534 * @dev: the PCI device
1535 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1536 *
1537 * Perform INTx swizzling for a device behind one level of bridge. This is
1538 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1539 * behind bridges on add-in cards. For devices with ARI enabled, the slot
1540 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
1541 * the PCI Express Base Specification, Revision 2.1)
1542 */
1543 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1544 {
1545 int slot;
1546
1547 if (pci_ari_enabled(dev->bus))
1548 slot = 0;
1549 else
1550 slot = PCI_SLOT(dev->devfn);
1551
1552 return (((pin - 1) + slot) % 4) + 1;
1553 }
1554
1555 int
1556 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1557 {
1558 u8 pin;
1559
1560 pin = dev->pin;
1561 if (!pin)
1562 return -1;
1563
1564 while (!pci_is_root_bus(dev->bus)) {
1565 pin = pci_swizzle_interrupt_pin(dev, pin);
1566 dev = dev->bus->self;
1567 }
1568 *bridge = dev;
1569 return pin;
1570 }
1571
1572 /**
1573 * pci_common_swizzle - swizzle INTx all the way to root bridge
1574 * @dev: the PCI device
1575 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1576 *
1577 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
1578 * bridges all the way up to a PCI root bus.
1579 */
1580 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
1581 {
1582 u8 pin = *pinp;
1583
1584 while (!pci_is_root_bus(dev->bus)) {
1585 pin = pci_swizzle_interrupt_pin(dev, pin);
1586 dev = dev->bus->self;
1587 }
1588 *pinp = pin;
1589 return PCI_SLOT(dev->devfn);
1590 }
1591
1592 /**
1593 * pci_release_region - Release a PCI bar
1594 * @pdev: PCI device whose resources were previously reserved by pci_request_region
1595 * @bar: BAR to release
1596 *
1597 * Releases the PCI I/O and memory resources previously reserved by a
1598 * successful call to pci_request_region. Call this function only
1599 * after all use of the PCI regions has ceased.
1600 */
1601 void pci_release_region(struct pci_dev *pdev, int bar)
1602 {
1603 struct pci_devres *dr;
1604
1605 if (pci_resource_len(pdev, bar) == 0)
1606 return;
1607 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1608 release_region(pci_resource_start(pdev, bar),
1609 pci_resource_len(pdev, bar));
1610 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1611 release_mem_region(pci_resource_start(pdev, bar),
1612 pci_resource_len(pdev, bar));
1613
1614 dr = find_pci_dr(pdev);
1615 if (dr)
1616 dr->region_mask &= ~(1 << bar);
1617 }
1618
1619 /**
1620 * __pci_request_region - Reserved PCI I/O and memory resource
1621 * @pdev: PCI device whose resources are to be reserved
1622 * @bar: BAR to be reserved
1623 * @res_name: Name to be associated with resource.
1624 * @exclusive: whether the region access is exclusive or not
1625 *
1626 * Mark the PCI region associated with PCI device @pdev BR @bar as
1627 * being reserved by owner @res_name. Do not access any
1628 * address inside the PCI regions unless this call returns
1629 * successfully.
1630 *
1631 * If @exclusive is set, then the region is marked so that userspace
1632 * is explicitly not allowed to map the resource via /dev/mem or
1633 * sysfs MMIO access.
1634 *
1635 * Returns 0 on success, or %EBUSY on error. A warning
1636 * message is also printed on failure.
1637 */
1638 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1639 int exclusive)
1640 {
1641 struct pci_devres *dr;
1642
1643 if (pci_resource_len(pdev, bar) == 0)
1644 return 0;
1645
1646 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1647 if (!request_region(pci_resource_start(pdev, bar),
1648 pci_resource_len(pdev, bar), res_name))
1649 goto err_out;
1650 }
1651 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1652 if (!__request_mem_region(pci_resource_start(pdev, bar),
1653 pci_resource_len(pdev, bar), res_name,
1654 exclusive))
1655 goto err_out;
1656 }
1657
1658 dr = find_pci_dr(pdev);
1659 if (dr)
1660 dr->region_mask |= 1 << bar;
1661
1662 return 0;
1663
1664 err_out:
1665 dev_warn(&pdev->dev, "BAR %d: can't reserve %s region %pR\n",
1666 bar,
1667 pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem",
1668 &pdev->resource[bar]);
1669 return -EBUSY;
1670 }
1671
1672 /**
1673 * pci_request_region - Reserve PCI I/O and memory resource
1674 * @pdev: PCI device whose resources are to be reserved
1675 * @bar: BAR to be reserved
1676 * @res_name: Name to be associated with resource
1677 *
1678 * Mark the PCI region associated with PCI device @pdev BAR @bar as
1679 * being reserved by owner @res_name. Do not access any
1680 * address inside the PCI regions unless this call returns
1681 * successfully.
1682 *
1683 * Returns 0 on success, or %EBUSY on error. A warning
1684 * message is also printed on failure.
1685 */
1686 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1687 {
1688 return __pci_request_region(pdev, bar, res_name, 0);
1689 }
1690
1691 /**
1692 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
1693 * @pdev: PCI device whose resources are to be reserved
1694 * @bar: BAR to be reserved
1695 * @res_name: Name to be associated with resource.
1696 *
1697 * Mark the PCI region associated with PCI device @pdev BR @bar as
1698 * being reserved by owner @res_name. Do not access any
1699 * address inside the PCI regions unless this call returns
1700 * successfully.
1701 *
1702 * Returns 0 on success, or %EBUSY on error. A warning
1703 * message is also printed on failure.
1704 *
1705 * The key difference that _exclusive makes it that userspace is
1706 * explicitly not allowed to map the resource via /dev/mem or
1707 * sysfs.
1708 */
1709 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
1710 {
1711 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
1712 }
1713 /**
1714 * pci_release_selected_regions - Release selected PCI I/O and memory resources
1715 * @pdev: PCI device whose resources were previously reserved
1716 * @bars: Bitmask of BARs to be released
1717 *
1718 * Release selected PCI I/O and memory resources previously reserved.
1719 * Call this function only after all use of the PCI regions has ceased.
1720 */
1721 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1722 {
1723 int i;
1724
1725 for (i = 0; i < 6; i++)
1726 if (bars & (1 << i))
1727 pci_release_region(pdev, i);
1728 }
1729
1730 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
1731 const char *res_name, int excl)
1732 {
1733 int i;
1734
1735 for (i = 0; i < 6; i++)
1736 if (bars & (1 << i))
1737 if (__pci_request_region(pdev, i, res_name, excl))
1738 goto err_out;
1739 return 0;
1740
1741 err_out:
1742 while(--i >= 0)
1743 if (bars & (1 << i))
1744 pci_release_region(pdev, i);
1745
1746 return -EBUSY;
1747 }
1748
1749
1750 /**
1751 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1752 * @pdev: PCI device whose resources are to be reserved
1753 * @bars: Bitmask of BARs to be requested
1754 * @res_name: Name to be associated with resource
1755 */
1756 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1757 const char *res_name)
1758 {
1759 return __pci_request_selected_regions(pdev, bars, res_name, 0);
1760 }
1761
1762 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
1763 int bars, const char *res_name)
1764 {
1765 return __pci_request_selected_regions(pdev, bars, res_name,
1766 IORESOURCE_EXCLUSIVE);
1767 }
1768
1769 /**
1770 * pci_release_regions - Release reserved PCI I/O and memory resources
1771 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
1772 *
1773 * Releases all PCI I/O and memory resources previously reserved by a
1774 * successful call to pci_request_regions. Call this function only
1775 * after all use of the PCI regions has ceased.
1776 */
1777
1778 void pci_release_regions(struct pci_dev *pdev)
1779 {
1780 pci_release_selected_regions(pdev, (1 << 6) - 1);
1781 }
1782
1783 /**
1784 * pci_request_regions - Reserved PCI I/O and memory resources
1785 * @pdev: PCI device whose resources are to be reserved
1786 * @res_name: Name to be associated with resource.
1787 *
1788 * Mark all PCI regions associated with PCI device @pdev as
1789 * being reserved by owner @res_name. Do not access any
1790 * address inside the PCI regions unless this call returns
1791 * successfully.
1792 *
1793 * Returns 0 on success, or %EBUSY on error. A warning
1794 * message is also printed on failure.
1795 */
1796 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1797 {
1798 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1799 }
1800
1801 /**
1802 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
1803 * @pdev: PCI device whose resources are to be reserved
1804 * @res_name: Name to be associated with resource.
1805 *
1806 * Mark all PCI regions associated with PCI device @pdev as
1807 * being reserved by owner @res_name. Do not access any
1808 * address inside the PCI regions unless this call returns
1809 * successfully.
1810 *
1811 * pci_request_regions_exclusive() will mark the region so that
1812 * /dev/mem and the sysfs MMIO access will not be allowed.
1813 *
1814 * Returns 0 on success, or %EBUSY on error. A warning
1815 * message is also printed on failure.
1816 */
1817 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
1818 {
1819 return pci_request_selected_regions_exclusive(pdev,
1820 ((1 << 6) - 1), res_name);
1821 }
1822
1823 static void __pci_set_master(struct pci_dev *dev, bool enable)
1824 {
1825 u16 old_cmd, cmd;
1826
1827 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
1828 if (enable)
1829 cmd = old_cmd | PCI_COMMAND_MASTER;
1830 else
1831 cmd = old_cmd & ~PCI_COMMAND_MASTER;
1832 if (cmd != old_cmd) {
1833 dev_dbg(&dev->dev, "%s bus mastering\n",
1834 enable ? "enabling" : "disabling");
1835 pci_write_config_word(dev, PCI_COMMAND, cmd);
1836 }
1837 dev->is_busmaster = enable;
1838 }
1839
1840 /**
1841 * pci_set_master - enables bus-mastering for device dev
1842 * @dev: the PCI device to enable
1843 *
1844 * Enables bus-mastering on the device and calls pcibios_set_master()
1845 * to do the needed arch specific settings.
1846 */
1847 void pci_set_master(struct pci_dev *dev)
1848 {
1849 __pci_set_master(dev, true);
1850 pcibios_set_master(dev);
1851 }
1852
1853 /**
1854 * pci_clear_master - disables bus-mastering for device dev
1855 * @dev: the PCI device to disable
1856 */
1857 void pci_clear_master(struct pci_dev *dev)
1858 {
1859 __pci_set_master(dev, false);
1860 }
1861
1862 #ifdef PCI_DISABLE_MWI
1863 int pci_set_mwi(struct pci_dev *dev)
1864 {
1865 return 0;
1866 }
1867
1868 int pci_try_set_mwi(struct pci_dev *dev)
1869 {
1870 return 0;
1871 }
1872
1873 void pci_clear_mwi(struct pci_dev *dev)
1874 {
1875 }
1876
1877 #else
1878
1879 #ifndef PCI_CACHE_LINE_BYTES
1880 #define PCI_CACHE_LINE_BYTES L1_CACHE_BYTES
1881 #endif
1882
1883 /* This can be overridden by arch code. */
1884 /* Don't forget this is measured in 32-bit words, not bytes */
1885 u8 pci_cache_line_size = PCI_CACHE_LINE_BYTES / 4;
1886
1887 /**
1888 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
1889 * @dev: the PCI device for which MWI is to be enabled
1890 *
1891 * Helper function for pci_set_mwi.
1892 * Originally copied from drivers/net/acenic.c.
1893 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
1894 *
1895 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1896 */
1897 static int
1898 pci_set_cacheline_size(struct pci_dev *dev)
1899 {
1900 u8 cacheline_size;
1901
1902 if (!pci_cache_line_size)
1903 return -EINVAL; /* The system doesn't support MWI. */
1904
1905 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
1906 equal to or multiple of the right value. */
1907 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1908 if (cacheline_size >= pci_cache_line_size &&
1909 (cacheline_size % pci_cache_line_size) == 0)
1910 return 0;
1911
1912 /* Write the correct value. */
1913 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
1914 /* Read it back. */
1915 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1916 if (cacheline_size == pci_cache_line_size)
1917 return 0;
1918
1919 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
1920 "supported\n", pci_cache_line_size << 2);
1921
1922 return -EINVAL;
1923 }
1924
1925 /**
1926 * pci_set_mwi - enables memory-write-invalidate PCI transaction
1927 * @dev: the PCI device for which MWI is enabled
1928 *
1929 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1930 *
1931 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1932 */
1933 int
1934 pci_set_mwi(struct pci_dev *dev)
1935 {
1936 int rc;
1937 u16 cmd;
1938
1939 rc = pci_set_cacheline_size(dev);
1940 if (rc)
1941 return rc;
1942
1943 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1944 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
1945 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1946 cmd |= PCI_COMMAND_INVALIDATE;
1947 pci_write_config_word(dev, PCI_COMMAND, cmd);
1948 }
1949
1950 return 0;
1951 }
1952
1953 /**
1954 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
1955 * @dev: the PCI device for which MWI is enabled
1956 *
1957 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1958 * Callers are not required to check the return value.
1959 *
1960 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1961 */
1962 int pci_try_set_mwi(struct pci_dev *dev)
1963 {
1964 int rc = pci_set_mwi(dev);
1965 return rc;
1966 }
1967
1968 /**
1969 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
1970 * @dev: the PCI device to disable
1971 *
1972 * Disables PCI Memory-Write-Invalidate transaction on the device
1973 */
1974 void
1975 pci_clear_mwi(struct pci_dev *dev)
1976 {
1977 u16 cmd;
1978
1979 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1980 if (cmd & PCI_COMMAND_INVALIDATE) {
1981 cmd &= ~PCI_COMMAND_INVALIDATE;
1982 pci_write_config_word(dev, PCI_COMMAND, cmd);
1983 }
1984 }
1985 #endif /* ! PCI_DISABLE_MWI */
1986
1987 /**
1988 * pci_intx - enables/disables PCI INTx for device dev
1989 * @pdev: the PCI device to operate on
1990 * @enable: boolean: whether to enable or disable PCI INTx
1991 *
1992 * Enables/disables PCI INTx for device dev
1993 */
1994 void
1995 pci_intx(struct pci_dev *pdev, int enable)
1996 {
1997 u16 pci_command, new;
1998
1999 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2000
2001 if (enable) {
2002 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2003 } else {
2004 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2005 }
2006
2007 if (new != pci_command) {
2008 struct pci_devres *dr;
2009
2010 pci_write_config_word(pdev, PCI_COMMAND, new);
2011
2012 dr = find_pci_dr(pdev);
2013 if (dr && !dr->restore_intx) {
2014 dr->restore_intx = 1;
2015 dr->orig_intx = !enable;
2016 }
2017 }
2018 }
2019
2020 /**
2021 * pci_msi_off - disables any msi or msix capabilities
2022 * @dev: the PCI device to operate on
2023 *
2024 * If you want to use msi see pci_enable_msi and friends.
2025 * This is a lower level primitive that allows us to disable
2026 * msi operation at the device level.
2027 */
2028 void pci_msi_off(struct pci_dev *dev)
2029 {
2030 int pos;
2031 u16 control;
2032
2033 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2034 if (pos) {
2035 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2036 control &= ~PCI_MSI_FLAGS_ENABLE;
2037 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2038 }
2039 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2040 if (pos) {
2041 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2042 control &= ~PCI_MSIX_FLAGS_ENABLE;
2043 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2044 }
2045 }
2046
2047 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
2048 /*
2049 * These can be overridden by arch-specific implementations
2050 */
2051 int
2052 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
2053 {
2054 if (!pci_dma_supported(dev, mask))
2055 return -EIO;
2056
2057 dev->dma_mask = mask;
2058
2059 return 0;
2060 }
2061
2062 int
2063 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
2064 {
2065 if (!pci_dma_supported(dev, mask))
2066 return -EIO;
2067
2068 dev->dev.coherent_dma_mask = mask;
2069
2070 return 0;
2071 }
2072 #endif
2073
2074 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
2075 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2076 {
2077 return dma_set_max_seg_size(&dev->dev, size);
2078 }
2079 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2080 #endif
2081
2082 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
2083 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2084 {
2085 return dma_set_seg_boundary(&dev->dev, mask);
2086 }
2087 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2088 #endif
2089
2090 static int pcie_flr(struct pci_dev *dev, int probe)
2091 {
2092 int i;
2093 int pos;
2094 u32 cap;
2095 u16 status;
2096
2097 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
2098 if (!pos)
2099 return -ENOTTY;
2100
2101 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
2102 if (!(cap & PCI_EXP_DEVCAP_FLR))
2103 return -ENOTTY;
2104
2105 if (probe)
2106 return 0;
2107
2108 /* Wait for Transaction Pending bit clean */
2109 for (i = 0; i < 4; i++) {
2110 if (i)
2111 msleep((1 << (i - 1)) * 100);
2112
2113 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
2114 if (!(status & PCI_EXP_DEVSTA_TRPND))
2115 goto clear;
2116 }
2117
2118 dev_err(&dev->dev, "transaction is not cleared; "
2119 "proceeding with reset anyway\n");
2120
2121 clear:
2122 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL,
2123 PCI_EXP_DEVCTL_BCR_FLR);
2124 msleep(100);
2125
2126 return 0;
2127 }
2128
2129 static int pci_af_flr(struct pci_dev *dev, int probe)
2130 {
2131 int i;
2132 int pos;
2133 u8 cap;
2134 u8 status;
2135
2136 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
2137 if (!pos)
2138 return -ENOTTY;
2139
2140 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
2141 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2142 return -ENOTTY;
2143
2144 if (probe)
2145 return 0;
2146
2147 /* Wait for Transaction Pending bit clean */
2148 for (i = 0; i < 4; i++) {
2149 if (i)
2150 msleep((1 << (i - 1)) * 100);
2151
2152 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
2153 if (!(status & PCI_AF_STATUS_TP))
2154 goto clear;
2155 }
2156
2157 dev_err(&dev->dev, "transaction is not cleared; "
2158 "proceeding with reset anyway\n");
2159
2160 clear:
2161 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2162 msleep(100);
2163
2164 return 0;
2165 }
2166
2167 static int pci_pm_reset(struct pci_dev *dev, int probe)
2168 {
2169 u16 csr;
2170
2171 if (!dev->pm_cap)
2172 return -ENOTTY;
2173
2174 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
2175 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
2176 return -ENOTTY;
2177
2178 if (probe)
2179 return 0;
2180
2181 if (dev->current_state != PCI_D0)
2182 return -EINVAL;
2183
2184 csr &= ~PCI_PM_CTRL_STATE_MASK;
2185 csr |= PCI_D3hot;
2186 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2187 msleep(pci_pm_d3_delay);
2188
2189 csr &= ~PCI_PM_CTRL_STATE_MASK;
2190 csr |= PCI_D0;
2191 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2192 msleep(pci_pm_d3_delay);
2193
2194 return 0;
2195 }
2196
2197 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
2198 {
2199 u16 ctrl;
2200 struct pci_dev *pdev;
2201
2202 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
2203 return -ENOTTY;
2204
2205 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
2206 if (pdev != dev)
2207 return -ENOTTY;
2208
2209 if (probe)
2210 return 0;
2211
2212 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
2213 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
2214 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2215 msleep(100);
2216
2217 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
2218 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2219 msleep(100);
2220
2221 return 0;
2222 }
2223
2224 static int pci_dev_reset(struct pci_dev *dev, int probe)
2225 {
2226 int rc;
2227
2228 might_sleep();
2229
2230 if (!probe) {
2231 pci_block_user_cfg_access(dev);
2232 /* block PM suspend, driver probe, etc. */
2233 down(&dev->dev.sem);
2234 }
2235
2236 rc = pcie_flr(dev, probe);
2237 if (rc != -ENOTTY)
2238 goto done;
2239
2240 rc = pci_af_flr(dev, probe);
2241 if (rc != -ENOTTY)
2242 goto done;
2243
2244 rc = pci_pm_reset(dev, probe);
2245 if (rc != -ENOTTY)
2246 goto done;
2247
2248 rc = pci_parent_bus_reset(dev, probe);
2249 done:
2250 if (!probe) {
2251 up(&dev->dev.sem);
2252 pci_unblock_user_cfg_access(dev);
2253 }
2254
2255 return rc;
2256 }
2257
2258 /**
2259 * __pci_reset_function - reset a PCI device function
2260 * @dev: PCI device to reset
2261 *
2262 * Some devices allow an individual function to be reset without affecting
2263 * other functions in the same device. The PCI device must be responsive
2264 * to PCI config space in order to use this function.
2265 *
2266 * The device function is presumed to be unused when this function is called.
2267 * Resetting the device will make the contents of PCI configuration space
2268 * random, so any caller of this must be prepared to reinitialise the
2269 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
2270 * etc.
2271 *
2272 * Returns 0 if the device function was successfully reset or negative if the
2273 * device doesn't support resetting a single function.
2274 */
2275 int __pci_reset_function(struct pci_dev *dev)
2276 {
2277 return pci_dev_reset(dev, 0);
2278 }
2279 EXPORT_SYMBOL_GPL(__pci_reset_function);
2280
2281 /**
2282 * pci_probe_reset_function - check whether the device can be safely reset
2283 * @dev: PCI device to reset
2284 *
2285 * Some devices allow an individual function to be reset without affecting
2286 * other functions in the same device. The PCI device must be responsive
2287 * to PCI config space in order to use this function.
2288 *
2289 * Returns 0 if the device function can be reset or negative if the
2290 * device doesn't support resetting a single function.
2291 */
2292 int pci_probe_reset_function(struct pci_dev *dev)
2293 {
2294 return pci_dev_reset(dev, 1);
2295 }
2296
2297 /**
2298 * pci_reset_function - quiesce and reset a PCI device function
2299 * @dev: PCI device to reset
2300 *
2301 * Some devices allow an individual function to be reset without affecting
2302 * other functions in the same device. The PCI device must be responsive
2303 * to PCI config space in order to use this function.
2304 *
2305 * This function does not just reset the PCI portion of a device, but
2306 * clears all the state associated with the device. This function differs
2307 * from __pci_reset_function in that it saves and restores device state
2308 * over the reset.
2309 *
2310 * Returns 0 if the device function was successfully reset or negative if the
2311 * device doesn't support resetting a single function.
2312 */
2313 int pci_reset_function(struct pci_dev *dev)
2314 {
2315 int rc;
2316
2317 rc = pci_dev_reset(dev, 1);
2318 if (rc)
2319 return rc;
2320
2321 pci_save_state(dev);
2322
2323 /*
2324 * both INTx and MSI are disabled after the Interrupt Disable bit
2325 * is set and the Bus Master bit is cleared.
2326 */
2327 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2328
2329 rc = pci_dev_reset(dev, 0);
2330
2331 pci_restore_state(dev);
2332
2333 return rc;
2334 }
2335 EXPORT_SYMBOL_GPL(pci_reset_function);
2336
2337 /**
2338 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2339 * @dev: PCI device to query
2340 *
2341 * Returns mmrbc: maximum designed memory read count in bytes
2342 * or appropriate error value.
2343 */
2344 int pcix_get_max_mmrbc(struct pci_dev *dev)
2345 {
2346 int err, cap;
2347 u32 stat;
2348
2349 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2350 if (!cap)
2351 return -EINVAL;
2352
2353 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2354 if (err)
2355 return -EINVAL;
2356
2357 return (stat & PCI_X_STATUS_MAX_READ) >> 12;
2358 }
2359 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2360
2361 /**
2362 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2363 * @dev: PCI device to query
2364 *
2365 * Returns mmrbc: maximum memory read count in bytes
2366 * or appropriate error value.
2367 */
2368 int pcix_get_mmrbc(struct pci_dev *dev)
2369 {
2370 int ret, cap;
2371 u32 cmd;
2372
2373 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2374 if (!cap)
2375 return -EINVAL;
2376
2377 ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2378 if (!ret)
2379 ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2380
2381 return ret;
2382 }
2383 EXPORT_SYMBOL(pcix_get_mmrbc);
2384
2385 /**
2386 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2387 * @dev: PCI device to query
2388 * @mmrbc: maximum memory read count in bytes
2389 * valid values are 512, 1024, 2048, 4096
2390 *
2391 * If possible sets maximum memory read byte count, some bridges have erratas
2392 * that prevent this.
2393 */
2394 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2395 {
2396 int cap, err = -EINVAL;
2397 u32 stat, cmd, v, o;
2398
2399 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2400 goto out;
2401
2402 v = ffs(mmrbc) - 10;
2403
2404 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2405 if (!cap)
2406 goto out;
2407
2408 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2409 if (err)
2410 goto out;
2411
2412 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2413 return -E2BIG;
2414
2415 err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2416 if (err)
2417 goto out;
2418
2419 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2420 if (o != v) {
2421 if (v > o && dev->bus &&
2422 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2423 return -EIO;
2424
2425 cmd &= ~PCI_X_CMD_MAX_READ;
2426 cmd |= v << 2;
2427 err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
2428 }
2429 out:
2430 return err;
2431 }
2432 EXPORT_SYMBOL(pcix_set_mmrbc);
2433
2434 /**
2435 * pcie_get_readrq - get PCI Express read request size
2436 * @dev: PCI device to query
2437 *
2438 * Returns maximum memory read request in bytes
2439 * or appropriate error value.
2440 */
2441 int pcie_get_readrq(struct pci_dev *dev)
2442 {
2443 int ret, cap;
2444 u16 ctl;
2445
2446 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2447 if (!cap)
2448 return -EINVAL;
2449
2450 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2451 if (!ret)
2452 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2453
2454 return ret;
2455 }
2456 EXPORT_SYMBOL(pcie_get_readrq);
2457
2458 /**
2459 * pcie_set_readrq - set PCI Express maximum memory read request
2460 * @dev: PCI device to query
2461 * @rq: maximum memory read count in bytes
2462 * valid values are 128, 256, 512, 1024, 2048, 4096
2463 *
2464 * If possible sets maximum read byte count
2465 */
2466 int pcie_set_readrq(struct pci_dev *dev, int rq)
2467 {
2468 int cap, err = -EINVAL;
2469 u16 ctl, v;
2470
2471 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2472 goto out;
2473
2474 v = (ffs(rq) - 8) << 12;
2475
2476 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2477 if (!cap)
2478 goto out;
2479
2480 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2481 if (err)
2482 goto out;
2483
2484 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2485 ctl &= ~PCI_EXP_DEVCTL_READRQ;
2486 ctl |= v;
2487 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2488 }
2489
2490 out:
2491 return err;
2492 }
2493 EXPORT_SYMBOL(pcie_set_readrq);
2494
2495 /**
2496 * pci_select_bars - Make BAR mask from the type of resource
2497 * @dev: the PCI device for which BAR mask is made
2498 * @flags: resource type mask to be selected
2499 *
2500 * This helper routine makes bar mask from the type of resource.
2501 */
2502 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2503 {
2504 int i, bars = 0;
2505 for (i = 0; i < PCI_NUM_RESOURCES; i++)
2506 if (pci_resource_flags(dev, i) & flags)
2507 bars |= (1 << i);
2508 return bars;
2509 }
2510
2511 /**
2512 * pci_resource_bar - get position of the BAR associated with a resource
2513 * @dev: the PCI device
2514 * @resno: the resource number
2515 * @type: the BAR type to be filled in
2516 *
2517 * Returns BAR position in config space, or 0 if the BAR is invalid.
2518 */
2519 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2520 {
2521 int reg;
2522
2523 if (resno < PCI_ROM_RESOURCE) {
2524 *type = pci_bar_unknown;
2525 return PCI_BASE_ADDRESS_0 + 4 * resno;
2526 } else if (resno == PCI_ROM_RESOURCE) {
2527 *type = pci_bar_mem32;
2528 return dev->rom_base_reg;
2529 } else if (resno < PCI_BRIDGE_RESOURCES) {
2530 /* device specific resource */
2531 reg = pci_iov_resource_bar(dev, resno, type);
2532 if (reg)
2533 return reg;
2534 }
2535
2536 dev_err(&dev->dev, "BAR: invalid resource #%d\n", resno);
2537 return 0;
2538 }
2539
2540 /**
2541 * pci_set_vga_state - set VGA decode state on device and parents if requested
2542 * @dev the PCI device
2543 * @decode - true = enable decoding, false = disable decoding
2544 * @command_bits PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
2545 * @change_bridge - traverse ancestors and change bridges
2546 */
2547 int pci_set_vga_state(struct pci_dev *dev, bool decode,
2548 unsigned int command_bits, bool change_bridge)
2549 {
2550 struct pci_bus *bus;
2551 struct pci_dev *bridge;
2552 u16 cmd;
2553
2554 WARN_ON(command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY));
2555
2556 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2557 if (decode == true)
2558 cmd |= command_bits;
2559 else
2560 cmd &= ~command_bits;
2561 pci_write_config_word(dev, PCI_COMMAND, cmd);
2562
2563 if (change_bridge == false)
2564 return 0;
2565
2566 bus = dev->bus;
2567 while (bus) {
2568 bridge = bus->self;
2569 if (bridge) {
2570 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
2571 &cmd);
2572 if (decode == true)
2573 cmd |= PCI_BRIDGE_CTL_VGA;
2574 else
2575 cmd &= ~PCI_BRIDGE_CTL_VGA;
2576 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
2577 cmd);
2578 }
2579 bus = bus->parent;
2580 }
2581 return 0;
2582 }
2583
2584 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
2585 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
2586 spinlock_t resource_alignment_lock = SPIN_LOCK_UNLOCKED;
2587
2588 /**
2589 * pci_specified_resource_alignment - get resource alignment specified by user.
2590 * @dev: the PCI device to get
2591 *
2592 * RETURNS: Resource alignment if it is specified.
2593 * Zero if it is not specified.
2594 */
2595 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
2596 {
2597 int seg, bus, slot, func, align_order, count;
2598 resource_size_t align = 0;
2599 char *p;
2600
2601 spin_lock(&resource_alignment_lock);
2602 p = resource_alignment_param;
2603 while (*p) {
2604 count = 0;
2605 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
2606 p[count] == '@') {
2607 p += count + 1;
2608 } else {
2609 align_order = -1;
2610 }
2611 if (sscanf(p, "%x:%x:%x.%x%n",
2612 &seg, &bus, &slot, &func, &count) != 4) {
2613 seg = 0;
2614 if (sscanf(p, "%x:%x.%x%n",
2615 &bus, &slot, &func, &count) != 3) {
2616 /* Invalid format */
2617 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
2618 p);
2619 break;
2620 }
2621 }
2622 p += count;
2623 if (seg == pci_domain_nr(dev->bus) &&
2624 bus == dev->bus->number &&
2625 slot == PCI_SLOT(dev->devfn) &&
2626 func == PCI_FUNC(dev->devfn)) {
2627 if (align_order == -1) {
2628 align = PAGE_SIZE;
2629 } else {
2630 align = 1 << align_order;
2631 }
2632 /* Found */
2633 break;
2634 }
2635 if (*p != ';' && *p != ',') {
2636 /* End of param or invalid format */
2637 break;
2638 }
2639 p++;
2640 }
2641 spin_unlock(&resource_alignment_lock);
2642 return align;
2643 }
2644
2645 /**
2646 * pci_is_reassigndev - check if specified PCI is target device to reassign
2647 * @dev: the PCI device to check
2648 *
2649 * RETURNS: non-zero for PCI device is a target device to reassign,
2650 * or zero is not.
2651 */
2652 int pci_is_reassigndev(struct pci_dev *dev)
2653 {
2654 return (pci_specified_resource_alignment(dev) != 0);
2655 }
2656
2657 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
2658 {
2659 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
2660 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
2661 spin_lock(&resource_alignment_lock);
2662 strncpy(resource_alignment_param, buf, count);
2663 resource_alignment_param[count] = '\0';
2664 spin_unlock(&resource_alignment_lock);
2665 return count;
2666 }
2667
2668 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
2669 {
2670 size_t count;
2671 spin_lock(&resource_alignment_lock);
2672 count = snprintf(buf, size, "%s", resource_alignment_param);
2673 spin_unlock(&resource_alignment_lock);
2674 return count;
2675 }
2676
2677 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
2678 {
2679 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
2680 }
2681
2682 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
2683 const char *buf, size_t count)
2684 {
2685 return pci_set_resource_alignment_param(buf, count);
2686 }
2687
2688 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
2689 pci_resource_alignment_store);
2690
2691 static int __init pci_resource_alignment_sysfs_init(void)
2692 {
2693 return bus_create_file(&pci_bus_type,
2694 &bus_attr_resource_alignment);
2695 }
2696
2697 late_initcall(pci_resource_alignment_sysfs_init);
2698
2699 static void __devinit pci_no_domains(void)
2700 {
2701 #ifdef CONFIG_PCI_DOMAINS
2702 pci_domains_supported = 0;
2703 #endif
2704 }
2705
2706 /**
2707 * pci_ext_cfg_enabled - can we access extended PCI config space?
2708 * @dev: The PCI device of the root bridge.
2709 *
2710 * Returns 1 if we can access PCI extended config space (offsets
2711 * greater than 0xff). This is the default implementation. Architecture
2712 * implementations can override this.
2713 */
2714 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
2715 {
2716 return 1;
2717 }
2718
2719 static int __devinit pci_init(void)
2720 {
2721 struct pci_dev *dev = NULL;
2722
2723 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2724 pci_fixup_device(pci_fixup_final, dev);
2725 }
2726
2727 return 0;
2728 }
2729
2730 static int __init pci_setup(char *str)
2731 {
2732 while (str) {
2733 char *k = strchr(str, ',');
2734 if (k)
2735 *k++ = 0;
2736 if (*str && (str = pcibios_setup(str)) && *str) {
2737 if (!strcmp(str, "nomsi")) {
2738 pci_no_msi();
2739 } else if (!strcmp(str, "noaer")) {
2740 pci_no_aer();
2741 } else if (!strcmp(str, "nodomains")) {
2742 pci_no_domains();
2743 } else if (!strncmp(str, "cbiosize=", 9)) {
2744 pci_cardbus_io_size = memparse(str + 9, &str);
2745 } else if (!strncmp(str, "cbmemsize=", 10)) {
2746 pci_cardbus_mem_size = memparse(str + 10, &str);
2747 } else if (!strncmp(str, "resource_alignment=", 19)) {
2748 pci_set_resource_alignment_param(str + 19,
2749 strlen(str + 19));
2750 } else if (!strncmp(str, "ecrc=", 5)) {
2751 pcie_ecrc_get_policy(str + 5);
2752 } else if (!strncmp(str, "hpiosize=", 9)) {
2753 pci_hotplug_io_size = memparse(str + 9, &str);
2754 } else if (!strncmp(str, "hpmemsize=", 10)) {
2755 pci_hotplug_mem_size = memparse(str + 10, &str);
2756 } else {
2757 printk(KERN_ERR "PCI: Unknown option `%s'\n",
2758 str);
2759 }
2760 }
2761 str = k;
2762 }
2763 return 0;
2764 }
2765 early_param("pci", pci_setup);
2766
2767 device_initcall(pci_init);
2768
2769 EXPORT_SYMBOL(pci_reenable_device);
2770 EXPORT_SYMBOL(pci_enable_device_io);
2771 EXPORT_SYMBOL(pci_enable_device_mem);
2772 EXPORT_SYMBOL(pci_enable_device);
2773 EXPORT_SYMBOL(pcim_enable_device);
2774 EXPORT_SYMBOL(pcim_pin_device);
2775 EXPORT_SYMBOL(pci_disable_device);
2776 EXPORT_SYMBOL(pci_find_capability);
2777 EXPORT_SYMBOL(pci_bus_find_capability);
2778 EXPORT_SYMBOL(pci_release_regions);
2779 EXPORT_SYMBOL(pci_request_regions);
2780 EXPORT_SYMBOL(pci_request_regions_exclusive);
2781 EXPORT_SYMBOL(pci_release_region);
2782 EXPORT_SYMBOL(pci_request_region);
2783 EXPORT_SYMBOL(pci_request_region_exclusive);
2784 EXPORT_SYMBOL(pci_release_selected_regions);
2785 EXPORT_SYMBOL(pci_request_selected_regions);
2786 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2787 EXPORT_SYMBOL(pci_set_master);
2788 EXPORT_SYMBOL(pci_clear_master);
2789 EXPORT_SYMBOL(pci_set_mwi);
2790 EXPORT_SYMBOL(pci_try_set_mwi);
2791 EXPORT_SYMBOL(pci_clear_mwi);
2792 EXPORT_SYMBOL_GPL(pci_intx);
2793 EXPORT_SYMBOL(pci_set_dma_mask);
2794 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
2795 EXPORT_SYMBOL(pci_assign_resource);
2796 EXPORT_SYMBOL(pci_find_parent_resource);
2797 EXPORT_SYMBOL(pci_select_bars);
2798
2799 EXPORT_SYMBOL(pci_set_power_state);
2800 EXPORT_SYMBOL(pci_save_state);
2801 EXPORT_SYMBOL(pci_restore_state);
2802 EXPORT_SYMBOL(pci_pme_capable);
2803 EXPORT_SYMBOL(pci_pme_active);
2804 EXPORT_SYMBOL(pci_enable_wake);
2805 EXPORT_SYMBOL(pci_wake_from_d3);
2806 EXPORT_SYMBOL(pci_target_state);
2807 EXPORT_SYMBOL(pci_prepare_to_sleep);
2808 EXPORT_SYMBOL(pci_back_from_sleep);
2809 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2810
This page took 0.223211 seconds and 5 git commands to generate.