Merge git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux-2.6-cpumask
[deliverable/linux.git] / drivers / pci / pci.c
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <linux/pm_wakeup.h>
21 #include <linux/interrupt.h>
22 #include <asm/dma.h> /* isa_dma_bridge_buggy */
23 #include "pci.h"
24
25 unsigned int pci_pm_d3_delay = PCI_PM_D3_WAIT;
26
27 #ifdef CONFIG_PCI_DOMAINS
28 int pci_domains_supported = 1;
29 #endif
30
31 #define DEFAULT_CARDBUS_IO_SIZE (256)
32 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
33 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
34 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
35 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
36
37 /**
38 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
39 * @bus: pointer to PCI bus structure to search
40 *
41 * Given a PCI bus, returns the highest PCI bus number present in the set
42 * including the given PCI bus and its list of child PCI buses.
43 */
44 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
45 {
46 struct list_head *tmp;
47 unsigned char max, n;
48
49 max = bus->subordinate;
50 list_for_each(tmp, &bus->children) {
51 n = pci_bus_max_busnr(pci_bus_b(tmp));
52 if(n > max)
53 max = n;
54 }
55 return max;
56 }
57 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
58
59 #ifdef CONFIG_HAS_IOMEM
60 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
61 {
62 /*
63 * Make sure the BAR is actually a memory resource, not an IO resource
64 */
65 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
66 WARN_ON(1);
67 return NULL;
68 }
69 return ioremap_nocache(pci_resource_start(pdev, bar),
70 pci_resource_len(pdev, bar));
71 }
72 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
73 #endif
74
75 #if 0
76 /**
77 * pci_max_busnr - returns maximum PCI bus number
78 *
79 * Returns the highest PCI bus number present in the system global list of
80 * PCI buses.
81 */
82 unsigned char __devinit
83 pci_max_busnr(void)
84 {
85 struct pci_bus *bus = NULL;
86 unsigned char max, n;
87
88 max = 0;
89 while ((bus = pci_find_next_bus(bus)) != NULL) {
90 n = pci_bus_max_busnr(bus);
91 if(n > max)
92 max = n;
93 }
94 return max;
95 }
96
97 #endif /* 0 */
98
99 #define PCI_FIND_CAP_TTL 48
100
101 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
102 u8 pos, int cap, int *ttl)
103 {
104 u8 id;
105
106 while ((*ttl)--) {
107 pci_bus_read_config_byte(bus, devfn, pos, &pos);
108 if (pos < 0x40)
109 break;
110 pos &= ~3;
111 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
112 &id);
113 if (id == 0xff)
114 break;
115 if (id == cap)
116 return pos;
117 pos += PCI_CAP_LIST_NEXT;
118 }
119 return 0;
120 }
121
122 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
123 u8 pos, int cap)
124 {
125 int ttl = PCI_FIND_CAP_TTL;
126
127 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
128 }
129
130 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
131 {
132 return __pci_find_next_cap(dev->bus, dev->devfn,
133 pos + PCI_CAP_LIST_NEXT, cap);
134 }
135 EXPORT_SYMBOL_GPL(pci_find_next_capability);
136
137 static int __pci_bus_find_cap_start(struct pci_bus *bus,
138 unsigned int devfn, u8 hdr_type)
139 {
140 u16 status;
141
142 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
143 if (!(status & PCI_STATUS_CAP_LIST))
144 return 0;
145
146 switch (hdr_type) {
147 case PCI_HEADER_TYPE_NORMAL:
148 case PCI_HEADER_TYPE_BRIDGE:
149 return PCI_CAPABILITY_LIST;
150 case PCI_HEADER_TYPE_CARDBUS:
151 return PCI_CB_CAPABILITY_LIST;
152 default:
153 return 0;
154 }
155
156 return 0;
157 }
158
159 /**
160 * pci_find_capability - query for devices' capabilities
161 * @dev: PCI device to query
162 * @cap: capability code
163 *
164 * Tell if a device supports a given PCI capability.
165 * Returns the address of the requested capability structure within the
166 * device's PCI configuration space or 0 in case the device does not
167 * support it. Possible values for @cap:
168 *
169 * %PCI_CAP_ID_PM Power Management
170 * %PCI_CAP_ID_AGP Accelerated Graphics Port
171 * %PCI_CAP_ID_VPD Vital Product Data
172 * %PCI_CAP_ID_SLOTID Slot Identification
173 * %PCI_CAP_ID_MSI Message Signalled Interrupts
174 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
175 * %PCI_CAP_ID_PCIX PCI-X
176 * %PCI_CAP_ID_EXP PCI Express
177 */
178 int pci_find_capability(struct pci_dev *dev, int cap)
179 {
180 int pos;
181
182 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
183 if (pos)
184 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
185
186 return pos;
187 }
188
189 /**
190 * pci_bus_find_capability - query for devices' capabilities
191 * @bus: the PCI bus to query
192 * @devfn: PCI device to query
193 * @cap: capability code
194 *
195 * Like pci_find_capability() but works for pci devices that do not have a
196 * pci_dev structure set up yet.
197 *
198 * Returns the address of the requested capability structure within the
199 * device's PCI configuration space or 0 in case the device does not
200 * support it.
201 */
202 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
203 {
204 int pos;
205 u8 hdr_type;
206
207 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
208
209 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
210 if (pos)
211 pos = __pci_find_next_cap(bus, devfn, pos, cap);
212
213 return pos;
214 }
215
216 /**
217 * pci_find_ext_capability - Find an extended capability
218 * @dev: PCI device to query
219 * @cap: capability code
220 *
221 * Returns the address of the requested extended capability structure
222 * within the device's PCI configuration space or 0 if the device does
223 * not support it. Possible values for @cap:
224 *
225 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
226 * %PCI_EXT_CAP_ID_VC Virtual Channel
227 * %PCI_EXT_CAP_ID_DSN Device Serial Number
228 * %PCI_EXT_CAP_ID_PWR Power Budgeting
229 */
230 int pci_find_ext_capability(struct pci_dev *dev, int cap)
231 {
232 u32 header;
233 int ttl;
234 int pos = PCI_CFG_SPACE_SIZE;
235
236 /* minimum 8 bytes per capability */
237 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
238
239 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
240 return 0;
241
242 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
243 return 0;
244
245 /*
246 * If we have no capabilities, this is indicated by cap ID,
247 * cap version and next pointer all being 0.
248 */
249 if (header == 0)
250 return 0;
251
252 while (ttl-- > 0) {
253 if (PCI_EXT_CAP_ID(header) == cap)
254 return pos;
255
256 pos = PCI_EXT_CAP_NEXT(header);
257 if (pos < PCI_CFG_SPACE_SIZE)
258 break;
259
260 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
261 break;
262 }
263
264 return 0;
265 }
266 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
267
268 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
269 {
270 int rc, ttl = PCI_FIND_CAP_TTL;
271 u8 cap, mask;
272
273 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
274 mask = HT_3BIT_CAP_MASK;
275 else
276 mask = HT_5BIT_CAP_MASK;
277
278 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
279 PCI_CAP_ID_HT, &ttl);
280 while (pos) {
281 rc = pci_read_config_byte(dev, pos + 3, &cap);
282 if (rc != PCIBIOS_SUCCESSFUL)
283 return 0;
284
285 if ((cap & mask) == ht_cap)
286 return pos;
287
288 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
289 pos + PCI_CAP_LIST_NEXT,
290 PCI_CAP_ID_HT, &ttl);
291 }
292
293 return 0;
294 }
295 /**
296 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
297 * @dev: PCI device to query
298 * @pos: Position from which to continue searching
299 * @ht_cap: Hypertransport capability code
300 *
301 * To be used in conjunction with pci_find_ht_capability() to search for
302 * all capabilities matching @ht_cap. @pos should always be a value returned
303 * from pci_find_ht_capability().
304 *
305 * NB. To be 100% safe against broken PCI devices, the caller should take
306 * steps to avoid an infinite loop.
307 */
308 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
309 {
310 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
311 }
312 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
313
314 /**
315 * pci_find_ht_capability - query a device's Hypertransport capabilities
316 * @dev: PCI device to query
317 * @ht_cap: Hypertransport capability code
318 *
319 * Tell if a device supports a given Hypertransport capability.
320 * Returns an address within the device's PCI configuration space
321 * or 0 in case the device does not support the request capability.
322 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
323 * which has a Hypertransport capability matching @ht_cap.
324 */
325 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
326 {
327 int pos;
328
329 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
330 if (pos)
331 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
332
333 return pos;
334 }
335 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
336
337 /**
338 * pci_find_parent_resource - return resource region of parent bus of given region
339 * @dev: PCI device structure contains resources to be searched
340 * @res: child resource record for which parent is sought
341 *
342 * For given resource region of given device, return the resource
343 * region of parent bus the given region is contained in or where
344 * it should be allocated from.
345 */
346 struct resource *
347 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
348 {
349 const struct pci_bus *bus = dev->bus;
350 int i;
351 struct resource *best = NULL;
352
353 for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
354 struct resource *r = bus->resource[i];
355 if (!r)
356 continue;
357 if (res->start && !(res->start >= r->start && res->end <= r->end))
358 continue; /* Not contained */
359 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
360 continue; /* Wrong type */
361 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
362 return r; /* Exact match */
363 if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH))
364 best = r; /* Approximating prefetchable by non-prefetchable */
365 }
366 return best;
367 }
368
369 /**
370 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
371 * @dev: PCI device to have its BARs restored
372 *
373 * Restore the BAR values for a given device, so as to make it
374 * accessible by its driver.
375 */
376 static void
377 pci_restore_bars(struct pci_dev *dev)
378 {
379 int i;
380
381 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
382 pci_update_resource(dev, i);
383 }
384
385 static struct pci_platform_pm_ops *pci_platform_pm;
386
387 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
388 {
389 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
390 || !ops->sleep_wake || !ops->can_wakeup)
391 return -EINVAL;
392 pci_platform_pm = ops;
393 return 0;
394 }
395
396 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
397 {
398 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
399 }
400
401 static inline int platform_pci_set_power_state(struct pci_dev *dev,
402 pci_power_t t)
403 {
404 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
405 }
406
407 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
408 {
409 return pci_platform_pm ?
410 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
411 }
412
413 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
414 {
415 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
416 }
417
418 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
419 {
420 return pci_platform_pm ?
421 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
422 }
423
424 /**
425 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
426 * given PCI device
427 * @dev: PCI device to handle.
428 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
429 *
430 * RETURN VALUE:
431 * -EINVAL if the requested state is invalid.
432 * -EIO if device does not support PCI PM or its PM capabilities register has a
433 * wrong version, or device doesn't support the requested state.
434 * 0 if device already is in the requested state.
435 * 0 if device's power state has been successfully changed.
436 */
437 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
438 {
439 u16 pmcsr;
440 bool need_restore = false;
441
442 /* Check if we're already there */
443 if (dev->current_state == state)
444 return 0;
445
446 if (!dev->pm_cap)
447 return -EIO;
448
449 if (state < PCI_D0 || state > PCI_D3hot)
450 return -EINVAL;
451
452 /* Validate current state:
453 * Can enter D0 from any state, but if we can only go deeper
454 * to sleep if we're already in a low power state
455 */
456 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
457 && dev->current_state > state) {
458 dev_err(&dev->dev, "invalid power transition "
459 "(from state %d to %d)\n", dev->current_state, state);
460 return -EINVAL;
461 }
462
463 /* check if this device supports the desired state */
464 if ((state == PCI_D1 && !dev->d1_support)
465 || (state == PCI_D2 && !dev->d2_support))
466 return -EIO;
467
468 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
469
470 /* If we're (effectively) in D3, force entire word to 0.
471 * This doesn't affect PME_Status, disables PME_En, and
472 * sets PowerState to 0.
473 */
474 switch (dev->current_state) {
475 case PCI_D0:
476 case PCI_D1:
477 case PCI_D2:
478 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
479 pmcsr |= state;
480 break;
481 case PCI_UNKNOWN: /* Boot-up */
482 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
483 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
484 need_restore = true;
485 /* Fall-through: force to D0 */
486 default:
487 pmcsr = 0;
488 break;
489 }
490
491 /* enter specified state */
492 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
493
494 /* Mandatory power management transition delays */
495 /* see PCI PM 1.1 5.6.1 table 18 */
496 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
497 msleep(pci_pm_d3_delay);
498 else if (state == PCI_D2 || dev->current_state == PCI_D2)
499 udelay(PCI_PM_D2_DELAY);
500
501 dev->current_state = state;
502
503 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
504 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
505 * from D3hot to D0 _may_ perform an internal reset, thereby
506 * going to "D0 Uninitialized" rather than "D0 Initialized".
507 * For example, at least some versions of the 3c905B and the
508 * 3c556B exhibit this behaviour.
509 *
510 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
511 * devices in a D3hot state at boot. Consequently, we need to
512 * restore at least the BARs so that the device will be
513 * accessible to its driver.
514 */
515 if (need_restore)
516 pci_restore_bars(dev);
517
518 if (dev->bus->self)
519 pcie_aspm_pm_state_change(dev->bus->self);
520
521 return 0;
522 }
523
524 /**
525 * pci_update_current_state - Read PCI power state of given device from its
526 * PCI PM registers and cache it
527 * @dev: PCI device to handle.
528 * @state: State to cache in case the device doesn't have the PM capability
529 */
530 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
531 {
532 if (dev->pm_cap) {
533 u16 pmcsr;
534
535 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
536 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
537 } else {
538 dev->current_state = state;
539 }
540 }
541
542 /**
543 * pci_platform_power_transition - Use platform to change device power state
544 * @dev: PCI device to handle.
545 * @state: State to put the device into.
546 */
547 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
548 {
549 int error;
550
551 if (platform_pci_power_manageable(dev)) {
552 error = platform_pci_set_power_state(dev, state);
553 if (!error)
554 pci_update_current_state(dev, state);
555 } else {
556 error = -ENODEV;
557 /* Fall back to PCI_D0 if native PM is not supported */
558 pci_update_current_state(dev, PCI_D0);
559 }
560
561 return error;
562 }
563
564 /**
565 * __pci_start_power_transition - Start power transition of a PCI device
566 * @dev: PCI device to handle.
567 * @state: State to put the device into.
568 */
569 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
570 {
571 if (state == PCI_D0)
572 pci_platform_power_transition(dev, PCI_D0);
573 }
574
575 /**
576 * __pci_complete_power_transition - Complete power transition of a PCI device
577 * @dev: PCI device to handle.
578 * @state: State to put the device into.
579 *
580 * This function should not be called directly by device drivers.
581 */
582 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
583 {
584 return state > PCI_D0 ?
585 pci_platform_power_transition(dev, state) : -EINVAL;
586 }
587 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
588
589 /**
590 * pci_set_power_state - Set the power state of a PCI device
591 * @dev: PCI device to handle.
592 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
593 *
594 * Transition a device to a new power state, using the platform formware and/or
595 * the device's PCI PM registers.
596 *
597 * RETURN VALUE:
598 * -EINVAL if the requested state is invalid.
599 * -EIO if device does not support PCI PM or its PM capabilities register has a
600 * wrong version, or device doesn't support the requested state.
601 * 0 if device already is in the requested state.
602 * 0 if device's power state has been successfully changed.
603 */
604 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
605 {
606 int error;
607
608 /* bound the state we're entering */
609 if (state > PCI_D3hot)
610 state = PCI_D3hot;
611 else if (state < PCI_D0)
612 state = PCI_D0;
613 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
614 /*
615 * If the device or the parent bridge do not support PCI PM,
616 * ignore the request if we're doing anything other than putting
617 * it into D0 (which would only happen on boot).
618 */
619 return 0;
620
621 /* Check if we're already there */
622 if (dev->current_state == state)
623 return 0;
624
625 __pci_start_power_transition(dev, state);
626
627 /* This device is quirked not to be put into D3, so
628 don't put it in D3 */
629 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
630 return 0;
631
632 error = pci_raw_set_power_state(dev, state);
633
634 if (!__pci_complete_power_transition(dev, state))
635 error = 0;
636
637 return error;
638 }
639
640 /**
641 * pci_choose_state - Choose the power state of a PCI device
642 * @dev: PCI device to be suspended
643 * @state: target sleep state for the whole system. This is the value
644 * that is passed to suspend() function.
645 *
646 * Returns PCI power state suitable for given device and given system
647 * message.
648 */
649
650 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
651 {
652 pci_power_t ret;
653
654 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
655 return PCI_D0;
656
657 ret = platform_pci_choose_state(dev);
658 if (ret != PCI_POWER_ERROR)
659 return ret;
660
661 switch (state.event) {
662 case PM_EVENT_ON:
663 return PCI_D0;
664 case PM_EVENT_FREEZE:
665 case PM_EVENT_PRETHAW:
666 /* REVISIT both freeze and pre-thaw "should" use D0 */
667 case PM_EVENT_SUSPEND:
668 case PM_EVENT_HIBERNATE:
669 return PCI_D3hot;
670 default:
671 dev_info(&dev->dev, "unrecognized suspend event %d\n",
672 state.event);
673 BUG();
674 }
675 return PCI_D0;
676 }
677
678 EXPORT_SYMBOL(pci_choose_state);
679
680 static int pci_save_pcie_state(struct pci_dev *dev)
681 {
682 int pos, i = 0;
683 struct pci_cap_saved_state *save_state;
684 u16 *cap;
685
686 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
687 if (pos <= 0)
688 return 0;
689
690 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
691 if (!save_state) {
692 dev_err(&dev->dev, "buffer not found in %s\n", __FUNCTION__);
693 return -ENOMEM;
694 }
695 cap = (u16 *)&save_state->data[0];
696
697 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
698 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
699 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
700 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
701
702 return 0;
703 }
704
705 static void pci_restore_pcie_state(struct pci_dev *dev)
706 {
707 int i = 0, pos;
708 struct pci_cap_saved_state *save_state;
709 u16 *cap;
710
711 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
712 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
713 if (!save_state || pos <= 0)
714 return;
715 cap = (u16 *)&save_state->data[0];
716
717 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
718 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
719 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
720 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
721 }
722
723
724 static int pci_save_pcix_state(struct pci_dev *dev)
725 {
726 int pos;
727 struct pci_cap_saved_state *save_state;
728
729 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
730 if (pos <= 0)
731 return 0;
732
733 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
734 if (!save_state) {
735 dev_err(&dev->dev, "buffer not found in %s\n", __FUNCTION__);
736 return -ENOMEM;
737 }
738
739 pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
740
741 return 0;
742 }
743
744 static void pci_restore_pcix_state(struct pci_dev *dev)
745 {
746 int i = 0, pos;
747 struct pci_cap_saved_state *save_state;
748 u16 *cap;
749
750 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
751 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
752 if (!save_state || pos <= 0)
753 return;
754 cap = (u16 *)&save_state->data[0];
755
756 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
757 }
758
759
760 /**
761 * pci_save_state - save the PCI configuration space of a device before suspending
762 * @dev: - PCI device that we're dealing with
763 */
764 int
765 pci_save_state(struct pci_dev *dev)
766 {
767 int i;
768 /* XXX: 100% dword access ok here? */
769 for (i = 0; i < 16; i++)
770 pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]);
771 dev->state_saved = true;
772 if ((i = pci_save_pcie_state(dev)) != 0)
773 return i;
774 if ((i = pci_save_pcix_state(dev)) != 0)
775 return i;
776 return 0;
777 }
778
779 /**
780 * pci_restore_state - Restore the saved state of a PCI device
781 * @dev: - PCI device that we're dealing with
782 */
783 int
784 pci_restore_state(struct pci_dev *dev)
785 {
786 int i;
787 u32 val;
788
789 /* PCI Express register must be restored first */
790 pci_restore_pcie_state(dev);
791
792 /*
793 * The Base Address register should be programmed before the command
794 * register(s)
795 */
796 for (i = 15; i >= 0; i--) {
797 pci_read_config_dword(dev, i * 4, &val);
798 if (val != dev->saved_config_space[i]) {
799 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
800 "space at offset %#x (was %#x, writing %#x)\n",
801 i, val, (int)dev->saved_config_space[i]);
802 pci_write_config_dword(dev,i * 4,
803 dev->saved_config_space[i]);
804 }
805 }
806 pci_restore_pcix_state(dev);
807 pci_restore_msi_state(dev);
808
809 return 0;
810 }
811
812 static int do_pci_enable_device(struct pci_dev *dev, int bars)
813 {
814 int err;
815
816 err = pci_set_power_state(dev, PCI_D0);
817 if (err < 0 && err != -EIO)
818 return err;
819 err = pcibios_enable_device(dev, bars);
820 if (err < 0)
821 return err;
822 pci_fixup_device(pci_fixup_enable, dev);
823
824 return 0;
825 }
826
827 /**
828 * pci_reenable_device - Resume abandoned device
829 * @dev: PCI device to be resumed
830 *
831 * Note this function is a backend of pci_default_resume and is not supposed
832 * to be called by normal code, write proper resume handler and use it instead.
833 */
834 int pci_reenable_device(struct pci_dev *dev)
835 {
836 if (atomic_read(&dev->enable_cnt))
837 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
838 return 0;
839 }
840
841 static int __pci_enable_device_flags(struct pci_dev *dev,
842 resource_size_t flags)
843 {
844 int err;
845 int i, bars = 0;
846
847 if (atomic_add_return(1, &dev->enable_cnt) > 1)
848 return 0; /* already enabled */
849
850 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
851 if (dev->resource[i].flags & flags)
852 bars |= (1 << i);
853
854 err = do_pci_enable_device(dev, bars);
855 if (err < 0)
856 atomic_dec(&dev->enable_cnt);
857 return err;
858 }
859
860 /**
861 * pci_enable_device_io - Initialize a device for use with IO space
862 * @dev: PCI device to be initialized
863 *
864 * Initialize device before it's used by a driver. Ask low-level code
865 * to enable I/O resources. Wake up the device if it was suspended.
866 * Beware, this function can fail.
867 */
868 int pci_enable_device_io(struct pci_dev *dev)
869 {
870 return __pci_enable_device_flags(dev, IORESOURCE_IO);
871 }
872
873 /**
874 * pci_enable_device_mem - Initialize a device for use with Memory space
875 * @dev: PCI device to be initialized
876 *
877 * Initialize device before it's used by a driver. Ask low-level code
878 * to enable Memory resources. Wake up the device if it was suspended.
879 * Beware, this function can fail.
880 */
881 int pci_enable_device_mem(struct pci_dev *dev)
882 {
883 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
884 }
885
886 /**
887 * pci_enable_device - Initialize device before it's used by a driver.
888 * @dev: PCI device to be initialized
889 *
890 * Initialize device before it's used by a driver. Ask low-level code
891 * to enable I/O and memory. Wake up the device if it was suspended.
892 * Beware, this function can fail.
893 *
894 * Note we don't actually enable the device many times if we call
895 * this function repeatedly (we just increment the count).
896 */
897 int pci_enable_device(struct pci_dev *dev)
898 {
899 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
900 }
901
902 /*
903 * Managed PCI resources. This manages device on/off, intx/msi/msix
904 * on/off and BAR regions. pci_dev itself records msi/msix status, so
905 * there's no need to track it separately. pci_devres is initialized
906 * when a device is enabled using managed PCI device enable interface.
907 */
908 struct pci_devres {
909 unsigned int enabled:1;
910 unsigned int pinned:1;
911 unsigned int orig_intx:1;
912 unsigned int restore_intx:1;
913 u32 region_mask;
914 };
915
916 static void pcim_release(struct device *gendev, void *res)
917 {
918 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
919 struct pci_devres *this = res;
920 int i;
921
922 if (dev->msi_enabled)
923 pci_disable_msi(dev);
924 if (dev->msix_enabled)
925 pci_disable_msix(dev);
926
927 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
928 if (this->region_mask & (1 << i))
929 pci_release_region(dev, i);
930
931 if (this->restore_intx)
932 pci_intx(dev, this->orig_intx);
933
934 if (this->enabled && !this->pinned)
935 pci_disable_device(dev);
936 }
937
938 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
939 {
940 struct pci_devres *dr, *new_dr;
941
942 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
943 if (dr)
944 return dr;
945
946 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
947 if (!new_dr)
948 return NULL;
949 return devres_get(&pdev->dev, new_dr, NULL, NULL);
950 }
951
952 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
953 {
954 if (pci_is_managed(pdev))
955 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
956 return NULL;
957 }
958
959 /**
960 * pcim_enable_device - Managed pci_enable_device()
961 * @pdev: PCI device to be initialized
962 *
963 * Managed pci_enable_device().
964 */
965 int pcim_enable_device(struct pci_dev *pdev)
966 {
967 struct pci_devres *dr;
968 int rc;
969
970 dr = get_pci_dr(pdev);
971 if (unlikely(!dr))
972 return -ENOMEM;
973 if (dr->enabled)
974 return 0;
975
976 rc = pci_enable_device(pdev);
977 if (!rc) {
978 pdev->is_managed = 1;
979 dr->enabled = 1;
980 }
981 return rc;
982 }
983
984 /**
985 * pcim_pin_device - Pin managed PCI device
986 * @pdev: PCI device to pin
987 *
988 * Pin managed PCI device @pdev. Pinned device won't be disabled on
989 * driver detach. @pdev must have been enabled with
990 * pcim_enable_device().
991 */
992 void pcim_pin_device(struct pci_dev *pdev)
993 {
994 struct pci_devres *dr;
995
996 dr = find_pci_dr(pdev);
997 WARN_ON(!dr || !dr->enabled);
998 if (dr)
999 dr->pinned = 1;
1000 }
1001
1002 /**
1003 * pcibios_disable_device - disable arch specific PCI resources for device dev
1004 * @dev: the PCI device to disable
1005 *
1006 * Disables architecture specific PCI resources for the device. This
1007 * is the default implementation. Architecture implementations can
1008 * override this.
1009 */
1010 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1011
1012 static void do_pci_disable_device(struct pci_dev *dev)
1013 {
1014 u16 pci_command;
1015
1016 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1017 if (pci_command & PCI_COMMAND_MASTER) {
1018 pci_command &= ~PCI_COMMAND_MASTER;
1019 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1020 }
1021
1022 pcibios_disable_device(dev);
1023 }
1024
1025 /**
1026 * pci_disable_enabled_device - Disable device without updating enable_cnt
1027 * @dev: PCI device to disable
1028 *
1029 * NOTE: This function is a backend of PCI power management routines and is
1030 * not supposed to be called drivers.
1031 */
1032 void pci_disable_enabled_device(struct pci_dev *dev)
1033 {
1034 if (atomic_read(&dev->enable_cnt))
1035 do_pci_disable_device(dev);
1036 }
1037
1038 /**
1039 * pci_disable_device - Disable PCI device after use
1040 * @dev: PCI device to be disabled
1041 *
1042 * Signal to the system that the PCI device is not in use by the system
1043 * anymore. This only involves disabling PCI bus-mastering, if active.
1044 *
1045 * Note we don't actually disable the device until all callers of
1046 * pci_device_enable() have called pci_device_disable().
1047 */
1048 void
1049 pci_disable_device(struct pci_dev *dev)
1050 {
1051 struct pci_devres *dr;
1052
1053 dr = find_pci_dr(dev);
1054 if (dr)
1055 dr->enabled = 0;
1056
1057 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1058 return;
1059
1060 do_pci_disable_device(dev);
1061
1062 dev->is_busmaster = 0;
1063 }
1064
1065 /**
1066 * pcibios_set_pcie_reset_state - set reset state for device dev
1067 * @dev: the PCI-E device reset
1068 * @state: Reset state to enter into
1069 *
1070 *
1071 * Sets the PCI-E reset state for the device. This is the default
1072 * implementation. Architecture implementations can override this.
1073 */
1074 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1075 enum pcie_reset_state state)
1076 {
1077 return -EINVAL;
1078 }
1079
1080 /**
1081 * pci_set_pcie_reset_state - set reset state for device dev
1082 * @dev: the PCI-E device reset
1083 * @state: Reset state to enter into
1084 *
1085 *
1086 * Sets the PCI reset state for the device.
1087 */
1088 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1089 {
1090 return pcibios_set_pcie_reset_state(dev, state);
1091 }
1092
1093 /**
1094 * pci_pme_capable - check the capability of PCI device to generate PME#
1095 * @dev: PCI device to handle.
1096 * @state: PCI state from which device will issue PME#.
1097 */
1098 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1099 {
1100 if (!dev->pm_cap)
1101 return false;
1102
1103 return !!(dev->pme_support & (1 << state));
1104 }
1105
1106 /**
1107 * pci_pme_active - enable or disable PCI device's PME# function
1108 * @dev: PCI device to handle.
1109 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1110 *
1111 * The caller must verify that the device is capable of generating PME# before
1112 * calling this function with @enable equal to 'true'.
1113 */
1114 void pci_pme_active(struct pci_dev *dev, bool enable)
1115 {
1116 u16 pmcsr;
1117
1118 if (!dev->pm_cap)
1119 return;
1120
1121 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1122 /* Clear PME_Status by writing 1 to it and enable PME# */
1123 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1124 if (!enable)
1125 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1126
1127 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1128
1129 dev_printk(KERN_INFO, &dev->dev, "PME# %s\n",
1130 enable ? "enabled" : "disabled");
1131 }
1132
1133 /**
1134 * pci_enable_wake - enable PCI device as wakeup event source
1135 * @dev: PCI device affected
1136 * @state: PCI state from which device will issue wakeup events
1137 * @enable: True to enable event generation; false to disable
1138 *
1139 * This enables the device as a wakeup event source, or disables it.
1140 * When such events involves platform-specific hooks, those hooks are
1141 * called automatically by this routine.
1142 *
1143 * Devices with legacy power management (no standard PCI PM capabilities)
1144 * always require such platform hooks.
1145 *
1146 * RETURN VALUE:
1147 * 0 is returned on success
1148 * -EINVAL is returned if device is not supposed to wake up the system
1149 * Error code depending on the platform is returned if both the platform and
1150 * the native mechanism fail to enable the generation of wake-up events
1151 */
1152 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, int enable)
1153 {
1154 int error = 0;
1155 bool pme_done = false;
1156
1157 if (enable && !device_may_wakeup(&dev->dev))
1158 return -EINVAL;
1159
1160 /*
1161 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1162 * Anderson we should be doing PME# wake enable followed by ACPI wake
1163 * enable. To disable wake-up we call the platform first, for symmetry.
1164 */
1165
1166 if (!enable && platform_pci_can_wakeup(dev))
1167 error = platform_pci_sleep_wake(dev, false);
1168
1169 if (!enable || pci_pme_capable(dev, state)) {
1170 pci_pme_active(dev, enable);
1171 pme_done = true;
1172 }
1173
1174 if (enable && platform_pci_can_wakeup(dev))
1175 error = platform_pci_sleep_wake(dev, true);
1176
1177 return pme_done ? 0 : error;
1178 }
1179
1180 /**
1181 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1182 * @dev: PCI device to prepare
1183 * @enable: True to enable wake-up event generation; false to disable
1184 *
1185 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1186 * and this function allows them to set that up cleanly - pci_enable_wake()
1187 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1188 * ordering constraints.
1189 *
1190 * This function only returns error code if the device is not capable of
1191 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1192 * enable wake-up power for it.
1193 */
1194 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1195 {
1196 return pci_pme_capable(dev, PCI_D3cold) ?
1197 pci_enable_wake(dev, PCI_D3cold, enable) :
1198 pci_enable_wake(dev, PCI_D3hot, enable);
1199 }
1200
1201 /**
1202 * pci_target_state - find an appropriate low power state for a given PCI dev
1203 * @dev: PCI device
1204 *
1205 * Use underlying platform code to find a supported low power state for @dev.
1206 * If the platform can't manage @dev, return the deepest state from which it
1207 * can generate wake events, based on any available PME info.
1208 */
1209 pci_power_t pci_target_state(struct pci_dev *dev)
1210 {
1211 pci_power_t target_state = PCI_D3hot;
1212
1213 if (platform_pci_power_manageable(dev)) {
1214 /*
1215 * Call the platform to choose the target state of the device
1216 * and enable wake-up from this state if supported.
1217 */
1218 pci_power_t state = platform_pci_choose_state(dev);
1219
1220 switch (state) {
1221 case PCI_POWER_ERROR:
1222 case PCI_UNKNOWN:
1223 break;
1224 case PCI_D1:
1225 case PCI_D2:
1226 if (pci_no_d1d2(dev))
1227 break;
1228 default:
1229 target_state = state;
1230 }
1231 } else if (device_may_wakeup(&dev->dev)) {
1232 /*
1233 * Find the deepest state from which the device can generate
1234 * wake-up events, make it the target state and enable device
1235 * to generate PME#.
1236 */
1237 if (!dev->pm_cap)
1238 return PCI_POWER_ERROR;
1239
1240 if (dev->pme_support) {
1241 while (target_state
1242 && !(dev->pme_support & (1 << target_state)))
1243 target_state--;
1244 }
1245 }
1246
1247 return target_state;
1248 }
1249
1250 /**
1251 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1252 * @dev: Device to handle.
1253 *
1254 * Choose the power state appropriate for the device depending on whether
1255 * it can wake up the system and/or is power manageable by the platform
1256 * (PCI_D3hot is the default) and put the device into that state.
1257 */
1258 int pci_prepare_to_sleep(struct pci_dev *dev)
1259 {
1260 pci_power_t target_state = pci_target_state(dev);
1261 int error;
1262
1263 if (target_state == PCI_POWER_ERROR)
1264 return -EIO;
1265
1266 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1267
1268 error = pci_set_power_state(dev, target_state);
1269
1270 if (error)
1271 pci_enable_wake(dev, target_state, false);
1272
1273 return error;
1274 }
1275
1276 /**
1277 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1278 * @dev: Device to handle.
1279 *
1280 * Disable device's sytem wake-up capability and put it into D0.
1281 */
1282 int pci_back_from_sleep(struct pci_dev *dev)
1283 {
1284 pci_enable_wake(dev, PCI_D0, false);
1285 return pci_set_power_state(dev, PCI_D0);
1286 }
1287
1288 /**
1289 * pci_pm_init - Initialize PM functions of given PCI device
1290 * @dev: PCI device to handle.
1291 */
1292 void pci_pm_init(struct pci_dev *dev)
1293 {
1294 int pm;
1295 u16 pmc;
1296
1297 dev->pm_cap = 0;
1298
1299 /* find PCI PM capability in list */
1300 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1301 if (!pm)
1302 return;
1303 /* Check device's ability to generate PME# */
1304 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1305
1306 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1307 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1308 pmc & PCI_PM_CAP_VER_MASK);
1309 return;
1310 }
1311
1312 dev->pm_cap = pm;
1313
1314 dev->d1_support = false;
1315 dev->d2_support = false;
1316 if (!pci_no_d1d2(dev)) {
1317 if (pmc & PCI_PM_CAP_D1)
1318 dev->d1_support = true;
1319 if (pmc & PCI_PM_CAP_D2)
1320 dev->d2_support = true;
1321
1322 if (dev->d1_support || dev->d2_support)
1323 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1324 dev->d1_support ? " D1" : "",
1325 dev->d2_support ? " D2" : "");
1326 }
1327
1328 pmc &= PCI_PM_CAP_PME_MASK;
1329 if (pmc) {
1330 dev_info(&dev->dev, "PME# supported from%s%s%s%s%s\n",
1331 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1332 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1333 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1334 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1335 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1336 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1337 /*
1338 * Make device's PM flags reflect the wake-up capability, but
1339 * let the user space enable it to wake up the system as needed.
1340 */
1341 device_set_wakeup_capable(&dev->dev, true);
1342 device_set_wakeup_enable(&dev->dev, false);
1343 /* Disable the PME# generation functionality */
1344 pci_pme_active(dev, false);
1345 } else {
1346 dev->pme_support = 0;
1347 }
1348 }
1349
1350 /**
1351 * platform_pci_wakeup_init - init platform wakeup if present
1352 * @dev: PCI device
1353 *
1354 * Some devices don't have PCI PM caps but can still generate wakeup
1355 * events through platform methods (like ACPI events). If @dev supports
1356 * platform wakeup events, set the device flag to indicate as much. This
1357 * may be redundant if the device also supports PCI PM caps, but double
1358 * initialization should be safe in that case.
1359 */
1360 void platform_pci_wakeup_init(struct pci_dev *dev)
1361 {
1362 if (!platform_pci_can_wakeup(dev))
1363 return;
1364
1365 device_set_wakeup_capable(&dev->dev, true);
1366 device_set_wakeup_enable(&dev->dev, false);
1367 platform_pci_sleep_wake(dev, false);
1368 }
1369
1370 /**
1371 * pci_add_save_buffer - allocate buffer for saving given capability registers
1372 * @dev: the PCI device
1373 * @cap: the capability to allocate the buffer for
1374 * @size: requested size of the buffer
1375 */
1376 static int pci_add_cap_save_buffer(
1377 struct pci_dev *dev, char cap, unsigned int size)
1378 {
1379 int pos;
1380 struct pci_cap_saved_state *save_state;
1381
1382 pos = pci_find_capability(dev, cap);
1383 if (pos <= 0)
1384 return 0;
1385
1386 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1387 if (!save_state)
1388 return -ENOMEM;
1389
1390 save_state->cap_nr = cap;
1391 pci_add_saved_cap(dev, save_state);
1392
1393 return 0;
1394 }
1395
1396 /**
1397 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1398 * @dev: the PCI device
1399 */
1400 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1401 {
1402 int error;
1403
1404 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 4 * sizeof(u16));
1405 if (error)
1406 dev_err(&dev->dev,
1407 "unable to preallocate PCI Express save buffer\n");
1408
1409 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1410 if (error)
1411 dev_err(&dev->dev,
1412 "unable to preallocate PCI-X save buffer\n");
1413 }
1414
1415 /**
1416 * pci_enable_ari - enable ARI forwarding if hardware support it
1417 * @dev: the PCI device
1418 */
1419 void pci_enable_ari(struct pci_dev *dev)
1420 {
1421 int pos;
1422 u32 cap;
1423 u16 ctrl;
1424 struct pci_dev *bridge;
1425
1426 if (!dev->is_pcie || dev->devfn)
1427 return;
1428
1429 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1430 if (!pos)
1431 return;
1432
1433 bridge = dev->bus->self;
1434 if (!bridge || !bridge->is_pcie)
1435 return;
1436
1437 pos = pci_find_capability(bridge, PCI_CAP_ID_EXP);
1438 if (!pos)
1439 return;
1440
1441 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1442 if (!(cap & PCI_EXP_DEVCAP2_ARI))
1443 return;
1444
1445 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1446 ctrl |= PCI_EXP_DEVCTL2_ARI;
1447 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1448
1449 bridge->ari_enabled = 1;
1450 }
1451
1452 /**
1453 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1454 * @dev: the PCI device
1455 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1456 *
1457 * Perform INTx swizzling for a device behind one level of bridge. This is
1458 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1459 * behind bridges on add-in cards.
1460 */
1461 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1462 {
1463 return (((pin - 1) + PCI_SLOT(dev->devfn)) % 4) + 1;
1464 }
1465
1466 int
1467 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1468 {
1469 u8 pin;
1470
1471 pin = dev->pin;
1472 if (!pin)
1473 return -1;
1474
1475 while (dev->bus->self) {
1476 pin = pci_swizzle_interrupt_pin(dev, pin);
1477 dev = dev->bus->self;
1478 }
1479 *bridge = dev;
1480 return pin;
1481 }
1482
1483 /**
1484 * pci_common_swizzle - swizzle INTx all the way to root bridge
1485 * @dev: the PCI device
1486 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1487 *
1488 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
1489 * bridges all the way up to a PCI root bus.
1490 */
1491 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
1492 {
1493 u8 pin = *pinp;
1494
1495 while (dev->bus->self) {
1496 pin = pci_swizzle_interrupt_pin(dev, pin);
1497 dev = dev->bus->self;
1498 }
1499 *pinp = pin;
1500 return PCI_SLOT(dev->devfn);
1501 }
1502
1503 /**
1504 * pci_release_region - Release a PCI bar
1505 * @pdev: PCI device whose resources were previously reserved by pci_request_region
1506 * @bar: BAR to release
1507 *
1508 * Releases the PCI I/O and memory resources previously reserved by a
1509 * successful call to pci_request_region. Call this function only
1510 * after all use of the PCI regions has ceased.
1511 */
1512 void pci_release_region(struct pci_dev *pdev, int bar)
1513 {
1514 struct pci_devres *dr;
1515
1516 if (pci_resource_len(pdev, bar) == 0)
1517 return;
1518 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1519 release_region(pci_resource_start(pdev, bar),
1520 pci_resource_len(pdev, bar));
1521 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1522 release_mem_region(pci_resource_start(pdev, bar),
1523 pci_resource_len(pdev, bar));
1524
1525 dr = find_pci_dr(pdev);
1526 if (dr)
1527 dr->region_mask &= ~(1 << bar);
1528 }
1529
1530 /**
1531 * __pci_request_region - Reserved PCI I/O and memory resource
1532 * @pdev: PCI device whose resources are to be reserved
1533 * @bar: BAR to be reserved
1534 * @res_name: Name to be associated with resource.
1535 * @exclusive: whether the region access is exclusive or not
1536 *
1537 * Mark the PCI region associated with PCI device @pdev BR @bar as
1538 * being reserved by owner @res_name. Do not access any
1539 * address inside the PCI regions unless this call returns
1540 * successfully.
1541 *
1542 * If @exclusive is set, then the region is marked so that userspace
1543 * is explicitly not allowed to map the resource via /dev/mem or
1544 * sysfs MMIO access.
1545 *
1546 * Returns 0 on success, or %EBUSY on error. A warning
1547 * message is also printed on failure.
1548 */
1549 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1550 int exclusive)
1551 {
1552 struct pci_devres *dr;
1553
1554 if (pci_resource_len(pdev, bar) == 0)
1555 return 0;
1556
1557 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1558 if (!request_region(pci_resource_start(pdev, bar),
1559 pci_resource_len(pdev, bar), res_name))
1560 goto err_out;
1561 }
1562 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1563 if (!__request_mem_region(pci_resource_start(pdev, bar),
1564 pci_resource_len(pdev, bar), res_name,
1565 exclusive))
1566 goto err_out;
1567 }
1568
1569 dr = find_pci_dr(pdev);
1570 if (dr)
1571 dr->region_mask |= 1 << bar;
1572
1573 return 0;
1574
1575 err_out:
1576 dev_warn(&pdev->dev, "BAR %d: can't reserve %s region %pR\n",
1577 bar,
1578 pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem",
1579 &pdev->resource[bar]);
1580 return -EBUSY;
1581 }
1582
1583 /**
1584 * pci_request_region - Reserve PCI I/O and memory resource
1585 * @pdev: PCI device whose resources are to be reserved
1586 * @bar: BAR to be reserved
1587 * @res_name: Name to be associated with resource
1588 *
1589 * Mark the PCI region associated with PCI device @pdev BAR @bar as
1590 * being reserved by owner @res_name. Do not access any
1591 * address inside the PCI regions unless this call returns
1592 * successfully.
1593 *
1594 * Returns 0 on success, or %EBUSY on error. A warning
1595 * message is also printed on failure.
1596 */
1597 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1598 {
1599 return __pci_request_region(pdev, bar, res_name, 0);
1600 }
1601
1602 /**
1603 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
1604 * @pdev: PCI device whose resources are to be reserved
1605 * @bar: BAR to be reserved
1606 * @res_name: Name to be associated with resource.
1607 *
1608 * Mark the PCI region associated with PCI device @pdev BR @bar as
1609 * being reserved by owner @res_name. Do not access any
1610 * address inside the PCI regions unless this call returns
1611 * successfully.
1612 *
1613 * Returns 0 on success, or %EBUSY on error. A warning
1614 * message is also printed on failure.
1615 *
1616 * The key difference that _exclusive makes it that userspace is
1617 * explicitly not allowed to map the resource via /dev/mem or
1618 * sysfs.
1619 */
1620 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
1621 {
1622 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
1623 }
1624 /**
1625 * pci_release_selected_regions - Release selected PCI I/O and memory resources
1626 * @pdev: PCI device whose resources were previously reserved
1627 * @bars: Bitmask of BARs to be released
1628 *
1629 * Release selected PCI I/O and memory resources previously reserved.
1630 * Call this function only after all use of the PCI regions has ceased.
1631 */
1632 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1633 {
1634 int i;
1635
1636 for (i = 0; i < 6; i++)
1637 if (bars & (1 << i))
1638 pci_release_region(pdev, i);
1639 }
1640
1641 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
1642 const char *res_name, int excl)
1643 {
1644 int i;
1645
1646 for (i = 0; i < 6; i++)
1647 if (bars & (1 << i))
1648 if (__pci_request_region(pdev, i, res_name, excl))
1649 goto err_out;
1650 return 0;
1651
1652 err_out:
1653 while(--i >= 0)
1654 if (bars & (1 << i))
1655 pci_release_region(pdev, i);
1656
1657 return -EBUSY;
1658 }
1659
1660
1661 /**
1662 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1663 * @pdev: PCI device whose resources are to be reserved
1664 * @bars: Bitmask of BARs to be requested
1665 * @res_name: Name to be associated with resource
1666 */
1667 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1668 const char *res_name)
1669 {
1670 return __pci_request_selected_regions(pdev, bars, res_name, 0);
1671 }
1672
1673 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
1674 int bars, const char *res_name)
1675 {
1676 return __pci_request_selected_regions(pdev, bars, res_name,
1677 IORESOURCE_EXCLUSIVE);
1678 }
1679
1680 /**
1681 * pci_release_regions - Release reserved PCI I/O and memory resources
1682 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
1683 *
1684 * Releases all PCI I/O and memory resources previously reserved by a
1685 * successful call to pci_request_regions. Call this function only
1686 * after all use of the PCI regions has ceased.
1687 */
1688
1689 void pci_release_regions(struct pci_dev *pdev)
1690 {
1691 pci_release_selected_regions(pdev, (1 << 6) - 1);
1692 }
1693
1694 /**
1695 * pci_request_regions - Reserved PCI I/O and memory resources
1696 * @pdev: PCI device whose resources are to be reserved
1697 * @res_name: Name to be associated with resource.
1698 *
1699 * Mark all PCI regions associated with PCI device @pdev as
1700 * being reserved by owner @res_name. Do not access any
1701 * address inside the PCI regions unless this call returns
1702 * successfully.
1703 *
1704 * Returns 0 on success, or %EBUSY on error. A warning
1705 * message is also printed on failure.
1706 */
1707 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1708 {
1709 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1710 }
1711
1712 /**
1713 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
1714 * @pdev: PCI device whose resources are to be reserved
1715 * @res_name: Name to be associated with resource.
1716 *
1717 * Mark all PCI regions associated with PCI device @pdev as
1718 * being reserved by owner @res_name. Do not access any
1719 * address inside the PCI regions unless this call returns
1720 * successfully.
1721 *
1722 * pci_request_regions_exclusive() will mark the region so that
1723 * /dev/mem and the sysfs MMIO access will not be allowed.
1724 *
1725 * Returns 0 on success, or %EBUSY on error. A warning
1726 * message is also printed on failure.
1727 */
1728 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
1729 {
1730 return pci_request_selected_regions_exclusive(pdev,
1731 ((1 << 6) - 1), res_name);
1732 }
1733
1734 static void __pci_set_master(struct pci_dev *dev, bool enable)
1735 {
1736 u16 old_cmd, cmd;
1737
1738 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
1739 if (enable)
1740 cmd = old_cmd | PCI_COMMAND_MASTER;
1741 else
1742 cmd = old_cmd & ~PCI_COMMAND_MASTER;
1743 if (cmd != old_cmd) {
1744 dev_dbg(&dev->dev, "%s bus mastering\n",
1745 enable ? "enabling" : "disabling");
1746 pci_write_config_word(dev, PCI_COMMAND, cmd);
1747 }
1748 dev->is_busmaster = enable;
1749 }
1750
1751 /**
1752 * pci_set_master - enables bus-mastering for device dev
1753 * @dev: the PCI device to enable
1754 *
1755 * Enables bus-mastering on the device and calls pcibios_set_master()
1756 * to do the needed arch specific settings.
1757 */
1758 void pci_set_master(struct pci_dev *dev)
1759 {
1760 __pci_set_master(dev, true);
1761 pcibios_set_master(dev);
1762 }
1763
1764 /**
1765 * pci_clear_master - disables bus-mastering for device dev
1766 * @dev: the PCI device to disable
1767 */
1768 void pci_clear_master(struct pci_dev *dev)
1769 {
1770 __pci_set_master(dev, false);
1771 }
1772
1773 #ifdef PCI_DISABLE_MWI
1774 int pci_set_mwi(struct pci_dev *dev)
1775 {
1776 return 0;
1777 }
1778
1779 int pci_try_set_mwi(struct pci_dev *dev)
1780 {
1781 return 0;
1782 }
1783
1784 void pci_clear_mwi(struct pci_dev *dev)
1785 {
1786 }
1787
1788 #else
1789
1790 #ifndef PCI_CACHE_LINE_BYTES
1791 #define PCI_CACHE_LINE_BYTES L1_CACHE_BYTES
1792 #endif
1793
1794 /* This can be overridden by arch code. */
1795 /* Don't forget this is measured in 32-bit words, not bytes */
1796 u8 pci_cache_line_size = PCI_CACHE_LINE_BYTES / 4;
1797
1798 /**
1799 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
1800 * @dev: the PCI device for which MWI is to be enabled
1801 *
1802 * Helper function for pci_set_mwi.
1803 * Originally copied from drivers/net/acenic.c.
1804 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
1805 *
1806 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1807 */
1808 static int
1809 pci_set_cacheline_size(struct pci_dev *dev)
1810 {
1811 u8 cacheline_size;
1812
1813 if (!pci_cache_line_size)
1814 return -EINVAL; /* The system doesn't support MWI. */
1815
1816 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
1817 equal to or multiple of the right value. */
1818 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1819 if (cacheline_size >= pci_cache_line_size &&
1820 (cacheline_size % pci_cache_line_size) == 0)
1821 return 0;
1822
1823 /* Write the correct value. */
1824 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
1825 /* Read it back. */
1826 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1827 if (cacheline_size == pci_cache_line_size)
1828 return 0;
1829
1830 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
1831 "supported\n", pci_cache_line_size << 2);
1832
1833 return -EINVAL;
1834 }
1835
1836 /**
1837 * pci_set_mwi - enables memory-write-invalidate PCI transaction
1838 * @dev: the PCI device for which MWI is enabled
1839 *
1840 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1841 *
1842 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1843 */
1844 int
1845 pci_set_mwi(struct pci_dev *dev)
1846 {
1847 int rc;
1848 u16 cmd;
1849
1850 rc = pci_set_cacheline_size(dev);
1851 if (rc)
1852 return rc;
1853
1854 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1855 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
1856 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1857 cmd |= PCI_COMMAND_INVALIDATE;
1858 pci_write_config_word(dev, PCI_COMMAND, cmd);
1859 }
1860
1861 return 0;
1862 }
1863
1864 /**
1865 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
1866 * @dev: the PCI device for which MWI is enabled
1867 *
1868 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1869 * Callers are not required to check the return value.
1870 *
1871 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1872 */
1873 int pci_try_set_mwi(struct pci_dev *dev)
1874 {
1875 int rc = pci_set_mwi(dev);
1876 return rc;
1877 }
1878
1879 /**
1880 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
1881 * @dev: the PCI device to disable
1882 *
1883 * Disables PCI Memory-Write-Invalidate transaction on the device
1884 */
1885 void
1886 pci_clear_mwi(struct pci_dev *dev)
1887 {
1888 u16 cmd;
1889
1890 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1891 if (cmd & PCI_COMMAND_INVALIDATE) {
1892 cmd &= ~PCI_COMMAND_INVALIDATE;
1893 pci_write_config_word(dev, PCI_COMMAND, cmd);
1894 }
1895 }
1896 #endif /* ! PCI_DISABLE_MWI */
1897
1898 /**
1899 * pci_intx - enables/disables PCI INTx for device dev
1900 * @pdev: the PCI device to operate on
1901 * @enable: boolean: whether to enable or disable PCI INTx
1902 *
1903 * Enables/disables PCI INTx for device dev
1904 */
1905 void
1906 pci_intx(struct pci_dev *pdev, int enable)
1907 {
1908 u16 pci_command, new;
1909
1910 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1911
1912 if (enable) {
1913 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
1914 } else {
1915 new = pci_command | PCI_COMMAND_INTX_DISABLE;
1916 }
1917
1918 if (new != pci_command) {
1919 struct pci_devres *dr;
1920
1921 pci_write_config_word(pdev, PCI_COMMAND, new);
1922
1923 dr = find_pci_dr(pdev);
1924 if (dr && !dr->restore_intx) {
1925 dr->restore_intx = 1;
1926 dr->orig_intx = !enable;
1927 }
1928 }
1929 }
1930
1931 /**
1932 * pci_msi_off - disables any msi or msix capabilities
1933 * @dev: the PCI device to operate on
1934 *
1935 * If you want to use msi see pci_enable_msi and friends.
1936 * This is a lower level primitive that allows us to disable
1937 * msi operation at the device level.
1938 */
1939 void pci_msi_off(struct pci_dev *dev)
1940 {
1941 int pos;
1942 u16 control;
1943
1944 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
1945 if (pos) {
1946 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
1947 control &= ~PCI_MSI_FLAGS_ENABLE;
1948 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
1949 }
1950 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
1951 if (pos) {
1952 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
1953 control &= ~PCI_MSIX_FLAGS_ENABLE;
1954 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
1955 }
1956 }
1957
1958 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
1959 /*
1960 * These can be overridden by arch-specific implementations
1961 */
1962 int
1963 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
1964 {
1965 if (!pci_dma_supported(dev, mask))
1966 return -EIO;
1967
1968 dev->dma_mask = mask;
1969
1970 return 0;
1971 }
1972
1973 int
1974 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
1975 {
1976 if (!pci_dma_supported(dev, mask))
1977 return -EIO;
1978
1979 dev->dev.coherent_dma_mask = mask;
1980
1981 return 0;
1982 }
1983 #endif
1984
1985 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
1986 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
1987 {
1988 return dma_set_max_seg_size(&dev->dev, size);
1989 }
1990 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
1991 #endif
1992
1993 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
1994 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
1995 {
1996 return dma_set_seg_boundary(&dev->dev, mask);
1997 }
1998 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
1999 #endif
2000
2001 static int __pcie_flr(struct pci_dev *dev, int probe)
2002 {
2003 u16 status;
2004 u32 cap;
2005 int exppos = pci_find_capability(dev, PCI_CAP_ID_EXP);
2006
2007 if (!exppos)
2008 return -ENOTTY;
2009 pci_read_config_dword(dev, exppos + PCI_EXP_DEVCAP, &cap);
2010 if (!(cap & PCI_EXP_DEVCAP_FLR))
2011 return -ENOTTY;
2012
2013 if (probe)
2014 return 0;
2015
2016 pci_block_user_cfg_access(dev);
2017
2018 /* Wait for Transaction Pending bit clean */
2019 msleep(100);
2020 pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
2021 if (status & PCI_EXP_DEVSTA_TRPND) {
2022 dev_info(&dev->dev, "Busy after 100ms while trying to reset; "
2023 "sleeping for 1 second\n");
2024 ssleep(1);
2025 pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
2026 if (status & PCI_EXP_DEVSTA_TRPND)
2027 dev_info(&dev->dev, "Still busy after 1s; "
2028 "proceeding with reset anyway\n");
2029 }
2030
2031 pci_write_config_word(dev, exppos + PCI_EXP_DEVCTL,
2032 PCI_EXP_DEVCTL_BCR_FLR);
2033 mdelay(100);
2034
2035 pci_unblock_user_cfg_access(dev);
2036 return 0;
2037 }
2038
2039 static int __pci_af_flr(struct pci_dev *dev, int probe)
2040 {
2041 int cappos = pci_find_capability(dev, PCI_CAP_ID_AF);
2042 u8 status;
2043 u8 cap;
2044
2045 if (!cappos)
2046 return -ENOTTY;
2047 pci_read_config_byte(dev, cappos + PCI_AF_CAP, &cap);
2048 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2049 return -ENOTTY;
2050
2051 if (probe)
2052 return 0;
2053
2054 pci_block_user_cfg_access(dev);
2055
2056 /* Wait for Transaction Pending bit clean */
2057 msleep(100);
2058 pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status);
2059 if (status & PCI_AF_STATUS_TP) {
2060 dev_info(&dev->dev, "Busy after 100ms while trying to"
2061 " reset; sleeping for 1 second\n");
2062 ssleep(1);
2063 pci_read_config_byte(dev,
2064 cappos + PCI_AF_STATUS, &status);
2065 if (status & PCI_AF_STATUS_TP)
2066 dev_info(&dev->dev, "Still busy after 1s; "
2067 "proceeding with reset anyway\n");
2068 }
2069 pci_write_config_byte(dev, cappos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2070 mdelay(100);
2071
2072 pci_unblock_user_cfg_access(dev);
2073 return 0;
2074 }
2075
2076 static int __pci_reset_function(struct pci_dev *pdev, int probe)
2077 {
2078 int res;
2079
2080 res = __pcie_flr(pdev, probe);
2081 if (res != -ENOTTY)
2082 return res;
2083
2084 res = __pci_af_flr(pdev, probe);
2085 if (res != -ENOTTY)
2086 return res;
2087
2088 return res;
2089 }
2090
2091 /**
2092 * pci_execute_reset_function() - Reset a PCI device function
2093 * @dev: Device function to reset
2094 *
2095 * Some devices allow an individual function to be reset without affecting
2096 * other functions in the same device. The PCI device must be responsive
2097 * to PCI config space in order to use this function.
2098 *
2099 * The device function is presumed to be unused when this function is called.
2100 * Resetting the device will make the contents of PCI configuration space
2101 * random, so any caller of this must be prepared to reinitialise the
2102 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
2103 * etc.
2104 *
2105 * Returns 0 if the device function was successfully reset or -ENOTTY if the
2106 * device doesn't support resetting a single function.
2107 */
2108 int pci_execute_reset_function(struct pci_dev *dev)
2109 {
2110 return __pci_reset_function(dev, 0);
2111 }
2112 EXPORT_SYMBOL_GPL(pci_execute_reset_function);
2113
2114 /**
2115 * pci_reset_function() - quiesce and reset a PCI device function
2116 * @dev: Device function to reset
2117 *
2118 * Some devices allow an individual function to be reset without affecting
2119 * other functions in the same device. The PCI device must be responsive
2120 * to PCI config space in order to use this function.
2121 *
2122 * This function does not just reset the PCI portion of a device, but
2123 * clears all the state associated with the device. This function differs
2124 * from pci_execute_reset_function in that it saves and restores device state
2125 * over the reset.
2126 *
2127 * Returns 0 if the device function was successfully reset or -ENOTTY if the
2128 * device doesn't support resetting a single function.
2129 */
2130 int pci_reset_function(struct pci_dev *dev)
2131 {
2132 int r = __pci_reset_function(dev, 1);
2133
2134 if (r < 0)
2135 return r;
2136
2137 if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0)
2138 disable_irq(dev->irq);
2139 pci_save_state(dev);
2140
2141 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2142
2143 r = pci_execute_reset_function(dev);
2144
2145 pci_restore_state(dev);
2146 if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0)
2147 enable_irq(dev->irq);
2148
2149 return r;
2150 }
2151 EXPORT_SYMBOL_GPL(pci_reset_function);
2152
2153 /**
2154 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2155 * @dev: PCI device to query
2156 *
2157 * Returns mmrbc: maximum designed memory read count in bytes
2158 * or appropriate error value.
2159 */
2160 int pcix_get_max_mmrbc(struct pci_dev *dev)
2161 {
2162 int err, cap;
2163 u32 stat;
2164
2165 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2166 if (!cap)
2167 return -EINVAL;
2168
2169 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2170 if (err)
2171 return -EINVAL;
2172
2173 return (stat & PCI_X_STATUS_MAX_READ) >> 12;
2174 }
2175 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2176
2177 /**
2178 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2179 * @dev: PCI device to query
2180 *
2181 * Returns mmrbc: maximum memory read count in bytes
2182 * or appropriate error value.
2183 */
2184 int pcix_get_mmrbc(struct pci_dev *dev)
2185 {
2186 int ret, cap;
2187 u32 cmd;
2188
2189 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2190 if (!cap)
2191 return -EINVAL;
2192
2193 ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2194 if (!ret)
2195 ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2196
2197 return ret;
2198 }
2199 EXPORT_SYMBOL(pcix_get_mmrbc);
2200
2201 /**
2202 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2203 * @dev: PCI device to query
2204 * @mmrbc: maximum memory read count in bytes
2205 * valid values are 512, 1024, 2048, 4096
2206 *
2207 * If possible sets maximum memory read byte count, some bridges have erratas
2208 * that prevent this.
2209 */
2210 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2211 {
2212 int cap, err = -EINVAL;
2213 u32 stat, cmd, v, o;
2214
2215 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2216 goto out;
2217
2218 v = ffs(mmrbc) - 10;
2219
2220 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2221 if (!cap)
2222 goto out;
2223
2224 err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2225 if (err)
2226 goto out;
2227
2228 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2229 return -E2BIG;
2230
2231 err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2232 if (err)
2233 goto out;
2234
2235 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2236 if (o != v) {
2237 if (v > o && dev->bus &&
2238 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2239 return -EIO;
2240
2241 cmd &= ~PCI_X_CMD_MAX_READ;
2242 cmd |= v << 2;
2243 err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
2244 }
2245 out:
2246 return err;
2247 }
2248 EXPORT_SYMBOL(pcix_set_mmrbc);
2249
2250 /**
2251 * pcie_get_readrq - get PCI Express read request size
2252 * @dev: PCI device to query
2253 *
2254 * Returns maximum memory read request in bytes
2255 * or appropriate error value.
2256 */
2257 int pcie_get_readrq(struct pci_dev *dev)
2258 {
2259 int ret, cap;
2260 u16 ctl;
2261
2262 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2263 if (!cap)
2264 return -EINVAL;
2265
2266 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2267 if (!ret)
2268 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2269
2270 return ret;
2271 }
2272 EXPORT_SYMBOL(pcie_get_readrq);
2273
2274 /**
2275 * pcie_set_readrq - set PCI Express maximum memory read request
2276 * @dev: PCI device to query
2277 * @rq: maximum memory read count in bytes
2278 * valid values are 128, 256, 512, 1024, 2048, 4096
2279 *
2280 * If possible sets maximum read byte count
2281 */
2282 int pcie_set_readrq(struct pci_dev *dev, int rq)
2283 {
2284 int cap, err = -EINVAL;
2285 u16 ctl, v;
2286
2287 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2288 goto out;
2289
2290 v = (ffs(rq) - 8) << 12;
2291
2292 cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2293 if (!cap)
2294 goto out;
2295
2296 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2297 if (err)
2298 goto out;
2299
2300 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2301 ctl &= ~PCI_EXP_DEVCTL_READRQ;
2302 ctl |= v;
2303 err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2304 }
2305
2306 out:
2307 return err;
2308 }
2309 EXPORT_SYMBOL(pcie_set_readrq);
2310
2311 /**
2312 * pci_select_bars - Make BAR mask from the type of resource
2313 * @dev: the PCI device for which BAR mask is made
2314 * @flags: resource type mask to be selected
2315 *
2316 * This helper routine makes bar mask from the type of resource.
2317 */
2318 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2319 {
2320 int i, bars = 0;
2321 for (i = 0; i < PCI_NUM_RESOURCES; i++)
2322 if (pci_resource_flags(dev, i) & flags)
2323 bars |= (1 << i);
2324 return bars;
2325 }
2326
2327 /**
2328 * pci_resource_bar - get position of the BAR associated with a resource
2329 * @dev: the PCI device
2330 * @resno: the resource number
2331 * @type: the BAR type to be filled in
2332 *
2333 * Returns BAR position in config space, or 0 if the BAR is invalid.
2334 */
2335 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2336 {
2337 if (resno < PCI_ROM_RESOURCE) {
2338 *type = pci_bar_unknown;
2339 return PCI_BASE_ADDRESS_0 + 4 * resno;
2340 } else if (resno == PCI_ROM_RESOURCE) {
2341 *type = pci_bar_mem32;
2342 return dev->rom_base_reg;
2343 }
2344
2345 dev_err(&dev->dev, "BAR: invalid resource #%d\n", resno);
2346 return 0;
2347 }
2348
2349 static void __devinit pci_no_domains(void)
2350 {
2351 #ifdef CONFIG_PCI_DOMAINS
2352 pci_domains_supported = 0;
2353 #endif
2354 }
2355
2356 /**
2357 * pci_ext_cfg_enabled - can we access extended PCI config space?
2358 * @dev: The PCI device of the root bridge.
2359 *
2360 * Returns 1 if we can access PCI extended config space (offsets
2361 * greater than 0xff). This is the default implementation. Architecture
2362 * implementations can override this.
2363 */
2364 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
2365 {
2366 return 1;
2367 }
2368
2369 static int __devinit pci_init(void)
2370 {
2371 struct pci_dev *dev = NULL;
2372
2373 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2374 pci_fixup_device(pci_fixup_final, dev);
2375 }
2376
2377 return 0;
2378 }
2379
2380 static int __init pci_setup(char *str)
2381 {
2382 while (str) {
2383 char *k = strchr(str, ',');
2384 if (k)
2385 *k++ = 0;
2386 if (*str && (str = pcibios_setup(str)) && *str) {
2387 if (!strcmp(str, "nomsi")) {
2388 pci_no_msi();
2389 } else if (!strcmp(str, "noaer")) {
2390 pci_no_aer();
2391 } else if (!strcmp(str, "nodomains")) {
2392 pci_no_domains();
2393 } else if (!strncmp(str, "cbiosize=", 9)) {
2394 pci_cardbus_io_size = memparse(str + 9, &str);
2395 } else if (!strncmp(str, "cbmemsize=", 10)) {
2396 pci_cardbus_mem_size = memparse(str + 10, &str);
2397 } else {
2398 printk(KERN_ERR "PCI: Unknown option `%s'\n",
2399 str);
2400 }
2401 }
2402 str = k;
2403 }
2404 return 0;
2405 }
2406 early_param("pci", pci_setup);
2407
2408 device_initcall(pci_init);
2409
2410 EXPORT_SYMBOL(pci_reenable_device);
2411 EXPORT_SYMBOL(pci_enable_device_io);
2412 EXPORT_SYMBOL(pci_enable_device_mem);
2413 EXPORT_SYMBOL(pci_enable_device);
2414 EXPORT_SYMBOL(pcim_enable_device);
2415 EXPORT_SYMBOL(pcim_pin_device);
2416 EXPORT_SYMBOL(pci_disable_device);
2417 EXPORT_SYMBOL(pci_find_capability);
2418 EXPORT_SYMBOL(pci_bus_find_capability);
2419 EXPORT_SYMBOL(pci_release_regions);
2420 EXPORT_SYMBOL(pci_request_regions);
2421 EXPORT_SYMBOL(pci_request_regions_exclusive);
2422 EXPORT_SYMBOL(pci_release_region);
2423 EXPORT_SYMBOL(pci_request_region);
2424 EXPORT_SYMBOL(pci_request_region_exclusive);
2425 EXPORT_SYMBOL(pci_release_selected_regions);
2426 EXPORT_SYMBOL(pci_request_selected_regions);
2427 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2428 EXPORT_SYMBOL(pci_set_master);
2429 EXPORT_SYMBOL(pci_clear_master);
2430 EXPORT_SYMBOL(pci_set_mwi);
2431 EXPORT_SYMBOL(pci_try_set_mwi);
2432 EXPORT_SYMBOL(pci_clear_mwi);
2433 EXPORT_SYMBOL_GPL(pci_intx);
2434 EXPORT_SYMBOL(pci_set_dma_mask);
2435 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
2436 EXPORT_SYMBOL(pci_assign_resource);
2437 EXPORT_SYMBOL(pci_find_parent_resource);
2438 EXPORT_SYMBOL(pci_select_bars);
2439
2440 EXPORT_SYMBOL(pci_set_power_state);
2441 EXPORT_SYMBOL(pci_save_state);
2442 EXPORT_SYMBOL(pci_restore_state);
2443 EXPORT_SYMBOL(pci_pme_capable);
2444 EXPORT_SYMBOL(pci_pme_active);
2445 EXPORT_SYMBOL(pci_enable_wake);
2446 EXPORT_SYMBOL(pci_wake_from_d3);
2447 EXPORT_SYMBOL(pci_target_state);
2448 EXPORT_SYMBOL(pci_prepare_to_sleep);
2449 EXPORT_SYMBOL(pci_back_from_sleep);
2450 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2451
This page took 0.144164 seconds and 6 git commands to generate.