Merge branch 'cpuidle' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux...
[deliverable/linux.git] / drivers / perf / arm_pmu.c
1 #undef DEBUG
2
3 /*
4 * ARM performance counter support.
5 *
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8 *
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code.
11 */
12 #define pr_fmt(fmt) "hw perfevents: " fmt
13
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/export.h>
17 #include <linux/kernel.h>
18 #include <linux/of_device.h>
19 #include <linux/perf/arm_pmu.h>
20 #include <linux/platform_device.h>
21 #include <linux/slab.h>
22 #include <linux/spinlock.h>
23 #include <linux/irq.h>
24 #include <linux/irqdesc.h>
25
26 #include <asm/cputype.h>
27 #include <asm/irq_regs.h>
28
29 static int
30 armpmu_map_cache_event(const unsigned (*cache_map)
31 [PERF_COUNT_HW_CACHE_MAX]
32 [PERF_COUNT_HW_CACHE_OP_MAX]
33 [PERF_COUNT_HW_CACHE_RESULT_MAX],
34 u64 config)
35 {
36 unsigned int cache_type, cache_op, cache_result, ret;
37
38 cache_type = (config >> 0) & 0xff;
39 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
40 return -EINVAL;
41
42 cache_op = (config >> 8) & 0xff;
43 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
44 return -EINVAL;
45
46 cache_result = (config >> 16) & 0xff;
47 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
48 return -EINVAL;
49
50 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
51
52 if (ret == CACHE_OP_UNSUPPORTED)
53 return -ENOENT;
54
55 return ret;
56 }
57
58 static int
59 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
60 {
61 int mapping;
62
63 if (config >= PERF_COUNT_HW_MAX)
64 return -EINVAL;
65
66 mapping = (*event_map)[config];
67 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
68 }
69
70 static int
71 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
72 {
73 return (int)(config & raw_event_mask);
74 }
75
76 int
77 armpmu_map_event(struct perf_event *event,
78 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
79 const unsigned (*cache_map)
80 [PERF_COUNT_HW_CACHE_MAX]
81 [PERF_COUNT_HW_CACHE_OP_MAX]
82 [PERF_COUNT_HW_CACHE_RESULT_MAX],
83 u32 raw_event_mask)
84 {
85 u64 config = event->attr.config;
86 int type = event->attr.type;
87
88 if (type == event->pmu->type)
89 return armpmu_map_raw_event(raw_event_mask, config);
90
91 switch (type) {
92 case PERF_TYPE_HARDWARE:
93 return armpmu_map_hw_event(event_map, config);
94 case PERF_TYPE_HW_CACHE:
95 return armpmu_map_cache_event(cache_map, config);
96 case PERF_TYPE_RAW:
97 return armpmu_map_raw_event(raw_event_mask, config);
98 }
99
100 return -ENOENT;
101 }
102
103 int armpmu_event_set_period(struct perf_event *event)
104 {
105 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
106 struct hw_perf_event *hwc = &event->hw;
107 s64 left = local64_read(&hwc->period_left);
108 s64 period = hwc->sample_period;
109 int ret = 0;
110
111 if (unlikely(left <= -period)) {
112 left = period;
113 local64_set(&hwc->period_left, left);
114 hwc->last_period = period;
115 ret = 1;
116 }
117
118 if (unlikely(left <= 0)) {
119 left += period;
120 local64_set(&hwc->period_left, left);
121 hwc->last_period = period;
122 ret = 1;
123 }
124
125 /*
126 * Limit the maximum period to prevent the counter value
127 * from overtaking the one we are about to program. In
128 * effect we are reducing max_period to account for
129 * interrupt latency (and we are being very conservative).
130 */
131 if (left > (armpmu->max_period >> 1))
132 left = armpmu->max_period >> 1;
133
134 local64_set(&hwc->prev_count, (u64)-left);
135
136 armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
137
138 perf_event_update_userpage(event);
139
140 return ret;
141 }
142
143 u64 armpmu_event_update(struct perf_event *event)
144 {
145 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
146 struct hw_perf_event *hwc = &event->hw;
147 u64 delta, prev_raw_count, new_raw_count;
148
149 again:
150 prev_raw_count = local64_read(&hwc->prev_count);
151 new_raw_count = armpmu->read_counter(event);
152
153 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
154 new_raw_count) != prev_raw_count)
155 goto again;
156
157 delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
158
159 local64_add(delta, &event->count);
160 local64_sub(delta, &hwc->period_left);
161
162 return new_raw_count;
163 }
164
165 static void
166 armpmu_read(struct perf_event *event)
167 {
168 armpmu_event_update(event);
169 }
170
171 static void
172 armpmu_stop(struct perf_event *event, int flags)
173 {
174 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
175 struct hw_perf_event *hwc = &event->hw;
176
177 /*
178 * ARM pmu always has to update the counter, so ignore
179 * PERF_EF_UPDATE, see comments in armpmu_start().
180 */
181 if (!(hwc->state & PERF_HES_STOPPED)) {
182 armpmu->disable(event);
183 armpmu_event_update(event);
184 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
185 }
186 }
187
188 static void armpmu_start(struct perf_event *event, int flags)
189 {
190 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
191 struct hw_perf_event *hwc = &event->hw;
192
193 /*
194 * ARM pmu always has to reprogram the period, so ignore
195 * PERF_EF_RELOAD, see the comment below.
196 */
197 if (flags & PERF_EF_RELOAD)
198 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
199
200 hwc->state = 0;
201 /*
202 * Set the period again. Some counters can't be stopped, so when we
203 * were stopped we simply disabled the IRQ source and the counter
204 * may have been left counting. If we don't do this step then we may
205 * get an interrupt too soon or *way* too late if the overflow has
206 * happened since disabling.
207 */
208 armpmu_event_set_period(event);
209 armpmu->enable(event);
210 }
211
212 static void
213 armpmu_del(struct perf_event *event, int flags)
214 {
215 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
216 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
217 struct hw_perf_event *hwc = &event->hw;
218 int idx = hwc->idx;
219
220 armpmu_stop(event, PERF_EF_UPDATE);
221 hw_events->events[idx] = NULL;
222 clear_bit(idx, hw_events->used_mask);
223 if (armpmu->clear_event_idx)
224 armpmu->clear_event_idx(hw_events, event);
225
226 perf_event_update_userpage(event);
227 }
228
229 static int
230 armpmu_add(struct perf_event *event, int flags)
231 {
232 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
233 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
234 struct hw_perf_event *hwc = &event->hw;
235 int idx;
236 int err = 0;
237
238 /* An event following a process won't be stopped earlier */
239 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
240 return -ENOENT;
241
242 perf_pmu_disable(event->pmu);
243
244 /* If we don't have a space for the counter then finish early. */
245 idx = armpmu->get_event_idx(hw_events, event);
246 if (idx < 0) {
247 err = idx;
248 goto out;
249 }
250
251 /*
252 * If there is an event in the counter we are going to use then make
253 * sure it is disabled.
254 */
255 event->hw.idx = idx;
256 armpmu->disable(event);
257 hw_events->events[idx] = event;
258
259 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
260 if (flags & PERF_EF_START)
261 armpmu_start(event, PERF_EF_RELOAD);
262
263 /* Propagate our changes to the userspace mapping. */
264 perf_event_update_userpage(event);
265
266 out:
267 perf_pmu_enable(event->pmu);
268 return err;
269 }
270
271 static int
272 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
273 struct perf_event *event)
274 {
275 struct arm_pmu *armpmu;
276
277 if (is_software_event(event))
278 return 1;
279
280 /*
281 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
282 * core perf code won't check that the pmu->ctx == leader->ctx
283 * until after pmu->event_init(event).
284 */
285 if (event->pmu != pmu)
286 return 0;
287
288 if (event->state < PERF_EVENT_STATE_OFF)
289 return 1;
290
291 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
292 return 1;
293
294 armpmu = to_arm_pmu(event->pmu);
295 return armpmu->get_event_idx(hw_events, event) >= 0;
296 }
297
298 static int
299 validate_group(struct perf_event *event)
300 {
301 struct perf_event *sibling, *leader = event->group_leader;
302 struct pmu_hw_events fake_pmu;
303
304 /*
305 * Initialise the fake PMU. We only need to populate the
306 * used_mask for the purposes of validation.
307 */
308 memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
309
310 if (!validate_event(event->pmu, &fake_pmu, leader))
311 return -EINVAL;
312
313 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
314 if (!validate_event(event->pmu, &fake_pmu, sibling))
315 return -EINVAL;
316 }
317
318 if (!validate_event(event->pmu, &fake_pmu, event))
319 return -EINVAL;
320
321 return 0;
322 }
323
324 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
325 {
326 struct arm_pmu *armpmu;
327 struct platform_device *plat_device;
328 struct arm_pmu_platdata *plat;
329 int ret;
330 u64 start_clock, finish_clock;
331
332 /*
333 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
334 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
335 * do any necessary shifting, we just need to perform the first
336 * dereference.
337 */
338 armpmu = *(void **)dev;
339 plat_device = armpmu->plat_device;
340 plat = dev_get_platdata(&plat_device->dev);
341
342 start_clock = sched_clock();
343 if (plat && plat->handle_irq)
344 ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
345 else
346 ret = armpmu->handle_irq(irq, armpmu);
347 finish_clock = sched_clock();
348
349 perf_sample_event_took(finish_clock - start_clock);
350 return ret;
351 }
352
353 static void
354 armpmu_release_hardware(struct arm_pmu *armpmu)
355 {
356 armpmu->free_irq(armpmu);
357 }
358
359 static int
360 armpmu_reserve_hardware(struct arm_pmu *armpmu)
361 {
362 int err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
363 if (err) {
364 armpmu_release_hardware(armpmu);
365 return err;
366 }
367
368 return 0;
369 }
370
371 static void
372 hw_perf_event_destroy(struct perf_event *event)
373 {
374 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
375 atomic_t *active_events = &armpmu->active_events;
376 struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
377
378 if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
379 armpmu_release_hardware(armpmu);
380 mutex_unlock(pmu_reserve_mutex);
381 }
382 }
383
384 static int
385 event_requires_mode_exclusion(struct perf_event_attr *attr)
386 {
387 return attr->exclude_idle || attr->exclude_user ||
388 attr->exclude_kernel || attr->exclude_hv;
389 }
390
391 static int
392 __hw_perf_event_init(struct perf_event *event)
393 {
394 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
395 struct hw_perf_event *hwc = &event->hw;
396 int mapping;
397
398 mapping = armpmu->map_event(event);
399
400 if (mapping < 0) {
401 pr_debug("event %x:%llx not supported\n", event->attr.type,
402 event->attr.config);
403 return mapping;
404 }
405
406 /*
407 * We don't assign an index until we actually place the event onto
408 * hardware. Use -1 to signify that we haven't decided where to put it
409 * yet. For SMP systems, each core has it's own PMU so we can't do any
410 * clever allocation or constraints checking at this point.
411 */
412 hwc->idx = -1;
413 hwc->config_base = 0;
414 hwc->config = 0;
415 hwc->event_base = 0;
416
417 /*
418 * Check whether we need to exclude the counter from certain modes.
419 */
420 if ((!armpmu->set_event_filter ||
421 armpmu->set_event_filter(hwc, &event->attr)) &&
422 event_requires_mode_exclusion(&event->attr)) {
423 pr_debug("ARM performance counters do not support "
424 "mode exclusion\n");
425 return -EOPNOTSUPP;
426 }
427
428 /*
429 * Store the event encoding into the config_base field.
430 */
431 hwc->config_base |= (unsigned long)mapping;
432
433 if (!is_sampling_event(event)) {
434 /*
435 * For non-sampling runs, limit the sample_period to half
436 * of the counter width. That way, the new counter value
437 * is far less likely to overtake the previous one unless
438 * you have some serious IRQ latency issues.
439 */
440 hwc->sample_period = armpmu->max_period >> 1;
441 hwc->last_period = hwc->sample_period;
442 local64_set(&hwc->period_left, hwc->sample_period);
443 }
444
445 if (event->group_leader != event) {
446 if (validate_group(event) != 0)
447 return -EINVAL;
448 }
449
450 return 0;
451 }
452
453 static int armpmu_event_init(struct perf_event *event)
454 {
455 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
456 int err = 0;
457 atomic_t *active_events = &armpmu->active_events;
458
459 /*
460 * Reject CPU-affine events for CPUs that are of a different class to
461 * that which this PMU handles. Process-following events (where
462 * event->cpu == -1) can be migrated between CPUs, and thus we have to
463 * reject them later (in armpmu_add) if they're scheduled on a
464 * different class of CPU.
465 */
466 if (event->cpu != -1 &&
467 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
468 return -ENOENT;
469
470 /* does not support taken branch sampling */
471 if (has_branch_stack(event))
472 return -EOPNOTSUPP;
473
474 if (armpmu->map_event(event) == -ENOENT)
475 return -ENOENT;
476
477 event->destroy = hw_perf_event_destroy;
478
479 if (!atomic_inc_not_zero(active_events)) {
480 mutex_lock(&armpmu->reserve_mutex);
481 if (atomic_read(active_events) == 0)
482 err = armpmu_reserve_hardware(armpmu);
483
484 if (!err)
485 atomic_inc(active_events);
486 mutex_unlock(&armpmu->reserve_mutex);
487 }
488
489 if (err)
490 return err;
491
492 err = __hw_perf_event_init(event);
493 if (err)
494 hw_perf_event_destroy(event);
495
496 return err;
497 }
498
499 static void armpmu_enable(struct pmu *pmu)
500 {
501 struct arm_pmu *armpmu = to_arm_pmu(pmu);
502 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
503 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
504
505 /* For task-bound events we may be called on other CPUs */
506 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
507 return;
508
509 if (enabled)
510 armpmu->start(armpmu);
511 }
512
513 static void armpmu_disable(struct pmu *pmu)
514 {
515 struct arm_pmu *armpmu = to_arm_pmu(pmu);
516
517 /* For task-bound events we may be called on other CPUs */
518 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
519 return;
520
521 armpmu->stop(armpmu);
522 }
523
524 /*
525 * In heterogeneous systems, events are specific to a particular
526 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
527 * the same microarchitecture.
528 */
529 static int armpmu_filter_match(struct perf_event *event)
530 {
531 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
532 unsigned int cpu = smp_processor_id();
533 return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
534 }
535
536 static void armpmu_init(struct arm_pmu *armpmu)
537 {
538 atomic_set(&armpmu->active_events, 0);
539 mutex_init(&armpmu->reserve_mutex);
540
541 armpmu->pmu = (struct pmu) {
542 .pmu_enable = armpmu_enable,
543 .pmu_disable = armpmu_disable,
544 .event_init = armpmu_event_init,
545 .add = armpmu_add,
546 .del = armpmu_del,
547 .start = armpmu_start,
548 .stop = armpmu_stop,
549 .read = armpmu_read,
550 .filter_match = armpmu_filter_match,
551 };
552 }
553
554 /* Set at runtime when we know what CPU type we are. */
555 static struct arm_pmu *__oprofile_cpu_pmu;
556
557 /*
558 * Despite the names, these two functions are CPU-specific and are used
559 * by the OProfile/perf code.
560 */
561 const char *perf_pmu_name(void)
562 {
563 if (!__oprofile_cpu_pmu)
564 return NULL;
565
566 return __oprofile_cpu_pmu->name;
567 }
568 EXPORT_SYMBOL_GPL(perf_pmu_name);
569
570 int perf_num_counters(void)
571 {
572 int max_events = 0;
573
574 if (__oprofile_cpu_pmu != NULL)
575 max_events = __oprofile_cpu_pmu->num_events;
576
577 return max_events;
578 }
579 EXPORT_SYMBOL_GPL(perf_num_counters);
580
581 static void cpu_pmu_enable_percpu_irq(void *data)
582 {
583 int irq = *(int *)data;
584
585 enable_percpu_irq(irq, IRQ_TYPE_NONE);
586 }
587
588 static void cpu_pmu_disable_percpu_irq(void *data)
589 {
590 int irq = *(int *)data;
591
592 disable_percpu_irq(irq);
593 }
594
595 static void cpu_pmu_free_irq(struct arm_pmu *cpu_pmu)
596 {
597 int i, irq, irqs;
598 struct platform_device *pmu_device = cpu_pmu->plat_device;
599 struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
600
601 irqs = min(pmu_device->num_resources, num_possible_cpus());
602
603 irq = platform_get_irq(pmu_device, 0);
604 if (irq >= 0 && irq_is_percpu(irq)) {
605 on_each_cpu(cpu_pmu_disable_percpu_irq, &irq, 1);
606 free_percpu_irq(irq, &hw_events->percpu_pmu);
607 } else {
608 for (i = 0; i < irqs; ++i) {
609 int cpu = i;
610
611 if (cpu_pmu->irq_affinity)
612 cpu = cpu_pmu->irq_affinity[i];
613
614 if (!cpumask_test_and_clear_cpu(cpu, &cpu_pmu->active_irqs))
615 continue;
616 irq = platform_get_irq(pmu_device, i);
617 if (irq >= 0)
618 free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu));
619 }
620 }
621 }
622
623 static int cpu_pmu_request_irq(struct arm_pmu *cpu_pmu, irq_handler_t handler)
624 {
625 int i, err, irq, irqs;
626 struct platform_device *pmu_device = cpu_pmu->plat_device;
627 struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
628
629 if (!pmu_device)
630 return -ENODEV;
631
632 irqs = min(pmu_device->num_resources, num_possible_cpus());
633 if (irqs < 1) {
634 pr_warn_once("perf/ARM: No irqs for PMU defined, sampling events not supported\n");
635 return 0;
636 }
637
638 irq = platform_get_irq(pmu_device, 0);
639 if (irq >= 0 && irq_is_percpu(irq)) {
640 err = request_percpu_irq(irq, handler, "arm-pmu",
641 &hw_events->percpu_pmu);
642 if (err) {
643 pr_err("unable to request IRQ%d for ARM PMU counters\n",
644 irq);
645 return err;
646 }
647 on_each_cpu(cpu_pmu_enable_percpu_irq, &irq, 1);
648 } else {
649 for (i = 0; i < irqs; ++i) {
650 int cpu = i;
651
652 err = 0;
653 irq = platform_get_irq(pmu_device, i);
654 if (irq < 0)
655 continue;
656
657 if (cpu_pmu->irq_affinity)
658 cpu = cpu_pmu->irq_affinity[i];
659
660 /*
661 * If we have a single PMU interrupt that we can't shift,
662 * assume that we're running on a uniprocessor machine and
663 * continue. Otherwise, continue without this interrupt.
664 */
665 if (irq_set_affinity(irq, cpumask_of(cpu)) && irqs > 1) {
666 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
667 irq, cpu);
668 continue;
669 }
670
671 err = request_irq(irq, handler,
672 IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu",
673 per_cpu_ptr(&hw_events->percpu_pmu, cpu));
674 if (err) {
675 pr_err("unable to request IRQ%d for ARM PMU counters\n",
676 irq);
677 return err;
678 }
679
680 cpumask_set_cpu(cpu, &cpu_pmu->active_irqs);
681 }
682 }
683
684 return 0;
685 }
686
687 /*
688 * PMU hardware loses all context when a CPU goes offline.
689 * When a CPU is hotplugged back in, since some hardware registers are
690 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
691 * junk values out of them.
692 */
693 static int cpu_pmu_notify(struct notifier_block *b, unsigned long action,
694 void *hcpu)
695 {
696 int cpu = (unsigned long)hcpu;
697 struct arm_pmu *pmu = container_of(b, struct arm_pmu, hotplug_nb);
698
699 if ((action & ~CPU_TASKS_FROZEN) != CPU_STARTING)
700 return NOTIFY_DONE;
701
702 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
703 return NOTIFY_DONE;
704
705 if (pmu->reset)
706 pmu->reset(pmu);
707 else
708 return NOTIFY_DONE;
709
710 return NOTIFY_OK;
711 }
712
713 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
714 {
715 int err;
716 int cpu;
717 struct pmu_hw_events __percpu *cpu_hw_events;
718
719 cpu_hw_events = alloc_percpu(struct pmu_hw_events);
720 if (!cpu_hw_events)
721 return -ENOMEM;
722
723 cpu_pmu->hotplug_nb.notifier_call = cpu_pmu_notify;
724 err = register_cpu_notifier(&cpu_pmu->hotplug_nb);
725 if (err)
726 goto out_hw_events;
727
728 for_each_possible_cpu(cpu) {
729 struct pmu_hw_events *events = per_cpu_ptr(cpu_hw_events, cpu);
730 raw_spin_lock_init(&events->pmu_lock);
731 events->percpu_pmu = cpu_pmu;
732 }
733
734 cpu_pmu->hw_events = cpu_hw_events;
735 cpu_pmu->request_irq = cpu_pmu_request_irq;
736 cpu_pmu->free_irq = cpu_pmu_free_irq;
737
738 /* Ensure the PMU has sane values out of reset. */
739 if (cpu_pmu->reset)
740 on_each_cpu_mask(&cpu_pmu->supported_cpus, cpu_pmu->reset,
741 cpu_pmu, 1);
742
743 /* If no interrupts available, set the corresponding capability flag */
744 if (!platform_get_irq(cpu_pmu->plat_device, 0))
745 cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
746
747 return 0;
748
749 out_hw_events:
750 free_percpu(cpu_hw_events);
751 return err;
752 }
753
754 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
755 {
756 unregister_cpu_notifier(&cpu_pmu->hotplug_nb);
757 free_percpu(cpu_pmu->hw_events);
758 }
759
760 /*
761 * CPU PMU identification and probing.
762 */
763 static int probe_current_pmu(struct arm_pmu *pmu,
764 const struct pmu_probe_info *info)
765 {
766 int cpu = get_cpu();
767 unsigned int cpuid = read_cpuid_id();
768 int ret = -ENODEV;
769
770 pr_info("probing PMU on CPU %d\n", cpu);
771
772 for (; info->init != NULL; info++) {
773 if ((cpuid & info->mask) != info->cpuid)
774 continue;
775 ret = info->init(pmu);
776 break;
777 }
778
779 put_cpu();
780 return ret;
781 }
782
783 static int of_pmu_irq_cfg(struct arm_pmu *pmu)
784 {
785 int *irqs, i = 0;
786 bool using_spi = false;
787 struct platform_device *pdev = pmu->plat_device;
788
789 irqs = kcalloc(pdev->num_resources, sizeof(*irqs), GFP_KERNEL);
790 if (!irqs)
791 return -ENOMEM;
792
793 do {
794 struct device_node *dn;
795 int cpu, irq;
796
797 /* See if we have an affinity entry */
798 dn = of_parse_phandle(pdev->dev.of_node, "interrupt-affinity", i);
799 if (!dn)
800 break;
801
802 /* Check the IRQ type and prohibit a mix of PPIs and SPIs */
803 irq = platform_get_irq(pdev, i);
804 if (irq >= 0) {
805 bool spi = !irq_is_percpu(irq);
806
807 if (i > 0 && spi != using_spi) {
808 pr_err("PPI/SPI IRQ type mismatch for %s!\n",
809 dn->name);
810 kfree(irqs);
811 return -EINVAL;
812 }
813
814 using_spi = spi;
815 }
816
817 /* Now look up the logical CPU number */
818 for_each_possible_cpu(cpu) {
819 struct device_node *cpu_dn;
820
821 cpu_dn = of_cpu_device_node_get(cpu);
822 of_node_put(cpu_dn);
823
824 if (dn == cpu_dn)
825 break;
826 }
827
828 if (cpu >= nr_cpu_ids) {
829 pr_warn("Failed to find logical CPU for %s\n",
830 dn->name);
831 of_node_put(dn);
832 cpumask_setall(&pmu->supported_cpus);
833 break;
834 }
835 of_node_put(dn);
836
837 /* For SPIs, we need to track the affinity per IRQ */
838 if (using_spi) {
839 if (i >= pdev->num_resources) {
840 of_node_put(dn);
841 break;
842 }
843
844 irqs[i] = cpu;
845 }
846
847 /* Keep track of the CPUs containing this PMU type */
848 cpumask_set_cpu(cpu, &pmu->supported_cpus);
849 of_node_put(dn);
850 i++;
851 } while (1);
852
853 /* If we didn't manage to parse anything, claim to support all CPUs */
854 if (cpumask_weight(&pmu->supported_cpus) == 0)
855 cpumask_setall(&pmu->supported_cpus);
856
857 /* If we matched up the IRQ affinities, use them to route the SPIs */
858 if (using_spi && i == pdev->num_resources)
859 pmu->irq_affinity = irqs;
860 else
861 kfree(irqs);
862
863 return 0;
864 }
865
866 int arm_pmu_device_probe(struct platform_device *pdev,
867 const struct of_device_id *of_table,
868 const struct pmu_probe_info *probe_table)
869 {
870 const struct of_device_id *of_id;
871 const int (*init_fn)(struct arm_pmu *);
872 struct device_node *node = pdev->dev.of_node;
873 struct arm_pmu *pmu;
874 int ret = -ENODEV;
875
876 pmu = kzalloc(sizeof(struct arm_pmu), GFP_KERNEL);
877 if (!pmu) {
878 pr_info("failed to allocate PMU device!\n");
879 return -ENOMEM;
880 }
881
882 armpmu_init(pmu);
883
884 if (!__oprofile_cpu_pmu)
885 __oprofile_cpu_pmu = pmu;
886
887 pmu->plat_device = pdev;
888
889 if (node && (of_id = of_match_node(of_table, pdev->dev.of_node))) {
890 init_fn = of_id->data;
891
892 ret = of_pmu_irq_cfg(pmu);
893 if (!ret)
894 ret = init_fn(pmu);
895 } else {
896 ret = probe_current_pmu(pmu, probe_table);
897 cpumask_setall(&pmu->supported_cpus);
898 }
899
900 if (ret) {
901 pr_info("failed to probe PMU!\n");
902 goto out_free;
903 }
904
905 ret = cpu_pmu_init(pmu);
906 if (ret)
907 goto out_free;
908
909 ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
910 if (ret)
911 goto out_destroy;
912
913 pr_info("enabled with %s PMU driver, %d counters available\n",
914 pmu->name, pmu->num_events);
915
916 return 0;
917
918 out_destroy:
919 cpu_pmu_destroy(pmu);
920 out_free:
921 pr_info("failed to register PMU devices!\n");
922 kfree(pmu);
923 return ret;
924 }
This page took 0.0484520000000001 seconds and 6 git commands to generate.