Merge tag 'xfs-for-linus-3.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / platform / x86 / intel_scu_ipc.c
1 /*
2 * intel_scu_ipc.c: Driver for the Intel SCU IPC mechanism
3 *
4 * (C) Copyright 2008-2010 Intel Corporation
5 * Author: Sreedhara DS (sreedhara.ds@intel.com)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 *
12 * SCU running in ARC processor communicates with other entity running in IA
13 * core through IPC mechanism which in turn messaging between IA core ad SCU.
14 * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and
15 * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with
16 * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC)
17 * along with other APIs.
18 */
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/device.h>
23 #include <linux/pm.h>
24 #include <linux/pci.h>
25 #include <linux/interrupt.h>
26 #include <linux/sfi.h>
27 #include <linux/module.h>
28 #include <asm/intel-mid.h>
29 #include <asm/intel_scu_ipc.h>
30
31 /* IPC defines the following message types */
32 #define IPCMSG_WATCHDOG_TIMER 0xF8 /* Set Kernel Watchdog Threshold */
33 #define IPCMSG_BATTERY 0xEF /* Coulomb Counter Accumulator */
34 #define IPCMSG_FW_UPDATE 0xFE /* Firmware update */
35 #define IPCMSG_PCNTRL 0xFF /* Power controller unit read/write */
36 #define IPCMSG_FW_REVISION 0xF4 /* Get firmware revision */
37
38 /* Command id associated with message IPCMSG_PCNTRL */
39 #define IPC_CMD_PCNTRL_W 0 /* Register write */
40 #define IPC_CMD_PCNTRL_R 1 /* Register read */
41 #define IPC_CMD_PCNTRL_M 2 /* Register read-modify-write */
42
43 /*
44 * IPC register summary
45 *
46 * IPC register blocks are memory mapped at fixed address of 0xFF11C000
47 * To read or write information to the SCU, driver writes to IPC-1 memory
48 * mapped registers (base address 0xFF11C000). The following is the IPC
49 * mechanism
50 *
51 * 1. IA core cDMI interface claims this transaction and converts it to a
52 * Transaction Layer Packet (TLP) message which is sent across the cDMI.
53 *
54 * 2. South Complex cDMI block receives this message and writes it to
55 * the IPC-1 register block, causing an interrupt to the SCU
56 *
57 * 3. SCU firmware decodes this interrupt and IPC message and the appropriate
58 * message handler is called within firmware.
59 */
60
61 #define IPC_WWBUF_SIZE 20 /* IPC Write buffer Size */
62 #define IPC_RWBUF_SIZE 20 /* IPC Read buffer Size */
63 #define IPC_IOC 0x100 /* IPC command register IOC bit */
64
65 #define PCI_DEVICE_ID_LINCROFT 0x082a
66 #define PCI_DEVICE_ID_PENWELL 0x080e
67 #define PCI_DEVICE_ID_CLOVERVIEW 0x08ea
68 #define PCI_DEVICE_ID_TANGIER 0x11a0
69
70 /* intel scu ipc driver data*/
71 struct intel_scu_ipc_pdata_t {
72 u32 ipc_base;
73 u32 i2c_base;
74 u32 ipc_len;
75 u32 i2c_len;
76 u8 irq_mode;
77 };
78
79 static struct intel_scu_ipc_pdata_t intel_scu_ipc_lincroft_pdata = {
80 .ipc_base = 0xff11c000,
81 .i2c_base = 0xff12b000,
82 .ipc_len = 0x100,
83 .i2c_len = 0x10,
84 .irq_mode = 0,
85 };
86
87 /* Penwell and Cloverview */
88 static struct intel_scu_ipc_pdata_t intel_scu_ipc_penwell_pdata = {
89 .ipc_base = 0xff11c000,
90 .i2c_base = 0xff12b000,
91 .ipc_len = 0x100,
92 .i2c_len = 0x10,
93 .irq_mode = 1,
94 };
95
96 static struct intel_scu_ipc_pdata_t intel_scu_ipc_tangier_pdata = {
97 .ipc_base = 0xff009000,
98 .i2c_base = 0xff00d000,
99 .ipc_len = 0x100,
100 .i2c_len = 0x10,
101 .irq_mode = 0,
102 };
103
104 static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id);
105 static void ipc_remove(struct pci_dev *pdev);
106
107 struct intel_scu_ipc_dev {
108 struct pci_dev *pdev;
109 void __iomem *ipc_base;
110 void __iomem *i2c_base;
111 struct completion cmd_complete;
112 u8 irq_mode;
113 };
114
115 static struct intel_scu_ipc_dev ipcdev; /* Only one for now */
116
117 static int platform; /* Platform type */
118
119 /*
120 * IPC Read Buffer (Read Only):
121 * 16 byte buffer for receiving data from SCU, if IPC command
122 * processing results in response data
123 */
124 #define IPC_READ_BUFFER 0x90
125
126 #define IPC_I2C_CNTRL_ADDR 0
127 #define I2C_DATA_ADDR 0x04
128
129 static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */
130
131 /*
132 * Command Register (Write Only):
133 * A write to this register results in an interrupt to the SCU core processor
134 * Format:
135 * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)|
136 */
137 static inline void ipc_command(u32 cmd) /* Send ipc command */
138 {
139 if (ipcdev.irq_mode) {
140 reinit_completion(&ipcdev.cmd_complete);
141 writel(cmd | IPC_IOC, ipcdev.ipc_base);
142 }
143 writel(cmd, ipcdev.ipc_base);
144 }
145
146 /*
147 * IPC Write Buffer (Write Only):
148 * 16-byte buffer for sending data associated with IPC command to
149 * SCU. Size of the data is specified in the IPC_COMMAND_REG register
150 */
151 static inline void ipc_data_writel(u32 data, u32 offset) /* Write ipc data */
152 {
153 writel(data, ipcdev.ipc_base + 0x80 + offset);
154 }
155
156 /*
157 * Status Register (Read Only):
158 * Driver will read this register to get the ready/busy status of the IPC
159 * block and error status of the IPC command that was just processed by SCU
160 * Format:
161 * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)|
162 */
163
164 static inline u8 ipc_read_status(void)
165 {
166 return __raw_readl(ipcdev.ipc_base + 0x04);
167 }
168
169 static inline u8 ipc_data_readb(u32 offset) /* Read ipc byte data */
170 {
171 return readb(ipcdev.ipc_base + IPC_READ_BUFFER + offset);
172 }
173
174 static inline u32 ipc_data_readl(u32 offset) /* Read ipc u32 data */
175 {
176 return readl(ipcdev.ipc_base + IPC_READ_BUFFER + offset);
177 }
178
179 static inline int busy_loop(void) /* Wait till scu status is busy */
180 {
181 u32 status = 0;
182 u32 loop_count = 0;
183
184 status = ipc_read_status();
185 while (status & 1) {
186 udelay(1); /* scu processing time is in few u secods */
187 status = ipc_read_status();
188 loop_count++;
189 /* break if scu doesn't reset busy bit after huge retry */
190 if (loop_count > 100000) {
191 dev_err(&ipcdev.pdev->dev, "IPC timed out");
192 return -ETIMEDOUT;
193 }
194 }
195 if ((status >> 1) & 1)
196 return -EIO;
197
198 return 0;
199 }
200
201 /* Wait till ipc ioc interrupt is received or timeout in 3 HZ */
202 static inline int ipc_wait_for_interrupt(void)
203 {
204 int status;
205
206 if (!wait_for_completion_timeout(&ipcdev.cmd_complete, 3 * HZ)) {
207 struct device *dev = &ipcdev.pdev->dev;
208 dev_err(dev, "IPC timed out\n");
209 return -ETIMEDOUT;
210 }
211
212 status = ipc_read_status();
213
214 if ((status >> 1) & 1)
215 return -EIO;
216
217 return 0;
218 }
219
220 int intel_scu_ipc_check_status(void)
221 {
222 return ipcdev.irq_mode ? ipc_wait_for_interrupt() : busy_loop();
223 }
224
225 /* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */
226 static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id)
227 {
228 int nc;
229 u32 offset = 0;
230 int err;
231 u8 cbuf[IPC_WWBUF_SIZE] = { };
232 u32 *wbuf = (u32 *)&cbuf;
233
234 mutex_lock(&ipclock);
235
236 memset(cbuf, 0, sizeof(cbuf));
237
238 if (ipcdev.pdev == NULL) {
239 mutex_unlock(&ipclock);
240 return -ENODEV;
241 }
242
243 for (nc = 0; nc < count; nc++, offset += 2) {
244 cbuf[offset] = addr[nc];
245 cbuf[offset + 1] = addr[nc] >> 8;
246 }
247
248 if (id == IPC_CMD_PCNTRL_R) {
249 for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
250 ipc_data_writel(wbuf[nc], offset);
251 ipc_command((count*2) << 16 | id << 12 | 0 << 8 | op);
252 } else if (id == IPC_CMD_PCNTRL_W) {
253 for (nc = 0; nc < count; nc++, offset += 1)
254 cbuf[offset] = data[nc];
255 for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
256 ipc_data_writel(wbuf[nc], offset);
257 ipc_command((count*3) << 16 | id << 12 | 0 << 8 | op);
258 } else if (id == IPC_CMD_PCNTRL_M) {
259 cbuf[offset] = data[0];
260 cbuf[offset + 1] = data[1];
261 ipc_data_writel(wbuf[0], 0); /* Write wbuff */
262 ipc_command(4 << 16 | id << 12 | 0 << 8 | op);
263 }
264
265 err = intel_scu_ipc_check_status();
266 if (!err && id == IPC_CMD_PCNTRL_R) { /* Read rbuf */
267 /* Workaround: values are read as 0 without memcpy_fromio */
268 memcpy_fromio(cbuf, ipcdev.ipc_base + 0x90, 16);
269 for (nc = 0; nc < count; nc++)
270 data[nc] = ipc_data_readb(nc);
271 }
272 mutex_unlock(&ipclock);
273 return err;
274 }
275
276 /**
277 * intel_scu_ipc_ioread8 - read a word via the SCU
278 * @addr: register on SCU
279 * @data: return pointer for read byte
280 *
281 * Read a single register. Returns 0 on success or an error code. All
282 * locking between SCU accesses is handled for the caller.
283 *
284 * This function may sleep.
285 */
286 int intel_scu_ipc_ioread8(u16 addr, u8 *data)
287 {
288 return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
289 }
290 EXPORT_SYMBOL(intel_scu_ipc_ioread8);
291
292 /**
293 * intel_scu_ipc_ioread16 - read a word via the SCU
294 * @addr: register on SCU
295 * @data: return pointer for read word
296 *
297 * Read a register pair. Returns 0 on success or an error code. All
298 * locking between SCU accesses is handled for the caller.
299 *
300 * This function may sleep.
301 */
302 int intel_scu_ipc_ioread16(u16 addr, u16 *data)
303 {
304 u16 x[2] = {addr, addr + 1 };
305 return pwr_reg_rdwr(x, (u8 *)data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
306 }
307 EXPORT_SYMBOL(intel_scu_ipc_ioread16);
308
309 /**
310 * intel_scu_ipc_ioread32 - read a dword via the SCU
311 * @addr: register on SCU
312 * @data: return pointer for read dword
313 *
314 * Read four registers. Returns 0 on success or an error code. All
315 * locking between SCU accesses is handled for the caller.
316 *
317 * This function may sleep.
318 */
319 int intel_scu_ipc_ioread32(u16 addr, u32 *data)
320 {
321 u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
322 return pwr_reg_rdwr(x, (u8 *)data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
323 }
324 EXPORT_SYMBOL(intel_scu_ipc_ioread32);
325
326 /**
327 * intel_scu_ipc_iowrite8 - write a byte via the SCU
328 * @addr: register on SCU
329 * @data: byte to write
330 *
331 * Write a single register. Returns 0 on success or an error code. All
332 * locking between SCU accesses is handled for the caller.
333 *
334 * This function may sleep.
335 */
336 int intel_scu_ipc_iowrite8(u16 addr, u8 data)
337 {
338 return pwr_reg_rdwr(&addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
339 }
340 EXPORT_SYMBOL(intel_scu_ipc_iowrite8);
341
342 /**
343 * intel_scu_ipc_iowrite16 - write a word via the SCU
344 * @addr: register on SCU
345 * @data: word to write
346 *
347 * Write two registers. Returns 0 on success or an error code. All
348 * locking between SCU accesses is handled for the caller.
349 *
350 * This function may sleep.
351 */
352 int intel_scu_ipc_iowrite16(u16 addr, u16 data)
353 {
354 u16 x[2] = {addr, addr + 1 };
355 return pwr_reg_rdwr(x, (u8 *)&data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
356 }
357 EXPORT_SYMBOL(intel_scu_ipc_iowrite16);
358
359 /**
360 * intel_scu_ipc_iowrite32 - write a dword via the SCU
361 * @addr: register on SCU
362 * @data: dword to write
363 *
364 * Write four registers. Returns 0 on success or an error code. All
365 * locking between SCU accesses is handled for the caller.
366 *
367 * This function may sleep.
368 */
369 int intel_scu_ipc_iowrite32(u16 addr, u32 data)
370 {
371 u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
372 return pwr_reg_rdwr(x, (u8 *)&data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
373 }
374 EXPORT_SYMBOL(intel_scu_ipc_iowrite32);
375
376 /**
377 * intel_scu_ipc_readvv - read a set of registers
378 * @addr: register list
379 * @data: bytes to return
380 * @len: length of array
381 *
382 * Read registers. Returns 0 on success or an error code. All
383 * locking between SCU accesses is handled for the caller.
384 *
385 * The largest array length permitted by the hardware is 5 items.
386 *
387 * This function may sleep.
388 */
389 int intel_scu_ipc_readv(u16 *addr, u8 *data, int len)
390 {
391 return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
392 }
393 EXPORT_SYMBOL(intel_scu_ipc_readv);
394
395 /**
396 * intel_scu_ipc_writev - write a set of registers
397 * @addr: register list
398 * @data: bytes to write
399 * @len: length of array
400 *
401 * Write registers. Returns 0 on success or an error code. All
402 * locking between SCU accesses is handled for the caller.
403 *
404 * The largest array length permitted by the hardware is 5 items.
405 *
406 * This function may sleep.
407 *
408 */
409 int intel_scu_ipc_writev(u16 *addr, u8 *data, int len)
410 {
411 return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
412 }
413 EXPORT_SYMBOL(intel_scu_ipc_writev);
414
415
416 /**
417 * intel_scu_ipc_update_register - r/m/w a register
418 * @addr: register address
419 * @bits: bits to update
420 * @mask: mask of bits to update
421 *
422 * Read-modify-write power control unit register. The first data argument
423 * must be register value and second is mask value
424 * mask is a bitmap that indicates which bits to update.
425 * 0 = masked. Don't modify this bit, 1 = modify this bit.
426 * returns 0 on success or an error code.
427 *
428 * This function may sleep. Locking between SCU accesses is handled
429 * for the caller.
430 */
431 int intel_scu_ipc_update_register(u16 addr, u8 bits, u8 mask)
432 {
433 u8 data[2] = { bits, mask };
434 return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M);
435 }
436 EXPORT_SYMBOL(intel_scu_ipc_update_register);
437
438 /**
439 * intel_scu_ipc_simple_command - send a simple command
440 * @cmd: command
441 * @sub: sub type
442 *
443 * Issue a simple command to the SCU. Do not use this interface if
444 * you must then access data as any data values may be overwritten
445 * by another SCU access by the time this function returns.
446 *
447 * This function may sleep. Locking for SCU accesses is handled for
448 * the caller.
449 */
450 int intel_scu_ipc_simple_command(int cmd, int sub)
451 {
452 int err;
453
454 mutex_lock(&ipclock);
455 if (ipcdev.pdev == NULL) {
456 mutex_unlock(&ipclock);
457 return -ENODEV;
458 }
459 ipc_command(sub << 12 | cmd);
460 err = intel_scu_ipc_check_status();
461 mutex_unlock(&ipclock);
462 return err;
463 }
464 EXPORT_SYMBOL(intel_scu_ipc_simple_command);
465
466 /**
467 * intel_scu_ipc_command - command with data
468 * @cmd: command
469 * @sub: sub type
470 * @in: input data
471 * @inlen: input length in dwords
472 * @out: output data
473 * @outlein: output length in dwords
474 *
475 * Issue a command to the SCU which involves data transfers. Do the
476 * data copies under the lock but leave it for the caller to interpret
477 */
478
479 int intel_scu_ipc_command(int cmd, int sub, u32 *in, int inlen,
480 u32 *out, int outlen)
481 {
482 int i, err;
483
484 mutex_lock(&ipclock);
485 if (ipcdev.pdev == NULL) {
486 mutex_unlock(&ipclock);
487 return -ENODEV;
488 }
489
490 for (i = 0; i < inlen; i++)
491 ipc_data_writel(*in++, 4 * i);
492
493 ipc_command((inlen << 16) | (sub << 12) | cmd);
494 err = intel_scu_ipc_check_status();
495
496 if (!err) {
497 for (i = 0; i < outlen; i++)
498 *out++ = ipc_data_readl(4 * i);
499 }
500
501 mutex_unlock(&ipclock);
502 return err;
503 }
504 EXPORT_SYMBOL(intel_scu_ipc_command);
505
506 /*I2C commands */
507 #define IPC_I2C_WRITE 1 /* I2C Write command */
508 #define IPC_I2C_READ 2 /* I2C Read command */
509
510 /**
511 * intel_scu_ipc_i2c_cntrl - I2C read/write operations
512 * @addr: I2C address + command bits
513 * @data: data to read/write
514 *
515 * Perform an an I2C read/write operation via the SCU. All locking is
516 * handled for the caller. This function may sleep.
517 *
518 * Returns an error code or 0 on success.
519 *
520 * This has to be in the IPC driver for the locking.
521 */
522 int intel_scu_ipc_i2c_cntrl(u32 addr, u32 *data)
523 {
524 u32 cmd = 0;
525
526 mutex_lock(&ipclock);
527 if (ipcdev.pdev == NULL) {
528 mutex_unlock(&ipclock);
529 return -ENODEV;
530 }
531 cmd = (addr >> 24) & 0xFF;
532 if (cmd == IPC_I2C_READ) {
533 writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR);
534 /* Write not getting updated without delay */
535 mdelay(1);
536 *data = readl(ipcdev.i2c_base + I2C_DATA_ADDR);
537 } else if (cmd == IPC_I2C_WRITE) {
538 writel(*data, ipcdev.i2c_base + I2C_DATA_ADDR);
539 mdelay(1);
540 writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR);
541 } else {
542 dev_err(&ipcdev.pdev->dev,
543 "intel_scu_ipc: I2C INVALID_CMD = 0x%x\n", cmd);
544
545 mutex_unlock(&ipclock);
546 return -EIO;
547 }
548 mutex_unlock(&ipclock);
549 return 0;
550 }
551 EXPORT_SYMBOL(intel_scu_ipc_i2c_cntrl);
552
553 /*
554 * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1
555 * When ioc bit is set to 1, caller api must wait for interrupt handler called
556 * which in turn unlocks the caller api. Currently this is not used
557 *
558 * This is edge triggered so we need take no action to clear anything
559 */
560 static irqreturn_t ioc(int irq, void *dev_id)
561 {
562 if (ipcdev.irq_mode)
563 complete(&ipcdev.cmd_complete);
564
565 return IRQ_HANDLED;
566 }
567
568 /**
569 * ipc_probe - probe an Intel SCU IPC
570 * @dev: the PCI device matching
571 * @id: entry in the match table
572 *
573 * Enable and install an intel SCU IPC. This appears in the PCI space
574 * but uses some hard coded addresses as well.
575 */
576 static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id)
577 {
578 int err;
579 struct intel_scu_ipc_pdata_t *pdata;
580 resource_size_t pci_resource;
581
582 if (ipcdev.pdev) /* We support only one SCU */
583 return -EBUSY;
584
585 pdata = (struct intel_scu_ipc_pdata_t *)id->driver_data;
586
587 ipcdev.pdev = pci_dev_get(dev);
588 ipcdev.irq_mode = pdata->irq_mode;
589
590 err = pci_enable_device(dev);
591 if (err)
592 return err;
593
594 err = pci_request_regions(dev, "intel_scu_ipc");
595 if (err)
596 return err;
597
598 pci_resource = pci_resource_start(dev, 0);
599 if (!pci_resource)
600 return -ENOMEM;
601
602 init_completion(&ipcdev.cmd_complete);
603
604 if (request_irq(dev->irq, ioc, 0, "intel_scu_ipc", &ipcdev))
605 return -EBUSY;
606
607 ipcdev.ipc_base = ioremap_nocache(pdata->ipc_base, pdata->ipc_len);
608 if (!ipcdev.ipc_base)
609 return -ENOMEM;
610
611 ipcdev.i2c_base = ioremap_nocache(pdata->i2c_base, pdata->i2c_len);
612 if (!ipcdev.i2c_base) {
613 iounmap(ipcdev.ipc_base);
614 return -ENOMEM;
615 }
616
617 intel_scu_devices_create();
618
619 return 0;
620 }
621
622 /**
623 * ipc_remove - remove a bound IPC device
624 * @pdev: PCI device
625 *
626 * In practice the SCU is not removable but this function is also
627 * called for each device on a module unload or cleanup which is the
628 * path that will get used.
629 *
630 * Free up the mappings and release the PCI resources
631 */
632 static void ipc_remove(struct pci_dev *pdev)
633 {
634 free_irq(pdev->irq, &ipcdev);
635 pci_release_regions(pdev);
636 pci_dev_put(ipcdev.pdev);
637 iounmap(ipcdev.ipc_base);
638 iounmap(ipcdev.i2c_base);
639 ipcdev.pdev = NULL;
640 intel_scu_devices_destroy();
641 }
642
643 static const struct pci_device_id pci_ids[] = {
644 {
645 PCI_VDEVICE(INTEL, PCI_DEVICE_ID_LINCROFT),
646 (kernel_ulong_t)&intel_scu_ipc_lincroft_pdata,
647 }, {
648 PCI_VDEVICE(INTEL, PCI_DEVICE_ID_PENWELL),
649 (kernel_ulong_t)&intel_scu_ipc_penwell_pdata,
650 }, {
651 PCI_VDEVICE(INTEL, PCI_DEVICE_ID_CLOVERVIEW),
652 (kernel_ulong_t)&intel_scu_ipc_penwell_pdata,
653 }, {
654 PCI_VDEVICE(INTEL, PCI_DEVICE_ID_TANGIER),
655 (kernel_ulong_t)&intel_scu_ipc_tangier_pdata,
656 }, {
657 0,
658 }
659 };
660 MODULE_DEVICE_TABLE(pci, pci_ids);
661
662 static struct pci_driver ipc_driver = {
663 .name = "intel_scu_ipc",
664 .id_table = pci_ids,
665 .probe = ipc_probe,
666 .remove = ipc_remove,
667 };
668
669
670 static int __init intel_scu_ipc_init(void)
671 {
672 platform = intel_mid_identify_cpu();
673 if (platform == 0)
674 return -ENODEV;
675 return pci_register_driver(&ipc_driver);
676 }
677
678 static void __exit intel_scu_ipc_exit(void)
679 {
680 pci_unregister_driver(&ipc_driver);
681 }
682
683 MODULE_AUTHOR("Sreedhara DS <sreedhara.ds@intel.com>");
684 MODULE_DESCRIPTION("Intel SCU IPC driver");
685 MODULE_LICENSE("GPL");
686
687 module_init(intel_scu_ipc_init);
688 module_exit(intel_scu_ipc_exit);
This page took 0.043533 seconds and 5 git commands to generate.