regulator: Build sysfs entries with static attribute groups
[deliverable/linux.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59
60 static struct dentry *debugfs_root;
61
62 /*
63 * struct regulator_map
64 *
65 * Used to provide symbolic supply names to devices.
66 */
67 struct regulator_map {
68 struct list_head list;
69 const char *dev_name; /* The dev_name() for the consumer */
70 const char *supply;
71 struct regulator_dev *regulator;
72 };
73
74 /*
75 * struct regulator_enable_gpio
76 *
77 * Management for shared enable GPIO pin
78 */
79 struct regulator_enable_gpio {
80 struct list_head list;
81 struct gpio_desc *gpiod;
82 u32 enable_count; /* a number of enabled shared GPIO */
83 u32 request_count; /* a number of requested shared GPIO */
84 unsigned int ena_gpio_invert:1;
85 };
86
87 /*
88 * struct regulator_supply_alias
89 *
90 * Used to map lookups for a supply onto an alternative device.
91 */
92 struct regulator_supply_alias {
93 struct list_head list;
94 struct device *src_dev;
95 const char *src_supply;
96 struct device *alias_dev;
97 const char *alias_supply;
98 };
99
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static int _notifier_call_chain(struct regulator_dev *rdev,
106 unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108 int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110 struct device *dev,
111 const char *supply_name);
112
113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115 if (rdev->constraints && rdev->constraints->name)
116 return rdev->constraints->name;
117 else if (rdev->desc->name)
118 return rdev->desc->name;
119 else
120 return "";
121 }
122
123 static bool have_full_constraints(void)
124 {
125 return has_full_constraints || of_have_populated_dt();
126 }
127
128 /**
129 * of_get_regulator - get a regulator device node based on supply name
130 * @dev: Device pointer for the consumer (of regulator) device
131 * @supply: regulator supply name
132 *
133 * Extract the regulator device node corresponding to the supply name.
134 * returns the device node corresponding to the regulator if found, else
135 * returns NULL.
136 */
137 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138 {
139 struct device_node *regnode = NULL;
140 char prop_name[32]; /* 32 is max size of property name */
141
142 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143
144 snprintf(prop_name, 32, "%s-supply", supply);
145 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
146
147 if (!regnode) {
148 dev_dbg(dev, "Looking up %s property in node %s failed",
149 prop_name, dev->of_node->full_name);
150 return NULL;
151 }
152 return regnode;
153 }
154
155 static int _regulator_can_change_status(struct regulator_dev *rdev)
156 {
157 if (!rdev->constraints)
158 return 0;
159
160 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
161 return 1;
162 else
163 return 0;
164 }
165
166 /* Platform voltage constraint check */
167 static int regulator_check_voltage(struct regulator_dev *rdev,
168 int *min_uV, int *max_uV)
169 {
170 BUG_ON(*min_uV > *max_uV);
171
172 if (!rdev->constraints) {
173 rdev_err(rdev, "no constraints\n");
174 return -ENODEV;
175 }
176 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177 rdev_err(rdev, "operation not allowed\n");
178 return -EPERM;
179 }
180
181 if (*max_uV > rdev->constraints->max_uV)
182 *max_uV = rdev->constraints->max_uV;
183 if (*min_uV < rdev->constraints->min_uV)
184 *min_uV = rdev->constraints->min_uV;
185
186 if (*min_uV > *max_uV) {
187 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188 *min_uV, *max_uV);
189 return -EINVAL;
190 }
191
192 return 0;
193 }
194
195 /* Make sure we select a voltage that suits the needs of all
196 * regulator consumers
197 */
198 static int regulator_check_consumers(struct regulator_dev *rdev,
199 int *min_uV, int *max_uV)
200 {
201 struct regulator *regulator;
202
203 list_for_each_entry(regulator, &rdev->consumer_list, list) {
204 /*
205 * Assume consumers that didn't say anything are OK
206 * with anything in the constraint range.
207 */
208 if (!regulator->min_uV && !regulator->max_uV)
209 continue;
210
211 if (*max_uV > regulator->max_uV)
212 *max_uV = regulator->max_uV;
213 if (*min_uV < regulator->min_uV)
214 *min_uV = regulator->min_uV;
215 }
216
217 if (*min_uV > *max_uV) {
218 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
219 *min_uV, *max_uV);
220 return -EINVAL;
221 }
222
223 return 0;
224 }
225
226 /* current constraint check */
227 static int regulator_check_current_limit(struct regulator_dev *rdev,
228 int *min_uA, int *max_uA)
229 {
230 BUG_ON(*min_uA > *max_uA);
231
232 if (!rdev->constraints) {
233 rdev_err(rdev, "no constraints\n");
234 return -ENODEV;
235 }
236 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237 rdev_err(rdev, "operation not allowed\n");
238 return -EPERM;
239 }
240
241 if (*max_uA > rdev->constraints->max_uA)
242 *max_uA = rdev->constraints->max_uA;
243 if (*min_uA < rdev->constraints->min_uA)
244 *min_uA = rdev->constraints->min_uA;
245
246 if (*min_uA > *max_uA) {
247 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248 *min_uA, *max_uA);
249 return -EINVAL;
250 }
251
252 return 0;
253 }
254
255 /* operating mode constraint check */
256 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257 {
258 switch (*mode) {
259 case REGULATOR_MODE_FAST:
260 case REGULATOR_MODE_NORMAL:
261 case REGULATOR_MODE_IDLE:
262 case REGULATOR_MODE_STANDBY:
263 break;
264 default:
265 rdev_err(rdev, "invalid mode %x specified\n", *mode);
266 return -EINVAL;
267 }
268
269 if (!rdev->constraints) {
270 rdev_err(rdev, "no constraints\n");
271 return -ENODEV;
272 }
273 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274 rdev_err(rdev, "operation not allowed\n");
275 return -EPERM;
276 }
277
278 /* The modes are bitmasks, the most power hungry modes having
279 * the lowest values. If the requested mode isn't supported
280 * try higher modes. */
281 while (*mode) {
282 if (rdev->constraints->valid_modes_mask & *mode)
283 return 0;
284 *mode /= 2;
285 }
286
287 return -EINVAL;
288 }
289
290 /* dynamic regulator mode switching constraint check */
291 static int regulator_check_drms(struct regulator_dev *rdev)
292 {
293 if (!rdev->constraints) {
294 rdev_err(rdev, "no constraints\n");
295 return -ENODEV;
296 }
297 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298 rdev_err(rdev, "operation not allowed\n");
299 return -EPERM;
300 }
301 return 0;
302 }
303
304 static ssize_t regulator_uV_show(struct device *dev,
305 struct device_attribute *attr, char *buf)
306 {
307 struct regulator_dev *rdev = dev_get_drvdata(dev);
308 ssize_t ret;
309
310 mutex_lock(&rdev->mutex);
311 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
312 mutex_unlock(&rdev->mutex);
313
314 return ret;
315 }
316 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317
318 static ssize_t regulator_uA_show(struct device *dev,
319 struct device_attribute *attr, char *buf)
320 {
321 struct regulator_dev *rdev = dev_get_drvdata(dev);
322
323 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324 }
325 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326
327 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
328 char *buf)
329 {
330 struct regulator_dev *rdev = dev_get_drvdata(dev);
331
332 return sprintf(buf, "%s\n", rdev_get_name(rdev));
333 }
334 static DEVICE_ATTR_RO(name);
335
336 static ssize_t regulator_print_opmode(char *buf, int mode)
337 {
338 switch (mode) {
339 case REGULATOR_MODE_FAST:
340 return sprintf(buf, "fast\n");
341 case REGULATOR_MODE_NORMAL:
342 return sprintf(buf, "normal\n");
343 case REGULATOR_MODE_IDLE:
344 return sprintf(buf, "idle\n");
345 case REGULATOR_MODE_STANDBY:
346 return sprintf(buf, "standby\n");
347 }
348 return sprintf(buf, "unknown\n");
349 }
350
351 static ssize_t regulator_opmode_show(struct device *dev,
352 struct device_attribute *attr, char *buf)
353 {
354 struct regulator_dev *rdev = dev_get_drvdata(dev);
355
356 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 }
358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359
360 static ssize_t regulator_print_state(char *buf, int state)
361 {
362 if (state > 0)
363 return sprintf(buf, "enabled\n");
364 else if (state == 0)
365 return sprintf(buf, "disabled\n");
366 else
367 return sprintf(buf, "unknown\n");
368 }
369
370 static ssize_t regulator_state_show(struct device *dev,
371 struct device_attribute *attr, char *buf)
372 {
373 struct regulator_dev *rdev = dev_get_drvdata(dev);
374 ssize_t ret;
375
376 mutex_lock(&rdev->mutex);
377 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378 mutex_unlock(&rdev->mutex);
379
380 return ret;
381 }
382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383
384 static ssize_t regulator_status_show(struct device *dev,
385 struct device_attribute *attr, char *buf)
386 {
387 struct regulator_dev *rdev = dev_get_drvdata(dev);
388 int status;
389 char *label;
390
391 status = rdev->desc->ops->get_status(rdev);
392 if (status < 0)
393 return status;
394
395 switch (status) {
396 case REGULATOR_STATUS_OFF:
397 label = "off";
398 break;
399 case REGULATOR_STATUS_ON:
400 label = "on";
401 break;
402 case REGULATOR_STATUS_ERROR:
403 label = "error";
404 break;
405 case REGULATOR_STATUS_FAST:
406 label = "fast";
407 break;
408 case REGULATOR_STATUS_NORMAL:
409 label = "normal";
410 break;
411 case REGULATOR_STATUS_IDLE:
412 label = "idle";
413 break;
414 case REGULATOR_STATUS_STANDBY:
415 label = "standby";
416 break;
417 case REGULATOR_STATUS_BYPASS:
418 label = "bypass";
419 break;
420 case REGULATOR_STATUS_UNDEFINED:
421 label = "undefined";
422 break;
423 default:
424 return -ERANGE;
425 }
426
427 return sprintf(buf, "%s\n", label);
428 }
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431 static ssize_t regulator_min_uA_show(struct device *dev,
432 struct device_attribute *attr, char *buf)
433 {
434 struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436 if (!rdev->constraints)
437 return sprintf(buf, "constraint not defined\n");
438
439 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 }
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443 static ssize_t regulator_max_uA_show(struct device *dev,
444 struct device_attribute *attr, char *buf)
445 {
446 struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448 if (!rdev->constraints)
449 return sprintf(buf, "constraint not defined\n");
450
451 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 }
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455 static ssize_t regulator_min_uV_show(struct device *dev,
456 struct device_attribute *attr, char *buf)
457 {
458 struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460 if (!rdev->constraints)
461 return sprintf(buf, "constraint not defined\n");
462
463 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 }
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467 static ssize_t regulator_max_uV_show(struct device *dev,
468 struct device_attribute *attr, char *buf)
469 {
470 struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472 if (!rdev->constraints)
473 return sprintf(buf, "constraint not defined\n");
474
475 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 }
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479 static ssize_t regulator_total_uA_show(struct device *dev,
480 struct device_attribute *attr, char *buf)
481 {
482 struct regulator_dev *rdev = dev_get_drvdata(dev);
483 struct regulator *regulator;
484 int uA = 0;
485
486 mutex_lock(&rdev->mutex);
487 list_for_each_entry(regulator, &rdev->consumer_list, list)
488 uA += regulator->uA_load;
489 mutex_unlock(&rdev->mutex);
490 return sprintf(buf, "%d\n", uA);
491 }
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
495 char *buf)
496 {
497 struct regulator_dev *rdev = dev_get_drvdata(dev);
498 return sprintf(buf, "%d\n", rdev->use_count);
499 }
500 static DEVICE_ATTR_RO(num_users);
501
502 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
503 char *buf)
504 {
505 struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507 switch (rdev->desc->type) {
508 case REGULATOR_VOLTAGE:
509 return sprintf(buf, "voltage\n");
510 case REGULATOR_CURRENT:
511 return sprintf(buf, "current\n");
512 }
513 return sprintf(buf, "unknown\n");
514 }
515 static DEVICE_ATTR_RO(type);
516
517 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
518 struct device_attribute *attr, char *buf)
519 {
520 struct regulator_dev *rdev = dev_get_drvdata(dev);
521
522 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
523 }
524 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
525 regulator_suspend_mem_uV_show, NULL);
526
527 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
528 struct device_attribute *attr, char *buf)
529 {
530 struct regulator_dev *rdev = dev_get_drvdata(dev);
531
532 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
533 }
534 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
535 regulator_suspend_disk_uV_show, NULL);
536
537 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
538 struct device_attribute *attr, char *buf)
539 {
540 struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
543 }
544 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
545 regulator_suspend_standby_uV_show, NULL);
546
547 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
548 struct device_attribute *attr, char *buf)
549 {
550 struct regulator_dev *rdev = dev_get_drvdata(dev);
551
552 return regulator_print_opmode(buf,
553 rdev->constraints->state_mem.mode);
554 }
555 static DEVICE_ATTR(suspend_mem_mode, 0444,
556 regulator_suspend_mem_mode_show, NULL);
557
558 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
559 struct device_attribute *attr, char *buf)
560 {
561 struct regulator_dev *rdev = dev_get_drvdata(dev);
562
563 return regulator_print_opmode(buf,
564 rdev->constraints->state_disk.mode);
565 }
566 static DEVICE_ATTR(suspend_disk_mode, 0444,
567 regulator_suspend_disk_mode_show, NULL);
568
569 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
570 struct device_attribute *attr, char *buf)
571 {
572 struct regulator_dev *rdev = dev_get_drvdata(dev);
573
574 return regulator_print_opmode(buf,
575 rdev->constraints->state_standby.mode);
576 }
577 static DEVICE_ATTR(suspend_standby_mode, 0444,
578 regulator_suspend_standby_mode_show, NULL);
579
580 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
581 struct device_attribute *attr, char *buf)
582 {
583 struct regulator_dev *rdev = dev_get_drvdata(dev);
584
585 return regulator_print_state(buf,
586 rdev->constraints->state_mem.enabled);
587 }
588 static DEVICE_ATTR(suspend_mem_state, 0444,
589 regulator_suspend_mem_state_show, NULL);
590
591 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
592 struct device_attribute *attr, char *buf)
593 {
594 struct regulator_dev *rdev = dev_get_drvdata(dev);
595
596 return regulator_print_state(buf,
597 rdev->constraints->state_disk.enabled);
598 }
599 static DEVICE_ATTR(suspend_disk_state, 0444,
600 regulator_suspend_disk_state_show, NULL);
601
602 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
603 struct device_attribute *attr, char *buf)
604 {
605 struct regulator_dev *rdev = dev_get_drvdata(dev);
606
607 return regulator_print_state(buf,
608 rdev->constraints->state_standby.enabled);
609 }
610 static DEVICE_ATTR(suspend_standby_state, 0444,
611 regulator_suspend_standby_state_show, NULL);
612
613 static ssize_t regulator_bypass_show(struct device *dev,
614 struct device_attribute *attr, char *buf)
615 {
616 struct regulator_dev *rdev = dev_get_drvdata(dev);
617 const char *report;
618 bool bypass;
619 int ret;
620
621 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
622
623 if (ret != 0)
624 report = "unknown";
625 else if (bypass)
626 report = "enabled";
627 else
628 report = "disabled";
629
630 return sprintf(buf, "%s\n", report);
631 }
632 static DEVICE_ATTR(bypass, 0444,
633 regulator_bypass_show, NULL);
634
635 /* Calculate the new optimum regulator operating mode based on the new total
636 * consumer load. All locks held by caller */
637 static void drms_uA_update(struct regulator_dev *rdev)
638 {
639 struct regulator *sibling;
640 int current_uA = 0, output_uV, input_uV, err;
641 unsigned int mode;
642
643 err = regulator_check_drms(rdev);
644 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
645 (!rdev->desc->ops->get_voltage &&
646 !rdev->desc->ops->get_voltage_sel) ||
647 !rdev->desc->ops->set_mode)
648 return;
649
650 /* get output voltage */
651 output_uV = _regulator_get_voltage(rdev);
652 if (output_uV <= 0)
653 return;
654
655 /* get input voltage */
656 input_uV = 0;
657 if (rdev->supply)
658 input_uV = regulator_get_voltage(rdev->supply);
659 if (input_uV <= 0)
660 input_uV = rdev->constraints->input_uV;
661 if (input_uV <= 0)
662 return;
663
664 /* calc total requested load */
665 list_for_each_entry(sibling, &rdev->consumer_list, list)
666 current_uA += sibling->uA_load;
667
668 /* now get the optimum mode for our new total regulator load */
669 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
670 output_uV, current_uA);
671
672 /* check the new mode is allowed */
673 err = regulator_mode_constrain(rdev, &mode);
674 if (err == 0)
675 rdev->desc->ops->set_mode(rdev, mode);
676 }
677
678 static int suspend_set_state(struct regulator_dev *rdev,
679 struct regulator_state *rstate)
680 {
681 int ret = 0;
682
683 /* If we have no suspend mode configration don't set anything;
684 * only warn if the driver implements set_suspend_voltage or
685 * set_suspend_mode callback.
686 */
687 if (!rstate->enabled && !rstate->disabled) {
688 if (rdev->desc->ops->set_suspend_voltage ||
689 rdev->desc->ops->set_suspend_mode)
690 rdev_warn(rdev, "No configuration\n");
691 return 0;
692 }
693
694 if (rstate->enabled && rstate->disabled) {
695 rdev_err(rdev, "invalid configuration\n");
696 return -EINVAL;
697 }
698
699 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
700 ret = rdev->desc->ops->set_suspend_enable(rdev);
701 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
702 ret = rdev->desc->ops->set_suspend_disable(rdev);
703 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
704 ret = 0;
705
706 if (ret < 0) {
707 rdev_err(rdev, "failed to enabled/disable\n");
708 return ret;
709 }
710
711 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
712 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
713 if (ret < 0) {
714 rdev_err(rdev, "failed to set voltage\n");
715 return ret;
716 }
717 }
718
719 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
720 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
721 if (ret < 0) {
722 rdev_err(rdev, "failed to set mode\n");
723 return ret;
724 }
725 }
726 return ret;
727 }
728
729 /* locks held by caller */
730 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
731 {
732 if (!rdev->constraints)
733 return -EINVAL;
734
735 switch (state) {
736 case PM_SUSPEND_STANDBY:
737 return suspend_set_state(rdev,
738 &rdev->constraints->state_standby);
739 case PM_SUSPEND_MEM:
740 return suspend_set_state(rdev,
741 &rdev->constraints->state_mem);
742 case PM_SUSPEND_MAX:
743 return suspend_set_state(rdev,
744 &rdev->constraints->state_disk);
745 default:
746 return -EINVAL;
747 }
748 }
749
750 static void print_constraints(struct regulator_dev *rdev)
751 {
752 struct regulation_constraints *constraints = rdev->constraints;
753 char buf[80] = "";
754 int count = 0;
755 int ret;
756
757 if (constraints->min_uV && constraints->max_uV) {
758 if (constraints->min_uV == constraints->max_uV)
759 count += sprintf(buf + count, "%d mV ",
760 constraints->min_uV / 1000);
761 else
762 count += sprintf(buf + count, "%d <--> %d mV ",
763 constraints->min_uV / 1000,
764 constraints->max_uV / 1000);
765 }
766
767 if (!constraints->min_uV ||
768 constraints->min_uV != constraints->max_uV) {
769 ret = _regulator_get_voltage(rdev);
770 if (ret > 0)
771 count += sprintf(buf + count, "at %d mV ", ret / 1000);
772 }
773
774 if (constraints->uV_offset)
775 count += sprintf(buf, "%dmV offset ",
776 constraints->uV_offset / 1000);
777
778 if (constraints->min_uA && constraints->max_uA) {
779 if (constraints->min_uA == constraints->max_uA)
780 count += sprintf(buf + count, "%d mA ",
781 constraints->min_uA / 1000);
782 else
783 count += sprintf(buf + count, "%d <--> %d mA ",
784 constraints->min_uA / 1000,
785 constraints->max_uA / 1000);
786 }
787
788 if (!constraints->min_uA ||
789 constraints->min_uA != constraints->max_uA) {
790 ret = _regulator_get_current_limit(rdev);
791 if (ret > 0)
792 count += sprintf(buf + count, "at %d mA ", ret / 1000);
793 }
794
795 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
796 count += sprintf(buf + count, "fast ");
797 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
798 count += sprintf(buf + count, "normal ");
799 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
800 count += sprintf(buf + count, "idle ");
801 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
802 count += sprintf(buf + count, "standby");
803
804 if (!count)
805 sprintf(buf, "no parameters");
806
807 rdev_dbg(rdev, "%s\n", buf);
808
809 if ((constraints->min_uV != constraints->max_uV) &&
810 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
811 rdev_warn(rdev,
812 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
813 }
814
815 static int machine_constraints_voltage(struct regulator_dev *rdev,
816 struct regulation_constraints *constraints)
817 {
818 const struct regulator_ops *ops = rdev->desc->ops;
819 int ret;
820
821 /* do we need to apply the constraint voltage */
822 if (rdev->constraints->apply_uV &&
823 rdev->constraints->min_uV == rdev->constraints->max_uV) {
824 int current_uV = _regulator_get_voltage(rdev);
825 if (current_uV < 0) {
826 rdev_err(rdev,
827 "failed to get the current voltage(%d)\n",
828 current_uV);
829 return current_uV;
830 }
831 if (current_uV < rdev->constraints->min_uV ||
832 current_uV > rdev->constraints->max_uV) {
833 ret = _regulator_do_set_voltage(
834 rdev, rdev->constraints->min_uV,
835 rdev->constraints->max_uV);
836 if (ret < 0) {
837 rdev_err(rdev,
838 "failed to apply %duV constraint(%d)\n",
839 rdev->constraints->min_uV, ret);
840 return ret;
841 }
842 }
843 }
844
845 /* constrain machine-level voltage specs to fit
846 * the actual range supported by this regulator.
847 */
848 if (ops->list_voltage && rdev->desc->n_voltages) {
849 int count = rdev->desc->n_voltages;
850 int i;
851 int min_uV = INT_MAX;
852 int max_uV = INT_MIN;
853 int cmin = constraints->min_uV;
854 int cmax = constraints->max_uV;
855
856 /* it's safe to autoconfigure fixed-voltage supplies
857 and the constraints are used by list_voltage. */
858 if (count == 1 && !cmin) {
859 cmin = 1;
860 cmax = INT_MAX;
861 constraints->min_uV = cmin;
862 constraints->max_uV = cmax;
863 }
864
865 /* voltage constraints are optional */
866 if ((cmin == 0) && (cmax == 0))
867 return 0;
868
869 /* else require explicit machine-level constraints */
870 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
871 rdev_err(rdev, "invalid voltage constraints\n");
872 return -EINVAL;
873 }
874
875 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
876 for (i = 0; i < count; i++) {
877 int value;
878
879 value = ops->list_voltage(rdev, i);
880 if (value <= 0)
881 continue;
882
883 /* maybe adjust [min_uV..max_uV] */
884 if (value >= cmin && value < min_uV)
885 min_uV = value;
886 if (value <= cmax && value > max_uV)
887 max_uV = value;
888 }
889
890 /* final: [min_uV..max_uV] valid iff constraints valid */
891 if (max_uV < min_uV) {
892 rdev_err(rdev,
893 "unsupportable voltage constraints %u-%uuV\n",
894 min_uV, max_uV);
895 return -EINVAL;
896 }
897
898 /* use regulator's subset of machine constraints */
899 if (constraints->min_uV < min_uV) {
900 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
901 constraints->min_uV, min_uV);
902 constraints->min_uV = min_uV;
903 }
904 if (constraints->max_uV > max_uV) {
905 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
906 constraints->max_uV, max_uV);
907 constraints->max_uV = max_uV;
908 }
909 }
910
911 return 0;
912 }
913
914 static int machine_constraints_current(struct regulator_dev *rdev,
915 struct regulation_constraints *constraints)
916 {
917 const struct regulator_ops *ops = rdev->desc->ops;
918 int ret;
919
920 if (!constraints->min_uA && !constraints->max_uA)
921 return 0;
922
923 if (constraints->min_uA > constraints->max_uA) {
924 rdev_err(rdev, "Invalid current constraints\n");
925 return -EINVAL;
926 }
927
928 if (!ops->set_current_limit || !ops->get_current_limit) {
929 rdev_warn(rdev, "Operation of current configuration missing\n");
930 return 0;
931 }
932
933 /* Set regulator current in constraints range */
934 ret = ops->set_current_limit(rdev, constraints->min_uA,
935 constraints->max_uA);
936 if (ret < 0) {
937 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
938 return ret;
939 }
940
941 return 0;
942 }
943
944 static int _regulator_do_enable(struct regulator_dev *rdev);
945
946 /**
947 * set_machine_constraints - sets regulator constraints
948 * @rdev: regulator source
949 * @constraints: constraints to apply
950 *
951 * Allows platform initialisation code to define and constrain
952 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
953 * Constraints *must* be set by platform code in order for some
954 * regulator operations to proceed i.e. set_voltage, set_current_limit,
955 * set_mode.
956 */
957 static int set_machine_constraints(struct regulator_dev *rdev,
958 const struct regulation_constraints *constraints)
959 {
960 int ret = 0;
961 const struct regulator_ops *ops = rdev->desc->ops;
962
963 if (constraints)
964 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
965 GFP_KERNEL);
966 else
967 rdev->constraints = kzalloc(sizeof(*constraints),
968 GFP_KERNEL);
969 if (!rdev->constraints)
970 return -ENOMEM;
971
972 ret = machine_constraints_voltage(rdev, rdev->constraints);
973 if (ret != 0)
974 goto out;
975
976 ret = machine_constraints_current(rdev, rdev->constraints);
977 if (ret != 0)
978 goto out;
979
980 /* do we need to setup our suspend state */
981 if (rdev->constraints->initial_state) {
982 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
983 if (ret < 0) {
984 rdev_err(rdev, "failed to set suspend state\n");
985 goto out;
986 }
987 }
988
989 if (rdev->constraints->initial_mode) {
990 if (!ops->set_mode) {
991 rdev_err(rdev, "no set_mode operation\n");
992 ret = -EINVAL;
993 goto out;
994 }
995
996 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
997 if (ret < 0) {
998 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
999 goto out;
1000 }
1001 }
1002
1003 /* If the constraints say the regulator should be on at this point
1004 * and we have control then make sure it is enabled.
1005 */
1006 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1007 ret = _regulator_do_enable(rdev);
1008 if (ret < 0 && ret != -EINVAL) {
1009 rdev_err(rdev, "failed to enable\n");
1010 goto out;
1011 }
1012 }
1013
1014 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1015 && ops->set_ramp_delay) {
1016 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1017 if (ret < 0) {
1018 rdev_err(rdev, "failed to set ramp_delay\n");
1019 goto out;
1020 }
1021 }
1022
1023 print_constraints(rdev);
1024 return 0;
1025 out:
1026 kfree(rdev->constraints);
1027 rdev->constraints = NULL;
1028 return ret;
1029 }
1030
1031 /**
1032 * set_supply - set regulator supply regulator
1033 * @rdev: regulator name
1034 * @supply_rdev: supply regulator name
1035 *
1036 * Called by platform initialisation code to set the supply regulator for this
1037 * regulator. This ensures that a regulators supply will also be enabled by the
1038 * core if it's child is enabled.
1039 */
1040 static int set_supply(struct regulator_dev *rdev,
1041 struct regulator_dev *supply_rdev)
1042 {
1043 int err;
1044
1045 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1046
1047 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1048 if (rdev->supply == NULL) {
1049 err = -ENOMEM;
1050 return err;
1051 }
1052 supply_rdev->open_count++;
1053
1054 return 0;
1055 }
1056
1057 /**
1058 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1059 * @rdev: regulator source
1060 * @consumer_dev_name: dev_name() string for device supply applies to
1061 * @supply: symbolic name for supply
1062 *
1063 * Allows platform initialisation code to map physical regulator
1064 * sources to symbolic names for supplies for use by devices. Devices
1065 * should use these symbolic names to request regulators, avoiding the
1066 * need to provide board-specific regulator names as platform data.
1067 */
1068 static int set_consumer_device_supply(struct regulator_dev *rdev,
1069 const char *consumer_dev_name,
1070 const char *supply)
1071 {
1072 struct regulator_map *node;
1073 int has_dev;
1074
1075 if (supply == NULL)
1076 return -EINVAL;
1077
1078 if (consumer_dev_name != NULL)
1079 has_dev = 1;
1080 else
1081 has_dev = 0;
1082
1083 list_for_each_entry(node, &regulator_map_list, list) {
1084 if (node->dev_name && consumer_dev_name) {
1085 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1086 continue;
1087 } else if (node->dev_name || consumer_dev_name) {
1088 continue;
1089 }
1090
1091 if (strcmp(node->supply, supply) != 0)
1092 continue;
1093
1094 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1095 consumer_dev_name,
1096 dev_name(&node->regulator->dev),
1097 node->regulator->desc->name,
1098 supply,
1099 dev_name(&rdev->dev), rdev_get_name(rdev));
1100 return -EBUSY;
1101 }
1102
1103 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1104 if (node == NULL)
1105 return -ENOMEM;
1106
1107 node->regulator = rdev;
1108 node->supply = supply;
1109
1110 if (has_dev) {
1111 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1112 if (node->dev_name == NULL) {
1113 kfree(node);
1114 return -ENOMEM;
1115 }
1116 }
1117
1118 list_add(&node->list, &regulator_map_list);
1119 return 0;
1120 }
1121
1122 static void unset_regulator_supplies(struct regulator_dev *rdev)
1123 {
1124 struct regulator_map *node, *n;
1125
1126 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1127 if (rdev == node->regulator) {
1128 list_del(&node->list);
1129 kfree(node->dev_name);
1130 kfree(node);
1131 }
1132 }
1133 }
1134
1135 #define REG_STR_SIZE 64
1136
1137 static struct regulator *create_regulator(struct regulator_dev *rdev,
1138 struct device *dev,
1139 const char *supply_name)
1140 {
1141 struct regulator *regulator;
1142 char buf[REG_STR_SIZE];
1143 int err, size;
1144
1145 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1146 if (regulator == NULL)
1147 return NULL;
1148
1149 mutex_lock(&rdev->mutex);
1150 regulator->rdev = rdev;
1151 list_add(&regulator->list, &rdev->consumer_list);
1152
1153 if (dev) {
1154 regulator->dev = dev;
1155
1156 /* Add a link to the device sysfs entry */
1157 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1158 dev->kobj.name, supply_name);
1159 if (size >= REG_STR_SIZE)
1160 goto overflow_err;
1161
1162 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1163 if (regulator->supply_name == NULL)
1164 goto overflow_err;
1165
1166 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1167 buf);
1168 if (err) {
1169 rdev_warn(rdev, "could not add device link %s err %d\n",
1170 dev->kobj.name, err);
1171 /* non-fatal */
1172 }
1173 } else {
1174 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1175 if (regulator->supply_name == NULL)
1176 goto overflow_err;
1177 }
1178
1179 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1180 rdev->debugfs);
1181 if (!regulator->debugfs) {
1182 rdev_warn(rdev, "Failed to create debugfs directory\n");
1183 } else {
1184 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1185 &regulator->uA_load);
1186 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1187 &regulator->min_uV);
1188 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1189 &regulator->max_uV);
1190 }
1191
1192 /*
1193 * Check now if the regulator is an always on regulator - if
1194 * it is then we don't need to do nearly so much work for
1195 * enable/disable calls.
1196 */
1197 if (!_regulator_can_change_status(rdev) &&
1198 _regulator_is_enabled(rdev))
1199 regulator->always_on = true;
1200
1201 mutex_unlock(&rdev->mutex);
1202 return regulator;
1203 overflow_err:
1204 list_del(&regulator->list);
1205 kfree(regulator);
1206 mutex_unlock(&rdev->mutex);
1207 return NULL;
1208 }
1209
1210 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1211 {
1212 if (rdev->constraints && rdev->constraints->enable_time)
1213 return rdev->constraints->enable_time;
1214 if (!rdev->desc->ops->enable_time)
1215 return rdev->desc->enable_time;
1216 return rdev->desc->ops->enable_time(rdev);
1217 }
1218
1219 static struct regulator_supply_alias *regulator_find_supply_alias(
1220 struct device *dev, const char *supply)
1221 {
1222 struct regulator_supply_alias *map;
1223
1224 list_for_each_entry(map, &regulator_supply_alias_list, list)
1225 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1226 return map;
1227
1228 return NULL;
1229 }
1230
1231 static void regulator_supply_alias(struct device **dev, const char **supply)
1232 {
1233 struct regulator_supply_alias *map;
1234
1235 map = regulator_find_supply_alias(*dev, *supply);
1236 if (map) {
1237 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1238 *supply, map->alias_supply,
1239 dev_name(map->alias_dev));
1240 *dev = map->alias_dev;
1241 *supply = map->alias_supply;
1242 }
1243 }
1244
1245 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1246 const char *supply,
1247 int *ret)
1248 {
1249 struct regulator_dev *r;
1250 struct device_node *node;
1251 struct regulator_map *map;
1252 const char *devname = NULL;
1253
1254 regulator_supply_alias(&dev, &supply);
1255
1256 /* first do a dt based lookup */
1257 if (dev && dev->of_node) {
1258 node = of_get_regulator(dev, supply);
1259 if (node) {
1260 list_for_each_entry(r, &regulator_list, list)
1261 if (r->dev.parent &&
1262 node == r->dev.of_node)
1263 return r;
1264 *ret = -EPROBE_DEFER;
1265 return NULL;
1266 } else {
1267 /*
1268 * If we couldn't even get the node then it's
1269 * not just that the device didn't register
1270 * yet, there's no node and we'll never
1271 * succeed.
1272 */
1273 *ret = -ENODEV;
1274 }
1275 }
1276
1277 /* if not found, try doing it non-dt way */
1278 if (dev)
1279 devname = dev_name(dev);
1280
1281 list_for_each_entry(r, &regulator_list, list)
1282 if (strcmp(rdev_get_name(r), supply) == 0)
1283 return r;
1284
1285 list_for_each_entry(map, &regulator_map_list, list) {
1286 /* If the mapping has a device set up it must match */
1287 if (map->dev_name &&
1288 (!devname || strcmp(map->dev_name, devname)))
1289 continue;
1290
1291 if (strcmp(map->supply, supply) == 0)
1292 return map->regulator;
1293 }
1294
1295
1296 return NULL;
1297 }
1298
1299 /* Internal regulator request function */
1300 static struct regulator *_regulator_get(struct device *dev, const char *id,
1301 bool exclusive, bool allow_dummy)
1302 {
1303 struct regulator_dev *rdev;
1304 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1305 const char *devname = NULL;
1306 int ret;
1307
1308 if (id == NULL) {
1309 pr_err("get() with no identifier\n");
1310 return ERR_PTR(-EINVAL);
1311 }
1312
1313 if (dev)
1314 devname = dev_name(dev);
1315
1316 if (have_full_constraints())
1317 ret = -ENODEV;
1318 else
1319 ret = -EPROBE_DEFER;
1320
1321 mutex_lock(&regulator_list_mutex);
1322
1323 rdev = regulator_dev_lookup(dev, id, &ret);
1324 if (rdev)
1325 goto found;
1326
1327 regulator = ERR_PTR(ret);
1328
1329 /*
1330 * If we have return value from dev_lookup fail, we do not expect to
1331 * succeed, so, quit with appropriate error value
1332 */
1333 if (ret && ret != -ENODEV)
1334 goto out;
1335
1336 if (!devname)
1337 devname = "deviceless";
1338
1339 /*
1340 * Assume that a regulator is physically present and enabled
1341 * even if it isn't hooked up and just provide a dummy.
1342 */
1343 if (have_full_constraints() && allow_dummy) {
1344 pr_warn("%s supply %s not found, using dummy regulator\n",
1345 devname, id);
1346
1347 rdev = dummy_regulator_rdev;
1348 goto found;
1349 /* Don't log an error when called from regulator_get_optional() */
1350 } else if (!have_full_constraints() || exclusive) {
1351 dev_warn(dev, "dummy supplies not allowed\n");
1352 }
1353
1354 mutex_unlock(&regulator_list_mutex);
1355 return regulator;
1356
1357 found:
1358 if (rdev->exclusive) {
1359 regulator = ERR_PTR(-EPERM);
1360 goto out;
1361 }
1362
1363 if (exclusive && rdev->open_count) {
1364 regulator = ERR_PTR(-EBUSY);
1365 goto out;
1366 }
1367
1368 if (!try_module_get(rdev->owner))
1369 goto out;
1370
1371 regulator = create_regulator(rdev, dev, id);
1372 if (regulator == NULL) {
1373 regulator = ERR_PTR(-ENOMEM);
1374 module_put(rdev->owner);
1375 goto out;
1376 }
1377
1378 rdev->open_count++;
1379 if (exclusive) {
1380 rdev->exclusive = 1;
1381
1382 ret = _regulator_is_enabled(rdev);
1383 if (ret > 0)
1384 rdev->use_count = 1;
1385 else
1386 rdev->use_count = 0;
1387 }
1388
1389 out:
1390 mutex_unlock(&regulator_list_mutex);
1391
1392 return regulator;
1393 }
1394
1395 /**
1396 * regulator_get - lookup and obtain a reference to a regulator.
1397 * @dev: device for regulator "consumer"
1398 * @id: Supply name or regulator ID.
1399 *
1400 * Returns a struct regulator corresponding to the regulator producer,
1401 * or IS_ERR() condition containing errno.
1402 *
1403 * Use of supply names configured via regulator_set_device_supply() is
1404 * strongly encouraged. It is recommended that the supply name used
1405 * should match the name used for the supply and/or the relevant
1406 * device pins in the datasheet.
1407 */
1408 struct regulator *regulator_get(struct device *dev, const char *id)
1409 {
1410 return _regulator_get(dev, id, false, true);
1411 }
1412 EXPORT_SYMBOL_GPL(regulator_get);
1413
1414 /**
1415 * regulator_get_exclusive - obtain exclusive access to a regulator.
1416 * @dev: device for regulator "consumer"
1417 * @id: Supply name or regulator ID.
1418 *
1419 * Returns a struct regulator corresponding to the regulator producer,
1420 * or IS_ERR() condition containing errno. Other consumers will be
1421 * unable to obtain this regulator while this reference is held and the
1422 * use count for the regulator will be initialised to reflect the current
1423 * state of the regulator.
1424 *
1425 * This is intended for use by consumers which cannot tolerate shared
1426 * use of the regulator such as those which need to force the
1427 * regulator off for correct operation of the hardware they are
1428 * controlling.
1429 *
1430 * Use of supply names configured via regulator_set_device_supply() is
1431 * strongly encouraged. It is recommended that the supply name used
1432 * should match the name used for the supply and/or the relevant
1433 * device pins in the datasheet.
1434 */
1435 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1436 {
1437 return _regulator_get(dev, id, true, false);
1438 }
1439 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1440
1441 /**
1442 * regulator_get_optional - obtain optional access to a regulator.
1443 * @dev: device for regulator "consumer"
1444 * @id: Supply name or regulator ID.
1445 *
1446 * Returns a struct regulator corresponding to the regulator producer,
1447 * or IS_ERR() condition containing errno.
1448 *
1449 * This is intended for use by consumers for devices which can have
1450 * some supplies unconnected in normal use, such as some MMC devices.
1451 * It can allow the regulator core to provide stub supplies for other
1452 * supplies requested using normal regulator_get() calls without
1453 * disrupting the operation of drivers that can handle absent
1454 * supplies.
1455 *
1456 * Use of supply names configured via regulator_set_device_supply() is
1457 * strongly encouraged. It is recommended that the supply name used
1458 * should match the name used for the supply and/or the relevant
1459 * device pins in the datasheet.
1460 */
1461 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1462 {
1463 return _regulator_get(dev, id, false, false);
1464 }
1465 EXPORT_SYMBOL_GPL(regulator_get_optional);
1466
1467 /* Locks held by regulator_put() */
1468 static void _regulator_put(struct regulator *regulator)
1469 {
1470 struct regulator_dev *rdev;
1471
1472 if (regulator == NULL || IS_ERR(regulator))
1473 return;
1474
1475 rdev = regulator->rdev;
1476
1477 debugfs_remove_recursive(regulator->debugfs);
1478
1479 /* remove any sysfs entries */
1480 if (regulator->dev)
1481 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1482 kfree(regulator->supply_name);
1483 list_del(&regulator->list);
1484 kfree(regulator);
1485
1486 rdev->open_count--;
1487 rdev->exclusive = 0;
1488
1489 module_put(rdev->owner);
1490 }
1491
1492 /**
1493 * regulator_put - "free" the regulator source
1494 * @regulator: regulator source
1495 *
1496 * Note: drivers must ensure that all regulator_enable calls made on this
1497 * regulator source are balanced by regulator_disable calls prior to calling
1498 * this function.
1499 */
1500 void regulator_put(struct regulator *regulator)
1501 {
1502 mutex_lock(&regulator_list_mutex);
1503 _regulator_put(regulator);
1504 mutex_unlock(&regulator_list_mutex);
1505 }
1506 EXPORT_SYMBOL_GPL(regulator_put);
1507
1508 /**
1509 * regulator_register_supply_alias - Provide device alias for supply lookup
1510 *
1511 * @dev: device that will be given as the regulator "consumer"
1512 * @id: Supply name or regulator ID
1513 * @alias_dev: device that should be used to lookup the supply
1514 * @alias_id: Supply name or regulator ID that should be used to lookup the
1515 * supply
1516 *
1517 * All lookups for id on dev will instead be conducted for alias_id on
1518 * alias_dev.
1519 */
1520 int regulator_register_supply_alias(struct device *dev, const char *id,
1521 struct device *alias_dev,
1522 const char *alias_id)
1523 {
1524 struct regulator_supply_alias *map;
1525
1526 map = regulator_find_supply_alias(dev, id);
1527 if (map)
1528 return -EEXIST;
1529
1530 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1531 if (!map)
1532 return -ENOMEM;
1533
1534 map->src_dev = dev;
1535 map->src_supply = id;
1536 map->alias_dev = alias_dev;
1537 map->alias_supply = alias_id;
1538
1539 list_add(&map->list, &regulator_supply_alias_list);
1540
1541 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1542 id, dev_name(dev), alias_id, dev_name(alias_dev));
1543
1544 return 0;
1545 }
1546 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1547
1548 /**
1549 * regulator_unregister_supply_alias - Remove device alias
1550 *
1551 * @dev: device that will be given as the regulator "consumer"
1552 * @id: Supply name or regulator ID
1553 *
1554 * Remove a lookup alias if one exists for id on dev.
1555 */
1556 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1557 {
1558 struct regulator_supply_alias *map;
1559
1560 map = regulator_find_supply_alias(dev, id);
1561 if (map) {
1562 list_del(&map->list);
1563 kfree(map);
1564 }
1565 }
1566 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1567
1568 /**
1569 * regulator_bulk_register_supply_alias - register multiple aliases
1570 *
1571 * @dev: device that will be given as the regulator "consumer"
1572 * @id: List of supply names or regulator IDs
1573 * @alias_dev: device that should be used to lookup the supply
1574 * @alias_id: List of supply names or regulator IDs that should be used to
1575 * lookup the supply
1576 * @num_id: Number of aliases to register
1577 *
1578 * @return 0 on success, an errno on failure.
1579 *
1580 * This helper function allows drivers to register several supply
1581 * aliases in one operation. If any of the aliases cannot be
1582 * registered any aliases that were registered will be removed
1583 * before returning to the caller.
1584 */
1585 int regulator_bulk_register_supply_alias(struct device *dev,
1586 const char *const *id,
1587 struct device *alias_dev,
1588 const char *const *alias_id,
1589 int num_id)
1590 {
1591 int i;
1592 int ret;
1593
1594 for (i = 0; i < num_id; ++i) {
1595 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1596 alias_id[i]);
1597 if (ret < 0)
1598 goto err;
1599 }
1600
1601 return 0;
1602
1603 err:
1604 dev_err(dev,
1605 "Failed to create supply alias %s,%s -> %s,%s\n",
1606 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1607
1608 while (--i >= 0)
1609 regulator_unregister_supply_alias(dev, id[i]);
1610
1611 return ret;
1612 }
1613 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1614
1615 /**
1616 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1617 *
1618 * @dev: device that will be given as the regulator "consumer"
1619 * @id: List of supply names or regulator IDs
1620 * @num_id: Number of aliases to unregister
1621 *
1622 * This helper function allows drivers to unregister several supply
1623 * aliases in one operation.
1624 */
1625 void regulator_bulk_unregister_supply_alias(struct device *dev,
1626 const char *const *id,
1627 int num_id)
1628 {
1629 int i;
1630
1631 for (i = 0; i < num_id; ++i)
1632 regulator_unregister_supply_alias(dev, id[i]);
1633 }
1634 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1635
1636
1637 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1638 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1639 const struct regulator_config *config)
1640 {
1641 struct regulator_enable_gpio *pin;
1642 struct gpio_desc *gpiod;
1643 int ret;
1644
1645 gpiod = gpio_to_desc(config->ena_gpio);
1646
1647 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1648 if (pin->gpiod == gpiod) {
1649 rdev_dbg(rdev, "GPIO %d is already used\n",
1650 config->ena_gpio);
1651 goto update_ena_gpio_to_rdev;
1652 }
1653 }
1654
1655 ret = gpio_request_one(config->ena_gpio,
1656 GPIOF_DIR_OUT | config->ena_gpio_flags,
1657 rdev_get_name(rdev));
1658 if (ret)
1659 return ret;
1660
1661 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1662 if (pin == NULL) {
1663 gpio_free(config->ena_gpio);
1664 return -ENOMEM;
1665 }
1666
1667 pin->gpiod = gpiod;
1668 pin->ena_gpio_invert = config->ena_gpio_invert;
1669 list_add(&pin->list, &regulator_ena_gpio_list);
1670
1671 update_ena_gpio_to_rdev:
1672 pin->request_count++;
1673 rdev->ena_pin = pin;
1674 return 0;
1675 }
1676
1677 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1678 {
1679 struct regulator_enable_gpio *pin, *n;
1680
1681 if (!rdev->ena_pin)
1682 return;
1683
1684 /* Free the GPIO only in case of no use */
1685 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1686 if (pin->gpiod == rdev->ena_pin->gpiod) {
1687 if (pin->request_count <= 1) {
1688 pin->request_count = 0;
1689 gpiod_put(pin->gpiod);
1690 list_del(&pin->list);
1691 kfree(pin);
1692 rdev->ena_pin = NULL;
1693 return;
1694 } else {
1695 pin->request_count--;
1696 }
1697 }
1698 }
1699 }
1700
1701 /**
1702 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1703 * @rdev: regulator_dev structure
1704 * @enable: enable GPIO at initial use?
1705 *
1706 * GPIO is enabled in case of initial use. (enable_count is 0)
1707 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1708 */
1709 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1710 {
1711 struct regulator_enable_gpio *pin = rdev->ena_pin;
1712
1713 if (!pin)
1714 return -EINVAL;
1715
1716 if (enable) {
1717 /* Enable GPIO at initial use */
1718 if (pin->enable_count == 0)
1719 gpiod_set_value_cansleep(pin->gpiod,
1720 !pin->ena_gpio_invert);
1721
1722 pin->enable_count++;
1723 } else {
1724 if (pin->enable_count > 1) {
1725 pin->enable_count--;
1726 return 0;
1727 }
1728
1729 /* Disable GPIO if not used */
1730 if (pin->enable_count <= 1) {
1731 gpiod_set_value_cansleep(pin->gpiod,
1732 pin->ena_gpio_invert);
1733 pin->enable_count = 0;
1734 }
1735 }
1736
1737 return 0;
1738 }
1739
1740 /**
1741 * _regulator_enable_delay - a delay helper function
1742 * @delay: time to delay in microseconds
1743 *
1744 * Delay for the requested amount of time as per the guidelines in:
1745 *
1746 * Documentation/timers/timers-howto.txt
1747 *
1748 * The assumption here is that regulators will never be enabled in
1749 * atomic context and therefore sleeping functions can be used.
1750 */
1751 static void _regulator_enable_delay(unsigned int delay)
1752 {
1753 unsigned int ms = delay / 1000;
1754 unsigned int us = delay % 1000;
1755
1756 if (ms > 0) {
1757 /*
1758 * For small enough values, handle super-millisecond
1759 * delays in the usleep_range() call below.
1760 */
1761 if (ms < 20)
1762 us += ms * 1000;
1763 else
1764 msleep(ms);
1765 }
1766
1767 /*
1768 * Give the scheduler some room to coalesce with any other
1769 * wakeup sources. For delays shorter than 10 us, don't even
1770 * bother setting up high-resolution timers and just busy-
1771 * loop.
1772 */
1773 if (us >= 10)
1774 usleep_range(us, us + 100);
1775 else
1776 udelay(us);
1777 }
1778
1779 static int _regulator_do_enable(struct regulator_dev *rdev)
1780 {
1781 int ret, delay;
1782
1783 /* Query before enabling in case configuration dependent. */
1784 ret = _regulator_get_enable_time(rdev);
1785 if (ret >= 0) {
1786 delay = ret;
1787 } else {
1788 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1789 delay = 0;
1790 }
1791
1792 trace_regulator_enable(rdev_get_name(rdev));
1793
1794 if (rdev->desc->off_on_delay) {
1795 /* if needed, keep a distance of off_on_delay from last time
1796 * this regulator was disabled.
1797 */
1798 unsigned long start_jiffy = jiffies;
1799 unsigned long intended, max_delay, remaining;
1800
1801 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1802 intended = rdev->last_off_jiffy + max_delay;
1803
1804 if (time_before(start_jiffy, intended)) {
1805 /* calc remaining jiffies to deal with one-time
1806 * timer wrapping.
1807 * in case of multiple timer wrapping, either it can be
1808 * detected by out-of-range remaining, or it cannot be
1809 * detected and we gets a panelty of
1810 * _regulator_enable_delay().
1811 */
1812 remaining = intended - start_jiffy;
1813 if (remaining <= max_delay)
1814 _regulator_enable_delay(
1815 jiffies_to_usecs(remaining));
1816 }
1817 }
1818
1819 if (rdev->ena_pin) {
1820 ret = regulator_ena_gpio_ctrl(rdev, true);
1821 if (ret < 0)
1822 return ret;
1823 rdev->ena_gpio_state = 1;
1824 } else if (rdev->desc->ops->enable) {
1825 ret = rdev->desc->ops->enable(rdev);
1826 if (ret < 0)
1827 return ret;
1828 } else {
1829 return -EINVAL;
1830 }
1831
1832 /* Allow the regulator to ramp; it would be useful to extend
1833 * this for bulk operations so that the regulators can ramp
1834 * together. */
1835 trace_regulator_enable_delay(rdev_get_name(rdev));
1836
1837 _regulator_enable_delay(delay);
1838
1839 trace_regulator_enable_complete(rdev_get_name(rdev));
1840
1841 return 0;
1842 }
1843
1844 /* locks held by regulator_enable() */
1845 static int _regulator_enable(struct regulator_dev *rdev)
1846 {
1847 int ret;
1848
1849 /* check voltage and requested load before enabling */
1850 if (rdev->constraints &&
1851 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1852 drms_uA_update(rdev);
1853
1854 if (rdev->use_count == 0) {
1855 /* The regulator may on if it's not switchable or left on */
1856 ret = _regulator_is_enabled(rdev);
1857 if (ret == -EINVAL || ret == 0) {
1858 if (!_regulator_can_change_status(rdev))
1859 return -EPERM;
1860
1861 ret = _regulator_do_enable(rdev);
1862 if (ret < 0)
1863 return ret;
1864
1865 } else if (ret < 0) {
1866 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1867 return ret;
1868 }
1869 /* Fallthrough on positive return values - already enabled */
1870 }
1871
1872 rdev->use_count++;
1873
1874 return 0;
1875 }
1876
1877 /**
1878 * regulator_enable - enable regulator output
1879 * @regulator: regulator source
1880 *
1881 * Request that the regulator be enabled with the regulator output at
1882 * the predefined voltage or current value. Calls to regulator_enable()
1883 * must be balanced with calls to regulator_disable().
1884 *
1885 * NOTE: the output value can be set by other drivers, boot loader or may be
1886 * hardwired in the regulator.
1887 */
1888 int regulator_enable(struct regulator *regulator)
1889 {
1890 struct regulator_dev *rdev = regulator->rdev;
1891 int ret = 0;
1892
1893 if (regulator->always_on)
1894 return 0;
1895
1896 if (rdev->supply) {
1897 ret = regulator_enable(rdev->supply);
1898 if (ret != 0)
1899 return ret;
1900 }
1901
1902 mutex_lock(&rdev->mutex);
1903 ret = _regulator_enable(rdev);
1904 mutex_unlock(&rdev->mutex);
1905
1906 if (ret != 0 && rdev->supply)
1907 regulator_disable(rdev->supply);
1908
1909 return ret;
1910 }
1911 EXPORT_SYMBOL_GPL(regulator_enable);
1912
1913 static int _regulator_do_disable(struct regulator_dev *rdev)
1914 {
1915 int ret;
1916
1917 trace_regulator_disable(rdev_get_name(rdev));
1918
1919 if (rdev->ena_pin) {
1920 ret = regulator_ena_gpio_ctrl(rdev, false);
1921 if (ret < 0)
1922 return ret;
1923 rdev->ena_gpio_state = 0;
1924
1925 } else if (rdev->desc->ops->disable) {
1926 ret = rdev->desc->ops->disable(rdev);
1927 if (ret != 0)
1928 return ret;
1929 }
1930
1931 /* cares about last_off_jiffy only if off_on_delay is required by
1932 * device.
1933 */
1934 if (rdev->desc->off_on_delay)
1935 rdev->last_off_jiffy = jiffies;
1936
1937 trace_regulator_disable_complete(rdev_get_name(rdev));
1938
1939 return 0;
1940 }
1941
1942 /* locks held by regulator_disable() */
1943 static int _regulator_disable(struct regulator_dev *rdev)
1944 {
1945 int ret = 0;
1946
1947 if (WARN(rdev->use_count <= 0,
1948 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1949 return -EIO;
1950
1951 /* are we the last user and permitted to disable ? */
1952 if (rdev->use_count == 1 &&
1953 (rdev->constraints && !rdev->constraints->always_on)) {
1954
1955 /* we are last user */
1956 if (_regulator_can_change_status(rdev)) {
1957 ret = _notifier_call_chain(rdev,
1958 REGULATOR_EVENT_PRE_DISABLE,
1959 NULL);
1960 if (ret & NOTIFY_STOP_MASK)
1961 return -EINVAL;
1962
1963 ret = _regulator_do_disable(rdev);
1964 if (ret < 0) {
1965 rdev_err(rdev, "failed to disable\n");
1966 _notifier_call_chain(rdev,
1967 REGULATOR_EVENT_ABORT_DISABLE,
1968 NULL);
1969 return ret;
1970 }
1971 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1972 NULL);
1973 }
1974
1975 rdev->use_count = 0;
1976 } else if (rdev->use_count > 1) {
1977
1978 if (rdev->constraints &&
1979 (rdev->constraints->valid_ops_mask &
1980 REGULATOR_CHANGE_DRMS))
1981 drms_uA_update(rdev);
1982
1983 rdev->use_count--;
1984 }
1985
1986 return ret;
1987 }
1988
1989 /**
1990 * regulator_disable - disable regulator output
1991 * @regulator: regulator source
1992 *
1993 * Disable the regulator output voltage or current. Calls to
1994 * regulator_enable() must be balanced with calls to
1995 * regulator_disable().
1996 *
1997 * NOTE: this will only disable the regulator output if no other consumer
1998 * devices have it enabled, the regulator device supports disabling and
1999 * machine constraints permit this operation.
2000 */
2001 int regulator_disable(struct regulator *regulator)
2002 {
2003 struct regulator_dev *rdev = regulator->rdev;
2004 int ret = 0;
2005
2006 if (regulator->always_on)
2007 return 0;
2008
2009 mutex_lock(&rdev->mutex);
2010 ret = _regulator_disable(rdev);
2011 mutex_unlock(&rdev->mutex);
2012
2013 if (ret == 0 && rdev->supply)
2014 regulator_disable(rdev->supply);
2015
2016 return ret;
2017 }
2018 EXPORT_SYMBOL_GPL(regulator_disable);
2019
2020 /* locks held by regulator_force_disable() */
2021 static int _regulator_force_disable(struct regulator_dev *rdev)
2022 {
2023 int ret = 0;
2024
2025 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2026 REGULATOR_EVENT_PRE_DISABLE, NULL);
2027 if (ret & NOTIFY_STOP_MASK)
2028 return -EINVAL;
2029
2030 ret = _regulator_do_disable(rdev);
2031 if (ret < 0) {
2032 rdev_err(rdev, "failed to force disable\n");
2033 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2034 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2035 return ret;
2036 }
2037
2038 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2039 REGULATOR_EVENT_DISABLE, NULL);
2040
2041 return 0;
2042 }
2043
2044 /**
2045 * regulator_force_disable - force disable regulator output
2046 * @regulator: regulator source
2047 *
2048 * Forcibly disable the regulator output voltage or current.
2049 * NOTE: this *will* disable the regulator output even if other consumer
2050 * devices have it enabled. This should be used for situations when device
2051 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2052 */
2053 int regulator_force_disable(struct regulator *regulator)
2054 {
2055 struct regulator_dev *rdev = regulator->rdev;
2056 int ret;
2057
2058 mutex_lock(&rdev->mutex);
2059 regulator->uA_load = 0;
2060 ret = _regulator_force_disable(regulator->rdev);
2061 mutex_unlock(&rdev->mutex);
2062
2063 if (rdev->supply)
2064 while (rdev->open_count--)
2065 regulator_disable(rdev->supply);
2066
2067 return ret;
2068 }
2069 EXPORT_SYMBOL_GPL(regulator_force_disable);
2070
2071 static void regulator_disable_work(struct work_struct *work)
2072 {
2073 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2074 disable_work.work);
2075 int count, i, ret;
2076
2077 mutex_lock(&rdev->mutex);
2078
2079 BUG_ON(!rdev->deferred_disables);
2080
2081 count = rdev->deferred_disables;
2082 rdev->deferred_disables = 0;
2083
2084 for (i = 0; i < count; i++) {
2085 ret = _regulator_disable(rdev);
2086 if (ret != 0)
2087 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2088 }
2089
2090 mutex_unlock(&rdev->mutex);
2091
2092 if (rdev->supply) {
2093 for (i = 0; i < count; i++) {
2094 ret = regulator_disable(rdev->supply);
2095 if (ret != 0) {
2096 rdev_err(rdev,
2097 "Supply disable failed: %d\n", ret);
2098 }
2099 }
2100 }
2101 }
2102
2103 /**
2104 * regulator_disable_deferred - disable regulator output with delay
2105 * @regulator: regulator source
2106 * @ms: miliseconds until the regulator is disabled
2107 *
2108 * Execute regulator_disable() on the regulator after a delay. This
2109 * is intended for use with devices that require some time to quiesce.
2110 *
2111 * NOTE: this will only disable the regulator output if no other consumer
2112 * devices have it enabled, the regulator device supports disabling and
2113 * machine constraints permit this operation.
2114 */
2115 int regulator_disable_deferred(struct regulator *regulator, int ms)
2116 {
2117 struct regulator_dev *rdev = regulator->rdev;
2118 int ret;
2119
2120 if (regulator->always_on)
2121 return 0;
2122
2123 if (!ms)
2124 return regulator_disable(regulator);
2125
2126 mutex_lock(&rdev->mutex);
2127 rdev->deferred_disables++;
2128 mutex_unlock(&rdev->mutex);
2129
2130 ret = queue_delayed_work(system_power_efficient_wq,
2131 &rdev->disable_work,
2132 msecs_to_jiffies(ms));
2133 if (ret < 0)
2134 return ret;
2135 else
2136 return 0;
2137 }
2138 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2139
2140 static int _regulator_is_enabled(struct regulator_dev *rdev)
2141 {
2142 /* A GPIO control always takes precedence */
2143 if (rdev->ena_pin)
2144 return rdev->ena_gpio_state;
2145
2146 /* If we don't know then assume that the regulator is always on */
2147 if (!rdev->desc->ops->is_enabled)
2148 return 1;
2149
2150 return rdev->desc->ops->is_enabled(rdev);
2151 }
2152
2153 /**
2154 * regulator_is_enabled - is the regulator output enabled
2155 * @regulator: regulator source
2156 *
2157 * Returns positive if the regulator driver backing the source/client
2158 * has requested that the device be enabled, zero if it hasn't, else a
2159 * negative errno code.
2160 *
2161 * Note that the device backing this regulator handle can have multiple
2162 * users, so it might be enabled even if regulator_enable() was never
2163 * called for this particular source.
2164 */
2165 int regulator_is_enabled(struct regulator *regulator)
2166 {
2167 int ret;
2168
2169 if (regulator->always_on)
2170 return 1;
2171
2172 mutex_lock(&regulator->rdev->mutex);
2173 ret = _regulator_is_enabled(regulator->rdev);
2174 mutex_unlock(&regulator->rdev->mutex);
2175
2176 return ret;
2177 }
2178 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2179
2180 /**
2181 * regulator_can_change_voltage - check if regulator can change voltage
2182 * @regulator: regulator source
2183 *
2184 * Returns positive if the regulator driver backing the source/client
2185 * can change its voltage, false otherwise. Useful for detecting fixed
2186 * or dummy regulators and disabling voltage change logic in the client
2187 * driver.
2188 */
2189 int regulator_can_change_voltage(struct regulator *regulator)
2190 {
2191 struct regulator_dev *rdev = regulator->rdev;
2192
2193 if (rdev->constraints &&
2194 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2195 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2196 return 1;
2197
2198 if (rdev->desc->continuous_voltage_range &&
2199 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2200 rdev->constraints->min_uV != rdev->constraints->max_uV)
2201 return 1;
2202 }
2203
2204 return 0;
2205 }
2206 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2207
2208 /**
2209 * regulator_count_voltages - count regulator_list_voltage() selectors
2210 * @regulator: regulator source
2211 *
2212 * Returns number of selectors, or negative errno. Selectors are
2213 * numbered starting at zero, and typically correspond to bitfields
2214 * in hardware registers.
2215 */
2216 int regulator_count_voltages(struct regulator *regulator)
2217 {
2218 struct regulator_dev *rdev = regulator->rdev;
2219
2220 if (rdev->desc->n_voltages)
2221 return rdev->desc->n_voltages;
2222
2223 if (!rdev->supply)
2224 return -EINVAL;
2225
2226 return regulator_count_voltages(rdev->supply);
2227 }
2228 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2229
2230 /**
2231 * regulator_list_voltage - enumerate supported voltages
2232 * @regulator: regulator source
2233 * @selector: identify voltage to list
2234 * Context: can sleep
2235 *
2236 * Returns a voltage that can be passed to @regulator_set_voltage(),
2237 * zero if this selector code can't be used on this system, or a
2238 * negative errno.
2239 */
2240 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2241 {
2242 struct regulator_dev *rdev = regulator->rdev;
2243 const struct regulator_ops *ops = rdev->desc->ops;
2244 int ret;
2245
2246 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2247 return rdev->desc->fixed_uV;
2248
2249 if (ops->list_voltage) {
2250 if (selector >= rdev->desc->n_voltages)
2251 return -EINVAL;
2252 mutex_lock(&rdev->mutex);
2253 ret = ops->list_voltage(rdev, selector);
2254 mutex_unlock(&rdev->mutex);
2255 } else if (rdev->supply) {
2256 ret = regulator_list_voltage(rdev->supply, selector);
2257 } else {
2258 return -EINVAL;
2259 }
2260
2261 if (ret > 0) {
2262 if (ret < rdev->constraints->min_uV)
2263 ret = 0;
2264 else if (ret > rdev->constraints->max_uV)
2265 ret = 0;
2266 }
2267
2268 return ret;
2269 }
2270 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2271
2272 /**
2273 * regulator_get_regmap - get the regulator's register map
2274 * @regulator: regulator source
2275 *
2276 * Returns the register map for the given regulator, or an ERR_PTR value
2277 * if the regulator doesn't use regmap.
2278 */
2279 struct regmap *regulator_get_regmap(struct regulator *regulator)
2280 {
2281 struct regmap *map = regulator->rdev->regmap;
2282
2283 return map ? map : ERR_PTR(-EOPNOTSUPP);
2284 }
2285
2286 /**
2287 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2288 * @regulator: regulator source
2289 * @vsel_reg: voltage selector register, output parameter
2290 * @vsel_mask: mask for voltage selector bitfield, output parameter
2291 *
2292 * Returns the hardware register offset and bitmask used for setting the
2293 * regulator voltage. This might be useful when configuring voltage-scaling
2294 * hardware or firmware that can make I2C requests behind the kernel's back,
2295 * for example.
2296 *
2297 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2298 * and 0 is returned, otherwise a negative errno is returned.
2299 */
2300 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2301 unsigned *vsel_reg,
2302 unsigned *vsel_mask)
2303 {
2304 struct regulator_dev *rdev = regulator->rdev;
2305 const struct regulator_ops *ops = rdev->desc->ops;
2306
2307 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2308 return -EOPNOTSUPP;
2309
2310 *vsel_reg = rdev->desc->vsel_reg;
2311 *vsel_mask = rdev->desc->vsel_mask;
2312
2313 return 0;
2314 }
2315 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2316
2317 /**
2318 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2319 * @regulator: regulator source
2320 * @selector: identify voltage to list
2321 *
2322 * Converts the selector to a hardware-specific voltage selector that can be
2323 * directly written to the regulator registers. The address of the voltage
2324 * register can be determined by calling @regulator_get_hardware_vsel_register.
2325 *
2326 * On error a negative errno is returned.
2327 */
2328 int regulator_list_hardware_vsel(struct regulator *regulator,
2329 unsigned selector)
2330 {
2331 struct regulator_dev *rdev = regulator->rdev;
2332 const struct regulator_ops *ops = rdev->desc->ops;
2333
2334 if (selector >= rdev->desc->n_voltages)
2335 return -EINVAL;
2336 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2337 return -EOPNOTSUPP;
2338
2339 return selector;
2340 }
2341 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2342
2343 /**
2344 * regulator_get_linear_step - return the voltage step size between VSEL values
2345 * @regulator: regulator source
2346 *
2347 * Returns the voltage step size between VSEL values for linear
2348 * regulators, or return 0 if the regulator isn't a linear regulator.
2349 */
2350 unsigned int regulator_get_linear_step(struct regulator *regulator)
2351 {
2352 struct regulator_dev *rdev = regulator->rdev;
2353
2354 return rdev->desc->uV_step;
2355 }
2356 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2357
2358 /**
2359 * regulator_is_supported_voltage - check if a voltage range can be supported
2360 *
2361 * @regulator: Regulator to check.
2362 * @min_uV: Minimum required voltage in uV.
2363 * @max_uV: Maximum required voltage in uV.
2364 *
2365 * Returns a boolean or a negative error code.
2366 */
2367 int regulator_is_supported_voltage(struct regulator *regulator,
2368 int min_uV, int max_uV)
2369 {
2370 struct regulator_dev *rdev = regulator->rdev;
2371 int i, voltages, ret;
2372
2373 /* If we can't change voltage check the current voltage */
2374 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2375 ret = regulator_get_voltage(regulator);
2376 if (ret >= 0)
2377 return min_uV <= ret && ret <= max_uV;
2378 else
2379 return ret;
2380 }
2381
2382 /* Any voltage within constrains range is fine? */
2383 if (rdev->desc->continuous_voltage_range)
2384 return min_uV >= rdev->constraints->min_uV &&
2385 max_uV <= rdev->constraints->max_uV;
2386
2387 ret = regulator_count_voltages(regulator);
2388 if (ret < 0)
2389 return ret;
2390 voltages = ret;
2391
2392 for (i = 0; i < voltages; i++) {
2393 ret = regulator_list_voltage(regulator, i);
2394
2395 if (ret >= min_uV && ret <= max_uV)
2396 return 1;
2397 }
2398
2399 return 0;
2400 }
2401 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2402
2403 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2404 int min_uV, int max_uV,
2405 unsigned *selector)
2406 {
2407 struct pre_voltage_change_data data;
2408 int ret;
2409
2410 data.old_uV = _regulator_get_voltage(rdev);
2411 data.min_uV = min_uV;
2412 data.max_uV = max_uV;
2413 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2414 &data);
2415 if (ret & NOTIFY_STOP_MASK)
2416 return -EINVAL;
2417
2418 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2419 if (ret >= 0)
2420 return ret;
2421
2422 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2423 (void *)data.old_uV);
2424
2425 return ret;
2426 }
2427
2428 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2429 int uV, unsigned selector)
2430 {
2431 struct pre_voltage_change_data data;
2432 int ret;
2433
2434 data.old_uV = _regulator_get_voltage(rdev);
2435 data.min_uV = uV;
2436 data.max_uV = uV;
2437 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2438 &data);
2439 if (ret & NOTIFY_STOP_MASK)
2440 return -EINVAL;
2441
2442 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2443 if (ret >= 0)
2444 return ret;
2445
2446 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2447 (void *)data.old_uV);
2448
2449 return ret;
2450 }
2451
2452 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2453 int min_uV, int max_uV)
2454 {
2455 int ret;
2456 int delay = 0;
2457 int best_val = 0;
2458 unsigned int selector;
2459 int old_selector = -1;
2460
2461 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2462
2463 min_uV += rdev->constraints->uV_offset;
2464 max_uV += rdev->constraints->uV_offset;
2465
2466 /*
2467 * If we can't obtain the old selector there is not enough
2468 * info to call set_voltage_time_sel().
2469 */
2470 if (_regulator_is_enabled(rdev) &&
2471 rdev->desc->ops->set_voltage_time_sel &&
2472 rdev->desc->ops->get_voltage_sel) {
2473 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2474 if (old_selector < 0)
2475 return old_selector;
2476 }
2477
2478 if (rdev->desc->ops->set_voltage) {
2479 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2480 &selector);
2481
2482 if (ret >= 0) {
2483 if (rdev->desc->ops->list_voltage)
2484 best_val = rdev->desc->ops->list_voltage(rdev,
2485 selector);
2486 else
2487 best_val = _regulator_get_voltage(rdev);
2488 }
2489
2490 } else if (rdev->desc->ops->set_voltage_sel) {
2491 if (rdev->desc->ops->map_voltage) {
2492 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2493 max_uV);
2494 } else {
2495 if (rdev->desc->ops->list_voltage ==
2496 regulator_list_voltage_linear)
2497 ret = regulator_map_voltage_linear(rdev,
2498 min_uV, max_uV);
2499 else if (rdev->desc->ops->list_voltage ==
2500 regulator_list_voltage_linear_range)
2501 ret = regulator_map_voltage_linear_range(rdev,
2502 min_uV, max_uV);
2503 else
2504 ret = regulator_map_voltage_iterate(rdev,
2505 min_uV, max_uV);
2506 }
2507
2508 if (ret >= 0) {
2509 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2510 if (min_uV <= best_val && max_uV >= best_val) {
2511 selector = ret;
2512 if (old_selector == selector)
2513 ret = 0;
2514 else
2515 ret = _regulator_call_set_voltage_sel(
2516 rdev, best_val, selector);
2517 } else {
2518 ret = -EINVAL;
2519 }
2520 }
2521 } else {
2522 ret = -EINVAL;
2523 }
2524
2525 /* Call set_voltage_time_sel if successfully obtained old_selector */
2526 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2527 && old_selector != selector) {
2528
2529 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2530 old_selector, selector);
2531 if (delay < 0) {
2532 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2533 delay);
2534 delay = 0;
2535 }
2536
2537 /* Insert any necessary delays */
2538 if (delay >= 1000) {
2539 mdelay(delay / 1000);
2540 udelay(delay % 1000);
2541 } else if (delay) {
2542 udelay(delay);
2543 }
2544 }
2545
2546 if (ret == 0 && best_val >= 0) {
2547 unsigned long data = best_val;
2548
2549 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2550 (void *)data);
2551 }
2552
2553 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2554
2555 return ret;
2556 }
2557
2558 /**
2559 * regulator_set_voltage - set regulator output voltage
2560 * @regulator: regulator source
2561 * @min_uV: Minimum required voltage in uV
2562 * @max_uV: Maximum acceptable voltage in uV
2563 *
2564 * Sets a voltage regulator to the desired output voltage. This can be set
2565 * during any regulator state. IOW, regulator can be disabled or enabled.
2566 *
2567 * If the regulator is enabled then the voltage will change to the new value
2568 * immediately otherwise if the regulator is disabled the regulator will
2569 * output at the new voltage when enabled.
2570 *
2571 * NOTE: If the regulator is shared between several devices then the lowest
2572 * request voltage that meets the system constraints will be used.
2573 * Regulator system constraints must be set for this regulator before
2574 * calling this function otherwise this call will fail.
2575 */
2576 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2577 {
2578 struct regulator_dev *rdev = regulator->rdev;
2579 int ret = 0;
2580 int old_min_uV, old_max_uV;
2581 int current_uV;
2582
2583 mutex_lock(&rdev->mutex);
2584
2585 /* If we're setting the same range as last time the change
2586 * should be a noop (some cpufreq implementations use the same
2587 * voltage for multiple frequencies, for example).
2588 */
2589 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2590 goto out;
2591
2592 /* If we're trying to set a range that overlaps the current voltage,
2593 * return succesfully even though the regulator does not support
2594 * changing the voltage.
2595 */
2596 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2597 current_uV = _regulator_get_voltage(rdev);
2598 if (min_uV <= current_uV && current_uV <= max_uV) {
2599 regulator->min_uV = min_uV;
2600 regulator->max_uV = max_uV;
2601 goto out;
2602 }
2603 }
2604
2605 /* sanity check */
2606 if (!rdev->desc->ops->set_voltage &&
2607 !rdev->desc->ops->set_voltage_sel) {
2608 ret = -EINVAL;
2609 goto out;
2610 }
2611
2612 /* constraints check */
2613 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2614 if (ret < 0)
2615 goto out;
2616
2617 /* restore original values in case of error */
2618 old_min_uV = regulator->min_uV;
2619 old_max_uV = regulator->max_uV;
2620 regulator->min_uV = min_uV;
2621 regulator->max_uV = max_uV;
2622
2623 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2624 if (ret < 0)
2625 goto out2;
2626
2627 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2628 if (ret < 0)
2629 goto out2;
2630
2631 out:
2632 mutex_unlock(&rdev->mutex);
2633 return ret;
2634 out2:
2635 regulator->min_uV = old_min_uV;
2636 regulator->max_uV = old_max_uV;
2637 mutex_unlock(&rdev->mutex);
2638 return ret;
2639 }
2640 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2641
2642 /**
2643 * regulator_set_voltage_time - get raise/fall time
2644 * @regulator: regulator source
2645 * @old_uV: starting voltage in microvolts
2646 * @new_uV: target voltage in microvolts
2647 *
2648 * Provided with the starting and ending voltage, this function attempts to
2649 * calculate the time in microseconds required to rise or fall to this new
2650 * voltage.
2651 */
2652 int regulator_set_voltage_time(struct regulator *regulator,
2653 int old_uV, int new_uV)
2654 {
2655 struct regulator_dev *rdev = regulator->rdev;
2656 const struct regulator_ops *ops = rdev->desc->ops;
2657 int old_sel = -1;
2658 int new_sel = -1;
2659 int voltage;
2660 int i;
2661
2662 /* Currently requires operations to do this */
2663 if (!ops->list_voltage || !ops->set_voltage_time_sel
2664 || !rdev->desc->n_voltages)
2665 return -EINVAL;
2666
2667 for (i = 0; i < rdev->desc->n_voltages; i++) {
2668 /* We only look for exact voltage matches here */
2669 voltage = regulator_list_voltage(regulator, i);
2670 if (voltage < 0)
2671 return -EINVAL;
2672 if (voltage == 0)
2673 continue;
2674 if (voltage == old_uV)
2675 old_sel = i;
2676 if (voltage == new_uV)
2677 new_sel = i;
2678 }
2679
2680 if (old_sel < 0 || new_sel < 0)
2681 return -EINVAL;
2682
2683 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2684 }
2685 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2686
2687 /**
2688 * regulator_set_voltage_time_sel - get raise/fall time
2689 * @rdev: regulator source device
2690 * @old_selector: selector for starting voltage
2691 * @new_selector: selector for target voltage
2692 *
2693 * Provided with the starting and target voltage selectors, this function
2694 * returns time in microseconds required to rise or fall to this new voltage
2695 *
2696 * Drivers providing ramp_delay in regulation_constraints can use this as their
2697 * set_voltage_time_sel() operation.
2698 */
2699 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2700 unsigned int old_selector,
2701 unsigned int new_selector)
2702 {
2703 unsigned int ramp_delay = 0;
2704 int old_volt, new_volt;
2705
2706 if (rdev->constraints->ramp_delay)
2707 ramp_delay = rdev->constraints->ramp_delay;
2708 else if (rdev->desc->ramp_delay)
2709 ramp_delay = rdev->desc->ramp_delay;
2710
2711 if (ramp_delay == 0) {
2712 rdev_warn(rdev, "ramp_delay not set\n");
2713 return 0;
2714 }
2715
2716 /* sanity check */
2717 if (!rdev->desc->ops->list_voltage)
2718 return -EINVAL;
2719
2720 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2721 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2722
2723 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2724 }
2725 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2726
2727 /**
2728 * regulator_sync_voltage - re-apply last regulator output voltage
2729 * @regulator: regulator source
2730 *
2731 * Re-apply the last configured voltage. This is intended to be used
2732 * where some external control source the consumer is cooperating with
2733 * has caused the configured voltage to change.
2734 */
2735 int regulator_sync_voltage(struct regulator *regulator)
2736 {
2737 struct regulator_dev *rdev = regulator->rdev;
2738 int ret, min_uV, max_uV;
2739
2740 mutex_lock(&rdev->mutex);
2741
2742 if (!rdev->desc->ops->set_voltage &&
2743 !rdev->desc->ops->set_voltage_sel) {
2744 ret = -EINVAL;
2745 goto out;
2746 }
2747
2748 /* This is only going to work if we've had a voltage configured. */
2749 if (!regulator->min_uV && !regulator->max_uV) {
2750 ret = -EINVAL;
2751 goto out;
2752 }
2753
2754 min_uV = regulator->min_uV;
2755 max_uV = regulator->max_uV;
2756
2757 /* This should be a paranoia check... */
2758 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2759 if (ret < 0)
2760 goto out;
2761
2762 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2763 if (ret < 0)
2764 goto out;
2765
2766 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2767
2768 out:
2769 mutex_unlock(&rdev->mutex);
2770 return ret;
2771 }
2772 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2773
2774 static int _regulator_get_voltage(struct regulator_dev *rdev)
2775 {
2776 int sel, ret;
2777
2778 if (rdev->desc->ops->get_voltage_sel) {
2779 sel = rdev->desc->ops->get_voltage_sel(rdev);
2780 if (sel < 0)
2781 return sel;
2782 ret = rdev->desc->ops->list_voltage(rdev, sel);
2783 } else if (rdev->desc->ops->get_voltage) {
2784 ret = rdev->desc->ops->get_voltage(rdev);
2785 } else if (rdev->desc->ops->list_voltage) {
2786 ret = rdev->desc->ops->list_voltage(rdev, 0);
2787 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2788 ret = rdev->desc->fixed_uV;
2789 } else if (rdev->supply) {
2790 ret = regulator_get_voltage(rdev->supply);
2791 } else {
2792 return -EINVAL;
2793 }
2794
2795 if (ret < 0)
2796 return ret;
2797 return ret - rdev->constraints->uV_offset;
2798 }
2799
2800 /**
2801 * regulator_get_voltage - get regulator output voltage
2802 * @regulator: regulator source
2803 *
2804 * This returns the current regulator voltage in uV.
2805 *
2806 * NOTE: If the regulator is disabled it will return the voltage value. This
2807 * function should not be used to determine regulator state.
2808 */
2809 int regulator_get_voltage(struct regulator *regulator)
2810 {
2811 int ret;
2812
2813 mutex_lock(&regulator->rdev->mutex);
2814
2815 ret = _regulator_get_voltage(regulator->rdev);
2816
2817 mutex_unlock(&regulator->rdev->mutex);
2818
2819 return ret;
2820 }
2821 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2822
2823 /**
2824 * regulator_set_current_limit - set regulator output current limit
2825 * @regulator: regulator source
2826 * @min_uA: Minimum supported current in uA
2827 * @max_uA: Maximum supported current in uA
2828 *
2829 * Sets current sink to the desired output current. This can be set during
2830 * any regulator state. IOW, regulator can be disabled or enabled.
2831 *
2832 * If the regulator is enabled then the current will change to the new value
2833 * immediately otherwise if the regulator is disabled the regulator will
2834 * output at the new current when enabled.
2835 *
2836 * NOTE: Regulator system constraints must be set for this regulator before
2837 * calling this function otherwise this call will fail.
2838 */
2839 int regulator_set_current_limit(struct regulator *regulator,
2840 int min_uA, int max_uA)
2841 {
2842 struct regulator_dev *rdev = regulator->rdev;
2843 int ret;
2844
2845 mutex_lock(&rdev->mutex);
2846
2847 /* sanity check */
2848 if (!rdev->desc->ops->set_current_limit) {
2849 ret = -EINVAL;
2850 goto out;
2851 }
2852
2853 /* constraints check */
2854 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2855 if (ret < 0)
2856 goto out;
2857
2858 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2859 out:
2860 mutex_unlock(&rdev->mutex);
2861 return ret;
2862 }
2863 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2864
2865 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2866 {
2867 int ret;
2868
2869 mutex_lock(&rdev->mutex);
2870
2871 /* sanity check */
2872 if (!rdev->desc->ops->get_current_limit) {
2873 ret = -EINVAL;
2874 goto out;
2875 }
2876
2877 ret = rdev->desc->ops->get_current_limit(rdev);
2878 out:
2879 mutex_unlock(&rdev->mutex);
2880 return ret;
2881 }
2882
2883 /**
2884 * regulator_get_current_limit - get regulator output current
2885 * @regulator: regulator source
2886 *
2887 * This returns the current supplied by the specified current sink in uA.
2888 *
2889 * NOTE: If the regulator is disabled it will return the current value. This
2890 * function should not be used to determine regulator state.
2891 */
2892 int regulator_get_current_limit(struct regulator *regulator)
2893 {
2894 return _regulator_get_current_limit(regulator->rdev);
2895 }
2896 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2897
2898 /**
2899 * regulator_set_mode - set regulator operating mode
2900 * @regulator: regulator source
2901 * @mode: operating mode - one of the REGULATOR_MODE constants
2902 *
2903 * Set regulator operating mode to increase regulator efficiency or improve
2904 * regulation performance.
2905 *
2906 * NOTE: Regulator system constraints must be set for this regulator before
2907 * calling this function otherwise this call will fail.
2908 */
2909 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2910 {
2911 struct regulator_dev *rdev = regulator->rdev;
2912 int ret;
2913 int regulator_curr_mode;
2914
2915 mutex_lock(&rdev->mutex);
2916
2917 /* sanity check */
2918 if (!rdev->desc->ops->set_mode) {
2919 ret = -EINVAL;
2920 goto out;
2921 }
2922
2923 /* return if the same mode is requested */
2924 if (rdev->desc->ops->get_mode) {
2925 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2926 if (regulator_curr_mode == mode) {
2927 ret = 0;
2928 goto out;
2929 }
2930 }
2931
2932 /* constraints check */
2933 ret = regulator_mode_constrain(rdev, &mode);
2934 if (ret < 0)
2935 goto out;
2936
2937 ret = rdev->desc->ops->set_mode(rdev, mode);
2938 out:
2939 mutex_unlock(&rdev->mutex);
2940 return ret;
2941 }
2942 EXPORT_SYMBOL_GPL(regulator_set_mode);
2943
2944 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2945 {
2946 int ret;
2947
2948 mutex_lock(&rdev->mutex);
2949
2950 /* sanity check */
2951 if (!rdev->desc->ops->get_mode) {
2952 ret = -EINVAL;
2953 goto out;
2954 }
2955
2956 ret = rdev->desc->ops->get_mode(rdev);
2957 out:
2958 mutex_unlock(&rdev->mutex);
2959 return ret;
2960 }
2961
2962 /**
2963 * regulator_get_mode - get regulator operating mode
2964 * @regulator: regulator source
2965 *
2966 * Get the current regulator operating mode.
2967 */
2968 unsigned int regulator_get_mode(struct regulator *regulator)
2969 {
2970 return _regulator_get_mode(regulator->rdev);
2971 }
2972 EXPORT_SYMBOL_GPL(regulator_get_mode);
2973
2974 /**
2975 * regulator_set_optimum_mode - set regulator optimum operating mode
2976 * @regulator: regulator source
2977 * @uA_load: load current
2978 *
2979 * Notifies the regulator core of a new device load. This is then used by
2980 * DRMS (if enabled by constraints) to set the most efficient regulator
2981 * operating mode for the new regulator loading.
2982 *
2983 * Consumer devices notify their supply regulator of the maximum power
2984 * they will require (can be taken from device datasheet in the power
2985 * consumption tables) when they change operational status and hence power
2986 * state. Examples of operational state changes that can affect power
2987 * consumption are :-
2988 *
2989 * o Device is opened / closed.
2990 * o Device I/O is about to begin or has just finished.
2991 * o Device is idling in between work.
2992 *
2993 * This information is also exported via sysfs to userspace.
2994 *
2995 * DRMS will sum the total requested load on the regulator and change
2996 * to the most efficient operating mode if platform constraints allow.
2997 *
2998 * Returns the new regulator mode or error.
2999 */
3000 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
3001 {
3002 struct regulator_dev *rdev = regulator->rdev;
3003 struct regulator *consumer;
3004 int ret, output_uV, input_uV = 0, total_uA_load = 0;
3005 unsigned int mode;
3006
3007 if (rdev->supply)
3008 input_uV = regulator_get_voltage(rdev->supply);
3009
3010 mutex_lock(&rdev->mutex);
3011
3012 /*
3013 * first check to see if we can set modes at all, otherwise just
3014 * tell the consumer everything is OK.
3015 */
3016 regulator->uA_load = uA_load;
3017 ret = regulator_check_drms(rdev);
3018 if (ret < 0) {
3019 ret = 0;
3020 goto out;
3021 }
3022
3023 if (!rdev->desc->ops->get_optimum_mode)
3024 goto out;
3025
3026 /*
3027 * we can actually do this so any errors are indicators of
3028 * potential real failure.
3029 */
3030 ret = -EINVAL;
3031
3032 if (!rdev->desc->ops->set_mode)
3033 goto out;
3034
3035 /* get output voltage */
3036 output_uV = _regulator_get_voltage(rdev);
3037 if (output_uV <= 0) {
3038 rdev_err(rdev, "invalid output voltage found\n");
3039 goto out;
3040 }
3041
3042 /* No supply? Use constraint voltage */
3043 if (input_uV <= 0)
3044 input_uV = rdev->constraints->input_uV;
3045 if (input_uV <= 0) {
3046 rdev_err(rdev, "invalid input voltage found\n");
3047 goto out;
3048 }
3049
3050 /* calc total requested load for this regulator */
3051 list_for_each_entry(consumer, &rdev->consumer_list, list)
3052 total_uA_load += consumer->uA_load;
3053
3054 mode = rdev->desc->ops->get_optimum_mode(rdev,
3055 input_uV, output_uV,
3056 total_uA_load);
3057 ret = regulator_mode_constrain(rdev, &mode);
3058 if (ret < 0) {
3059 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
3060 total_uA_load, input_uV, output_uV);
3061 goto out;
3062 }
3063
3064 ret = rdev->desc->ops->set_mode(rdev, mode);
3065 if (ret < 0) {
3066 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
3067 goto out;
3068 }
3069 ret = mode;
3070 out:
3071 mutex_unlock(&rdev->mutex);
3072 return ret;
3073 }
3074 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
3075
3076 /**
3077 * regulator_allow_bypass - allow the regulator to go into bypass mode
3078 *
3079 * @regulator: Regulator to configure
3080 * @enable: enable or disable bypass mode
3081 *
3082 * Allow the regulator to go into bypass mode if all other consumers
3083 * for the regulator also enable bypass mode and the machine
3084 * constraints allow this. Bypass mode means that the regulator is
3085 * simply passing the input directly to the output with no regulation.
3086 */
3087 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3088 {
3089 struct regulator_dev *rdev = regulator->rdev;
3090 int ret = 0;
3091
3092 if (!rdev->desc->ops->set_bypass)
3093 return 0;
3094
3095 if (rdev->constraints &&
3096 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3097 return 0;
3098
3099 mutex_lock(&rdev->mutex);
3100
3101 if (enable && !regulator->bypass) {
3102 rdev->bypass_count++;
3103
3104 if (rdev->bypass_count == rdev->open_count) {
3105 ret = rdev->desc->ops->set_bypass(rdev, enable);
3106 if (ret != 0)
3107 rdev->bypass_count--;
3108 }
3109
3110 } else if (!enable && regulator->bypass) {
3111 rdev->bypass_count--;
3112
3113 if (rdev->bypass_count != rdev->open_count) {
3114 ret = rdev->desc->ops->set_bypass(rdev, enable);
3115 if (ret != 0)
3116 rdev->bypass_count++;
3117 }
3118 }
3119
3120 if (ret == 0)
3121 regulator->bypass = enable;
3122
3123 mutex_unlock(&rdev->mutex);
3124
3125 return ret;
3126 }
3127 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3128
3129 /**
3130 * regulator_register_notifier - register regulator event notifier
3131 * @regulator: regulator source
3132 * @nb: notifier block
3133 *
3134 * Register notifier block to receive regulator events.
3135 */
3136 int regulator_register_notifier(struct regulator *regulator,
3137 struct notifier_block *nb)
3138 {
3139 return blocking_notifier_chain_register(&regulator->rdev->notifier,
3140 nb);
3141 }
3142 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3143
3144 /**
3145 * regulator_unregister_notifier - unregister regulator event notifier
3146 * @regulator: regulator source
3147 * @nb: notifier block
3148 *
3149 * Unregister regulator event notifier block.
3150 */
3151 int regulator_unregister_notifier(struct regulator *regulator,
3152 struct notifier_block *nb)
3153 {
3154 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3155 nb);
3156 }
3157 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3158
3159 /* notify regulator consumers and downstream regulator consumers.
3160 * Note mutex must be held by caller.
3161 */
3162 static int _notifier_call_chain(struct regulator_dev *rdev,
3163 unsigned long event, void *data)
3164 {
3165 /* call rdev chain first */
3166 return blocking_notifier_call_chain(&rdev->notifier, event, data);
3167 }
3168
3169 /**
3170 * regulator_bulk_get - get multiple regulator consumers
3171 *
3172 * @dev: Device to supply
3173 * @num_consumers: Number of consumers to register
3174 * @consumers: Configuration of consumers; clients are stored here.
3175 *
3176 * @return 0 on success, an errno on failure.
3177 *
3178 * This helper function allows drivers to get several regulator
3179 * consumers in one operation. If any of the regulators cannot be
3180 * acquired then any regulators that were allocated will be freed
3181 * before returning to the caller.
3182 */
3183 int regulator_bulk_get(struct device *dev, int num_consumers,
3184 struct regulator_bulk_data *consumers)
3185 {
3186 int i;
3187 int ret;
3188
3189 for (i = 0; i < num_consumers; i++)
3190 consumers[i].consumer = NULL;
3191
3192 for (i = 0; i < num_consumers; i++) {
3193 consumers[i].consumer = regulator_get(dev,
3194 consumers[i].supply);
3195 if (IS_ERR(consumers[i].consumer)) {
3196 ret = PTR_ERR(consumers[i].consumer);
3197 dev_err(dev, "Failed to get supply '%s': %d\n",
3198 consumers[i].supply, ret);
3199 consumers[i].consumer = NULL;
3200 goto err;
3201 }
3202 }
3203
3204 return 0;
3205
3206 err:
3207 while (--i >= 0)
3208 regulator_put(consumers[i].consumer);
3209
3210 return ret;
3211 }
3212 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3213
3214 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3215 {
3216 struct regulator_bulk_data *bulk = data;
3217
3218 bulk->ret = regulator_enable(bulk->consumer);
3219 }
3220
3221 /**
3222 * regulator_bulk_enable - enable multiple regulator consumers
3223 *
3224 * @num_consumers: Number of consumers
3225 * @consumers: Consumer data; clients are stored here.
3226 * @return 0 on success, an errno on failure
3227 *
3228 * This convenience API allows consumers to enable multiple regulator
3229 * clients in a single API call. If any consumers cannot be enabled
3230 * then any others that were enabled will be disabled again prior to
3231 * return.
3232 */
3233 int regulator_bulk_enable(int num_consumers,
3234 struct regulator_bulk_data *consumers)
3235 {
3236 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3237 int i;
3238 int ret = 0;
3239
3240 for (i = 0; i < num_consumers; i++) {
3241 if (consumers[i].consumer->always_on)
3242 consumers[i].ret = 0;
3243 else
3244 async_schedule_domain(regulator_bulk_enable_async,
3245 &consumers[i], &async_domain);
3246 }
3247
3248 async_synchronize_full_domain(&async_domain);
3249
3250 /* If any consumer failed we need to unwind any that succeeded */
3251 for (i = 0; i < num_consumers; i++) {
3252 if (consumers[i].ret != 0) {
3253 ret = consumers[i].ret;
3254 goto err;
3255 }
3256 }
3257
3258 return 0;
3259
3260 err:
3261 for (i = 0; i < num_consumers; i++) {
3262 if (consumers[i].ret < 0)
3263 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3264 consumers[i].ret);
3265 else
3266 regulator_disable(consumers[i].consumer);
3267 }
3268
3269 return ret;
3270 }
3271 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3272
3273 /**
3274 * regulator_bulk_disable - disable multiple regulator consumers
3275 *
3276 * @num_consumers: Number of consumers
3277 * @consumers: Consumer data; clients are stored here.
3278 * @return 0 on success, an errno on failure
3279 *
3280 * This convenience API allows consumers to disable multiple regulator
3281 * clients in a single API call. If any consumers cannot be disabled
3282 * then any others that were disabled will be enabled again prior to
3283 * return.
3284 */
3285 int regulator_bulk_disable(int num_consumers,
3286 struct regulator_bulk_data *consumers)
3287 {
3288 int i;
3289 int ret, r;
3290
3291 for (i = num_consumers - 1; i >= 0; --i) {
3292 ret = regulator_disable(consumers[i].consumer);
3293 if (ret != 0)
3294 goto err;
3295 }
3296
3297 return 0;
3298
3299 err:
3300 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3301 for (++i; i < num_consumers; ++i) {
3302 r = regulator_enable(consumers[i].consumer);
3303 if (r != 0)
3304 pr_err("Failed to reename %s: %d\n",
3305 consumers[i].supply, r);
3306 }
3307
3308 return ret;
3309 }
3310 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3311
3312 /**
3313 * regulator_bulk_force_disable - force disable multiple regulator consumers
3314 *
3315 * @num_consumers: Number of consumers
3316 * @consumers: Consumer data; clients are stored here.
3317 * @return 0 on success, an errno on failure
3318 *
3319 * This convenience API allows consumers to forcibly disable multiple regulator
3320 * clients in a single API call.
3321 * NOTE: This should be used for situations when device damage will
3322 * likely occur if the regulators are not disabled (e.g. over temp).
3323 * Although regulator_force_disable function call for some consumers can
3324 * return error numbers, the function is called for all consumers.
3325 */
3326 int regulator_bulk_force_disable(int num_consumers,
3327 struct regulator_bulk_data *consumers)
3328 {
3329 int i;
3330 int ret;
3331
3332 for (i = 0; i < num_consumers; i++)
3333 consumers[i].ret =
3334 regulator_force_disable(consumers[i].consumer);
3335
3336 for (i = 0; i < num_consumers; i++) {
3337 if (consumers[i].ret != 0) {
3338 ret = consumers[i].ret;
3339 goto out;
3340 }
3341 }
3342
3343 return 0;
3344 out:
3345 return ret;
3346 }
3347 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3348
3349 /**
3350 * regulator_bulk_free - free multiple regulator consumers
3351 *
3352 * @num_consumers: Number of consumers
3353 * @consumers: Consumer data; clients are stored here.
3354 *
3355 * This convenience API allows consumers to free multiple regulator
3356 * clients in a single API call.
3357 */
3358 void regulator_bulk_free(int num_consumers,
3359 struct regulator_bulk_data *consumers)
3360 {
3361 int i;
3362
3363 for (i = 0; i < num_consumers; i++) {
3364 regulator_put(consumers[i].consumer);
3365 consumers[i].consumer = NULL;
3366 }
3367 }
3368 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3369
3370 /**
3371 * regulator_notifier_call_chain - call regulator event notifier
3372 * @rdev: regulator source
3373 * @event: notifier block
3374 * @data: callback-specific data.
3375 *
3376 * Called by regulator drivers to notify clients a regulator event has
3377 * occurred. We also notify regulator clients downstream.
3378 * Note lock must be held by caller.
3379 */
3380 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3381 unsigned long event, void *data)
3382 {
3383 _notifier_call_chain(rdev, event, data);
3384 return NOTIFY_DONE;
3385
3386 }
3387 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3388
3389 /**
3390 * regulator_mode_to_status - convert a regulator mode into a status
3391 *
3392 * @mode: Mode to convert
3393 *
3394 * Convert a regulator mode into a status.
3395 */
3396 int regulator_mode_to_status(unsigned int mode)
3397 {
3398 switch (mode) {
3399 case REGULATOR_MODE_FAST:
3400 return REGULATOR_STATUS_FAST;
3401 case REGULATOR_MODE_NORMAL:
3402 return REGULATOR_STATUS_NORMAL;
3403 case REGULATOR_MODE_IDLE:
3404 return REGULATOR_STATUS_IDLE;
3405 case REGULATOR_MODE_STANDBY:
3406 return REGULATOR_STATUS_STANDBY;
3407 default:
3408 return REGULATOR_STATUS_UNDEFINED;
3409 }
3410 }
3411 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3412
3413 static struct attribute *regulator_dev_attrs[] = {
3414 &dev_attr_name.attr,
3415 &dev_attr_num_users.attr,
3416 &dev_attr_type.attr,
3417 &dev_attr_microvolts.attr,
3418 &dev_attr_microamps.attr,
3419 &dev_attr_opmode.attr,
3420 &dev_attr_state.attr,
3421 &dev_attr_status.attr,
3422 &dev_attr_bypass.attr,
3423 &dev_attr_requested_microamps.attr,
3424 &dev_attr_min_microvolts.attr,
3425 &dev_attr_max_microvolts.attr,
3426 &dev_attr_min_microamps.attr,
3427 &dev_attr_max_microamps.attr,
3428 &dev_attr_suspend_standby_state.attr,
3429 &dev_attr_suspend_mem_state.attr,
3430 &dev_attr_suspend_disk_state.attr,
3431 &dev_attr_suspend_standby_microvolts.attr,
3432 &dev_attr_suspend_mem_microvolts.attr,
3433 &dev_attr_suspend_disk_microvolts.attr,
3434 &dev_attr_suspend_standby_mode.attr,
3435 &dev_attr_suspend_mem_mode.attr,
3436 &dev_attr_suspend_disk_mode.attr,
3437 NULL
3438 };
3439
3440 /*
3441 * To avoid cluttering sysfs (and memory) with useless state, only
3442 * create attributes that can be meaningfully displayed.
3443 */
3444 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3445 struct attribute *attr, int idx)
3446 {
3447 struct device *dev = kobj_to_dev(kobj);
3448 struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3449 const struct regulator_ops *ops = rdev->desc->ops;
3450 umode_t mode = attr->mode;
3451
3452 /* these three are always present */
3453 if (attr == &dev_attr_name.attr ||
3454 attr == &dev_attr_num_users.attr ||
3455 attr == &dev_attr_type.attr)
3456 return mode;
3457
3458 /* some attributes need specific methods to be displayed */
3459 if (attr == &dev_attr_microvolts.attr) {
3460 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3461 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3462 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3463 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3464 return mode;
3465 return 0;
3466 }
3467
3468 if (attr == &dev_attr_microamps.attr)
3469 return ops->get_current_limit ? mode : 0;
3470
3471 if (attr == &dev_attr_opmode.attr)
3472 return ops->get_mode ? mode : 0;
3473
3474 if (attr == &dev_attr_state.attr)
3475 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3476
3477 if (attr == &dev_attr_status.attr)
3478 return ops->get_status ? mode : 0;
3479
3480 if (attr == &dev_attr_bypass.attr)
3481 return ops->get_bypass ? mode : 0;
3482
3483 /* some attributes are type-specific */
3484 if (attr == &dev_attr_requested_microamps.attr)
3485 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3486
3487 /* all the other attributes exist to support constraints;
3488 * don't show them if there are no constraints, or if the
3489 * relevant supporting methods are missing.
3490 */
3491 if (!rdev->constraints)
3492 return 0;
3493
3494 /* constraints need specific supporting methods */
3495 if (attr == &dev_attr_min_microvolts.attr ||
3496 attr == &dev_attr_max_microvolts.attr)
3497 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3498
3499 if (attr == &dev_attr_min_microamps.attr ||
3500 attr == &dev_attr_max_microamps.attr)
3501 return ops->set_current_limit ? mode : 0;
3502
3503 if (attr == &dev_attr_suspend_standby_state.attr ||
3504 attr == &dev_attr_suspend_mem_state.attr ||
3505 attr == &dev_attr_suspend_disk_state.attr)
3506 return mode;
3507
3508 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3509 attr == &dev_attr_suspend_mem_microvolts.attr ||
3510 attr == &dev_attr_suspend_disk_microvolts.attr)
3511 return ops->set_suspend_voltage ? mode : 0;
3512
3513 if (attr == &dev_attr_suspend_standby_mode.attr ||
3514 attr == &dev_attr_suspend_mem_mode.attr ||
3515 attr == &dev_attr_suspend_disk_mode.attr)
3516 return ops->set_suspend_mode ? mode : 0;
3517
3518 return mode;
3519 }
3520
3521 static const struct attribute_group regulator_dev_group = {
3522 .attrs = regulator_dev_attrs,
3523 .is_visible = regulator_attr_is_visible,
3524 };
3525
3526 static const struct attribute_group *regulator_dev_groups[] = {
3527 &regulator_dev_group,
3528 NULL
3529 };
3530
3531 static void regulator_dev_release(struct device *dev)
3532 {
3533 struct regulator_dev *rdev = dev_get_drvdata(dev);
3534 kfree(rdev);
3535 }
3536
3537 static struct class regulator_class = {
3538 .name = "regulator",
3539 .dev_release = regulator_dev_release,
3540 .dev_groups = regulator_dev_groups,
3541 };
3542
3543 static void rdev_init_debugfs(struct regulator_dev *rdev)
3544 {
3545 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3546 if (!rdev->debugfs) {
3547 rdev_warn(rdev, "Failed to create debugfs directory\n");
3548 return;
3549 }
3550
3551 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3552 &rdev->use_count);
3553 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3554 &rdev->open_count);
3555 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3556 &rdev->bypass_count);
3557 }
3558
3559 /**
3560 * regulator_register - register regulator
3561 * @regulator_desc: regulator to register
3562 * @config: runtime configuration for regulator
3563 *
3564 * Called by regulator drivers to register a regulator.
3565 * Returns a valid pointer to struct regulator_dev on success
3566 * or an ERR_PTR() on error.
3567 */
3568 struct regulator_dev *
3569 regulator_register(const struct regulator_desc *regulator_desc,
3570 const struct regulator_config *config)
3571 {
3572 const struct regulation_constraints *constraints = NULL;
3573 const struct regulator_init_data *init_data;
3574 static atomic_t regulator_no = ATOMIC_INIT(-1);
3575 struct regulator_dev *rdev;
3576 struct device *dev;
3577 int ret, i;
3578 const char *supply = NULL;
3579
3580 if (regulator_desc == NULL || config == NULL)
3581 return ERR_PTR(-EINVAL);
3582
3583 dev = config->dev;
3584 WARN_ON(!dev);
3585
3586 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3587 return ERR_PTR(-EINVAL);
3588
3589 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3590 regulator_desc->type != REGULATOR_CURRENT)
3591 return ERR_PTR(-EINVAL);
3592
3593 /* Only one of each should be implemented */
3594 WARN_ON(regulator_desc->ops->get_voltage &&
3595 regulator_desc->ops->get_voltage_sel);
3596 WARN_ON(regulator_desc->ops->set_voltage &&
3597 regulator_desc->ops->set_voltage_sel);
3598
3599 /* If we're using selectors we must implement list_voltage. */
3600 if (regulator_desc->ops->get_voltage_sel &&
3601 !regulator_desc->ops->list_voltage) {
3602 return ERR_PTR(-EINVAL);
3603 }
3604 if (regulator_desc->ops->set_voltage_sel &&
3605 !regulator_desc->ops->list_voltage) {
3606 return ERR_PTR(-EINVAL);
3607 }
3608
3609 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3610 if (rdev == NULL)
3611 return ERR_PTR(-ENOMEM);
3612
3613 init_data = regulator_of_get_init_data(dev, regulator_desc,
3614 &rdev->dev.of_node);
3615 if (!init_data) {
3616 init_data = config->init_data;
3617 rdev->dev.of_node = of_node_get(config->of_node);
3618 }
3619
3620 mutex_lock(&regulator_list_mutex);
3621
3622 mutex_init(&rdev->mutex);
3623 rdev->reg_data = config->driver_data;
3624 rdev->owner = regulator_desc->owner;
3625 rdev->desc = regulator_desc;
3626 if (config->regmap)
3627 rdev->regmap = config->regmap;
3628 else if (dev_get_regmap(dev, NULL))
3629 rdev->regmap = dev_get_regmap(dev, NULL);
3630 else if (dev->parent)
3631 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3632 INIT_LIST_HEAD(&rdev->consumer_list);
3633 INIT_LIST_HEAD(&rdev->list);
3634 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3635 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3636
3637 /* preform any regulator specific init */
3638 if (init_data && init_data->regulator_init) {
3639 ret = init_data->regulator_init(rdev->reg_data);
3640 if (ret < 0)
3641 goto clean;
3642 }
3643
3644 /* register with sysfs */
3645 rdev->dev.class = &regulator_class;
3646 rdev->dev.parent = dev;
3647 dev_set_name(&rdev->dev, "regulator.%lu",
3648 (unsigned long) atomic_inc_return(&regulator_no));
3649 ret = device_register(&rdev->dev);
3650 if (ret != 0) {
3651 put_device(&rdev->dev);
3652 goto clean;
3653 }
3654
3655 dev_set_drvdata(&rdev->dev, rdev);
3656
3657 if ((config->ena_gpio || config->ena_gpio_initialized) &&
3658 gpio_is_valid(config->ena_gpio)) {
3659 ret = regulator_ena_gpio_request(rdev, config);
3660 if (ret != 0) {
3661 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3662 config->ena_gpio, ret);
3663 goto wash;
3664 }
3665
3666 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3667 rdev->ena_gpio_state = 1;
3668
3669 if (config->ena_gpio_invert)
3670 rdev->ena_gpio_state = !rdev->ena_gpio_state;
3671 }
3672
3673 /* set regulator constraints */
3674 if (init_data)
3675 constraints = &init_data->constraints;
3676
3677 ret = set_machine_constraints(rdev, constraints);
3678 if (ret < 0)
3679 goto scrub;
3680
3681 if (init_data && init_data->supply_regulator)
3682 supply = init_data->supply_regulator;
3683 else if (regulator_desc->supply_name)
3684 supply = regulator_desc->supply_name;
3685
3686 if (supply) {
3687 struct regulator_dev *r;
3688
3689 r = regulator_dev_lookup(dev, supply, &ret);
3690
3691 if (ret == -ENODEV) {
3692 /*
3693 * No supply was specified for this regulator and
3694 * there will never be one.
3695 */
3696 ret = 0;
3697 goto add_dev;
3698 } else if (!r) {
3699 dev_err(dev, "Failed to find supply %s\n", supply);
3700 ret = -EPROBE_DEFER;
3701 goto scrub;
3702 }
3703
3704 ret = set_supply(rdev, r);
3705 if (ret < 0)
3706 goto scrub;
3707
3708 /* Enable supply if rail is enabled */
3709 if (_regulator_is_enabled(rdev)) {
3710 ret = regulator_enable(rdev->supply);
3711 if (ret < 0)
3712 goto scrub;
3713 }
3714 }
3715
3716 add_dev:
3717 /* add consumers devices */
3718 if (init_data) {
3719 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3720 ret = set_consumer_device_supply(rdev,
3721 init_data->consumer_supplies[i].dev_name,
3722 init_data->consumer_supplies[i].supply);
3723 if (ret < 0) {
3724 dev_err(dev, "Failed to set supply %s\n",
3725 init_data->consumer_supplies[i].supply);
3726 goto unset_supplies;
3727 }
3728 }
3729 }
3730
3731 list_add(&rdev->list, &regulator_list);
3732
3733 rdev_init_debugfs(rdev);
3734 out:
3735 mutex_unlock(&regulator_list_mutex);
3736 return rdev;
3737
3738 unset_supplies:
3739 unset_regulator_supplies(rdev);
3740
3741 scrub:
3742 if (rdev->supply)
3743 _regulator_put(rdev->supply);
3744 regulator_ena_gpio_free(rdev);
3745 kfree(rdev->constraints);
3746 wash:
3747 device_unregister(&rdev->dev);
3748 /* device core frees rdev */
3749 rdev = ERR_PTR(ret);
3750 goto out;
3751
3752 clean:
3753 kfree(rdev);
3754 rdev = ERR_PTR(ret);
3755 goto out;
3756 }
3757 EXPORT_SYMBOL_GPL(regulator_register);
3758
3759 /**
3760 * regulator_unregister - unregister regulator
3761 * @rdev: regulator to unregister
3762 *
3763 * Called by regulator drivers to unregister a regulator.
3764 */
3765 void regulator_unregister(struct regulator_dev *rdev)
3766 {
3767 if (rdev == NULL)
3768 return;
3769
3770 if (rdev->supply) {
3771 while (rdev->use_count--)
3772 regulator_disable(rdev->supply);
3773 regulator_put(rdev->supply);
3774 }
3775 mutex_lock(&regulator_list_mutex);
3776 debugfs_remove_recursive(rdev->debugfs);
3777 flush_work(&rdev->disable_work.work);
3778 WARN_ON(rdev->open_count);
3779 unset_regulator_supplies(rdev);
3780 list_del(&rdev->list);
3781 kfree(rdev->constraints);
3782 regulator_ena_gpio_free(rdev);
3783 of_node_put(rdev->dev.of_node);
3784 device_unregister(&rdev->dev);
3785 mutex_unlock(&regulator_list_mutex);
3786 }
3787 EXPORT_SYMBOL_GPL(regulator_unregister);
3788
3789 /**
3790 * regulator_suspend_prepare - prepare regulators for system wide suspend
3791 * @state: system suspend state
3792 *
3793 * Configure each regulator with it's suspend operating parameters for state.
3794 * This will usually be called by machine suspend code prior to supending.
3795 */
3796 int regulator_suspend_prepare(suspend_state_t state)
3797 {
3798 struct regulator_dev *rdev;
3799 int ret = 0;
3800
3801 /* ON is handled by regulator active state */
3802 if (state == PM_SUSPEND_ON)
3803 return -EINVAL;
3804
3805 mutex_lock(&regulator_list_mutex);
3806 list_for_each_entry(rdev, &regulator_list, list) {
3807
3808 mutex_lock(&rdev->mutex);
3809 ret = suspend_prepare(rdev, state);
3810 mutex_unlock(&rdev->mutex);
3811
3812 if (ret < 0) {
3813 rdev_err(rdev, "failed to prepare\n");
3814 goto out;
3815 }
3816 }
3817 out:
3818 mutex_unlock(&regulator_list_mutex);
3819 return ret;
3820 }
3821 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3822
3823 /**
3824 * regulator_suspend_finish - resume regulators from system wide suspend
3825 *
3826 * Turn on regulators that might be turned off by regulator_suspend_prepare
3827 * and that should be turned on according to the regulators properties.
3828 */
3829 int regulator_suspend_finish(void)
3830 {
3831 struct regulator_dev *rdev;
3832 int ret = 0, error;
3833
3834 mutex_lock(&regulator_list_mutex);
3835 list_for_each_entry(rdev, &regulator_list, list) {
3836 mutex_lock(&rdev->mutex);
3837 if (rdev->use_count > 0 || rdev->constraints->always_on) {
3838 error = _regulator_do_enable(rdev);
3839 if (error)
3840 ret = error;
3841 } else {
3842 if (!have_full_constraints())
3843 goto unlock;
3844 if (!_regulator_is_enabled(rdev))
3845 goto unlock;
3846
3847 error = _regulator_do_disable(rdev);
3848 if (error)
3849 ret = error;
3850 }
3851 unlock:
3852 mutex_unlock(&rdev->mutex);
3853 }
3854 mutex_unlock(&regulator_list_mutex);
3855 return ret;
3856 }
3857 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3858
3859 /**
3860 * regulator_has_full_constraints - the system has fully specified constraints
3861 *
3862 * Calling this function will cause the regulator API to disable all
3863 * regulators which have a zero use count and don't have an always_on
3864 * constraint in a late_initcall.
3865 *
3866 * The intention is that this will become the default behaviour in a
3867 * future kernel release so users are encouraged to use this facility
3868 * now.
3869 */
3870 void regulator_has_full_constraints(void)
3871 {
3872 has_full_constraints = 1;
3873 }
3874 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3875
3876 /**
3877 * rdev_get_drvdata - get rdev regulator driver data
3878 * @rdev: regulator
3879 *
3880 * Get rdev regulator driver private data. This call can be used in the
3881 * regulator driver context.
3882 */
3883 void *rdev_get_drvdata(struct regulator_dev *rdev)
3884 {
3885 return rdev->reg_data;
3886 }
3887 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3888
3889 /**
3890 * regulator_get_drvdata - get regulator driver data
3891 * @regulator: regulator
3892 *
3893 * Get regulator driver private data. This call can be used in the consumer
3894 * driver context when non API regulator specific functions need to be called.
3895 */
3896 void *regulator_get_drvdata(struct regulator *regulator)
3897 {
3898 return regulator->rdev->reg_data;
3899 }
3900 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3901
3902 /**
3903 * regulator_set_drvdata - set regulator driver data
3904 * @regulator: regulator
3905 * @data: data
3906 */
3907 void regulator_set_drvdata(struct regulator *regulator, void *data)
3908 {
3909 regulator->rdev->reg_data = data;
3910 }
3911 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3912
3913 /**
3914 * regulator_get_id - get regulator ID
3915 * @rdev: regulator
3916 */
3917 int rdev_get_id(struct regulator_dev *rdev)
3918 {
3919 return rdev->desc->id;
3920 }
3921 EXPORT_SYMBOL_GPL(rdev_get_id);
3922
3923 struct device *rdev_get_dev(struct regulator_dev *rdev)
3924 {
3925 return &rdev->dev;
3926 }
3927 EXPORT_SYMBOL_GPL(rdev_get_dev);
3928
3929 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3930 {
3931 return reg_init_data->driver_data;
3932 }
3933 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3934
3935 #ifdef CONFIG_DEBUG_FS
3936 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3937 size_t count, loff_t *ppos)
3938 {
3939 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3940 ssize_t len, ret = 0;
3941 struct regulator_map *map;
3942
3943 if (!buf)
3944 return -ENOMEM;
3945
3946 list_for_each_entry(map, &regulator_map_list, list) {
3947 len = snprintf(buf + ret, PAGE_SIZE - ret,
3948 "%s -> %s.%s\n",
3949 rdev_get_name(map->regulator), map->dev_name,
3950 map->supply);
3951 if (len >= 0)
3952 ret += len;
3953 if (ret > PAGE_SIZE) {
3954 ret = PAGE_SIZE;
3955 break;
3956 }
3957 }
3958
3959 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3960
3961 kfree(buf);
3962
3963 return ret;
3964 }
3965 #endif
3966
3967 static const struct file_operations supply_map_fops = {
3968 #ifdef CONFIG_DEBUG_FS
3969 .read = supply_map_read_file,
3970 .llseek = default_llseek,
3971 #endif
3972 };
3973
3974 static int __init regulator_init(void)
3975 {
3976 int ret;
3977
3978 ret = class_register(&regulator_class);
3979
3980 debugfs_root = debugfs_create_dir("regulator", NULL);
3981 if (!debugfs_root)
3982 pr_warn("regulator: Failed to create debugfs directory\n");
3983
3984 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3985 &supply_map_fops);
3986
3987 regulator_dummy_init();
3988
3989 return ret;
3990 }
3991
3992 /* init early to allow our consumers to complete system booting */
3993 core_initcall(regulator_init);
3994
3995 static int __init regulator_init_complete(void)
3996 {
3997 struct regulator_dev *rdev;
3998 const struct regulator_ops *ops;
3999 struct regulation_constraints *c;
4000 int enabled, ret;
4001
4002 /*
4003 * Since DT doesn't provide an idiomatic mechanism for
4004 * enabling full constraints and since it's much more natural
4005 * with DT to provide them just assume that a DT enabled
4006 * system has full constraints.
4007 */
4008 if (of_have_populated_dt())
4009 has_full_constraints = true;
4010
4011 mutex_lock(&regulator_list_mutex);
4012
4013 /* If we have a full configuration then disable any regulators
4014 * we have permission to change the status for and which are
4015 * not in use or always_on. This is effectively the default
4016 * for DT and ACPI as they have full constraints.
4017 */
4018 list_for_each_entry(rdev, &regulator_list, list) {
4019 ops = rdev->desc->ops;
4020 c = rdev->constraints;
4021
4022 if (c && c->always_on)
4023 continue;
4024
4025 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4026 continue;
4027
4028 mutex_lock(&rdev->mutex);
4029
4030 if (rdev->use_count)
4031 goto unlock;
4032
4033 /* If we can't read the status assume it's on. */
4034 if (ops->is_enabled)
4035 enabled = ops->is_enabled(rdev);
4036 else
4037 enabled = 1;
4038
4039 if (!enabled)
4040 goto unlock;
4041
4042 if (have_full_constraints()) {
4043 /* We log since this may kill the system if it
4044 * goes wrong. */
4045 rdev_info(rdev, "disabling\n");
4046 ret = _regulator_do_disable(rdev);
4047 if (ret != 0)
4048 rdev_err(rdev, "couldn't disable: %d\n", ret);
4049 } else {
4050 /* The intention is that in future we will
4051 * assume that full constraints are provided
4052 * so warn even if we aren't going to do
4053 * anything here.
4054 */
4055 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4056 }
4057
4058 unlock:
4059 mutex_unlock(&rdev->mutex);
4060 }
4061
4062 mutex_unlock(&regulator_list_mutex);
4063
4064 return 0;
4065 }
4066 late_initcall_sync(regulator_init_complete);
This page took 0.117907 seconds and 5 git commands to generate.