Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[deliverable/linux.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/mutex.h>
22 #include <linux/suspend.h>
23 #include <linux/delay.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/driver.h>
26 #include <linux/regulator/machine.h>
27
28 #include "dummy.h"
29
30 #define REGULATOR_VERSION "0.5"
31
32 static DEFINE_MUTEX(regulator_list_mutex);
33 static LIST_HEAD(regulator_list);
34 static LIST_HEAD(regulator_map_list);
35 static int has_full_constraints;
36 static bool board_wants_dummy_regulator;
37
38 /*
39 * struct regulator_map
40 *
41 * Used to provide symbolic supply names to devices.
42 */
43 struct regulator_map {
44 struct list_head list;
45 const char *dev_name; /* The dev_name() for the consumer */
46 const char *supply;
47 struct regulator_dev *regulator;
48 };
49
50 /*
51 * struct regulator
52 *
53 * One for each consumer device.
54 */
55 struct regulator {
56 struct device *dev;
57 struct list_head list;
58 int uA_load;
59 int min_uV;
60 int max_uV;
61 char *supply_name;
62 struct device_attribute dev_attr;
63 struct regulator_dev *rdev;
64 };
65
66 static int _regulator_is_enabled(struct regulator_dev *rdev);
67 static int _regulator_disable(struct regulator_dev *rdev,
68 struct regulator_dev **supply_rdev_ptr);
69 static int _regulator_get_voltage(struct regulator_dev *rdev);
70 static int _regulator_get_current_limit(struct regulator_dev *rdev);
71 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
72 static void _notifier_call_chain(struct regulator_dev *rdev,
73 unsigned long event, void *data);
74
75 static const char *rdev_get_name(struct regulator_dev *rdev)
76 {
77 if (rdev->constraints && rdev->constraints->name)
78 return rdev->constraints->name;
79 else if (rdev->desc->name)
80 return rdev->desc->name;
81 else
82 return "";
83 }
84
85 /* gets the regulator for a given consumer device */
86 static struct regulator *get_device_regulator(struct device *dev)
87 {
88 struct regulator *regulator = NULL;
89 struct regulator_dev *rdev;
90
91 mutex_lock(&regulator_list_mutex);
92 list_for_each_entry(rdev, &regulator_list, list) {
93 mutex_lock(&rdev->mutex);
94 list_for_each_entry(regulator, &rdev->consumer_list, list) {
95 if (regulator->dev == dev) {
96 mutex_unlock(&rdev->mutex);
97 mutex_unlock(&regulator_list_mutex);
98 return regulator;
99 }
100 }
101 mutex_unlock(&rdev->mutex);
102 }
103 mutex_unlock(&regulator_list_mutex);
104 return NULL;
105 }
106
107 /* Platform voltage constraint check */
108 static int regulator_check_voltage(struct regulator_dev *rdev,
109 int *min_uV, int *max_uV)
110 {
111 BUG_ON(*min_uV > *max_uV);
112
113 if (!rdev->constraints) {
114 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
115 rdev_get_name(rdev));
116 return -ENODEV;
117 }
118 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
119 printk(KERN_ERR "%s: operation not allowed for %s\n",
120 __func__, rdev_get_name(rdev));
121 return -EPERM;
122 }
123
124 if (*max_uV > rdev->constraints->max_uV)
125 *max_uV = rdev->constraints->max_uV;
126 if (*min_uV < rdev->constraints->min_uV)
127 *min_uV = rdev->constraints->min_uV;
128
129 if (*min_uV > *max_uV)
130 return -EINVAL;
131
132 return 0;
133 }
134
135 /* current constraint check */
136 static int regulator_check_current_limit(struct regulator_dev *rdev,
137 int *min_uA, int *max_uA)
138 {
139 BUG_ON(*min_uA > *max_uA);
140
141 if (!rdev->constraints) {
142 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
143 rdev_get_name(rdev));
144 return -ENODEV;
145 }
146 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
147 printk(KERN_ERR "%s: operation not allowed for %s\n",
148 __func__, rdev_get_name(rdev));
149 return -EPERM;
150 }
151
152 if (*max_uA > rdev->constraints->max_uA)
153 *max_uA = rdev->constraints->max_uA;
154 if (*min_uA < rdev->constraints->min_uA)
155 *min_uA = rdev->constraints->min_uA;
156
157 if (*min_uA > *max_uA)
158 return -EINVAL;
159
160 return 0;
161 }
162
163 /* operating mode constraint check */
164 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
165 {
166 switch (mode) {
167 case REGULATOR_MODE_FAST:
168 case REGULATOR_MODE_NORMAL:
169 case REGULATOR_MODE_IDLE:
170 case REGULATOR_MODE_STANDBY:
171 break;
172 default:
173 return -EINVAL;
174 }
175
176 if (!rdev->constraints) {
177 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
178 rdev_get_name(rdev));
179 return -ENODEV;
180 }
181 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
182 printk(KERN_ERR "%s: operation not allowed for %s\n",
183 __func__, rdev_get_name(rdev));
184 return -EPERM;
185 }
186 if (!(rdev->constraints->valid_modes_mask & mode)) {
187 printk(KERN_ERR "%s: invalid mode %x for %s\n",
188 __func__, mode, rdev_get_name(rdev));
189 return -EINVAL;
190 }
191 return 0;
192 }
193
194 /* dynamic regulator mode switching constraint check */
195 static int regulator_check_drms(struct regulator_dev *rdev)
196 {
197 if (!rdev->constraints) {
198 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
199 rdev_get_name(rdev));
200 return -ENODEV;
201 }
202 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
203 printk(KERN_ERR "%s: operation not allowed for %s\n",
204 __func__, rdev_get_name(rdev));
205 return -EPERM;
206 }
207 return 0;
208 }
209
210 static ssize_t device_requested_uA_show(struct device *dev,
211 struct device_attribute *attr, char *buf)
212 {
213 struct regulator *regulator;
214
215 regulator = get_device_regulator(dev);
216 if (regulator == NULL)
217 return 0;
218
219 return sprintf(buf, "%d\n", regulator->uA_load);
220 }
221
222 static ssize_t regulator_uV_show(struct device *dev,
223 struct device_attribute *attr, char *buf)
224 {
225 struct regulator_dev *rdev = dev_get_drvdata(dev);
226 ssize_t ret;
227
228 mutex_lock(&rdev->mutex);
229 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
230 mutex_unlock(&rdev->mutex);
231
232 return ret;
233 }
234 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
235
236 static ssize_t regulator_uA_show(struct device *dev,
237 struct device_attribute *attr, char *buf)
238 {
239 struct regulator_dev *rdev = dev_get_drvdata(dev);
240
241 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
242 }
243 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
244
245 static ssize_t regulator_name_show(struct device *dev,
246 struct device_attribute *attr, char *buf)
247 {
248 struct regulator_dev *rdev = dev_get_drvdata(dev);
249
250 return sprintf(buf, "%s\n", rdev_get_name(rdev));
251 }
252
253 static ssize_t regulator_print_opmode(char *buf, int mode)
254 {
255 switch (mode) {
256 case REGULATOR_MODE_FAST:
257 return sprintf(buf, "fast\n");
258 case REGULATOR_MODE_NORMAL:
259 return sprintf(buf, "normal\n");
260 case REGULATOR_MODE_IDLE:
261 return sprintf(buf, "idle\n");
262 case REGULATOR_MODE_STANDBY:
263 return sprintf(buf, "standby\n");
264 }
265 return sprintf(buf, "unknown\n");
266 }
267
268 static ssize_t regulator_opmode_show(struct device *dev,
269 struct device_attribute *attr, char *buf)
270 {
271 struct regulator_dev *rdev = dev_get_drvdata(dev);
272
273 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
274 }
275 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
276
277 static ssize_t regulator_print_state(char *buf, int state)
278 {
279 if (state > 0)
280 return sprintf(buf, "enabled\n");
281 else if (state == 0)
282 return sprintf(buf, "disabled\n");
283 else
284 return sprintf(buf, "unknown\n");
285 }
286
287 static ssize_t regulator_state_show(struct device *dev,
288 struct device_attribute *attr, char *buf)
289 {
290 struct regulator_dev *rdev = dev_get_drvdata(dev);
291 ssize_t ret;
292
293 mutex_lock(&rdev->mutex);
294 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
295 mutex_unlock(&rdev->mutex);
296
297 return ret;
298 }
299 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
300
301 static ssize_t regulator_status_show(struct device *dev,
302 struct device_attribute *attr, char *buf)
303 {
304 struct regulator_dev *rdev = dev_get_drvdata(dev);
305 int status;
306 char *label;
307
308 status = rdev->desc->ops->get_status(rdev);
309 if (status < 0)
310 return status;
311
312 switch (status) {
313 case REGULATOR_STATUS_OFF:
314 label = "off";
315 break;
316 case REGULATOR_STATUS_ON:
317 label = "on";
318 break;
319 case REGULATOR_STATUS_ERROR:
320 label = "error";
321 break;
322 case REGULATOR_STATUS_FAST:
323 label = "fast";
324 break;
325 case REGULATOR_STATUS_NORMAL:
326 label = "normal";
327 break;
328 case REGULATOR_STATUS_IDLE:
329 label = "idle";
330 break;
331 case REGULATOR_STATUS_STANDBY:
332 label = "standby";
333 break;
334 default:
335 return -ERANGE;
336 }
337
338 return sprintf(buf, "%s\n", label);
339 }
340 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
341
342 static ssize_t regulator_min_uA_show(struct device *dev,
343 struct device_attribute *attr, char *buf)
344 {
345 struct regulator_dev *rdev = dev_get_drvdata(dev);
346
347 if (!rdev->constraints)
348 return sprintf(buf, "constraint not defined\n");
349
350 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
351 }
352 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
353
354 static ssize_t regulator_max_uA_show(struct device *dev,
355 struct device_attribute *attr, char *buf)
356 {
357 struct regulator_dev *rdev = dev_get_drvdata(dev);
358
359 if (!rdev->constraints)
360 return sprintf(buf, "constraint not defined\n");
361
362 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
363 }
364 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
365
366 static ssize_t regulator_min_uV_show(struct device *dev,
367 struct device_attribute *attr, char *buf)
368 {
369 struct regulator_dev *rdev = dev_get_drvdata(dev);
370
371 if (!rdev->constraints)
372 return sprintf(buf, "constraint not defined\n");
373
374 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
375 }
376 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
377
378 static ssize_t regulator_max_uV_show(struct device *dev,
379 struct device_attribute *attr, char *buf)
380 {
381 struct regulator_dev *rdev = dev_get_drvdata(dev);
382
383 if (!rdev->constraints)
384 return sprintf(buf, "constraint not defined\n");
385
386 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
387 }
388 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
389
390 static ssize_t regulator_total_uA_show(struct device *dev,
391 struct device_attribute *attr, char *buf)
392 {
393 struct regulator_dev *rdev = dev_get_drvdata(dev);
394 struct regulator *regulator;
395 int uA = 0;
396
397 mutex_lock(&rdev->mutex);
398 list_for_each_entry(regulator, &rdev->consumer_list, list)
399 uA += regulator->uA_load;
400 mutex_unlock(&rdev->mutex);
401 return sprintf(buf, "%d\n", uA);
402 }
403 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
404
405 static ssize_t regulator_num_users_show(struct device *dev,
406 struct device_attribute *attr, char *buf)
407 {
408 struct regulator_dev *rdev = dev_get_drvdata(dev);
409 return sprintf(buf, "%d\n", rdev->use_count);
410 }
411
412 static ssize_t regulator_type_show(struct device *dev,
413 struct device_attribute *attr, char *buf)
414 {
415 struct regulator_dev *rdev = dev_get_drvdata(dev);
416
417 switch (rdev->desc->type) {
418 case REGULATOR_VOLTAGE:
419 return sprintf(buf, "voltage\n");
420 case REGULATOR_CURRENT:
421 return sprintf(buf, "current\n");
422 }
423 return sprintf(buf, "unknown\n");
424 }
425
426 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
427 struct device_attribute *attr, char *buf)
428 {
429 struct regulator_dev *rdev = dev_get_drvdata(dev);
430
431 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
432 }
433 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
434 regulator_suspend_mem_uV_show, NULL);
435
436 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
437 struct device_attribute *attr, char *buf)
438 {
439 struct regulator_dev *rdev = dev_get_drvdata(dev);
440
441 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
442 }
443 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
444 regulator_suspend_disk_uV_show, NULL);
445
446 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
447 struct device_attribute *attr, char *buf)
448 {
449 struct regulator_dev *rdev = dev_get_drvdata(dev);
450
451 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
452 }
453 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
454 regulator_suspend_standby_uV_show, NULL);
455
456 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
457 struct device_attribute *attr, char *buf)
458 {
459 struct regulator_dev *rdev = dev_get_drvdata(dev);
460
461 return regulator_print_opmode(buf,
462 rdev->constraints->state_mem.mode);
463 }
464 static DEVICE_ATTR(suspend_mem_mode, 0444,
465 regulator_suspend_mem_mode_show, NULL);
466
467 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
468 struct device_attribute *attr, char *buf)
469 {
470 struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472 return regulator_print_opmode(buf,
473 rdev->constraints->state_disk.mode);
474 }
475 static DEVICE_ATTR(suspend_disk_mode, 0444,
476 regulator_suspend_disk_mode_show, NULL);
477
478 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
479 struct device_attribute *attr, char *buf)
480 {
481 struct regulator_dev *rdev = dev_get_drvdata(dev);
482
483 return regulator_print_opmode(buf,
484 rdev->constraints->state_standby.mode);
485 }
486 static DEVICE_ATTR(suspend_standby_mode, 0444,
487 regulator_suspend_standby_mode_show, NULL);
488
489 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
490 struct device_attribute *attr, char *buf)
491 {
492 struct regulator_dev *rdev = dev_get_drvdata(dev);
493
494 return regulator_print_state(buf,
495 rdev->constraints->state_mem.enabled);
496 }
497 static DEVICE_ATTR(suspend_mem_state, 0444,
498 regulator_suspend_mem_state_show, NULL);
499
500 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
501 struct device_attribute *attr, char *buf)
502 {
503 struct regulator_dev *rdev = dev_get_drvdata(dev);
504
505 return regulator_print_state(buf,
506 rdev->constraints->state_disk.enabled);
507 }
508 static DEVICE_ATTR(suspend_disk_state, 0444,
509 regulator_suspend_disk_state_show, NULL);
510
511 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
512 struct device_attribute *attr, char *buf)
513 {
514 struct regulator_dev *rdev = dev_get_drvdata(dev);
515
516 return regulator_print_state(buf,
517 rdev->constraints->state_standby.enabled);
518 }
519 static DEVICE_ATTR(suspend_standby_state, 0444,
520 regulator_suspend_standby_state_show, NULL);
521
522
523 /*
524 * These are the only attributes are present for all regulators.
525 * Other attributes are a function of regulator functionality.
526 */
527 static struct device_attribute regulator_dev_attrs[] = {
528 __ATTR(name, 0444, regulator_name_show, NULL),
529 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
530 __ATTR(type, 0444, regulator_type_show, NULL),
531 __ATTR_NULL,
532 };
533
534 static void regulator_dev_release(struct device *dev)
535 {
536 struct regulator_dev *rdev = dev_get_drvdata(dev);
537 kfree(rdev);
538 }
539
540 static struct class regulator_class = {
541 .name = "regulator",
542 .dev_release = regulator_dev_release,
543 .dev_attrs = regulator_dev_attrs,
544 };
545
546 /* Calculate the new optimum regulator operating mode based on the new total
547 * consumer load. All locks held by caller */
548 static void drms_uA_update(struct regulator_dev *rdev)
549 {
550 struct regulator *sibling;
551 int current_uA = 0, output_uV, input_uV, err;
552 unsigned int mode;
553
554 err = regulator_check_drms(rdev);
555 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
556 !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
557 return;
558
559 /* get output voltage */
560 output_uV = rdev->desc->ops->get_voltage(rdev);
561 if (output_uV <= 0)
562 return;
563
564 /* get input voltage */
565 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
566 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
567 else
568 input_uV = rdev->constraints->input_uV;
569 if (input_uV <= 0)
570 return;
571
572 /* calc total requested load */
573 list_for_each_entry(sibling, &rdev->consumer_list, list)
574 current_uA += sibling->uA_load;
575
576 /* now get the optimum mode for our new total regulator load */
577 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
578 output_uV, current_uA);
579
580 /* check the new mode is allowed */
581 err = regulator_check_mode(rdev, mode);
582 if (err == 0)
583 rdev->desc->ops->set_mode(rdev, mode);
584 }
585
586 static int suspend_set_state(struct regulator_dev *rdev,
587 struct regulator_state *rstate)
588 {
589 int ret = 0;
590 bool can_set_state;
591
592 can_set_state = rdev->desc->ops->set_suspend_enable &&
593 rdev->desc->ops->set_suspend_disable;
594
595 /* If we have no suspend mode configration don't set anything;
596 * only warn if the driver actually makes the suspend mode
597 * configurable.
598 */
599 if (!rstate->enabled && !rstate->disabled) {
600 if (can_set_state)
601 printk(KERN_WARNING "%s: No configuration for %s\n",
602 __func__, rdev_get_name(rdev));
603 return 0;
604 }
605
606 if (rstate->enabled && rstate->disabled) {
607 printk(KERN_ERR "%s: invalid configuration for %s\n",
608 __func__, rdev_get_name(rdev));
609 return -EINVAL;
610 }
611
612 if (!can_set_state) {
613 printk(KERN_ERR "%s: no way to set suspend state\n",
614 __func__);
615 return -EINVAL;
616 }
617
618 if (rstate->enabled)
619 ret = rdev->desc->ops->set_suspend_enable(rdev);
620 else
621 ret = rdev->desc->ops->set_suspend_disable(rdev);
622 if (ret < 0) {
623 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
624 return ret;
625 }
626
627 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
628 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
629 if (ret < 0) {
630 printk(KERN_ERR "%s: failed to set voltage\n",
631 __func__);
632 return ret;
633 }
634 }
635
636 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
637 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
638 if (ret < 0) {
639 printk(KERN_ERR "%s: failed to set mode\n", __func__);
640 return ret;
641 }
642 }
643 return ret;
644 }
645
646 /* locks held by caller */
647 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
648 {
649 if (!rdev->constraints)
650 return -EINVAL;
651
652 switch (state) {
653 case PM_SUSPEND_STANDBY:
654 return suspend_set_state(rdev,
655 &rdev->constraints->state_standby);
656 case PM_SUSPEND_MEM:
657 return suspend_set_state(rdev,
658 &rdev->constraints->state_mem);
659 case PM_SUSPEND_MAX:
660 return suspend_set_state(rdev,
661 &rdev->constraints->state_disk);
662 default:
663 return -EINVAL;
664 }
665 }
666
667 static void print_constraints(struct regulator_dev *rdev)
668 {
669 struct regulation_constraints *constraints = rdev->constraints;
670 char buf[80] = "";
671 int count = 0;
672 int ret;
673
674 if (constraints->min_uV && constraints->max_uV) {
675 if (constraints->min_uV == constraints->max_uV)
676 count += sprintf(buf + count, "%d mV ",
677 constraints->min_uV / 1000);
678 else
679 count += sprintf(buf + count, "%d <--> %d mV ",
680 constraints->min_uV / 1000,
681 constraints->max_uV / 1000);
682 }
683
684 if (!constraints->min_uV ||
685 constraints->min_uV != constraints->max_uV) {
686 ret = _regulator_get_voltage(rdev);
687 if (ret > 0)
688 count += sprintf(buf + count, "at %d mV ", ret / 1000);
689 }
690
691 if (constraints->min_uA && constraints->max_uA) {
692 if (constraints->min_uA == constraints->max_uA)
693 count += sprintf(buf + count, "%d mA ",
694 constraints->min_uA / 1000);
695 else
696 count += sprintf(buf + count, "%d <--> %d mA ",
697 constraints->min_uA / 1000,
698 constraints->max_uA / 1000);
699 }
700
701 if (!constraints->min_uA ||
702 constraints->min_uA != constraints->max_uA) {
703 ret = _regulator_get_current_limit(rdev);
704 if (ret > 0)
705 count += sprintf(buf + count, "at %d mA ", ret / 1000);
706 }
707
708 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
709 count += sprintf(buf + count, "fast ");
710 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
711 count += sprintf(buf + count, "normal ");
712 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
713 count += sprintf(buf + count, "idle ");
714 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
715 count += sprintf(buf + count, "standby");
716
717 printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf);
718 }
719
720 static int machine_constraints_voltage(struct regulator_dev *rdev,
721 struct regulation_constraints *constraints)
722 {
723 struct regulator_ops *ops = rdev->desc->ops;
724 const char *name = rdev_get_name(rdev);
725 int ret;
726
727 /* do we need to apply the constraint voltage */
728 if (rdev->constraints->apply_uV &&
729 rdev->constraints->min_uV == rdev->constraints->max_uV &&
730 ops->set_voltage) {
731 ret = ops->set_voltage(rdev,
732 rdev->constraints->min_uV, rdev->constraints->max_uV);
733 if (ret < 0) {
734 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
735 __func__,
736 rdev->constraints->min_uV, name);
737 rdev->constraints = NULL;
738 return ret;
739 }
740 }
741
742 /* constrain machine-level voltage specs to fit
743 * the actual range supported by this regulator.
744 */
745 if (ops->list_voltage && rdev->desc->n_voltages) {
746 int count = rdev->desc->n_voltages;
747 int i;
748 int min_uV = INT_MAX;
749 int max_uV = INT_MIN;
750 int cmin = constraints->min_uV;
751 int cmax = constraints->max_uV;
752
753 /* it's safe to autoconfigure fixed-voltage supplies
754 and the constraints are used by list_voltage. */
755 if (count == 1 && !cmin) {
756 cmin = 1;
757 cmax = INT_MAX;
758 constraints->min_uV = cmin;
759 constraints->max_uV = cmax;
760 }
761
762 /* voltage constraints are optional */
763 if ((cmin == 0) && (cmax == 0))
764 return 0;
765
766 /* else require explicit machine-level constraints */
767 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
768 pr_err("%s: %s '%s' voltage constraints\n",
769 __func__, "invalid", name);
770 return -EINVAL;
771 }
772
773 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
774 for (i = 0; i < count; i++) {
775 int value;
776
777 value = ops->list_voltage(rdev, i);
778 if (value <= 0)
779 continue;
780
781 /* maybe adjust [min_uV..max_uV] */
782 if (value >= cmin && value < min_uV)
783 min_uV = value;
784 if (value <= cmax && value > max_uV)
785 max_uV = value;
786 }
787
788 /* final: [min_uV..max_uV] valid iff constraints valid */
789 if (max_uV < min_uV) {
790 pr_err("%s: %s '%s' voltage constraints\n",
791 __func__, "unsupportable", name);
792 return -EINVAL;
793 }
794
795 /* use regulator's subset of machine constraints */
796 if (constraints->min_uV < min_uV) {
797 pr_debug("%s: override '%s' %s, %d -> %d\n",
798 __func__, name, "min_uV",
799 constraints->min_uV, min_uV);
800 constraints->min_uV = min_uV;
801 }
802 if (constraints->max_uV > max_uV) {
803 pr_debug("%s: override '%s' %s, %d -> %d\n",
804 __func__, name, "max_uV",
805 constraints->max_uV, max_uV);
806 constraints->max_uV = max_uV;
807 }
808 }
809
810 return 0;
811 }
812
813 /**
814 * set_machine_constraints - sets regulator constraints
815 * @rdev: regulator source
816 * @constraints: constraints to apply
817 *
818 * Allows platform initialisation code to define and constrain
819 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
820 * Constraints *must* be set by platform code in order for some
821 * regulator operations to proceed i.e. set_voltage, set_current_limit,
822 * set_mode.
823 */
824 static int set_machine_constraints(struct regulator_dev *rdev,
825 struct regulation_constraints *constraints)
826 {
827 int ret = 0;
828 const char *name;
829 struct regulator_ops *ops = rdev->desc->ops;
830
831 rdev->constraints = constraints;
832
833 name = rdev_get_name(rdev);
834
835 ret = machine_constraints_voltage(rdev, constraints);
836 if (ret != 0)
837 goto out;
838
839 /* do we need to setup our suspend state */
840 if (constraints->initial_state) {
841 ret = suspend_prepare(rdev, constraints->initial_state);
842 if (ret < 0) {
843 printk(KERN_ERR "%s: failed to set suspend state for %s\n",
844 __func__, name);
845 rdev->constraints = NULL;
846 goto out;
847 }
848 }
849
850 if (constraints->initial_mode) {
851 if (!ops->set_mode) {
852 printk(KERN_ERR "%s: no set_mode operation for %s\n",
853 __func__, name);
854 ret = -EINVAL;
855 goto out;
856 }
857
858 ret = ops->set_mode(rdev, constraints->initial_mode);
859 if (ret < 0) {
860 printk(KERN_ERR
861 "%s: failed to set initial mode for %s: %d\n",
862 __func__, name, ret);
863 goto out;
864 }
865 }
866
867 /* If the constraints say the regulator should be on at this point
868 * and we have control then make sure it is enabled.
869 */
870 if ((constraints->always_on || constraints->boot_on) && ops->enable) {
871 ret = ops->enable(rdev);
872 if (ret < 0) {
873 printk(KERN_ERR "%s: failed to enable %s\n",
874 __func__, name);
875 rdev->constraints = NULL;
876 goto out;
877 }
878 }
879
880 print_constraints(rdev);
881 out:
882 return ret;
883 }
884
885 /**
886 * set_supply - set regulator supply regulator
887 * @rdev: regulator name
888 * @supply_rdev: supply regulator name
889 *
890 * Called by platform initialisation code to set the supply regulator for this
891 * regulator. This ensures that a regulators supply will also be enabled by the
892 * core if it's child is enabled.
893 */
894 static int set_supply(struct regulator_dev *rdev,
895 struct regulator_dev *supply_rdev)
896 {
897 int err;
898
899 err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
900 "supply");
901 if (err) {
902 printk(KERN_ERR
903 "%s: could not add device link %s err %d\n",
904 __func__, supply_rdev->dev.kobj.name, err);
905 goto out;
906 }
907 rdev->supply = supply_rdev;
908 list_add(&rdev->slist, &supply_rdev->supply_list);
909 out:
910 return err;
911 }
912
913 /**
914 * set_consumer_device_supply - Bind a regulator to a symbolic supply
915 * @rdev: regulator source
916 * @consumer_dev: device the supply applies to
917 * @consumer_dev_name: dev_name() string for device supply applies to
918 * @supply: symbolic name for supply
919 *
920 * Allows platform initialisation code to map physical regulator
921 * sources to symbolic names for supplies for use by devices. Devices
922 * should use these symbolic names to request regulators, avoiding the
923 * need to provide board-specific regulator names as platform data.
924 *
925 * Only one of consumer_dev and consumer_dev_name may be specified.
926 */
927 static int set_consumer_device_supply(struct regulator_dev *rdev,
928 struct device *consumer_dev, const char *consumer_dev_name,
929 const char *supply)
930 {
931 struct regulator_map *node;
932 int has_dev;
933
934 if (consumer_dev && consumer_dev_name)
935 return -EINVAL;
936
937 if (!consumer_dev_name && consumer_dev)
938 consumer_dev_name = dev_name(consumer_dev);
939
940 if (supply == NULL)
941 return -EINVAL;
942
943 if (consumer_dev_name != NULL)
944 has_dev = 1;
945 else
946 has_dev = 0;
947
948 list_for_each_entry(node, &regulator_map_list, list) {
949 if (node->dev_name && consumer_dev_name) {
950 if (strcmp(node->dev_name, consumer_dev_name) != 0)
951 continue;
952 } else if (node->dev_name || consumer_dev_name) {
953 continue;
954 }
955
956 if (strcmp(node->supply, supply) != 0)
957 continue;
958
959 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
960 dev_name(&node->regulator->dev),
961 node->regulator->desc->name,
962 supply,
963 dev_name(&rdev->dev), rdev_get_name(rdev));
964 return -EBUSY;
965 }
966
967 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
968 if (node == NULL)
969 return -ENOMEM;
970
971 node->regulator = rdev;
972 node->supply = supply;
973
974 if (has_dev) {
975 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
976 if (node->dev_name == NULL) {
977 kfree(node);
978 return -ENOMEM;
979 }
980 }
981
982 list_add(&node->list, &regulator_map_list);
983 return 0;
984 }
985
986 static void unset_regulator_supplies(struct regulator_dev *rdev)
987 {
988 struct regulator_map *node, *n;
989
990 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
991 if (rdev == node->regulator) {
992 list_del(&node->list);
993 kfree(node->dev_name);
994 kfree(node);
995 }
996 }
997 }
998
999 #define REG_STR_SIZE 32
1000
1001 static struct regulator *create_regulator(struct regulator_dev *rdev,
1002 struct device *dev,
1003 const char *supply_name)
1004 {
1005 struct regulator *regulator;
1006 char buf[REG_STR_SIZE];
1007 int err, size;
1008
1009 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1010 if (regulator == NULL)
1011 return NULL;
1012
1013 mutex_lock(&rdev->mutex);
1014 regulator->rdev = rdev;
1015 list_add(&regulator->list, &rdev->consumer_list);
1016
1017 if (dev) {
1018 /* create a 'requested_microamps_name' sysfs entry */
1019 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1020 supply_name);
1021 if (size >= REG_STR_SIZE)
1022 goto overflow_err;
1023
1024 regulator->dev = dev;
1025 sysfs_attr_init(&regulator->dev_attr.attr);
1026 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1027 if (regulator->dev_attr.attr.name == NULL)
1028 goto attr_name_err;
1029
1030 regulator->dev_attr.attr.mode = 0444;
1031 regulator->dev_attr.show = device_requested_uA_show;
1032 err = device_create_file(dev, &regulator->dev_attr);
1033 if (err < 0) {
1034 printk(KERN_WARNING "%s: could not add regulator_dev"
1035 " load sysfs\n", __func__);
1036 goto attr_name_err;
1037 }
1038
1039 /* also add a link to the device sysfs entry */
1040 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1041 dev->kobj.name, supply_name);
1042 if (size >= REG_STR_SIZE)
1043 goto attr_err;
1044
1045 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1046 if (regulator->supply_name == NULL)
1047 goto attr_err;
1048
1049 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1050 buf);
1051 if (err) {
1052 printk(KERN_WARNING
1053 "%s: could not add device link %s err %d\n",
1054 __func__, dev->kobj.name, err);
1055 goto link_name_err;
1056 }
1057 }
1058 mutex_unlock(&rdev->mutex);
1059 return regulator;
1060 link_name_err:
1061 kfree(regulator->supply_name);
1062 attr_err:
1063 device_remove_file(regulator->dev, &regulator->dev_attr);
1064 attr_name_err:
1065 kfree(regulator->dev_attr.attr.name);
1066 overflow_err:
1067 list_del(&regulator->list);
1068 kfree(regulator);
1069 mutex_unlock(&rdev->mutex);
1070 return NULL;
1071 }
1072
1073 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1074 {
1075 if (!rdev->desc->ops->enable_time)
1076 return 0;
1077 return rdev->desc->ops->enable_time(rdev);
1078 }
1079
1080 /* Internal regulator request function */
1081 static struct regulator *_regulator_get(struct device *dev, const char *id,
1082 int exclusive)
1083 {
1084 struct regulator_dev *rdev;
1085 struct regulator_map *map;
1086 struct regulator *regulator = ERR_PTR(-ENODEV);
1087 const char *devname = NULL;
1088 int ret;
1089
1090 if (id == NULL) {
1091 printk(KERN_ERR "regulator: get() with no identifier\n");
1092 return regulator;
1093 }
1094
1095 if (dev)
1096 devname = dev_name(dev);
1097
1098 mutex_lock(&regulator_list_mutex);
1099
1100 list_for_each_entry(map, &regulator_map_list, list) {
1101 /* If the mapping has a device set up it must match */
1102 if (map->dev_name &&
1103 (!devname || strcmp(map->dev_name, devname)))
1104 continue;
1105
1106 if (strcmp(map->supply, id) == 0) {
1107 rdev = map->regulator;
1108 goto found;
1109 }
1110 }
1111
1112 if (board_wants_dummy_regulator) {
1113 rdev = dummy_regulator_rdev;
1114 goto found;
1115 }
1116
1117 #ifdef CONFIG_REGULATOR_DUMMY
1118 if (!devname)
1119 devname = "deviceless";
1120
1121 /* If the board didn't flag that it was fully constrained then
1122 * substitute in a dummy regulator so consumers can continue.
1123 */
1124 if (!has_full_constraints) {
1125 pr_warning("%s supply %s not found, using dummy regulator\n",
1126 devname, id);
1127 rdev = dummy_regulator_rdev;
1128 goto found;
1129 }
1130 #endif
1131
1132 mutex_unlock(&regulator_list_mutex);
1133 return regulator;
1134
1135 found:
1136 if (rdev->exclusive) {
1137 regulator = ERR_PTR(-EPERM);
1138 goto out;
1139 }
1140
1141 if (exclusive && rdev->open_count) {
1142 regulator = ERR_PTR(-EBUSY);
1143 goto out;
1144 }
1145
1146 if (!try_module_get(rdev->owner))
1147 goto out;
1148
1149 regulator = create_regulator(rdev, dev, id);
1150 if (regulator == NULL) {
1151 regulator = ERR_PTR(-ENOMEM);
1152 module_put(rdev->owner);
1153 }
1154
1155 rdev->open_count++;
1156 if (exclusive) {
1157 rdev->exclusive = 1;
1158
1159 ret = _regulator_is_enabled(rdev);
1160 if (ret > 0)
1161 rdev->use_count = 1;
1162 else
1163 rdev->use_count = 0;
1164 }
1165
1166 out:
1167 mutex_unlock(&regulator_list_mutex);
1168
1169 return regulator;
1170 }
1171
1172 /**
1173 * regulator_get - lookup and obtain a reference to a regulator.
1174 * @dev: device for regulator "consumer"
1175 * @id: Supply name or regulator ID.
1176 *
1177 * Returns a struct regulator corresponding to the regulator producer,
1178 * or IS_ERR() condition containing errno.
1179 *
1180 * Use of supply names configured via regulator_set_device_supply() is
1181 * strongly encouraged. It is recommended that the supply name used
1182 * should match the name used for the supply and/or the relevant
1183 * device pins in the datasheet.
1184 */
1185 struct regulator *regulator_get(struct device *dev, const char *id)
1186 {
1187 return _regulator_get(dev, id, 0);
1188 }
1189 EXPORT_SYMBOL_GPL(regulator_get);
1190
1191 /**
1192 * regulator_get_exclusive - obtain exclusive access to a regulator.
1193 * @dev: device for regulator "consumer"
1194 * @id: Supply name or regulator ID.
1195 *
1196 * Returns a struct regulator corresponding to the regulator producer,
1197 * or IS_ERR() condition containing errno. Other consumers will be
1198 * unable to obtain this reference is held and the use count for the
1199 * regulator will be initialised to reflect the current state of the
1200 * regulator.
1201 *
1202 * This is intended for use by consumers which cannot tolerate shared
1203 * use of the regulator such as those which need to force the
1204 * regulator off for correct operation of the hardware they are
1205 * controlling.
1206 *
1207 * Use of supply names configured via regulator_set_device_supply() is
1208 * strongly encouraged. It is recommended that the supply name used
1209 * should match the name used for the supply and/or the relevant
1210 * device pins in the datasheet.
1211 */
1212 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1213 {
1214 return _regulator_get(dev, id, 1);
1215 }
1216 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1217
1218 /**
1219 * regulator_put - "free" the regulator source
1220 * @regulator: regulator source
1221 *
1222 * Note: drivers must ensure that all regulator_enable calls made on this
1223 * regulator source are balanced by regulator_disable calls prior to calling
1224 * this function.
1225 */
1226 void regulator_put(struct regulator *regulator)
1227 {
1228 struct regulator_dev *rdev;
1229
1230 if (regulator == NULL || IS_ERR(regulator))
1231 return;
1232
1233 mutex_lock(&regulator_list_mutex);
1234 rdev = regulator->rdev;
1235
1236 /* remove any sysfs entries */
1237 if (regulator->dev) {
1238 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1239 kfree(regulator->supply_name);
1240 device_remove_file(regulator->dev, &regulator->dev_attr);
1241 kfree(regulator->dev_attr.attr.name);
1242 }
1243 list_del(&regulator->list);
1244 kfree(regulator);
1245
1246 rdev->open_count--;
1247 rdev->exclusive = 0;
1248
1249 module_put(rdev->owner);
1250 mutex_unlock(&regulator_list_mutex);
1251 }
1252 EXPORT_SYMBOL_GPL(regulator_put);
1253
1254 static int _regulator_can_change_status(struct regulator_dev *rdev)
1255 {
1256 if (!rdev->constraints)
1257 return 0;
1258
1259 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1260 return 1;
1261 else
1262 return 0;
1263 }
1264
1265 /* locks held by regulator_enable() */
1266 static int _regulator_enable(struct regulator_dev *rdev)
1267 {
1268 int ret, delay;
1269
1270 if (rdev->use_count == 0) {
1271 /* do we need to enable the supply regulator first */
1272 if (rdev->supply) {
1273 mutex_lock(&rdev->supply->mutex);
1274 ret = _regulator_enable(rdev->supply);
1275 mutex_unlock(&rdev->supply->mutex);
1276 if (ret < 0) {
1277 printk(KERN_ERR "%s: failed to enable %s: %d\n",
1278 __func__, rdev_get_name(rdev), ret);
1279 return ret;
1280 }
1281 }
1282 }
1283
1284 /* check voltage and requested load before enabling */
1285 if (rdev->constraints &&
1286 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1287 drms_uA_update(rdev);
1288
1289 if (rdev->use_count == 0) {
1290 /* The regulator may on if it's not switchable or left on */
1291 ret = _regulator_is_enabled(rdev);
1292 if (ret == -EINVAL || ret == 0) {
1293 if (!_regulator_can_change_status(rdev))
1294 return -EPERM;
1295
1296 if (!rdev->desc->ops->enable)
1297 return -EINVAL;
1298
1299 /* Query before enabling in case configuration
1300 * dependant. */
1301 ret = _regulator_get_enable_time(rdev);
1302 if (ret >= 0) {
1303 delay = ret;
1304 } else {
1305 printk(KERN_WARNING
1306 "%s: enable_time() failed for %s: %d\n",
1307 __func__, rdev_get_name(rdev),
1308 ret);
1309 delay = 0;
1310 }
1311
1312 /* Allow the regulator to ramp; it would be useful
1313 * to extend this for bulk operations so that the
1314 * regulators can ramp together. */
1315 ret = rdev->desc->ops->enable(rdev);
1316 if (ret < 0)
1317 return ret;
1318
1319 if (delay >= 1000) {
1320 mdelay(delay / 1000);
1321 udelay(delay % 1000);
1322 } else if (delay) {
1323 udelay(delay);
1324 }
1325
1326 } else if (ret < 0) {
1327 printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1328 __func__, rdev_get_name(rdev), ret);
1329 return ret;
1330 }
1331 /* Fallthrough on positive return values - already enabled */
1332 }
1333
1334 rdev->use_count++;
1335
1336 return 0;
1337 }
1338
1339 /**
1340 * regulator_enable - enable regulator output
1341 * @regulator: regulator source
1342 *
1343 * Request that the regulator be enabled with the regulator output at
1344 * the predefined voltage or current value. Calls to regulator_enable()
1345 * must be balanced with calls to regulator_disable().
1346 *
1347 * NOTE: the output value can be set by other drivers, boot loader or may be
1348 * hardwired in the regulator.
1349 */
1350 int regulator_enable(struct regulator *regulator)
1351 {
1352 struct regulator_dev *rdev = regulator->rdev;
1353 int ret = 0;
1354
1355 mutex_lock(&rdev->mutex);
1356 ret = _regulator_enable(rdev);
1357 mutex_unlock(&rdev->mutex);
1358 return ret;
1359 }
1360 EXPORT_SYMBOL_GPL(regulator_enable);
1361
1362 /* locks held by regulator_disable() */
1363 static int _regulator_disable(struct regulator_dev *rdev,
1364 struct regulator_dev **supply_rdev_ptr)
1365 {
1366 int ret = 0;
1367 *supply_rdev_ptr = NULL;
1368
1369 if (WARN(rdev->use_count <= 0,
1370 "unbalanced disables for %s\n",
1371 rdev_get_name(rdev)))
1372 return -EIO;
1373
1374 /* are we the last user and permitted to disable ? */
1375 if (rdev->use_count == 1 &&
1376 (rdev->constraints && !rdev->constraints->always_on)) {
1377
1378 /* we are last user */
1379 if (_regulator_can_change_status(rdev) &&
1380 rdev->desc->ops->disable) {
1381 ret = rdev->desc->ops->disable(rdev);
1382 if (ret < 0) {
1383 printk(KERN_ERR "%s: failed to disable %s\n",
1384 __func__, rdev_get_name(rdev));
1385 return ret;
1386 }
1387
1388 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1389 NULL);
1390 }
1391
1392 /* decrease our supplies ref count and disable if required */
1393 *supply_rdev_ptr = rdev->supply;
1394
1395 rdev->use_count = 0;
1396 } else if (rdev->use_count > 1) {
1397
1398 if (rdev->constraints &&
1399 (rdev->constraints->valid_ops_mask &
1400 REGULATOR_CHANGE_DRMS))
1401 drms_uA_update(rdev);
1402
1403 rdev->use_count--;
1404 }
1405 return ret;
1406 }
1407
1408 /**
1409 * regulator_disable - disable regulator output
1410 * @regulator: regulator source
1411 *
1412 * Disable the regulator output voltage or current. Calls to
1413 * regulator_enable() must be balanced with calls to
1414 * regulator_disable().
1415 *
1416 * NOTE: this will only disable the regulator output if no other consumer
1417 * devices have it enabled, the regulator device supports disabling and
1418 * machine constraints permit this operation.
1419 */
1420 int regulator_disable(struct regulator *regulator)
1421 {
1422 struct regulator_dev *rdev = regulator->rdev;
1423 struct regulator_dev *supply_rdev = NULL;
1424 int ret = 0;
1425
1426 mutex_lock(&rdev->mutex);
1427 ret = _regulator_disable(rdev, &supply_rdev);
1428 mutex_unlock(&rdev->mutex);
1429
1430 /* decrease our supplies ref count and disable if required */
1431 while (supply_rdev != NULL) {
1432 rdev = supply_rdev;
1433
1434 mutex_lock(&rdev->mutex);
1435 _regulator_disable(rdev, &supply_rdev);
1436 mutex_unlock(&rdev->mutex);
1437 }
1438
1439 return ret;
1440 }
1441 EXPORT_SYMBOL_GPL(regulator_disable);
1442
1443 /* locks held by regulator_force_disable() */
1444 static int _regulator_force_disable(struct regulator_dev *rdev,
1445 struct regulator_dev **supply_rdev_ptr)
1446 {
1447 int ret = 0;
1448
1449 /* force disable */
1450 if (rdev->desc->ops->disable) {
1451 /* ah well, who wants to live forever... */
1452 ret = rdev->desc->ops->disable(rdev);
1453 if (ret < 0) {
1454 printk(KERN_ERR "%s: failed to force disable %s\n",
1455 __func__, rdev_get_name(rdev));
1456 return ret;
1457 }
1458 /* notify other consumers that power has been forced off */
1459 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1460 REGULATOR_EVENT_DISABLE, NULL);
1461 }
1462
1463 /* decrease our supplies ref count and disable if required */
1464 *supply_rdev_ptr = rdev->supply;
1465
1466 rdev->use_count = 0;
1467 return ret;
1468 }
1469
1470 /**
1471 * regulator_force_disable - force disable regulator output
1472 * @regulator: regulator source
1473 *
1474 * Forcibly disable the regulator output voltage or current.
1475 * NOTE: this *will* disable the regulator output even if other consumer
1476 * devices have it enabled. This should be used for situations when device
1477 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1478 */
1479 int regulator_force_disable(struct regulator *regulator)
1480 {
1481 struct regulator_dev *supply_rdev = NULL;
1482 int ret;
1483
1484 mutex_lock(&regulator->rdev->mutex);
1485 regulator->uA_load = 0;
1486 ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1487 mutex_unlock(&regulator->rdev->mutex);
1488
1489 if (supply_rdev)
1490 regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1491
1492 return ret;
1493 }
1494 EXPORT_SYMBOL_GPL(regulator_force_disable);
1495
1496 static int _regulator_is_enabled(struct regulator_dev *rdev)
1497 {
1498 /* If we don't know then assume that the regulator is always on */
1499 if (!rdev->desc->ops->is_enabled)
1500 return 1;
1501
1502 return rdev->desc->ops->is_enabled(rdev);
1503 }
1504
1505 /**
1506 * regulator_is_enabled - is the regulator output enabled
1507 * @regulator: regulator source
1508 *
1509 * Returns positive if the regulator driver backing the source/client
1510 * has requested that the device be enabled, zero if it hasn't, else a
1511 * negative errno code.
1512 *
1513 * Note that the device backing this regulator handle can have multiple
1514 * users, so it might be enabled even if regulator_enable() was never
1515 * called for this particular source.
1516 */
1517 int regulator_is_enabled(struct regulator *regulator)
1518 {
1519 int ret;
1520
1521 mutex_lock(&regulator->rdev->mutex);
1522 ret = _regulator_is_enabled(regulator->rdev);
1523 mutex_unlock(&regulator->rdev->mutex);
1524
1525 return ret;
1526 }
1527 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1528
1529 /**
1530 * regulator_count_voltages - count regulator_list_voltage() selectors
1531 * @regulator: regulator source
1532 *
1533 * Returns number of selectors, or negative errno. Selectors are
1534 * numbered starting at zero, and typically correspond to bitfields
1535 * in hardware registers.
1536 */
1537 int regulator_count_voltages(struct regulator *regulator)
1538 {
1539 struct regulator_dev *rdev = regulator->rdev;
1540
1541 return rdev->desc->n_voltages ? : -EINVAL;
1542 }
1543 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1544
1545 /**
1546 * regulator_list_voltage - enumerate supported voltages
1547 * @regulator: regulator source
1548 * @selector: identify voltage to list
1549 * Context: can sleep
1550 *
1551 * Returns a voltage that can be passed to @regulator_set_voltage(),
1552 * zero if this selector code can't be used on this system, or a
1553 * negative errno.
1554 */
1555 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1556 {
1557 struct regulator_dev *rdev = regulator->rdev;
1558 struct regulator_ops *ops = rdev->desc->ops;
1559 int ret;
1560
1561 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1562 return -EINVAL;
1563
1564 mutex_lock(&rdev->mutex);
1565 ret = ops->list_voltage(rdev, selector);
1566 mutex_unlock(&rdev->mutex);
1567
1568 if (ret > 0) {
1569 if (ret < rdev->constraints->min_uV)
1570 ret = 0;
1571 else if (ret > rdev->constraints->max_uV)
1572 ret = 0;
1573 }
1574
1575 return ret;
1576 }
1577 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1578
1579 /**
1580 * regulator_is_supported_voltage - check if a voltage range can be supported
1581 *
1582 * @regulator: Regulator to check.
1583 * @min_uV: Minimum required voltage in uV.
1584 * @max_uV: Maximum required voltage in uV.
1585 *
1586 * Returns a boolean or a negative error code.
1587 */
1588 int regulator_is_supported_voltage(struct regulator *regulator,
1589 int min_uV, int max_uV)
1590 {
1591 int i, voltages, ret;
1592
1593 ret = regulator_count_voltages(regulator);
1594 if (ret < 0)
1595 return ret;
1596 voltages = ret;
1597
1598 for (i = 0; i < voltages; i++) {
1599 ret = regulator_list_voltage(regulator, i);
1600
1601 if (ret >= min_uV && ret <= max_uV)
1602 return 1;
1603 }
1604
1605 return 0;
1606 }
1607
1608 /**
1609 * regulator_set_voltage - set regulator output voltage
1610 * @regulator: regulator source
1611 * @min_uV: Minimum required voltage in uV
1612 * @max_uV: Maximum acceptable voltage in uV
1613 *
1614 * Sets a voltage regulator to the desired output voltage. This can be set
1615 * during any regulator state. IOW, regulator can be disabled or enabled.
1616 *
1617 * If the regulator is enabled then the voltage will change to the new value
1618 * immediately otherwise if the regulator is disabled the regulator will
1619 * output at the new voltage when enabled.
1620 *
1621 * NOTE: If the regulator is shared between several devices then the lowest
1622 * request voltage that meets the system constraints will be used.
1623 * Regulator system constraints must be set for this regulator before
1624 * calling this function otherwise this call will fail.
1625 */
1626 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1627 {
1628 struct regulator_dev *rdev = regulator->rdev;
1629 int ret;
1630
1631 mutex_lock(&rdev->mutex);
1632
1633 /* sanity check */
1634 if (!rdev->desc->ops->set_voltage) {
1635 ret = -EINVAL;
1636 goto out;
1637 }
1638
1639 /* constraints check */
1640 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1641 if (ret < 0)
1642 goto out;
1643 regulator->min_uV = min_uV;
1644 regulator->max_uV = max_uV;
1645 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1646
1647 out:
1648 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1649 mutex_unlock(&rdev->mutex);
1650 return ret;
1651 }
1652 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1653
1654 static int _regulator_get_voltage(struct regulator_dev *rdev)
1655 {
1656 /* sanity check */
1657 if (rdev->desc->ops->get_voltage)
1658 return rdev->desc->ops->get_voltage(rdev);
1659 else
1660 return -EINVAL;
1661 }
1662
1663 /**
1664 * regulator_get_voltage - get regulator output voltage
1665 * @regulator: regulator source
1666 *
1667 * This returns the current regulator voltage in uV.
1668 *
1669 * NOTE: If the regulator is disabled it will return the voltage value. This
1670 * function should not be used to determine regulator state.
1671 */
1672 int regulator_get_voltage(struct regulator *regulator)
1673 {
1674 int ret;
1675
1676 mutex_lock(&regulator->rdev->mutex);
1677
1678 ret = _regulator_get_voltage(regulator->rdev);
1679
1680 mutex_unlock(&regulator->rdev->mutex);
1681
1682 return ret;
1683 }
1684 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1685
1686 /**
1687 * regulator_set_current_limit - set regulator output current limit
1688 * @regulator: regulator source
1689 * @min_uA: Minimuum supported current in uA
1690 * @max_uA: Maximum supported current in uA
1691 *
1692 * Sets current sink to the desired output current. This can be set during
1693 * any regulator state. IOW, regulator can be disabled or enabled.
1694 *
1695 * If the regulator is enabled then the current will change to the new value
1696 * immediately otherwise if the regulator is disabled the regulator will
1697 * output at the new current when enabled.
1698 *
1699 * NOTE: Regulator system constraints must be set for this regulator before
1700 * calling this function otherwise this call will fail.
1701 */
1702 int regulator_set_current_limit(struct regulator *regulator,
1703 int min_uA, int max_uA)
1704 {
1705 struct regulator_dev *rdev = regulator->rdev;
1706 int ret;
1707
1708 mutex_lock(&rdev->mutex);
1709
1710 /* sanity check */
1711 if (!rdev->desc->ops->set_current_limit) {
1712 ret = -EINVAL;
1713 goto out;
1714 }
1715
1716 /* constraints check */
1717 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1718 if (ret < 0)
1719 goto out;
1720
1721 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1722 out:
1723 mutex_unlock(&rdev->mutex);
1724 return ret;
1725 }
1726 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1727
1728 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1729 {
1730 int ret;
1731
1732 mutex_lock(&rdev->mutex);
1733
1734 /* sanity check */
1735 if (!rdev->desc->ops->get_current_limit) {
1736 ret = -EINVAL;
1737 goto out;
1738 }
1739
1740 ret = rdev->desc->ops->get_current_limit(rdev);
1741 out:
1742 mutex_unlock(&rdev->mutex);
1743 return ret;
1744 }
1745
1746 /**
1747 * regulator_get_current_limit - get regulator output current
1748 * @regulator: regulator source
1749 *
1750 * This returns the current supplied by the specified current sink in uA.
1751 *
1752 * NOTE: If the regulator is disabled it will return the current value. This
1753 * function should not be used to determine regulator state.
1754 */
1755 int regulator_get_current_limit(struct regulator *regulator)
1756 {
1757 return _regulator_get_current_limit(regulator->rdev);
1758 }
1759 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1760
1761 /**
1762 * regulator_set_mode - set regulator operating mode
1763 * @regulator: regulator source
1764 * @mode: operating mode - one of the REGULATOR_MODE constants
1765 *
1766 * Set regulator operating mode to increase regulator efficiency or improve
1767 * regulation performance.
1768 *
1769 * NOTE: Regulator system constraints must be set for this regulator before
1770 * calling this function otherwise this call will fail.
1771 */
1772 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1773 {
1774 struct regulator_dev *rdev = regulator->rdev;
1775 int ret;
1776 int regulator_curr_mode;
1777
1778 mutex_lock(&rdev->mutex);
1779
1780 /* sanity check */
1781 if (!rdev->desc->ops->set_mode) {
1782 ret = -EINVAL;
1783 goto out;
1784 }
1785
1786 /* return if the same mode is requested */
1787 if (rdev->desc->ops->get_mode) {
1788 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1789 if (regulator_curr_mode == mode) {
1790 ret = 0;
1791 goto out;
1792 }
1793 }
1794
1795 /* constraints check */
1796 ret = regulator_check_mode(rdev, mode);
1797 if (ret < 0)
1798 goto out;
1799
1800 ret = rdev->desc->ops->set_mode(rdev, mode);
1801 out:
1802 mutex_unlock(&rdev->mutex);
1803 return ret;
1804 }
1805 EXPORT_SYMBOL_GPL(regulator_set_mode);
1806
1807 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1808 {
1809 int ret;
1810
1811 mutex_lock(&rdev->mutex);
1812
1813 /* sanity check */
1814 if (!rdev->desc->ops->get_mode) {
1815 ret = -EINVAL;
1816 goto out;
1817 }
1818
1819 ret = rdev->desc->ops->get_mode(rdev);
1820 out:
1821 mutex_unlock(&rdev->mutex);
1822 return ret;
1823 }
1824
1825 /**
1826 * regulator_get_mode - get regulator operating mode
1827 * @regulator: regulator source
1828 *
1829 * Get the current regulator operating mode.
1830 */
1831 unsigned int regulator_get_mode(struct regulator *regulator)
1832 {
1833 return _regulator_get_mode(regulator->rdev);
1834 }
1835 EXPORT_SYMBOL_GPL(regulator_get_mode);
1836
1837 /**
1838 * regulator_set_optimum_mode - set regulator optimum operating mode
1839 * @regulator: regulator source
1840 * @uA_load: load current
1841 *
1842 * Notifies the regulator core of a new device load. This is then used by
1843 * DRMS (if enabled by constraints) to set the most efficient regulator
1844 * operating mode for the new regulator loading.
1845 *
1846 * Consumer devices notify their supply regulator of the maximum power
1847 * they will require (can be taken from device datasheet in the power
1848 * consumption tables) when they change operational status and hence power
1849 * state. Examples of operational state changes that can affect power
1850 * consumption are :-
1851 *
1852 * o Device is opened / closed.
1853 * o Device I/O is about to begin or has just finished.
1854 * o Device is idling in between work.
1855 *
1856 * This information is also exported via sysfs to userspace.
1857 *
1858 * DRMS will sum the total requested load on the regulator and change
1859 * to the most efficient operating mode if platform constraints allow.
1860 *
1861 * Returns the new regulator mode or error.
1862 */
1863 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1864 {
1865 struct regulator_dev *rdev = regulator->rdev;
1866 struct regulator *consumer;
1867 int ret, output_uV, input_uV, total_uA_load = 0;
1868 unsigned int mode;
1869
1870 mutex_lock(&rdev->mutex);
1871
1872 regulator->uA_load = uA_load;
1873 ret = regulator_check_drms(rdev);
1874 if (ret < 0)
1875 goto out;
1876 ret = -EINVAL;
1877
1878 /* sanity check */
1879 if (!rdev->desc->ops->get_optimum_mode)
1880 goto out;
1881
1882 /* get output voltage */
1883 output_uV = rdev->desc->ops->get_voltage(rdev);
1884 if (output_uV <= 0) {
1885 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1886 __func__, rdev_get_name(rdev));
1887 goto out;
1888 }
1889
1890 /* get input voltage */
1891 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1892 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1893 else
1894 input_uV = rdev->constraints->input_uV;
1895 if (input_uV <= 0) {
1896 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1897 __func__, rdev_get_name(rdev));
1898 goto out;
1899 }
1900
1901 /* calc total requested load for this regulator */
1902 list_for_each_entry(consumer, &rdev->consumer_list, list)
1903 total_uA_load += consumer->uA_load;
1904
1905 mode = rdev->desc->ops->get_optimum_mode(rdev,
1906 input_uV, output_uV,
1907 total_uA_load);
1908 ret = regulator_check_mode(rdev, mode);
1909 if (ret < 0) {
1910 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1911 " %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev),
1912 total_uA_load, input_uV, output_uV);
1913 goto out;
1914 }
1915
1916 ret = rdev->desc->ops->set_mode(rdev, mode);
1917 if (ret < 0) {
1918 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1919 __func__, mode, rdev_get_name(rdev));
1920 goto out;
1921 }
1922 ret = mode;
1923 out:
1924 mutex_unlock(&rdev->mutex);
1925 return ret;
1926 }
1927 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1928
1929 /**
1930 * regulator_register_notifier - register regulator event notifier
1931 * @regulator: regulator source
1932 * @nb: notifier block
1933 *
1934 * Register notifier block to receive regulator events.
1935 */
1936 int regulator_register_notifier(struct regulator *regulator,
1937 struct notifier_block *nb)
1938 {
1939 return blocking_notifier_chain_register(&regulator->rdev->notifier,
1940 nb);
1941 }
1942 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1943
1944 /**
1945 * regulator_unregister_notifier - unregister regulator event notifier
1946 * @regulator: regulator source
1947 * @nb: notifier block
1948 *
1949 * Unregister regulator event notifier block.
1950 */
1951 int regulator_unregister_notifier(struct regulator *regulator,
1952 struct notifier_block *nb)
1953 {
1954 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1955 nb);
1956 }
1957 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1958
1959 /* notify regulator consumers and downstream regulator consumers.
1960 * Note mutex must be held by caller.
1961 */
1962 static void _notifier_call_chain(struct regulator_dev *rdev,
1963 unsigned long event, void *data)
1964 {
1965 struct regulator_dev *_rdev;
1966
1967 /* call rdev chain first */
1968 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1969
1970 /* now notify regulator we supply */
1971 list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1972 mutex_lock(&_rdev->mutex);
1973 _notifier_call_chain(_rdev, event, data);
1974 mutex_unlock(&_rdev->mutex);
1975 }
1976 }
1977
1978 /**
1979 * regulator_bulk_get - get multiple regulator consumers
1980 *
1981 * @dev: Device to supply
1982 * @num_consumers: Number of consumers to register
1983 * @consumers: Configuration of consumers; clients are stored here.
1984 *
1985 * @return 0 on success, an errno on failure.
1986 *
1987 * This helper function allows drivers to get several regulator
1988 * consumers in one operation. If any of the regulators cannot be
1989 * acquired then any regulators that were allocated will be freed
1990 * before returning to the caller.
1991 */
1992 int regulator_bulk_get(struct device *dev, int num_consumers,
1993 struct regulator_bulk_data *consumers)
1994 {
1995 int i;
1996 int ret;
1997
1998 for (i = 0; i < num_consumers; i++)
1999 consumers[i].consumer = NULL;
2000
2001 for (i = 0; i < num_consumers; i++) {
2002 consumers[i].consumer = regulator_get(dev,
2003 consumers[i].supply);
2004 if (IS_ERR(consumers[i].consumer)) {
2005 ret = PTR_ERR(consumers[i].consumer);
2006 dev_err(dev, "Failed to get supply '%s': %d\n",
2007 consumers[i].supply, ret);
2008 consumers[i].consumer = NULL;
2009 goto err;
2010 }
2011 }
2012
2013 return 0;
2014
2015 err:
2016 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2017 regulator_put(consumers[i].consumer);
2018
2019 return ret;
2020 }
2021 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2022
2023 /**
2024 * regulator_bulk_enable - enable multiple regulator consumers
2025 *
2026 * @num_consumers: Number of consumers
2027 * @consumers: Consumer data; clients are stored here.
2028 * @return 0 on success, an errno on failure
2029 *
2030 * This convenience API allows consumers to enable multiple regulator
2031 * clients in a single API call. If any consumers cannot be enabled
2032 * then any others that were enabled will be disabled again prior to
2033 * return.
2034 */
2035 int regulator_bulk_enable(int num_consumers,
2036 struct regulator_bulk_data *consumers)
2037 {
2038 int i;
2039 int ret;
2040
2041 for (i = 0; i < num_consumers; i++) {
2042 ret = regulator_enable(consumers[i].consumer);
2043 if (ret != 0)
2044 goto err;
2045 }
2046
2047 return 0;
2048
2049 err:
2050 printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
2051 for (--i; i >= 0; --i)
2052 regulator_disable(consumers[i].consumer);
2053
2054 return ret;
2055 }
2056 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2057
2058 /**
2059 * regulator_bulk_disable - disable multiple regulator consumers
2060 *
2061 * @num_consumers: Number of consumers
2062 * @consumers: Consumer data; clients are stored here.
2063 * @return 0 on success, an errno on failure
2064 *
2065 * This convenience API allows consumers to disable multiple regulator
2066 * clients in a single API call. If any consumers cannot be enabled
2067 * then any others that were disabled will be disabled again prior to
2068 * return.
2069 */
2070 int regulator_bulk_disable(int num_consumers,
2071 struct regulator_bulk_data *consumers)
2072 {
2073 int i;
2074 int ret;
2075
2076 for (i = 0; i < num_consumers; i++) {
2077 ret = regulator_disable(consumers[i].consumer);
2078 if (ret != 0)
2079 goto err;
2080 }
2081
2082 return 0;
2083
2084 err:
2085 printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
2086 ret);
2087 for (--i; i >= 0; --i)
2088 regulator_enable(consumers[i].consumer);
2089
2090 return ret;
2091 }
2092 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2093
2094 /**
2095 * regulator_bulk_free - free multiple regulator consumers
2096 *
2097 * @num_consumers: Number of consumers
2098 * @consumers: Consumer data; clients are stored here.
2099 *
2100 * This convenience API allows consumers to free multiple regulator
2101 * clients in a single API call.
2102 */
2103 void regulator_bulk_free(int num_consumers,
2104 struct regulator_bulk_data *consumers)
2105 {
2106 int i;
2107
2108 for (i = 0; i < num_consumers; i++) {
2109 regulator_put(consumers[i].consumer);
2110 consumers[i].consumer = NULL;
2111 }
2112 }
2113 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2114
2115 /**
2116 * regulator_notifier_call_chain - call regulator event notifier
2117 * @rdev: regulator source
2118 * @event: notifier block
2119 * @data: callback-specific data.
2120 *
2121 * Called by regulator drivers to notify clients a regulator event has
2122 * occurred. We also notify regulator clients downstream.
2123 * Note lock must be held by caller.
2124 */
2125 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2126 unsigned long event, void *data)
2127 {
2128 _notifier_call_chain(rdev, event, data);
2129 return NOTIFY_DONE;
2130
2131 }
2132 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2133
2134 /**
2135 * regulator_mode_to_status - convert a regulator mode into a status
2136 *
2137 * @mode: Mode to convert
2138 *
2139 * Convert a regulator mode into a status.
2140 */
2141 int regulator_mode_to_status(unsigned int mode)
2142 {
2143 switch (mode) {
2144 case REGULATOR_MODE_FAST:
2145 return REGULATOR_STATUS_FAST;
2146 case REGULATOR_MODE_NORMAL:
2147 return REGULATOR_STATUS_NORMAL;
2148 case REGULATOR_MODE_IDLE:
2149 return REGULATOR_STATUS_IDLE;
2150 case REGULATOR_STATUS_STANDBY:
2151 return REGULATOR_STATUS_STANDBY;
2152 default:
2153 return 0;
2154 }
2155 }
2156 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2157
2158 /*
2159 * To avoid cluttering sysfs (and memory) with useless state, only
2160 * create attributes that can be meaningfully displayed.
2161 */
2162 static int add_regulator_attributes(struct regulator_dev *rdev)
2163 {
2164 struct device *dev = &rdev->dev;
2165 struct regulator_ops *ops = rdev->desc->ops;
2166 int status = 0;
2167
2168 /* some attributes need specific methods to be displayed */
2169 if (ops->get_voltage) {
2170 status = device_create_file(dev, &dev_attr_microvolts);
2171 if (status < 0)
2172 return status;
2173 }
2174 if (ops->get_current_limit) {
2175 status = device_create_file(dev, &dev_attr_microamps);
2176 if (status < 0)
2177 return status;
2178 }
2179 if (ops->get_mode) {
2180 status = device_create_file(dev, &dev_attr_opmode);
2181 if (status < 0)
2182 return status;
2183 }
2184 if (ops->is_enabled) {
2185 status = device_create_file(dev, &dev_attr_state);
2186 if (status < 0)
2187 return status;
2188 }
2189 if (ops->get_status) {
2190 status = device_create_file(dev, &dev_attr_status);
2191 if (status < 0)
2192 return status;
2193 }
2194
2195 /* some attributes are type-specific */
2196 if (rdev->desc->type == REGULATOR_CURRENT) {
2197 status = device_create_file(dev, &dev_attr_requested_microamps);
2198 if (status < 0)
2199 return status;
2200 }
2201
2202 /* all the other attributes exist to support constraints;
2203 * don't show them if there are no constraints, or if the
2204 * relevant supporting methods are missing.
2205 */
2206 if (!rdev->constraints)
2207 return status;
2208
2209 /* constraints need specific supporting methods */
2210 if (ops->set_voltage) {
2211 status = device_create_file(dev, &dev_attr_min_microvolts);
2212 if (status < 0)
2213 return status;
2214 status = device_create_file(dev, &dev_attr_max_microvolts);
2215 if (status < 0)
2216 return status;
2217 }
2218 if (ops->set_current_limit) {
2219 status = device_create_file(dev, &dev_attr_min_microamps);
2220 if (status < 0)
2221 return status;
2222 status = device_create_file(dev, &dev_attr_max_microamps);
2223 if (status < 0)
2224 return status;
2225 }
2226
2227 /* suspend mode constraints need multiple supporting methods */
2228 if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2229 return status;
2230
2231 status = device_create_file(dev, &dev_attr_suspend_standby_state);
2232 if (status < 0)
2233 return status;
2234 status = device_create_file(dev, &dev_attr_suspend_mem_state);
2235 if (status < 0)
2236 return status;
2237 status = device_create_file(dev, &dev_attr_suspend_disk_state);
2238 if (status < 0)
2239 return status;
2240
2241 if (ops->set_suspend_voltage) {
2242 status = device_create_file(dev,
2243 &dev_attr_suspend_standby_microvolts);
2244 if (status < 0)
2245 return status;
2246 status = device_create_file(dev,
2247 &dev_attr_suspend_mem_microvolts);
2248 if (status < 0)
2249 return status;
2250 status = device_create_file(dev,
2251 &dev_attr_suspend_disk_microvolts);
2252 if (status < 0)
2253 return status;
2254 }
2255
2256 if (ops->set_suspend_mode) {
2257 status = device_create_file(dev,
2258 &dev_attr_suspend_standby_mode);
2259 if (status < 0)
2260 return status;
2261 status = device_create_file(dev,
2262 &dev_attr_suspend_mem_mode);
2263 if (status < 0)
2264 return status;
2265 status = device_create_file(dev,
2266 &dev_attr_suspend_disk_mode);
2267 if (status < 0)
2268 return status;
2269 }
2270
2271 return status;
2272 }
2273
2274 /**
2275 * regulator_register - register regulator
2276 * @regulator_desc: regulator to register
2277 * @dev: struct device for the regulator
2278 * @init_data: platform provided init data, passed through by driver
2279 * @driver_data: private regulator data
2280 *
2281 * Called by regulator drivers to register a regulator.
2282 * Returns 0 on success.
2283 */
2284 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2285 struct device *dev, struct regulator_init_data *init_data,
2286 void *driver_data)
2287 {
2288 static atomic_t regulator_no = ATOMIC_INIT(0);
2289 struct regulator_dev *rdev;
2290 int ret, i;
2291
2292 if (regulator_desc == NULL)
2293 return ERR_PTR(-EINVAL);
2294
2295 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2296 return ERR_PTR(-EINVAL);
2297
2298 if (regulator_desc->type != REGULATOR_VOLTAGE &&
2299 regulator_desc->type != REGULATOR_CURRENT)
2300 return ERR_PTR(-EINVAL);
2301
2302 if (!init_data)
2303 return ERR_PTR(-EINVAL);
2304
2305 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2306 if (rdev == NULL)
2307 return ERR_PTR(-ENOMEM);
2308
2309 mutex_lock(&regulator_list_mutex);
2310
2311 mutex_init(&rdev->mutex);
2312 rdev->reg_data = driver_data;
2313 rdev->owner = regulator_desc->owner;
2314 rdev->desc = regulator_desc;
2315 INIT_LIST_HEAD(&rdev->consumer_list);
2316 INIT_LIST_HEAD(&rdev->supply_list);
2317 INIT_LIST_HEAD(&rdev->list);
2318 INIT_LIST_HEAD(&rdev->slist);
2319 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2320
2321 /* preform any regulator specific init */
2322 if (init_data->regulator_init) {
2323 ret = init_data->regulator_init(rdev->reg_data);
2324 if (ret < 0)
2325 goto clean;
2326 }
2327
2328 /* register with sysfs */
2329 rdev->dev.class = &regulator_class;
2330 rdev->dev.parent = dev;
2331 dev_set_name(&rdev->dev, "regulator.%d",
2332 atomic_inc_return(&regulator_no) - 1);
2333 ret = device_register(&rdev->dev);
2334 if (ret != 0) {
2335 put_device(&rdev->dev);
2336 goto clean;
2337 }
2338
2339 dev_set_drvdata(&rdev->dev, rdev);
2340
2341 /* set regulator constraints */
2342 ret = set_machine_constraints(rdev, &init_data->constraints);
2343 if (ret < 0)
2344 goto scrub;
2345
2346 /* add attributes supported by this regulator */
2347 ret = add_regulator_attributes(rdev);
2348 if (ret < 0)
2349 goto scrub;
2350
2351 /* set supply regulator if it exists */
2352 if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2353 dev_err(dev,
2354 "Supply regulator specified by both name and dev\n");
2355 ret = -EINVAL;
2356 goto scrub;
2357 }
2358
2359 if (init_data->supply_regulator) {
2360 struct regulator_dev *r;
2361 int found = 0;
2362
2363 list_for_each_entry(r, &regulator_list, list) {
2364 if (strcmp(rdev_get_name(r),
2365 init_data->supply_regulator) == 0) {
2366 found = 1;
2367 break;
2368 }
2369 }
2370
2371 if (!found) {
2372 dev_err(dev, "Failed to find supply %s\n",
2373 init_data->supply_regulator);
2374 ret = -ENODEV;
2375 goto scrub;
2376 }
2377
2378 ret = set_supply(rdev, r);
2379 if (ret < 0)
2380 goto scrub;
2381 }
2382
2383 if (init_data->supply_regulator_dev) {
2384 dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2385 ret = set_supply(rdev,
2386 dev_get_drvdata(init_data->supply_regulator_dev));
2387 if (ret < 0)
2388 goto scrub;
2389 }
2390
2391 /* add consumers devices */
2392 for (i = 0; i < init_data->num_consumer_supplies; i++) {
2393 ret = set_consumer_device_supply(rdev,
2394 init_data->consumer_supplies[i].dev,
2395 init_data->consumer_supplies[i].dev_name,
2396 init_data->consumer_supplies[i].supply);
2397 if (ret < 0)
2398 goto unset_supplies;
2399 }
2400
2401 list_add(&rdev->list, &regulator_list);
2402 out:
2403 mutex_unlock(&regulator_list_mutex);
2404 return rdev;
2405
2406 unset_supplies:
2407 unset_regulator_supplies(rdev);
2408
2409 scrub:
2410 device_unregister(&rdev->dev);
2411 /* device core frees rdev */
2412 rdev = ERR_PTR(ret);
2413 goto out;
2414
2415 clean:
2416 kfree(rdev);
2417 rdev = ERR_PTR(ret);
2418 goto out;
2419 }
2420 EXPORT_SYMBOL_GPL(regulator_register);
2421
2422 /**
2423 * regulator_unregister - unregister regulator
2424 * @rdev: regulator to unregister
2425 *
2426 * Called by regulator drivers to unregister a regulator.
2427 */
2428 void regulator_unregister(struct regulator_dev *rdev)
2429 {
2430 if (rdev == NULL)
2431 return;
2432
2433 mutex_lock(&regulator_list_mutex);
2434 WARN_ON(rdev->open_count);
2435 unset_regulator_supplies(rdev);
2436 list_del(&rdev->list);
2437 if (rdev->supply)
2438 sysfs_remove_link(&rdev->dev.kobj, "supply");
2439 device_unregister(&rdev->dev);
2440 mutex_unlock(&regulator_list_mutex);
2441 }
2442 EXPORT_SYMBOL_GPL(regulator_unregister);
2443
2444 /**
2445 * regulator_suspend_prepare - prepare regulators for system wide suspend
2446 * @state: system suspend state
2447 *
2448 * Configure each regulator with it's suspend operating parameters for state.
2449 * This will usually be called by machine suspend code prior to supending.
2450 */
2451 int regulator_suspend_prepare(suspend_state_t state)
2452 {
2453 struct regulator_dev *rdev;
2454 int ret = 0;
2455
2456 /* ON is handled by regulator active state */
2457 if (state == PM_SUSPEND_ON)
2458 return -EINVAL;
2459
2460 mutex_lock(&regulator_list_mutex);
2461 list_for_each_entry(rdev, &regulator_list, list) {
2462
2463 mutex_lock(&rdev->mutex);
2464 ret = suspend_prepare(rdev, state);
2465 mutex_unlock(&rdev->mutex);
2466
2467 if (ret < 0) {
2468 printk(KERN_ERR "%s: failed to prepare %s\n",
2469 __func__, rdev_get_name(rdev));
2470 goto out;
2471 }
2472 }
2473 out:
2474 mutex_unlock(&regulator_list_mutex);
2475 return ret;
2476 }
2477 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2478
2479 /**
2480 * regulator_has_full_constraints - the system has fully specified constraints
2481 *
2482 * Calling this function will cause the regulator API to disable all
2483 * regulators which have a zero use count and don't have an always_on
2484 * constraint in a late_initcall.
2485 *
2486 * The intention is that this will become the default behaviour in a
2487 * future kernel release so users are encouraged to use this facility
2488 * now.
2489 */
2490 void regulator_has_full_constraints(void)
2491 {
2492 has_full_constraints = 1;
2493 }
2494 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2495
2496 /**
2497 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2498 *
2499 * Calling this function will cause the regulator API to provide a
2500 * dummy regulator to consumers if no physical regulator is found,
2501 * allowing most consumers to proceed as though a regulator were
2502 * configured. This allows systems such as those with software
2503 * controllable regulators for the CPU core only to be brought up more
2504 * readily.
2505 */
2506 void regulator_use_dummy_regulator(void)
2507 {
2508 board_wants_dummy_regulator = true;
2509 }
2510 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2511
2512 /**
2513 * rdev_get_drvdata - get rdev regulator driver data
2514 * @rdev: regulator
2515 *
2516 * Get rdev regulator driver private data. This call can be used in the
2517 * regulator driver context.
2518 */
2519 void *rdev_get_drvdata(struct regulator_dev *rdev)
2520 {
2521 return rdev->reg_data;
2522 }
2523 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2524
2525 /**
2526 * regulator_get_drvdata - get regulator driver data
2527 * @regulator: regulator
2528 *
2529 * Get regulator driver private data. This call can be used in the consumer
2530 * driver context when non API regulator specific functions need to be called.
2531 */
2532 void *regulator_get_drvdata(struct regulator *regulator)
2533 {
2534 return regulator->rdev->reg_data;
2535 }
2536 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2537
2538 /**
2539 * regulator_set_drvdata - set regulator driver data
2540 * @regulator: regulator
2541 * @data: data
2542 */
2543 void regulator_set_drvdata(struct regulator *regulator, void *data)
2544 {
2545 regulator->rdev->reg_data = data;
2546 }
2547 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2548
2549 /**
2550 * regulator_get_id - get regulator ID
2551 * @rdev: regulator
2552 */
2553 int rdev_get_id(struct regulator_dev *rdev)
2554 {
2555 return rdev->desc->id;
2556 }
2557 EXPORT_SYMBOL_GPL(rdev_get_id);
2558
2559 struct device *rdev_get_dev(struct regulator_dev *rdev)
2560 {
2561 return &rdev->dev;
2562 }
2563 EXPORT_SYMBOL_GPL(rdev_get_dev);
2564
2565 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2566 {
2567 return reg_init_data->driver_data;
2568 }
2569 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2570
2571 static int __init regulator_init(void)
2572 {
2573 int ret;
2574
2575 printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2576
2577 ret = class_register(&regulator_class);
2578
2579 regulator_dummy_init();
2580
2581 return ret;
2582 }
2583
2584 /* init early to allow our consumers to complete system booting */
2585 core_initcall(regulator_init);
2586
2587 static int __init regulator_init_complete(void)
2588 {
2589 struct regulator_dev *rdev;
2590 struct regulator_ops *ops;
2591 struct regulation_constraints *c;
2592 int enabled, ret;
2593 const char *name;
2594
2595 mutex_lock(&regulator_list_mutex);
2596
2597 /* If we have a full configuration then disable any regulators
2598 * which are not in use or always_on. This will become the
2599 * default behaviour in the future.
2600 */
2601 list_for_each_entry(rdev, &regulator_list, list) {
2602 ops = rdev->desc->ops;
2603 c = rdev->constraints;
2604
2605 name = rdev_get_name(rdev);
2606
2607 if (!ops->disable || (c && c->always_on))
2608 continue;
2609
2610 mutex_lock(&rdev->mutex);
2611
2612 if (rdev->use_count)
2613 goto unlock;
2614
2615 /* If we can't read the status assume it's on. */
2616 if (ops->is_enabled)
2617 enabled = ops->is_enabled(rdev);
2618 else
2619 enabled = 1;
2620
2621 if (!enabled)
2622 goto unlock;
2623
2624 if (has_full_constraints) {
2625 /* We log since this may kill the system if it
2626 * goes wrong. */
2627 printk(KERN_INFO "%s: disabling %s\n",
2628 __func__, name);
2629 ret = ops->disable(rdev);
2630 if (ret != 0) {
2631 printk(KERN_ERR
2632 "%s: couldn't disable %s: %d\n",
2633 __func__, name, ret);
2634 }
2635 } else {
2636 /* The intention is that in future we will
2637 * assume that full constraints are provided
2638 * so warn even if we aren't going to do
2639 * anything here.
2640 */
2641 printk(KERN_WARNING
2642 "%s: incomplete constraints, leaving %s on\n",
2643 __func__, name);
2644 }
2645
2646 unlock:
2647 mutex_unlock(&rdev->mutex);
2648 }
2649
2650 mutex_unlock(&regulator_list_mutex);
2651
2652 return 0;
2653 }
2654 late_initcall(regulator_init_complete);
This page took 0.090839 seconds and 5 git commands to generate.