usb: dwc3: ep0: trace ep0 TRBs too
[deliverable/linux.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59
60 static struct dentry *debugfs_root;
61
62 /*
63 * struct regulator_map
64 *
65 * Used to provide symbolic supply names to devices.
66 */
67 struct regulator_map {
68 struct list_head list;
69 const char *dev_name; /* The dev_name() for the consumer */
70 const char *supply;
71 struct regulator_dev *regulator;
72 };
73
74 /*
75 * struct regulator_enable_gpio
76 *
77 * Management for shared enable GPIO pin
78 */
79 struct regulator_enable_gpio {
80 struct list_head list;
81 struct gpio_desc *gpiod;
82 u32 enable_count; /* a number of enabled shared GPIO */
83 u32 request_count; /* a number of requested shared GPIO */
84 unsigned int ena_gpio_invert:1;
85 };
86
87 /*
88 * struct regulator_supply_alias
89 *
90 * Used to map lookups for a supply onto an alternative device.
91 */
92 struct regulator_supply_alias {
93 struct list_head list;
94 struct device *src_dev;
95 const char *src_supply;
96 struct device *alias_dev;
97 const char *alias_supply;
98 };
99
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static int _notifier_call_chain(struct regulator_dev *rdev,
106 unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108 int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110 struct device *dev,
111 const char *supply_name);
112
113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115 if (rdev->constraints && rdev->constraints->name)
116 return rdev->constraints->name;
117 else if (rdev->desc->name)
118 return rdev->desc->name;
119 else
120 return "";
121 }
122
123 static bool have_full_constraints(void)
124 {
125 return has_full_constraints || of_have_populated_dt();
126 }
127
128 /**
129 * of_get_regulator - get a regulator device node based on supply name
130 * @dev: Device pointer for the consumer (of regulator) device
131 * @supply: regulator supply name
132 *
133 * Extract the regulator device node corresponding to the supply name.
134 * returns the device node corresponding to the regulator if found, else
135 * returns NULL.
136 */
137 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138 {
139 struct device_node *regnode = NULL;
140 char prop_name[32]; /* 32 is max size of property name */
141
142 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143
144 snprintf(prop_name, 32, "%s-supply", supply);
145 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
146
147 if (!regnode) {
148 dev_dbg(dev, "Looking up %s property in node %s failed",
149 prop_name, dev->of_node->full_name);
150 return NULL;
151 }
152 return regnode;
153 }
154
155 static int _regulator_can_change_status(struct regulator_dev *rdev)
156 {
157 if (!rdev->constraints)
158 return 0;
159
160 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
161 return 1;
162 else
163 return 0;
164 }
165
166 /* Platform voltage constraint check */
167 static int regulator_check_voltage(struct regulator_dev *rdev,
168 int *min_uV, int *max_uV)
169 {
170 BUG_ON(*min_uV > *max_uV);
171
172 if (!rdev->constraints) {
173 rdev_err(rdev, "no constraints\n");
174 return -ENODEV;
175 }
176 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177 rdev_err(rdev, "operation not allowed\n");
178 return -EPERM;
179 }
180
181 if (*max_uV > rdev->constraints->max_uV)
182 *max_uV = rdev->constraints->max_uV;
183 if (*min_uV < rdev->constraints->min_uV)
184 *min_uV = rdev->constraints->min_uV;
185
186 if (*min_uV > *max_uV) {
187 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188 *min_uV, *max_uV);
189 return -EINVAL;
190 }
191
192 return 0;
193 }
194
195 /* Make sure we select a voltage that suits the needs of all
196 * regulator consumers
197 */
198 static int regulator_check_consumers(struct regulator_dev *rdev,
199 int *min_uV, int *max_uV)
200 {
201 struct regulator *regulator;
202
203 list_for_each_entry(regulator, &rdev->consumer_list, list) {
204 /*
205 * Assume consumers that didn't say anything are OK
206 * with anything in the constraint range.
207 */
208 if (!regulator->min_uV && !regulator->max_uV)
209 continue;
210
211 if (*max_uV > regulator->max_uV)
212 *max_uV = regulator->max_uV;
213 if (*min_uV < regulator->min_uV)
214 *min_uV = regulator->min_uV;
215 }
216
217 if (*min_uV > *max_uV) {
218 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
219 *min_uV, *max_uV);
220 return -EINVAL;
221 }
222
223 return 0;
224 }
225
226 /* current constraint check */
227 static int regulator_check_current_limit(struct regulator_dev *rdev,
228 int *min_uA, int *max_uA)
229 {
230 BUG_ON(*min_uA > *max_uA);
231
232 if (!rdev->constraints) {
233 rdev_err(rdev, "no constraints\n");
234 return -ENODEV;
235 }
236 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237 rdev_err(rdev, "operation not allowed\n");
238 return -EPERM;
239 }
240
241 if (*max_uA > rdev->constraints->max_uA)
242 *max_uA = rdev->constraints->max_uA;
243 if (*min_uA < rdev->constraints->min_uA)
244 *min_uA = rdev->constraints->min_uA;
245
246 if (*min_uA > *max_uA) {
247 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248 *min_uA, *max_uA);
249 return -EINVAL;
250 }
251
252 return 0;
253 }
254
255 /* operating mode constraint check */
256 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257 {
258 switch (*mode) {
259 case REGULATOR_MODE_FAST:
260 case REGULATOR_MODE_NORMAL:
261 case REGULATOR_MODE_IDLE:
262 case REGULATOR_MODE_STANDBY:
263 break;
264 default:
265 rdev_err(rdev, "invalid mode %x specified\n", *mode);
266 return -EINVAL;
267 }
268
269 if (!rdev->constraints) {
270 rdev_err(rdev, "no constraints\n");
271 return -ENODEV;
272 }
273 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274 rdev_err(rdev, "operation not allowed\n");
275 return -EPERM;
276 }
277
278 /* The modes are bitmasks, the most power hungry modes having
279 * the lowest values. If the requested mode isn't supported
280 * try higher modes. */
281 while (*mode) {
282 if (rdev->constraints->valid_modes_mask & *mode)
283 return 0;
284 *mode /= 2;
285 }
286
287 return -EINVAL;
288 }
289
290 /* dynamic regulator mode switching constraint check */
291 static int regulator_check_drms(struct regulator_dev *rdev)
292 {
293 if (!rdev->constraints) {
294 rdev_err(rdev, "no constraints\n");
295 return -ENODEV;
296 }
297 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298 rdev_err(rdev, "operation not allowed\n");
299 return -EPERM;
300 }
301 return 0;
302 }
303
304 static ssize_t regulator_uV_show(struct device *dev,
305 struct device_attribute *attr, char *buf)
306 {
307 struct regulator_dev *rdev = dev_get_drvdata(dev);
308 ssize_t ret;
309
310 mutex_lock(&rdev->mutex);
311 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
312 mutex_unlock(&rdev->mutex);
313
314 return ret;
315 }
316 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317
318 static ssize_t regulator_uA_show(struct device *dev,
319 struct device_attribute *attr, char *buf)
320 {
321 struct regulator_dev *rdev = dev_get_drvdata(dev);
322
323 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324 }
325 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326
327 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
328 char *buf)
329 {
330 struct regulator_dev *rdev = dev_get_drvdata(dev);
331
332 return sprintf(buf, "%s\n", rdev_get_name(rdev));
333 }
334 static DEVICE_ATTR_RO(name);
335
336 static ssize_t regulator_print_opmode(char *buf, int mode)
337 {
338 switch (mode) {
339 case REGULATOR_MODE_FAST:
340 return sprintf(buf, "fast\n");
341 case REGULATOR_MODE_NORMAL:
342 return sprintf(buf, "normal\n");
343 case REGULATOR_MODE_IDLE:
344 return sprintf(buf, "idle\n");
345 case REGULATOR_MODE_STANDBY:
346 return sprintf(buf, "standby\n");
347 }
348 return sprintf(buf, "unknown\n");
349 }
350
351 static ssize_t regulator_opmode_show(struct device *dev,
352 struct device_attribute *attr, char *buf)
353 {
354 struct regulator_dev *rdev = dev_get_drvdata(dev);
355
356 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 }
358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359
360 static ssize_t regulator_print_state(char *buf, int state)
361 {
362 if (state > 0)
363 return sprintf(buf, "enabled\n");
364 else if (state == 0)
365 return sprintf(buf, "disabled\n");
366 else
367 return sprintf(buf, "unknown\n");
368 }
369
370 static ssize_t regulator_state_show(struct device *dev,
371 struct device_attribute *attr, char *buf)
372 {
373 struct regulator_dev *rdev = dev_get_drvdata(dev);
374 ssize_t ret;
375
376 mutex_lock(&rdev->mutex);
377 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378 mutex_unlock(&rdev->mutex);
379
380 return ret;
381 }
382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383
384 static ssize_t regulator_status_show(struct device *dev,
385 struct device_attribute *attr, char *buf)
386 {
387 struct regulator_dev *rdev = dev_get_drvdata(dev);
388 int status;
389 char *label;
390
391 status = rdev->desc->ops->get_status(rdev);
392 if (status < 0)
393 return status;
394
395 switch (status) {
396 case REGULATOR_STATUS_OFF:
397 label = "off";
398 break;
399 case REGULATOR_STATUS_ON:
400 label = "on";
401 break;
402 case REGULATOR_STATUS_ERROR:
403 label = "error";
404 break;
405 case REGULATOR_STATUS_FAST:
406 label = "fast";
407 break;
408 case REGULATOR_STATUS_NORMAL:
409 label = "normal";
410 break;
411 case REGULATOR_STATUS_IDLE:
412 label = "idle";
413 break;
414 case REGULATOR_STATUS_STANDBY:
415 label = "standby";
416 break;
417 case REGULATOR_STATUS_BYPASS:
418 label = "bypass";
419 break;
420 case REGULATOR_STATUS_UNDEFINED:
421 label = "undefined";
422 break;
423 default:
424 return -ERANGE;
425 }
426
427 return sprintf(buf, "%s\n", label);
428 }
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431 static ssize_t regulator_min_uA_show(struct device *dev,
432 struct device_attribute *attr, char *buf)
433 {
434 struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436 if (!rdev->constraints)
437 return sprintf(buf, "constraint not defined\n");
438
439 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 }
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443 static ssize_t regulator_max_uA_show(struct device *dev,
444 struct device_attribute *attr, char *buf)
445 {
446 struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448 if (!rdev->constraints)
449 return sprintf(buf, "constraint not defined\n");
450
451 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 }
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455 static ssize_t regulator_min_uV_show(struct device *dev,
456 struct device_attribute *attr, char *buf)
457 {
458 struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460 if (!rdev->constraints)
461 return sprintf(buf, "constraint not defined\n");
462
463 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 }
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467 static ssize_t regulator_max_uV_show(struct device *dev,
468 struct device_attribute *attr, char *buf)
469 {
470 struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472 if (!rdev->constraints)
473 return sprintf(buf, "constraint not defined\n");
474
475 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 }
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479 static ssize_t regulator_total_uA_show(struct device *dev,
480 struct device_attribute *attr, char *buf)
481 {
482 struct regulator_dev *rdev = dev_get_drvdata(dev);
483 struct regulator *regulator;
484 int uA = 0;
485
486 mutex_lock(&rdev->mutex);
487 list_for_each_entry(regulator, &rdev->consumer_list, list)
488 uA += regulator->uA_load;
489 mutex_unlock(&rdev->mutex);
490 return sprintf(buf, "%d\n", uA);
491 }
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
495 char *buf)
496 {
497 struct regulator_dev *rdev = dev_get_drvdata(dev);
498 return sprintf(buf, "%d\n", rdev->use_count);
499 }
500 static DEVICE_ATTR_RO(num_users);
501
502 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
503 char *buf)
504 {
505 struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507 switch (rdev->desc->type) {
508 case REGULATOR_VOLTAGE:
509 return sprintf(buf, "voltage\n");
510 case REGULATOR_CURRENT:
511 return sprintf(buf, "current\n");
512 }
513 return sprintf(buf, "unknown\n");
514 }
515 static DEVICE_ATTR_RO(type);
516
517 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
518 struct device_attribute *attr, char *buf)
519 {
520 struct regulator_dev *rdev = dev_get_drvdata(dev);
521
522 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
523 }
524 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
525 regulator_suspend_mem_uV_show, NULL);
526
527 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
528 struct device_attribute *attr, char *buf)
529 {
530 struct regulator_dev *rdev = dev_get_drvdata(dev);
531
532 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
533 }
534 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
535 regulator_suspend_disk_uV_show, NULL);
536
537 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
538 struct device_attribute *attr, char *buf)
539 {
540 struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
543 }
544 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
545 regulator_suspend_standby_uV_show, NULL);
546
547 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
548 struct device_attribute *attr, char *buf)
549 {
550 struct regulator_dev *rdev = dev_get_drvdata(dev);
551
552 return regulator_print_opmode(buf,
553 rdev->constraints->state_mem.mode);
554 }
555 static DEVICE_ATTR(suspend_mem_mode, 0444,
556 regulator_suspend_mem_mode_show, NULL);
557
558 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
559 struct device_attribute *attr, char *buf)
560 {
561 struct regulator_dev *rdev = dev_get_drvdata(dev);
562
563 return regulator_print_opmode(buf,
564 rdev->constraints->state_disk.mode);
565 }
566 static DEVICE_ATTR(suspend_disk_mode, 0444,
567 regulator_suspend_disk_mode_show, NULL);
568
569 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
570 struct device_attribute *attr, char *buf)
571 {
572 struct regulator_dev *rdev = dev_get_drvdata(dev);
573
574 return regulator_print_opmode(buf,
575 rdev->constraints->state_standby.mode);
576 }
577 static DEVICE_ATTR(suspend_standby_mode, 0444,
578 regulator_suspend_standby_mode_show, NULL);
579
580 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
581 struct device_attribute *attr, char *buf)
582 {
583 struct regulator_dev *rdev = dev_get_drvdata(dev);
584
585 return regulator_print_state(buf,
586 rdev->constraints->state_mem.enabled);
587 }
588 static DEVICE_ATTR(suspend_mem_state, 0444,
589 regulator_suspend_mem_state_show, NULL);
590
591 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
592 struct device_attribute *attr, char *buf)
593 {
594 struct regulator_dev *rdev = dev_get_drvdata(dev);
595
596 return regulator_print_state(buf,
597 rdev->constraints->state_disk.enabled);
598 }
599 static DEVICE_ATTR(suspend_disk_state, 0444,
600 regulator_suspend_disk_state_show, NULL);
601
602 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
603 struct device_attribute *attr, char *buf)
604 {
605 struct regulator_dev *rdev = dev_get_drvdata(dev);
606
607 return regulator_print_state(buf,
608 rdev->constraints->state_standby.enabled);
609 }
610 static DEVICE_ATTR(suspend_standby_state, 0444,
611 regulator_suspend_standby_state_show, NULL);
612
613 static ssize_t regulator_bypass_show(struct device *dev,
614 struct device_attribute *attr, char *buf)
615 {
616 struct regulator_dev *rdev = dev_get_drvdata(dev);
617 const char *report;
618 bool bypass;
619 int ret;
620
621 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
622
623 if (ret != 0)
624 report = "unknown";
625 else if (bypass)
626 report = "enabled";
627 else
628 report = "disabled";
629
630 return sprintf(buf, "%s\n", report);
631 }
632 static DEVICE_ATTR(bypass, 0444,
633 regulator_bypass_show, NULL);
634
635 /*
636 * These are the only attributes are present for all regulators.
637 * Other attributes are a function of regulator functionality.
638 */
639 static struct attribute *regulator_dev_attrs[] = {
640 &dev_attr_name.attr,
641 &dev_attr_num_users.attr,
642 &dev_attr_type.attr,
643 NULL,
644 };
645 ATTRIBUTE_GROUPS(regulator_dev);
646
647 static void regulator_dev_release(struct device *dev)
648 {
649 struct regulator_dev *rdev = dev_get_drvdata(dev);
650 kfree(rdev);
651 }
652
653 static struct class regulator_class = {
654 .name = "regulator",
655 .dev_release = regulator_dev_release,
656 .dev_groups = regulator_dev_groups,
657 };
658
659 /* Calculate the new optimum regulator operating mode based on the new total
660 * consumer load. All locks held by caller */
661 static void drms_uA_update(struct regulator_dev *rdev)
662 {
663 struct regulator *sibling;
664 int current_uA = 0, output_uV, input_uV, err;
665 unsigned int mode;
666
667 err = regulator_check_drms(rdev);
668 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
669 (!rdev->desc->ops->get_voltage &&
670 !rdev->desc->ops->get_voltage_sel) ||
671 !rdev->desc->ops->set_mode)
672 return;
673
674 /* get output voltage */
675 output_uV = _regulator_get_voltage(rdev);
676 if (output_uV <= 0)
677 return;
678
679 /* get input voltage */
680 input_uV = 0;
681 if (rdev->supply)
682 input_uV = regulator_get_voltage(rdev->supply);
683 if (input_uV <= 0)
684 input_uV = rdev->constraints->input_uV;
685 if (input_uV <= 0)
686 return;
687
688 /* calc total requested load */
689 list_for_each_entry(sibling, &rdev->consumer_list, list)
690 current_uA += sibling->uA_load;
691
692 /* now get the optimum mode for our new total regulator load */
693 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
694 output_uV, current_uA);
695
696 /* check the new mode is allowed */
697 err = regulator_mode_constrain(rdev, &mode);
698 if (err == 0)
699 rdev->desc->ops->set_mode(rdev, mode);
700 }
701
702 static int suspend_set_state(struct regulator_dev *rdev,
703 struct regulator_state *rstate)
704 {
705 int ret = 0;
706
707 /* If we have no suspend mode configration don't set anything;
708 * only warn if the driver implements set_suspend_voltage or
709 * set_suspend_mode callback.
710 */
711 if (!rstate->enabled && !rstate->disabled) {
712 if (rdev->desc->ops->set_suspend_voltage ||
713 rdev->desc->ops->set_suspend_mode)
714 rdev_warn(rdev, "No configuration\n");
715 return 0;
716 }
717
718 if (rstate->enabled && rstate->disabled) {
719 rdev_err(rdev, "invalid configuration\n");
720 return -EINVAL;
721 }
722
723 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
724 ret = rdev->desc->ops->set_suspend_enable(rdev);
725 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
726 ret = rdev->desc->ops->set_suspend_disable(rdev);
727 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
728 ret = 0;
729
730 if (ret < 0) {
731 rdev_err(rdev, "failed to enabled/disable\n");
732 return ret;
733 }
734
735 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
736 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
737 if (ret < 0) {
738 rdev_err(rdev, "failed to set voltage\n");
739 return ret;
740 }
741 }
742
743 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
744 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
745 if (ret < 0) {
746 rdev_err(rdev, "failed to set mode\n");
747 return ret;
748 }
749 }
750 return ret;
751 }
752
753 /* locks held by caller */
754 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
755 {
756 if (!rdev->constraints)
757 return -EINVAL;
758
759 switch (state) {
760 case PM_SUSPEND_STANDBY:
761 return suspend_set_state(rdev,
762 &rdev->constraints->state_standby);
763 case PM_SUSPEND_MEM:
764 return suspend_set_state(rdev,
765 &rdev->constraints->state_mem);
766 case PM_SUSPEND_MAX:
767 return suspend_set_state(rdev,
768 &rdev->constraints->state_disk);
769 default:
770 return -EINVAL;
771 }
772 }
773
774 static void print_constraints(struct regulator_dev *rdev)
775 {
776 struct regulation_constraints *constraints = rdev->constraints;
777 char buf[80] = "";
778 int count = 0;
779 int ret;
780
781 if (constraints->min_uV && constraints->max_uV) {
782 if (constraints->min_uV == constraints->max_uV)
783 count += sprintf(buf + count, "%d mV ",
784 constraints->min_uV / 1000);
785 else
786 count += sprintf(buf + count, "%d <--> %d mV ",
787 constraints->min_uV / 1000,
788 constraints->max_uV / 1000);
789 }
790
791 if (!constraints->min_uV ||
792 constraints->min_uV != constraints->max_uV) {
793 ret = _regulator_get_voltage(rdev);
794 if (ret > 0)
795 count += sprintf(buf + count, "at %d mV ", ret / 1000);
796 }
797
798 if (constraints->uV_offset)
799 count += sprintf(buf, "%dmV offset ",
800 constraints->uV_offset / 1000);
801
802 if (constraints->min_uA && constraints->max_uA) {
803 if (constraints->min_uA == constraints->max_uA)
804 count += sprintf(buf + count, "%d mA ",
805 constraints->min_uA / 1000);
806 else
807 count += sprintf(buf + count, "%d <--> %d mA ",
808 constraints->min_uA / 1000,
809 constraints->max_uA / 1000);
810 }
811
812 if (!constraints->min_uA ||
813 constraints->min_uA != constraints->max_uA) {
814 ret = _regulator_get_current_limit(rdev);
815 if (ret > 0)
816 count += sprintf(buf + count, "at %d mA ", ret / 1000);
817 }
818
819 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
820 count += sprintf(buf + count, "fast ");
821 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
822 count += sprintf(buf + count, "normal ");
823 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
824 count += sprintf(buf + count, "idle ");
825 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
826 count += sprintf(buf + count, "standby");
827
828 if (!count)
829 sprintf(buf, "no parameters");
830
831 rdev_info(rdev, "%s\n", buf);
832
833 if ((constraints->min_uV != constraints->max_uV) &&
834 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
835 rdev_warn(rdev,
836 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
837 }
838
839 static int machine_constraints_voltage(struct regulator_dev *rdev,
840 struct regulation_constraints *constraints)
841 {
842 const struct regulator_ops *ops = rdev->desc->ops;
843 int ret;
844
845 /* do we need to apply the constraint voltage */
846 if (rdev->constraints->apply_uV &&
847 rdev->constraints->min_uV == rdev->constraints->max_uV) {
848 int current_uV = _regulator_get_voltage(rdev);
849 if (current_uV < 0) {
850 rdev_err(rdev,
851 "failed to get the current voltage(%d)\n",
852 current_uV);
853 return current_uV;
854 }
855 if (current_uV < rdev->constraints->min_uV ||
856 current_uV > rdev->constraints->max_uV) {
857 ret = _regulator_do_set_voltage(
858 rdev, rdev->constraints->min_uV,
859 rdev->constraints->max_uV);
860 if (ret < 0) {
861 rdev_err(rdev,
862 "failed to apply %duV constraint(%d)\n",
863 rdev->constraints->min_uV, ret);
864 return ret;
865 }
866 }
867 }
868
869 /* constrain machine-level voltage specs to fit
870 * the actual range supported by this regulator.
871 */
872 if (ops->list_voltage && rdev->desc->n_voltages) {
873 int count = rdev->desc->n_voltages;
874 int i;
875 int min_uV = INT_MAX;
876 int max_uV = INT_MIN;
877 int cmin = constraints->min_uV;
878 int cmax = constraints->max_uV;
879
880 /* it's safe to autoconfigure fixed-voltage supplies
881 and the constraints are used by list_voltage. */
882 if (count == 1 && !cmin) {
883 cmin = 1;
884 cmax = INT_MAX;
885 constraints->min_uV = cmin;
886 constraints->max_uV = cmax;
887 }
888
889 /* voltage constraints are optional */
890 if ((cmin == 0) && (cmax == 0))
891 return 0;
892
893 /* else require explicit machine-level constraints */
894 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
895 rdev_err(rdev, "invalid voltage constraints\n");
896 return -EINVAL;
897 }
898
899 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
900 for (i = 0; i < count; i++) {
901 int value;
902
903 value = ops->list_voltage(rdev, i);
904 if (value <= 0)
905 continue;
906
907 /* maybe adjust [min_uV..max_uV] */
908 if (value >= cmin && value < min_uV)
909 min_uV = value;
910 if (value <= cmax && value > max_uV)
911 max_uV = value;
912 }
913
914 /* final: [min_uV..max_uV] valid iff constraints valid */
915 if (max_uV < min_uV) {
916 rdev_err(rdev,
917 "unsupportable voltage constraints %u-%uuV\n",
918 min_uV, max_uV);
919 return -EINVAL;
920 }
921
922 /* use regulator's subset of machine constraints */
923 if (constraints->min_uV < min_uV) {
924 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
925 constraints->min_uV, min_uV);
926 constraints->min_uV = min_uV;
927 }
928 if (constraints->max_uV > max_uV) {
929 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
930 constraints->max_uV, max_uV);
931 constraints->max_uV = max_uV;
932 }
933 }
934
935 return 0;
936 }
937
938 static int machine_constraints_current(struct regulator_dev *rdev,
939 struct regulation_constraints *constraints)
940 {
941 const struct regulator_ops *ops = rdev->desc->ops;
942 int ret;
943
944 if (!constraints->min_uA && !constraints->max_uA)
945 return 0;
946
947 if (constraints->min_uA > constraints->max_uA) {
948 rdev_err(rdev, "Invalid current constraints\n");
949 return -EINVAL;
950 }
951
952 if (!ops->set_current_limit || !ops->get_current_limit) {
953 rdev_warn(rdev, "Operation of current configuration missing\n");
954 return 0;
955 }
956
957 /* Set regulator current in constraints range */
958 ret = ops->set_current_limit(rdev, constraints->min_uA,
959 constraints->max_uA);
960 if (ret < 0) {
961 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
962 return ret;
963 }
964
965 return 0;
966 }
967
968 static int _regulator_do_enable(struct regulator_dev *rdev);
969
970 /**
971 * set_machine_constraints - sets regulator constraints
972 * @rdev: regulator source
973 * @constraints: constraints to apply
974 *
975 * Allows platform initialisation code to define and constrain
976 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
977 * Constraints *must* be set by platform code in order for some
978 * regulator operations to proceed i.e. set_voltage, set_current_limit,
979 * set_mode.
980 */
981 static int set_machine_constraints(struct regulator_dev *rdev,
982 const struct regulation_constraints *constraints)
983 {
984 int ret = 0;
985 const struct regulator_ops *ops = rdev->desc->ops;
986
987 if (constraints)
988 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
989 GFP_KERNEL);
990 else
991 rdev->constraints = kzalloc(sizeof(*constraints),
992 GFP_KERNEL);
993 if (!rdev->constraints)
994 return -ENOMEM;
995
996 ret = machine_constraints_voltage(rdev, rdev->constraints);
997 if (ret != 0)
998 goto out;
999
1000 ret = machine_constraints_current(rdev, rdev->constraints);
1001 if (ret != 0)
1002 goto out;
1003
1004 /* do we need to setup our suspend state */
1005 if (rdev->constraints->initial_state) {
1006 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1007 if (ret < 0) {
1008 rdev_err(rdev, "failed to set suspend state\n");
1009 goto out;
1010 }
1011 }
1012
1013 if (rdev->constraints->initial_mode) {
1014 if (!ops->set_mode) {
1015 rdev_err(rdev, "no set_mode operation\n");
1016 ret = -EINVAL;
1017 goto out;
1018 }
1019
1020 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1021 if (ret < 0) {
1022 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1023 goto out;
1024 }
1025 }
1026
1027 /* If the constraints say the regulator should be on at this point
1028 * and we have control then make sure it is enabled.
1029 */
1030 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1031 ret = _regulator_do_enable(rdev);
1032 if (ret < 0 && ret != -EINVAL) {
1033 rdev_err(rdev, "failed to enable\n");
1034 goto out;
1035 }
1036 }
1037
1038 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1039 && ops->set_ramp_delay) {
1040 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1041 if (ret < 0) {
1042 rdev_err(rdev, "failed to set ramp_delay\n");
1043 goto out;
1044 }
1045 }
1046
1047 print_constraints(rdev);
1048 return 0;
1049 out:
1050 kfree(rdev->constraints);
1051 rdev->constraints = NULL;
1052 return ret;
1053 }
1054
1055 /**
1056 * set_supply - set regulator supply regulator
1057 * @rdev: regulator name
1058 * @supply_rdev: supply regulator name
1059 *
1060 * Called by platform initialisation code to set the supply regulator for this
1061 * regulator. This ensures that a regulators supply will also be enabled by the
1062 * core if it's child is enabled.
1063 */
1064 static int set_supply(struct regulator_dev *rdev,
1065 struct regulator_dev *supply_rdev)
1066 {
1067 int err;
1068
1069 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1070
1071 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1072 if (rdev->supply == NULL) {
1073 err = -ENOMEM;
1074 return err;
1075 }
1076 supply_rdev->open_count++;
1077
1078 return 0;
1079 }
1080
1081 /**
1082 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1083 * @rdev: regulator source
1084 * @consumer_dev_name: dev_name() string for device supply applies to
1085 * @supply: symbolic name for supply
1086 *
1087 * Allows platform initialisation code to map physical regulator
1088 * sources to symbolic names for supplies for use by devices. Devices
1089 * should use these symbolic names to request regulators, avoiding the
1090 * need to provide board-specific regulator names as platform data.
1091 */
1092 static int set_consumer_device_supply(struct regulator_dev *rdev,
1093 const char *consumer_dev_name,
1094 const char *supply)
1095 {
1096 struct regulator_map *node;
1097 int has_dev;
1098
1099 if (supply == NULL)
1100 return -EINVAL;
1101
1102 if (consumer_dev_name != NULL)
1103 has_dev = 1;
1104 else
1105 has_dev = 0;
1106
1107 list_for_each_entry(node, &regulator_map_list, list) {
1108 if (node->dev_name && consumer_dev_name) {
1109 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1110 continue;
1111 } else if (node->dev_name || consumer_dev_name) {
1112 continue;
1113 }
1114
1115 if (strcmp(node->supply, supply) != 0)
1116 continue;
1117
1118 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1119 consumer_dev_name,
1120 dev_name(&node->regulator->dev),
1121 node->regulator->desc->name,
1122 supply,
1123 dev_name(&rdev->dev), rdev_get_name(rdev));
1124 return -EBUSY;
1125 }
1126
1127 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1128 if (node == NULL)
1129 return -ENOMEM;
1130
1131 node->regulator = rdev;
1132 node->supply = supply;
1133
1134 if (has_dev) {
1135 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1136 if (node->dev_name == NULL) {
1137 kfree(node);
1138 return -ENOMEM;
1139 }
1140 }
1141
1142 list_add(&node->list, &regulator_map_list);
1143 return 0;
1144 }
1145
1146 static void unset_regulator_supplies(struct regulator_dev *rdev)
1147 {
1148 struct regulator_map *node, *n;
1149
1150 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1151 if (rdev == node->regulator) {
1152 list_del(&node->list);
1153 kfree(node->dev_name);
1154 kfree(node);
1155 }
1156 }
1157 }
1158
1159 #define REG_STR_SIZE 64
1160
1161 static struct regulator *create_regulator(struct regulator_dev *rdev,
1162 struct device *dev,
1163 const char *supply_name)
1164 {
1165 struct regulator *regulator;
1166 char buf[REG_STR_SIZE];
1167 int err, size;
1168
1169 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1170 if (regulator == NULL)
1171 return NULL;
1172
1173 mutex_lock(&rdev->mutex);
1174 regulator->rdev = rdev;
1175 list_add(&regulator->list, &rdev->consumer_list);
1176
1177 if (dev) {
1178 regulator->dev = dev;
1179
1180 /* Add a link to the device sysfs entry */
1181 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1182 dev->kobj.name, supply_name);
1183 if (size >= REG_STR_SIZE)
1184 goto overflow_err;
1185
1186 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1187 if (regulator->supply_name == NULL)
1188 goto overflow_err;
1189
1190 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1191 buf);
1192 if (err) {
1193 rdev_warn(rdev, "could not add device link %s err %d\n",
1194 dev->kobj.name, err);
1195 /* non-fatal */
1196 }
1197 } else {
1198 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1199 if (regulator->supply_name == NULL)
1200 goto overflow_err;
1201 }
1202
1203 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1204 rdev->debugfs);
1205 if (!regulator->debugfs) {
1206 rdev_warn(rdev, "Failed to create debugfs directory\n");
1207 } else {
1208 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1209 &regulator->uA_load);
1210 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1211 &regulator->min_uV);
1212 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1213 &regulator->max_uV);
1214 }
1215
1216 /*
1217 * Check now if the regulator is an always on regulator - if
1218 * it is then we don't need to do nearly so much work for
1219 * enable/disable calls.
1220 */
1221 if (!_regulator_can_change_status(rdev) &&
1222 _regulator_is_enabled(rdev))
1223 regulator->always_on = true;
1224
1225 mutex_unlock(&rdev->mutex);
1226 return regulator;
1227 overflow_err:
1228 list_del(&regulator->list);
1229 kfree(regulator);
1230 mutex_unlock(&rdev->mutex);
1231 return NULL;
1232 }
1233
1234 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1235 {
1236 if (rdev->constraints && rdev->constraints->enable_time)
1237 return rdev->constraints->enable_time;
1238 if (!rdev->desc->ops->enable_time)
1239 return rdev->desc->enable_time;
1240 return rdev->desc->ops->enable_time(rdev);
1241 }
1242
1243 static struct regulator_supply_alias *regulator_find_supply_alias(
1244 struct device *dev, const char *supply)
1245 {
1246 struct regulator_supply_alias *map;
1247
1248 list_for_each_entry(map, &regulator_supply_alias_list, list)
1249 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1250 return map;
1251
1252 return NULL;
1253 }
1254
1255 static void regulator_supply_alias(struct device **dev, const char **supply)
1256 {
1257 struct regulator_supply_alias *map;
1258
1259 map = regulator_find_supply_alias(*dev, *supply);
1260 if (map) {
1261 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1262 *supply, map->alias_supply,
1263 dev_name(map->alias_dev));
1264 *dev = map->alias_dev;
1265 *supply = map->alias_supply;
1266 }
1267 }
1268
1269 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1270 const char *supply,
1271 int *ret)
1272 {
1273 struct regulator_dev *r;
1274 struct device_node *node;
1275 struct regulator_map *map;
1276 const char *devname = NULL;
1277
1278 regulator_supply_alias(&dev, &supply);
1279
1280 /* first do a dt based lookup */
1281 if (dev && dev->of_node) {
1282 node = of_get_regulator(dev, supply);
1283 if (node) {
1284 list_for_each_entry(r, &regulator_list, list)
1285 if (r->dev.parent &&
1286 node == r->dev.of_node)
1287 return r;
1288 *ret = -EPROBE_DEFER;
1289 return NULL;
1290 } else {
1291 /*
1292 * If we couldn't even get the node then it's
1293 * not just that the device didn't register
1294 * yet, there's no node and we'll never
1295 * succeed.
1296 */
1297 *ret = -ENODEV;
1298 }
1299 }
1300
1301 /* if not found, try doing it non-dt way */
1302 if (dev)
1303 devname = dev_name(dev);
1304
1305 list_for_each_entry(r, &regulator_list, list)
1306 if (strcmp(rdev_get_name(r), supply) == 0)
1307 return r;
1308
1309 list_for_each_entry(map, &regulator_map_list, list) {
1310 /* If the mapping has a device set up it must match */
1311 if (map->dev_name &&
1312 (!devname || strcmp(map->dev_name, devname)))
1313 continue;
1314
1315 if (strcmp(map->supply, supply) == 0)
1316 return map->regulator;
1317 }
1318
1319
1320 return NULL;
1321 }
1322
1323 /* Internal regulator request function */
1324 static struct regulator *_regulator_get(struct device *dev, const char *id,
1325 bool exclusive, bool allow_dummy)
1326 {
1327 struct regulator_dev *rdev;
1328 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1329 const char *devname = NULL;
1330 int ret;
1331
1332 if (id == NULL) {
1333 pr_err("get() with no identifier\n");
1334 return ERR_PTR(-EINVAL);
1335 }
1336
1337 if (dev)
1338 devname = dev_name(dev);
1339
1340 if (have_full_constraints())
1341 ret = -ENODEV;
1342 else
1343 ret = -EPROBE_DEFER;
1344
1345 mutex_lock(&regulator_list_mutex);
1346
1347 rdev = regulator_dev_lookup(dev, id, &ret);
1348 if (rdev)
1349 goto found;
1350
1351 regulator = ERR_PTR(ret);
1352
1353 /*
1354 * If we have return value from dev_lookup fail, we do not expect to
1355 * succeed, so, quit with appropriate error value
1356 */
1357 if (ret && ret != -ENODEV)
1358 goto out;
1359
1360 if (!devname)
1361 devname = "deviceless";
1362
1363 /*
1364 * Assume that a regulator is physically present and enabled
1365 * even if it isn't hooked up and just provide a dummy.
1366 */
1367 if (have_full_constraints() && allow_dummy) {
1368 pr_warn("%s supply %s not found, using dummy regulator\n",
1369 devname, id);
1370
1371 rdev = dummy_regulator_rdev;
1372 goto found;
1373 /* Don't log an error when called from regulator_get_optional() */
1374 } else if (!have_full_constraints() || exclusive) {
1375 dev_warn(dev, "dummy supplies not allowed\n");
1376 }
1377
1378 mutex_unlock(&regulator_list_mutex);
1379 return regulator;
1380
1381 found:
1382 if (rdev->exclusive) {
1383 regulator = ERR_PTR(-EPERM);
1384 goto out;
1385 }
1386
1387 if (exclusive && rdev->open_count) {
1388 regulator = ERR_PTR(-EBUSY);
1389 goto out;
1390 }
1391
1392 if (!try_module_get(rdev->owner))
1393 goto out;
1394
1395 regulator = create_regulator(rdev, dev, id);
1396 if (regulator == NULL) {
1397 regulator = ERR_PTR(-ENOMEM);
1398 module_put(rdev->owner);
1399 goto out;
1400 }
1401
1402 rdev->open_count++;
1403 if (exclusive) {
1404 rdev->exclusive = 1;
1405
1406 ret = _regulator_is_enabled(rdev);
1407 if (ret > 0)
1408 rdev->use_count = 1;
1409 else
1410 rdev->use_count = 0;
1411 }
1412
1413 out:
1414 mutex_unlock(&regulator_list_mutex);
1415
1416 return regulator;
1417 }
1418
1419 /**
1420 * regulator_get - lookup and obtain a reference to a regulator.
1421 * @dev: device for regulator "consumer"
1422 * @id: Supply name or regulator ID.
1423 *
1424 * Returns a struct regulator corresponding to the regulator producer,
1425 * or IS_ERR() condition containing errno.
1426 *
1427 * Use of supply names configured via regulator_set_device_supply() is
1428 * strongly encouraged. It is recommended that the supply name used
1429 * should match the name used for the supply and/or the relevant
1430 * device pins in the datasheet.
1431 */
1432 struct regulator *regulator_get(struct device *dev, const char *id)
1433 {
1434 return _regulator_get(dev, id, false, true);
1435 }
1436 EXPORT_SYMBOL_GPL(regulator_get);
1437
1438 /**
1439 * regulator_get_exclusive - obtain exclusive access to a regulator.
1440 * @dev: device for regulator "consumer"
1441 * @id: Supply name or regulator ID.
1442 *
1443 * Returns a struct regulator corresponding to the regulator producer,
1444 * or IS_ERR() condition containing errno. Other consumers will be
1445 * unable to obtain this regulator while this reference is held and the
1446 * use count for the regulator will be initialised to reflect the current
1447 * state of the regulator.
1448 *
1449 * This is intended for use by consumers which cannot tolerate shared
1450 * use of the regulator such as those which need to force the
1451 * regulator off for correct operation of the hardware they are
1452 * controlling.
1453 *
1454 * Use of supply names configured via regulator_set_device_supply() is
1455 * strongly encouraged. It is recommended that the supply name used
1456 * should match the name used for the supply and/or the relevant
1457 * device pins in the datasheet.
1458 */
1459 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1460 {
1461 return _regulator_get(dev, id, true, false);
1462 }
1463 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1464
1465 /**
1466 * regulator_get_optional - obtain optional access to a regulator.
1467 * @dev: device for regulator "consumer"
1468 * @id: Supply name or regulator ID.
1469 *
1470 * Returns a struct regulator corresponding to the regulator producer,
1471 * or IS_ERR() condition containing errno.
1472 *
1473 * This is intended for use by consumers for devices which can have
1474 * some supplies unconnected in normal use, such as some MMC devices.
1475 * It can allow the regulator core to provide stub supplies for other
1476 * supplies requested using normal regulator_get() calls without
1477 * disrupting the operation of drivers that can handle absent
1478 * supplies.
1479 *
1480 * Use of supply names configured via regulator_set_device_supply() is
1481 * strongly encouraged. It is recommended that the supply name used
1482 * should match the name used for the supply and/or the relevant
1483 * device pins in the datasheet.
1484 */
1485 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1486 {
1487 return _regulator_get(dev, id, false, false);
1488 }
1489 EXPORT_SYMBOL_GPL(regulator_get_optional);
1490
1491 /* Locks held by regulator_put() */
1492 static void _regulator_put(struct regulator *regulator)
1493 {
1494 struct regulator_dev *rdev;
1495
1496 if (regulator == NULL || IS_ERR(regulator))
1497 return;
1498
1499 rdev = regulator->rdev;
1500
1501 debugfs_remove_recursive(regulator->debugfs);
1502
1503 /* remove any sysfs entries */
1504 if (regulator->dev)
1505 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1506 kfree(regulator->supply_name);
1507 list_del(&regulator->list);
1508 kfree(regulator);
1509
1510 rdev->open_count--;
1511 rdev->exclusive = 0;
1512
1513 module_put(rdev->owner);
1514 }
1515
1516 /**
1517 * regulator_put - "free" the regulator source
1518 * @regulator: regulator source
1519 *
1520 * Note: drivers must ensure that all regulator_enable calls made on this
1521 * regulator source are balanced by regulator_disable calls prior to calling
1522 * this function.
1523 */
1524 void regulator_put(struct regulator *regulator)
1525 {
1526 mutex_lock(&regulator_list_mutex);
1527 _regulator_put(regulator);
1528 mutex_unlock(&regulator_list_mutex);
1529 }
1530 EXPORT_SYMBOL_GPL(regulator_put);
1531
1532 /**
1533 * regulator_register_supply_alias - Provide device alias for supply lookup
1534 *
1535 * @dev: device that will be given as the regulator "consumer"
1536 * @id: Supply name or regulator ID
1537 * @alias_dev: device that should be used to lookup the supply
1538 * @alias_id: Supply name or regulator ID that should be used to lookup the
1539 * supply
1540 *
1541 * All lookups for id on dev will instead be conducted for alias_id on
1542 * alias_dev.
1543 */
1544 int regulator_register_supply_alias(struct device *dev, const char *id,
1545 struct device *alias_dev,
1546 const char *alias_id)
1547 {
1548 struct regulator_supply_alias *map;
1549
1550 map = regulator_find_supply_alias(dev, id);
1551 if (map)
1552 return -EEXIST;
1553
1554 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1555 if (!map)
1556 return -ENOMEM;
1557
1558 map->src_dev = dev;
1559 map->src_supply = id;
1560 map->alias_dev = alias_dev;
1561 map->alias_supply = alias_id;
1562
1563 list_add(&map->list, &regulator_supply_alias_list);
1564
1565 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1566 id, dev_name(dev), alias_id, dev_name(alias_dev));
1567
1568 return 0;
1569 }
1570 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1571
1572 /**
1573 * regulator_unregister_supply_alias - Remove device alias
1574 *
1575 * @dev: device that will be given as the regulator "consumer"
1576 * @id: Supply name or regulator ID
1577 *
1578 * Remove a lookup alias if one exists for id on dev.
1579 */
1580 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1581 {
1582 struct regulator_supply_alias *map;
1583
1584 map = regulator_find_supply_alias(dev, id);
1585 if (map) {
1586 list_del(&map->list);
1587 kfree(map);
1588 }
1589 }
1590 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1591
1592 /**
1593 * regulator_bulk_register_supply_alias - register multiple aliases
1594 *
1595 * @dev: device that will be given as the regulator "consumer"
1596 * @id: List of supply names or regulator IDs
1597 * @alias_dev: device that should be used to lookup the supply
1598 * @alias_id: List of supply names or regulator IDs that should be used to
1599 * lookup the supply
1600 * @num_id: Number of aliases to register
1601 *
1602 * @return 0 on success, an errno on failure.
1603 *
1604 * This helper function allows drivers to register several supply
1605 * aliases in one operation. If any of the aliases cannot be
1606 * registered any aliases that were registered will be removed
1607 * before returning to the caller.
1608 */
1609 int regulator_bulk_register_supply_alias(struct device *dev,
1610 const char *const *id,
1611 struct device *alias_dev,
1612 const char *const *alias_id,
1613 int num_id)
1614 {
1615 int i;
1616 int ret;
1617
1618 for (i = 0; i < num_id; ++i) {
1619 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1620 alias_id[i]);
1621 if (ret < 0)
1622 goto err;
1623 }
1624
1625 return 0;
1626
1627 err:
1628 dev_err(dev,
1629 "Failed to create supply alias %s,%s -> %s,%s\n",
1630 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1631
1632 while (--i >= 0)
1633 regulator_unregister_supply_alias(dev, id[i]);
1634
1635 return ret;
1636 }
1637 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1638
1639 /**
1640 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1641 *
1642 * @dev: device that will be given as the regulator "consumer"
1643 * @id: List of supply names or regulator IDs
1644 * @num_id: Number of aliases to unregister
1645 *
1646 * This helper function allows drivers to unregister several supply
1647 * aliases in one operation.
1648 */
1649 void regulator_bulk_unregister_supply_alias(struct device *dev,
1650 const char *const *id,
1651 int num_id)
1652 {
1653 int i;
1654
1655 for (i = 0; i < num_id; ++i)
1656 regulator_unregister_supply_alias(dev, id[i]);
1657 }
1658 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1659
1660
1661 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1662 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1663 const struct regulator_config *config)
1664 {
1665 struct regulator_enable_gpio *pin;
1666 struct gpio_desc *gpiod;
1667 int ret;
1668
1669 gpiod = gpio_to_desc(config->ena_gpio);
1670
1671 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1672 if (pin->gpiod == gpiod) {
1673 rdev_dbg(rdev, "GPIO %d is already used\n",
1674 config->ena_gpio);
1675 goto update_ena_gpio_to_rdev;
1676 }
1677 }
1678
1679 ret = gpio_request_one(config->ena_gpio,
1680 GPIOF_DIR_OUT | config->ena_gpio_flags,
1681 rdev_get_name(rdev));
1682 if (ret)
1683 return ret;
1684
1685 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1686 if (pin == NULL) {
1687 gpio_free(config->ena_gpio);
1688 return -ENOMEM;
1689 }
1690
1691 pin->gpiod = gpiod;
1692 pin->ena_gpio_invert = config->ena_gpio_invert;
1693 list_add(&pin->list, &regulator_ena_gpio_list);
1694
1695 update_ena_gpio_to_rdev:
1696 pin->request_count++;
1697 rdev->ena_pin = pin;
1698 return 0;
1699 }
1700
1701 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1702 {
1703 struct regulator_enable_gpio *pin, *n;
1704
1705 if (!rdev->ena_pin)
1706 return;
1707
1708 /* Free the GPIO only in case of no use */
1709 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1710 if (pin->gpiod == rdev->ena_pin->gpiod) {
1711 if (pin->request_count <= 1) {
1712 pin->request_count = 0;
1713 gpiod_put(pin->gpiod);
1714 list_del(&pin->list);
1715 kfree(pin);
1716 } else {
1717 pin->request_count--;
1718 }
1719 }
1720 }
1721 }
1722
1723 /**
1724 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1725 * @rdev: regulator_dev structure
1726 * @enable: enable GPIO at initial use?
1727 *
1728 * GPIO is enabled in case of initial use. (enable_count is 0)
1729 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1730 */
1731 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1732 {
1733 struct regulator_enable_gpio *pin = rdev->ena_pin;
1734
1735 if (!pin)
1736 return -EINVAL;
1737
1738 if (enable) {
1739 /* Enable GPIO at initial use */
1740 if (pin->enable_count == 0)
1741 gpiod_set_value_cansleep(pin->gpiod,
1742 !pin->ena_gpio_invert);
1743
1744 pin->enable_count++;
1745 } else {
1746 if (pin->enable_count > 1) {
1747 pin->enable_count--;
1748 return 0;
1749 }
1750
1751 /* Disable GPIO if not used */
1752 if (pin->enable_count <= 1) {
1753 gpiod_set_value_cansleep(pin->gpiod,
1754 pin->ena_gpio_invert);
1755 pin->enable_count = 0;
1756 }
1757 }
1758
1759 return 0;
1760 }
1761
1762 /**
1763 * _regulator_enable_delay - a delay helper function
1764 * @delay: time to delay in microseconds
1765 *
1766 * Delay for the requested amount of time as per the guidelines in:
1767 *
1768 * Documentation/timers/timers-howto.txt
1769 *
1770 * The assumption here is that regulators will never be enabled in
1771 * atomic context and therefore sleeping functions can be used.
1772 */
1773 static void _regulator_enable_delay(unsigned int delay)
1774 {
1775 unsigned int ms = delay / 1000;
1776 unsigned int us = delay % 1000;
1777
1778 if (ms > 0) {
1779 /*
1780 * For small enough values, handle super-millisecond
1781 * delays in the usleep_range() call below.
1782 */
1783 if (ms < 20)
1784 us += ms * 1000;
1785 else
1786 msleep(ms);
1787 }
1788
1789 /*
1790 * Give the scheduler some room to coalesce with any other
1791 * wakeup sources. For delays shorter than 10 us, don't even
1792 * bother setting up high-resolution timers and just busy-
1793 * loop.
1794 */
1795 if (us >= 10)
1796 usleep_range(us, us + 100);
1797 else
1798 udelay(us);
1799 }
1800
1801 static int _regulator_do_enable(struct regulator_dev *rdev)
1802 {
1803 int ret, delay;
1804
1805 /* Query before enabling in case configuration dependent. */
1806 ret = _regulator_get_enable_time(rdev);
1807 if (ret >= 0) {
1808 delay = ret;
1809 } else {
1810 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1811 delay = 0;
1812 }
1813
1814 trace_regulator_enable(rdev_get_name(rdev));
1815
1816 if (rdev->desc->off_on_delay) {
1817 /* if needed, keep a distance of off_on_delay from last time
1818 * this regulator was disabled.
1819 */
1820 unsigned long start_jiffy = jiffies;
1821 unsigned long intended, max_delay, remaining;
1822
1823 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1824 intended = rdev->last_off_jiffy + max_delay;
1825
1826 if (time_before(start_jiffy, intended)) {
1827 /* calc remaining jiffies to deal with one-time
1828 * timer wrapping.
1829 * in case of multiple timer wrapping, either it can be
1830 * detected by out-of-range remaining, or it cannot be
1831 * detected and we gets a panelty of
1832 * _regulator_enable_delay().
1833 */
1834 remaining = intended - start_jiffy;
1835 if (remaining <= max_delay)
1836 _regulator_enable_delay(
1837 jiffies_to_usecs(remaining));
1838 }
1839 }
1840
1841 if (rdev->ena_pin) {
1842 ret = regulator_ena_gpio_ctrl(rdev, true);
1843 if (ret < 0)
1844 return ret;
1845 rdev->ena_gpio_state = 1;
1846 } else if (rdev->desc->ops->enable) {
1847 ret = rdev->desc->ops->enable(rdev);
1848 if (ret < 0)
1849 return ret;
1850 } else {
1851 return -EINVAL;
1852 }
1853
1854 /* Allow the regulator to ramp; it would be useful to extend
1855 * this for bulk operations so that the regulators can ramp
1856 * together. */
1857 trace_regulator_enable_delay(rdev_get_name(rdev));
1858
1859 _regulator_enable_delay(delay);
1860
1861 trace_regulator_enable_complete(rdev_get_name(rdev));
1862
1863 return 0;
1864 }
1865
1866 /* locks held by regulator_enable() */
1867 static int _regulator_enable(struct regulator_dev *rdev)
1868 {
1869 int ret;
1870
1871 /* check voltage and requested load before enabling */
1872 if (rdev->constraints &&
1873 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1874 drms_uA_update(rdev);
1875
1876 if (rdev->use_count == 0) {
1877 /* The regulator may on if it's not switchable or left on */
1878 ret = _regulator_is_enabled(rdev);
1879 if (ret == -EINVAL || ret == 0) {
1880 if (!_regulator_can_change_status(rdev))
1881 return -EPERM;
1882
1883 ret = _regulator_do_enable(rdev);
1884 if (ret < 0)
1885 return ret;
1886
1887 } else if (ret < 0) {
1888 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1889 return ret;
1890 }
1891 /* Fallthrough on positive return values - already enabled */
1892 }
1893
1894 rdev->use_count++;
1895
1896 return 0;
1897 }
1898
1899 /**
1900 * regulator_enable - enable regulator output
1901 * @regulator: regulator source
1902 *
1903 * Request that the regulator be enabled with the regulator output at
1904 * the predefined voltage or current value. Calls to regulator_enable()
1905 * must be balanced with calls to regulator_disable().
1906 *
1907 * NOTE: the output value can be set by other drivers, boot loader or may be
1908 * hardwired in the regulator.
1909 */
1910 int regulator_enable(struct regulator *regulator)
1911 {
1912 struct regulator_dev *rdev = regulator->rdev;
1913 int ret = 0;
1914
1915 if (regulator->always_on)
1916 return 0;
1917
1918 if (rdev->supply) {
1919 ret = regulator_enable(rdev->supply);
1920 if (ret != 0)
1921 return ret;
1922 }
1923
1924 mutex_lock(&rdev->mutex);
1925 ret = _regulator_enable(rdev);
1926 mutex_unlock(&rdev->mutex);
1927
1928 if (ret != 0 && rdev->supply)
1929 regulator_disable(rdev->supply);
1930
1931 return ret;
1932 }
1933 EXPORT_SYMBOL_GPL(regulator_enable);
1934
1935 static int _regulator_do_disable(struct regulator_dev *rdev)
1936 {
1937 int ret;
1938
1939 trace_regulator_disable(rdev_get_name(rdev));
1940
1941 if (rdev->ena_pin) {
1942 ret = regulator_ena_gpio_ctrl(rdev, false);
1943 if (ret < 0)
1944 return ret;
1945 rdev->ena_gpio_state = 0;
1946
1947 } else if (rdev->desc->ops->disable) {
1948 ret = rdev->desc->ops->disable(rdev);
1949 if (ret != 0)
1950 return ret;
1951 }
1952
1953 /* cares about last_off_jiffy only if off_on_delay is required by
1954 * device.
1955 */
1956 if (rdev->desc->off_on_delay)
1957 rdev->last_off_jiffy = jiffies;
1958
1959 trace_regulator_disable_complete(rdev_get_name(rdev));
1960
1961 return 0;
1962 }
1963
1964 /* locks held by regulator_disable() */
1965 static int _regulator_disable(struct regulator_dev *rdev)
1966 {
1967 int ret = 0;
1968
1969 if (WARN(rdev->use_count <= 0,
1970 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1971 return -EIO;
1972
1973 /* are we the last user and permitted to disable ? */
1974 if (rdev->use_count == 1 &&
1975 (rdev->constraints && !rdev->constraints->always_on)) {
1976
1977 /* we are last user */
1978 if (_regulator_can_change_status(rdev)) {
1979 ret = _regulator_do_disable(rdev);
1980 if (ret < 0) {
1981 rdev_err(rdev, "failed to disable\n");
1982 return ret;
1983 }
1984 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1985 NULL);
1986 }
1987
1988 rdev->use_count = 0;
1989 } else if (rdev->use_count > 1) {
1990
1991 if (rdev->constraints &&
1992 (rdev->constraints->valid_ops_mask &
1993 REGULATOR_CHANGE_DRMS))
1994 drms_uA_update(rdev);
1995
1996 rdev->use_count--;
1997 }
1998
1999 return ret;
2000 }
2001
2002 /**
2003 * regulator_disable - disable regulator output
2004 * @regulator: regulator source
2005 *
2006 * Disable the regulator output voltage or current. Calls to
2007 * regulator_enable() must be balanced with calls to
2008 * regulator_disable().
2009 *
2010 * NOTE: this will only disable the regulator output if no other consumer
2011 * devices have it enabled, the regulator device supports disabling and
2012 * machine constraints permit this operation.
2013 */
2014 int regulator_disable(struct regulator *regulator)
2015 {
2016 struct regulator_dev *rdev = regulator->rdev;
2017 int ret = 0;
2018
2019 if (regulator->always_on)
2020 return 0;
2021
2022 mutex_lock(&rdev->mutex);
2023 ret = _regulator_disable(rdev);
2024 mutex_unlock(&rdev->mutex);
2025
2026 if (ret == 0 && rdev->supply)
2027 regulator_disable(rdev->supply);
2028
2029 return ret;
2030 }
2031 EXPORT_SYMBOL_GPL(regulator_disable);
2032
2033 /* locks held by regulator_force_disable() */
2034 static int _regulator_force_disable(struct regulator_dev *rdev)
2035 {
2036 int ret = 0;
2037
2038 ret = _regulator_do_disable(rdev);
2039 if (ret < 0) {
2040 rdev_err(rdev, "failed to force disable\n");
2041 return ret;
2042 }
2043
2044 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2045 REGULATOR_EVENT_DISABLE, NULL);
2046
2047 return 0;
2048 }
2049
2050 /**
2051 * regulator_force_disable - force disable regulator output
2052 * @regulator: regulator source
2053 *
2054 * Forcibly disable the regulator output voltage or current.
2055 * NOTE: this *will* disable the regulator output even if other consumer
2056 * devices have it enabled. This should be used for situations when device
2057 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2058 */
2059 int regulator_force_disable(struct regulator *regulator)
2060 {
2061 struct regulator_dev *rdev = regulator->rdev;
2062 int ret;
2063
2064 mutex_lock(&rdev->mutex);
2065 regulator->uA_load = 0;
2066 ret = _regulator_force_disable(regulator->rdev);
2067 mutex_unlock(&rdev->mutex);
2068
2069 if (rdev->supply)
2070 while (rdev->open_count--)
2071 regulator_disable(rdev->supply);
2072
2073 return ret;
2074 }
2075 EXPORT_SYMBOL_GPL(regulator_force_disable);
2076
2077 static void regulator_disable_work(struct work_struct *work)
2078 {
2079 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2080 disable_work.work);
2081 int count, i, ret;
2082
2083 mutex_lock(&rdev->mutex);
2084
2085 BUG_ON(!rdev->deferred_disables);
2086
2087 count = rdev->deferred_disables;
2088 rdev->deferred_disables = 0;
2089
2090 for (i = 0; i < count; i++) {
2091 ret = _regulator_disable(rdev);
2092 if (ret != 0)
2093 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2094 }
2095
2096 mutex_unlock(&rdev->mutex);
2097
2098 if (rdev->supply) {
2099 for (i = 0; i < count; i++) {
2100 ret = regulator_disable(rdev->supply);
2101 if (ret != 0) {
2102 rdev_err(rdev,
2103 "Supply disable failed: %d\n", ret);
2104 }
2105 }
2106 }
2107 }
2108
2109 /**
2110 * regulator_disable_deferred - disable regulator output with delay
2111 * @regulator: regulator source
2112 * @ms: miliseconds until the regulator is disabled
2113 *
2114 * Execute regulator_disable() on the regulator after a delay. This
2115 * is intended for use with devices that require some time to quiesce.
2116 *
2117 * NOTE: this will only disable the regulator output if no other consumer
2118 * devices have it enabled, the regulator device supports disabling and
2119 * machine constraints permit this operation.
2120 */
2121 int regulator_disable_deferred(struct regulator *regulator, int ms)
2122 {
2123 struct regulator_dev *rdev = regulator->rdev;
2124 int ret;
2125
2126 if (regulator->always_on)
2127 return 0;
2128
2129 if (!ms)
2130 return regulator_disable(regulator);
2131
2132 mutex_lock(&rdev->mutex);
2133 rdev->deferred_disables++;
2134 mutex_unlock(&rdev->mutex);
2135
2136 ret = queue_delayed_work(system_power_efficient_wq,
2137 &rdev->disable_work,
2138 msecs_to_jiffies(ms));
2139 if (ret < 0)
2140 return ret;
2141 else
2142 return 0;
2143 }
2144 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2145
2146 static int _regulator_is_enabled(struct regulator_dev *rdev)
2147 {
2148 /* A GPIO control always takes precedence */
2149 if (rdev->ena_pin)
2150 return rdev->ena_gpio_state;
2151
2152 /* If we don't know then assume that the regulator is always on */
2153 if (!rdev->desc->ops->is_enabled)
2154 return 1;
2155
2156 return rdev->desc->ops->is_enabled(rdev);
2157 }
2158
2159 /**
2160 * regulator_is_enabled - is the regulator output enabled
2161 * @regulator: regulator source
2162 *
2163 * Returns positive if the regulator driver backing the source/client
2164 * has requested that the device be enabled, zero if it hasn't, else a
2165 * negative errno code.
2166 *
2167 * Note that the device backing this regulator handle can have multiple
2168 * users, so it might be enabled even if regulator_enable() was never
2169 * called for this particular source.
2170 */
2171 int regulator_is_enabled(struct regulator *regulator)
2172 {
2173 int ret;
2174
2175 if (regulator->always_on)
2176 return 1;
2177
2178 mutex_lock(&regulator->rdev->mutex);
2179 ret = _regulator_is_enabled(regulator->rdev);
2180 mutex_unlock(&regulator->rdev->mutex);
2181
2182 return ret;
2183 }
2184 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2185
2186 /**
2187 * regulator_can_change_voltage - check if regulator can change voltage
2188 * @regulator: regulator source
2189 *
2190 * Returns positive if the regulator driver backing the source/client
2191 * can change its voltage, false otherwise. Useful for detecting fixed
2192 * or dummy regulators and disabling voltage change logic in the client
2193 * driver.
2194 */
2195 int regulator_can_change_voltage(struct regulator *regulator)
2196 {
2197 struct regulator_dev *rdev = regulator->rdev;
2198
2199 if (rdev->constraints &&
2200 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2201 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2202 return 1;
2203
2204 if (rdev->desc->continuous_voltage_range &&
2205 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2206 rdev->constraints->min_uV != rdev->constraints->max_uV)
2207 return 1;
2208 }
2209
2210 return 0;
2211 }
2212 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2213
2214 /**
2215 * regulator_count_voltages - count regulator_list_voltage() selectors
2216 * @regulator: regulator source
2217 *
2218 * Returns number of selectors, or negative errno. Selectors are
2219 * numbered starting at zero, and typically correspond to bitfields
2220 * in hardware registers.
2221 */
2222 int regulator_count_voltages(struct regulator *regulator)
2223 {
2224 struct regulator_dev *rdev = regulator->rdev;
2225
2226 if (rdev->desc->n_voltages)
2227 return rdev->desc->n_voltages;
2228
2229 if (!rdev->supply)
2230 return -EINVAL;
2231
2232 return regulator_count_voltages(rdev->supply);
2233 }
2234 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2235
2236 /**
2237 * regulator_list_voltage - enumerate supported voltages
2238 * @regulator: regulator source
2239 * @selector: identify voltage to list
2240 * Context: can sleep
2241 *
2242 * Returns a voltage that can be passed to @regulator_set_voltage(),
2243 * zero if this selector code can't be used on this system, or a
2244 * negative errno.
2245 */
2246 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2247 {
2248 struct regulator_dev *rdev = regulator->rdev;
2249 const struct regulator_ops *ops = rdev->desc->ops;
2250 int ret;
2251
2252 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2253 return rdev->desc->fixed_uV;
2254
2255 if (ops->list_voltage) {
2256 if (selector >= rdev->desc->n_voltages)
2257 return -EINVAL;
2258 mutex_lock(&rdev->mutex);
2259 ret = ops->list_voltage(rdev, selector);
2260 mutex_unlock(&rdev->mutex);
2261 } else if (rdev->supply) {
2262 ret = regulator_list_voltage(rdev->supply, selector);
2263 } else {
2264 return -EINVAL;
2265 }
2266
2267 if (ret > 0) {
2268 if (ret < rdev->constraints->min_uV)
2269 ret = 0;
2270 else if (ret > rdev->constraints->max_uV)
2271 ret = 0;
2272 }
2273
2274 return ret;
2275 }
2276 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2277
2278 /**
2279 * regulator_get_regmap - get the regulator's register map
2280 * @regulator: regulator source
2281 *
2282 * Returns the register map for the given regulator, or an ERR_PTR value
2283 * if the regulator doesn't use regmap.
2284 */
2285 struct regmap *regulator_get_regmap(struct regulator *regulator)
2286 {
2287 struct regmap *map = regulator->rdev->regmap;
2288
2289 return map ? map : ERR_PTR(-EOPNOTSUPP);
2290 }
2291
2292 /**
2293 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2294 * @regulator: regulator source
2295 * @vsel_reg: voltage selector register, output parameter
2296 * @vsel_mask: mask for voltage selector bitfield, output parameter
2297 *
2298 * Returns the hardware register offset and bitmask used for setting the
2299 * regulator voltage. This might be useful when configuring voltage-scaling
2300 * hardware or firmware that can make I2C requests behind the kernel's back,
2301 * for example.
2302 *
2303 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2304 * and 0 is returned, otherwise a negative errno is returned.
2305 */
2306 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2307 unsigned *vsel_reg,
2308 unsigned *vsel_mask)
2309 {
2310 struct regulator_dev *rdev = regulator->rdev;
2311 const struct regulator_ops *ops = rdev->desc->ops;
2312
2313 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2314 return -EOPNOTSUPP;
2315
2316 *vsel_reg = rdev->desc->vsel_reg;
2317 *vsel_mask = rdev->desc->vsel_mask;
2318
2319 return 0;
2320 }
2321 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2322
2323 /**
2324 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2325 * @regulator: regulator source
2326 * @selector: identify voltage to list
2327 *
2328 * Converts the selector to a hardware-specific voltage selector that can be
2329 * directly written to the regulator registers. The address of the voltage
2330 * register can be determined by calling @regulator_get_hardware_vsel_register.
2331 *
2332 * On error a negative errno is returned.
2333 */
2334 int regulator_list_hardware_vsel(struct regulator *regulator,
2335 unsigned selector)
2336 {
2337 struct regulator_dev *rdev = regulator->rdev;
2338 const struct regulator_ops *ops = rdev->desc->ops;
2339
2340 if (selector >= rdev->desc->n_voltages)
2341 return -EINVAL;
2342 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2343 return -EOPNOTSUPP;
2344
2345 return selector;
2346 }
2347 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2348
2349 /**
2350 * regulator_get_linear_step - return the voltage step size between VSEL values
2351 * @regulator: regulator source
2352 *
2353 * Returns the voltage step size between VSEL values for linear
2354 * regulators, or return 0 if the regulator isn't a linear regulator.
2355 */
2356 unsigned int regulator_get_linear_step(struct regulator *regulator)
2357 {
2358 struct regulator_dev *rdev = regulator->rdev;
2359
2360 return rdev->desc->uV_step;
2361 }
2362 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2363
2364 /**
2365 * regulator_is_supported_voltage - check if a voltage range can be supported
2366 *
2367 * @regulator: Regulator to check.
2368 * @min_uV: Minimum required voltage in uV.
2369 * @max_uV: Maximum required voltage in uV.
2370 *
2371 * Returns a boolean or a negative error code.
2372 */
2373 int regulator_is_supported_voltage(struct regulator *regulator,
2374 int min_uV, int max_uV)
2375 {
2376 struct regulator_dev *rdev = regulator->rdev;
2377 int i, voltages, ret;
2378
2379 /* If we can't change voltage check the current voltage */
2380 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2381 ret = regulator_get_voltage(regulator);
2382 if (ret >= 0)
2383 return min_uV <= ret && ret <= max_uV;
2384 else
2385 return ret;
2386 }
2387
2388 /* Any voltage within constrains range is fine? */
2389 if (rdev->desc->continuous_voltage_range)
2390 return min_uV >= rdev->constraints->min_uV &&
2391 max_uV <= rdev->constraints->max_uV;
2392
2393 ret = regulator_count_voltages(regulator);
2394 if (ret < 0)
2395 return ret;
2396 voltages = ret;
2397
2398 for (i = 0; i < voltages; i++) {
2399 ret = regulator_list_voltage(regulator, i);
2400
2401 if (ret >= min_uV && ret <= max_uV)
2402 return 1;
2403 }
2404
2405 return 0;
2406 }
2407 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2408
2409 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2410 int min_uV, int max_uV,
2411 unsigned *selector)
2412 {
2413 struct pre_voltage_change_data data;
2414 int ret;
2415
2416 data.old_uV = _regulator_get_voltage(rdev);
2417 data.min_uV = min_uV;
2418 data.max_uV = max_uV;
2419 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2420 &data);
2421 if (ret & NOTIFY_STOP_MASK)
2422 return -EINVAL;
2423
2424 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2425 if (ret >= 0)
2426 return ret;
2427
2428 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2429 (void *)data.old_uV);
2430
2431 return ret;
2432 }
2433
2434 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2435 int uV, unsigned selector)
2436 {
2437 struct pre_voltage_change_data data;
2438 int ret;
2439
2440 data.old_uV = _regulator_get_voltage(rdev);
2441 data.min_uV = uV;
2442 data.max_uV = uV;
2443 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2444 &data);
2445 if (ret & NOTIFY_STOP_MASK)
2446 return -EINVAL;
2447
2448 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2449 if (ret >= 0)
2450 return ret;
2451
2452 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2453 (void *)data.old_uV);
2454
2455 return ret;
2456 }
2457
2458 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2459 int min_uV, int max_uV)
2460 {
2461 int ret;
2462 int delay = 0;
2463 int best_val = 0;
2464 unsigned int selector;
2465 int old_selector = -1;
2466
2467 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2468
2469 min_uV += rdev->constraints->uV_offset;
2470 max_uV += rdev->constraints->uV_offset;
2471
2472 /*
2473 * If we can't obtain the old selector there is not enough
2474 * info to call set_voltage_time_sel().
2475 */
2476 if (_regulator_is_enabled(rdev) &&
2477 rdev->desc->ops->set_voltage_time_sel &&
2478 rdev->desc->ops->get_voltage_sel) {
2479 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2480 if (old_selector < 0)
2481 return old_selector;
2482 }
2483
2484 if (rdev->desc->ops->set_voltage) {
2485 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2486 &selector);
2487
2488 if (ret >= 0) {
2489 if (rdev->desc->ops->list_voltage)
2490 best_val = rdev->desc->ops->list_voltage(rdev,
2491 selector);
2492 else
2493 best_val = _regulator_get_voltage(rdev);
2494 }
2495
2496 } else if (rdev->desc->ops->set_voltage_sel) {
2497 if (rdev->desc->ops->map_voltage) {
2498 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2499 max_uV);
2500 } else {
2501 if (rdev->desc->ops->list_voltage ==
2502 regulator_list_voltage_linear)
2503 ret = regulator_map_voltage_linear(rdev,
2504 min_uV, max_uV);
2505 else if (rdev->desc->ops->list_voltage ==
2506 regulator_list_voltage_linear_range)
2507 ret = regulator_map_voltage_linear_range(rdev,
2508 min_uV, max_uV);
2509 else
2510 ret = regulator_map_voltage_iterate(rdev,
2511 min_uV, max_uV);
2512 }
2513
2514 if (ret >= 0) {
2515 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2516 if (min_uV <= best_val && max_uV >= best_val) {
2517 selector = ret;
2518 if (old_selector == selector)
2519 ret = 0;
2520 else
2521 ret = _regulator_call_set_voltage_sel(
2522 rdev, best_val, selector);
2523 } else {
2524 ret = -EINVAL;
2525 }
2526 }
2527 } else {
2528 ret = -EINVAL;
2529 }
2530
2531 /* Call set_voltage_time_sel if successfully obtained old_selector */
2532 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2533 && old_selector != selector) {
2534
2535 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2536 old_selector, selector);
2537 if (delay < 0) {
2538 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2539 delay);
2540 delay = 0;
2541 }
2542
2543 /* Insert any necessary delays */
2544 if (delay >= 1000) {
2545 mdelay(delay / 1000);
2546 udelay(delay % 1000);
2547 } else if (delay) {
2548 udelay(delay);
2549 }
2550 }
2551
2552 if (ret == 0 && best_val >= 0) {
2553 unsigned long data = best_val;
2554
2555 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2556 (void *)data);
2557 }
2558
2559 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2560
2561 return ret;
2562 }
2563
2564 /**
2565 * regulator_set_voltage - set regulator output voltage
2566 * @regulator: regulator source
2567 * @min_uV: Minimum required voltage in uV
2568 * @max_uV: Maximum acceptable voltage in uV
2569 *
2570 * Sets a voltage regulator to the desired output voltage. This can be set
2571 * during any regulator state. IOW, regulator can be disabled or enabled.
2572 *
2573 * If the regulator is enabled then the voltage will change to the new value
2574 * immediately otherwise if the regulator is disabled the regulator will
2575 * output at the new voltage when enabled.
2576 *
2577 * NOTE: If the regulator is shared between several devices then the lowest
2578 * request voltage that meets the system constraints will be used.
2579 * Regulator system constraints must be set for this regulator before
2580 * calling this function otherwise this call will fail.
2581 */
2582 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2583 {
2584 struct regulator_dev *rdev = regulator->rdev;
2585 int ret = 0;
2586 int old_min_uV, old_max_uV;
2587 int current_uV;
2588
2589 mutex_lock(&rdev->mutex);
2590
2591 /* If we're setting the same range as last time the change
2592 * should be a noop (some cpufreq implementations use the same
2593 * voltage for multiple frequencies, for example).
2594 */
2595 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2596 goto out;
2597
2598 /* If we're trying to set a range that overlaps the current voltage,
2599 * return succesfully even though the regulator does not support
2600 * changing the voltage.
2601 */
2602 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2603 current_uV = _regulator_get_voltage(rdev);
2604 if (min_uV <= current_uV && current_uV <= max_uV) {
2605 regulator->min_uV = min_uV;
2606 regulator->max_uV = max_uV;
2607 goto out;
2608 }
2609 }
2610
2611 /* sanity check */
2612 if (!rdev->desc->ops->set_voltage &&
2613 !rdev->desc->ops->set_voltage_sel) {
2614 ret = -EINVAL;
2615 goto out;
2616 }
2617
2618 /* constraints check */
2619 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2620 if (ret < 0)
2621 goto out;
2622
2623 /* restore original values in case of error */
2624 old_min_uV = regulator->min_uV;
2625 old_max_uV = regulator->max_uV;
2626 regulator->min_uV = min_uV;
2627 regulator->max_uV = max_uV;
2628
2629 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2630 if (ret < 0)
2631 goto out2;
2632
2633 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2634 if (ret < 0)
2635 goto out2;
2636
2637 out:
2638 mutex_unlock(&rdev->mutex);
2639 return ret;
2640 out2:
2641 regulator->min_uV = old_min_uV;
2642 regulator->max_uV = old_max_uV;
2643 mutex_unlock(&rdev->mutex);
2644 return ret;
2645 }
2646 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2647
2648 /**
2649 * regulator_set_voltage_time - get raise/fall time
2650 * @regulator: regulator source
2651 * @old_uV: starting voltage in microvolts
2652 * @new_uV: target voltage in microvolts
2653 *
2654 * Provided with the starting and ending voltage, this function attempts to
2655 * calculate the time in microseconds required to rise or fall to this new
2656 * voltage.
2657 */
2658 int regulator_set_voltage_time(struct regulator *regulator,
2659 int old_uV, int new_uV)
2660 {
2661 struct regulator_dev *rdev = regulator->rdev;
2662 const struct regulator_ops *ops = rdev->desc->ops;
2663 int old_sel = -1;
2664 int new_sel = -1;
2665 int voltage;
2666 int i;
2667
2668 /* Currently requires operations to do this */
2669 if (!ops->list_voltage || !ops->set_voltage_time_sel
2670 || !rdev->desc->n_voltages)
2671 return -EINVAL;
2672
2673 for (i = 0; i < rdev->desc->n_voltages; i++) {
2674 /* We only look for exact voltage matches here */
2675 voltage = regulator_list_voltage(regulator, i);
2676 if (voltage < 0)
2677 return -EINVAL;
2678 if (voltage == 0)
2679 continue;
2680 if (voltage == old_uV)
2681 old_sel = i;
2682 if (voltage == new_uV)
2683 new_sel = i;
2684 }
2685
2686 if (old_sel < 0 || new_sel < 0)
2687 return -EINVAL;
2688
2689 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2690 }
2691 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2692
2693 /**
2694 * regulator_set_voltage_time_sel - get raise/fall time
2695 * @rdev: regulator source device
2696 * @old_selector: selector for starting voltage
2697 * @new_selector: selector for target voltage
2698 *
2699 * Provided with the starting and target voltage selectors, this function
2700 * returns time in microseconds required to rise or fall to this new voltage
2701 *
2702 * Drivers providing ramp_delay in regulation_constraints can use this as their
2703 * set_voltage_time_sel() operation.
2704 */
2705 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2706 unsigned int old_selector,
2707 unsigned int new_selector)
2708 {
2709 unsigned int ramp_delay = 0;
2710 int old_volt, new_volt;
2711
2712 if (rdev->constraints->ramp_delay)
2713 ramp_delay = rdev->constraints->ramp_delay;
2714 else if (rdev->desc->ramp_delay)
2715 ramp_delay = rdev->desc->ramp_delay;
2716
2717 if (ramp_delay == 0) {
2718 rdev_warn(rdev, "ramp_delay not set\n");
2719 return 0;
2720 }
2721
2722 /* sanity check */
2723 if (!rdev->desc->ops->list_voltage)
2724 return -EINVAL;
2725
2726 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2727 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2728
2729 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2730 }
2731 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2732
2733 /**
2734 * regulator_sync_voltage - re-apply last regulator output voltage
2735 * @regulator: regulator source
2736 *
2737 * Re-apply the last configured voltage. This is intended to be used
2738 * where some external control source the consumer is cooperating with
2739 * has caused the configured voltage to change.
2740 */
2741 int regulator_sync_voltage(struct regulator *regulator)
2742 {
2743 struct regulator_dev *rdev = regulator->rdev;
2744 int ret, min_uV, max_uV;
2745
2746 mutex_lock(&rdev->mutex);
2747
2748 if (!rdev->desc->ops->set_voltage &&
2749 !rdev->desc->ops->set_voltage_sel) {
2750 ret = -EINVAL;
2751 goto out;
2752 }
2753
2754 /* This is only going to work if we've had a voltage configured. */
2755 if (!regulator->min_uV && !regulator->max_uV) {
2756 ret = -EINVAL;
2757 goto out;
2758 }
2759
2760 min_uV = regulator->min_uV;
2761 max_uV = regulator->max_uV;
2762
2763 /* This should be a paranoia check... */
2764 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2765 if (ret < 0)
2766 goto out;
2767
2768 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2769 if (ret < 0)
2770 goto out;
2771
2772 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2773
2774 out:
2775 mutex_unlock(&rdev->mutex);
2776 return ret;
2777 }
2778 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2779
2780 static int _regulator_get_voltage(struct regulator_dev *rdev)
2781 {
2782 int sel, ret;
2783
2784 if (rdev->desc->ops->get_voltage_sel) {
2785 sel = rdev->desc->ops->get_voltage_sel(rdev);
2786 if (sel < 0)
2787 return sel;
2788 ret = rdev->desc->ops->list_voltage(rdev, sel);
2789 } else if (rdev->desc->ops->get_voltage) {
2790 ret = rdev->desc->ops->get_voltage(rdev);
2791 } else if (rdev->desc->ops->list_voltage) {
2792 ret = rdev->desc->ops->list_voltage(rdev, 0);
2793 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2794 ret = rdev->desc->fixed_uV;
2795 } else if (rdev->supply) {
2796 ret = regulator_get_voltage(rdev->supply);
2797 } else {
2798 return -EINVAL;
2799 }
2800
2801 if (ret < 0)
2802 return ret;
2803 return ret - rdev->constraints->uV_offset;
2804 }
2805
2806 /**
2807 * regulator_get_voltage - get regulator output voltage
2808 * @regulator: regulator source
2809 *
2810 * This returns the current regulator voltage in uV.
2811 *
2812 * NOTE: If the regulator is disabled it will return the voltage value. This
2813 * function should not be used to determine regulator state.
2814 */
2815 int regulator_get_voltage(struct regulator *regulator)
2816 {
2817 int ret;
2818
2819 mutex_lock(&regulator->rdev->mutex);
2820
2821 ret = _regulator_get_voltage(regulator->rdev);
2822
2823 mutex_unlock(&regulator->rdev->mutex);
2824
2825 return ret;
2826 }
2827 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2828
2829 /**
2830 * regulator_set_current_limit - set regulator output current limit
2831 * @regulator: regulator source
2832 * @min_uA: Minimum supported current in uA
2833 * @max_uA: Maximum supported current in uA
2834 *
2835 * Sets current sink to the desired output current. This can be set during
2836 * any regulator state. IOW, regulator can be disabled or enabled.
2837 *
2838 * If the regulator is enabled then the current will change to the new value
2839 * immediately otherwise if the regulator is disabled the regulator will
2840 * output at the new current when enabled.
2841 *
2842 * NOTE: Regulator system constraints must be set for this regulator before
2843 * calling this function otherwise this call will fail.
2844 */
2845 int regulator_set_current_limit(struct regulator *regulator,
2846 int min_uA, int max_uA)
2847 {
2848 struct regulator_dev *rdev = regulator->rdev;
2849 int ret;
2850
2851 mutex_lock(&rdev->mutex);
2852
2853 /* sanity check */
2854 if (!rdev->desc->ops->set_current_limit) {
2855 ret = -EINVAL;
2856 goto out;
2857 }
2858
2859 /* constraints check */
2860 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2861 if (ret < 0)
2862 goto out;
2863
2864 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2865 out:
2866 mutex_unlock(&rdev->mutex);
2867 return ret;
2868 }
2869 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2870
2871 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2872 {
2873 int ret;
2874
2875 mutex_lock(&rdev->mutex);
2876
2877 /* sanity check */
2878 if (!rdev->desc->ops->get_current_limit) {
2879 ret = -EINVAL;
2880 goto out;
2881 }
2882
2883 ret = rdev->desc->ops->get_current_limit(rdev);
2884 out:
2885 mutex_unlock(&rdev->mutex);
2886 return ret;
2887 }
2888
2889 /**
2890 * regulator_get_current_limit - get regulator output current
2891 * @regulator: regulator source
2892 *
2893 * This returns the current supplied by the specified current sink in uA.
2894 *
2895 * NOTE: If the regulator is disabled it will return the current value. This
2896 * function should not be used to determine regulator state.
2897 */
2898 int regulator_get_current_limit(struct regulator *regulator)
2899 {
2900 return _regulator_get_current_limit(regulator->rdev);
2901 }
2902 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2903
2904 /**
2905 * regulator_set_mode - set regulator operating mode
2906 * @regulator: regulator source
2907 * @mode: operating mode - one of the REGULATOR_MODE constants
2908 *
2909 * Set regulator operating mode to increase regulator efficiency or improve
2910 * regulation performance.
2911 *
2912 * NOTE: Regulator system constraints must be set for this regulator before
2913 * calling this function otherwise this call will fail.
2914 */
2915 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2916 {
2917 struct regulator_dev *rdev = regulator->rdev;
2918 int ret;
2919 int regulator_curr_mode;
2920
2921 mutex_lock(&rdev->mutex);
2922
2923 /* sanity check */
2924 if (!rdev->desc->ops->set_mode) {
2925 ret = -EINVAL;
2926 goto out;
2927 }
2928
2929 /* return if the same mode is requested */
2930 if (rdev->desc->ops->get_mode) {
2931 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2932 if (regulator_curr_mode == mode) {
2933 ret = 0;
2934 goto out;
2935 }
2936 }
2937
2938 /* constraints check */
2939 ret = regulator_mode_constrain(rdev, &mode);
2940 if (ret < 0)
2941 goto out;
2942
2943 ret = rdev->desc->ops->set_mode(rdev, mode);
2944 out:
2945 mutex_unlock(&rdev->mutex);
2946 return ret;
2947 }
2948 EXPORT_SYMBOL_GPL(regulator_set_mode);
2949
2950 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2951 {
2952 int ret;
2953
2954 mutex_lock(&rdev->mutex);
2955
2956 /* sanity check */
2957 if (!rdev->desc->ops->get_mode) {
2958 ret = -EINVAL;
2959 goto out;
2960 }
2961
2962 ret = rdev->desc->ops->get_mode(rdev);
2963 out:
2964 mutex_unlock(&rdev->mutex);
2965 return ret;
2966 }
2967
2968 /**
2969 * regulator_get_mode - get regulator operating mode
2970 * @regulator: regulator source
2971 *
2972 * Get the current regulator operating mode.
2973 */
2974 unsigned int regulator_get_mode(struct regulator *regulator)
2975 {
2976 return _regulator_get_mode(regulator->rdev);
2977 }
2978 EXPORT_SYMBOL_GPL(regulator_get_mode);
2979
2980 /**
2981 * regulator_set_optimum_mode - set regulator optimum operating mode
2982 * @regulator: regulator source
2983 * @uA_load: load current
2984 *
2985 * Notifies the regulator core of a new device load. This is then used by
2986 * DRMS (if enabled by constraints) to set the most efficient regulator
2987 * operating mode for the new regulator loading.
2988 *
2989 * Consumer devices notify their supply regulator of the maximum power
2990 * they will require (can be taken from device datasheet in the power
2991 * consumption tables) when they change operational status and hence power
2992 * state. Examples of operational state changes that can affect power
2993 * consumption are :-
2994 *
2995 * o Device is opened / closed.
2996 * o Device I/O is about to begin or has just finished.
2997 * o Device is idling in between work.
2998 *
2999 * This information is also exported via sysfs to userspace.
3000 *
3001 * DRMS will sum the total requested load on the regulator and change
3002 * to the most efficient operating mode if platform constraints allow.
3003 *
3004 * Returns the new regulator mode or error.
3005 */
3006 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
3007 {
3008 struct regulator_dev *rdev = regulator->rdev;
3009 struct regulator *consumer;
3010 int ret, output_uV, input_uV = 0, total_uA_load = 0;
3011 unsigned int mode;
3012
3013 if (rdev->supply)
3014 input_uV = regulator_get_voltage(rdev->supply);
3015
3016 mutex_lock(&rdev->mutex);
3017
3018 /*
3019 * first check to see if we can set modes at all, otherwise just
3020 * tell the consumer everything is OK.
3021 */
3022 regulator->uA_load = uA_load;
3023 ret = regulator_check_drms(rdev);
3024 if (ret < 0) {
3025 ret = 0;
3026 goto out;
3027 }
3028
3029 if (!rdev->desc->ops->get_optimum_mode)
3030 goto out;
3031
3032 /*
3033 * we can actually do this so any errors are indicators of
3034 * potential real failure.
3035 */
3036 ret = -EINVAL;
3037
3038 if (!rdev->desc->ops->set_mode)
3039 goto out;
3040
3041 /* get output voltage */
3042 output_uV = _regulator_get_voltage(rdev);
3043 if (output_uV <= 0) {
3044 rdev_err(rdev, "invalid output voltage found\n");
3045 goto out;
3046 }
3047
3048 /* No supply? Use constraint voltage */
3049 if (input_uV <= 0)
3050 input_uV = rdev->constraints->input_uV;
3051 if (input_uV <= 0) {
3052 rdev_err(rdev, "invalid input voltage found\n");
3053 goto out;
3054 }
3055
3056 /* calc total requested load for this regulator */
3057 list_for_each_entry(consumer, &rdev->consumer_list, list)
3058 total_uA_load += consumer->uA_load;
3059
3060 mode = rdev->desc->ops->get_optimum_mode(rdev,
3061 input_uV, output_uV,
3062 total_uA_load);
3063 ret = regulator_mode_constrain(rdev, &mode);
3064 if (ret < 0) {
3065 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
3066 total_uA_load, input_uV, output_uV);
3067 goto out;
3068 }
3069
3070 ret = rdev->desc->ops->set_mode(rdev, mode);
3071 if (ret < 0) {
3072 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
3073 goto out;
3074 }
3075 ret = mode;
3076 out:
3077 mutex_unlock(&rdev->mutex);
3078 return ret;
3079 }
3080 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
3081
3082 /**
3083 * regulator_allow_bypass - allow the regulator to go into bypass mode
3084 *
3085 * @regulator: Regulator to configure
3086 * @enable: enable or disable bypass mode
3087 *
3088 * Allow the regulator to go into bypass mode if all other consumers
3089 * for the regulator also enable bypass mode and the machine
3090 * constraints allow this. Bypass mode means that the regulator is
3091 * simply passing the input directly to the output with no regulation.
3092 */
3093 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3094 {
3095 struct regulator_dev *rdev = regulator->rdev;
3096 int ret = 0;
3097
3098 if (!rdev->desc->ops->set_bypass)
3099 return 0;
3100
3101 if (rdev->constraints &&
3102 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3103 return 0;
3104
3105 mutex_lock(&rdev->mutex);
3106
3107 if (enable && !regulator->bypass) {
3108 rdev->bypass_count++;
3109
3110 if (rdev->bypass_count == rdev->open_count) {
3111 ret = rdev->desc->ops->set_bypass(rdev, enable);
3112 if (ret != 0)
3113 rdev->bypass_count--;
3114 }
3115
3116 } else if (!enable && regulator->bypass) {
3117 rdev->bypass_count--;
3118
3119 if (rdev->bypass_count != rdev->open_count) {
3120 ret = rdev->desc->ops->set_bypass(rdev, enable);
3121 if (ret != 0)
3122 rdev->bypass_count++;
3123 }
3124 }
3125
3126 if (ret == 0)
3127 regulator->bypass = enable;
3128
3129 mutex_unlock(&rdev->mutex);
3130
3131 return ret;
3132 }
3133 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3134
3135 /**
3136 * regulator_register_notifier - register regulator event notifier
3137 * @regulator: regulator source
3138 * @nb: notifier block
3139 *
3140 * Register notifier block to receive regulator events.
3141 */
3142 int regulator_register_notifier(struct regulator *regulator,
3143 struct notifier_block *nb)
3144 {
3145 return blocking_notifier_chain_register(&regulator->rdev->notifier,
3146 nb);
3147 }
3148 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3149
3150 /**
3151 * regulator_unregister_notifier - unregister regulator event notifier
3152 * @regulator: regulator source
3153 * @nb: notifier block
3154 *
3155 * Unregister regulator event notifier block.
3156 */
3157 int regulator_unregister_notifier(struct regulator *regulator,
3158 struct notifier_block *nb)
3159 {
3160 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3161 nb);
3162 }
3163 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3164
3165 /* notify regulator consumers and downstream regulator consumers.
3166 * Note mutex must be held by caller.
3167 */
3168 static int _notifier_call_chain(struct regulator_dev *rdev,
3169 unsigned long event, void *data)
3170 {
3171 /* call rdev chain first */
3172 return blocking_notifier_call_chain(&rdev->notifier, event, data);
3173 }
3174
3175 /**
3176 * regulator_bulk_get - get multiple regulator consumers
3177 *
3178 * @dev: Device to supply
3179 * @num_consumers: Number of consumers to register
3180 * @consumers: Configuration of consumers; clients are stored here.
3181 *
3182 * @return 0 on success, an errno on failure.
3183 *
3184 * This helper function allows drivers to get several regulator
3185 * consumers in one operation. If any of the regulators cannot be
3186 * acquired then any regulators that were allocated will be freed
3187 * before returning to the caller.
3188 */
3189 int regulator_bulk_get(struct device *dev, int num_consumers,
3190 struct regulator_bulk_data *consumers)
3191 {
3192 int i;
3193 int ret;
3194
3195 for (i = 0; i < num_consumers; i++)
3196 consumers[i].consumer = NULL;
3197
3198 for (i = 0; i < num_consumers; i++) {
3199 consumers[i].consumer = regulator_get(dev,
3200 consumers[i].supply);
3201 if (IS_ERR(consumers[i].consumer)) {
3202 ret = PTR_ERR(consumers[i].consumer);
3203 dev_err(dev, "Failed to get supply '%s': %d\n",
3204 consumers[i].supply, ret);
3205 consumers[i].consumer = NULL;
3206 goto err;
3207 }
3208 }
3209
3210 return 0;
3211
3212 err:
3213 while (--i >= 0)
3214 regulator_put(consumers[i].consumer);
3215
3216 return ret;
3217 }
3218 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3219
3220 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3221 {
3222 struct regulator_bulk_data *bulk = data;
3223
3224 bulk->ret = regulator_enable(bulk->consumer);
3225 }
3226
3227 /**
3228 * regulator_bulk_enable - enable multiple regulator consumers
3229 *
3230 * @num_consumers: Number of consumers
3231 * @consumers: Consumer data; clients are stored here.
3232 * @return 0 on success, an errno on failure
3233 *
3234 * This convenience API allows consumers to enable multiple regulator
3235 * clients in a single API call. If any consumers cannot be enabled
3236 * then any others that were enabled will be disabled again prior to
3237 * return.
3238 */
3239 int regulator_bulk_enable(int num_consumers,
3240 struct regulator_bulk_data *consumers)
3241 {
3242 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3243 int i;
3244 int ret = 0;
3245
3246 for (i = 0; i < num_consumers; i++) {
3247 if (consumers[i].consumer->always_on)
3248 consumers[i].ret = 0;
3249 else
3250 async_schedule_domain(regulator_bulk_enable_async,
3251 &consumers[i], &async_domain);
3252 }
3253
3254 async_synchronize_full_domain(&async_domain);
3255
3256 /* If any consumer failed we need to unwind any that succeeded */
3257 for (i = 0; i < num_consumers; i++) {
3258 if (consumers[i].ret != 0) {
3259 ret = consumers[i].ret;
3260 goto err;
3261 }
3262 }
3263
3264 return 0;
3265
3266 err:
3267 for (i = 0; i < num_consumers; i++) {
3268 if (consumers[i].ret < 0)
3269 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3270 consumers[i].ret);
3271 else
3272 regulator_disable(consumers[i].consumer);
3273 }
3274
3275 return ret;
3276 }
3277 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3278
3279 /**
3280 * regulator_bulk_disable - disable multiple regulator consumers
3281 *
3282 * @num_consumers: Number of consumers
3283 * @consumers: Consumer data; clients are stored here.
3284 * @return 0 on success, an errno on failure
3285 *
3286 * This convenience API allows consumers to disable multiple regulator
3287 * clients in a single API call. If any consumers cannot be disabled
3288 * then any others that were disabled will be enabled again prior to
3289 * return.
3290 */
3291 int regulator_bulk_disable(int num_consumers,
3292 struct regulator_bulk_data *consumers)
3293 {
3294 int i;
3295 int ret, r;
3296
3297 for (i = num_consumers - 1; i >= 0; --i) {
3298 ret = regulator_disable(consumers[i].consumer);
3299 if (ret != 0)
3300 goto err;
3301 }
3302
3303 return 0;
3304
3305 err:
3306 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3307 for (++i; i < num_consumers; ++i) {
3308 r = regulator_enable(consumers[i].consumer);
3309 if (r != 0)
3310 pr_err("Failed to reename %s: %d\n",
3311 consumers[i].supply, r);
3312 }
3313
3314 return ret;
3315 }
3316 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3317
3318 /**
3319 * regulator_bulk_force_disable - force disable multiple regulator consumers
3320 *
3321 * @num_consumers: Number of consumers
3322 * @consumers: Consumer data; clients are stored here.
3323 * @return 0 on success, an errno on failure
3324 *
3325 * This convenience API allows consumers to forcibly disable multiple regulator
3326 * clients in a single API call.
3327 * NOTE: This should be used for situations when device damage will
3328 * likely occur if the regulators are not disabled (e.g. over temp).
3329 * Although regulator_force_disable function call for some consumers can
3330 * return error numbers, the function is called for all consumers.
3331 */
3332 int regulator_bulk_force_disable(int num_consumers,
3333 struct regulator_bulk_data *consumers)
3334 {
3335 int i;
3336 int ret;
3337
3338 for (i = 0; i < num_consumers; i++)
3339 consumers[i].ret =
3340 regulator_force_disable(consumers[i].consumer);
3341
3342 for (i = 0; i < num_consumers; i++) {
3343 if (consumers[i].ret != 0) {
3344 ret = consumers[i].ret;
3345 goto out;
3346 }
3347 }
3348
3349 return 0;
3350 out:
3351 return ret;
3352 }
3353 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3354
3355 /**
3356 * regulator_bulk_free - free multiple regulator consumers
3357 *
3358 * @num_consumers: Number of consumers
3359 * @consumers: Consumer data; clients are stored here.
3360 *
3361 * This convenience API allows consumers to free multiple regulator
3362 * clients in a single API call.
3363 */
3364 void regulator_bulk_free(int num_consumers,
3365 struct regulator_bulk_data *consumers)
3366 {
3367 int i;
3368
3369 for (i = 0; i < num_consumers; i++) {
3370 regulator_put(consumers[i].consumer);
3371 consumers[i].consumer = NULL;
3372 }
3373 }
3374 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3375
3376 /**
3377 * regulator_notifier_call_chain - call regulator event notifier
3378 * @rdev: regulator source
3379 * @event: notifier block
3380 * @data: callback-specific data.
3381 *
3382 * Called by regulator drivers to notify clients a regulator event has
3383 * occurred. We also notify regulator clients downstream.
3384 * Note lock must be held by caller.
3385 */
3386 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3387 unsigned long event, void *data)
3388 {
3389 _notifier_call_chain(rdev, event, data);
3390 return NOTIFY_DONE;
3391
3392 }
3393 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3394
3395 /**
3396 * regulator_mode_to_status - convert a regulator mode into a status
3397 *
3398 * @mode: Mode to convert
3399 *
3400 * Convert a regulator mode into a status.
3401 */
3402 int regulator_mode_to_status(unsigned int mode)
3403 {
3404 switch (mode) {
3405 case REGULATOR_MODE_FAST:
3406 return REGULATOR_STATUS_FAST;
3407 case REGULATOR_MODE_NORMAL:
3408 return REGULATOR_STATUS_NORMAL;
3409 case REGULATOR_MODE_IDLE:
3410 return REGULATOR_STATUS_IDLE;
3411 case REGULATOR_MODE_STANDBY:
3412 return REGULATOR_STATUS_STANDBY;
3413 default:
3414 return REGULATOR_STATUS_UNDEFINED;
3415 }
3416 }
3417 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3418
3419 /*
3420 * To avoid cluttering sysfs (and memory) with useless state, only
3421 * create attributes that can be meaningfully displayed.
3422 */
3423 static int add_regulator_attributes(struct regulator_dev *rdev)
3424 {
3425 struct device *dev = &rdev->dev;
3426 const struct regulator_ops *ops = rdev->desc->ops;
3427 int status = 0;
3428
3429 /* some attributes need specific methods to be displayed */
3430 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3431 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3432 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3433 (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3434 status = device_create_file(dev, &dev_attr_microvolts);
3435 if (status < 0)
3436 return status;
3437 }
3438 if (ops->get_current_limit) {
3439 status = device_create_file(dev, &dev_attr_microamps);
3440 if (status < 0)
3441 return status;
3442 }
3443 if (ops->get_mode) {
3444 status = device_create_file(dev, &dev_attr_opmode);
3445 if (status < 0)
3446 return status;
3447 }
3448 if (rdev->ena_pin || ops->is_enabled) {
3449 status = device_create_file(dev, &dev_attr_state);
3450 if (status < 0)
3451 return status;
3452 }
3453 if (ops->get_status) {
3454 status = device_create_file(dev, &dev_attr_status);
3455 if (status < 0)
3456 return status;
3457 }
3458 if (ops->get_bypass) {
3459 status = device_create_file(dev, &dev_attr_bypass);
3460 if (status < 0)
3461 return status;
3462 }
3463
3464 /* some attributes are type-specific */
3465 if (rdev->desc->type == REGULATOR_CURRENT) {
3466 status = device_create_file(dev, &dev_attr_requested_microamps);
3467 if (status < 0)
3468 return status;
3469 }
3470
3471 /* all the other attributes exist to support constraints;
3472 * don't show them if there are no constraints, or if the
3473 * relevant supporting methods are missing.
3474 */
3475 if (!rdev->constraints)
3476 return status;
3477
3478 /* constraints need specific supporting methods */
3479 if (ops->set_voltage || ops->set_voltage_sel) {
3480 status = device_create_file(dev, &dev_attr_min_microvolts);
3481 if (status < 0)
3482 return status;
3483 status = device_create_file(dev, &dev_attr_max_microvolts);
3484 if (status < 0)
3485 return status;
3486 }
3487 if (ops->set_current_limit) {
3488 status = device_create_file(dev, &dev_attr_min_microamps);
3489 if (status < 0)
3490 return status;
3491 status = device_create_file(dev, &dev_attr_max_microamps);
3492 if (status < 0)
3493 return status;
3494 }
3495
3496 status = device_create_file(dev, &dev_attr_suspend_standby_state);
3497 if (status < 0)
3498 return status;
3499 status = device_create_file(dev, &dev_attr_suspend_mem_state);
3500 if (status < 0)
3501 return status;
3502 status = device_create_file(dev, &dev_attr_suspend_disk_state);
3503 if (status < 0)
3504 return status;
3505
3506 if (ops->set_suspend_voltage) {
3507 status = device_create_file(dev,
3508 &dev_attr_suspend_standby_microvolts);
3509 if (status < 0)
3510 return status;
3511 status = device_create_file(dev,
3512 &dev_attr_suspend_mem_microvolts);
3513 if (status < 0)
3514 return status;
3515 status = device_create_file(dev,
3516 &dev_attr_suspend_disk_microvolts);
3517 if (status < 0)
3518 return status;
3519 }
3520
3521 if (ops->set_suspend_mode) {
3522 status = device_create_file(dev,
3523 &dev_attr_suspend_standby_mode);
3524 if (status < 0)
3525 return status;
3526 status = device_create_file(dev,
3527 &dev_attr_suspend_mem_mode);
3528 if (status < 0)
3529 return status;
3530 status = device_create_file(dev,
3531 &dev_attr_suspend_disk_mode);
3532 if (status < 0)
3533 return status;
3534 }
3535
3536 return status;
3537 }
3538
3539 static void rdev_init_debugfs(struct regulator_dev *rdev)
3540 {
3541 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3542 if (!rdev->debugfs) {
3543 rdev_warn(rdev, "Failed to create debugfs directory\n");
3544 return;
3545 }
3546
3547 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3548 &rdev->use_count);
3549 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3550 &rdev->open_count);
3551 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3552 &rdev->bypass_count);
3553 }
3554
3555 /**
3556 * regulator_register - register regulator
3557 * @regulator_desc: regulator to register
3558 * @config: runtime configuration for regulator
3559 *
3560 * Called by regulator drivers to register a regulator.
3561 * Returns a valid pointer to struct regulator_dev on success
3562 * or an ERR_PTR() on error.
3563 */
3564 struct regulator_dev *
3565 regulator_register(const struct regulator_desc *regulator_desc,
3566 const struct regulator_config *config)
3567 {
3568 const struct regulation_constraints *constraints = NULL;
3569 const struct regulator_init_data *init_data;
3570 static atomic_t regulator_no = ATOMIC_INIT(0);
3571 struct regulator_dev *rdev;
3572 struct device *dev;
3573 int ret, i;
3574 const char *supply = NULL;
3575
3576 if (regulator_desc == NULL || config == NULL)
3577 return ERR_PTR(-EINVAL);
3578
3579 dev = config->dev;
3580 WARN_ON(!dev);
3581
3582 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3583 return ERR_PTR(-EINVAL);
3584
3585 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3586 regulator_desc->type != REGULATOR_CURRENT)
3587 return ERR_PTR(-EINVAL);
3588
3589 /* Only one of each should be implemented */
3590 WARN_ON(regulator_desc->ops->get_voltage &&
3591 regulator_desc->ops->get_voltage_sel);
3592 WARN_ON(regulator_desc->ops->set_voltage &&
3593 regulator_desc->ops->set_voltage_sel);
3594
3595 /* If we're using selectors we must implement list_voltage. */
3596 if (regulator_desc->ops->get_voltage_sel &&
3597 !regulator_desc->ops->list_voltage) {
3598 return ERR_PTR(-EINVAL);
3599 }
3600 if (regulator_desc->ops->set_voltage_sel &&
3601 !regulator_desc->ops->list_voltage) {
3602 return ERR_PTR(-EINVAL);
3603 }
3604
3605 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3606 if (rdev == NULL)
3607 return ERR_PTR(-ENOMEM);
3608
3609 init_data = regulator_of_get_init_data(dev, regulator_desc,
3610 &rdev->dev.of_node);
3611 if (!init_data) {
3612 init_data = config->init_data;
3613 rdev->dev.of_node = of_node_get(config->of_node);
3614 }
3615
3616 mutex_lock(&regulator_list_mutex);
3617
3618 mutex_init(&rdev->mutex);
3619 rdev->reg_data = config->driver_data;
3620 rdev->owner = regulator_desc->owner;
3621 rdev->desc = regulator_desc;
3622 if (config->regmap)
3623 rdev->regmap = config->regmap;
3624 else if (dev_get_regmap(dev, NULL))
3625 rdev->regmap = dev_get_regmap(dev, NULL);
3626 else if (dev->parent)
3627 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3628 INIT_LIST_HEAD(&rdev->consumer_list);
3629 INIT_LIST_HEAD(&rdev->list);
3630 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3631 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3632
3633 /* preform any regulator specific init */
3634 if (init_data && init_data->regulator_init) {
3635 ret = init_data->regulator_init(rdev->reg_data);
3636 if (ret < 0)
3637 goto clean;
3638 }
3639
3640 /* register with sysfs */
3641 rdev->dev.class = &regulator_class;
3642 rdev->dev.parent = dev;
3643 dev_set_name(&rdev->dev, "regulator.%d",
3644 atomic_inc_return(&regulator_no) - 1);
3645 ret = device_register(&rdev->dev);
3646 if (ret != 0) {
3647 put_device(&rdev->dev);
3648 goto clean;
3649 }
3650
3651 dev_set_drvdata(&rdev->dev, rdev);
3652
3653 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3654 ret = regulator_ena_gpio_request(rdev, config);
3655 if (ret != 0) {
3656 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3657 config->ena_gpio, ret);
3658 goto wash;
3659 }
3660
3661 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3662 rdev->ena_gpio_state = 1;
3663
3664 if (config->ena_gpio_invert)
3665 rdev->ena_gpio_state = !rdev->ena_gpio_state;
3666 }
3667
3668 /* set regulator constraints */
3669 if (init_data)
3670 constraints = &init_data->constraints;
3671
3672 ret = set_machine_constraints(rdev, constraints);
3673 if (ret < 0)
3674 goto scrub;
3675
3676 /* add attributes supported by this regulator */
3677 ret = add_regulator_attributes(rdev);
3678 if (ret < 0)
3679 goto scrub;
3680
3681 if (init_data && init_data->supply_regulator)
3682 supply = init_data->supply_regulator;
3683 else if (regulator_desc->supply_name)
3684 supply = regulator_desc->supply_name;
3685
3686 if (supply) {
3687 struct regulator_dev *r;
3688
3689 r = regulator_dev_lookup(dev, supply, &ret);
3690
3691 if (ret == -ENODEV) {
3692 /*
3693 * No supply was specified for this regulator and
3694 * there will never be one.
3695 */
3696 ret = 0;
3697 goto add_dev;
3698 } else if (!r) {
3699 dev_err(dev, "Failed to find supply %s\n", supply);
3700 ret = -EPROBE_DEFER;
3701 goto scrub;
3702 }
3703
3704 ret = set_supply(rdev, r);
3705 if (ret < 0)
3706 goto scrub;
3707
3708 /* Enable supply if rail is enabled */
3709 if (_regulator_is_enabled(rdev)) {
3710 ret = regulator_enable(rdev->supply);
3711 if (ret < 0)
3712 goto scrub;
3713 }
3714 }
3715
3716 add_dev:
3717 /* add consumers devices */
3718 if (init_data) {
3719 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3720 ret = set_consumer_device_supply(rdev,
3721 init_data->consumer_supplies[i].dev_name,
3722 init_data->consumer_supplies[i].supply);
3723 if (ret < 0) {
3724 dev_err(dev, "Failed to set supply %s\n",
3725 init_data->consumer_supplies[i].supply);
3726 goto unset_supplies;
3727 }
3728 }
3729 }
3730
3731 list_add(&rdev->list, &regulator_list);
3732
3733 rdev_init_debugfs(rdev);
3734 out:
3735 mutex_unlock(&regulator_list_mutex);
3736 return rdev;
3737
3738 unset_supplies:
3739 unset_regulator_supplies(rdev);
3740
3741 scrub:
3742 if (rdev->supply)
3743 _regulator_put(rdev->supply);
3744 regulator_ena_gpio_free(rdev);
3745 kfree(rdev->constraints);
3746 wash:
3747 device_unregister(&rdev->dev);
3748 /* device core frees rdev */
3749 rdev = ERR_PTR(ret);
3750 goto out;
3751
3752 clean:
3753 kfree(rdev);
3754 rdev = ERR_PTR(ret);
3755 goto out;
3756 }
3757 EXPORT_SYMBOL_GPL(regulator_register);
3758
3759 /**
3760 * regulator_unregister - unregister regulator
3761 * @rdev: regulator to unregister
3762 *
3763 * Called by regulator drivers to unregister a regulator.
3764 */
3765 void regulator_unregister(struct regulator_dev *rdev)
3766 {
3767 if (rdev == NULL)
3768 return;
3769
3770 if (rdev->supply) {
3771 while (rdev->use_count--)
3772 regulator_disable(rdev->supply);
3773 regulator_put(rdev->supply);
3774 }
3775 mutex_lock(&regulator_list_mutex);
3776 debugfs_remove_recursive(rdev->debugfs);
3777 flush_work(&rdev->disable_work.work);
3778 WARN_ON(rdev->open_count);
3779 unset_regulator_supplies(rdev);
3780 list_del(&rdev->list);
3781 kfree(rdev->constraints);
3782 regulator_ena_gpio_free(rdev);
3783 of_node_put(rdev->dev.of_node);
3784 device_unregister(&rdev->dev);
3785 mutex_unlock(&regulator_list_mutex);
3786 }
3787 EXPORT_SYMBOL_GPL(regulator_unregister);
3788
3789 /**
3790 * regulator_suspend_prepare - prepare regulators for system wide suspend
3791 * @state: system suspend state
3792 *
3793 * Configure each regulator with it's suspend operating parameters for state.
3794 * This will usually be called by machine suspend code prior to supending.
3795 */
3796 int regulator_suspend_prepare(suspend_state_t state)
3797 {
3798 struct regulator_dev *rdev;
3799 int ret = 0;
3800
3801 /* ON is handled by regulator active state */
3802 if (state == PM_SUSPEND_ON)
3803 return -EINVAL;
3804
3805 mutex_lock(&regulator_list_mutex);
3806 list_for_each_entry(rdev, &regulator_list, list) {
3807
3808 mutex_lock(&rdev->mutex);
3809 ret = suspend_prepare(rdev, state);
3810 mutex_unlock(&rdev->mutex);
3811
3812 if (ret < 0) {
3813 rdev_err(rdev, "failed to prepare\n");
3814 goto out;
3815 }
3816 }
3817 out:
3818 mutex_unlock(&regulator_list_mutex);
3819 return ret;
3820 }
3821 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3822
3823 /**
3824 * regulator_suspend_finish - resume regulators from system wide suspend
3825 *
3826 * Turn on regulators that might be turned off by regulator_suspend_prepare
3827 * and that should be turned on according to the regulators properties.
3828 */
3829 int regulator_suspend_finish(void)
3830 {
3831 struct regulator_dev *rdev;
3832 int ret = 0, error;
3833
3834 mutex_lock(&regulator_list_mutex);
3835 list_for_each_entry(rdev, &regulator_list, list) {
3836 mutex_lock(&rdev->mutex);
3837 if (rdev->use_count > 0 || rdev->constraints->always_on) {
3838 error = _regulator_do_enable(rdev);
3839 if (error)
3840 ret = error;
3841 } else {
3842 if (!have_full_constraints())
3843 goto unlock;
3844 if (!_regulator_is_enabled(rdev))
3845 goto unlock;
3846
3847 error = _regulator_do_disable(rdev);
3848 if (error)
3849 ret = error;
3850 }
3851 unlock:
3852 mutex_unlock(&rdev->mutex);
3853 }
3854 mutex_unlock(&regulator_list_mutex);
3855 return ret;
3856 }
3857 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3858
3859 /**
3860 * regulator_has_full_constraints - the system has fully specified constraints
3861 *
3862 * Calling this function will cause the regulator API to disable all
3863 * regulators which have a zero use count and don't have an always_on
3864 * constraint in a late_initcall.
3865 *
3866 * The intention is that this will become the default behaviour in a
3867 * future kernel release so users are encouraged to use this facility
3868 * now.
3869 */
3870 void regulator_has_full_constraints(void)
3871 {
3872 has_full_constraints = 1;
3873 }
3874 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3875
3876 /**
3877 * rdev_get_drvdata - get rdev regulator driver data
3878 * @rdev: regulator
3879 *
3880 * Get rdev regulator driver private data. This call can be used in the
3881 * regulator driver context.
3882 */
3883 void *rdev_get_drvdata(struct regulator_dev *rdev)
3884 {
3885 return rdev->reg_data;
3886 }
3887 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3888
3889 /**
3890 * regulator_get_drvdata - get regulator driver data
3891 * @regulator: regulator
3892 *
3893 * Get regulator driver private data. This call can be used in the consumer
3894 * driver context when non API regulator specific functions need to be called.
3895 */
3896 void *regulator_get_drvdata(struct regulator *regulator)
3897 {
3898 return regulator->rdev->reg_data;
3899 }
3900 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3901
3902 /**
3903 * regulator_set_drvdata - set regulator driver data
3904 * @regulator: regulator
3905 * @data: data
3906 */
3907 void regulator_set_drvdata(struct regulator *regulator, void *data)
3908 {
3909 regulator->rdev->reg_data = data;
3910 }
3911 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3912
3913 /**
3914 * regulator_get_id - get regulator ID
3915 * @rdev: regulator
3916 */
3917 int rdev_get_id(struct regulator_dev *rdev)
3918 {
3919 return rdev->desc->id;
3920 }
3921 EXPORT_SYMBOL_GPL(rdev_get_id);
3922
3923 struct device *rdev_get_dev(struct regulator_dev *rdev)
3924 {
3925 return &rdev->dev;
3926 }
3927 EXPORT_SYMBOL_GPL(rdev_get_dev);
3928
3929 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3930 {
3931 return reg_init_data->driver_data;
3932 }
3933 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3934
3935 #ifdef CONFIG_DEBUG_FS
3936 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3937 size_t count, loff_t *ppos)
3938 {
3939 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3940 ssize_t len, ret = 0;
3941 struct regulator_map *map;
3942
3943 if (!buf)
3944 return -ENOMEM;
3945
3946 list_for_each_entry(map, &regulator_map_list, list) {
3947 len = snprintf(buf + ret, PAGE_SIZE - ret,
3948 "%s -> %s.%s\n",
3949 rdev_get_name(map->regulator), map->dev_name,
3950 map->supply);
3951 if (len >= 0)
3952 ret += len;
3953 if (ret > PAGE_SIZE) {
3954 ret = PAGE_SIZE;
3955 break;
3956 }
3957 }
3958
3959 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3960
3961 kfree(buf);
3962
3963 return ret;
3964 }
3965 #endif
3966
3967 static const struct file_operations supply_map_fops = {
3968 #ifdef CONFIG_DEBUG_FS
3969 .read = supply_map_read_file,
3970 .llseek = default_llseek,
3971 #endif
3972 };
3973
3974 static int __init regulator_init(void)
3975 {
3976 int ret;
3977
3978 ret = class_register(&regulator_class);
3979
3980 debugfs_root = debugfs_create_dir("regulator", NULL);
3981 if (!debugfs_root)
3982 pr_warn("regulator: Failed to create debugfs directory\n");
3983
3984 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3985 &supply_map_fops);
3986
3987 regulator_dummy_init();
3988
3989 return ret;
3990 }
3991
3992 /* init early to allow our consumers to complete system booting */
3993 core_initcall(regulator_init);
3994
3995 static int __init regulator_init_complete(void)
3996 {
3997 struct regulator_dev *rdev;
3998 const struct regulator_ops *ops;
3999 struct regulation_constraints *c;
4000 int enabled, ret;
4001
4002 /*
4003 * Since DT doesn't provide an idiomatic mechanism for
4004 * enabling full constraints and since it's much more natural
4005 * with DT to provide them just assume that a DT enabled
4006 * system has full constraints.
4007 */
4008 if (of_have_populated_dt())
4009 has_full_constraints = true;
4010
4011 mutex_lock(&regulator_list_mutex);
4012
4013 /* If we have a full configuration then disable any regulators
4014 * we have permission to change the status for and which are
4015 * not in use or always_on. This is effectively the default
4016 * for DT and ACPI as they have full constraints.
4017 */
4018 list_for_each_entry(rdev, &regulator_list, list) {
4019 ops = rdev->desc->ops;
4020 c = rdev->constraints;
4021
4022 if (c && c->always_on)
4023 continue;
4024
4025 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4026 continue;
4027
4028 mutex_lock(&rdev->mutex);
4029
4030 if (rdev->use_count)
4031 goto unlock;
4032
4033 /* If we can't read the status assume it's on. */
4034 if (ops->is_enabled)
4035 enabled = ops->is_enabled(rdev);
4036 else
4037 enabled = 1;
4038
4039 if (!enabled)
4040 goto unlock;
4041
4042 if (have_full_constraints()) {
4043 /* We log since this may kill the system if it
4044 * goes wrong. */
4045 rdev_info(rdev, "disabling\n");
4046 ret = _regulator_do_disable(rdev);
4047 if (ret != 0)
4048 rdev_err(rdev, "couldn't disable: %d\n", ret);
4049 } else {
4050 /* The intention is that in future we will
4051 * assume that full constraints are provided
4052 * so warn even if we aren't going to do
4053 * anything here.
4054 */
4055 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4056 }
4057
4058 unlock:
4059 mutex_unlock(&rdev->mutex);
4060 }
4061
4062 mutex_unlock(&regulator_list_mutex);
4063
4064 return 0;
4065 }
4066 late_initcall_sync(regulator_init_complete);
This page took 0.121714 seconds and 5 git commands to generate.