Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/geert/linux...
[deliverable/linux.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39 #include "internal.h"
40
41 #define rdev_crit(rdev, fmt, ...) \
42 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_err(rdev, fmt, ...) \
44 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_warn(rdev, fmt, ...) \
46 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_info(rdev, fmt, ...) \
48 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49 #define rdev_dbg(rdev, fmt, ...) \
50 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51
52 static DEFINE_MUTEX(regulator_list_mutex);
53 static LIST_HEAD(regulator_list);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 /*
62 * struct regulator_map
63 *
64 * Used to provide symbolic supply names to devices.
65 */
66 struct regulator_map {
67 struct list_head list;
68 const char *dev_name; /* The dev_name() for the consumer */
69 const char *supply;
70 struct regulator_dev *regulator;
71 };
72
73 /*
74 * struct regulator_enable_gpio
75 *
76 * Management for shared enable GPIO pin
77 */
78 struct regulator_enable_gpio {
79 struct list_head list;
80 int gpio;
81 u32 enable_count; /* a number of enabled shared GPIO */
82 u32 request_count; /* a number of requested shared GPIO */
83 unsigned int ena_gpio_invert:1;
84 };
85
86 /*
87 * struct regulator_supply_alias
88 *
89 * Used to map lookups for a supply onto an alternative device.
90 */
91 struct regulator_supply_alias {
92 struct list_head list;
93 struct device *src_dev;
94 const char *src_supply;
95 struct device *alias_dev;
96 const char *alias_supply;
97 };
98
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator_dev *rdev);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static void _notifier_call_chain(struct regulator_dev *rdev,
105 unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107 int min_uV, int max_uV);
108 static struct regulator *create_regulator(struct regulator_dev *rdev,
109 struct device *dev,
110 const char *supply_name);
111
112 static const char *rdev_get_name(struct regulator_dev *rdev)
113 {
114 if (rdev->constraints && rdev->constraints->name)
115 return rdev->constraints->name;
116 else if (rdev->desc->name)
117 return rdev->desc->name;
118 else
119 return "";
120 }
121
122 static bool have_full_constraints(void)
123 {
124 return has_full_constraints || of_have_populated_dt();
125 }
126
127 /**
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
131 *
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
134 * returns NULL.
135 */
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137 {
138 struct device_node *regnode = NULL;
139 char prop_name[32]; /* 32 is max size of property name */
140
141 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143 snprintf(prop_name, 32, "%s-supply", supply);
144 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146 if (!regnode) {
147 dev_dbg(dev, "Looking up %s property in node %s failed",
148 prop_name, dev->of_node->full_name);
149 return NULL;
150 }
151 return regnode;
152 }
153
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
155 {
156 if (!rdev->constraints)
157 return 0;
158
159 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160 return 1;
161 else
162 return 0;
163 }
164
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167 int *min_uV, int *max_uV)
168 {
169 BUG_ON(*min_uV > *max_uV);
170
171 if (!rdev->constraints) {
172 rdev_err(rdev, "no constraints\n");
173 return -ENODEV;
174 }
175 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176 rdev_err(rdev, "operation not allowed\n");
177 return -EPERM;
178 }
179
180 if (*max_uV > rdev->constraints->max_uV)
181 *max_uV = rdev->constraints->max_uV;
182 if (*min_uV < rdev->constraints->min_uV)
183 *min_uV = rdev->constraints->min_uV;
184
185 if (*min_uV > *max_uV) {
186 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187 *min_uV, *max_uV);
188 return -EINVAL;
189 }
190
191 return 0;
192 }
193
194 /* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
196 */
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198 int *min_uV, int *max_uV)
199 {
200 struct regulator *regulator;
201
202 list_for_each_entry(regulator, &rdev->consumer_list, list) {
203 /*
204 * Assume consumers that didn't say anything are OK
205 * with anything in the constraint range.
206 */
207 if (!regulator->min_uV && !regulator->max_uV)
208 continue;
209
210 if (*max_uV > regulator->max_uV)
211 *max_uV = regulator->max_uV;
212 if (*min_uV < regulator->min_uV)
213 *min_uV = regulator->min_uV;
214 }
215
216 if (*min_uV > *max_uV) {
217 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218 *min_uV, *max_uV);
219 return -EINVAL;
220 }
221
222 return 0;
223 }
224
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227 int *min_uA, int *max_uA)
228 {
229 BUG_ON(*min_uA > *max_uA);
230
231 if (!rdev->constraints) {
232 rdev_err(rdev, "no constraints\n");
233 return -ENODEV;
234 }
235 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236 rdev_err(rdev, "operation not allowed\n");
237 return -EPERM;
238 }
239
240 if (*max_uA > rdev->constraints->max_uA)
241 *max_uA = rdev->constraints->max_uA;
242 if (*min_uA < rdev->constraints->min_uA)
243 *min_uA = rdev->constraints->min_uA;
244
245 if (*min_uA > *max_uA) {
246 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247 *min_uA, *max_uA);
248 return -EINVAL;
249 }
250
251 return 0;
252 }
253
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256 {
257 switch (*mode) {
258 case REGULATOR_MODE_FAST:
259 case REGULATOR_MODE_NORMAL:
260 case REGULATOR_MODE_IDLE:
261 case REGULATOR_MODE_STANDBY:
262 break;
263 default:
264 rdev_err(rdev, "invalid mode %x specified\n", *mode);
265 return -EINVAL;
266 }
267
268 if (!rdev->constraints) {
269 rdev_err(rdev, "no constraints\n");
270 return -ENODEV;
271 }
272 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273 rdev_err(rdev, "operation not allowed\n");
274 return -EPERM;
275 }
276
277 /* The modes are bitmasks, the most power hungry modes having
278 * the lowest values. If the requested mode isn't supported
279 * try higher modes. */
280 while (*mode) {
281 if (rdev->constraints->valid_modes_mask & *mode)
282 return 0;
283 *mode /= 2;
284 }
285
286 return -EINVAL;
287 }
288
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
291 {
292 if (!rdev->constraints) {
293 rdev_err(rdev, "no constraints\n");
294 return -ENODEV;
295 }
296 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297 rdev_err(rdev, "operation not allowed\n");
298 return -EPERM;
299 }
300 return 0;
301 }
302
303 static ssize_t regulator_uV_show(struct device *dev,
304 struct device_attribute *attr, char *buf)
305 {
306 struct regulator_dev *rdev = dev_get_drvdata(dev);
307 ssize_t ret;
308
309 mutex_lock(&rdev->mutex);
310 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311 mutex_unlock(&rdev->mutex);
312
313 return ret;
314 }
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317 static ssize_t regulator_uA_show(struct device *dev,
318 struct device_attribute *attr, char *buf)
319 {
320 struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323 }
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327 char *buf)
328 {
329 struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331 return sprintf(buf, "%s\n", rdev_get_name(rdev));
332 }
333 static DEVICE_ATTR_RO(name);
334
335 static ssize_t regulator_print_opmode(char *buf, int mode)
336 {
337 switch (mode) {
338 case REGULATOR_MODE_FAST:
339 return sprintf(buf, "fast\n");
340 case REGULATOR_MODE_NORMAL:
341 return sprintf(buf, "normal\n");
342 case REGULATOR_MODE_IDLE:
343 return sprintf(buf, "idle\n");
344 case REGULATOR_MODE_STANDBY:
345 return sprintf(buf, "standby\n");
346 }
347 return sprintf(buf, "unknown\n");
348 }
349
350 static ssize_t regulator_opmode_show(struct device *dev,
351 struct device_attribute *attr, char *buf)
352 {
353 struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
356 }
357 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
358
359 static ssize_t regulator_print_state(char *buf, int state)
360 {
361 if (state > 0)
362 return sprintf(buf, "enabled\n");
363 else if (state == 0)
364 return sprintf(buf, "disabled\n");
365 else
366 return sprintf(buf, "unknown\n");
367 }
368
369 static ssize_t regulator_state_show(struct device *dev,
370 struct device_attribute *attr, char *buf)
371 {
372 struct regulator_dev *rdev = dev_get_drvdata(dev);
373 ssize_t ret;
374
375 mutex_lock(&rdev->mutex);
376 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377 mutex_unlock(&rdev->mutex);
378
379 return ret;
380 }
381 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
382
383 static ssize_t regulator_status_show(struct device *dev,
384 struct device_attribute *attr, char *buf)
385 {
386 struct regulator_dev *rdev = dev_get_drvdata(dev);
387 int status;
388 char *label;
389
390 status = rdev->desc->ops->get_status(rdev);
391 if (status < 0)
392 return status;
393
394 switch (status) {
395 case REGULATOR_STATUS_OFF:
396 label = "off";
397 break;
398 case REGULATOR_STATUS_ON:
399 label = "on";
400 break;
401 case REGULATOR_STATUS_ERROR:
402 label = "error";
403 break;
404 case REGULATOR_STATUS_FAST:
405 label = "fast";
406 break;
407 case REGULATOR_STATUS_NORMAL:
408 label = "normal";
409 break;
410 case REGULATOR_STATUS_IDLE:
411 label = "idle";
412 break;
413 case REGULATOR_STATUS_STANDBY:
414 label = "standby";
415 break;
416 case REGULATOR_STATUS_BYPASS:
417 label = "bypass";
418 break;
419 case REGULATOR_STATUS_UNDEFINED:
420 label = "undefined";
421 break;
422 default:
423 return -ERANGE;
424 }
425
426 return sprintf(buf, "%s\n", label);
427 }
428 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
429
430 static ssize_t regulator_min_uA_show(struct device *dev,
431 struct device_attribute *attr, char *buf)
432 {
433 struct regulator_dev *rdev = dev_get_drvdata(dev);
434
435 if (!rdev->constraints)
436 return sprintf(buf, "constraint not defined\n");
437
438 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
439 }
440 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441
442 static ssize_t regulator_max_uA_show(struct device *dev,
443 struct device_attribute *attr, char *buf)
444 {
445 struct regulator_dev *rdev = dev_get_drvdata(dev);
446
447 if (!rdev->constraints)
448 return sprintf(buf, "constraint not defined\n");
449
450 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
451 }
452 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453
454 static ssize_t regulator_min_uV_show(struct device *dev,
455 struct device_attribute *attr, char *buf)
456 {
457 struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459 if (!rdev->constraints)
460 return sprintf(buf, "constraint not defined\n");
461
462 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
463 }
464 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465
466 static ssize_t regulator_max_uV_show(struct device *dev,
467 struct device_attribute *attr, char *buf)
468 {
469 struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471 if (!rdev->constraints)
472 return sprintf(buf, "constraint not defined\n");
473
474 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
475 }
476 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477
478 static ssize_t regulator_total_uA_show(struct device *dev,
479 struct device_attribute *attr, char *buf)
480 {
481 struct regulator_dev *rdev = dev_get_drvdata(dev);
482 struct regulator *regulator;
483 int uA = 0;
484
485 mutex_lock(&rdev->mutex);
486 list_for_each_entry(regulator, &rdev->consumer_list, list)
487 uA += regulator->uA_load;
488 mutex_unlock(&rdev->mutex);
489 return sprintf(buf, "%d\n", uA);
490 }
491 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492
493 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494 char *buf)
495 {
496 struct regulator_dev *rdev = dev_get_drvdata(dev);
497 return sprintf(buf, "%d\n", rdev->use_count);
498 }
499 static DEVICE_ATTR_RO(num_users);
500
501 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502 char *buf)
503 {
504 struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506 switch (rdev->desc->type) {
507 case REGULATOR_VOLTAGE:
508 return sprintf(buf, "voltage\n");
509 case REGULATOR_CURRENT:
510 return sprintf(buf, "current\n");
511 }
512 return sprintf(buf, "unknown\n");
513 }
514 static DEVICE_ATTR_RO(type);
515
516 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517 struct device_attribute *attr, char *buf)
518 {
519 struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
522 }
523 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524 regulator_suspend_mem_uV_show, NULL);
525
526 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527 struct device_attribute *attr, char *buf)
528 {
529 struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
532 }
533 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534 regulator_suspend_disk_uV_show, NULL);
535
536 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537 struct device_attribute *attr, char *buf)
538 {
539 struct regulator_dev *rdev = dev_get_drvdata(dev);
540
541 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
542 }
543 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544 regulator_suspend_standby_uV_show, NULL);
545
546 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547 struct device_attribute *attr, char *buf)
548 {
549 struct regulator_dev *rdev = dev_get_drvdata(dev);
550
551 return regulator_print_opmode(buf,
552 rdev->constraints->state_mem.mode);
553 }
554 static DEVICE_ATTR(suspend_mem_mode, 0444,
555 regulator_suspend_mem_mode_show, NULL);
556
557 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558 struct device_attribute *attr, char *buf)
559 {
560 struct regulator_dev *rdev = dev_get_drvdata(dev);
561
562 return regulator_print_opmode(buf,
563 rdev->constraints->state_disk.mode);
564 }
565 static DEVICE_ATTR(suspend_disk_mode, 0444,
566 regulator_suspend_disk_mode_show, NULL);
567
568 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569 struct device_attribute *attr, char *buf)
570 {
571 struct regulator_dev *rdev = dev_get_drvdata(dev);
572
573 return regulator_print_opmode(buf,
574 rdev->constraints->state_standby.mode);
575 }
576 static DEVICE_ATTR(suspend_standby_mode, 0444,
577 regulator_suspend_standby_mode_show, NULL);
578
579 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580 struct device_attribute *attr, char *buf)
581 {
582 struct regulator_dev *rdev = dev_get_drvdata(dev);
583
584 return regulator_print_state(buf,
585 rdev->constraints->state_mem.enabled);
586 }
587 static DEVICE_ATTR(suspend_mem_state, 0444,
588 regulator_suspend_mem_state_show, NULL);
589
590 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591 struct device_attribute *attr, char *buf)
592 {
593 struct regulator_dev *rdev = dev_get_drvdata(dev);
594
595 return regulator_print_state(buf,
596 rdev->constraints->state_disk.enabled);
597 }
598 static DEVICE_ATTR(suspend_disk_state, 0444,
599 regulator_suspend_disk_state_show, NULL);
600
601 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602 struct device_attribute *attr, char *buf)
603 {
604 struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606 return regulator_print_state(buf,
607 rdev->constraints->state_standby.enabled);
608 }
609 static DEVICE_ATTR(suspend_standby_state, 0444,
610 regulator_suspend_standby_state_show, NULL);
611
612 static ssize_t regulator_bypass_show(struct device *dev,
613 struct device_attribute *attr, char *buf)
614 {
615 struct regulator_dev *rdev = dev_get_drvdata(dev);
616 const char *report;
617 bool bypass;
618 int ret;
619
620 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
621
622 if (ret != 0)
623 report = "unknown";
624 else if (bypass)
625 report = "enabled";
626 else
627 report = "disabled";
628
629 return sprintf(buf, "%s\n", report);
630 }
631 static DEVICE_ATTR(bypass, 0444,
632 regulator_bypass_show, NULL);
633
634 /*
635 * These are the only attributes are present for all regulators.
636 * Other attributes are a function of regulator functionality.
637 */
638 static struct attribute *regulator_dev_attrs[] = {
639 &dev_attr_name.attr,
640 &dev_attr_num_users.attr,
641 &dev_attr_type.attr,
642 NULL,
643 };
644 ATTRIBUTE_GROUPS(regulator_dev);
645
646 static void regulator_dev_release(struct device *dev)
647 {
648 struct regulator_dev *rdev = dev_get_drvdata(dev);
649 kfree(rdev);
650 }
651
652 static struct class regulator_class = {
653 .name = "regulator",
654 .dev_release = regulator_dev_release,
655 .dev_groups = regulator_dev_groups,
656 };
657
658 /* Calculate the new optimum regulator operating mode based on the new total
659 * consumer load. All locks held by caller */
660 static void drms_uA_update(struct regulator_dev *rdev)
661 {
662 struct regulator *sibling;
663 int current_uA = 0, output_uV, input_uV, err;
664 unsigned int mode;
665
666 err = regulator_check_drms(rdev);
667 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668 (!rdev->desc->ops->get_voltage &&
669 !rdev->desc->ops->get_voltage_sel) ||
670 !rdev->desc->ops->set_mode)
671 return;
672
673 /* get output voltage */
674 output_uV = _regulator_get_voltage(rdev);
675 if (output_uV <= 0)
676 return;
677
678 /* get input voltage */
679 input_uV = 0;
680 if (rdev->supply)
681 input_uV = regulator_get_voltage(rdev->supply);
682 if (input_uV <= 0)
683 input_uV = rdev->constraints->input_uV;
684 if (input_uV <= 0)
685 return;
686
687 /* calc total requested load */
688 list_for_each_entry(sibling, &rdev->consumer_list, list)
689 current_uA += sibling->uA_load;
690
691 /* now get the optimum mode for our new total regulator load */
692 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693 output_uV, current_uA);
694
695 /* check the new mode is allowed */
696 err = regulator_mode_constrain(rdev, &mode);
697 if (err == 0)
698 rdev->desc->ops->set_mode(rdev, mode);
699 }
700
701 static int suspend_set_state(struct regulator_dev *rdev,
702 struct regulator_state *rstate)
703 {
704 int ret = 0;
705
706 /* If we have no suspend mode configration don't set anything;
707 * only warn if the driver implements set_suspend_voltage or
708 * set_suspend_mode callback.
709 */
710 if (!rstate->enabled && !rstate->disabled) {
711 if (rdev->desc->ops->set_suspend_voltage ||
712 rdev->desc->ops->set_suspend_mode)
713 rdev_warn(rdev, "No configuration\n");
714 return 0;
715 }
716
717 if (rstate->enabled && rstate->disabled) {
718 rdev_err(rdev, "invalid configuration\n");
719 return -EINVAL;
720 }
721
722 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723 ret = rdev->desc->ops->set_suspend_enable(rdev);
724 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725 ret = rdev->desc->ops->set_suspend_disable(rdev);
726 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727 ret = 0;
728
729 if (ret < 0) {
730 rdev_err(rdev, "failed to enabled/disable\n");
731 return ret;
732 }
733
734 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736 if (ret < 0) {
737 rdev_err(rdev, "failed to set voltage\n");
738 return ret;
739 }
740 }
741
742 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744 if (ret < 0) {
745 rdev_err(rdev, "failed to set mode\n");
746 return ret;
747 }
748 }
749 return ret;
750 }
751
752 /* locks held by caller */
753 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
754 {
755 if (!rdev->constraints)
756 return -EINVAL;
757
758 switch (state) {
759 case PM_SUSPEND_STANDBY:
760 return suspend_set_state(rdev,
761 &rdev->constraints->state_standby);
762 case PM_SUSPEND_MEM:
763 return suspend_set_state(rdev,
764 &rdev->constraints->state_mem);
765 case PM_SUSPEND_MAX:
766 return suspend_set_state(rdev,
767 &rdev->constraints->state_disk);
768 default:
769 return -EINVAL;
770 }
771 }
772
773 static void print_constraints(struct regulator_dev *rdev)
774 {
775 struct regulation_constraints *constraints = rdev->constraints;
776 char buf[80] = "";
777 int count = 0;
778 int ret;
779
780 if (constraints->min_uV && constraints->max_uV) {
781 if (constraints->min_uV == constraints->max_uV)
782 count += sprintf(buf + count, "%d mV ",
783 constraints->min_uV / 1000);
784 else
785 count += sprintf(buf + count, "%d <--> %d mV ",
786 constraints->min_uV / 1000,
787 constraints->max_uV / 1000);
788 }
789
790 if (!constraints->min_uV ||
791 constraints->min_uV != constraints->max_uV) {
792 ret = _regulator_get_voltage(rdev);
793 if (ret > 0)
794 count += sprintf(buf + count, "at %d mV ", ret / 1000);
795 }
796
797 if (constraints->uV_offset)
798 count += sprintf(buf, "%dmV offset ",
799 constraints->uV_offset / 1000);
800
801 if (constraints->min_uA && constraints->max_uA) {
802 if (constraints->min_uA == constraints->max_uA)
803 count += sprintf(buf + count, "%d mA ",
804 constraints->min_uA / 1000);
805 else
806 count += sprintf(buf + count, "%d <--> %d mA ",
807 constraints->min_uA / 1000,
808 constraints->max_uA / 1000);
809 }
810
811 if (!constraints->min_uA ||
812 constraints->min_uA != constraints->max_uA) {
813 ret = _regulator_get_current_limit(rdev);
814 if (ret > 0)
815 count += sprintf(buf + count, "at %d mA ", ret / 1000);
816 }
817
818 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819 count += sprintf(buf + count, "fast ");
820 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821 count += sprintf(buf + count, "normal ");
822 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823 count += sprintf(buf + count, "idle ");
824 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825 count += sprintf(buf + count, "standby");
826
827 if (!count)
828 sprintf(buf, "no parameters");
829
830 rdev_info(rdev, "%s\n", buf);
831
832 if ((constraints->min_uV != constraints->max_uV) &&
833 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834 rdev_warn(rdev,
835 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836 }
837
838 static int machine_constraints_voltage(struct regulator_dev *rdev,
839 struct regulation_constraints *constraints)
840 {
841 struct regulator_ops *ops = rdev->desc->ops;
842 int ret;
843
844 /* do we need to apply the constraint voltage */
845 if (rdev->constraints->apply_uV &&
846 rdev->constraints->min_uV == rdev->constraints->max_uV) {
847 ret = _regulator_do_set_voltage(rdev,
848 rdev->constraints->min_uV,
849 rdev->constraints->max_uV);
850 if (ret < 0) {
851 rdev_err(rdev, "failed to apply %duV constraint\n",
852 rdev->constraints->min_uV);
853 return ret;
854 }
855 }
856
857 /* constrain machine-level voltage specs to fit
858 * the actual range supported by this regulator.
859 */
860 if (ops->list_voltage && rdev->desc->n_voltages) {
861 int count = rdev->desc->n_voltages;
862 int i;
863 int min_uV = INT_MAX;
864 int max_uV = INT_MIN;
865 int cmin = constraints->min_uV;
866 int cmax = constraints->max_uV;
867
868 /* it's safe to autoconfigure fixed-voltage supplies
869 and the constraints are used by list_voltage. */
870 if (count == 1 && !cmin) {
871 cmin = 1;
872 cmax = INT_MAX;
873 constraints->min_uV = cmin;
874 constraints->max_uV = cmax;
875 }
876
877 /* voltage constraints are optional */
878 if ((cmin == 0) && (cmax == 0))
879 return 0;
880
881 /* else require explicit machine-level constraints */
882 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
883 rdev_err(rdev, "invalid voltage constraints\n");
884 return -EINVAL;
885 }
886
887 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888 for (i = 0; i < count; i++) {
889 int value;
890
891 value = ops->list_voltage(rdev, i);
892 if (value <= 0)
893 continue;
894
895 /* maybe adjust [min_uV..max_uV] */
896 if (value >= cmin && value < min_uV)
897 min_uV = value;
898 if (value <= cmax && value > max_uV)
899 max_uV = value;
900 }
901
902 /* final: [min_uV..max_uV] valid iff constraints valid */
903 if (max_uV < min_uV) {
904 rdev_err(rdev,
905 "unsupportable voltage constraints %u-%uuV\n",
906 min_uV, max_uV);
907 return -EINVAL;
908 }
909
910 /* use regulator's subset of machine constraints */
911 if (constraints->min_uV < min_uV) {
912 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
913 constraints->min_uV, min_uV);
914 constraints->min_uV = min_uV;
915 }
916 if (constraints->max_uV > max_uV) {
917 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
918 constraints->max_uV, max_uV);
919 constraints->max_uV = max_uV;
920 }
921 }
922
923 return 0;
924 }
925
926 static int machine_constraints_current(struct regulator_dev *rdev,
927 struct regulation_constraints *constraints)
928 {
929 struct regulator_ops *ops = rdev->desc->ops;
930 int ret;
931
932 if (!constraints->min_uA && !constraints->max_uA)
933 return 0;
934
935 if (constraints->min_uA > constraints->max_uA) {
936 rdev_err(rdev, "Invalid current constraints\n");
937 return -EINVAL;
938 }
939
940 if (!ops->set_current_limit || !ops->get_current_limit) {
941 rdev_warn(rdev, "Operation of current configuration missing\n");
942 return 0;
943 }
944
945 /* Set regulator current in constraints range */
946 ret = ops->set_current_limit(rdev, constraints->min_uA,
947 constraints->max_uA);
948 if (ret < 0) {
949 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
950 return ret;
951 }
952
953 return 0;
954 }
955
956 /**
957 * set_machine_constraints - sets regulator constraints
958 * @rdev: regulator source
959 * @constraints: constraints to apply
960 *
961 * Allows platform initialisation code to define and constrain
962 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
963 * Constraints *must* be set by platform code in order for some
964 * regulator operations to proceed i.e. set_voltage, set_current_limit,
965 * set_mode.
966 */
967 static int set_machine_constraints(struct regulator_dev *rdev,
968 const struct regulation_constraints *constraints)
969 {
970 int ret = 0;
971 struct regulator_ops *ops = rdev->desc->ops;
972
973 if (constraints)
974 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
975 GFP_KERNEL);
976 else
977 rdev->constraints = kzalloc(sizeof(*constraints),
978 GFP_KERNEL);
979 if (!rdev->constraints)
980 return -ENOMEM;
981
982 ret = machine_constraints_voltage(rdev, rdev->constraints);
983 if (ret != 0)
984 goto out;
985
986 ret = machine_constraints_current(rdev, rdev->constraints);
987 if (ret != 0)
988 goto out;
989
990 /* do we need to setup our suspend state */
991 if (rdev->constraints->initial_state) {
992 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
993 if (ret < 0) {
994 rdev_err(rdev, "failed to set suspend state\n");
995 goto out;
996 }
997 }
998
999 if (rdev->constraints->initial_mode) {
1000 if (!ops->set_mode) {
1001 rdev_err(rdev, "no set_mode operation\n");
1002 ret = -EINVAL;
1003 goto out;
1004 }
1005
1006 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1007 if (ret < 0) {
1008 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1009 goto out;
1010 }
1011 }
1012
1013 /* If the constraints say the regulator should be on at this point
1014 * and we have control then make sure it is enabled.
1015 */
1016 if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
1017 ops->enable) {
1018 ret = ops->enable(rdev);
1019 if (ret < 0) {
1020 rdev_err(rdev, "failed to enable\n");
1021 goto out;
1022 }
1023 }
1024
1025 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1026 && ops->set_ramp_delay) {
1027 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1028 if (ret < 0) {
1029 rdev_err(rdev, "failed to set ramp_delay\n");
1030 goto out;
1031 }
1032 }
1033
1034 print_constraints(rdev);
1035 return 0;
1036 out:
1037 kfree(rdev->constraints);
1038 rdev->constraints = NULL;
1039 return ret;
1040 }
1041
1042 /**
1043 * set_supply - set regulator supply regulator
1044 * @rdev: regulator name
1045 * @supply_rdev: supply regulator name
1046 *
1047 * Called by platform initialisation code to set the supply regulator for this
1048 * regulator. This ensures that a regulators supply will also be enabled by the
1049 * core if it's child is enabled.
1050 */
1051 static int set_supply(struct regulator_dev *rdev,
1052 struct regulator_dev *supply_rdev)
1053 {
1054 int err;
1055
1056 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1057
1058 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1059 if (rdev->supply == NULL) {
1060 err = -ENOMEM;
1061 return err;
1062 }
1063 supply_rdev->open_count++;
1064
1065 return 0;
1066 }
1067
1068 /**
1069 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1070 * @rdev: regulator source
1071 * @consumer_dev_name: dev_name() string for device supply applies to
1072 * @supply: symbolic name for supply
1073 *
1074 * Allows platform initialisation code to map physical regulator
1075 * sources to symbolic names for supplies for use by devices. Devices
1076 * should use these symbolic names to request regulators, avoiding the
1077 * need to provide board-specific regulator names as platform data.
1078 */
1079 static int set_consumer_device_supply(struct regulator_dev *rdev,
1080 const char *consumer_dev_name,
1081 const char *supply)
1082 {
1083 struct regulator_map *node;
1084 int has_dev;
1085
1086 if (supply == NULL)
1087 return -EINVAL;
1088
1089 if (consumer_dev_name != NULL)
1090 has_dev = 1;
1091 else
1092 has_dev = 0;
1093
1094 list_for_each_entry(node, &regulator_map_list, list) {
1095 if (node->dev_name && consumer_dev_name) {
1096 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1097 continue;
1098 } else if (node->dev_name || consumer_dev_name) {
1099 continue;
1100 }
1101
1102 if (strcmp(node->supply, supply) != 0)
1103 continue;
1104
1105 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1106 consumer_dev_name,
1107 dev_name(&node->regulator->dev),
1108 node->regulator->desc->name,
1109 supply,
1110 dev_name(&rdev->dev), rdev_get_name(rdev));
1111 return -EBUSY;
1112 }
1113
1114 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1115 if (node == NULL)
1116 return -ENOMEM;
1117
1118 node->regulator = rdev;
1119 node->supply = supply;
1120
1121 if (has_dev) {
1122 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1123 if (node->dev_name == NULL) {
1124 kfree(node);
1125 return -ENOMEM;
1126 }
1127 }
1128
1129 list_add(&node->list, &regulator_map_list);
1130 return 0;
1131 }
1132
1133 static void unset_regulator_supplies(struct regulator_dev *rdev)
1134 {
1135 struct regulator_map *node, *n;
1136
1137 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1138 if (rdev == node->regulator) {
1139 list_del(&node->list);
1140 kfree(node->dev_name);
1141 kfree(node);
1142 }
1143 }
1144 }
1145
1146 #define REG_STR_SIZE 64
1147
1148 static struct regulator *create_regulator(struct regulator_dev *rdev,
1149 struct device *dev,
1150 const char *supply_name)
1151 {
1152 struct regulator *regulator;
1153 char buf[REG_STR_SIZE];
1154 int err, size;
1155
1156 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1157 if (regulator == NULL)
1158 return NULL;
1159
1160 mutex_lock(&rdev->mutex);
1161 regulator->rdev = rdev;
1162 list_add(&regulator->list, &rdev->consumer_list);
1163
1164 if (dev) {
1165 regulator->dev = dev;
1166
1167 /* Add a link to the device sysfs entry */
1168 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1169 dev->kobj.name, supply_name);
1170 if (size >= REG_STR_SIZE)
1171 goto overflow_err;
1172
1173 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1174 if (regulator->supply_name == NULL)
1175 goto overflow_err;
1176
1177 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1178 buf);
1179 if (err) {
1180 rdev_warn(rdev, "could not add device link %s err %d\n",
1181 dev->kobj.name, err);
1182 /* non-fatal */
1183 }
1184 } else {
1185 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1186 if (regulator->supply_name == NULL)
1187 goto overflow_err;
1188 }
1189
1190 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1191 rdev->debugfs);
1192 if (!regulator->debugfs) {
1193 rdev_warn(rdev, "Failed to create debugfs directory\n");
1194 } else {
1195 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1196 &regulator->uA_load);
1197 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1198 &regulator->min_uV);
1199 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1200 &regulator->max_uV);
1201 }
1202
1203 /*
1204 * Check now if the regulator is an always on regulator - if
1205 * it is then we don't need to do nearly so much work for
1206 * enable/disable calls.
1207 */
1208 if (!_regulator_can_change_status(rdev) &&
1209 _regulator_is_enabled(rdev))
1210 regulator->always_on = true;
1211
1212 mutex_unlock(&rdev->mutex);
1213 return regulator;
1214 overflow_err:
1215 list_del(&regulator->list);
1216 kfree(regulator);
1217 mutex_unlock(&rdev->mutex);
1218 return NULL;
1219 }
1220
1221 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1222 {
1223 if (rdev->constraints && rdev->constraints->enable_time)
1224 return rdev->constraints->enable_time;
1225 if (!rdev->desc->ops->enable_time)
1226 return rdev->desc->enable_time;
1227 return rdev->desc->ops->enable_time(rdev);
1228 }
1229
1230 static struct regulator_supply_alias *regulator_find_supply_alias(
1231 struct device *dev, const char *supply)
1232 {
1233 struct regulator_supply_alias *map;
1234
1235 list_for_each_entry(map, &regulator_supply_alias_list, list)
1236 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1237 return map;
1238
1239 return NULL;
1240 }
1241
1242 static void regulator_supply_alias(struct device **dev, const char **supply)
1243 {
1244 struct regulator_supply_alias *map;
1245
1246 map = regulator_find_supply_alias(*dev, *supply);
1247 if (map) {
1248 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1249 *supply, map->alias_supply,
1250 dev_name(map->alias_dev));
1251 *dev = map->alias_dev;
1252 *supply = map->alias_supply;
1253 }
1254 }
1255
1256 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1257 const char *supply,
1258 int *ret)
1259 {
1260 struct regulator_dev *r;
1261 struct device_node *node;
1262 struct regulator_map *map;
1263 const char *devname = NULL;
1264
1265 regulator_supply_alias(&dev, &supply);
1266
1267 /* first do a dt based lookup */
1268 if (dev && dev->of_node) {
1269 node = of_get_regulator(dev, supply);
1270 if (node) {
1271 list_for_each_entry(r, &regulator_list, list)
1272 if (r->dev.parent &&
1273 node == r->dev.of_node)
1274 return r;
1275 *ret = -EPROBE_DEFER;
1276 return NULL;
1277 } else {
1278 /*
1279 * If we couldn't even get the node then it's
1280 * not just that the device didn't register
1281 * yet, there's no node and we'll never
1282 * succeed.
1283 */
1284 *ret = -ENODEV;
1285 }
1286 }
1287
1288 /* if not found, try doing it non-dt way */
1289 if (dev)
1290 devname = dev_name(dev);
1291
1292 list_for_each_entry(r, &regulator_list, list)
1293 if (strcmp(rdev_get_name(r), supply) == 0)
1294 return r;
1295
1296 list_for_each_entry(map, &regulator_map_list, list) {
1297 /* If the mapping has a device set up it must match */
1298 if (map->dev_name &&
1299 (!devname || strcmp(map->dev_name, devname)))
1300 continue;
1301
1302 if (strcmp(map->supply, supply) == 0)
1303 return map->regulator;
1304 }
1305
1306
1307 return NULL;
1308 }
1309
1310 /* Internal regulator request function */
1311 static struct regulator *_regulator_get(struct device *dev, const char *id,
1312 bool exclusive, bool allow_dummy)
1313 {
1314 struct regulator_dev *rdev;
1315 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1316 const char *devname = NULL;
1317 int ret;
1318
1319 if (id == NULL) {
1320 pr_err("get() with no identifier\n");
1321 return ERR_PTR(-EINVAL);
1322 }
1323
1324 if (dev)
1325 devname = dev_name(dev);
1326
1327 if (have_full_constraints())
1328 ret = -ENODEV;
1329 else
1330 ret = -EPROBE_DEFER;
1331
1332 mutex_lock(&regulator_list_mutex);
1333
1334 rdev = regulator_dev_lookup(dev, id, &ret);
1335 if (rdev)
1336 goto found;
1337
1338 regulator = ERR_PTR(ret);
1339
1340 /*
1341 * If we have return value from dev_lookup fail, we do not expect to
1342 * succeed, so, quit with appropriate error value
1343 */
1344 if (ret && ret != -ENODEV)
1345 goto out;
1346
1347 if (!devname)
1348 devname = "deviceless";
1349
1350 /*
1351 * Assume that a regulator is physically present and enabled
1352 * even if it isn't hooked up and just provide a dummy.
1353 */
1354 if (have_full_constraints() && allow_dummy) {
1355 pr_warn("%s supply %s not found, using dummy regulator\n",
1356 devname, id);
1357
1358 rdev = dummy_regulator_rdev;
1359 goto found;
1360 /* Don't log an error when called from regulator_get_optional() */
1361 } else if (!have_full_constraints() || exclusive) {
1362 dev_warn(dev, "dummy supplies not allowed\n");
1363 }
1364
1365 mutex_unlock(&regulator_list_mutex);
1366 return regulator;
1367
1368 found:
1369 if (rdev->exclusive) {
1370 regulator = ERR_PTR(-EPERM);
1371 goto out;
1372 }
1373
1374 if (exclusive && rdev->open_count) {
1375 regulator = ERR_PTR(-EBUSY);
1376 goto out;
1377 }
1378
1379 if (!try_module_get(rdev->owner))
1380 goto out;
1381
1382 regulator = create_regulator(rdev, dev, id);
1383 if (regulator == NULL) {
1384 regulator = ERR_PTR(-ENOMEM);
1385 module_put(rdev->owner);
1386 goto out;
1387 }
1388
1389 rdev->open_count++;
1390 if (exclusive) {
1391 rdev->exclusive = 1;
1392
1393 ret = _regulator_is_enabled(rdev);
1394 if (ret > 0)
1395 rdev->use_count = 1;
1396 else
1397 rdev->use_count = 0;
1398 }
1399
1400 out:
1401 mutex_unlock(&regulator_list_mutex);
1402
1403 return regulator;
1404 }
1405
1406 /**
1407 * regulator_get - lookup and obtain a reference to a regulator.
1408 * @dev: device for regulator "consumer"
1409 * @id: Supply name or regulator ID.
1410 *
1411 * Returns a struct regulator corresponding to the regulator producer,
1412 * or IS_ERR() condition containing errno.
1413 *
1414 * Use of supply names configured via regulator_set_device_supply() is
1415 * strongly encouraged. It is recommended that the supply name used
1416 * should match the name used for the supply and/or the relevant
1417 * device pins in the datasheet.
1418 */
1419 struct regulator *regulator_get(struct device *dev, const char *id)
1420 {
1421 return _regulator_get(dev, id, false, true);
1422 }
1423 EXPORT_SYMBOL_GPL(regulator_get);
1424
1425 /**
1426 * regulator_get_exclusive - obtain exclusive access to a regulator.
1427 * @dev: device for regulator "consumer"
1428 * @id: Supply name or regulator ID.
1429 *
1430 * Returns a struct regulator corresponding to the regulator producer,
1431 * or IS_ERR() condition containing errno. Other consumers will be
1432 * unable to obtain this reference is held and the use count for the
1433 * regulator will be initialised to reflect the current state of the
1434 * regulator.
1435 *
1436 * This is intended for use by consumers which cannot tolerate shared
1437 * use of the regulator such as those which need to force the
1438 * regulator off for correct operation of the hardware they are
1439 * controlling.
1440 *
1441 * Use of supply names configured via regulator_set_device_supply() is
1442 * strongly encouraged. It is recommended that the supply name used
1443 * should match the name used for the supply and/or the relevant
1444 * device pins in the datasheet.
1445 */
1446 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1447 {
1448 return _regulator_get(dev, id, true, false);
1449 }
1450 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1451
1452 /**
1453 * regulator_get_optional - obtain optional access to a regulator.
1454 * @dev: device for regulator "consumer"
1455 * @id: Supply name or regulator ID.
1456 *
1457 * Returns a struct regulator corresponding to the regulator producer,
1458 * or IS_ERR() condition containing errno. Other consumers will be
1459 * unable to obtain this reference is held and the use count for the
1460 * regulator will be initialised to reflect the current state of the
1461 * regulator.
1462 *
1463 * This is intended for use by consumers for devices which can have
1464 * some supplies unconnected in normal use, such as some MMC devices.
1465 * It can allow the regulator core to provide stub supplies for other
1466 * supplies requested using normal regulator_get() calls without
1467 * disrupting the operation of drivers that can handle absent
1468 * supplies.
1469 *
1470 * Use of supply names configured via regulator_set_device_supply() is
1471 * strongly encouraged. It is recommended that the supply name used
1472 * should match the name used for the supply and/or the relevant
1473 * device pins in the datasheet.
1474 */
1475 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1476 {
1477 return _regulator_get(dev, id, false, false);
1478 }
1479 EXPORT_SYMBOL_GPL(regulator_get_optional);
1480
1481 /* Locks held by regulator_put() */
1482 static void _regulator_put(struct regulator *regulator)
1483 {
1484 struct regulator_dev *rdev;
1485
1486 if (regulator == NULL || IS_ERR(regulator))
1487 return;
1488
1489 rdev = regulator->rdev;
1490
1491 debugfs_remove_recursive(regulator->debugfs);
1492
1493 /* remove any sysfs entries */
1494 if (regulator->dev)
1495 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1496 kfree(regulator->supply_name);
1497 list_del(&regulator->list);
1498 kfree(regulator);
1499
1500 rdev->open_count--;
1501 rdev->exclusive = 0;
1502
1503 module_put(rdev->owner);
1504 }
1505
1506 /**
1507 * regulator_put - "free" the regulator source
1508 * @regulator: regulator source
1509 *
1510 * Note: drivers must ensure that all regulator_enable calls made on this
1511 * regulator source are balanced by regulator_disable calls prior to calling
1512 * this function.
1513 */
1514 void regulator_put(struct regulator *regulator)
1515 {
1516 mutex_lock(&regulator_list_mutex);
1517 _regulator_put(regulator);
1518 mutex_unlock(&regulator_list_mutex);
1519 }
1520 EXPORT_SYMBOL_GPL(regulator_put);
1521
1522 /**
1523 * regulator_register_supply_alias - Provide device alias for supply lookup
1524 *
1525 * @dev: device that will be given as the regulator "consumer"
1526 * @id: Supply name or regulator ID
1527 * @alias_dev: device that should be used to lookup the supply
1528 * @alias_id: Supply name or regulator ID that should be used to lookup the
1529 * supply
1530 *
1531 * All lookups for id on dev will instead be conducted for alias_id on
1532 * alias_dev.
1533 */
1534 int regulator_register_supply_alias(struct device *dev, const char *id,
1535 struct device *alias_dev,
1536 const char *alias_id)
1537 {
1538 struct regulator_supply_alias *map;
1539
1540 map = regulator_find_supply_alias(dev, id);
1541 if (map)
1542 return -EEXIST;
1543
1544 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1545 if (!map)
1546 return -ENOMEM;
1547
1548 map->src_dev = dev;
1549 map->src_supply = id;
1550 map->alias_dev = alias_dev;
1551 map->alias_supply = alias_id;
1552
1553 list_add(&map->list, &regulator_supply_alias_list);
1554
1555 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1556 id, dev_name(dev), alias_id, dev_name(alias_dev));
1557
1558 return 0;
1559 }
1560 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1561
1562 /**
1563 * regulator_unregister_supply_alias - Remove device alias
1564 *
1565 * @dev: device that will be given as the regulator "consumer"
1566 * @id: Supply name or regulator ID
1567 *
1568 * Remove a lookup alias if one exists for id on dev.
1569 */
1570 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1571 {
1572 struct regulator_supply_alias *map;
1573
1574 map = regulator_find_supply_alias(dev, id);
1575 if (map) {
1576 list_del(&map->list);
1577 kfree(map);
1578 }
1579 }
1580 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1581
1582 /**
1583 * regulator_bulk_register_supply_alias - register multiple aliases
1584 *
1585 * @dev: device that will be given as the regulator "consumer"
1586 * @id: List of supply names or regulator IDs
1587 * @alias_dev: device that should be used to lookup the supply
1588 * @alias_id: List of supply names or regulator IDs that should be used to
1589 * lookup the supply
1590 * @num_id: Number of aliases to register
1591 *
1592 * @return 0 on success, an errno on failure.
1593 *
1594 * This helper function allows drivers to register several supply
1595 * aliases in one operation. If any of the aliases cannot be
1596 * registered any aliases that were registered will be removed
1597 * before returning to the caller.
1598 */
1599 int regulator_bulk_register_supply_alias(struct device *dev, const char **id,
1600 struct device *alias_dev,
1601 const char **alias_id,
1602 int num_id)
1603 {
1604 int i;
1605 int ret;
1606
1607 for (i = 0; i < num_id; ++i) {
1608 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1609 alias_id[i]);
1610 if (ret < 0)
1611 goto err;
1612 }
1613
1614 return 0;
1615
1616 err:
1617 dev_err(dev,
1618 "Failed to create supply alias %s,%s -> %s,%s\n",
1619 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1620
1621 while (--i >= 0)
1622 regulator_unregister_supply_alias(dev, id[i]);
1623
1624 return ret;
1625 }
1626 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1627
1628 /**
1629 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1630 *
1631 * @dev: device that will be given as the regulator "consumer"
1632 * @id: List of supply names or regulator IDs
1633 * @num_id: Number of aliases to unregister
1634 *
1635 * This helper function allows drivers to unregister several supply
1636 * aliases in one operation.
1637 */
1638 void regulator_bulk_unregister_supply_alias(struct device *dev,
1639 const char **id,
1640 int num_id)
1641 {
1642 int i;
1643
1644 for (i = 0; i < num_id; ++i)
1645 regulator_unregister_supply_alias(dev, id[i]);
1646 }
1647 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1648
1649
1650 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1651 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1652 const struct regulator_config *config)
1653 {
1654 struct regulator_enable_gpio *pin;
1655 int ret;
1656
1657 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1658 if (pin->gpio == config->ena_gpio) {
1659 rdev_dbg(rdev, "GPIO %d is already used\n",
1660 config->ena_gpio);
1661 goto update_ena_gpio_to_rdev;
1662 }
1663 }
1664
1665 ret = gpio_request_one(config->ena_gpio,
1666 GPIOF_DIR_OUT | config->ena_gpio_flags,
1667 rdev_get_name(rdev));
1668 if (ret)
1669 return ret;
1670
1671 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1672 if (pin == NULL) {
1673 gpio_free(config->ena_gpio);
1674 return -ENOMEM;
1675 }
1676
1677 pin->gpio = config->ena_gpio;
1678 pin->ena_gpio_invert = config->ena_gpio_invert;
1679 list_add(&pin->list, &regulator_ena_gpio_list);
1680
1681 update_ena_gpio_to_rdev:
1682 pin->request_count++;
1683 rdev->ena_pin = pin;
1684 return 0;
1685 }
1686
1687 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1688 {
1689 struct regulator_enable_gpio *pin, *n;
1690
1691 if (!rdev->ena_pin)
1692 return;
1693
1694 /* Free the GPIO only in case of no use */
1695 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1696 if (pin->gpio == rdev->ena_pin->gpio) {
1697 if (pin->request_count <= 1) {
1698 pin->request_count = 0;
1699 gpio_free(pin->gpio);
1700 list_del(&pin->list);
1701 kfree(pin);
1702 } else {
1703 pin->request_count--;
1704 }
1705 }
1706 }
1707 }
1708
1709 /**
1710 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1711 * @rdev: regulator_dev structure
1712 * @enable: enable GPIO at initial use?
1713 *
1714 * GPIO is enabled in case of initial use. (enable_count is 0)
1715 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1716 */
1717 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1718 {
1719 struct regulator_enable_gpio *pin = rdev->ena_pin;
1720
1721 if (!pin)
1722 return -EINVAL;
1723
1724 if (enable) {
1725 /* Enable GPIO at initial use */
1726 if (pin->enable_count == 0)
1727 gpio_set_value_cansleep(pin->gpio,
1728 !pin->ena_gpio_invert);
1729
1730 pin->enable_count++;
1731 } else {
1732 if (pin->enable_count > 1) {
1733 pin->enable_count--;
1734 return 0;
1735 }
1736
1737 /* Disable GPIO if not used */
1738 if (pin->enable_count <= 1) {
1739 gpio_set_value_cansleep(pin->gpio,
1740 pin->ena_gpio_invert);
1741 pin->enable_count = 0;
1742 }
1743 }
1744
1745 return 0;
1746 }
1747
1748 static int _regulator_do_enable(struct regulator_dev *rdev)
1749 {
1750 int ret, delay;
1751
1752 /* Query before enabling in case configuration dependent. */
1753 ret = _regulator_get_enable_time(rdev);
1754 if (ret >= 0) {
1755 delay = ret;
1756 } else {
1757 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1758 delay = 0;
1759 }
1760
1761 trace_regulator_enable(rdev_get_name(rdev));
1762
1763 if (rdev->ena_pin) {
1764 ret = regulator_ena_gpio_ctrl(rdev, true);
1765 if (ret < 0)
1766 return ret;
1767 rdev->ena_gpio_state = 1;
1768 } else if (rdev->desc->ops->enable) {
1769 ret = rdev->desc->ops->enable(rdev);
1770 if (ret < 0)
1771 return ret;
1772 } else {
1773 return -EINVAL;
1774 }
1775
1776 /* Allow the regulator to ramp; it would be useful to extend
1777 * this for bulk operations so that the regulators can ramp
1778 * together. */
1779 trace_regulator_enable_delay(rdev_get_name(rdev));
1780
1781 /*
1782 * Delay for the requested amount of time as per the guidelines in:
1783 *
1784 * Documentation/timers/timers-howto.txt
1785 *
1786 * The assumption here is that regulators will never be enabled in
1787 * atomic context and therefore sleeping functions can be used.
1788 */
1789 if (delay) {
1790 unsigned int ms = delay / 1000;
1791 unsigned int us = delay % 1000;
1792
1793 if (ms > 0) {
1794 /*
1795 * For small enough values, handle super-millisecond
1796 * delays in the usleep_range() call below.
1797 */
1798 if (ms < 20)
1799 us += ms * 1000;
1800 else
1801 msleep(ms);
1802 }
1803
1804 /*
1805 * Give the scheduler some room to coalesce with any other
1806 * wakeup sources. For delays shorter than 10 us, don't even
1807 * bother setting up high-resolution timers and just busy-
1808 * loop.
1809 */
1810 if (us >= 10)
1811 usleep_range(us, us + 100);
1812 else
1813 udelay(us);
1814 }
1815
1816 trace_regulator_enable_complete(rdev_get_name(rdev));
1817
1818 return 0;
1819 }
1820
1821 /* locks held by regulator_enable() */
1822 static int _regulator_enable(struct regulator_dev *rdev)
1823 {
1824 int ret;
1825
1826 /* check voltage and requested load before enabling */
1827 if (rdev->constraints &&
1828 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1829 drms_uA_update(rdev);
1830
1831 if (rdev->use_count == 0) {
1832 /* The regulator may on if it's not switchable or left on */
1833 ret = _regulator_is_enabled(rdev);
1834 if (ret == -EINVAL || ret == 0) {
1835 if (!_regulator_can_change_status(rdev))
1836 return -EPERM;
1837
1838 ret = _regulator_do_enable(rdev);
1839 if (ret < 0)
1840 return ret;
1841
1842 } else if (ret < 0) {
1843 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1844 return ret;
1845 }
1846 /* Fallthrough on positive return values - already enabled */
1847 }
1848
1849 rdev->use_count++;
1850
1851 return 0;
1852 }
1853
1854 /**
1855 * regulator_enable - enable regulator output
1856 * @regulator: regulator source
1857 *
1858 * Request that the regulator be enabled with the regulator output at
1859 * the predefined voltage or current value. Calls to regulator_enable()
1860 * must be balanced with calls to regulator_disable().
1861 *
1862 * NOTE: the output value can be set by other drivers, boot loader or may be
1863 * hardwired in the regulator.
1864 */
1865 int regulator_enable(struct regulator *regulator)
1866 {
1867 struct regulator_dev *rdev = regulator->rdev;
1868 int ret = 0;
1869
1870 if (regulator->always_on)
1871 return 0;
1872
1873 if (rdev->supply) {
1874 ret = regulator_enable(rdev->supply);
1875 if (ret != 0)
1876 return ret;
1877 }
1878
1879 mutex_lock(&rdev->mutex);
1880 ret = _regulator_enable(rdev);
1881 mutex_unlock(&rdev->mutex);
1882
1883 if (ret != 0 && rdev->supply)
1884 regulator_disable(rdev->supply);
1885
1886 return ret;
1887 }
1888 EXPORT_SYMBOL_GPL(regulator_enable);
1889
1890 static int _regulator_do_disable(struct regulator_dev *rdev)
1891 {
1892 int ret;
1893
1894 trace_regulator_disable(rdev_get_name(rdev));
1895
1896 if (rdev->ena_pin) {
1897 ret = regulator_ena_gpio_ctrl(rdev, false);
1898 if (ret < 0)
1899 return ret;
1900 rdev->ena_gpio_state = 0;
1901
1902 } else if (rdev->desc->ops->disable) {
1903 ret = rdev->desc->ops->disable(rdev);
1904 if (ret != 0)
1905 return ret;
1906 }
1907
1908 trace_regulator_disable_complete(rdev_get_name(rdev));
1909
1910 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1911 NULL);
1912 return 0;
1913 }
1914
1915 /* locks held by regulator_disable() */
1916 static int _regulator_disable(struct regulator_dev *rdev)
1917 {
1918 int ret = 0;
1919
1920 if (WARN(rdev->use_count <= 0,
1921 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1922 return -EIO;
1923
1924 /* are we the last user and permitted to disable ? */
1925 if (rdev->use_count == 1 &&
1926 (rdev->constraints && !rdev->constraints->always_on)) {
1927
1928 /* we are last user */
1929 if (_regulator_can_change_status(rdev)) {
1930 ret = _regulator_do_disable(rdev);
1931 if (ret < 0) {
1932 rdev_err(rdev, "failed to disable\n");
1933 return ret;
1934 }
1935 }
1936
1937 rdev->use_count = 0;
1938 } else if (rdev->use_count > 1) {
1939
1940 if (rdev->constraints &&
1941 (rdev->constraints->valid_ops_mask &
1942 REGULATOR_CHANGE_DRMS))
1943 drms_uA_update(rdev);
1944
1945 rdev->use_count--;
1946 }
1947
1948 return ret;
1949 }
1950
1951 /**
1952 * regulator_disable - disable regulator output
1953 * @regulator: regulator source
1954 *
1955 * Disable the regulator output voltage or current. Calls to
1956 * regulator_enable() must be balanced with calls to
1957 * regulator_disable().
1958 *
1959 * NOTE: this will only disable the regulator output if no other consumer
1960 * devices have it enabled, the regulator device supports disabling and
1961 * machine constraints permit this operation.
1962 */
1963 int regulator_disable(struct regulator *regulator)
1964 {
1965 struct regulator_dev *rdev = regulator->rdev;
1966 int ret = 0;
1967
1968 if (regulator->always_on)
1969 return 0;
1970
1971 mutex_lock(&rdev->mutex);
1972 ret = _regulator_disable(rdev);
1973 mutex_unlock(&rdev->mutex);
1974
1975 if (ret == 0 && rdev->supply)
1976 regulator_disable(rdev->supply);
1977
1978 return ret;
1979 }
1980 EXPORT_SYMBOL_GPL(regulator_disable);
1981
1982 /* locks held by regulator_force_disable() */
1983 static int _regulator_force_disable(struct regulator_dev *rdev)
1984 {
1985 int ret = 0;
1986
1987 /* force disable */
1988 if (rdev->desc->ops->disable) {
1989 /* ah well, who wants to live forever... */
1990 ret = rdev->desc->ops->disable(rdev);
1991 if (ret < 0) {
1992 rdev_err(rdev, "failed to force disable\n");
1993 return ret;
1994 }
1995 /* notify other consumers that power has been forced off */
1996 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1997 REGULATOR_EVENT_DISABLE, NULL);
1998 }
1999
2000 return ret;
2001 }
2002
2003 /**
2004 * regulator_force_disable - force disable regulator output
2005 * @regulator: regulator source
2006 *
2007 * Forcibly disable the regulator output voltage or current.
2008 * NOTE: this *will* disable the regulator output even if other consumer
2009 * devices have it enabled. This should be used for situations when device
2010 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2011 */
2012 int regulator_force_disable(struct regulator *regulator)
2013 {
2014 struct regulator_dev *rdev = regulator->rdev;
2015 int ret;
2016
2017 mutex_lock(&rdev->mutex);
2018 regulator->uA_load = 0;
2019 ret = _regulator_force_disable(regulator->rdev);
2020 mutex_unlock(&rdev->mutex);
2021
2022 if (rdev->supply)
2023 while (rdev->open_count--)
2024 regulator_disable(rdev->supply);
2025
2026 return ret;
2027 }
2028 EXPORT_SYMBOL_GPL(regulator_force_disable);
2029
2030 static void regulator_disable_work(struct work_struct *work)
2031 {
2032 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2033 disable_work.work);
2034 int count, i, ret;
2035
2036 mutex_lock(&rdev->mutex);
2037
2038 BUG_ON(!rdev->deferred_disables);
2039
2040 count = rdev->deferred_disables;
2041 rdev->deferred_disables = 0;
2042
2043 for (i = 0; i < count; i++) {
2044 ret = _regulator_disable(rdev);
2045 if (ret != 0)
2046 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2047 }
2048
2049 mutex_unlock(&rdev->mutex);
2050
2051 if (rdev->supply) {
2052 for (i = 0; i < count; i++) {
2053 ret = regulator_disable(rdev->supply);
2054 if (ret != 0) {
2055 rdev_err(rdev,
2056 "Supply disable failed: %d\n", ret);
2057 }
2058 }
2059 }
2060 }
2061
2062 /**
2063 * regulator_disable_deferred - disable regulator output with delay
2064 * @regulator: regulator source
2065 * @ms: miliseconds until the regulator is disabled
2066 *
2067 * Execute regulator_disable() on the regulator after a delay. This
2068 * is intended for use with devices that require some time to quiesce.
2069 *
2070 * NOTE: this will only disable the regulator output if no other consumer
2071 * devices have it enabled, the regulator device supports disabling and
2072 * machine constraints permit this operation.
2073 */
2074 int regulator_disable_deferred(struct regulator *regulator, int ms)
2075 {
2076 struct regulator_dev *rdev = regulator->rdev;
2077 int ret;
2078
2079 if (regulator->always_on)
2080 return 0;
2081
2082 if (!ms)
2083 return regulator_disable(regulator);
2084
2085 mutex_lock(&rdev->mutex);
2086 rdev->deferred_disables++;
2087 mutex_unlock(&rdev->mutex);
2088
2089 ret = queue_delayed_work(system_power_efficient_wq,
2090 &rdev->disable_work,
2091 msecs_to_jiffies(ms));
2092 if (ret < 0)
2093 return ret;
2094 else
2095 return 0;
2096 }
2097 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2098
2099 static int _regulator_is_enabled(struct regulator_dev *rdev)
2100 {
2101 /* A GPIO control always takes precedence */
2102 if (rdev->ena_pin)
2103 return rdev->ena_gpio_state;
2104
2105 /* If we don't know then assume that the regulator is always on */
2106 if (!rdev->desc->ops->is_enabled)
2107 return 1;
2108
2109 return rdev->desc->ops->is_enabled(rdev);
2110 }
2111
2112 /**
2113 * regulator_is_enabled - is the regulator output enabled
2114 * @regulator: regulator source
2115 *
2116 * Returns positive if the regulator driver backing the source/client
2117 * has requested that the device be enabled, zero if it hasn't, else a
2118 * negative errno code.
2119 *
2120 * Note that the device backing this regulator handle can have multiple
2121 * users, so it might be enabled even if regulator_enable() was never
2122 * called for this particular source.
2123 */
2124 int regulator_is_enabled(struct regulator *regulator)
2125 {
2126 int ret;
2127
2128 if (regulator->always_on)
2129 return 1;
2130
2131 mutex_lock(&regulator->rdev->mutex);
2132 ret = _regulator_is_enabled(regulator->rdev);
2133 mutex_unlock(&regulator->rdev->mutex);
2134
2135 return ret;
2136 }
2137 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2138
2139 /**
2140 * regulator_can_change_voltage - check if regulator can change voltage
2141 * @regulator: regulator source
2142 *
2143 * Returns positive if the regulator driver backing the source/client
2144 * can change its voltage, false otherwise. Usefull for detecting fixed
2145 * or dummy regulators and disabling voltage change logic in the client
2146 * driver.
2147 */
2148 int regulator_can_change_voltage(struct regulator *regulator)
2149 {
2150 struct regulator_dev *rdev = regulator->rdev;
2151
2152 if (rdev->constraints &&
2153 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2154 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2155 return 1;
2156
2157 if (rdev->desc->continuous_voltage_range &&
2158 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2159 rdev->constraints->min_uV != rdev->constraints->max_uV)
2160 return 1;
2161 }
2162
2163 return 0;
2164 }
2165 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2166
2167 /**
2168 * regulator_count_voltages - count regulator_list_voltage() selectors
2169 * @regulator: regulator source
2170 *
2171 * Returns number of selectors, or negative errno. Selectors are
2172 * numbered starting at zero, and typically correspond to bitfields
2173 * in hardware registers.
2174 */
2175 int regulator_count_voltages(struct regulator *regulator)
2176 {
2177 struct regulator_dev *rdev = regulator->rdev;
2178
2179 return rdev->desc->n_voltages ? : -EINVAL;
2180 }
2181 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2182
2183 /**
2184 * regulator_list_voltage - enumerate supported voltages
2185 * @regulator: regulator source
2186 * @selector: identify voltage to list
2187 * Context: can sleep
2188 *
2189 * Returns a voltage that can be passed to @regulator_set_voltage(),
2190 * zero if this selector code can't be used on this system, or a
2191 * negative errno.
2192 */
2193 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2194 {
2195 struct regulator_dev *rdev = regulator->rdev;
2196 struct regulator_ops *ops = rdev->desc->ops;
2197 int ret;
2198
2199 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2200 return rdev->desc->fixed_uV;
2201
2202 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2203 return -EINVAL;
2204
2205 mutex_lock(&rdev->mutex);
2206 ret = ops->list_voltage(rdev, selector);
2207 mutex_unlock(&rdev->mutex);
2208
2209 if (ret > 0) {
2210 if (ret < rdev->constraints->min_uV)
2211 ret = 0;
2212 else if (ret > rdev->constraints->max_uV)
2213 ret = 0;
2214 }
2215
2216 return ret;
2217 }
2218 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2219
2220 /**
2221 * regulator_get_linear_step - return the voltage step size between VSEL values
2222 * @regulator: regulator source
2223 *
2224 * Returns the voltage step size between VSEL values for linear
2225 * regulators, or return 0 if the regulator isn't a linear regulator.
2226 */
2227 unsigned int regulator_get_linear_step(struct regulator *regulator)
2228 {
2229 struct regulator_dev *rdev = regulator->rdev;
2230
2231 return rdev->desc->uV_step;
2232 }
2233 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2234
2235 /**
2236 * regulator_is_supported_voltage - check if a voltage range can be supported
2237 *
2238 * @regulator: Regulator to check.
2239 * @min_uV: Minimum required voltage in uV.
2240 * @max_uV: Maximum required voltage in uV.
2241 *
2242 * Returns a boolean or a negative error code.
2243 */
2244 int regulator_is_supported_voltage(struct regulator *regulator,
2245 int min_uV, int max_uV)
2246 {
2247 struct regulator_dev *rdev = regulator->rdev;
2248 int i, voltages, ret;
2249
2250 /* If we can't change voltage check the current voltage */
2251 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2252 ret = regulator_get_voltage(regulator);
2253 if (ret >= 0)
2254 return min_uV <= ret && ret <= max_uV;
2255 else
2256 return ret;
2257 }
2258
2259 /* Any voltage within constrains range is fine? */
2260 if (rdev->desc->continuous_voltage_range)
2261 return min_uV >= rdev->constraints->min_uV &&
2262 max_uV <= rdev->constraints->max_uV;
2263
2264 ret = regulator_count_voltages(regulator);
2265 if (ret < 0)
2266 return ret;
2267 voltages = ret;
2268
2269 for (i = 0; i < voltages; i++) {
2270 ret = regulator_list_voltage(regulator, i);
2271
2272 if (ret >= min_uV && ret <= max_uV)
2273 return 1;
2274 }
2275
2276 return 0;
2277 }
2278 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2279
2280 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2281 int min_uV, int max_uV)
2282 {
2283 int ret;
2284 int delay = 0;
2285 int best_val = 0;
2286 unsigned int selector;
2287 int old_selector = -1;
2288
2289 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2290
2291 min_uV += rdev->constraints->uV_offset;
2292 max_uV += rdev->constraints->uV_offset;
2293
2294 /*
2295 * If we can't obtain the old selector there is not enough
2296 * info to call set_voltage_time_sel().
2297 */
2298 if (_regulator_is_enabled(rdev) &&
2299 rdev->desc->ops->set_voltage_time_sel &&
2300 rdev->desc->ops->get_voltage_sel) {
2301 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2302 if (old_selector < 0)
2303 return old_selector;
2304 }
2305
2306 if (rdev->desc->ops->set_voltage) {
2307 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2308 &selector);
2309
2310 if (ret >= 0) {
2311 if (rdev->desc->ops->list_voltage)
2312 best_val = rdev->desc->ops->list_voltage(rdev,
2313 selector);
2314 else
2315 best_val = _regulator_get_voltage(rdev);
2316 }
2317
2318 } else if (rdev->desc->ops->set_voltage_sel) {
2319 if (rdev->desc->ops->map_voltage) {
2320 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2321 max_uV);
2322 } else {
2323 if (rdev->desc->ops->list_voltage ==
2324 regulator_list_voltage_linear)
2325 ret = regulator_map_voltage_linear(rdev,
2326 min_uV, max_uV);
2327 else
2328 ret = regulator_map_voltage_iterate(rdev,
2329 min_uV, max_uV);
2330 }
2331
2332 if (ret >= 0) {
2333 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2334 if (min_uV <= best_val && max_uV >= best_val) {
2335 selector = ret;
2336 if (old_selector == selector)
2337 ret = 0;
2338 else
2339 ret = rdev->desc->ops->set_voltage_sel(
2340 rdev, ret);
2341 } else {
2342 ret = -EINVAL;
2343 }
2344 }
2345 } else {
2346 ret = -EINVAL;
2347 }
2348
2349 /* Call set_voltage_time_sel if successfully obtained old_selector */
2350 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2351 && old_selector != selector) {
2352
2353 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2354 old_selector, selector);
2355 if (delay < 0) {
2356 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2357 delay);
2358 delay = 0;
2359 }
2360
2361 /* Insert any necessary delays */
2362 if (delay >= 1000) {
2363 mdelay(delay / 1000);
2364 udelay(delay % 1000);
2365 } else if (delay) {
2366 udelay(delay);
2367 }
2368 }
2369
2370 if (ret == 0 && best_val >= 0) {
2371 unsigned long data = best_val;
2372
2373 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2374 (void *)data);
2375 }
2376
2377 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2378
2379 return ret;
2380 }
2381
2382 /**
2383 * regulator_set_voltage - set regulator output voltage
2384 * @regulator: regulator source
2385 * @min_uV: Minimum required voltage in uV
2386 * @max_uV: Maximum acceptable voltage in uV
2387 *
2388 * Sets a voltage regulator to the desired output voltage. This can be set
2389 * during any regulator state. IOW, regulator can be disabled or enabled.
2390 *
2391 * If the regulator is enabled then the voltage will change to the new value
2392 * immediately otherwise if the regulator is disabled the regulator will
2393 * output at the new voltage when enabled.
2394 *
2395 * NOTE: If the regulator is shared between several devices then the lowest
2396 * request voltage that meets the system constraints will be used.
2397 * Regulator system constraints must be set for this regulator before
2398 * calling this function otherwise this call will fail.
2399 */
2400 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2401 {
2402 struct regulator_dev *rdev = regulator->rdev;
2403 int ret = 0;
2404 int old_min_uV, old_max_uV;
2405
2406 mutex_lock(&rdev->mutex);
2407
2408 /* If we're setting the same range as last time the change
2409 * should be a noop (some cpufreq implementations use the same
2410 * voltage for multiple frequencies, for example).
2411 */
2412 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2413 goto out;
2414
2415 /* sanity check */
2416 if (!rdev->desc->ops->set_voltage &&
2417 !rdev->desc->ops->set_voltage_sel) {
2418 ret = -EINVAL;
2419 goto out;
2420 }
2421
2422 /* constraints check */
2423 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2424 if (ret < 0)
2425 goto out;
2426
2427 /* restore original values in case of error */
2428 old_min_uV = regulator->min_uV;
2429 old_max_uV = regulator->max_uV;
2430 regulator->min_uV = min_uV;
2431 regulator->max_uV = max_uV;
2432
2433 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2434 if (ret < 0)
2435 goto out2;
2436
2437 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2438 if (ret < 0)
2439 goto out2;
2440
2441 out:
2442 mutex_unlock(&rdev->mutex);
2443 return ret;
2444 out2:
2445 regulator->min_uV = old_min_uV;
2446 regulator->max_uV = old_max_uV;
2447 mutex_unlock(&rdev->mutex);
2448 return ret;
2449 }
2450 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2451
2452 /**
2453 * regulator_set_voltage_time - get raise/fall time
2454 * @regulator: regulator source
2455 * @old_uV: starting voltage in microvolts
2456 * @new_uV: target voltage in microvolts
2457 *
2458 * Provided with the starting and ending voltage, this function attempts to
2459 * calculate the time in microseconds required to rise or fall to this new
2460 * voltage.
2461 */
2462 int regulator_set_voltage_time(struct regulator *regulator,
2463 int old_uV, int new_uV)
2464 {
2465 struct regulator_dev *rdev = regulator->rdev;
2466 struct regulator_ops *ops = rdev->desc->ops;
2467 int old_sel = -1;
2468 int new_sel = -1;
2469 int voltage;
2470 int i;
2471
2472 /* Currently requires operations to do this */
2473 if (!ops->list_voltage || !ops->set_voltage_time_sel
2474 || !rdev->desc->n_voltages)
2475 return -EINVAL;
2476
2477 for (i = 0; i < rdev->desc->n_voltages; i++) {
2478 /* We only look for exact voltage matches here */
2479 voltage = regulator_list_voltage(regulator, i);
2480 if (voltage < 0)
2481 return -EINVAL;
2482 if (voltage == 0)
2483 continue;
2484 if (voltage == old_uV)
2485 old_sel = i;
2486 if (voltage == new_uV)
2487 new_sel = i;
2488 }
2489
2490 if (old_sel < 0 || new_sel < 0)
2491 return -EINVAL;
2492
2493 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2494 }
2495 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2496
2497 /**
2498 * regulator_set_voltage_time_sel - get raise/fall time
2499 * @rdev: regulator source device
2500 * @old_selector: selector for starting voltage
2501 * @new_selector: selector for target voltage
2502 *
2503 * Provided with the starting and target voltage selectors, this function
2504 * returns time in microseconds required to rise or fall to this new voltage
2505 *
2506 * Drivers providing ramp_delay in regulation_constraints can use this as their
2507 * set_voltage_time_sel() operation.
2508 */
2509 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2510 unsigned int old_selector,
2511 unsigned int new_selector)
2512 {
2513 unsigned int ramp_delay = 0;
2514 int old_volt, new_volt;
2515
2516 if (rdev->constraints->ramp_delay)
2517 ramp_delay = rdev->constraints->ramp_delay;
2518 else if (rdev->desc->ramp_delay)
2519 ramp_delay = rdev->desc->ramp_delay;
2520
2521 if (ramp_delay == 0) {
2522 rdev_warn(rdev, "ramp_delay not set\n");
2523 return 0;
2524 }
2525
2526 /* sanity check */
2527 if (!rdev->desc->ops->list_voltage)
2528 return -EINVAL;
2529
2530 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2531 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2532
2533 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2534 }
2535 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2536
2537 /**
2538 * regulator_sync_voltage - re-apply last regulator output voltage
2539 * @regulator: regulator source
2540 *
2541 * Re-apply the last configured voltage. This is intended to be used
2542 * where some external control source the consumer is cooperating with
2543 * has caused the configured voltage to change.
2544 */
2545 int regulator_sync_voltage(struct regulator *regulator)
2546 {
2547 struct regulator_dev *rdev = regulator->rdev;
2548 int ret, min_uV, max_uV;
2549
2550 mutex_lock(&rdev->mutex);
2551
2552 if (!rdev->desc->ops->set_voltage &&
2553 !rdev->desc->ops->set_voltage_sel) {
2554 ret = -EINVAL;
2555 goto out;
2556 }
2557
2558 /* This is only going to work if we've had a voltage configured. */
2559 if (!regulator->min_uV && !regulator->max_uV) {
2560 ret = -EINVAL;
2561 goto out;
2562 }
2563
2564 min_uV = regulator->min_uV;
2565 max_uV = regulator->max_uV;
2566
2567 /* This should be a paranoia check... */
2568 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2569 if (ret < 0)
2570 goto out;
2571
2572 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2573 if (ret < 0)
2574 goto out;
2575
2576 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2577
2578 out:
2579 mutex_unlock(&rdev->mutex);
2580 return ret;
2581 }
2582 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2583
2584 static int _regulator_get_voltage(struct regulator_dev *rdev)
2585 {
2586 int sel, ret;
2587
2588 if (rdev->desc->ops->get_voltage_sel) {
2589 sel = rdev->desc->ops->get_voltage_sel(rdev);
2590 if (sel < 0)
2591 return sel;
2592 ret = rdev->desc->ops->list_voltage(rdev, sel);
2593 } else if (rdev->desc->ops->get_voltage) {
2594 ret = rdev->desc->ops->get_voltage(rdev);
2595 } else if (rdev->desc->ops->list_voltage) {
2596 ret = rdev->desc->ops->list_voltage(rdev, 0);
2597 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2598 ret = rdev->desc->fixed_uV;
2599 } else {
2600 return -EINVAL;
2601 }
2602
2603 if (ret < 0)
2604 return ret;
2605 return ret - rdev->constraints->uV_offset;
2606 }
2607
2608 /**
2609 * regulator_get_voltage - get regulator output voltage
2610 * @regulator: regulator source
2611 *
2612 * This returns the current regulator voltage in uV.
2613 *
2614 * NOTE: If the regulator is disabled it will return the voltage value. This
2615 * function should not be used to determine regulator state.
2616 */
2617 int regulator_get_voltage(struct regulator *regulator)
2618 {
2619 int ret;
2620
2621 mutex_lock(&regulator->rdev->mutex);
2622
2623 ret = _regulator_get_voltage(regulator->rdev);
2624
2625 mutex_unlock(&regulator->rdev->mutex);
2626
2627 return ret;
2628 }
2629 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2630
2631 /**
2632 * regulator_set_current_limit - set regulator output current limit
2633 * @regulator: regulator source
2634 * @min_uA: Minimum supported current in uA
2635 * @max_uA: Maximum supported current in uA
2636 *
2637 * Sets current sink to the desired output current. This can be set during
2638 * any regulator state. IOW, regulator can be disabled or enabled.
2639 *
2640 * If the regulator is enabled then the current will change to the new value
2641 * immediately otherwise if the regulator is disabled the regulator will
2642 * output at the new current when enabled.
2643 *
2644 * NOTE: Regulator system constraints must be set for this regulator before
2645 * calling this function otherwise this call will fail.
2646 */
2647 int regulator_set_current_limit(struct regulator *regulator,
2648 int min_uA, int max_uA)
2649 {
2650 struct regulator_dev *rdev = regulator->rdev;
2651 int ret;
2652
2653 mutex_lock(&rdev->mutex);
2654
2655 /* sanity check */
2656 if (!rdev->desc->ops->set_current_limit) {
2657 ret = -EINVAL;
2658 goto out;
2659 }
2660
2661 /* constraints check */
2662 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2663 if (ret < 0)
2664 goto out;
2665
2666 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2667 out:
2668 mutex_unlock(&rdev->mutex);
2669 return ret;
2670 }
2671 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2672
2673 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2674 {
2675 int ret;
2676
2677 mutex_lock(&rdev->mutex);
2678
2679 /* sanity check */
2680 if (!rdev->desc->ops->get_current_limit) {
2681 ret = -EINVAL;
2682 goto out;
2683 }
2684
2685 ret = rdev->desc->ops->get_current_limit(rdev);
2686 out:
2687 mutex_unlock(&rdev->mutex);
2688 return ret;
2689 }
2690
2691 /**
2692 * regulator_get_current_limit - get regulator output current
2693 * @regulator: regulator source
2694 *
2695 * This returns the current supplied by the specified current sink in uA.
2696 *
2697 * NOTE: If the regulator is disabled it will return the current value. This
2698 * function should not be used to determine regulator state.
2699 */
2700 int regulator_get_current_limit(struct regulator *regulator)
2701 {
2702 return _regulator_get_current_limit(regulator->rdev);
2703 }
2704 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2705
2706 /**
2707 * regulator_set_mode - set regulator operating mode
2708 * @regulator: regulator source
2709 * @mode: operating mode - one of the REGULATOR_MODE constants
2710 *
2711 * Set regulator operating mode to increase regulator efficiency or improve
2712 * regulation performance.
2713 *
2714 * NOTE: Regulator system constraints must be set for this regulator before
2715 * calling this function otherwise this call will fail.
2716 */
2717 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2718 {
2719 struct regulator_dev *rdev = regulator->rdev;
2720 int ret;
2721 int regulator_curr_mode;
2722
2723 mutex_lock(&rdev->mutex);
2724
2725 /* sanity check */
2726 if (!rdev->desc->ops->set_mode) {
2727 ret = -EINVAL;
2728 goto out;
2729 }
2730
2731 /* return if the same mode is requested */
2732 if (rdev->desc->ops->get_mode) {
2733 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2734 if (regulator_curr_mode == mode) {
2735 ret = 0;
2736 goto out;
2737 }
2738 }
2739
2740 /* constraints check */
2741 ret = regulator_mode_constrain(rdev, &mode);
2742 if (ret < 0)
2743 goto out;
2744
2745 ret = rdev->desc->ops->set_mode(rdev, mode);
2746 out:
2747 mutex_unlock(&rdev->mutex);
2748 return ret;
2749 }
2750 EXPORT_SYMBOL_GPL(regulator_set_mode);
2751
2752 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2753 {
2754 int ret;
2755
2756 mutex_lock(&rdev->mutex);
2757
2758 /* sanity check */
2759 if (!rdev->desc->ops->get_mode) {
2760 ret = -EINVAL;
2761 goto out;
2762 }
2763
2764 ret = rdev->desc->ops->get_mode(rdev);
2765 out:
2766 mutex_unlock(&rdev->mutex);
2767 return ret;
2768 }
2769
2770 /**
2771 * regulator_get_mode - get regulator operating mode
2772 * @regulator: regulator source
2773 *
2774 * Get the current regulator operating mode.
2775 */
2776 unsigned int regulator_get_mode(struct regulator *regulator)
2777 {
2778 return _regulator_get_mode(regulator->rdev);
2779 }
2780 EXPORT_SYMBOL_GPL(regulator_get_mode);
2781
2782 /**
2783 * regulator_set_optimum_mode - set regulator optimum operating mode
2784 * @regulator: regulator source
2785 * @uA_load: load current
2786 *
2787 * Notifies the regulator core of a new device load. This is then used by
2788 * DRMS (if enabled by constraints) to set the most efficient regulator
2789 * operating mode for the new regulator loading.
2790 *
2791 * Consumer devices notify their supply regulator of the maximum power
2792 * they will require (can be taken from device datasheet in the power
2793 * consumption tables) when they change operational status and hence power
2794 * state. Examples of operational state changes that can affect power
2795 * consumption are :-
2796 *
2797 * o Device is opened / closed.
2798 * o Device I/O is about to begin or has just finished.
2799 * o Device is idling in between work.
2800 *
2801 * This information is also exported via sysfs to userspace.
2802 *
2803 * DRMS will sum the total requested load on the regulator and change
2804 * to the most efficient operating mode if platform constraints allow.
2805 *
2806 * Returns the new regulator mode or error.
2807 */
2808 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2809 {
2810 struct regulator_dev *rdev = regulator->rdev;
2811 struct regulator *consumer;
2812 int ret, output_uV, input_uV = 0, total_uA_load = 0;
2813 unsigned int mode;
2814
2815 if (rdev->supply)
2816 input_uV = regulator_get_voltage(rdev->supply);
2817
2818 mutex_lock(&rdev->mutex);
2819
2820 /*
2821 * first check to see if we can set modes at all, otherwise just
2822 * tell the consumer everything is OK.
2823 */
2824 regulator->uA_load = uA_load;
2825 ret = regulator_check_drms(rdev);
2826 if (ret < 0) {
2827 ret = 0;
2828 goto out;
2829 }
2830
2831 if (!rdev->desc->ops->get_optimum_mode)
2832 goto out;
2833
2834 /*
2835 * we can actually do this so any errors are indicators of
2836 * potential real failure.
2837 */
2838 ret = -EINVAL;
2839
2840 if (!rdev->desc->ops->set_mode)
2841 goto out;
2842
2843 /* get output voltage */
2844 output_uV = _regulator_get_voltage(rdev);
2845 if (output_uV <= 0) {
2846 rdev_err(rdev, "invalid output voltage found\n");
2847 goto out;
2848 }
2849
2850 /* No supply? Use constraint voltage */
2851 if (input_uV <= 0)
2852 input_uV = rdev->constraints->input_uV;
2853 if (input_uV <= 0) {
2854 rdev_err(rdev, "invalid input voltage found\n");
2855 goto out;
2856 }
2857
2858 /* calc total requested load for this regulator */
2859 list_for_each_entry(consumer, &rdev->consumer_list, list)
2860 total_uA_load += consumer->uA_load;
2861
2862 mode = rdev->desc->ops->get_optimum_mode(rdev,
2863 input_uV, output_uV,
2864 total_uA_load);
2865 ret = regulator_mode_constrain(rdev, &mode);
2866 if (ret < 0) {
2867 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2868 total_uA_load, input_uV, output_uV);
2869 goto out;
2870 }
2871
2872 ret = rdev->desc->ops->set_mode(rdev, mode);
2873 if (ret < 0) {
2874 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2875 goto out;
2876 }
2877 ret = mode;
2878 out:
2879 mutex_unlock(&rdev->mutex);
2880 return ret;
2881 }
2882 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2883
2884 /**
2885 * regulator_allow_bypass - allow the regulator to go into bypass mode
2886 *
2887 * @regulator: Regulator to configure
2888 * @enable: enable or disable bypass mode
2889 *
2890 * Allow the regulator to go into bypass mode if all other consumers
2891 * for the regulator also enable bypass mode and the machine
2892 * constraints allow this. Bypass mode means that the regulator is
2893 * simply passing the input directly to the output with no regulation.
2894 */
2895 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2896 {
2897 struct regulator_dev *rdev = regulator->rdev;
2898 int ret = 0;
2899
2900 if (!rdev->desc->ops->set_bypass)
2901 return 0;
2902
2903 if (rdev->constraints &&
2904 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2905 return 0;
2906
2907 mutex_lock(&rdev->mutex);
2908
2909 if (enable && !regulator->bypass) {
2910 rdev->bypass_count++;
2911
2912 if (rdev->bypass_count == rdev->open_count) {
2913 ret = rdev->desc->ops->set_bypass(rdev, enable);
2914 if (ret != 0)
2915 rdev->bypass_count--;
2916 }
2917
2918 } else if (!enable && regulator->bypass) {
2919 rdev->bypass_count--;
2920
2921 if (rdev->bypass_count != rdev->open_count) {
2922 ret = rdev->desc->ops->set_bypass(rdev, enable);
2923 if (ret != 0)
2924 rdev->bypass_count++;
2925 }
2926 }
2927
2928 if (ret == 0)
2929 regulator->bypass = enable;
2930
2931 mutex_unlock(&rdev->mutex);
2932
2933 return ret;
2934 }
2935 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2936
2937 /**
2938 * regulator_register_notifier - register regulator event notifier
2939 * @regulator: regulator source
2940 * @nb: notifier block
2941 *
2942 * Register notifier block to receive regulator events.
2943 */
2944 int regulator_register_notifier(struct regulator *regulator,
2945 struct notifier_block *nb)
2946 {
2947 return blocking_notifier_chain_register(&regulator->rdev->notifier,
2948 nb);
2949 }
2950 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2951
2952 /**
2953 * regulator_unregister_notifier - unregister regulator event notifier
2954 * @regulator: regulator source
2955 * @nb: notifier block
2956 *
2957 * Unregister regulator event notifier block.
2958 */
2959 int regulator_unregister_notifier(struct regulator *regulator,
2960 struct notifier_block *nb)
2961 {
2962 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2963 nb);
2964 }
2965 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2966
2967 /* notify regulator consumers and downstream regulator consumers.
2968 * Note mutex must be held by caller.
2969 */
2970 static void _notifier_call_chain(struct regulator_dev *rdev,
2971 unsigned long event, void *data)
2972 {
2973 /* call rdev chain first */
2974 blocking_notifier_call_chain(&rdev->notifier, event, data);
2975 }
2976
2977 /**
2978 * regulator_bulk_get - get multiple regulator consumers
2979 *
2980 * @dev: Device to supply
2981 * @num_consumers: Number of consumers to register
2982 * @consumers: Configuration of consumers; clients are stored here.
2983 *
2984 * @return 0 on success, an errno on failure.
2985 *
2986 * This helper function allows drivers to get several regulator
2987 * consumers in one operation. If any of the regulators cannot be
2988 * acquired then any regulators that were allocated will be freed
2989 * before returning to the caller.
2990 */
2991 int regulator_bulk_get(struct device *dev, int num_consumers,
2992 struct regulator_bulk_data *consumers)
2993 {
2994 int i;
2995 int ret;
2996
2997 for (i = 0; i < num_consumers; i++)
2998 consumers[i].consumer = NULL;
2999
3000 for (i = 0; i < num_consumers; i++) {
3001 consumers[i].consumer = regulator_get(dev,
3002 consumers[i].supply);
3003 if (IS_ERR(consumers[i].consumer)) {
3004 ret = PTR_ERR(consumers[i].consumer);
3005 dev_err(dev, "Failed to get supply '%s': %d\n",
3006 consumers[i].supply, ret);
3007 consumers[i].consumer = NULL;
3008 goto err;
3009 }
3010 }
3011
3012 return 0;
3013
3014 err:
3015 while (--i >= 0)
3016 regulator_put(consumers[i].consumer);
3017
3018 return ret;
3019 }
3020 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3021
3022 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3023 {
3024 struct regulator_bulk_data *bulk = data;
3025
3026 bulk->ret = regulator_enable(bulk->consumer);
3027 }
3028
3029 /**
3030 * regulator_bulk_enable - enable multiple regulator consumers
3031 *
3032 * @num_consumers: Number of consumers
3033 * @consumers: Consumer data; clients are stored here.
3034 * @return 0 on success, an errno on failure
3035 *
3036 * This convenience API allows consumers to enable multiple regulator
3037 * clients in a single API call. If any consumers cannot be enabled
3038 * then any others that were enabled will be disabled again prior to
3039 * return.
3040 */
3041 int regulator_bulk_enable(int num_consumers,
3042 struct regulator_bulk_data *consumers)
3043 {
3044 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3045 int i;
3046 int ret = 0;
3047
3048 for (i = 0; i < num_consumers; i++) {
3049 if (consumers[i].consumer->always_on)
3050 consumers[i].ret = 0;
3051 else
3052 async_schedule_domain(regulator_bulk_enable_async,
3053 &consumers[i], &async_domain);
3054 }
3055
3056 async_synchronize_full_domain(&async_domain);
3057
3058 /* If any consumer failed we need to unwind any that succeeded */
3059 for (i = 0; i < num_consumers; i++) {
3060 if (consumers[i].ret != 0) {
3061 ret = consumers[i].ret;
3062 goto err;
3063 }
3064 }
3065
3066 return 0;
3067
3068 err:
3069 for (i = 0; i < num_consumers; i++) {
3070 if (consumers[i].ret < 0)
3071 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3072 consumers[i].ret);
3073 else
3074 regulator_disable(consumers[i].consumer);
3075 }
3076
3077 return ret;
3078 }
3079 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3080
3081 /**
3082 * regulator_bulk_disable - disable multiple regulator consumers
3083 *
3084 * @num_consumers: Number of consumers
3085 * @consumers: Consumer data; clients are stored here.
3086 * @return 0 on success, an errno on failure
3087 *
3088 * This convenience API allows consumers to disable multiple regulator
3089 * clients in a single API call. If any consumers cannot be disabled
3090 * then any others that were disabled will be enabled again prior to
3091 * return.
3092 */
3093 int regulator_bulk_disable(int num_consumers,
3094 struct regulator_bulk_data *consumers)
3095 {
3096 int i;
3097 int ret, r;
3098
3099 for (i = num_consumers - 1; i >= 0; --i) {
3100 ret = regulator_disable(consumers[i].consumer);
3101 if (ret != 0)
3102 goto err;
3103 }
3104
3105 return 0;
3106
3107 err:
3108 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3109 for (++i; i < num_consumers; ++i) {
3110 r = regulator_enable(consumers[i].consumer);
3111 if (r != 0)
3112 pr_err("Failed to reename %s: %d\n",
3113 consumers[i].supply, r);
3114 }
3115
3116 return ret;
3117 }
3118 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3119
3120 /**
3121 * regulator_bulk_force_disable - force disable multiple regulator consumers
3122 *
3123 * @num_consumers: Number of consumers
3124 * @consumers: Consumer data; clients are stored here.
3125 * @return 0 on success, an errno on failure
3126 *
3127 * This convenience API allows consumers to forcibly disable multiple regulator
3128 * clients in a single API call.
3129 * NOTE: This should be used for situations when device damage will
3130 * likely occur if the regulators are not disabled (e.g. over temp).
3131 * Although regulator_force_disable function call for some consumers can
3132 * return error numbers, the function is called for all consumers.
3133 */
3134 int regulator_bulk_force_disable(int num_consumers,
3135 struct regulator_bulk_data *consumers)
3136 {
3137 int i;
3138 int ret;
3139
3140 for (i = 0; i < num_consumers; i++)
3141 consumers[i].ret =
3142 regulator_force_disable(consumers[i].consumer);
3143
3144 for (i = 0; i < num_consumers; i++) {
3145 if (consumers[i].ret != 0) {
3146 ret = consumers[i].ret;
3147 goto out;
3148 }
3149 }
3150
3151 return 0;
3152 out:
3153 return ret;
3154 }
3155 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3156
3157 /**
3158 * regulator_bulk_free - free multiple regulator consumers
3159 *
3160 * @num_consumers: Number of consumers
3161 * @consumers: Consumer data; clients are stored here.
3162 *
3163 * This convenience API allows consumers to free multiple regulator
3164 * clients in a single API call.
3165 */
3166 void regulator_bulk_free(int num_consumers,
3167 struct regulator_bulk_data *consumers)
3168 {
3169 int i;
3170
3171 for (i = 0; i < num_consumers; i++) {
3172 regulator_put(consumers[i].consumer);
3173 consumers[i].consumer = NULL;
3174 }
3175 }
3176 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3177
3178 /**
3179 * regulator_notifier_call_chain - call regulator event notifier
3180 * @rdev: regulator source
3181 * @event: notifier block
3182 * @data: callback-specific data.
3183 *
3184 * Called by regulator drivers to notify clients a regulator event has
3185 * occurred. We also notify regulator clients downstream.
3186 * Note lock must be held by caller.
3187 */
3188 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3189 unsigned long event, void *data)
3190 {
3191 _notifier_call_chain(rdev, event, data);
3192 return NOTIFY_DONE;
3193
3194 }
3195 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3196
3197 /**
3198 * regulator_mode_to_status - convert a regulator mode into a status
3199 *
3200 * @mode: Mode to convert
3201 *
3202 * Convert a regulator mode into a status.
3203 */
3204 int regulator_mode_to_status(unsigned int mode)
3205 {
3206 switch (mode) {
3207 case REGULATOR_MODE_FAST:
3208 return REGULATOR_STATUS_FAST;
3209 case REGULATOR_MODE_NORMAL:
3210 return REGULATOR_STATUS_NORMAL;
3211 case REGULATOR_MODE_IDLE:
3212 return REGULATOR_STATUS_IDLE;
3213 case REGULATOR_MODE_STANDBY:
3214 return REGULATOR_STATUS_STANDBY;
3215 default:
3216 return REGULATOR_STATUS_UNDEFINED;
3217 }
3218 }
3219 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3220
3221 /*
3222 * To avoid cluttering sysfs (and memory) with useless state, only
3223 * create attributes that can be meaningfully displayed.
3224 */
3225 static int add_regulator_attributes(struct regulator_dev *rdev)
3226 {
3227 struct device *dev = &rdev->dev;
3228 struct regulator_ops *ops = rdev->desc->ops;
3229 int status = 0;
3230
3231 /* some attributes need specific methods to be displayed */
3232 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3233 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3234 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3235 (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3236 status = device_create_file(dev, &dev_attr_microvolts);
3237 if (status < 0)
3238 return status;
3239 }
3240 if (ops->get_current_limit) {
3241 status = device_create_file(dev, &dev_attr_microamps);
3242 if (status < 0)
3243 return status;
3244 }
3245 if (ops->get_mode) {
3246 status = device_create_file(dev, &dev_attr_opmode);
3247 if (status < 0)
3248 return status;
3249 }
3250 if (rdev->ena_pin || ops->is_enabled) {
3251 status = device_create_file(dev, &dev_attr_state);
3252 if (status < 0)
3253 return status;
3254 }
3255 if (ops->get_status) {
3256 status = device_create_file(dev, &dev_attr_status);
3257 if (status < 0)
3258 return status;
3259 }
3260 if (ops->get_bypass) {
3261 status = device_create_file(dev, &dev_attr_bypass);
3262 if (status < 0)
3263 return status;
3264 }
3265
3266 /* some attributes are type-specific */
3267 if (rdev->desc->type == REGULATOR_CURRENT) {
3268 status = device_create_file(dev, &dev_attr_requested_microamps);
3269 if (status < 0)
3270 return status;
3271 }
3272
3273 /* all the other attributes exist to support constraints;
3274 * don't show them if there are no constraints, or if the
3275 * relevant supporting methods are missing.
3276 */
3277 if (!rdev->constraints)
3278 return status;
3279
3280 /* constraints need specific supporting methods */
3281 if (ops->set_voltage || ops->set_voltage_sel) {
3282 status = device_create_file(dev, &dev_attr_min_microvolts);
3283 if (status < 0)
3284 return status;
3285 status = device_create_file(dev, &dev_attr_max_microvolts);
3286 if (status < 0)
3287 return status;
3288 }
3289 if (ops->set_current_limit) {
3290 status = device_create_file(dev, &dev_attr_min_microamps);
3291 if (status < 0)
3292 return status;
3293 status = device_create_file(dev, &dev_attr_max_microamps);
3294 if (status < 0)
3295 return status;
3296 }
3297
3298 status = device_create_file(dev, &dev_attr_suspend_standby_state);
3299 if (status < 0)
3300 return status;
3301 status = device_create_file(dev, &dev_attr_suspend_mem_state);
3302 if (status < 0)
3303 return status;
3304 status = device_create_file(dev, &dev_attr_suspend_disk_state);
3305 if (status < 0)
3306 return status;
3307
3308 if (ops->set_suspend_voltage) {
3309 status = device_create_file(dev,
3310 &dev_attr_suspend_standby_microvolts);
3311 if (status < 0)
3312 return status;
3313 status = device_create_file(dev,
3314 &dev_attr_suspend_mem_microvolts);
3315 if (status < 0)
3316 return status;
3317 status = device_create_file(dev,
3318 &dev_attr_suspend_disk_microvolts);
3319 if (status < 0)
3320 return status;
3321 }
3322
3323 if (ops->set_suspend_mode) {
3324 status = device_create_file(dev,
3325 &dev_attr_suspend_standby_mode);
3326 if (status < 0)
3327 return status;
3328 status = device_create_file(dev,
3329 &dev_attr_suspend_mem_mode);
3330 if (status < 0)
3331 return status;
3332 status = device_create_file(dev,
3333 &dev_attr_suspend_disk_mode);
3334 if (status < 0)
3335 return status;
3336 }
3337
3338 return status;
3339 }
3340
3341 static void rdev_init_debugfs(struct regulator_dev *rdev)
3342 {
3343 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3344 if (!rdev->debugfs) {
3345 rdev_warn(rdev, "Failed to create debugfs directory\n");
3346 return;
3347 }
3348
3349 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3350 &rdev->use_count);
3351 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3352 &rdev->open_count);
3353 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3354 &rdev->bypass_count);
3355 }
3356
3357 /**
3358 * regulator_register - register regulator
3359 * @regulator_desc: regulator to register
3360 * @config: runtime configuration for regulator
3361 *
3362 * Called by regulator drivers to register a regulator.
3363 * Returns a valid pointer to struct regulator_dev on success
3364 * or an ERR_PTR() on error.
3365 */
3366 struct regulator_dev *
3367 regulator_register(const struct regulator_desc *regulator_desc,
3368 const struct regulator_config *config)
3369 {
3370 const struct regulation_constraints *constraints = NULL;
3371 const struct regulator_init_data *init_data;
3372 static atomic_t regulator_no = ATOMIC_INIT(0);
3373 struct regulator_dev *rdev;
3374 struct device *dev;
3375 int ret, i;
3376 const char *supply = NULL;
3377
3378 if (regulator_desc == NULL || config == NULL)
3379 return ERR_PTR(-EINVAL);
3380
3381 dev = config->dev;
3382 WARN_ON(!dev);
3383
3384 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3385 return ERR_PTR(-EINVAL);
3386
3387 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3388 regulator_desc->type != REGULATOR_CURRENT)
3389 return ERR_PTR(-EINVAL);
3390
3391 /* Only one of each should be implemented */
3392 WARN_ON(regulator_desc->ops->get_voltage &&
3393 regulator_desc->ops->get_voltage_sel);
3394 WARN_ON(regulator_desc->ops->set_voltage &&
3395 regulator_desc->ops->set_voltage_sel);
3396
3397 /* If we're using selectors we must implement list_voltage. */
3398 if (regulator_desc->ops->get_voltage_sel &&
3399 !regulator_desc->ops->list_voltage) {
3400 return ERR_PTR(-EINVAL);
3401 }
3402 if (regulator_desc->ops->set_voltage_sel &&
3403 !regulator_desc->ops->list_voltage) {
3404 return ERR_PTR(-EINVAL);
3405 }
3406
3407 init_data = config->init_data;
3408
3409 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3410 if (rdev == NULL)
3411 return ERR_PTR(-ENOMEM);
3412
3413 mutex_lock(&regulator_list_mutex);
3414
3415 mutex_init(&rdev->mutex);
3416 rdev->reg_data = config->driver_data;
3417 rdev->owner = regulator_desc->owner;
3418 rdev->desc = regulator_desc;
3419 if (config->regmap)
3420 rdev->regmap = config->regmap;
3421 else if (dev_get_regmap(dev, NULL))
3422 rdev->regmap = dev_get_regmap(dev, NULL);
3423 else if (dev->parent)
3424 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3425 INIT_LIST_HEAD(&rdev->consumer_list);
3426 INIT_LIST_HEAD(&rdev->list);
3427 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3428 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3429
3430 /* preform any regulator specific init */
3431 if (init_data && init_data->regulator_init) {
3432 ret = init_data->regulator_init(rdev->reg_data);
3433 if (ret < 0)
3434 goto clean;
3435 }
3436
3437 /* register with sysfs */
3438 rdev->dev.class = &regulator_class;
3439 rdev->dev.of_node = config->of_node;
3440 rdev->dev.parent = dev;
3441 dev_set_name(&rdev->dev, "regulator.%d",
3442 atomic_inc_return(&regulator_no) - 1);
3443 ret = device_register(&rdev->dev);
3444 if (ret != 0) {
3445 put_device(&rdev->dev);
3446 goto clean;
3447 }
3448
3449 dev_set_drvdata(&rdev->dev, rdev);
3450
3451 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3452 ret = regulator_ena_gpio_request(rdev, config);
3453 if (ret != 0) {
3454 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3455 config->ena_gpio, ret);
3456 goto wash;
3457 }
3458
3459 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3460 rdev->ena_gpio_state = 1;
3461
3462 if (config->ena_gpio_invert)
3463 rdev->ena_gpio_state = !rdev->ena_gpio_state;
3464 }
3465
3466 /* set regulator constraints */
3467 if (init_data)
3468 constraints = &init_data->constraints;
3469
3470 ret = set_machine_constraints(rdev, constraints);
3471 if (ret < 0)
3472 goto scrub;
3473
3474 /* add attributes supported by this regulator */
3475 ret = add_regulator_attributes(rdev);
3476 if (ret < 0)
3477 goto scrub;
3478
3479 if (init_data && init_data->supply_regulator)
3480 supply = init_data->supply_regulator;
3481 else if (regulator_desc->supply_name)
3482 supply = regulator_desc->supply_name;
3483
3484 if (supply) {
3485 struct regulator_dev *r;
3486
3487 r = regulator_dev_lookup(dev, supply, &ret);
3488
3489 if (ret == -ENODEV) {
3490 /*
3491 * No supply was specified for this regulator and
3492 * there will never be one.
3493 */
3494 ret = 0;
3495 goto add_dev;
3496 } else if (!r) {
3497 dev_err(dev, "Failed to find supply %s\n", supply);
3498 ret = -EPROBE_DEFER;
3499 goto scrub;
3500 }
3501
3502 ret = set_supply(rdev, r);
3503 if (ret < 0)
3504 goto scrub;
3505
3506 /* Enable supply if rail is enabled */
3507 if (_regulator_is_enabled(rdev)) {
3508 ret = regulator_enable(rdev->supply);
3509 if (ret < 0)
3510 goto scrub;
3511 }
3512 }
3513
3514 add_dev:
3515 /* add consumers devices */
3516 if (init_data) {
3517 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3518 ret = set_consumer_device_supply(rdev,
3519 init_data->consumer_supplies[i].dev_name,
3520 init_data->consumer_supplies[i].supply);
3521 if (ret < 0) {
3522 dev_err(dev, "Failed to set supply %s\n",
3523 init_data->consumer_supplies[i].supply);
3524 goto unset_supplies;
3525 }
3526 }
3527 }
3528
3529 list_add(&rdev->list, &regulator_list);
3530
3531 rdev_init_debugfs(rdev);
3532 out:
3533 mutex_unlock(&regulator_list_mutex);
3534 return rdev;
3535
3536 unset_supplies:
3537 unset_regulator_supplies(rdev);
3538
3539 scrub:
3540 if (rdev->supply)
3541 _regulator_put(rdev->supply);
3542 regulator_ena_gpio_free(rdev);
3543 kfree(rdev->constraints);
3544 wash:
3545 device_unregister(&rdev->dev);
3546 /* device core frees rdev */
3547 rdev = ERR_PTR(ret);
3548 goto out;
3549
3550 clean:
3551 kfree(rdev);
3552 rdev = ERR_PTR(ret);
3553 goto out;
3554 }
3555 EXPORT_SYMBOL_GPL(regulator_register);
3556
3557 /**
3558 * regulator_unregister - unregister regulator
3559 * @rdev: regulator to unregister
3560 *
3561 * Called by regulator drivers to unregister a regulator.
3562 */
3563 void regulator_unregister(struct regulator_dev *rdev)
3564 {
3565 if (rdev == NULL)
3566 return;
3567
3568 if (rdev->supply) {
3569 while (rdev->use_count--)
3570 regulator_disable(rdev->supply);
3571 regulator_put(rdev->supply);
3572 }
3573 mutex_lock(&regulator_list_mutex);
3574 debugfs_remove_recursive(rdev->debugfs);
3575 flush_work(&rdev->disable_work.work);
3576 WARN_ON(rdev->open_count);
3577 unset_regulator_supplies(rdev);
3578 list_del(&rdev->list);
3579 kfree(rdev->constraints);
3580 regulator_ena_gpio_free(rdev);
3581 device_unregister(&rdev->dev);
3582 mutex_unlock(&regulator_list_mutex);
3583 }
3584 EXPORT_SYMBOL_GPL(regulator_unregister);
3585
3586 /**
3587 * regulator_suspend_prepare - prepare regulators for system wide suspend
3588 * @state: system suspend state
3589 *
3590 * Configure each regulator with it's suspend operating parameters for state.
3591 * This will usually be called by machine suspend code prior to supending.
3592 */
3593 int regulator_suspend_prepare(suspend_state_t state)
3594 {
3595 struct regulator_dev *rdev;
3596 int ret = 0;
3597
3598 /* ON is handled by regulator active state */
3599 if (state == PM_SUSPEND_ON)
3600 return -EINVAL;
3601
3602 mutex_lock(&regulator_list_mutex);
3603 list_for_each_entry(rdev, &regulator_list, list) {
3604
3605 mutex_lock(&rdev->mutex);
3606 ret = suspend_prepare(rdev, state);
3607 mutex_unlock(&rdev->mutex);
3608
3609 if (ret < 0) {
3610 rdev_err(rdev, "failed to prepare\n");
3611 goto out;
3612 }
3613 }
3614 out:
3615 mutex_unlock(&regulator_list_mutex);
3616 return ret;
3617 }
3618 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3619
3620 /**
3621 * regulator_suspend_finish - resume regulators from system wide suspend
3622 *
3623 * Turn on regulators that might be turned off by regulator_suspend_prepare
3624 * and that should be turned on according to the regulators properties.
3625 */
3626 int regulator_suspend_finish(void)
3627 {
3628 struct regulator_dev *rdev;
3629 int ret = 0, error;
3630
3631 mutex_lock(&regulator_list_mutex);
3632 list_for_each_entry(rdev, &regulator_list, list) {
3633 struct regulator_ops *ops = rdev->desc->ops;
3634
3635 mutex_lock(&rdev->mutex);
3636 if ((rdev->use_count > 0 || rdev->constraints->always_on) &&
3637 ops->enable) {
3638 error = ops->enable(rdev);
3639 if (error)
3640 ret = error;
3641 } else {
3642 if (!have_full_constraints())
3643 goto unlock;
3644 if (!ops->disable)
3645 goto unlock;
3646 if (!_regulator_is_enabled(rdev))
3647 goto unlock;
3648
3649 error = ops->disable(rdev);
3650 if (error)
3651 ret = error;
3652 }
3653 unlock:
3654 mutex_unlock(&rdev->mutex);
3655 }
3656 mutex_unlock(&regulator_list_mutex);
3657 return ret;
3658 }
3659 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3660
3661 /**
3662 * regulator_has_full_constraints - the system has fully specified constraints
3663 *
3664 * Calling this function will cause the regulator API to disable all
3665 * regulators which have a zero use count and don't have an always_on
3666 * constraint in a late_initcall.
3667 *
3668 * The intention is that this will become the default behaviour in a
3669 * future kernel release so users are encouraged to use this facility
3670 * now.
3671 */
3672 void regulator_has_full_constraints(void)
3673 {
3674 has_full_constraints = 1;
3675 }
3676 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3677
3678 /**
3679 * rdev_get_drvdata - get rdev regulator driver data
3680 * @rdev: regulator
3681 *
3682 * Get rdev regulator driver private data. This call can be used in the
3683 * regulator driver context.
3684 */
3685 void *rdev_get_drvdata(struct regulator_dev *rdev)
3686 {
3687 return rdev->reg_data;
3688 }
3689 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3690
3691 /**
3692 * regulator_get_drvdata - get regulator driver data
3693 * @regulator: regulator
3694 *
3695 * Get regulator driver private data. This call can be used in the consumer
3696 * driver context when non API regulator specific functions need to be called.
3697 */
3698 void *regulator_get_drvdata(struct regulator *regulator)
3699 {
3700 return regulator->rdev->reg_data;
3701 }
3702 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3703
3704 /**
3705 * regulator_set_drvdata - set regulator driver data
3706 * @regulator: regulator
3707 * @data: data
3708 */
3709 void regulator_set_drvdata(struct regulator *regulator, void *data)
3710 {
3711 regulator->rdev->reg_data = data;
3712 }
3713 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3714
3715 /**
3716 * regulator_get_id - get regulator ID
3717 * @rdev: regulator
3718 */
3719 int rdev_get_id(struct regulator_dev *rdev)
3720 {
3721 return rdev->desc->id;
3722 }
3723 EXPORT_SYMBOL_GPL(rdev_get_id);
3724
3725 struct device *rdev_get_dev(struct regulator_dev *rdev)
3726 {
3727 return &rdev->dev;
3728 }
3729 EXPORT_SYMBOL_GPL(rdev_get_dev);
3730
3731 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3732 {
3733 return reg_init_data->driver_data;
3734 }
3735 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3736
3737 #ifdef CONFIG_DEBUG_FS
3738 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3739 size_t count, loff_t *ppos)
3740 {
3741 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3742 ssize_t len, ret = 0;
3743 struct regulator_map *map;
3744
3745 if (!buf)
3746 return -ENOMEM;
3747
3748 list_for_each_entry(map, &regulator_map_list, list) {
3749 len = snprintf(buf + ret, PAGE_SIZE - ret,
3750 "%s -> %s.%s\n",
3751 rdev_get_name(map->regulator), map->dev_name,
3752 map->supply);
3753 if (len >= 0)
3754 ret += len;
3755 if (ret > PAGE_SIZE) {
3756 ret = PAGE_SIZE;
3757 break;
3758 }
3759 }
3760
3761 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3762
3763 kfree(buf);
3764
3765 return ret;
3766 }
3767 #endif
3768
3769 static const struct file_operations supply_map_fops = {
3770 #ifdef CONFIG_DEBUG_FS
3771 .read = supply_map_read_file,
3772 .llseek = default_llseek,
3773 #endif
3774 };
3775
3776 static int __init regulator_init(void)
3777 {
3778 int ret;
3779
3780 ret = class_register(&regulator_class);
3781
3782 debugfs_root = debugfs_create_dir("regulator", NULL);
3783 if (!debugfs_root)
3784 pr_warn("regulator: Failed to create debugfs directory\n");
3785
3786 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3787 &supply_map_fops);
3788
3789 regulator_dummy_init();
3790
3791 return ret;
3792 }
3793
3794 /* init early to allow our consumers to complete system booting */
3795 core_initcall(regulator_init);
3796
3797 static int __init regulator_init_complete(void)
3798 {
3799 struct regulator_dev *rdev;
3800 struct regulator_ops *ops;
3801 struct regulation_constraints *c;
3802 int enabled, ret;
3803
3804 /*
3805 * Since DT doesn't provide an idiomatic mechanism for
3806 * enabling full constraints and since it's much more natural
3807 * with DT to provide them just assume that a DT enabled
3808 * system has full constraints.
3809 */
3810 if (of_have_populated_dt())
3811 has_full_constraints = true;
3812
3813 mutex_lock(&regulator_list_mutex);
3814
3815 /* If we have a full configuration then disable any regulators
3816 * which are not in use or always_on. This will become the
3817 * default behaviour in the future.
3818 */
3819 list_for_each_entry(rdev, &regulator_list, list) {
3820 ops = rdev->desc->ops;
3821 c = rdev->constraints;
3822
3823 if (!ops->disable || (c && c->always_on))
3824 continue;
3825
3826 mutex_lock(&rdev->mutex);
3827
3828 if (rdev->use_count)
3829 goto unlock;
3830
3831 /* If we can't read the status assume it's on. */
3832 if (ops->is_enabled)
3833 enabled = ops->is_enabled(rdev);
3834 else
3835 enabled = 1;
3836
3837 if (!enabled)
3838 goto unlock;
3839
3840 if (have_full_constraints()) {
3841 /* We log since this may kill the system if it
3842 * goes wrong. */
3843 rdev_info(rdev, "disabling\n");
3844 ret = ops->disable(rdev);
3845 if (ret != 0)
3846 rdev_err(rdev, "couldn't disable: %d\n", ret);
3847 } else {
3848 /* The intention is that in future we will
3849 * assume that full constraints are provided
3850 * so warn even if we aren't going to do
3851 * anything here.
3852 */
3853 rdev_warn(rdev, "incomplete constraints, leaving on\n");
3854 }
3855
3856 unlock:
3857 mutex_unlock(&rdev->mutex);
3858 }
3859
3860 mutex_unlock(&regulator_list_mutex);
3861
3862 return 0;
3863 }
3864 late_initcall(regulator_init_complete);
This page took 0.196376 seconds and 5 git commands to generate.