Merge remote-tracking branch 'regulator/fix/doc' into tmp
[deliverable/linux.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39
40 #define rdev_crit(rdev, fmt, ...) \
41 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...) \
43 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...) \
45 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...) \
47 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...) \
49 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static bool has_full_constraints;
55 static bool board_wants_dummy_regulator;
56
57 static struct dentry *debugfs_root;
58
59 /*
60 * struct regulator_map
61 *
62 * Used to provide symbolic supply names to devices.
63 */
64 struct regulator_map {
65 struct list_head list;
66 const char *dev_name; /* The dev_name() for the consumer */
67 const char *supply;
68 struct regulator_dev *regulator;
69 };
70
71 /*
72 * struct regulator
73 *
74 * One for each consumer device.
75 */
76 struct regulator {
77 struct device *dev;
78 struct list_head list;
79 unsigned int always_on:1;
80 unsigned int bypass:1;
81 int uA_load;
82 int min_uV;
83 int max_uV;
84 char *supply_name;
85 struct device_attribute dev_attr;
86 struct regulator_dev *rdev;
87 struct dentry *debugfs;
88 };
89
90 static int _regulator_is_enabled(struct regulator_dev *rdev);
91 static int _regulator_disable(struct regulator_dev *rdev);
92 static int _regulator_get_voltage(struct regulator_dev *rdev);
93 static int _regulator_get_current_limit(struct regulator_dev *rdev);
94 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
95 static void _notifier_call_chain(struct regulator_dev *rdev,
96 unsigned long event, void *data);
97 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
98 int min_uV, int max_uV);
99 static struct regulator *create_regulator(struct regulator_dev *rdev,
100 struct device *dev,
101 const char *supply_name);
102
103 static const char *rdev_get_name(struct regulator_dev *rdev)
104 {
105 if (rdev->constraints && rdev->constraints->name)
106 return rdev->constraints->name;
107 else if (rdev->desc->name)
108 return rdev->desc->name;
109 else
110 return "";
111 }
112
113 /**
114 * of_get_regulator - get a regulator device node based on supply name
115 * @dev: Device pointer for the consumer (of regulator) device
116 * @supply: regulator supply name
117 *
118 * Extract the regulator device node corresponding to the supply name.
119 * retruns the device node corresponding to the regulator if found, else
120 * returns NULL.
121 */
122 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
123 {
124 struct device_node *regnode = NULL;
125 char prop_name[32]; /* 32 is max size of property name */
126
127 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
128
129 snprintf(prop_name, 32, "%s-supply", supply);
130 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
131
132 if (!regnode) {
133 dev_dbg(dev, "Looking up %s property in node %s failed",
134 prop_name, dev->of_node->full_name);
135 return NULL;
136 }
137 return regnode;
138 }
139
140 static int _regulator_can_change_status(struct regulator_dev *rdev)
141 {
142 if (!rdev->constraints)
143 return 0;
144
145 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
146 return 1;
147 else
148 return 0;
149 }
150
151 /* Platform voltage constraint check */
152 static int regulator_check_voltage(struct regulator_dev *rdev,
153 int *min_uV, int *max_uV)
154 {
155 BUG_ON(*min_uV > *max_uV);
156
157 if (!rdev->constraints) {
158 rdev_err(rdev, "no constraints\n");
159 return -ENODEV;
160 }
161 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
162 rdev_err(rdev, "operation not allowed\n");
163 return -EPERM;
164 }
165
166 if (*max_uV > rdev->constraints->max_uV)
167 *max_uV = rdev->constraints->max_uV;
168 if (*min_uV < rdev->constraints->min_uV)
169 *min_uV = rdev->constraints->min_uV;
170
171 if (*min_uV > *max_uV) {
172 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
173 *min_uV, *max_uV);
174 return -EINVAL;
175 }
176
177 return 0;
178 }
179
180 /* Make sure we select a voltage that suits the needs of all
181 * regulator consumers
182 */
183 static int regulator_check_consumers(struct regulator_dev *rdev,
184 int *min_uV, int *max_uV)
185 {
186 struct regulator *regulator;
187
188 list_for_each_entry(regulator, &rdev->consumer_list, list) {
189 /*
190 * Assume consumers that didn't say anything are OK
191 * with anything in the constraint range.
192 */
193 if (!regulator->min_uV && !regulator->max_uV)
194 continue;
195
196 if (*max_uV > regulator->max_uV)
197 *max_uV = regulator->max_uV;
198 if (*min_uV < regulator->min_uV)
199 *min_uV = regulator->min_uV;
200 }
201
202 if (*min_uV > *max_uV) {
203 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
204 *min_uV, *max_uV);
205 return -EINVAL;
206 }
207
208 return 0;
209 }
210
211 /* current constraint check */
212 static int regulator_check_current_limit(struct regulator_dev *rdev,
213 int *min_uA, int *max_uA)
214 {
215 BUG_ON(*min_uA > *max_uA);
216
217 if (!rdev->constraints) {
218 rdev_err(rdev, "no constraints\n");
219 return -ENODEV;
220 }
221 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
222 rdev_err(rdev, "operation not allowed\n");
223 return -EPERM;
224 }
225
226 if (*max_uA > rdev->constraints->max_uA)
227 *max_uA = rdev->constraints->max_uA;
228 if (*min_uA < rdev->constraints->min_uA)
229 *min_uA = rdev->constraints->min_uA;
230
231 if (*min_uA > *max_uA) {
232 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
233 *min_uA, *max_uA);
234 return -EINVAL;
235 }
236
237 return 0;
238 }
239
240 /* operating mode constraint check */
241 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
242 {
243 switch (*mode) {
244 case REGULATOR_MODE_FAST:
245 case REGULATOR_MODE_NORMAL:
246 case REGULATOR_MODE_IDLE:
247 case REGULATOR_MODE_STANDBY:
248 break;
249 default:
250 rdev_err(rdev, "invalid mode %x specified\n", *mode);
251 return -EINVAL;
252 }
253
254 if (!rdev->constraints) {
255 rdev_err(rdev, "no constraints\n");
256 return -ENODEV;
257 }
258 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
259 rdev_err(rdev, "operation not allowed\n");
260 return -EPERM;
261 }
262
263 /* The modes are bitmasks, the most power hungry modes having
264 * the lowest values. If the requested mode isn't supported
265 * try higher modes. */
266 while (*mode) {
267 if (rdev->constraints->valid_modes_mask & *mode)
268 return 0;
269 *mode /= 2;
270 }
271
272 return -EINVAL;
273 }
274
275 /* dynamic regulator mode switching constraint check */
276 static int regulator_check_drms(struct regulator_dev *rdev)
277 {
278 if (!rdev->constraints) {
279 rdev_err(rdev, "no constraints\n");
280 return -ENODEV;
281 }
282 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
283 rdev_err(rdev, "operation not allowed\n");
284 return -EPERM;
285 }
286 return 0;
287 }
288
289 static ssize_t regulator_uV_show(struct device *dev,
290 struct device_attribute *attr, char *buf)
291 {
292 struct regulator_dev *rdev = dev_get_drvdata(dev);
293 ssize_t ret;
294
295 mutex_lock(&rdev->mutex);
296 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
297 mutex_unlock(&rdev->mutex);
298
299 return ret;
300 }
301 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
302
303 static ssize_t regulator_uA_show(struct device *dev,
304 struct device_attribute *attr, char *buf)
305 {
306 struct regulator_dev *rdev = dev_get_drvdata(dev);
307
308 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
309 }
310 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
311
312 static ssize_t regulator_name_show(struct device *dev,
313 struct device_attribute *attr, char *buf)
314 {
315 struct regulator_dev *rdev = dev_get_drvdata(dev);
316
317 return sprintf(buf, "%s\n", rdev_get_name(rdev));
318 }
319
320 static ssize_t regulator_print_opmode(char *buf, int mode)
321 {
322 switch (mode) {
323 case REGULATOR_MODE_FAST:
324 return sprintf(buf, "fast\n");
325 case REGULATOR_MODE_NORMAL:
326 return sprintf(buf, "normal\n");
327 case REGULATOR_MODE_IDLE:
328 return sprintf(buf, "idle\n");
329 case REGULATOR_MODE_STANDBY:
330 return sprintf(buf, "standby\n");
331 }
332 return sprintf(buf, "unknown\n");
333 }
334
335 static ssize_t regulator_opmode_show(struct device *dev,
336 struct device_attribute *attr, char *buf)
337 {
338 struct regulator_dev *rdev = dev_get_drvdata(dev);
339
340 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
341 }
342 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
343
344 static ssize_t regulator_print_state(char *buf, int state)
345 {
346 if (state > 0)
347 return sprintf(buf, "enabled\n");
348 else if (state == 0)
349 return sprintf(buf, "disabled\n");
350 else
351 return sprintf(buf, "unknown\n");
352 }
353
354 static ssize_t regulator_state_show(struct device *dev,
355 struct device_attribute *attr, char *buf)
356 {
357 struct regulator_dev *rdev = dev_get_drvdata(dev);
358 ssize_t ret;
359
360 mutex_lock(&rdev->mutex);
361 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
362 mutex_unlock(&rdev->mutex);
363
364 return ret;
365 }
366 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
367
368 static ssize_t regulator_status_show(struct device *dev,
369 struct device_attribute *attr, char *buf)
370 {
371 struct regulator_dev *rdev = dev_get_drvdata(dev);
372 int status;
373 char *label;
374
375 status = rdev->desc->ops->get_status(rdev);
376 if (status < 0)
377 return status;
378
379 switch (status) {
380 case REGULATOR_STATUS_OFF:
381 label = "off";
382 break;
383 case REGULATOR_STATUS_ON:
384 label = "on";
385 break;
386 case REGULATOR_STATUS_ERROR:
387 label = "error";
388 break;
389 case REGULATOR_STATUS_FAST:
390 label = "fast";
391 break;
392 case REGULATOR_STATUS_NORMAL:
393 label = "normal";
394 break;
395 case REGULATOR_STATUS_IDLE:
396 label = "idle";
397 break;
398 case REGULATOR_STATUS_STANDBY:
399 label = "standby";
400 break;
401 case REGULATOR_STATUS_BYPASS:
402 label = "bypass";
403 break;
404 case REGULATOR_STATUS_UNDEFINED:
405 label = "undefined";
406 break;
407 default:
408 return -ERANGE;
409 }
410
411 return sprintf(buf, "%s\n", label);
412 }
413 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
414
415 static ssize_t regulator_min_uA_show(struct device *dev,
416 struct device_attribute *attr, char *buf)
417 {
418 struct regulator_dev *rdev = dev_get_drvdata(dev);
419
420 if (!rdev->constraints)
421 return sprintf(buf, "constraint not defined\n");
422
423 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
424 }
425 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
426
427 static ssize_t regulator_max_uA_show(struct device *dev,
428 struct device_attribute *attr, char *buf)
429 {
430 struct regulator_dev *rdev = dev_get_drvdata(dev);
431
432 if (!rdev->constraints)
433 return sprintf(buf, "constraint not defined\n");
434
435 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
436 }
437 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
438
439 static ssize_t regulator_min_uV_show(struct device *dev,
440 struct device_attribute *attr, char *buf)
441 {
442 struct regulator_dev *rdev = dev_get_drvdata(dev);
443
444 if (!rdev->constraints)
445 return sprintf(buf, "constraint not defined\n");
446
447 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
448 }
449 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
450
451 static ssize_t regulator_max_uV_show(struct device *dev,
452 struct device_attribute *attr, char *buf)
453 {
454 struct regulator_dev *rdev = dev_get_drvdata(dev);
455
456 if (!rdev->constraints)
457 return sprintf(buf, "constraint not defined\n");
458
459 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
460 }
461 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
462
463 static ssize_t regulator_total_uA_show(struct device *dev,
464 struct device_attribute *attr, char *buf)
465 {
466 struct regulator_dev *rdev = dev_get_drvdata(dev);
467 struct regulator *regulator;
468 int uA = 0;
469
470 mutex_lock(&rdev->mutex);
471 list_for_each_entry(regulator, &rdev->consumer_list, list)
472 uA += regulator->uA_load;
473 mutex_unlock(&rdev->mutex);
474 return sprintf(buf, "%d\n", uA);
475 }
476 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
477
478 static ssize_t regulator_num_users_show(struct device *dev,
479 struct device_attribute *attr, char *buf)
480 {
481 struct regulator_dev *rdev = dev_get_drvdata(dev);
482 return sprintf(buf, "%d\n", rdev->use_count);
483 }
484
485 static ssize_t regulator_type_show(struct device *dev,
486 struct device_attribute *attr, char *buf)
487 {
488 struct regulator_dev *rdev = dev_get_drvdata(dev);
489
490 switch (rdev->desc->type) {
491 case REGULATOR_VOLTAGE:
492 return sprintf(buf, "voltage\n");
493 case REGULATOR_CURRENT:
494 return sprintf(buf, "current\n");
495 }
496 return sprintf(buf, "unknown\n");
497 }
498
499 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
500 struct device_attribute *attr, char *buf)
501 {
502 struct regulator_dev *rdev = dev_get_drvdata(dev);
503
504 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
505 }
506 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
507 regulator_suspend_mem_uV_show, NULL);
508
509 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
510 struct device_attribute *attr, char *buf)
511 {
512 struct regulator_dev *rdev = dev_get_drvdata(dev);
513
514 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
515 }
516 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
517 regulator_suspend_disk_uV_show, NULL);
518
519 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
520 struct device_attribute *attr, char *buf)
521 {
522 struct regulator_dev *rdev = dev_get_drvdata(dev);
523
524 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
525 }
526 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
527 regulator_suspend_standby_uV_show, NULL);
528
529 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
530 struct device_attribute *attr, char *buf)
531 {
532 struct regulator_dev *rdev = dev_get_drvdata(dev);
533
534 return regulator_print_opmode(buf,
535 rdev->constraints->state_mem.mode);
536 }
537 static DEVICE_ATTR(suspend_mem_mode, 0444,
538 regulator_suspend_mem_mode_show, NULL);
539
540 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
541 struct device_attribute *attr, char *buf)
542 {
543 struct regulator_dev *rdev = dev_get_drvdata(dev);
544
545 return regulator_print_opmode(buf,
546 rdev->constraints->state_disk.mode);
547 }
548 static DEVICE_ATTR(suspend_disk_mode, 0444,
549 regulator_suspend_disk_mode_show, NULL);
550
551 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
552 struct device_attribute *attr, char *buf)
553 {
554 struct regulator_dev *rdev = dev_get_drvdata(dev);
555
556 return regulator_print_opmode(buf,
557 rdev->constraints->state_standby.mode);
558 }
559 static DEVICE_ATTR(suspend_standby_mode, 0444,
560 regulator_suspend_standby_mode_show, NULL);
561
562 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
563 struct device_attribute *attr, char *buf)
564 {
565 struct regulator_dev *rdev = dev_get_drvdata(dev);
566
567 return regulator_print_state(buf,
568 rdev->constraints->state_mem.enabled);
569 }
570 static DEVICE_ATTR(suspend_mem_state, 0444,
571 regulator_suspend_mem_state_show, NULL);
572
573 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
574 struct device_attribute *attr, char *buf)
575 {
576 struct regulator_dev *rdev = dev_get_drvdata(dev);
577
578 return regulator_print_state(buf,
579 rdev->constraints->state_disk.enabled);
580 }
581 static DEVICE_ATTR(suspend_disk_state, 0444,
582 regulator_suspend_disk_state_show, NULL);
583
584 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
585 struct device_attribute *attr, char *buf)
586 {
587 struct regulator_dev *rdev = dev_get_drvdata(dev);
588
589 return regulator_print_state(buf,
590 rdev->constraints->state_standby.enabled);
591 }
592 static DEVICE_ATTR(suspend_standby_state, 0444,
593 regulator_suspend_standby_state_show, NULL);
594
595 static ssize_t regulator_bypass_show(struct device *dev,
596 struct device_attribute *attr, char *buf)
597 {
598 struct regulator_dev *rdev = dev_get_drvdata(dev);
599 const char *report;
600 bool bypass;
601 int ret;
602
603 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
604
605 if (ret != 0)
606 report = "unknown";
607 else if (bypass)
608 report = "enabled";
609 else
610 report = "disabled";
611
612 return sprintf(buf, "%s\n", report);
613 }
614 static DEVICE_ATTR(bypass, 0444,
615 regulator_bypass_show, NULL);
616
617 /*
618 * These are the only attributes are present for all regulators.
619 * Other attributes are a function of regulator functionality.
620 */
621 static struct device_attribute regulator_dev_attrs[] = {
622 __ATTR(name, 0444, regulator_name_show, NULL),
623 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
624 __ATTR(type, 0444, regulator_type_show, NULL),
625 __ATTR_NULL,
626 };
627
628 static void regulator_dev_release(struct device *dev)
629 {
630 struct regulator_dev *rdev = dev_get_drvdata(dev);
631 kfree(rdev);
632 }
633
634 static struct class regulator_class = {
635 .name = "regulator",
636 .dev_release = regulator_dev_release,
637 .dev_attrs = regulator_dev_attrs,
638 };
639
640 /* Calculate the new optimum regulator operating mode based on the new total
641 * consumer load. All locks held by caller */
642 static void drms_uA_update(struct regulator_dev *rdev)
643 {
644 struct regulator *sibling;
645 int current_uA = 0, output_uV, input_uV, err;
646 unsigned int mode;
647
648 err = regulator_check_drms(rdev);
649 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
650 (!rdev->desc->ops->get_voltage &&
651 !rdev->desc->ops->get_voltage_sel) ||
652 !rdev->desc->ops->set_mode)
653 return;
654
655 /* get output voltage */
656 output_uV = _regulator_get_voltage(rdev);
657 if (output_uV <= 0)
658 return;
659
660 /* get input voltage */
661 input_uV = 0;
662 if (rdev->supply)
663 input_uV = regulator_get_voltage(rdev->supply);
664 if (input_uV <= 0)
665 input_uV = rdev->constraints->input_uV;
666 if (input_uV <= 0)
667 return;
668
669 /* calc total requested load */
670 list_for_each_entry(sibling, &rdev->consumer_list, list)
671 current_uA += sibling->uA_load;
672
673 /* now get the optimum mode for our new total regulator load */
674 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
675 output_uV, current_uA);
676
677 /* check the new mode is allowed */
678 err = regulator_mode_constrain(rdev, &mode);
679 if (err == 0)
680 rdev->desc->ops->set_mode(rdev, mode);
681 }
682
683 static int suspend_set_state(struct regulator_dev *rdev,
684 struct regulator_state *rstate)
685 {
686 int ret = 0;
687
688 /* If we have no suspend mode configration don't set anything;
689 * only warn if the driver implements set_suspend_voltage or
690 * set_suspend_mode callback.
691 */
692 if (!rstate->enabled && !rstate->disabled) {
693 if (rdev->desc->ops->set_suspend_voltage ||
694 rdev->desc->ops->set_suspend_mode)
695 rdev_warn(rdev, "No configuration\n");
696 return 0;
697 }
698
699 if (rstate->enabled && rstate->disabled) {
700 rdev_err(rdev, "invalid configuration\n");
701 return -EINVAL;
702 }
703
704 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
705 ret = rdev->desc->ops->set_suspend_enable(rdev);
706 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
707 ret = rdev->desc->ops->set_suspend_disable(rdev);
708 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
709 ret = 0;
710
711 if (ret < 0) {
712 rdev_err(rdev, "failed to enabled/disable\n");
713 return ret;
714 }
715
716 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
717 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
718 if (ret < 0) {
719 rdev_err(rdev, "failed to set voltage\n");
720 return ret;
721 }
722 }
723
724 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
725 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
726 if (ret < 0) {
727 rdev_err(rdev, "failed to set mode\n");
728 return ret;
729 }
730 }
731 return ret;
732 }
733
734 /* locks held by caller */
735 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
736 {
737 if (!rdev->constraints)
738 return -EINVAL;
739
740 switch (state) {
741 case PM_SUSPEND_STANDBY:
742 return suspend_set_state(rdev,
743 &rdev->constraints->state_standby);
744 case PM_SUSPEND_MEM:
745 return suspend_set_state(rdev,
746 &rdev->constraints->state_mem);
747 case PM_SUSPEND_MAX:
748 return suspend_set_state(rdev,
749 &rdev->constraints->state_disk);
750 default:
751 return -EINVAL;
752 }
753 }
754
755 static void print_constraints(struct regulator_dev *rdev)
756 {
757 struct regulation_constraints *constraints = rdev->constraints;
758 char buf[80] = "";
759 int count = 0;
760 int ret;
761
762 if (constraints->min_uV && constraints->max_uV) {
763 if (constraints->min_uV == constraints->max_uV)
764 count += sprintf(buf + count, "%d mV ",
765 constraints->min_uV / 1000);
766 else
767 count += sprintf(buf + count, "%d <--> %d mV ",
768 constraints->min_uV / 1000,
769 constraints->max_uV / 1000);
770 }
771
772 if (!constraints->min_uV ||
773 constraints->min_uV != constraints->max_uV) {
774 ret = _regulator_get_voltage(rdev);
775 if (ret > 0)
776 count += sprintf(buf + count, "at %d mV ", ret / 1000);
777 }
778
779 if (constraints->uV_offset)
780 count += sprintf(buf, "%dmV offset ",
781 constraints->uV_offset / 1000);
782
783 if (constraints->min_uA && constraints->max_uA) {
784 if (constraints->min_uA == constraints->max_uA)
785 count += sprintf(buf + count, "%d mA ",
786 constraints->min_uA / 1000);
787 else
788 count += sprintf(buf + count, "%d <--> %d mA ",
789 constraints->min_uA / 1000,
790 constraints->max_uA / 1000);
791 }
792
793 if (!constraints->min_uA ||
794 constraints->min_uA != constraints->max_uA) {
795 ret = _regulator_get_current_limit(rdev);
796 if (ret > 0)
797 count += sprintf(buf + count, "at %d mA ", ret / 1000);
798 }
799
800 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
801 count += sprintf(buf + count, "fast ");
802 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
803 count += sprintf(buf + count, "normal ");
804 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
805 count += sprintf(buf + count, "idle ");
806 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
807 count += sprintf(buf + count, "standby");
808
809 if (!count)
810 sprintf(buf, "no parameters");
811
812 rdev_info(rdev, "%s\n", buf);
813
814 if ((constraints->min_uV != constraints->max_uV) &&
815 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
816 rdev_warn(rdev,
817 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
818 }
819
820 static int machine_constraints_voltage(struct regulator_dev *rdev,
821 struct regulation_constraints *constraints)
822 {
823 struct regulator_ops *ops = rdev->desc->ops;
824 int ret;
825
826 /* do we need to apply the constraint voltage */
827 if (rdev->constraints->apply_uV &&
828 rdev->constraints->min_uV == rdev->constraints->max_uV) {
829 ret = _regulator_do_set_voltage(rdev,
830 rdev->constraints->min_uV,
831 rdev->constraints->max_uV);
832 if (ret < 0) {
833 rdev_err(rdev, "failed to apply %duV constraint\n",
834 rdev->constraints->min_uV);
835 return ret;
836 }
837 }
838
839 /* constrain machine-level voltage specs to fit
840 * the actual range supported by this regulator.
841 */
842 if (ops->list_voltage && rdev->desc->n_voltages) {
843 int count = rdev->desc->n_voltages;
844 int i;
845 int min_uV = INT_MAX;
846 int max_uV = INT_MIN;
847 int cmin = constraints->min_uV;
848 int cmax = constraints->max_uV;
849
850 /* it's safe to autoconfigure fixed-voltage supplies
851 and the constraints are used by list_voltage. */
852 if (count == 1 && !cmin) {
853 cmin = 1;
854 cmax = INT_MAX;
855 constraints->min_uV = cmin;
856 constraints->max_uV = cmax;
857 }
858
859 /* voltage constraints are optional */
860 if ((cmin == 0) && (cmax == 0))
861 return 0;
862
863 /* else require explicit machine-level constraints */
864 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
865 rdev_err(rdev, "invalid voltage constraints\n");
866 return -EINVAL;
867 }
868
869 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
870 for (i = 0; i < count; i++) {
871 int value;
872
873 value = ops->list_voltage(rdev, i);
874 if (value <= 0)
875 continue;
876
877 /* maybe adjust [min_uV..max_uV] */
878 if (value >= cmin && value < min_uV)
879 min_uV = value;
880 if (value <= cmax && value > max_uV)
881 max_uV = value;
882 }
883
884 /* final: [min_uV..max_uV] valid iff constraints valid */
885 if (max_uV < min_uV) {
886 rdev_err(rdev,
887 "unsupportable voltage constraints %u-%uuV\n",
888 min_uV, max_uV);
889 return -EINVAL;
890 }
891
892 /* use regulator's subset of machine constraints */
893 if (constraints->min_uV < min_uV) {
894 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
895 constraints->min_uV, min_uV);
896 constraints->min_uV = min_uV;
897 }
898 if (constraints->max_uV > max_uV) {
899 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
900 constraints->max_uV, max_uV);
901 constraints->max_uV = max_uV;
902 }
903 }
904
905 return 0;
906 }
907
908 /**
909 * set_machine_constraints - sets regulator constraints
910 * @rdev: regulator source
911 * @constraints: constraints to apply
912 *
913 * Allows platform initialisation code to define and constrain
914 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
915 * Constraints *must* be set by platform code in order for some
916 * regulator operations to proceed i.e. set_voltage, set_current_limit,
917 * set_mode.
918 */
919 static int set_machine_constraints(struct regulator_dev *rdev,
920 const struct regulation_constraints *constraints)
921 {
922 int ret = 0;
923 struct regulator_ops *ops = rdev->desc->ops;
924
925 if (constraints)
926 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
927 GFP_KERNEL);
928 else
929 rdev->constraints = kzalloc(sizeof(*constraints),
930 GFP_KERNEL);
931 if (!rdev->constraints)
932 return -ENOMEM;
933
934 ret = machine_constraints_voltage(rdev, rdev->constraints);
935 if (ret != 0)
936 goto out;
937
938 /* do we need to setup our suspend state */
939 if (rdev->constraints->initial_state) {
940 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
941 if (ret < 0) {
942 rdev_err(rdev, "failed to set suspend state\n");
943 goto out;
944 }
945 }
946
947 if (rdev->constraints->initial_mode) {
948 if (!ops->set_mode) {
949 rdev_err(rdev, "no set_mode operation\n");
950 ret = -EINVAL;
951 goto out;
952 }
953
954 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
955 if (ret < 0) {
956 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
957 goto out;
958 }
959 }
960
961 /* If the constraints say the regulator should be on at this point
962 * and we have control then make sure it is enabled.
963 */
964 if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
965 ops->enable) {
966 ret = ops->enable(rdev);
967 if (ret < 0) {
968 rdev_err(rdev, "failed to enable\n");
969 goto out;
970 }
971 }
972
973 if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
974 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
975 if (ret < 0) {
976 rdev_err(rdev, "failed to set ramp_delay\n");
977 goto out;
978 }
979 }
980
981 print_constraints(rdev);
982 return 0;
983 out:
984 kfree(rdev->constraints);
985 rdev->constraints = NULL;
986 return ret;
987 }
988
989 /**
990 * set_supply - set regulator supply regulator
991 * @rdev: regulator name
992 * @supply_rdev: supply regulator name
993 *
994 * Called by platform initialisation code to set the supply regulator for this
995 * regulator. This ensures that a regulators supply will also be enabled by the
996 * core if it's child is enabled.
997 */
998 static int set_supply(struct regulator_dev *rdev,
999 struct regulator_dev *supply_rdev)
1000 {
1001 int err;
1002
1003 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1004
1005 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1006 if (rdev->supply == NULL) {
1007 err = -ENOMEM;
1008 return err;
1009 }
1010 supply_rdev->open_count++;
1011
1012 return 0;
1013 }
1014
1015 /**
1016 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1017 * @rdev: regulator source
1018 * @consumer_dev_name: dev_name() string for device supply applies to
1019 * @supply: symbolic name for supply
1020 *
1021 * Allows platform initialisation code to map physical regulator
1022 * sources to symbolic names for supplies for use by devices. Devices
1023 * should use these symbolic names to request regulators, avoiding the
1024 * need to provide board-specific regulator names as platform data.
1025 */
1026 static int set_consumer_device_supply(struct regulator_dev *rdev,
1027 const char *consumer_dev_name,
1028 const char *supply)
1029 {
1030 struct regulator_map *node;
1031 int has_dev;
1032
1033 if (supply == NULL)
1034 return -EINVAL;
1035
1036 if (consumer_dev_name != NULL)
1037 has_dev = 1;
1038 else
1039 has_dev = 0;
1040
1041 list_for_each_entry(node, &regulator_map_list, list) {
1042 if (node->dev_name && consumer_dev_name) {
1043 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1044 continue;
1045 } else if (node->dev_name || consumer_dev_name) {
1046 continue;
1047 }
1048
1049 if (strcmp(node->supply, supply) != 0)
1050 continue;
1051
1052 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1053 consumer_dev_name,
1054 dev_name(&node->regulator->dev),
1055 node->regulator->desc->name,
1056 supply,
1057 dev_name(&rdev->dev), rdev_get_name(rdev));
1058 return -EBUSY;
1059 }
1060
1061 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1062 if (node == NULL)
1063 return -ENOMEM;
1064
1065 node->regulator = rdev;
1066 node->supply = supply;
1067
1068 if (has_dev) {
1069 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1070 if (node->dev_name == NULL) {
1071 kfree(node);
1072 return -ENOMEM;
1073 }
1074 }
1075
1076 list_add(&node->list, &regulator_map_list);
1077 return 0;
1078 }
1079
1080 static void unset_regulator_supplies(struct regulator_dev *rdev)
1081 {
1082 struct regulator_map *node, *n;
1083
1084 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1085 if (rdev == node->regulator) {
1086 list_del(&node->list);
1087 kfree(node->dev_name);
1088 kfree(node);
1089 }
1090 }
1091 }
1092
1093 #define REG_STR_SIZE 64
1094
1095 static struct regulator *create_regulator(struct regulator_dev *rdev,
1096 struct device *dev,
1097 const char *supply_name)
1098 {
1099 struct regulator *regulator;
1100 char buf[REG_STR_SIZE];
1101 int err, size;
1102
1103 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1104 if (regulator == NULL)
1105 return NULL;
1106
1107 mutex_lock(&rdev->mutex);
1108 regulator->rdev = rdev;
1109 list_add(&regulator->list, &rdev->consumer_list);
1110
1111 if (dev) {
1112 regulator->dev = dev;
1113
1114 /* Add a link to the device sysfs entry */
1115 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1116 dev->kobj.name, supply_name);
1117 if (size >= REG_STR_SIZE)
1118 goto overflow_err;
1119
1120 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1121 if (regulator->supply_name == NULL)
1122 goto overflow_err;
1123
1124 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1125 buf);
1126 if (err) {
1127 rdev_warn(rdev, "could not add device link %s err %d\n",
1128 dev->kobj.name, err);
1129 /* non-fatal */
1130 }
1131 } else {
1132 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1133 if (regulator->supply_name == NULL)
1134 goto overflow_err;
1135 }
1136
1137 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1138 rdev->debugfs);
1139 if (!regulator->debugfs) {
1140 rdev_warn(rdev, "Failed to create debugfs directory\n");
1141 } else {
1142 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1143 &regulator->uA_load);
1144 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1145 &regulator->min_uV);
1146 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1147 &regulator->max_uV);
1148 }
1149
1150 /*
1151 * Check now if the regulator is an always on regulator - if
1152 * it is then we don't need to do nearly so much work for
1153 * enable/disable calls.
1154 */
1155 if (!_regulator_can_change_status(rdev) &&
1156 _regulator_is_enabled(rdev))
1157 regulator->always_on = true;
1158
1159 mutex_unlock(&rdev->mutex);
1160 return regulator;
1161 overflow_err:
1162 list_del(&regulator->list);
1163 kfree(regulator);
1164 mutex_unlock(&rdev->mutex);
1165 return NULL;
1166 }
1167
1168 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1169 {
1170 if (!rdev->desc->ops->enable_time)
1171 return rdev->desc->enable_time;
1172 return rdev->desc->ops->enable_time(rdev);
1173 }
1174
1175 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1176 const char *supply,
1177 int *ret)
1178 {
1179 struct regulator_dev *r;
1180 struct device_node *node;
1181 struct regulator_map *map;
1182 const char *devname = NULL;
1183
1184 /* first do a dt based lookup */
1185 if (dev && dev->of_node) {
1186 node = of_get_regulator(dev, supply);
1187 if (node) {
1188 list_for_each_entry(r, &regulator_list, list)
1189 if (r->dev.parent &&
1190 node == r->dev.of_node)
1191 return r;
1192 } else {
1193 /*
1194 * If we couldn't even get the node then it's
1195 * not just that the device didn't register
1196 * yet, there's no node and we'll never
1197 * succeed.
1198 */
1199 *ret = -ENODEV;
1200 }
1201 }
1202
1203 /* if not found, try doing it non-dt way */
1204 if (dev)
1205 devname = dev_name(dev);
1206
1207 list_for_each_entry(r, &regulator_list, list)
1208 if (strcmp(rdev_get_name(r), supply) == 0)
1209 return r;
1210
1211 list_for_each_entry(map, &regulator_map_list, list) {
1212 /* If the mapping has a device set up it must match */
1213 if (map->dev_name &&
1214 (!devname || strcmp(map->dev_name, devname)))
1215 continue;
1216
1217 if (strcmp(map->supply, supply) == 0)
1218 return map->regulator;
1219 }
1220
1221
1222 return NULL;
1223 }
1224
1225 /* Internal regulator request function */
1226 static struct regulator *_regulator_get(struct device *dev, const char *id,
1227 int exclusive)
1228 {
1229 struct regulator_dev *rdev;
1230 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1231 const char *devname = NULL;
1232 int ret;
1233
1234 if (id == NULL) {
1235 pr_err("get() with no identifier\n");
1236 return regulator;
1237 }
1238
1239 if (dev)
1240 devname = dev_name(dev);
1241
1242 mutex_lock(&regulator_list_mutex);
1243
1244 rdev = regulator_dev_lookup(dev, id, &ret);
1245 if (rdev)
1246 goto found;
1247
1248 if (board_wants_dummy_regulator) {
1249 rdev = dummy_regulator_rdev;
1250 goto found;
1251 }
1252
1253 #ifdef CONFIG_REGULATOR_DUMMY
1254 if (!devname)
1255 devname = "deviceless";
1256
1257 /* If the board didn't flag that it was fully constrained then
1258 * substitute in a dummy regulator so consumers can continue.
1259 */
1260 if (!has_full_constraints) {
1261 pr_warn("%s supply %s not found, using dummy regulator\n",
1262 devname, id);
1263 rdev = dummy_regulator_rdev;
1264 goto found;
1265 }
1266 #endif
1267
1268 mutex_unlock(&regulator_list_mutex);
1269 return regulator;
1270
1271 found:
1272 if (rdev->exclusive) {
1273 regulator = ERR_PTR(-EPERM);
1274 goto out;
1275 }
1276
1277 if (exclusive && rdev->open_count) {
1278 regulator = ERR_PTR(-EBUSY);
1279 goto out;
1280 }
1281
1282 if (!try_module_get(rdev->owner))
1283 goto out;
1284
1285 regulator = create_regulator(rdev, dev, id);
1286 if (regulator == NULL) {
1287 regulator = ERR_PTR(-ENOMEM);
1288 module_put(rdev->owner);
1289 goto out;
1290 }
1291
1292 rdev->open_count++;
1293 if (exclusive) {
1294 rdev->exclusive = 1;
1295
1296 ret = _regulator_is_enabled(rdev);
1297 if (ret > 0)
1298 rdev->use_count = 1;
1299 else
1300 rdev->use_count = 0;
1301 }
1302
1303 out:
1304 mutex_unlock(&regulator_list_mutex);
1305
1306 return regulator;
1307 }
1308
1309 /**
1310 * regulator_get - lookup and obtain a reference to a regulator.
1311 * @dev: device for regulator "consumer"
1312 * @id: Supply name or regulator ID.
1313 *
1314 * Returns a struct regulator corresponding to the regulator producer,
1315 * or IS_ERR() condition containing errno.
1316 *
1317 * Use of supply names configured via regulator_set_device_supply() is
1318 * strongly encouraged. It is recommended that the supply name used
1319 * should match the name used for the supply and/or the relevant
1320 * device pins in the datasheet.
1321 */
1322 struct regulator *regulator_get(struct device *dev, const char *id)
1323 {
1324 return _regulator_get(dev, id, 0);
1325 }
1326 EXPORT_SYMBOL_GPL(regulator_get);
1327
1328 static void devm_regulator_release(struct device *dev, void *res)
1329 {
1330 regulator_put(*(struct regulator **)res);
1331 }
1332
1333 /**
1334 * devm_regulator_get - Resource managed regulator_get()
1335 * @dev: device for regulator "consumer"
1336 * @id: Supply name or regulator ID.
1337 *
1338 * Managed regulator_get(). Regulators returned from this function are
1339 * automatically regulator_put() on driver detach. See regulator_get() for more
1340 * information.
1341 */
1342 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1343 {
1344 struct regulator **ptr, *regulator;
1345
1346 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1347 if (!ptr)
1348 return ERR_PTR(-ENOMEM);
1349
1350 regulator = regulator_get(dev, id);
1351 if (!IS_ERR(regulator)) {
1352 *ptr = regulator;
1353 devres_add(dev, ptr);
1354 } else {
1355 devres_free(ptr);
1356 }
1357
1358 return regulator;
1359 }
1360 EXPORT_SYMBOL_GPL(devm_regulator_get);
1361
1362 /**
1363 * regulator_get_exclusive - obtain exclusive access to a regulator.
1364 * @dev: device for regulator "consumer"
1365 * @id: Supply name or regulator ID.
1366 *
1367 * Returns a struct regulator corresponding to the regulator producer,
1368 * or IS_ERR() condition containing errno. Other consumers will be
1369 * unable to obtain this reference is held and the use count for the
1370 * regulator will be initialised to reflect the current state of the
1371 * regulator.
1372 *
1373 * This is intended for use by consumers which cannot tolerate shared
1374 * use of the regulator such as those which need to force the
1375 * regulator off for correct operation of the hardware they are
1376 * controlling.
1377 *
1378 * Use of supply names configured via regulator_set_device_supply() is
1379 * strongly encouraged. It is recommended that the supply name used
1380 * should match the name used for the supply and/or the relevant
1381 * device pins in the datasheet.
1382 */
1383 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1384 {
1385 return _regulator_get(dev, id, 1);
1386 }
1387 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1388
1389 /* Locks held by regulator_put() */
1390 static void _regulator_put(struct regulator *regulator)
1391 {
1392 struct regulator_dev *rdev;
1393
1394 if (regulator == NULL || IS_ERR(regulator))
1395 return;
1396
1397 rdev = regulator->rdev;
1398
1399 debugfs_remove_recursive(regulator->debugfs);
1400
1401 /* remove any sysfs entries */
1402 if (regulator->dev)
1403 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1404 kfree(regulator->supply_name);
1405 list_del(&regulator->list);
1406 kfree(regulator);
1407
1408 rdev->open_count--;
1409 rdev->exclusive = 0;
1410
1411 module_put(rdev->owner);
1412 }
1413
1414 /**
1415 * regulator_put - "free" the regulator source
1416 * @regulator: regulator source
1417 *
1418 * Note: drivers must ensure that all regulator_enable calls made on this
1419 * regulator source are balanced by regulator_disable calls prior to calling
1420 * this function.
1421 */
1422 void regulator_put(struct regulator *regulator)
1423 {
1424 mutex_lock(&regulator_list_mutex);
1425 _regulator_put(regulator);
1426 mutex_unlock(&regulator_list_mutex);
1427 }
1428 EXPORT_SYMBOL_GPL(regulator_put);
1429
1430 static int devm_regulator_match(struct device *dev, void *res, void *data)
1431 {
1432 struct regulator **r = res;
1433 if (!r || !*r) {
1434 WARN_ON(!r || !*r);
1435 return 0;
1436 }
1437 return *r == data;
1438 }
1439
1440 /**
1441 * devm_regulator_put - Resource managed regulator_put()
1442 * @regulator: regulator to free
1443 *
1444 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1445 * this function will not need to be called and the resource management
1446 * code will ensure that the resource is freed.
1447 */
1448 void devm_regulator_put(struct regulator *regulator)
1449 {
1450 int rc;
1451
1452 rc = devres_release(regulator->dev, devm_regulator_release,
1453 devm_regulator_match, regulator);
1454 if (rc != 0)
1455 WARN_ON(rc);
1456 }
1457 EXPORT_SYMBOL_GPL(devm_regulator_put);
1458
1459 static int _regulator_do_enable(struct regulator_dev *rdev)
1460 {
1461 int ret, delay;
1462
1463 /* Query before enabling in case configuration dependent. */
1464 ret = _regulator_get_enable_time(rdev);
1465 if (ret >= 0) {
1466 delay = ret;
1467 } else {
1468 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1469 delay = 0;
1470 }
1471
1472 trace_regulator_enable(rdev_get_name(rdev));
1473
1474 if (rdev->ena_gpio) {
1475 gpio_set_value_cansleep(rdev->ena_gpio,
1476 !rdev->ena_gpio_invert);
1477 rdev->ena_gpio_state = 1;
1478 } else if (rdev->desc->ops->enable) {
1479 ret = rdev->desc->ops->enable(rdev);
1480 if (ret < 0)
1481 return ret;
1482 } else {
1483 return -EINVAL;
1484 }
1485
1486 /* Allow the regulator to ramp; it would be useful to extend
1487 * this for bulk operations so that the regulators can ramp
1488 * together. */
1489 trace_regulator_enable_delay(rdev_get_name(rdev));
1490
1491 if (delay >= 1000) {
1492 mdelay(delay / 1000);
1493 udelay(delay % 1000);
1494 } else if (delay) {
1495 udelay(delay);
1496 }
1497
1498 trace_regulator_enable_complete(rdev_get_name(rdev));
1499
1500 return 0;
1501 }
1502
1503 /* locks held by regulator_enable() */
1504 static int _regulator_enable(struct regulator_dev *rdev)
1505 {
1506 int ret;
1507
1508 /* check voltage and requested load before enabling */
1509 if (rdev->constraints &&
1510 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1511 drms_uA_update(rdev);
1512
1513 if (rdev->use_count == 0) {
1514 /* The regulator may on if it's not switchable or left on */
1515 ret = _regulator_is_enabled(rdev);
1516 if (ret == -EINVAL || ret == 0) {
1517 if (!_regulator_can_change_status(rdev))
1518 return -EPERM;
1519
1520 ret = _regulator_do_enable(rdev);
1521 if (ret < 0)
1522 return ret;
1523
1524 } else if (ret < 0) {
1525 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1526 return ret;
1527 }
1528 /* Fallthrough on positive return values - already enabled */
1529 }
1530
1531 rdev->use_count++;
1532
1533 return 0;
1534 }
1535
1536 /**
1537 * regulator_enable - enable regulator output
1538 * @regulator: regulator source
1539 *
1540 * Request that the regulator be enabled with the regulator output at
1541 * the predefined voltage or current value. Calls to regulator_enable()
1542 * must be balanced with calls to regulator_disable().
1543 *
1544 * NOTE: the output value can be set by other drivers, boot loader or may be
1545 * hardwired in the regulator.
1546 */
1547 int regulator_enable(struct regulator *regulator)
1548 {
1549 struct regulator_dev *rdev = regulator->rdev;
1550 int ret = 0;
1551
1552 if (regulator->always_on)
1553 return 0;
1554
1555 if (rdev->supply) {
1556 ret = regulator_enable(rdev->supply);
1557 if (ret != 0)
1558 return ret;
1559 }
1560
1561 mutex_lock(&rdev->mutex);
1562 ret = _regulator_enable(rdev);
1563 mutex_unlock(&rdev->mutex);
1564
1565 if (ret != 0 && rdev->supply)
1566 regulator_disable(rdev->supply);
1567
1568 return ret;
1569 }
1570 EXPORT_SYMBOL_GPL(regulator_enable);
1571
1572 static int _regulator_do_disable(struct regulator_dev *rdev)
1573 {
1574 int ret;
1575
1576 trace_regulator_disable(rdev_get_name(rdev));
1577
1578 if (rdev->ena_gpio) {
1579 gpio_set_value_cansleep(rdev->ena_gpio,
1580 rdev->ena_gpio_invert);
1581 rdev->ena_gpio_state = 0;
1582
1583 } else if (rdev->desc->ops->disable) {
1584 ret = rdev->desc->ops->disable(rdev);
1585 if (ret != 0)
1586 return ret;
1587 }
1588
1589 trace_regulator_disable_complete(rdev_get_name(rdev));
1590
1591 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1592 NULL);
1593 return 0;
1594 }
1595
1596 /* locks held by regulator_disable() */
1597 static int _regulator_disable(struct regulator_dev *rdev)
1598 {
1599 int ret = 0;
1600
1601 if (WARN(rdev->use_count <= 0,
1602 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1603 return -EIO;
1604
1605 /* are we the last user and permitted to disable ? */
1606 if (rdev->use_count == 1 &&
1607 (rdev->constraints && !rdev->constraints->always_on)) {
1608
1609 /* we are last user */
1610 if (_regulator_can_change_status(rdev)) {
1611 ret = _regulator_do_disable(rdev);
1612 if (ret < 0) {
1613 rdev_err(rdev, "failed to disable\n");
1614 return ret;
1615 }
1616 }
1617
1618 rdev->use_count = 0;
1619 } else if (rdev->use_count > 1) {
1620
1621 if (rdev->constraints &&
1622 (rdev->constraints->valid_ops_mask &
1623 REGULATOR_CHANGE_DRMS))
1624 drms_uA_update(rdev);
1625
1626 rdev->use_count--;
1627 }
1628
1629 return ret;
1630 }
1631
1632 /**
1633 * regulator_disable - disable regulator output
1634 * @regulator: regulator source
1635 *
1636 * Disable the regulator output voltage or current. Calls to
1637 * regulator_enable() must be balanced with calls to
1638 * regulator_disable().
1639 *
1640 * NOTE: this will only disable the regulator output if no other consumer
1641 * devices have it enabled, the regulator device supports disabling and
1642 * machine constraints permit this operation.
1643 */
1644 int regulator_disable(struct regulator *regulator)
1645 {
1646 struct regulator_dev *rdev = regulator->rdev;
1647 int ret = 0;
1648
1649 if (regulator->always_on)
1650 return 0;
1651
1652 mutex_lock(&rdev->mutex);
1653 ret = _regulator_disable(rdev);
1654 mutex_unlock(&rdev->mutex);
1655
1656 if (ret == 0 && rdev->supply)
1657 regulator_disable(rdev->supply);
1658
1659 return ret;
1660 }
1661 EXPORT_SYMBOL_GPL(regulator_disable);
1662
1663 /* locks held by regulator_force_disable() */
1664 static int _regulator_force_disable(struct regulator_dev *rdev)
1665 {
1666 int ret = 0;
1667
1668 /* force disable */
1669 if (rdev->desc->ops->disable) {
1670 /* ah well, who wants to live forever... */
1671 ret = rdev->desc->ops->disable(rdev);
1672 if (ret < 0) {
1673 rdev_err(rdev, "failed to force disable\n");
1674 return ret;
1675 }
1676 /* notify other consumers that power has been forced off */
1677 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1678 REGULATOR_EVENT_DISABLE, NULL);
1679 }
1680
1681 return ret;
1682 }
1683
1684 /**
1685 * regulator_force_disable - force disable regulator output
1686 * @regulator: regulator source
1687 *
1688 * Forcibly disable the regulator output voltage or current.
1689 * NOTE: this *will* disable the regulator output even if other consumer
1690 * devices have it enabled. This should be used for situations when device
1691 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1692 */
1693 int regulator_force_disable(struct regulator *regulator)
1694 {
1695 struct regulator_dev *rdev = regulator->rdev;
1696 int ret;
1697
1698 mutex_lock(&rdev->mutex);
1699 regulator->uA_load = 0;
1700 ret = _regulator_force_disable(regulator->rdev);
1701 mutex_unlock(&rdev->mutex);
1702
1703 if (rdev->supply)
1704 while (rdev->open_count--)
1705 regulator_disable(rdev->supply);
1706
1707 return ret;
1708 }
1709 EXPORT_SYMBOL_GPL(regulator_force_disable);
1710
1711 static void regulator_disable_work(struct work_struct *work)
1712 {
1713 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1714 disable_work.work);
1715 int count, i, ret;
1716
1717 mutex_lock(&rdev->mutex);
1718
1719 BUG_ON(!rdev->deferred_disables);
1720
1721 count = rdev->deferred_disables;
1722 rdev->deferred_disables = 0;
1723
1724 for (i = 0; i < count; i++) {
1725 ret = _regulator_disable(rdev);
1726 if (ret != 0)
1727 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1728 }
1729
1730 mutex_unlock(&rdev->mutex);
1731
1732 if (rdev->supply) {
1733 for (i = 0; i < count; i++) {
1734 ret = regulator_disable(rdev->supply);
1735 if (ret != 0) {
1736 rdev_err(rdev,
1737 "Supply disable failed: %d\n", ret);
1738 }
1739 }
1740 }
1741 }
1742
1743 /**
1744 * regulator_disable_deferred - disable regulator output with delay
1745 * @regulator: regulator source
1746 * @ms: miliseconds until the regulator is disabled
1747 *
1748 * Execute regulator_disable() on the regulator after a delay. This
1749 * is intended for use with devices that require some time to quiesce.
1750 *
1751 * NOTE: this will only disable the regulator output if no other consumer
1752 * devices have it enabled, the regulator device supports disabling and
1753 * machine constraints permit this operation.
1754 */
1755 int regulator_disable_deferred(struct regulator *regulator, int ms)
1756 {
1757 struct regulator_dev *rdev = regulator->rdev;
1758 int ret;
1759
1760 if (regulator->always_on)
1761 return 0;
1762
1763 if (!ms)
1764 return regulator_disable(regulator);
1765
1766 mutex_lock(&rdev->mutex);
1767 rdev->deferred_disables++;
1768 mutex_unlock(&rdev->mutex);
1769
1770 ret = schedule_delayed_work(&rdev->disable_work,
1771 msecs_to_jiffies(ms));
1772 if (ret < 0)
1773 return ret;
1774 else
1775 return 0;
1776 }
1777 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1778
1779 /**
1780 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1781 *
1782 * @rdev: regulator to operate on
1783 *
1784 * Regulators that use regmap for their register I/O can set the
1785 * enable_reg and enable_mask fields in their descriptor and then use
1786 * this as their is_enabled operation, saving some code.
1787 */
1788 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1789 {
1790 unsigned int val;
1791 int ret;
1792
1793 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1794 if (ret != 0)
1795 return ret;
1796
1797 return (val & rdev->desc->enable_mask) != 0;
1798 }
1799 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1800
1801 /**
1802 * regulator_enable_regmap - standard enable() for regmap users
1803 *
1804 * @rdev: regulator to operate on
1805 *
1806 * Regulators that use regmap for their register I/O can set the
1807 * enable_reg and enable_mask fields in their descriptor and then use
1808 * this as their enable() operation, saving some code.
1809 */
1810 int regulator_enable_regmap(struct regulator_dev *rdev)
1811 {
1812 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1813 rdev->desc->enable_mask,
1814 rdev->desc->enable_mask);
1815 }
1816 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1817
1818 /**
1819 * regulator_disable_regmap - standard disable() for regmap users
1820 *
1821 * @rdev: regulator to operate on
1822 *
1823 * Regulators that use regmap for their register I/O can set the
1824 * enable_reg and enable_mask fields in their descriptor and then use
1825 * this as their disable() operation, saving some code.
1826 */
1827 int regulator_disable_regmap(struct regulator_dev *rdev)
1828 {
1829 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1830 rdev->desc->enable_mask, 0);
1831 }
1832 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1833
1834 static int _regulator_is_enabled(struct regulator_dev *rdev)
1835 {
1836 /* A GPIO control always takes precedence */
1837 if (rdev->ena_gpio)
1838 return rdev->ena_gpio_state;
1839
1840 /* If we don't know then assume that the regulator is always on */
1841 if (!rdev->desc->ops->is_enabled)
1842 return 1;
1843
1844 return rdev->desc->ops->is_enabled(rdev);
1845 }
1846
1847 /**
1848 * regulator_is_enabled - is the regulator output enabled
1849 * @regulator: regulator source
1850 *
1851 * Returns positive if the regulator driver backing the source/client
1852 * has requested that the device be enabled, zero if it hasn't, else a
1853 * negative errno code.
1854 *
1855 * Note that the device backing this regulator handle can have multiple
1856 * users, so it might be enabled even if regulator_enable() was never
1857 * called for this particular source.
1858 */
1859 int regulator_is_enabled(struct regulator *regulator)
1860 {
1861 int ret;
1862
1863 if (regulator->always_on)
1864 return 1;
1865
1866 mutex_lock(&regulator->rdev->mutex);
1867 ret = _regulator_is_enabled(regulator->rdev);
1868 mutex_unlock(&regulator->rdev->mutex);
1869
1870 return ret;
1871 }
1872 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1873
1874 /**
1875 * regulator_can_change_voltage - check if regulator can change voltage
1876 * @regulator: regulator source
1877 *
1878 * Returns positive if the regulator driver backing the source/client
1879 * can change its voltage, false otherwise. Usefull for detecting fixed
1880 * or dummy regulators and disabling voltage change logic in the client
1881 * driver.
1882 */
1883 int regulator_can_change_voltage(struct regulator *regulator)
1884 {
1885 struct regulator_dev *rdev = regulator->rdev;
1886
1887 if (rdev->constraints &&
1888 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
1889 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
1890 return 1;
1891
1892 if (rdev->desc->continuous_voltage_range &&
1893 rdev->constraints->min_uV && rdev->constraints->max_uV &&
1894 rdev->constraints->min_uV != rdev->constraints->max_uV)
1895 return 1;
1896 }
1897
1898 return 0;
1899 }
1900 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
1901
1902 /**
1903 * regulator_count_voltages - count regulator_list_voltage() selectors
1904 * @regulator: regulator source
1905 *
1906 * Returns number of selectors, or negative errno. Selectors are
1907 * numbered starting at zero, and typically correspond to bitfields
1908 * in hardware registers.
1909 */
1910 int regulator_count_voltages(struct regulator *regulator)
1911 {
1912 struct regulator_dev *rdev = regulator->rdev;
1913
1914 return rdev->desc->n_voltages ? : -EINVAL;
1915 }
1916 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1917
1918 /**
1919 * regulator_list_voltage_linear - List voltages with simple calculation
1920 *
1921 * @rdev: Regulator device
1922 * @selector: Selector to convert into a voltage
1923 *
1924 * Regulators with a simple linear mapping between voltages and
1925 * selectors can set min_uV and uV_step in the regulator descriptor
1926 * and then use this function as their list_voltage() operation,
1927 */
1928 int regulator_list_voltage_linear(struct regulator_dev *rdev,
1929 unsigned int selector)
1930 {
1931 if (selector >= rdev->desc->n_voltages)
1932 return -EINVAL;
1933 if (selector < rdev->desc->linear_min_sel)
1934 return 0;
1935
1936 selector -= rdev->desc->linear_min_sel;
1937
1938 return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1939 }
1940 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1941
1942 /**
1943 * regulator_list_voltage_table - List voltages with table based mapping
1944 *
1945 * @rdev: Regulator device
1946 * @selector: Selector to convert into a voltage
1947 *
1948 * Regulators with table based mapping between voltages and
1949 * selectors can set volt_table in the regulator descriptor
1950 * and then use this function as their list_voltage() operation.
1951 */
1952 int regulator_list_voltage_table(struct regulator_dev *rdev,
1953 unsigned int selector)
1954 {
1955 if (!rdev->desc->volt_table) {
1956 BUG_ON(!rdev->desc->volt_table);
1957 return -EINVAL;
1958 }
1959
1960 if (selector >= rdev->desc->n_voltages)
1961 return -EINVAL;
1962
1963 return rdev->desc->volt_table[selector];
1964 }
1965 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1966
1967 /**
1968 * regulator_list_voltage - enumerate supported voltages
1969 * @regulator: regulator source
1970 * @selector: identify voltage to list
1971 * Context: can sleep
1972 *
1973 * Returns a voltage that can be passed to @regulator_set_voltage(),
1974 * zero if this selector code can't be used on this system, or a
1975 * negative errno.
1976 */
1977 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1978 {
1979 struct regulator_dev *rdev = regulator->rdev;
1980 struct regulator_ops *ops = rdev->desc->ops;
1981 int ret;
1982
1983 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1984 return -EINVAL;
1985
1986 mutex_lock(&rdev->mutex);
1987 ret = ops->list_voltage(rdev, selector);
1988 mutex_unlock(&rdev->mutex);
1989
1990 if (ret > 0) {
1991 if (ret < rdev->constraints->min_uV)
1992 ret = 0;
1993 else if (ret > rdev->constraints->max_uV)
1994 ret = 0;
1995 }
1996
1997 return ret;
1998 }
1999 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2000
2001 /**
2002 * regulator_is_supported_voltage - check if a voltage range can be supported
2003 *
2004 * @regulator: Regulator to check.
2005 * @min_uV: Minimum required voltage in uV.
2006 * @max_uV: Maximum required voltage in uV.
2007 *
2008 * Returns a boolean or a negative error code.
2009 */
2010 int regulator_is_supported_voltage(struct regulator *regulator,
2011 int min_uV, int max_uV)
2012 {
2013 struct regulator_dev *rdev = regulator->rdev;
2014 int i, voltages, ret;
2015
2016 /* If we can't change voltage check the current voltage */
2017 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2018 ret = regulator_get_voltage(regulator);
2019 if (ret >= 0)
2020 return (min_uV <= ret && ret <= max_uV);
2021 else
2022 return ret;
2023 }
2024
2025 /* Any voltage within constrains range is fine? */
2026 if (rdev->desc->continuous_voltage_range)
2027 return min_uV >= rdev->constraints->min_uV &&
2028 max_uV <= rdev->constraints->max_uV;
2029
2030 ret = regulator_count_voltages(regulator);
2031 if (ret < 0)
2032 return ret;
2033 voltages = ret;
2034
2035 for (i = 0; i < voltages; i++) {
2036 ret = regulator_list_voltage(regulator, i);
2037
2038 if (ret >= min_uV && ret <= max_uV)
2039 return 1;
2040 }
2041
2042 return 0;
2043 }
2044 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2045
2046 /**
2047 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2048 *
2049 * @rdev: regulator to operate on
2050 *
2051 * Regulators that use regmap for their register I/O can set the
2052 * vsel_reg and vsel_mask fields in their descriptor and then use this
2053 * as their get_voltage_vsel operation, saving some code.
2054 */
2055 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2056 {
2057 unsigned int val;
2058 int ret;
2059
2060 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2061 if (ret != 0)
2062 return ret;
2063
2064 val &= rdev->desc->vsel_mask;
2065 val >>= ffs(rdev->desc->vsel_mask) - 1;
2066
2067 return val;
2068 }
2069 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2070
2071 /**
2072 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2073 *
2074 * @rdev: regulator to operate on
2075 * @sel: Selector to set
2076 *
2077 * Regulators that use regmap for their register I/O can set the
2078 * vsel_reg and vsel_mask fields in their descriptor and then use this
2079 * as their set_voltage_vsel operation, saving some code.
2080 */
2081 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2082 {
2083 int ret;
2084
2085 sel <<= ffs(rdev->desc->vsel_mask) - 1;
2086
2087 ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2088 rdev->desc->vsel_mask, sel);
2089 if (ret)
2090 return ret;
2091
2092 if (rdev->desc->apply_bit)
2093 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
2094 rdev->desc->apply_bit,
2095 rdev->desc->apply_bit);
2096 return ret;
2097 }
2098 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2099
2100 /**
2101 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2102 *
2103 * @rdev: Regulator to operate on
2104 * @min_uV: Lower bound for voltage
2105 * @max_uV: Upper bound for voltage
2106 *
2107 * Drivers implementing set_voltage_sel() and list_voltage() can use
2108 * this as their map_voltage() operation. It will find a suitable
2109 * voltage by calling list_voltage() until it gets something in bounds
2110 * for the requested voltages.
2111 */
2112 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2113 int min_uV, int max_uV)
2114 {
2115 int best_val = INT_MAX;
2116 int selector = 0;
2117 int i, ret;
2118
2119 /* Find the smallest voltage that falls within the specified
2120 * range.
2121 */
2122 for (i = 0; i < rdev->desc->n_voltages; i++) {
2123 ret = rdev->desc->ops->list_voltage(rdev, i);
2124 if (ret < 0)
2125 continue;
2126
2127 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2128 best_val = ret;
2129 selector = i;
2130 }
2131 }
2132
2133 if (best_val != INT_MAX)
2134 return selector;
2135 else
2136 return -EINVAL;
2137 }
2138 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2139
2140 /**
2141 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2142 *
2143 * @rdev: Regulator to operate on
2144 * @min_uV: Lower bound for voltage
2145 * @max_uV: Upper bound for voltage
2146 *
2147 * Drivers providing min_uV and uV_step in their regulator_desc can
2148 * use this as their map_voltage() operation.
2149 */
2150 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2151 int min_uV, int max_uV)
2152 {
2153 int ret, voltage;
2154
2155 /* Allow uV_step to be 0 for fixed voltage */
2156 if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2157 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2158 return 0;
2159 else
2160 return -EINVAL;
2161 }
2162
2163 if (!rdev->desc->uV_step) {
2164 BUG_ON(!rdev->desc->uV_step);
2165 return -EINVAL;
2166 }
2167
2168 if (min_uV < rdev->desc->min_uV)
2169 min_uV = rdev->desc->min_uV;
2170
2171 ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2172 if (ret < 0)
2173 return ret;
2174
2175 ret += rdev->desc->linear_min_sel;
2176
2177 /* Map back into a voltage to verify we're still in bounds */
2178 voltage = rdev->desc->ops->list_voltage(rdev, ret);
2179 if (voltage < min_uV || voltage > max_uV)
2180 return -EINVAL;
2181
2182 return ret;
2183 }
2184 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2185
2186 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2187 int min_uV, int max_uV)
2188 {
2189 int ret;
2190 int delay = 0;
2191 int best_val = 0;
2192 unsigned int selector;
2193 int old_selector = -1;
2194
2195 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2196
2197 min_uV += rdev->constraints->uV_offset;
2198 max_uV += rdev->constraints->uV_offset;
2199
2200 /*
2201 * If we can't obtain the old selector there is not enough
2202 * info to call set_voltage_time_sel().
2203 */
2204 if (_regulator_is_enabled(rdev) &&
2205 rdev->desc->ops->set_voltage_time_sel &&
2206 rdev->desc->ops->get_voltage_sel) {
2207 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2208 if (old_selector < 0)
2209 return old_selector;
2210 }
2211
2212 if (rdev->desc->ops->set_voltage) {
2213 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2214 &selector);
2215
2216 if (ret >= 0) {
2217 if (rdev->desc->ops->list_voltage)
2218 best_val = rdev->desc->ops->list_voltage(rdev,
2219 selector);
2220 else
2221 best_val = _regulator_get_voltage(rdev);
2222 }
2223
2224 } else if (rdev->desc->ops->set_voltage_sel) {
2225 if (rdev->desc->ops->map_voltage) {
2226 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2227 max_uV);
2228 } else {
2229 if (rdev->desc->ops->list_voltage ==
2230 regulator_list_voltage_linear)
2231 ret = regulator_map_voltage_linear(rdev,
2232 min_uV, max_uV);
2233 else
2234 ret = regulator_map_voltage_iterate(rdev,
2235 min_uV, max_uV);
2236 }
2237
2238 if (ret >= 0) {
2239 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2240 if (min_uV <= best_val && max_uV >= best_val) {
2241 selector = ret;
2242 if (old_selector == selector)
2243 ret = 0;
2244 else
2245 ret = rdev->desc->ops->set_voltage_sel(
2246 rdev, ret);
2247 } else {
2248 ret = -EINVAL;
2249 }
2250 }
2251 } else {
2252 ret = -EINVAL;
2253 }
2254
2255 /* Call set_voltage_time_sel if successfully obtained old_selector */
2256 if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2257 old_selector != selector && rdev->desc->ops->set_voltage_time_sel) {
2258
2259 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2260 old_selector, selector);
2261 if (delay < 0) {
2262 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2263 delay);
2264 delay = 0;
2265 }
2266
2267 /* Insert any necessary delays */
2268 if (delay >= 1000) {
2269 mdelay(delay / 1000);
2270 udelay(delay % 1000);
2271 } else if (delay) {
2272 udelay(delay);
2273 }
2274 }
2275
2276 if (ret == 0 && best_val >= 0) {
2277 unsigned long data = best_val;
2278
2279 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2280 (void *)data);
2281 }
2282
2283 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2284
2285 return ret;
2286 }
2287
2288 /**
2289 * regulator_set_voltage - set regulator output voltage
2290 * @regulator: regulator source
2291 * @min_uV: Minimum required voltage in uV
2292 * @max_uV: Maximum acceptable voltage in uV
2293 *
2294 * Sets a voltage regulator to the desired output voltage. This can be set
2295 * during any regulator state. IOW, regulator can be disabled or enabled.
2296 *
2297 * If the regulator is enabled then the voltage will change to the new value
2298 * immediately otherwise if the regulator is disabled the regulator will
2299 * output at the new voltage when enabled.
2300 *
2301 * NOTE: If the regulator is shared between several devices then the lowest
2302 * request voltage that meets the system constraints will be used.
2303 * Regulator system constraints must be set for this regulator before
2304 * calling this function otherwise this call will fail.
2305 */
2306 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2307 {
2308 struct regulator_dev *rdev = regulator->rdev;
2309 int ret = 0;
2310 int old_min_uV, old_max_uV;
2311
2312 mutex_lock(&rdev->mutex);
2313
2314 /* If we're setting the same range as last time the change
2315 * should be a noop (some cpufreq implementations use the same
2316 * voltage for multiple frequencies, for example).
2317 */
2318 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2319 goto out;
2320
2321 /* sanity check */
2322 if (!rdev->desc->ops->set_voltage &&
2323 !rdev->desc->ops->set_voltage_sel) {
2324 ret = -EINVAL;
2325 goto out;
2326 }
2327
2328 /* constraints check */
2329 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2330 if (ret < 0)
2331 goto out;
2332
2333 /* restore original values in case of error */
2334 old_min_uV = regulator->min_uV;
2335 old_max_uV = regulator->max_uV;
2336 regulator->min_uV = min_uV;
2337 regulator->max_uV = max_uV;
2338
2339 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2340 if (ret < 0)
2341 goto out2;
2342
2343 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2344 if (ret < 0)
2345 goto out2;
2346
2347 out:
2348 mutex_unlock(&rdev->mutex);
2349 return ret;
2350 out2:
2351 regulator->min_uV = old_min_uV;
2352 regulator->max_uV = old_max_uV;
2353 mutex_unlock(&rdev->mutex);
2354 return ret;
2355 }
2356 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2357
2358 /**
2359 * regulator_set_voltage_time - get raise/fall time
2360 * @regulator: regulator source
2361 * @old_uV: starting voltage in microvolts
2362 * @new_uV: target voltage in microvolts
2363 *
2364 * Provided with the starting and ending voltage, this function attempts to
2365 * calculate the time in microseconds required to rise or fall to this new
2366 * voltage.
2367 */
2368 int regulator_set_voltage_time(struct regulator *regulator,
2369 int old_uV, int new_uV)
2370 {
2371 struct regulator_dev *rdev = regulator->rdev;
2372 struct regulator_ops *ops = rdev->desc->ops;
2373 int old_sel = -1;
2374 int new_sel = -1;
2375 int voltage;
2376 int i;
2377
2378 /* Currently requires operations to do this */
2379 if (!ops->list_voltage || !ops->set_voltage_time_sel
2380 || !rdev->desc->n_voltages)
2381 return -EINVAL;
2382
2383 for (i = 0; i < rdev->desc->n_voltages; i++) {
2384 /* We only look for exact voltage matches here */
2385 voltage = regulator_list_voltage(regulator, i);
2386 if (voltage < 0)
2387 return -EINVAL;
2388 if (voltage == 0)
2389 continue;
2390 if (voltage == old_uV)
2391 old_sel = i;
2392 if (voltage == new_uV)
2393 new_sel = i;
2394 }
2395
2396 if (old_sel < 0 || new_sel < 0)
2397 return -EINVAL;
2398
2399 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2400 }
2401 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2402
2403 /**
2404 * regulator_set_voltage_time_sel - get raise/fall time
2405 * @rdev: regulator source device
2406 * @old_selector: selector for starting voltage
2407 * @new_selector: selector for target voltage
2408 *
2409 * Provided with the starting and target voltage selectors, this function
2410 * returns time in microseconds required to rise or fall to this new voltage
2411 *
2412 * Drivers providing ramp_delay in regulation_constraints can use this as their
2413 * set_voltage_time_sel() operation.
2414 */
2415 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2416 unsigned int old_selector,
2417 unsigned int new_selector)
2418 {
2419 unsigned int ramp_delay = 0;
2420 int old_volt, new_volt;
2421
2422 if (rdev->constraints->ramp_delay)
2423 ramp_delay = rdev->constraints->ramp_delay;
2424 else if (rdev->desc->ramp_delay)
2425 ramp_delay = rdev->desc->ramp_delay;
2426
2427 if (ramp_delay == 0) {
2428 rdev_warn(rdev, "ramp_delay not set\n");
2429 return 0;
2430 }
2431
2432 /* sanity check */
2433 if (!rdev->desc->ops->list_voltage)
2434 return -EINVAL;
2435
2436 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2437 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2438
2439 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2440 }
2441 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2442
2443 /**
2444 * regulator_sync_voltage - re-apply last regulator output voltage
2445 * @regulator: regulator source
2446 *
2447 * Re-apply the last configured voltage. This is intended to be used
2448 * where some external control source the consumer is cooperating with
2449 * has caused the configured voltage to change.
2450 */
2451 int regulator_sync_voltage(struct regulator *regulator)
2452 {
2453 struct regulator_dev *rdev = regulator->rdev;
2454 int ret, min_uV, max_uV;
2455
2456 mutex_lock(&rdev->mutex);
2457
2458 if (!rdev->desc->ops->set_voltage &&
2459 !rdev->desc->ops->set_voltage_sel) {
2460 ret = -EINVAL;
2461 goto out;
2462 }
2463
2464 /* This is only going to work if we've had a voltage configured. */
2465 if (!regulator->min_uV && !regulator->max_uV) {
2466 ret = -EINVAL;
2467 goto out;
2468 }
2469
2470 min_uV = regulator->min_uV;
2471 max_uV = regulator->max_uV;
2472
2473 /* This should be a paranoia check... */
2474 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2475 if (ret < 0)
2476 goto out;
2477
2478 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2479 if (ret < 0)
2480 goto out;
2481
2482 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2483
2484 out:
2485 mutex_unlock(&rdev->mutex);
2486 return ret;
2487 }
2488 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2489
2490 static int _regulator_get_voltage(struct regulator_dev *rdev)
2491 {
2492 int sel, ret;
2493
2494 if (rdev->desc->ops->get_voltage_sel) {
2495 sel = rdev->desc->ops->get_voltage_sel(rdev);
2496 if (sel < 0)
2497 return sel;
2498 ret = rdev->desc->ops->list_voltage(rdev, sel);
2499 } else if (rdev->desc->ops->get_voltage) {
2500 ret = rdev->desc->ops->get_voltage(rdev);
2501 } else if (rdev->desc->ops->list_voltage) {
2502 ret = rdev->desc->ops->list_voltage(rdev, 0);
2503 } else {
2504 return -EINVAL;
2505 }
2506
2507 if (ret < 0)
2508 return ret;
2509 return ret - rdev->constraints->uV_offset;
2510 }
2511
2512 /**
2513 * regulator_get_voltage - get regulator output voltage
2514 * @regulator: regulator source
2515 *
2516 * This returns the current regulator voltage in uV.
2517 *
2518 * NOTE: If the regulator is disabled it will return the voltage value. This
2519 * function should not be used to determine regulator state.
2520 */
2521 int regulator_get_voltage(struct regulator *regulator)
2522 {
2523 int ret;
2524
2525 mutex_lock(&regulator->rdev->mutex);
2526
2527 ret = _regulator_get_voltage(regulator->rdev);
2528
2529 mutex_unlock(&regulator->rdev->mutex);
2530
2531 return ret;
2532 }
2533 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2534
2535 /**
2536 * regulator_set_current_limit - set regulator output current limit
2537 * @regulator: regulator source
2538 * @min_uA: Minimuum supported current in uA
2539 * @max_uA: Maximum supported current in uA
2540 *
2541 * Sets current sink to the desired output current. This can be set during
2542 * any regulator state. IOW, regulator can be disabled or enabled.
2543 *
2544 * If the regulator is enabled then the current will change to the new value
2545 * immediately otherwise if the regulator is disabled the regulator will
2546 * output at the new current when enabled.
2547 *
2548 * NOTE: Regulator system constraints must be set for this regulator before
2549 * calling this function otherwise this call will fail.
2550 */
2551 int regulator_set_current_limit(struct regulator *regulator,
2552 int min_uA, int max_uA)
2553 {
2554 struct regulator_dev *rdev = regulator->rdev;
2555 int ret;
2556
2557 mutex_lock(&rdev->mutex);
2558
2559 /* sanity check */
2560 if (!rdev->desc->ops->set_current_limit) {
2561 ret = -EINVAL;
2562 goto out;
2563 }
2564
2565 /* constraints check */
2566 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2567 if (ret < 0)
2568 goto out;
2569
2570 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2571 out:
2572 mutex_unlock(&rdev->mutex);
2573 return ret;
2574 }
2575 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2576
2577 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2578 {
2579 int ret;
2580
2581 mutex_lock(&rdev->mutex);
2582
2583 /* sanity check */
2584 if (!rdev->desc->ops->get_current_limit) {
2585 ret = -EINVAL;
2586 goto out;
2587 }
2588
2589 ret = rdev->desc->ops->get_current_limit(rdev);
2590 out:
2591 mutex_unlock(&rdev->mutex);
2592 return ret;
2593 }
2594
2595 /**
2596 * regulator_get_current_limit - get regulator output current
2597 * @regulator: regulator source
2598 *
2599 * This returns the current supplied by the specified current sink in uA.
2600 *
2601 * NOTE: If the regulator is disabled it will return the current value. This
2602 * function should not be used to determine regulator state.
2603 */
2604 int regulator_get_current_limit(struct regulator *regulator)
2605 {
2606 return _regulator_get_current_limit(regulator->rdev);
2607 }
2608 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2609
2610 /**
2611 * regulator_set_mode - set regulator operating mode
2612 * @regulator: regulator source
2613 * @mode: operating mode - one of the REGULATOR_MODE constants
2614 *
2615 * Set regulator operating mode to increase regulator efficiency or improve
2616 * regulation performance.
2617 *
2618 * NOTE: Regulator system constraints must be set for this regulator before
2619 * calling this function otherwise this call will fail.
2620 */
2621 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2622 {
2623 struct regulator_dev *rdev = regulator->rdev;
2624 int ret;
2625 int regulator_curr_mode;
2626
2627 mutex_lock(&rdev->mutex);
2628
2629 /* sanity check */
2630 if (!rdev->desc->ops->set_mode) {
2631 ret = -EINVAL;
2632 goto out;
2633 }
2634
2635 /* return if the same mode is requested */
2636 if (rdev->desc->ops->get_mode) {
2637 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2638 if (regulator_curr_mode == mode) {
2639 ret = 0;
2640 goto out;
2641 }
2642 }
2643
2644 /* constraints check */
2645 ret = regulator_mode_constrain(rdev, &mode);
2646 if (ret < 0)
2647 goto out;
2648
2649 ret = rdev->desc->ops->set_mode(rdev, mode);
2650 out:
2651 mutex_unlock(&rdev->mutex);
2652 return ret;
2653 }
2654 EXPORT_SYMBOL_GPL(regulator_set_mode);
2655
2656 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2657 {
2658 int ret;
2659
2660 mutex_lock(&rdev->mutex);
2661
2662 /* sanity check */
2663 if (!rdev->desc->ops->get_mode) {
2664 ret = -EINVAL;
2665 goto out;
2666 }
2667
2668 ret = rdev->desc->ops->get_mode(rdev);
2669 out:
2670 mutex_unlock(&rdev->mutex);
2671 return ret;
2672 }
2673
2674 /**
2675 * regulator_get_mode - get regulator operating mode
2676 * @regulator: regulator source
2677 *
2678 * Get the current regulator operating mode.
2679 */
2680 unsigned int regulator_get_mode(struct regulator *regulator)
2681 {
2682 return _regulator_get_mode(regulator->rdev);
2683 }
2684 EXPORT_SYMBOL_GPL(regulator_get_mode);
2685
2686 /**
2687 * regulator_set_optimum_mode - set regulator optimum operating mode
2688 * @regulator: regulator source
2689 * @uA_load: load current
2690 *
2691 * Notifies the regulator core of a new device load. This is then used by
2692 * DRMS (if enabled by constraints) to set the most efficient regulator
2693 * operating mode for the new regulator loading.
2694 *
2695 * Consumer devices notify their supply regulator of the maximum power
2696 * they will require (can be taken from device datasheet in the power
2697 * consumption tables) when they change operational status and hence power
2698 * state. Examples of operational state changes that can affect power
2699 * consumption are :-
2700 *
2701 * o Device is opened / closed.
2702 * o Device I/O is about to begin or has just finished.
2703 * o Device is idling in between work.
2704 *
2705 * This information is also exported via sysfs to userspace.
2706 *
2707 * DRMS will sum the total requested load on the regulator and change
2708 * to the most efficient operating mode if platform constraints allow.
2709 *
2710 * Returns the new regulator mode or error.
2711 */
2712 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2713 {
2714 struct regulator_dev *rdev = regulator->rdev;
2715 struct regulator *consumer;
2716 int ret, output_uV, input_uV = 0, total_uA_load = 0;
2717 unsigned int mode;
2718
2719 if (rdev->supply)
2720 input_uV = regulator_get_voltage(rdev->supply);
2721
2722 mutex_lock(&rdev->mutex);
2723
2724 /*
2725 * first check to see if we can set modes at all, otherwise just
2726 * tell the consumer everything is OK.
2727 */
2728 regulator->uA_load = uA_load;
2729 ret = regulator_check_drms(rdev);
2730 if (ret < 0) {
2731 ret = 0;
2732 goto out;
2733 }
2734
2735 if (!rdev->desc->ops->get_optimum_mode)
2736 goto out;
2737
2738 /*
2739 * we can actually do this so any errors are indicators of
2740 * potential real failure.
2741 */
2742 ret = -EINVAL;
2743
2744 if (!rdev->desc->ops->set_mode)
2745 goto out;
2746
2747 /* get output voltage */
2748 output_uV = _regulator_get_voltage(rdev);
2749 if (output_uV <= 0) {
2750 rdev_err(rdev, "invalid output voltage found\n");
2751 goto out;
2752 }
2753
2754 /* No supply? Use constraint voltage */
2755 if (input_uV <= 0)
2756 input_uV = rdev->constraints->input_uV;
2757 if (input_uV <= 0) {
2758 rdev_err(rdev, "invalid input voltage found\n");
2759 goto out;
2760 }
2761
2762 /* calc total requested load for this regulator */
2763 list_for_each_entry(consumer, &rdev->consumer_list, list)
2764 total_uA_load += consumer->uA_load;
2765
2766 mode = rdev->desc->ops->get_optimum_mode(rdev,
2767 input_uV, output_uV,
2768 total_uA_load);
2769 ret = regulator_mode_constrain(rdev, &mode);
2770 if (ret < 0) {
2771 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2772 total_uA_load, input_uV, output_uV);
2773 goto out;
2774 }
2775
2776 ret = rdev->desc->ops->set_mode(rdev, mode);
2777 if (ret < 0) {
2778 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2779 goto out;
2780 }
2781 ret = mode;
2782 out:
2783 mutex_unlock(&rdev->mutex);
2784 return ret;
2785 }
2786 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2787
2788 /**
2789 * regulator_set_bypass_regmap - Default set_bypass() using regmap
2790 *
2791 * @rdev: device to operate on.
2792 * @enable: state to set.
2793 */
2794 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2795 {
2796 unsigned int val;
2797
2798 if (enable)
2799 val = rdev->desc->bypass_mask;
2800 else
2801 val = 0;
2802
2803 return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2804 rdev->desc->bypass_mask, val);
2805 }
2806 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2807
2808 /**
2809 * regulator_get_bypass_regmap - Default get_bypass() using regmap
2810 *
2811 * @rdev: device to operate on.
2812 * @enable: current state.
2813 */
2814 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2815 {
2816 unsigned int val;
2817 int ret;
2818
2819 ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2820 if (ret != 0)
2821 return ret;
2822
2823 *enable = val & rdev->desc->bypass_mask;
2824
2825 return 0;
2826 }
2827 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
2828
2829 /**
2830 * regulator_allow_bypass - allow the regulator to go into bypass mode
2831 *
2832 * @regulator: Regulator to configure
2833 * @enable: enable or disable bypass mode
2834 *
2835 * Allow the regulator to go into bypass mode if all other consumers
2836 * for the regulator also enable bypass mode and the machine
2837 * constraints allow this. Bypass mode means that the regulator is
2838 * simply passing the input directly to the output with no regulation.
2839 */
2840 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2841 {
2842 struct regulator_dev *rdev = regulator->rdev;
2843 int ret = 0;
2844
2845 if (!rdev->desc->ops->set_bypass)
2846 return 0;
2847
2848 if (rdev->constraints &&
2849 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2850 return 0;
2851
2852 mutex_lock(&rdev->mutex);
2853
2854 if (enable && !regulator->bypass) {
2855 rdev->bypass_count++;
2856
2857 if (rdev->bypass_count == rdev->open_count) {
2858 ret = rdev->desc->ops->set_bypass(rdev, enable);
2859 if (ret != 0)
2860 rdev->bypass_count--;
2861 }
2862
2863 } else if (!enable && regulator->bypass) {
2864 rdev->bypass_count--;
2865
2866 if (rdev->bypass_count != rdev->open_count) {
2867 ret = rdev->desc->ops->set_bypass(rdev, enable);
2868 if (ret != 0)
2869 rdev->bypass_count++;
2870 }
2871 }
2872
2873 if (ret == 0)
2874 regulator->bypass = enable;
2875
2876 mutex_unlock(&rdev->mutex);
2877
2878 return ret;
2879 }
2880 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2881
2882 /**
2883 * regulator_register_notifier - register regulator event notifier
2884 * @regulator: regulator source
2885 * @nb: notifier block
2886 *
2887 * Register notifier block to receive regulator events.
2888 */
2889 int regulator_register_notifier(struct regulator *regulator,
2890 struct notifier_block *nb)
2891 {
2892 return blocking_notifier_chain_register(&regulator->rdev->notifier,
2893 nb);
2894 }
2895 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2896
2897 /**
2898 * regulator_unregister_notifier - unregister regulator event notifier
2899 * @regulator: regulator source
2900 * @nb: notifier block
2901 *
2902 * Unregister regulator event notifier block.
2903 */
2904 int regulator_unregister_notifier(struct regulator *regulator,
2905 struct notifier_block *nb)
2906 {
2907 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2908 nb);
2909 }
2910 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2911
2912 /* notify regulator consumers and downstream regulator consumers.
2913 * Note mutex must be held by caller.
2914 */
2915 static void _notifier_call_chain(struct regulator_dev *rdev,
2916 unsigned long event, void *data)
2917 {
2918 /* call rdev chain first */
2919 blocking_notifier_call_chain(&rdev->notifier, event, data);
2920 }
2921
2922 /**
2923 * regulator_bulk_get - get multiple regulator consumers
2924 *
2925 * @dev: Device to supply
2926 * @num_consumers: Number of consumers to register
2927 * @consumers: Configuration of consumers; clients are stored here.
2928 *
2929 * @return 0 on success, an errno on failure.
2930 *
2931 * This helper function allows drivers to get several regulator
2932 * consumers in one operation. If any of the regulators cannot be
2933 * acquired then any regulators that were allocated will be freed
2934 * before returning to the caller.
2935 */
2936 int regulator_bulk_get(struct device *dev, int num_consumers,
2937 struct regulator_bulk_data *consumers)
2938 {
2939 int i;
2940 int ret;
2941
2942 for (i = 0; i < num_consumers; i++)
2943 consumers[i].consumer = NULL;
2944
2945 for (i = 0; i < num_consumers; i++) {
2946 consumers[i].consumer = regulator_get(dev,
2947 consumers[i].supply);
2948 if (IS_ERR(consumers[i].consumer)) {
2949 ret = PTR_ERR(consumers[i].consumer);
2950 dev_err(dev, "Failed to get supply '%s': %d\n",
2951 consumers[i].supply, ret);
2952 consumers[i].consumer = NULL;
2953 goto err;
2954 }
2955 }
2956
2957 return 0;
2958
2959 err:
2960 while (--i >= 0)
2961 regulator_put(consumers[i].consumer);
2962
2963 return ret;
2964 }
2965 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2966
2967 /**
2968 * devm_regulator_bulk_get - managed get multiple regulator consumers
2969 *
2970 * @dev: Device to supply
2971 * @num_consumers: Number of consumers to register
2972 * @consumers: Configuration of consumers; clients are stored here.
2973 *
2974 * @return 0 on success, an errno on failure.
2975 *
2976 * This helper function allows drivers to get several regulator
2977 * consumers in one operation with management, the regulators will
2978 * automatically be freed when the device is unbound. If any of the
2979 * regulators cannot be acquired then any regulators that were
2980 * allocated will be freed before returning to the caller.
2981 */
2982 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2983 struct regulator_bulk_data *consumers)
2984 {
2985 int i;
2986 int ret;
2987
2988 for (i = 0; i < num_consumers; i++)
2989 consumers[i].consumer = NULL;
2990
2991 for (i = 0; i < num_consumers; i++) {
2992 consumers[i].consumer = devm_regulator_get(dev,
2993 consumers[i].supply);
2994 if (IS_ERR(consumers[i].consumer)) {
2995 ret = PTR_ERR(consumers[i].consumer);
2996 dev_err(dev, "Failed to get supply '%s': %d\n",
2997 consumers[i].supply, ret);
2998 consumers[i].consumer = NULL;
2999 goto err;
3000 }
3001 }
3002
3003 return 0;
3004
3005 err:
3006 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
3007 devm_regulator_put(consumers[i].consumer);
3008
3009 return ret;
3010 }
3011 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
3012
3013 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3014 {
3015 struct regulator_bulk_data *bulk = data;
3016
3017 bulk->ret = regulator_enable(bulk->consumer);
3018 }
3019
3020 /**
3021 * regulator_bulk_enable - enable multiple regulator consumers
3022 *
3023 * @num_consumers: Number of consumers
3024 * @consumers: Consumer data; clients are stored here.
3025 * @return 0 on success, an errno on failure
3026 *
3027 * This convenience API allows consumers to enable multiple regulator
3028 * clients in a single API call. If any consumers cannot be enabled
3029 * then any others that were enabled will be disabled again prior to
3030 * return.
3031 */
3032 int regulator_bulk_enable(int num_consumers,
3033 struct regulator_bulk_data *consumers)
3034 {
3035 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3036 int i;
3037 int ret = 0;
3038
3039 for (i = 0; i < num_consumers; i++) {
3040 if (consumers[i].consumer->always_on)
3041 consumers[i].ret = 0;
3042 else
3043 async_schedule_domain(regulator_bulk_enable_async,
3044 &consumers[i], &async_domain);
3045 }
3046
3047 async_synchronize_full_domain(&async_domain);
3048
3049 /* If any consumer failed we need to unwind any that succeeded */
3050 for (i = 0; i < num_consumers; i++) {
3051 if (consumers[i].ret != 0) {
3052 ret = consumers[i].ret;
3053 goto err;
3054 }
3055 }
3056
3057 return 0;
3058
3059 err:
3060 for (i = 0; i < num_consumers; i++) {
3061 if (consumers[i].ret < 0)
3062 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3063 consumers[i].ret);
3064 else
3065 regulator_disable(consumers[i].consumer);
3066 }
3067
3068 return ret;
3069 }
3070 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3071
3072 /**
3073 * regulator_bulk_disable - disable multiple regulator consumers
3074 *
3075 * @num_consumers: Number of consumers
3076 * @consumers: Consumer data; clients are stored here.
3077 * @return 0 on success, an errno on failure
3078 *
3079 * This convenience API allows consumers to disable multiple regulator
3080 * clients in a single API call. If any consumers cannot be disabled
3081 * then any others that were disabled will be enabled again prior to
3082 * return.
3083 */
3084 int regulator_bulk_disable(int num_consumers,
3085 struct regulator_bulk_data *consumers)
3086 {
3087 int i;
3088 int ret, r;
3089
3090 for (i = num_consumers - 1; i >= 0; --i) {
3091 ret = regulator_disable(consumers[i].consumer);
3092 if (ret != 0)
3093 goto err;
3094 }
3095
3096 return 0;
3097
3098 err:
3099 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3100 for (++i; i < num_consumers; ++i) {
3101 r = regulator_enable(consumers[i].consumer);
3102 if (r != 0)
3103 pr_err("Failed to reename %s: %d\n",
3104 consumers[i].supply, r);
3105 }
3106
3107 return ret;
3108 }
3109 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3110
3111 /**
3112 * regulator_bulk_force_disable - force disable multiple regulator consumers
3113 *
3114 * @num_consumers: Number of consumers
3115 * @consumers: Consumer data; clients are stored here.
3116 * @return 0 on success, an errno on failure
3117 *
3118 * This convenience API allows consumers to forcibly disable multiple regulator
3119 * clients in a single API call.
3120 * NOTE: This should be used for situations when device damage will
3121 * likely occur if the regulators are not disabled (e.g. over temp).
3122 * Although regulator_force_disable function call for some consumers can
3123 * return error numbers, the function is called for all consumers.
3124 */
3125 int regulator_bulk_force_disable(int num_consumers,
3126 struct regulator_bulk_data *consumers)
3127 {
3128 int i;
3129 int ret;
3130
3131 for (i = 0; i < num_consumers; i++)
3132 consumers[i].ret =
3133 regulator_force_disable(consumers[i].consumer);
3134
3135 for (i = 0; i < num_consumers; i++) {
3136 if (consumers[i].ret != 0) {
3137 ret = consumers[i].ret;
3138 goto out;
3139 }
3140 }
3141
3142 return 0;
3143 out:
3144 return ret;
3145 }
3146 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3147
3148 /**
3149 * regulator_bulk_free - free multiple regulator consumers
3150 *
3151 * @num_consumers: Number of consumers
3152 * @consumers: Consumer data; clients are stored here.
3153 *
3154 * This convenience API allows consumers to free multiple regulator
3155 * clients in a single API call.
3156 */
3157 void regulator_bulk_free(int num_consumers,
3158 struct regulator_bulk_data *consumers)
3159 {
3160 int i;
3161
3162 for (i = 0; i < num_consumers; i++) {
3163 regulator_put(consumers[i].consumer);
3164 consumers[i].consumer = NULL;
3165 }
3166 }
3167 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3168
3169 /**
3170 * regulator_notifier_call_chain - call regulator event notifier
3171 * @rdev: regulator source
3172 * @event: notifier block
3173 * @data: callback-specific data.
3174 *
3175 * Called by regulator drivers to notify clients a regulator event has
3176 * occurred. We also notify regulator clients downstream.
3177 * Note lock must be held by caller.
3178 */
3179 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3180 unsigned long event, void *data)
3181 {
3182 _notifier_call_chain(rdev, event, data);
3183 return NOTIFY_DONE;
3184
3185 }
3186 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3187
3188 /**
3189 * regulator_mode_to_status - convert a regulator mode into a status
3190 *
3191 * @mode: Mode to convert
3192 *
3193 * Convert a regulator mode into a status.
3194 */
3195 int regulator_mode_to_status(unsigned int mode)
3196 {
3197 switch (mode) {
3198 case REGULATOR_MODE_FAST:
3199 return REGULATOR_STATUS_FAST;
3200 case REGULATOR_MODE_NORMAL:
3201 return REGULATOR_STATUS_NORMAL;
3202 case REGULATOR_MODE_IDLE:
3203 return REGULATOR_STATUS_IDLE;
3204 case REGULATOR_MODE_STANDBY:
3205 return REGULATOR_STATUS_STANDBY;
3206 default:
3207 return REGULATOR_STATUS_UNDEFINED;
3208 }
3209 }
3210 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3211
3212 /*
3213 * To avoid cluttering sysfs (and memory) with useless state, only
3214 * create attributes that can be meaningfully displayed.
3215 */
3216 static int add_regulator_attributes(struct regulator_dev *rdev)
3217 {
3218 struct device *dev = &rdev->dev;
3219 struct regulator_ops *ops = rdev->desc->ops;
3220 int status = 0;
3221
3222 /* some attributes need specific methods to be displayed */
3223 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3224 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3225 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3226 status = device_create_file(dev, &dev_attr_microvolts);
3227 if (status < 0)
3228 return status;
3229 }
3230 if (ops->get_current_limit) {
3231 status = device_create_file(dev, &dev_attr_microamps);
3232 if (status < 0)
3233 return status;
3234 }
3235 if (ops->get_mode) {
3236 status = device_create_file(dev, &dev_attr_opmode);
3237 if (status < 0)
3238 return status;
3239 }
3240 if (rdev->ena_gpio || ops->is_enabled) {
3241 status = device_create_file(dev, &dev_attr_state);
3242 if (status < 0)
3243 return status;
3244 }
3245 if (ops->get_status) {
3246 status = device_create_file(dev, &dev_attr_status);
3247 if (status < 0)
3248 return status;
3249 }
3250 if (ops->get_bypass) {
3251 status = device_create_file(dev, &dev_attr_bypass);
3252 if (status < 0)
3253 return status;
3254 }
3255
3256 /* some attributes are type-specific */
3257 if (rdev->desc->type == REGULATOR_CURRENT) {
3258 status = device_create_file(dev, &dev_attr_requested_microamps);
3259 if (status < 0)
3260 return status;
3261 }
3262
3263 /* all the other attributes exist to support constraints;
3264 * don't show them if there are no constraints, or if the
3265 * relevant supporting methods are missing.
3266 */
3267 if (!rdev->constraints)
3268 return status;
3269
3270 /* constraints need specific supporting methods */
3271 if (ops->set_voltage || ops->set_voltage_sel) {
3272 status = device_create_file(dev, &dev_attr_min_microvolts);
3273 if (status < 0)
3274 return status;
3275 status = device_create_file(dev, &dev_attr_max_microvolts);
3276 if (status < 0)
3277 return status;
3278 }
3279 if (ops->set_current_limit) {
3280 status = device_create_file(dev, &dev_attr_min_microamps);
3281 if (status < 0)
3282 return status;
3283 status = device_create_file(dev, &dev_attr_max_microamps);
3284 if (status < 0)
3285 return status;
3286 }
3287
3288 status = device_create_file(dev, &dev_attr_suspend_standby_state);
3289 if (status < 0)
3290 return status;
3291 status = device_create_file(dev, &dev_attr_suspend_mem_state);
3292 if (status < 0)
3293 return status;
3294 status = device_create_file(dev, &dev_attr_suspend_disk_state);
3295 if (status < 0)
3296 return status;
3297
3298 if (ops->set_suspend_voltage) {
3299 status = device_create_file(dev,
3300 &dev_attr_suspend_standby_microvolts);
3301 if (status < 0)
3302 return status;
3303 status = device_create_file(dev,
3304 &dev_attr_suspend_mem_microvolts);
3305 if (status < 0)
3306 return status;
3307 status = device_create_file(dev,
3308 &dev_attr_suspend_disk_microvolts);
3309 if (status < 0)
3310 return status;
3311 }
3312
3313 if (ops->set_suspend_mode) {
3314 status = device_create_file(dev,
3315 &dev_attr_suspend_standby_mode);
3316 if (status < 0)
3317 return status;
3318 status = device_create_file(dev,
3319 &dev_attr_suspend_mem_mode);
3320 if (status < 0)
3321 return status;
3322 status = device_create_file(dev,
3323 &dev_attr_suspend_disk_mode);
3324 if (status < 0)
3325 return status;
3326 }
3327
3328 return status;
3329 }
3330
3331 static void rdev_init_debugfs(struct regulator_dev *rdev)
3332 {
3333 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3334 if (!rdev->debugfs) {
3335 rdev_warn(rdev, "Failed to create debugfs directory\n");
3336 return;
3337 }
3338
3339 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3340 &rdev->use_count);
3341 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3342 &rdev->open_count);
3343 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3344 &rdev->bypass_count);
3345 }
3346
3347 /**
3348 * regulator_register - register regulator
3349 * @regulator_desc: regulator to register
3350 * @config: runtime configuration for regulator
3351 *
3352 * Called by regulator drivers to register a regulator.
3353 * Returns a valid pointer to struct regulator_dev on success
3354 * or an ERR_PTR() on error.
3355 */
3356 struct regulator_dev *
3357 regulator_register(const struct regulator_desc *regulator_desc,
3358 const struct regulator_config *config)
3359 {
3360 const struct regulation_constraints *constraints = NULL;
3361 const struct regulator_init_data *init_data;
3362 static atomic_t regulator_no = ATOMIC_INIT(0);
3363 struct regulator_dev *rdev;
3364 struct device *dev;
3365 int ret, i;
3366 const char *supply = NULL;
3367
3368 if (regulator_desc == NULL || config == NULL)
3369 return ERR_PTR(-EINVAL);
3370
3371 dev = config->dev;
3372 WARN_ON(!dev);
3373
3374 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3375 return ERR_PTR(-EINVAL);
3376
3377 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3378 regulator_desc->type != REGULATOR_CURRENT)
3379 return ERR_PTR(-EINVAL);
3380
3381 /* Only one of each should be implemented */
3382 WARN_ON(regulator_desc->ops->get_voltage &&
3383 regulator_desc->ops->get_voltage_sel);
3384 WARN_ON(regulator_desc->ops->set_voltage &&
3385 regulator_desc->ops->set_voltage_sel);
3386
3387 /* If we're using selectors we must implement list_voltage. */
3388 if (regulator_desc->ops->get_voltage_sel &&
3389 !regulator_desc->ops->list_voltage) {
3390 return ERR_PTR(-EINVAL);
3391 }
3392 if (regulator_desc->ops->set_voltage_sel &&
3393 !regulator_desc->ops->list_voltage) {
3394 return ERR_PTR(-EINVAL);
3395 }
3396
3397 init_data = config->init_data;
3398
3399 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3400 if (rdev == NULL)
3401 return ERR_PTR(-ENOMEM);
3402
3403 mutex_lock(&regulator_list_mutex);
3404
3405 mutex_init(&rdev->mutex);
3406 rdev->reg_data = config->driver_data;
3407 rdev->owner = regulator_desc->owner;
3408 rdev->desc = regulator_desc;
3409 if (config->regmap)
3410 rdev->regmap = config->regmap;
3411 else if (dev_get_regmap(dev, NULL))
3412 rdev->regmap = dev_get_regmap(dev, NULL);
3413 else if (dev->parent)
3414 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3415 INIT_LIST_HEAD(&rdev->consumer_list);
3416 INIT_LIST_HEAD(&rdev->list);
3417 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3418 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3419
3420 /* preform any regulator specific init */
3421 if (init_data && init_data->regulator_init) {
3422 ret = init_data->regulator_init(rdev->reg_data);
3423 if (ret < 0)
3424 goto clean;
3425 }
3426
3427 /* register with sysfs */
3428 rdev->dev.class = &regulator_class;
3429 rdev->dev.of_node = config->of_node;
3430 rdev->dev.parent = dev;
3431 dev_set_name(&rdev->dev, "regulator.%d",
3432 atomic_inc_return(&regulator_no) - 1);
3433 ret = device_register(&rdev->dev);
3434 if (ret != 0) {
3435 put_device(&rdev->dev);
3436 goto clean;
3437 }
3438
3439 dev_set_drvdata(&rdev->dev, rdev);
3440
3441 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3442 ret = gpio_request_one(config->ena_gpio,
3443 GPIOF_DIR_OUT | config->ena_gpio_flags,
3444 rdev_get_name(rdev));
3445 if (ret != 0) {
3446 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3447 config->ena_gpio, ret);
3448 goto wash;
3449 }
3450
3451 rdev->ena_gpio = config->ena_gpio;
3452 rdev->ena_gpio_invert = config->ena_gpio_invert;
3453
3454 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3455 rdev->ena_gpio_state = 1;
3456
3457 if (rdev->ena_gpio_invert)
3458 rdev->ena_gpio_state = !rdev->ena_gpio_state;
3459 }
3460
3461 /* set regulator constraints */
3462 if (init_data)
3463 constraints = &init_data->constraints;
3464
3465 ret = set_machine_constraints(rdev, constraints);
3466 if (ret < 0)
3467 goto scrub;
3468
3469 /* add attributes supported by this regulator */
3470 ret = add_regulator_attributes(rdev);
3471 if (ret < 0)
3472 goto scrub;
3473
3474 if (init_data && init_data->supply_regulator)
3475 supply = init_data->supply_regulator;
3476 else if (regulator_desc->supply_name)
3477 supply = regulator_desc->supply_name;
3478
3479 if (supply) {
3480 struct regulator_dev *r;
3481
3482 r = regulator_dev_lookup(dev, supply, &ret);
3483
3484 if (!r) {
3485 dev_err(dev, "Failed to find supply %s\n", supply);
3486 ret = -EPROBE_DEFER;
3487 goto scrub;
3488 }
3489
3490 ret = set_supply(rdev, r);
3491 if (ret < 0)
3492 goto scrub;
3493
3494 /* Enable supply if rail is enabled */
3495 if (_regulator_is_enabled(rdev)) {
3496 ret = regulator_enable(rdev->supply);
3497 if (ret < 0)
3498 goto scrub;
3499 }
3500 }
3501
3502 /* add consumers devices */
3503 if (init_data) {
3504 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3505 ret = set_consumer_device_supply(rdev,
3506 init_data->consumer_supplies[i].dev_name,
3507 init_data->consumer_supplies[i].supply);
3508 if (ret < 0) {
3509 dev_err(dev, "Failed to set supply %s\n",
3510 init_data->consumer_supplies[i].supply);
3511 goto unset_supplies;
3512 }
3513 }
3514 }
3515
3516 list_add(&rdev->list, &regulator_list);
3517
3518 rdev_init_debugfs(rdev);
3519 out:
3520 mutex_unlock(&regulator_list_mutex);
3521 return rdev;
3522
3523 unset_supplies:
3524 unset_regulator_supplies(rdev);
3525
3526 scrub:
3527 if (rdev->supply)
3528 _regulator_put(rdev->supply);
3529 if (rdev->ena_gpio)
3530 gpio_free(rdev->ena_gpio);
3531 kfree(rdev->constraints);
3532 wash:
3533 device_unregister(&rdev->dev);
3534 /* device core frees rdev */
3535 rdev = ERR_PTR(ret);
3536 goto out;
3537
3538 clean:
3539 kfree(rdev);
3540 rdev = ERR_PTR(ret);
3541 goto out;
3542 }
3543 EXPORT_SYMBOL_GPL(regulator_register);
3544
3545 /**
3546 * regulator_unregister - unregister regulator
3547 * @rdev: regulator to unregister
3548 *
3549 * Called by regulator drivers to unregister a regulator.
3550 */
3551 void regulator_unregister(struct regulator_dev *rdev)
3552 {
3553 if (rdev == NULL)
3554 return;
3555
3556 if (rdev->supply)
3557 regulator_put(rdev->supply);
3558 mutex_lock(&regulator_list_mutex);
3559 debugfs_remove_recursive(rdev->debugfs);
3560 flush_work(&rdev->disable_work.work);
3561 WARN_ON(rdev->open_count);
3562 unset_regulator_supplies(rdev);
3563 list_del(&rdev->list);
3564 kfree(rdev->constraints);
3565 if (rdev->ena_gpio)
3566 gpio_free(rdev->ena_gpio);
3567 device_unregister(&rdev->dev);
3568 mutex_unlock(&regulator_list_mutex);
3569 }
3570 EXPORT_SYMBOL_GPL(regulator_unregister);
3571
3572 /**
3573 * regulator_suspend_prepare - prepare regulators for system wide suspend
3574 * @state: system suspend state
3575 *
3576 * Configure each regulator with it's suspend operating parameters for state.
3577 * This will usually be called by machine suspend code prior to supending.
3578 */
3579 int regulator_suspend_prepare(suspend_state_t state)
3580 {
3581 struct regulator_dev *rdev;
3582 int ret = 0;
3583
3584 /* ON is handled by regulator active state */
3585 if (state == PM_SUSPEND_ON)
3586 return -EINVAL;
3587
3588 mutex_lock(&regulator_list_mutex);
3589 list_for_each_entry(rdev, &regulator_list, list) {
3590
3591 mutex_lock(&rdev->mutex);
3592 ret = suspend_prepare(rdev, state);
3593 mutex_unlock(&rdev->mutex);
3594
3595 if (ret < 0) {
3596 rdev_err(rdev, "failed to prepare\n");
3597 goto out;
3598 }
3599 }
3600 out:
3601 mutex_unlock(&regulator_list_mutex);
3602 return ret;
3603 }
3604 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3605
3606 /**
3607 * regulator_suspend_finish - resume regulators from system wide suspend
3608 *
3609 * Turn on regulators that might be turned off by regulator_suspend_prepare
3610 * and that should be turned on according to the regulators properties.
3611 */
3612 int regulator_suspend_finish(void)
3613 {
3614 struct regulator_dev *rdev;
3615 int ret = 0, error;
3616
3617 mutex_lock(&regulator_list_mutex);
3618 list_for_each_entry(rdev, &regulator_list, list) {
3619 struct regulator_ops *ops = rdev->desc->ops;
3620
3621 mutex_lock(&rdev->mutex);
3622 if ((rdev->use_count > 0 || rdev->constraints->always_on) &&
3623 ops->enable) {
3624 error = ops->enable(rdev);
3625 if (error)
3626 ret = error;
3627 } else {
3628 if (!has_full_constraints)
3629 goto unlock;
3630 if (!ops->disable)
3631 goto unlock;
3632 if (!_regulator_is_enabled(rdev))
3633 goto unlock;
3634
3635 error = ops->disable(rdev);
3636 if (error)
3637 ret = error;
3638 }
3639 unlock:
3640 mutex_unlock(&rdev->mutex);
3641 }
3642 mutex_unlock(&regulator_list_mutex);
3643 return ret;
3644 }
3645 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3646
3647 /**
3648 * regulator_has_full_constraints - the system has fully specified constraints
3649 *
3650 * Calling this function will cause the regulator API to disable all
3651 * regulators which have a zero use count and don't have an always_on
3652 * constraint in a late_initcall.
3653 *
3654 * The intention is that this will become the default behaviour in a
3655 * future kernel release so users are encouraged to use this facility
3656 * now.
3657 */
3658 void regulator_has_full_constraints(void)
3659 {
3660 has_full_constraints = 1;
3661 }
3662 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3663
3664 /**
3665 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3666 *
3667 * Calling this function will cause the regulator API to provide a
3668 * dummy regulator to consumers if no physical regulator is found,
3669 * allowing most consumers to proceed as though a regulator were
3670 * configured. This allows systems such as those with software
3671 * controllable regulators for the CPU core only to be brought up more
3672 * readily.
3673 */
3674 void regulator_use_dummy_regulator(void)
3675 {
3676 board_wants_dummy_regulator = true;
3677 }
3678 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3679
3680 /**
3681 * rdev_get_drvdata - get rdev regulator driver data
3682 * @rdev: regulator
3683 *
3684 * Get rdev regulator driver private data. This call can be used in the
3685 * regulator driver context.
3686 */
3687 void *rdev_get_drvdata(struct regulator_dev *rdev)
3688 {
3689 return rdev->reg_data;
3690 }
3691 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3692
3693 /**
3694 * regulator_get_drvdata - get regulator driver data
3695 * @regulator: regulator
3696 *
3697 * Get regulator driver private data. This call can be used in the consumer
3698 * driver context when non API regulator specific functions need to be called.
3699 */
3700 void *regulator_get_drvdata(struct regulator *regulator)
3701 {
3702 return regulator->rdev->reg_data;
3703 }
3704 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3705
3706 /**
3707 * regulator_set_drvdata - set regulator driver data
3708 * @regulator: regulator
3709 * @data: data
3710 */
3711 void regulator_set_drvdata(struct regulator *regulator, void *data)
3712 {
3713 regulator->rdev->reg_data = data;
3714 }
3715 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3716
3717 /**
3718 * regulator_get_id - get regulator ID
3719 * @rdev: regulator
3720 */
3721 int rdev_get_id(struct regulator_dev *rdev)
3722 {
3723 return rdev->desc->id;
3724 }
3725 EXPORT_SYMBOL_GPL(rdev_get_id);
3726
3727 struct device *rdev_get_dev(struct regulator_dev *rdev)
3728 {
3729 return &rdev->dev;
3730 }
3731 EXPORT_SYMBOL_GPL(rdev_get_dev);
3732
3733 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3734 {
3735 return reg_init_data->driver_data;
3736 }
3737 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3738
3739 #ifdef CONFIG_DEBUG_FS
3740 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3741 size_t count, loff_t *ppos)
3742 {
3743 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3744 ssize_t len, ret = 0;
3745 struct regulator_map *map;
3746
3747 if (!buf)
3748 return -ENOMEM;
3749
3750 list_for_each_entry(map, &regulator_map_list, list) {
3751 len = snprintf(buf + ret, PAGE_SIZE - ret,
3752 "%s -> %s.%s\n",
3753 rdev_get_name(map->regulator), map->dev_name,
3754 map->supply);
3755 if (len >= 0)
3756 ret += len;
3757 if (ret > PAGE_SIZE) {
3758 ret = PAGE_SIZE;
3759 break;
3760 }
3761 }
3762
3763 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3764
3765 kfree(buf);
3766
3767 return ret;
3768 }
3769 #endif
3770
3771 static const struct file_operations supply_map_fops = {
3772 #ifdef CONFIG_DEBUG_FS
3773 .read = supply_map_read_file,
3774 .llseek = default_llseek,
3775 #endif
3776 };
3777
3778 static int __init regulator_init(void)
3779 {
3780 int ret;
3781
3782 ret = class_register(&regulator_class);
3783
3784 debugfs_root = debugfs_create_dir("regulator", NULL);
3785 if (!debugfs_root)
3786 pr_warn("regulator: Failed to create debugfs directory\n");
3787
3788 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3789 &supply_map_fops);
3790
3791 regulator_dummy_init();
3792
3793 return ret;
3794 }
3795
3796 /* init early to allow our consumers to complete system booting */
3797 core_initcall(regulator_init);
3798
3799 static int __init regulator_init_complete(void)
3800 {
3801 struct regulator_dev *rdev;
3802 struct regulator_ops *ops;
3803 struct regulation_constraints *c;
3804 int enabled, ret;
3805
3806 /*
3807 * Since DT doesn't provide an idiomatic mechanism for
3808 * enabling full constraints and since it's much more natural
3809 * with DT to provide them just assume that a DT enabled
3810 * system has full constraints.
3811 */
3812 if (of_have_populated_dt())
3813 has_full_constraints = true;
3814
3815 mutex_lock(&regulator_list_mutex);
3816
3817 /* If we have a full configuration then disable any regulators
3818 * which are not in use or always_on. This will become the
3819 * default behaviour in the future.
3820 */
3821 list_for_each_entry(rdev, &regulator_list, list) {
3822 ops = rdev->desc->ops;
3823 c = rdev->constraints;
3824
3825 if (!ops->disable || (c && c->always_on))
3826 continue;
3827
3828 mutex_lock(&rdev->mutex);
3829
3830 if (rdev->use_count)
3831 goto unlock;
3832
3833 /* If we can't read the status assume it's on. */
3834 if (ops->is_enabled)
3835 enabled = ops->is_enabled(rdev);
3836 else
3837 enabled = 1;
3838
3839 if (!enabled)
3840 goto unlock;
3841
3842 if (has_full_constraints) {
3843 /* We log since this may kill the system if it
3844 * goes wrong. */
3845 rdev_info(rdev, "disabling\n");
3846 ret = ops->disable(rdev);
3847 if (ret != 0) {
3848 rdev_err(rdev, "couldn't disable: %d\n", ret);
3849 }
3850 } else {
3851 /* The intention is that in future we will
3852 * assume that full constraints are provided
3853 * so warn even if we aren't going to do
3854 * anything here.
3855 */
3856 rdev_warn(rdev, "incomplete constraints, leaving on\n");
3857 }
3858
3859 unlock:
3860 mutex_unlock(&rdev->mutex);
3861 }
3862
3863 mutex_unlock(&regulator_list_mutex);
3864
3865 return 0;
3866 }
3867 late_initcall(regulator_init_complete);
This page took 0.117512 seconds and 5 git commands to generate.