2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
53 static DEFINE_MUTEX(regulator_list_mutex
);
54 static LIST_HEAD(regulator_list
);
55 static LIST_HEAD(regulator_map_list
);
56 static LIST_HEAD(regulator_ena_gpio_list
);
57 static LIST_HEAD(regulator_supply_alias_list
);
58 static bool has_full_constraints
;
60 static struct dentry
*debugfs_root
;
63 * struct regulator_map
65 * Used to provide symbolic supply names to devices.
67 struct regulator_map
{
68 struct list_head list
;
69 const char *dev_name
; /* The dev_name() for the consumer */
71 struct regulator_dev
*regulator
;
75 * struct regulator_enable_gpio
77 * Management for shared enable GPIO pin
79 struct regulator_enable_gpio
{
80 struct list_head list
;
81 struct gpio_desc
*gpiod
;
82 u32 enable_count
; /* a number of enabled shared GPIO */
83 u32 request_count
; /* a number of requested shared GPIO */
84 unsigned int ena_gpio_invert
:1;
88 * struct regulator_supply_alias
90 * Used to map lookups for a supply onto an alternative device.
92 struct regulator_supply_alias
{
93 struct list_head list
;
94 struct device
*src_dev
;
95 const char *src_supply
;
96 struct device
*alias_dev
;
97 const char *alias_supply
;
100 static int _regulator_is_enabled(struct regulator_dev
*rdev
);
101 static int _regulator_disable(struct regulator_dev
*rdev
);
102 static int _regulator_get_voltage(struct regulator_dev
*rdev
);
103 static int _regulator_get_current_limit(struct regulator_dev
*rdev
);
104 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
);
105 static void _notifier_call_chain(struct regulator_dev
*rdev
,
106 unsigned long event
, void *data
);
107 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
108 int min_uV
, int max_uV
);
109 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
111 const char *supply_name
);
113 static const char *rdev_get_name(struct regulator_dev
*rdev
)
115 if (rdev
->constraints
&& rdev
->constraints
->name
)
116 return rdev
->constraints
->name
;
117 else if (rdev
->desc
->name
)
118 return rdev
->desc
->name
;
123 static bool have_full_constraints(void)
125 return has_full_constraints
|| of_have_populated_dt();
129 * of_get_regulator - get a regulator device node based on supply name
130 * @dev: Device pointer for the consumer (of regulator) device
131 * @supply: regulator supply name
133 * Extract the regulator device node corresponding to the supply name.
134 * returns the device node corresponding to the regulator if found, else
137 static struct device_node
*of_get_regulator(struct device
*dev
, const char *supply
)
139 struct device_node
*regnode
= NULL
;
140 char prop_name
[32]; /* 32 is max size of property name */
142 dev_dbg(dev
, "Looking up %s-supply from device tree\n", supply
);
144 snprintf(prop_name
, 32, "%s-supply", supply
);
145 regnode
= of_parse_phandle(dev
->of_node
, prop_name
, 0);
148 dev_dbg(dev
, "Looking up %s property in node %s failed",
149 prop_name
, dev
->of_node
->full_name
);
155 static int _regulator_can_change_status(struct regulator_dev
*rdev
)
157 if (!rdev
->constraints
)
160 if (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_STATUS
)
166 /* Platform voltage constraint check */
167 static int regulator_check_voltage(struct regulator_dev
*rdev
,
168 int *min_uV
, int *max_uV
)
170 BUG_ON(*min_uV
> *max_uV
);
172 if (!rdev
->constraints
) {
173 rdev_err(rdev
, "no constraints\n");
176 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
177 rdev_err(rdev
, "operation not allowed\n");
181 if (*max_uV
> rdev
->constraints
->max_uV
)
182 *max_uV
= rdev
->constraints
->max_uV
;
183 if (*min_uV
< rdev
->constraints
->min_uV
)
184 *min_uV
= rdev
->constraints
->min_uV
;
186 if (*min_uV
> *max_uV
) {
187 rdev_err(rdev
, "unsupportable voltage range: %d-%duV\n",
195 /* Make sure we select a voltage that suits the needs of all
196 * regulator consumers
198 static int regulator_check_consumers(struct regulator_dev
*rdev
,
199 int *min_uV
, int *max_uV
)
201 struct regulator
*regulator
;
203 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
205 * Assume consumers that didn't say anything are OK
206 * with anything in the constraint range.
208 if (!regulator
->min_uV
&& !regulator
->max_uV
)
211 if (*max_uV
> regulator
->max_uV
)
212 *max_uV
= regulator
->max_uV
;
213 if (*min_uV
< regulator
->min_uV
)
214 *min_uV
= regulator
->min_uV
;
217 if (*min_uV
> *max_uV
) {
218 rdev_err(rdev
, "Restricting voltage, %u-%uuV\n",
226 /* current constraint check */
227 static int regulator_check_current_limit(struct regulator_dev
*rdev
,
228 int *min_uA
, int *max_uA
)
230 BUG_ON(*min_uA
> *max_uA
);
232 if (!rdev
->constraints
) {
233 rdev_err(rdev
, "no constraints\n");
236 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_CURRENT
)) {
237 rdev_err(rdev
, "operation not allowed\n");
241 if (*max_uA
> rdev
->constraints
->max_uA
)
242 *max_uA
= rdev
->constraints
->max_uA
;
243 if (*min_uA
< rdev
->constraints
->min_uA
)
244 *min_uA
= rdev
->constraints
->min_uA
;
246 if (*min_uA
> *max_uA
) {
247 rdev_err(rdev
, "unsupportable current range: %d-%duA\n",
255 /* operating mode constraint check */
256 static int regulator_mode_constrain(struct regulator_dev
*rdev
, int *mode
)
259 case REGULATOR_MODE_FAST
:
260 case REGULATOR_MODE_NORMAL
:
261 case REGULATOR_MODE_IDLE
:
262 case REGULATOR_MODE_STANDBY
:
265 rdev_err(rdev
, "invalid mode %x specified\n", *mode
);
269 if (!rdev
->constraints
) {
270 rdev_err(rdev
, "no constraints\n");
273 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_MODE
)) {
274 rdev_err(rdev
, "operation not allowed\n");
278 /* The modes are bitmasks, the most power hungry modes having
279 * the lowest values. If the requested mode isn't supported
280 * try higher modes. */
282 if (rdev
->constraints
->valid_modes_mask
& *mode
)
290 /* dynamic regulator mode switching constraint check */
291 static int regulator_check_drms(struct regulator_dev
*rdev
)
293 if (!rdev
->constraints
) {
294 rdev_err(rdev
, "no constraints\n");
297 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
)) {
298 rdev_err(rdev
, "operation not allowed\n");
304 static ssize_t
regulator_uV_show(struct device
*dev
,
305 struct device_attribute
*attr
, char *buf
)
307 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
310 mutex_lock(&rdev
->mutex
);
311 ret
= sprintf(buf
, "%d\n", _regulator_get_voltage(rdev
));
312 mutex_unlock(&rdev
->mutex
);
316 static DEVICE_ATTR(microvolts
, 0444, regulator_uV_show
, NULL
);
318 static ssize_t
regulator_uA_show(struct device
*dev
,
319 struct device_attribute
*attr
, char *buf
)
321 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
323 return sprintf(buf
, "%d\n", _regulator_get_current_limit(rdev
));
325 static DEVICE_ATTR(microamps
, 0444, regulator_uA_show
, NULL
);
327 static ssize_t
name_show(struct device
*dev
, struct device_attribute
*attr
,
330 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
332 return sprintf(buf
, "%s\n", rdev_get_name(rdev
));
334 static DEVICE_ATTR_RO(name
);
336 static ssize_t
regulator_print_opmode(char *buf
, int mode
)
339 case REGULATOR_MODE_FAST
:
340 return sprintf(buf
, "fast\n");
341 case REGULATOR_MODE_NORMAL
:
342 return sprintf(buf
, "normal\n");
343 case REGULATOR_MODE_IDLE
:
344 return sprintf(buf
, "idle\n");
345 case REGULATOR_MODE_STANDBY
:
346 return sprintf(buf
, "standby\n");
348 return sprintf(buf
, "unknown\n");
351 static ssize_t
regulator_opmode_show(struct device
*dev
,
352 struct device_attribute
*attr
, char *buf
)
354 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
356 return regulator_print_opmode(buf
, _regulator_get_mode(rdev
));
358 static DEVICE_ATTR(opmode
, 0444, regulator_opmode_show
, NULL
);
360 static ssize_t
regulator_print_state(char *buf
, int state
)
363 return sprintf(buf
, "enabled\n");
365 return sprintf(buf
, "disabled\n");
367 return sprintf(buf
, "unknown\n");
370 static ssize_t
regulator_state_show(struct device
*dev
,
371 struct device_attribute
*attr
, char *buf
)
373 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
376 mutex_lock(&rdev
->mutex
);
377 ret
= regulator_print_state(buf
, _regulator_is_enabled(rdev
));
378 mutex_unlock(&rdev
->mutex
);
382 static DEVICE_ATTR(state
, 0444, regulator_state_show
, NULL
);
384 static ssize_t
regulator_status_show(struct device
*dev
,
385 struct device_attribute
*attr
, char *buf
)
387 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
391 status
= rdev
->desc
->ops
->get_status(rdev
);
396 case REGULATOR_STATUS_OFF
:
399 case REGULATOR_STATUS_ON
:
402 case REGULATOR_STATUS_ERROR
:
405 case REGULATOR_STATUS_FAST
:
408 case REGULATOR_STATUS_NORMAL
:
411 case REGULATOR_STATUS_IDLE
:
414 case REGULATOR_STATUS_STANDBY
:
417 case REGULATOR_STATUS_BYPASS
:
420 case REGULATOR_STATUS_UNDEFINED
:
427 return sprintf(buf
, "%s\n", label
);
429 static DEVICE_ATTR(status
, 0444, regulator_status_show
, NULL
);
431 static ssize_t
regulator_min_uA_show(struct device
*dev
,
432 struct device_attribute
*attr
, char *buf
)
434 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
436 if (!rdev
->constraints
)
437 return sprintf(buf
, "constraint not defined\n");
439 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uA
);
441 static DEVICE_ATTR(min_microamps
, 0444, regulator_min_uA_show
, NULL
);
443 static ssize_t
regulator_max_uA_show(struct device
*dev
,
444 struct device_attribute
*attr
, char *buf
)
446 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
448 if (!rdev
->constraints
)
449 return sprintf(buf
, "constraint not defined\n");
451 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uA
);
453 static DEVICE_ATTR(max_microamps
, 0444, regulator_max_uA_show
, NULL
);
455 static ssize_t
regulator_min_uV_show(struct device
*dev
,
456 struct device_attribute
*attr
, char *buf
)
458 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
460 if (!rdev
->constraints
)
461 return sprintf(buf
, "constraint not defined\n");
463 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uV
);
465 static DEVICE_ATTR(min_microvolts
, 0444, regulator_min_uV_show
, NULL
);
467 static ssize_t
regulator_max_uV_show(struct device
*dev
,
468 struct device_attribute
*attr
, char *buf
)
470 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
472 if (!rdev
->constraints
)
473 return sprintf(buf
, "constraint not defined\n");
475 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uV
);
477 static DEVICE_ATTR(max_microvolts
, 0444, regulator_max_uV_show
, NULL
);
479 static ssize_t
regulator_total_uA_show(struct device
*dev
,
480 struct device_attribute
*attr
, char *buf
)
482 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
483 struct regulator
*regulator
;
486 mutex_lock(&rdev
->mutex
);
487 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
)
488 uA
+= regulator
->uA_load
;
489 mutex_unlock(&rdev
->mutex
);
490 return sprintf(buf
, "%d\n", uA
);
492 static DEVICE_ATTR(requested_microamps
, 0444, regulator_total_uA_show
, NULL
);
494 static ssize_t
num_users_show(struct device
*dev
, struct device_attribute
*attr
,
497 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
498 return sprintf(buf
, "%d\n", rdev
->use_count
);
500 static DEVICE_ATTR_RO(num_users
);
502 static ssize_t
type_show(struct device
*dev
, struct device_attribute
*attr
,
505 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
507 switch (rdev
->desc
->type
) {
508 case REGULATOR_VOLTAGE
:
509 return sprintf(buf
, "voltage\n");
510 case REGULATOR_CURRENT
:
511 return sprintf(buf
, "current\n");
513 return sprintf(buf
, "unknown\n");
515 static DEVICE_ATTR_RO(type
);
517 static ssize_t
regulator_suspend_mem_uV_show(struct device
*dev
,
518 struct device_attribute
*attr
, char *buf
)
520 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
522 return sprintf(buf
, "%d\n", rdev
->constraints
->state_mem
.uV
);
524 static DEVICE_ATTR(suspend_mem_microvolts
, 0444,
525 regulator_suspend_mem_uV_show
, NULL
);
527 static ssize_t
regulator_suspend_disk_uV_show(struct device
*dev
,
528 struct device_attribute
*attr
, char *buf
)
530 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
532 return sprintf(buf
, "%d\n", rdev
->constraints
->state_disk
.uV
);
534 static DEVICE_ATTR(suspend_disk_microvolts
, 0444,
535 regulator_suspend_disk_uV_show
, NULL
);
537 static ssize_t
regulator_suspend_standby_uV_show(struct device
*dev
,
538 struct device_attribute
*attr
, char *buf
)
540 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
542 return sprintf(buf
, "%d\n", rdev
->constraints
->state_standby
.uV
);
544 static DEVICE_ATTR(suspend_standby_microvolts
, 0444,
545 regulator_suspend_standby_uV_show
, NULL
);
547 static ssize_t
regulator_suspend_mem_mode_show(struct device
*dev
,
548 struct device_attribute
*attr
, char *buf
)
550 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
552 return regulator_print_opmode(buf
,
553 rdev
->constraints
->state_mem
.mode
);
555 static DEVICE_ATTR(suspend_mem_mode
, 0444,
556 regulator_suspend_mem_mode_show
, NULL
);
558 static ssize_t
regulator_suspend_disk_mode_show(struct device
*dev
,
559 struct device_attribute
*attr
, char *buf
)
561 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
563 return regulator_print_opmode(buf
,
564 rdev
->constraints
->state_disk
.mode
);
566 static DEVICE_ATTR(suspend_disk_mode
, 0444,
567 regulator_suspend_disk_mode_show
, NULL
);
569 static ssize_t
regulator_suspend_standby_mode_show(struct device
*dev
,
570 struct device_attribute
*attr
, char *buf
)
572 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
574 return regulator_print_opmode(buf
,
575 rdev
->constraints
->state_standby
.mode
);
577 static DEVICE_ATTR(suspend_standby_mode
, 0444,
578 regulator_suspend_standby_mode_show
, NULL
);
580 static ssize_t
regulator_suspend_mem_state_show(struct device
*dev
,
581 struct device_attribute
*attr
, char *buf
)
583 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
585 return regulator_print_state(buf
,
586 rdev
->constraints
->state_mem
.enabled
);
588 static DEVICE_ATTR(suspend_mem_state
, 0444,
589 regulator_suspend_mem_state_show
, NULL
);
591 static ssize_t
regulator_suspend_disk_state_show(struct device
*dev
,
592 struct device_attribute
*attr
, char *buf
)
594 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
596 return regulator_print_state(buf
,
597 rdev
->constraints
->state_disk
.enabled
);
599 static DEVICE_ATTR(suspend_disk_state
, 0444,
600 regulator_suspend_disk_state_show
, NULL
);
602 static ssize_t
regulator_suspend_standby_state_show(struct device
*dev
,
603 struct device_attribute
*attr
, char *buf
)
605 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
607 return regulator_print_state(buf
,
608 rdev
->constraints
->state_standby
.enabled
);
610 static DEVICE_ATTR(suspend_standby_state
, 0444,
611 regulator_suspend_standby_state_show
, NULL
);
613 static ssize_t
regulator_bypass_show(struct device
*dev
,
614 struct device_attribute
*attr
, char *buf
)
616 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
621 ret
= rdev
->desc
->ops
->get_bypass(rdev
, &bypass
);
630 return sprintf(buf
, "%s\n", report
);
632 static DEVICE_ATTR(bypass
, 0444,
633 regulator_bypass_show
, NULL
);
636 * These are the only attributes are present for all regulators.
637 * Other attributes are a function of regulator functionality.
639 static struct attribute
*regulator_dev_attrs
[] = {
641 &dev_attr_num_users
.attr
,
645 ATTRIBUTE_GROUPS(regulator_dev
);
647 static void regulator_dev_release(struct device
*dev
)
649 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
653 static struct class regulator_class
= {
655 .dev_release
= regulator_dev_release
,
656 .dev_groups
= regulator_dev_groups
,
659 /* Calculate the new optimum regulator operating mode based on the new total
660 * consumer load. All locks held by caller */
661 static void drms_uA_update(struct regulator_dev
*rdev
)
663 struct regulator
*sibling
;
664 int current_uA
= 0, output_uV
, input_uV
, err
;
667 err
= regulator_check_drms(rdev
);
668 if (err
< 0 || !rdev
->desc
->ops
->get_optimum_mode
||
669 (!rdev
->desc
->ops
->get_voltage
&&
670 !rdev
->desc
->ops
->get_voltage_sel
) ||
671 !rdev
->desc
->ops
->set_mode
)
674 /* get output voltage */
675 output_uV
= _regulator_get_voltage(rdev
);
679 /* get input voltage */
682 input_uV
= regulator_get_voltage(rdev
->supply
);
684 input_uV
= rdev
->constraints
->input_uV
;
688 /* calc total requested load */
689 list_for_each_entry(sibling
, &rdev
->consumer_list
, list
)
690 current_uA
+= sibling
->uA_load
;
692 /* now get the optimum mode for our new total regulator load */
693 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
, input_uV
,
694 output_uV
, current_uA
);
696 /* check the new mode is allowed */
697 err
= regulator_mode_constrain(rdev
, &mode
);
699 rdev
->desc
->ops
->set_mode(rdev
, mode
);
702 static int suspend_set_state(struct regulator_dev
*rdev
,
703 struct regulator_state
*rstate
)
707 /* If we have no suspend mode configration don't set anything;
708 * only warn if the driver implements set_suspend_voltage or
709 * set_suspend_mode callback.
711 if (!rstate
->enabled
&& !rstate
->disabled
) {
712 if (rdev
->desc
->ops
->set_suspend_voltage
||
713 rdev
->desc
->ops
->set_suspend_mode
)
714 rdev_warn(rdev
, "No configuration\n");
718 if (rstate
->enabled
&& rstate
->disabled
) {
719 rdev_err(rdev
, "invalid configuration\n");
723 if (rstate
->enabled
&& rdev
->desc
->ops
->set_suspend_enable
)
724 ret
= rdev
->desc
->ops
->set_suspend_enable(rdev
);
725 else if (rstate
->disabled
&& rdev
->desc
->ops
->set_suspend_disable
)
726 ret
= rdev
->desc
->ops
->set_suspend_disable(rdev
);
727 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
731 rdev_err(rdev
, "failed to enabled/disable\n");
735 if (rdev
->desc
->ops
->set_suspend_voltage
&& rstate
->uV
> 0) {
736 ret
= rdev
->desc
->ops
->set_suspend_voltage(rdev
, rstate
->uV
);
738 rdev_err(rdev
, "failed to set voltage\n");
743 if (rdev
->desc
->ops
->set_suspend_mode
&& rstate
->mode
> 0) {
744 ret
= rdev
->desc
->ops
->set_suspend_mode(rdev
, rstate
->mode
);
746 rdev_err(rdev
, "failed to set mode\n");
753 /* locks held by caller */
754 static int suspend_prepare(struct regulator_dev
*rdev
, suspend_state_t state
)
756 if (!rdev
->constraints
)
760 case PM_SUSPEND_STANDBY
:
761 return suspend_set_state(rdev
,
762 &rdev
->constraints
->state_standby
);
764 return suspend_set_state(rdev
,
765 &rdev
->constraints
->state_mem
);
767 return suspend_set_state(rdev
,
768 &rdev
->constraints
->state_disk
);
774 static void print_constraints(struct regulator_dev
*rdev
)
776 struct regulation_constraints
*constraints
= rdev
->constraints
;
781 if (constraints
->min_uV
&& constraints
->max_uV
) {
782 if (constraints
->min_uV
== constraints
->max_uV
)
783 count
+= sprintf(buf
+ count
, "%d mV ",
784 constraints
->min_uV
/ 1000);
786 count
+= sprintf(buf
+ count
, "%d <--> %d mV ",
787 constraints
->min_uV
/ 1000,
788 constraints
->max_uV
/ 1000);
791 if (!constraints
->min_uV
||
792 constraints
->min_uV
!= constraints
->max_uV
) {
793 ret
= _regulator_get_voltage(rdev
);
795 count
+= sprintf(buf
+ count
, "at %d mV ", ret
/ 1000);
798 if (constraints
->uV_offset
)
799 count
+= sprintf(buf
, "%dmV offset ",
800 constraints
->uV_offset
/ 1000);
802 if (constraints
->min_uA
&& constraints
->max_uA
) {
803 if (constraints
->min_uA
== constraints
->max_uA
)
804 count
+= sprintf(buf
+ count
, "%d mA ",
805 constraints
->min_uA
/ 1000);
807 count
+= sprintf(buf
+ count
, "%d <--> %d mA ",
808 constraints
->min_uA
/ 1000,
809 constraints
->max_uA
/ 1000);
812 if (!constraints
->min_uA
||
813 constraints
->min_uA
!= constraints
->max_uA
) {
814 ret
= _regulator_get_current_limit(rdev
);
816 count
+= sprintf(buf
+ count
, "at %d mA ", ret
/ 1000);
819 if (constraints
->valid_modes_mask
& REGULATOR_MODE_FAST
)
820 count
+= sprintf(buf
+ count
, "fast ");
821 if (constraints
->valid_modes_mask
& REGULATOR_MODE_NORMAL
)
822 count
+= sprintf(buf
+ count
, "normal ");
823 if (constraints
->valid_modes_mask
& REGULATOR_MODE_IDLE
)
824 count
+= sprintf(buf
+ count
, "idle ");
825 if (constraints
->valid_modes_mask
& REGULATOR_MODE_STANDBY
)
826 count
+= sprintf(buf
+ count
, "standby");
829 sprintf(buf
, "no parameters");
831 rdev_info(rdev
, "%s\n", buf
);
833 if ((constraints
->min_uV
!= constraints
->max_uV
) &&
834 !(constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
))
836 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
839 static int machine_constraints_voltage(struct regulator_dev
*rdev
,
840 struct regulation_constraints
*constraints
)
842 struct regulator_ops
*ops
= rdev
->desc
->ops
;
845 /* do we need to apply the constraint voltage */
846 if (rdev
->constraints
->apply_uV
&&
847 rdev
->constraints
->min_uV
== rdev
->constraints
->max_uV
) {
848 int current_uV
= _regulator_get_voltage(rdev
);
849 if (current_uV
< 0) {
851 "failed to get the current voltage(%d)\n",
855 if (current_uV
< rdev
->constraints
->min_uV
||
856 current_uV
> rdev
->constraints
->max_uV
) {
857 ret
= _regulator_do_set_voltage(
858 rdev
, rdev
->constraints
->min_uV
,
859 rdev
->constraints
->max_uV
);
862 "failed to apply %duV constraint(%d)\n",
863 rdev
->constraints
->min_uV
, ret
);
869 /* constrain machine-level voltage specs to fit
870 * the actual range supported by this regulator.
872 if (ops
->list_voltage
&& rdev
->desc
->n_voltages
) {
873 int count
= rdev
->desc
->n_voltages
;
875 int min_uV
= INT_MAX
;
876 int max_uV
= INT_MIN
;
877 int cmin
= constraints
->min_uV
;
878 int cmax
= constraints
->max_uV
;
880 /* it's safe to autoconfigure fixed-voltage supplies
881 and the constraints are used by list_voltage. */
882 if (count
== 1 && !cmin
) {
885 constraints
->min_uV
= cmin
;
886 constraints
->max_uV
= cmax
;
889 /* voltage constraints are optional */
890 if ((cmin
== 0) && (cmax
== 0))
893 /* else require explicit machine-level constraints */
894 if (cmin
<= 0 || cmax
<= 0 || cmax
< cmin
) {
895 rdev_err(rdev
, "invalid voltage constraints\n");
899 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
900 for (i
= 0; i
< count
; i
++) {
903 value
= ops
->list_voltage(rdev
, i
);
907 /* maybe adjust [min_uV..max_uV] */
908 if (value
>= cmin
&& value
< min_uV
)
910 if (value
<= cmax
&& value
> max_uV
)
914 /* final: [min_uV..max_uV] valid iff constraints valid */
915 if (max_uV
< min_uV
) {
917 "unsupportable voltage constraints %u-%uuV\n",
922 /* use regulator's subset of machine constraints */
923 if (constraints
->min_uV
< min_uV
) {
924 rdev_dbg(rdev
, "override min_uV, %d -> %d\n",
925 constraints
->min_uV
, min_uV
);
926 constraints
->min_uV
= min_uV
;
928 if (constraints
->max_uV
> max_uV
) {
929 rdev_dbg(rdev
, "override max_uV, %d -> %d\n",
930 constraints
->max_uV
, max_uV
);
931 constraints
->max_uV
= max_uV
;
938 static int machine_constraints_current(struct regulator_dev
*rdev
,
939 struct regulation_constraints
*constraints
)
941 struct regulator_ops
*ops
= rdev
->desc
->ops
;
944 if (!constraints
->min_uA
&& !constraints
->max_uA
)
947 if (constraints
->min_uA
> constraints
->max_uA
) {
948 rdev_err(rdev
, "Invalid current constraints\n");
952 if (!ops
->set_current_limit
|| !ops
->get_current_limit
) {
953 rdev_warn(rdev
, "Operation of current configuration missing\n");
957 /* Set regulator current in constraints range */
958 ret
= ops
->set_current_limit(rdev
, constraints
->min_uA
,
959 constraints
->max_uA
);
961 rdev_err(rdev
, "Failed to set current constraint, %d\n", ret
);
968 static int _regulator_do_enable(struct regulator_dev
*rdev
);
971 * set_machine_constraints - sets regulator constraints
972 * @rdev: regulator source
973 * @constraints: constraints to apply
975 * Allows platform initialisation code to define and constrain
976 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
977 * Constraints *must* be set by platform code in order for some
978 * regulator operations to proceed i.e. set_voltage, set_current_limit,
981 static int set_machine_constraints(struct regulator_dev
*rdev
,
982 const struct regulation_constraints
*constraints
)
985 struct regulator_ops
*ops
= rdev
->desc
->ops
;
988 rdev
->constraints
= kmemdup(constraints
, sizeof(*constraints
),
991 rdev
->constraints
= kzalloc(sizeof(*constraints
),
993 if (!rdev
->constraints
)
996 ret
= machine_constraints_voltage(rdev
, rdev
->constraints
);
1000 ret
= machine_constraints_current(rdev
, rdev
->constraints
);
1004 /* do we need to setup our suspend state */
1005 if (rdev
->constraints
->initial_state
) {
1006 ret
= suspend_prepare(rdev
, rdev
->constraints
->initial_state
);
1008 rdev_err(rdev
, "failed to set suspend state\n");
1013 if (rdev
->constraints
->initial_mode
) {
1014 if (!ops
->set_mode
) {
1015 rdev_err(rdev
, "no set_mode operation\n");
1020 ret
= ops
->set_mode(rdev
, rdev
->constraints
->initial_mode
);
1022 rdev_err(rdev
, "failed to set initial mode: %d\n", ret
);
1027 /* If the constraints say the regulator should be on at this point
1028 * and we have control then make sure it is enabled.
1030 if (rdev
->constraints
->always_on
|| rdev
->constraints
->boot_on
) {
1031 ret
= _regulator_do_enable(rdev
);
1032 if (ret
< 0 && ret
!= -EINVAL
) {
1033 rdev_err(rdev
, "failed to enable\n");
1038 if ((rdev
->constraints
->ramp_delay
|| rdev
->constraints
->ramp_disable
)
1039 && ops
->set_ramp_delay
) {
1040 ret
= ops
->set_ramp_delay(rdev
, rdev
->constraints
->ramp_delay
);
1042 rdev_err(rdev
, "failed to set ramp_delay\n");
1047 print_constraints(rdev
);
1050 kfree(rdev
->constraints
);
1051 rdev
->constraints
= NULL
;
1056 * set_supply - set regulator supply regulator
1057 * @rdev: regulator name
1058 * @supply_rdev: supply regulator name
1060 * Called by platform initialisation code to set the supply regulator for this
1061 * regulator. This ensures that a regulators supply will also be enabled by the
1062 * core if it's child is enabled.
1064 static int set_supply(struct regulator_dev
*rdev
,
1065 struct regulator_dev
*supply_rdev
)
1069 rdev_info(rdev
, "supplied by %s\n", rdev_get_name(supply_rdev
));
1071 rdev
->supply
= create_regulator(supply_rdev
, &rdev
->dev
, "SUPPLY");
1072 if (rdev
->supply
== NULL
) {
1076 supply_rdev
->open_count
++;
1082 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1083 * @rdev: regulator source
1084 * @consumer_dev_name: dev_name() string for device supply applies to
1085 * @supply: symbolic name for supply
1087 * Allows platform initialisation code to map physical regulator
1088 * sources to symbolic names for supplies for use by devices. Devices
1089 * should use these symbolic names to request regulators, avoiding the
1090 * need to provide board-specific regulator names as platform data.
1092 static int set_consumer_device_supply(struct regulator_dev
*rdev
,
1093 const char *consumer_dev_name
,
1096 struct regulator_map
*node
;
1102 if (consumer_dev_name
!= NULL
)
1107 list_for_each_entry(node
, ®ulator_map_list
, list
) {
1108 if (node
->dev_name
&& consumer_dev_name
) {
1109 if (strcmp(node
->dev_name
, consumer_dev_name
) != 0)
1111 } else if (node
->dev_name
|| consumer_dev_name
) {
1115 if (strcmp(node
->supply
, supply
) != 0)
1118 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1120 dev_name(&node
->regulator
->dev
),
1121 node
->regulator
->desc
->name
,
1123 dev_name(&rdev
->dev
), rdev_get_name(rdev
));
1127 node
= kzalloc(sizeof(struct regulator_map
), GFP_KERNEL
);
1131 node
->regulator
= rdev
;
1132 node
->supply
= supply
;
1135 node
->dev_name
= kstrdup(consumer_dev_name
, GFP_KERNEL
);
1136 if (node
->dev_name
== NULL
) {
1142 list_add(&node
->list
, ®ulator_map_list
);
1146 static void unset_regulator_supplies(struct regulator_dev
*rdev
)
1148 struct regulator_map
*node
, *n
;
1150 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
1151 if (rdev
== node
->regulator
) {
1152 list_del(&node
->list
);
1153 kfree(node
->dev_name
);
1159 #define REG_STR_SIZE 64
1161 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
1163 const char *supply_name
)
1165 struct regulator
*regulator
;
1166 char buf
[REG_STR_SIZE
];
1169 regulator
= kzalloc(sizeof(*regulator
), GFP_KERNEL
);
1170 if (regulator
== NULL
)
1173 mutex_lock(&rdev
->mutex
);
1174 regulator
->rdev
= rdev
;
1175 list_add(®ulator
->list
, &rdev
->consumer_list
);
1178 regulator
->dev
= dev
;
1180 /* Add a link to the device sysfs entry */
1181 size
= scnprintf(buf
, REG_STR_SIZE
, "%s-%s",
1182 dev
->kobj
.name
, supply_name
);
1183 if (size
>= REG_STR_SIZE
)
1186 regulator
->supply_name
= kstrdup(buf
, GFP_KERNEL
);
1187 if (regulator
->supply_name
== NULL
)
1190 err
= sysfs_create_link(&rdev
->dev
.kobj
, &dev
->kobj
,
1193 rdev_warn(rdev
, "could not add device link %s err %d\n",
1194 dev
->kobj
.name
, err
);
1198 regulator
->supply_name
= kstrdup(supply_name
, GFP_KERNEL
);
1199 if (regulator
->supply_name
== NULL
)
1203 regulator
->debugfs
= debugfs_create_dir(regulator
->supply_name
,
1205 if (!regulator
->debugfs
) {
1206 rdev_warn(rdev
, "Failed to create debugfs directory\n");
1208 debugfs_create_u32("uA_load", 0444, regulator
->debugfs
,
1209 ®ulator
->uA_load
);
1210 debugfs_create_u32("min_uV", 0444, regulator
->debugfs
,
1211 ®ulator
->min_uV
);
1212 debugfs_create_u32("max_uV", 0444, regulator
->debugfs
,
1213 ®ulator
->max_uV
);
1217 * Check now if the regulator is an always on regulator - if
1218 * it is then we don't need to do nearly so much work for
1219 * enable/disable calls.
1221 if (!_regulator_can_change_status(rdev
) &&
1222 _regulator_is_enabled(rdev
))
1223 regulator
->always_on
= true;
1225 mutex_unlock(&rdev
->mutex
);
1228 list_del(®ulator
->list
);
1230 mutex_unlock(&rdev
->mutex
);
1234 static int _regulator_get_enable_time(struct regulator_dev
*rdev
)
1236 if (rdev
->constraints
&& rdev
->constraints
->enable_time
)
1237 return rdev
->constraints
->enable_time
;
1238 if (!rdev
->desc
->ops
->enable_time
)
1239 return rdev
->desc
->enable_time
;
1240 return rdev
->desc
->ops
->enable_time(rdev
);
1243 static struct regulator_supply_alias
*regulator_find_supply_alias(
1244 struct device
*dev
, const char *supply
)
1246 struct regulator_supply_alias
*map
;
1248 list_for_each_entry(map
, ®ulator_supply_alias_list
, list
)
1249 if (map
->src_dev
== dev
&& strcmp(map
->src_supply
, supply
) == 0)
1255 static void regulator_supply_alias(struct device
**dev
, const char **supply
)
1257 struct regulator_supply_alias
*map
;
1259 map
= regulator_find_supply_alias(*dev
, *supply
);
1261 dev_dbg(*dev
, "Mapping supply %s to %s,%s\n",
1262 *supply
, map
->alias_supply
,
1263 dev_name(map
->alias_dev
));
1264 *dev
= map
->alias_dev
;
1265 *supply
= map
->alias_supply
;
1269 static struct regulator_dev
*regulator_dev_lookup(struct device
*dev
,
1273 struct regulator_dev
*r
;
1274 struct device_node
*node
;
1275 struct regulator_map
*map
;
1276 const char *devname
= NULL
;
1278 regulator_supply_alias(&dev
, &supply
);
1280 /* first do a dt based lookup */
1281 if (dev
&& dev
->of_node
) {
1282 node
= of_get_regulator(dev
, supply
);
1284 list_for_each_entry(r
, ®ulator_list
, list
)
1285 if (r
->dev
.parent
&&
1286 node
== r
->dev
.of_node
)
1288 *ret
= -EPROBE_DEFER
;
1292 * If we couldn't even get the node then it's
1293 * not just that the device didn't register
1294 * yet, there's no node and we'll never
1301 /* if not found, try doing it non-dt way */
1303 devname
= dev_name(dev
);
1305 list_for_each_entry(r
, ®ulator_list
, list
)
1306 if (strcmp(rdev_get_name(r
), supply
) == 0)
1309 list_for_each_entry(map
, ®ulator_map_list
, list
) {
1310 /* If the mapping has a device set up it must match */
1311 if (map
->dev_name
&&
1312 (!devname
|| strcmp(map
->dev_name
, devname
)))
1315 if (strcmp(map
->supply
, supply
) == 0)
1316 return map
->regulator
;
1323 /* Internal regulator request function */
1324 static struct regulator
*_regulator_get(struct device
*dev
, const char *id
,
1325 bool exclusive
, bool allow_dummy
)
1327 struct regulator_dev
*rdev
;
1328 struct regulator
*regulator
= ERR_PTR(-EPROBE_DEFER
);
1329 const char *devname
= NULL
;
1333 pr_err("get() with no identifier\n");
1334 return ERR_PTR(-EINVAL
);
1338 devname
= dev_name(dev
);
1340 if (have_full_constraints())
1343 ret
= -EPROBE_DEFER
;
1345 mutex_lock(®ulator_list_mutex
);
1347 rdev
= regulator_dev_lookup(dev
, id
, &ret
);
1351 regulator
= ERR_PTR(ret
);
1354 * If we have return value from dev_lookup fail, we do not expect to
1355 * succeed, so, quit with appropriate error value
1357 if (ret
&& ret
!= -ENODEV
)
1361 devname
= "deviceless";
1364 * Assume that a regulator is physically present and enabled
1365 * even if it isn't hooked up and just provide a dummy.
1367 if (have_full_constraints() && allow_dummy
) {
1368 pr_warn("%s supply %s not found, using dummy regulator\n",
1371 rdev
= dummy_regulator_rdev
;
1373 /* Don't log an error when called from regulator_get_optional() */
1374 } else if (!have_full_constraints() || exclusive
) {
1375 dev_warn(dev
, "dummy supplies not allowed\n");
1378 mutex_unlock(®ulator_list_mutex
);
1382 if (rdev
->exclusive
) {
1383 regulator
= ERR_PTR(-EPERM
);
1387 if (exclusive
&& rdev
->open_count
) {
1388 regulator
= ERR_PTR(-EBUSY
);
1392 if (!try_module_get(rdev
->owner
))
1395 regulator
= create_regulator(rdev
, dev
, id
);
1396 if (regulator
== NULL
) {
1397 regulator
= ERR_PTR(-ENOMEM
);
1398 module_put(rdev
->owner
);
1404 rdev
->exclusive
= 1;
1406 ret
= _regulator_is_enabled(rdev
);
1408 rdev
->use_count
= 1;
1410 rdev
->use_count
= 0;
1414 mutex_unlock(®ulator_list_mutex
);
1420 * regulator_get - lookup and obtain a reference to a regulator.
1421 * @dev: device for regulator "consumer"
1422 * @id: Supply name or regulator ID.
1424 * Returns a struct regulator corresponding to the regulator producer,
1425 * or IS_ERR() condition containing errno.
1427 * Use of supply names configured via regulator_set_device_supply() is
1428 * strongly encouraged. It is recommended that the supply name used
1429 * should match the name used for the supply and/or the relevant
1430 * device pins in the datasheet.
1432 struct regulator
*regulator_get(struct device
*dev
, const char *id
)
1434 return _regulator_get(dev
, id
, false, true);
1436 EXPORT_SYMBOL_GPL(regulator_get
);
1439 * regulator_get_exclusive - obtain exclusive access to a regulator.
1440 * @dev: device for regulator "consumer"
1441 * @id: Supply name or regulator ID.
1443 * Returns a struct regulator corresponding to the regulator producer,
1444 * or IS_ERR() condition containing errno. Other consumers will be
1445 * unable to obtain this regulator while this reference is held and the
1446 * use count for the regulator will be initialised to reflect the current
1447 * state of the regulator.
1449 * This is intended for use by consumers which cannot tolerate shared
1450 * use of the regulator such as those which need to force the
1451 * regulator off for correct operation of the hardware they are
1454 * Use of supply names configured via regulator_set_device_supply() is
1455 * strongly encouraged. It is recommended that the supply name used
1456 * should match the name used for the supply and/or the relevant
1457 * device pins in the datasheet.
1459 struct regulator
*regulator_get_exclusive(struct device
*dev
, const char *id
)
1461 return _regulator_get(dev
, id
, true, false);
1463 EXPORT_SYMBOL_GPL(regulator_get_exclusive
);
1466 * regulator_get_optional - obtain optional access to a regulator.
1467 * @dev: device for regulator "consumer"
1468 * @id: Supply name or regulator ID.
1470 * Returns a struct regulator corresponding to the regulator producer,
1471 * or IS_ERR() condition containing errno.
1473 * This is intended for use by consumers for devices which can have
1474 * some supplies unconnected in normal use, such as some MMC devices.
1475 * It can allow the regulator core to provide stub supplies for other
1476 * supplies requested using normal regulator_get() calls without
1477 * disrupting the operation of drivers that can handle absent
1480 * Use of supply names configured via regulator_set_device_supply() is
1481 * strongly encouraged. It is recommended that the supply name used
1482 * should match the name used for the supply and/or the relevant
1483 * device pins in the datasheet.
1485 struct regulator
*regulator_get_optional(struct device
*dev
, const char *id
)
1487 return _regulator_get(dev
, id
, false, false);
1489 EXPORT_SYMBOL_GPL(regulator_get_optional
);
1491 /* Locks held by regulator_put() */
1492 static void _regulator_put(struct regulator
*regulator
)
1494 struct regulator_dev
*rdev
;
1496 if (regulator
== NULL
|| IS_ERR(regulator
))
1499 rdev
= regulator
->rdev
;
1501 debugfs_remove_recursive(regulator
->debugfs
);
1503 /* remove any sysfs entries */
1505 sysfs_remove_link(&rdev
->dev
.kobj
, regulator
->supply_name
);
1506 kfree(regulator
->supply_name
);
1507 list_del(®ulator
->list
);
1511 rdev
->exclusive
= 0;
1513 module_put(rdev
->owner
);
1517 * regulator_put - "free" the regulator source
1518 * @regulator: regulator source
1520 * Note: drivers must ensure that all regulator_enable calls made on this
1521 * regulator source are balanced by regulator_disable calls prior to calling
1524 void regulator_put(struct regulator
*regulator
)
1526 mutex_lock(®ulator_list_mutex
);
1527 _regulator_put(regulator
);
1528 mutex_unlock(®ulator_list_mutex
);
1530 EXPORT_SYMBOL_GPL(regulator_put
);
1533 * regulator_register_supply_alias - Provide device alias for supply lookup
1535 * @dev: device that will be given as the regulator "consumer"
1536 * @id: Supply name or regulator ID
1537 * @alias_dev: device that should be used to lookup the supply
1538 * @alias_id: Supply name or regulator ID that should be used to lookup the
1541 * All lookups for id on dev will instead be conducted for alias_id on
1544 int regulator_register_supply_alias(struct device
*dev
, const char *id
,
1545 struct device
*alias_dev
,
1546 const char *alias_id
)
1548 struct regulator_supply_alias
*map
;
1550 map
= regulator_find_supply_alias(dev
, id
);
1554 map
= kzalloc(sizeof(struct regulator_supply_alias
), GFP_KERNEL
);
1559 map
->src_supply
= id
;
1560 map
->alias_dev
= alias_dev
;
1561 map
->alias_supply
= alias_id
;
1563 list_add(&map
->list
, ®ulator_supply_alias_list
);
1565 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1566 id
, dev_name(dev
), alias_id
, dev_name(alias_dev
));
1570 EXPORT_SYMBOL_GPL(regulator_register_supply_alias
);
1573 * regulator_unregister_supply_alias - Remove device alias
1575 * @dev: device that will be given as the regulator "consumer"
1576 * @id: Supply name or regulator ID
1578 * Remove a lookup alias if one exists for id on dev.
1580 void regulator_unregister_supply_alias(struct device
*dev
, const char *id
)
1582 struct regulator_supply_alias
*map
;
1584 map
= regulator_find_supply_alias(dev
, id
);
1586 list_del(&map
->list
);
1590 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias
);
1593 * regulator_bulk_register_supply_alias - register multiple aliases
1595 * @dev: device that will be given as the regulator "consumer"
1596 * @id: List of supply names or regulator IDs
1597 * @alias_dev: device that should be used to lookup the supply
1598 * @alias_id: List of supply names or regulator IDs that should be used to
1600 * @num_id: Number of aliases to register
1602 * @return 0 on success, an errno on failure.
1604 * This helper function allows drivers to register several supply
1605 * aliases in one operation. If any of the aliases cannot be
1606 * registered any aliases that were registered will be removed
1607 * before returning to the caller.
1609 int regulator_bulk_register_supply_alias(struct device
*dev
,
1610 const char *const *id
,
1611 struct device
*alias_dev
,
1612 const char *const *alias_id
,
1618 for (i
= 0; i
< num_id
; ++i
) {
1619 ret
= regulator_register_supply_alias(dev
, id
[i
], alias_dev
,
1629 "Failed to create supply alias %s,%s -> %s,%s\n",
1630 id
[i
], dev_name(dev
), alias_id
[i
], dev_name(alias_dev
));
1633 regulator_unregister_supply_alias(dev
, id
[i
]);
1637 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias
);
1640 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1642 * @dev: device that will be given as the regulator "consumer"
1643 * @id: List of supply names or regulator IDs
1644 * @num_id: Number of aliases to unregister
1646 * This helper function allows drivers to unregister several supply
1647 * aliases in one operation.
1649 void regulator_bulk_unregister_supply_alias(struct device
*dev
,
1650 const char *const *id
,
1655 for (i
= 0; i
< num_id
; ++i
)
1656 regulator_unregister_supply_alias(dev
, id
[i
]);
1658 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias
);
1661 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1662 static int regulator_ena_gpio_request(struct regulator_dev
*rdev
,
1663 const struct regulator_config
*config
)
1665 struct regulator_enable_gpio
*pin
;
1666 struct gpio_desc
*gpiod
;
1669 gpiod
= gpio_to_desc(config
->ena_gpio
);
1671 list_for_each_entry(pin
, ®ulator_ena_gpio_list
, list
) {
1672 if (pin
->gpiod
== gpiod
) {
1673 rdev_dbg(rdev
, "GPIO %d is already used\n",
1675 goto update_ena_gpio_to_rdev
;
1679 ret
= gpio_request_one(config
->ena_gpio
,
1680 GPIOF_DIR_OUT
| config
->ena_gpio_flags
,
1681 rdev_get_name(rdev
));
1685 pin
= kzalloc(sizeof(struct regulator_enable_gpio
), GFP_KERNEL
);
1687 gpio_free(config
->ena_gpio
);
1692 pin
->ena_gpio_invert
= config
->ena_gpio_invert
;
1693 list_add(&pin
->list
, ®ulator_ena_gpio_list
);
1695 update_ena_gpio_to_rdev
:
1696 pin
->request_count
++;
1697 rdev
->ena_pin
= pin
;
1701 static void regulator_ena_gpio_free(struct regulator_dev
*rdev
)
1703 struct regulator_enable_gpio
*pin
, *n
;
1708 /* Free the GPIO only in case of no use */
1709 list_for_each_entry_safe(pin
, n
, ®ulator_ena_gpio_list
, list
) {
1710 if (pin
->gpiod
== rdev
->ena_pin
->gpiod
) {
1711 if (pin
->request_count
<= 1) {
1712 pin
->request_count
= 0;
1713 gpiod_put(pin
->gpiod
);
1714 list_del(&pin
->list
);
1717 pin
->request_count
--;
1724 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1725 * @rdev: regulator_dev structure
1726 * @enable: enable GPIO at initial use?
1728 * GPIO is enabled in case of initial use. (enable_count is 0)
1729 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1731 static int regulator_ena_gpio_ctrl(struct regulator_dev
*rdev
, bool enable
)
1733 struct regulator_enable_gpio
*pin
= rdev
->ena_pin
;
1739 /* Enable GPIO at initial use */
1740 if (pin
->enable_count
== 0)
1741 gpiod_set_value_cansleep(pin
->gpiod
,
1742 !pin
->ena_gpio_invert
);
1744 pin
->enable_count
++;
1746 if (pin
->enable_count
> 1) {
1747 pin
->enable_count
--;
1751 /* Disable GPIO if not used */
1752 if (pin
->enable_count
<= 1) {
1753 gpiod_set_value_cansleep(pin
->gpiod
,
1754 pin
->ena_gpio_invert
);
1755 pin
->enable_count
= 0;
1762 static int _regulator_do_enable(struct regulator_dev
*rdev
)
1766 /* Query before enabling in case configuration dependent. */
1767 ret
= _regulator_get_enable_time(rdev
);
1771 rdev_warn(rdev
, "enable_time() failed: %d\n", ret
);
1775 trace_regulator_enable(rdev_get_name(rdev
));
1777 if (rdev
->ena_pin
) {
1778 ret
= regulator_ena_gpio_ctrl(rdev
, true);
1781 rdev
->ena_gpio_state
= 1;
1782 } else if (rdev
->desc
->ops
->enable
) {
1783 ret
= rdev
->desc
->ops
->enable(rdev
);
1790 /* Allow the regulator to ramp; it would be useful to extend
1791 * this for bulk operations so that the regulators can ramp
1793 trace_regulator_enable_delay(rdev_get_name(rdev
));
1796 * Delay for the requested amount of time as per the guidelines in:
1798 * Documentation/timers/timers-howto.txt
1800 * The assumption here is that regulators will never be enabled in
1801 * atomic context and therefore sleeping functions can be used.
1804 unsigned int ms
= delay
/ 1000;
1805 unsigned int us
= delay
% 1000;
1809 * For small enough values, handle super-millisecond
1810 * delays in the usleep_range() call below.
1819 * Give the scheduler some room to coalesce with any other
1820 * wakeup sources. For delays shorter than 10 us, don't even
1821 * bother setting up high-resolution timers and just busy-
1825 usleep_range(us
, us
+ 100);
1830 trace_regulator_enable_complete(rdev_get_name(rdev
));
1835 /* locks held by regulator_enable() */
1836 static int _regulator_enable(struct regulator_dev
*rdev
)
1840 /* check voltage and requested load before enabling */
1841 if (rdev
->constraints
&&
1842 (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_DRMS
))
1843 drms_uA_update(rdev
);
1845 if (rdev
->use_count
== 0) {
1846 /* The regulator may on if it's not switchable or left on */
1847 ret
= _regulator_is_enabled(rdev
);
1848 if (ret
== -EINVAL
|| ret
== 0) {
1849 if (!_regulator_can_change_status(rdev
))
1852 ret
= _regulator_do_enable(rdev
);
1856 } else if (ret
< 0) {
1857 rdev_err(rdev
, "is_enabled() failed: %d\n", ret
);
1860 /* Fallthrough on positive return values - already enabled */
1869 * regulator_enable - enable regulator output
1870 * @regulator: regulator source
1872 * Request that the regulator be enabled with the regulator output at
1873 * the predefined voltage or current value. Calls to regulator_enable()
1874 * must be balanced with calls to regulator_disable().
1876 * NOTE: the output value can be set by other drivers, boot loader or may be
1877 * hardwired in the regulator.
1879 int regulator_enable(struct regulator
*regulator
)
1881 struct regulator_dev
*rdev
= regulator
->rdev
;
1884 if (regulator
->always_on
)
1888 ret
= regulator_enable(rdev
->supply
);
1893 mutex_lock(&rdev
->mutex
);
1894 ret
= _regulator_enable(rdev
);
1895 mutex_unlock(&rdev
->mutex
);
1897 if (ret
!= 0 && rdev
->supply
)
1898 regulator_disable(rdev
->supply
);
1902 EXPORT_SYMBOL_GPL(regulator_enable
);
1904 static int _regulator_do_disable(struct regulator_dev
*rdev
)
1908 trace_regulator_disable(rdev_get_name(rdev
));
1910 if (rdev
->ena_pin
) {
1911 ret
= regulator_ena_gpio_ctrl(rdev
, false);
1914 rdev
->ena_gpio_state
= 0;
1916 } else if (rdev
->desc
->ops
->disable
) {
1917 ret
= rdev
->desc
->ops
->disable(rdev
);
1922 trace_regulator_disable_complete(rdev_get_name(rdev
));
1927 /* locks held by regulator_disable() */
1928 static int _regulator_disable(struct regulator_dev
*rdev
)
1932 if (WARN(rdev
->use_count
<= 0,
1933 "unbalanced disables for %s\n", rdev_get_name(rdev
)))
1936 /* are we the last user and permitted to disable ? */
1937 if (rdev
->use_count
== 1 &&
1938 (rdev
->constraints
&& !rdev
->constraints
->always_on
)) {
1940 /* we are last user */
1941 if (_regulator_can_change_status(rdev
)) {
1942 ret
= _regulator_do_disable(rdev
);
1944 rdev_err(rdev
, "failed to disable\n");
1947 _notifier_call_chain(rdev
, REGULATOR_EVENT_DISABLE
,
1951 rdev
->use_count
= 0;
1952 } else if (rdev
->use_count
> 1) {
1954 if (rdev
->constraints
&&
1955 (rdev
->constraints
->valid_ops_mask
&
1956 REGULATOR_CHANGE_DRMS
))
1957 drms_uA_update(rdev
);
1966 * regulator_disable - disable regulator output
1967 * @regulator: regulator source
1969 * Disable the regulator output voltage or current. Calls to
1970 * regulator_enable() must be balanced with calls to
1971 * regulator_disable().
1973 * NOTE: this will only disable the regulator output if no other consumer
1974 * devices have it enabled, the regulator device supports disabling and
1975 * machine constraints permit this operation.
1977 int regulator_disable(struct regulator
*regulator
)
1979 struct regulator_dev
*rdev
= regulator
->rdev
;
1982 if (regulator
->always_on
)
1985 mutex_lock(&rdev
->mutex
);
1986 ret
= _regulator_disable(rdev
);
1987 mutex_unlock(&rdev
->mutex
);
1989 if (ret
== 0 && rdev
->supply
)
1990 regulator_disable(rdev
->supply
);
1994 EXPORT_SYMBOL_GPL(regulator_disable
);
1996 /* locks held by regulator_force_disable() */
1997 static int _regulator_force_disable(struct regulator_dev
*rdev
)
2001 ret
= _regulator_do_disable(rdev
);
2003 rdev_err(rdev
, "failed to force disable\n");
2007 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2008 REGULATOR_EVENT_DISABLE
, NULL
);
2014 * regulator_force_disable - force disable regulator output
2015 * @regulator: regulator source
2017 * Forcibly disable the regulator output voltage or current.
2018 * NOTE: this *will* disable the regulator output even if other consumer
2019 * devices have it enabled. This should be used for situations when device
2020 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2022 int regulator_force_disable(struct regulator
*regulator
)
2024 struct regulator_dev
*rdev
= regulator
->rdev
;
2027 mutex_lock(&rdev
->mutex
);
2028 regulator
->uA_load
= 0;
2029 ret
= _regulator_force_disable(regulator
->rdev
);
2030 mutex_unlock(&rdev
->mutex
);
2033 while (rdev
->open_count
--)
2034 regulator_disable(rdev
->supply
);
2038 EXPORT_SYMBOL_GPL(regulator_force_disable
);
2040 static void regulator_disable_work(struct work_struct
*work
)
2042 struct regulator_dev
*rdev
= container_of(work
, struct regulator_dev
,
2046 mutex_lock(&rdev
->mutex
);
2048 BUG_ON(!rdev
->deferred_disables
);
2050 count
= rdev
->deferred_disables
;
2051 rdev
->deferred_disables
= 0;
2053 for (i
= 0; i
< count
; i
++) {
2054 ret
= _regulator_disable(rdev
);
2056 rdev_err(rdev
, "Deferred disable failed: %d\n", ret
);
2059 mutex_unlock(&rdev
->mutex
);
2062 for (i
= 0; i
< count
; i
++) {
2063 ret
= regulator_disable(rdev
->supply
);
2066 "Supply disable failed: %d\n", ret
);
2073 * regulator_disable_deferred - disable regulator output with delay
2074 * @regulator: regulator source
2075 * @ms: miliseconds until the regulator is disabled
2077 * Execute regulator_disable() on the regulator after a delay. This
2078 * is intended for use with devices that require some time to quiesce.
2080 * NOTE: this will only disable the regulator output if no other consumer
2081 * devices have it enabled, the regulator device supports disabling and
2082 * machine constraints permit this operation.
2084 int regulator_disable_deferred(struct regulator
*regulator
, int ms
)
2086 struct regulator_dev
*rdev
= regulator
->rdev
;
2089 if (regulator
->always_on
)
2093 return regulator_disable(regulator
);
2095 mutex_lock(&rdev
->mutex
);
2096 rdev
->deferred_disables
++;
2097 mutex_unlock(&rdev
->mutex
);
2099 ret
= queue_delayed_work(system_power_efficient_wq
,
2100 &rdev
->disable_work
,
2101 msecs_to_jiffies(ms
));
2107 EXPORT_SYMBOL_GPL(regulator_disable_deferred
);
2109 static int _regulator_is_enabled(struct regulator_dev
*rdev
)
2111 /* A GPIO control always takes precedence */
2113 return rdev
->ena_gpio_state
;
2115 /* If we don't know then assume that the regulator is always on */
2116 if (!rdev
->desc
->ops
->is_enabled
)
2119 return rdev
->desc
->ops
->is_enabled(rdev
);
2123 * regulator_is_enabled - is the regulator output enabled
2124 * @regulator: regulator source
2126 * Returns positive if the regulator driver backing the source/client
2127 * has requested that the device be enabled, zero if it hasn't, else a
2128 * negative errno code.
2130 * Note that the device backing this regulator handle can have multiple
2131 * users, so it might be enabled even if regulator_enable() was never
2132 * called for this particular source.
2134 int regulator_is_enabled(struct regulator
*regulator
)
2138 if (regulator
->always_on
)
2141 mutex_lock(®ulator
->rdev
->mutex
);
2142 ret
= _regulator_is_enabled(regulator
->rdev
);
2143 mutex_unlock(®ulator
->rdev
->mutex
);
2147 EXPORT_SYMBOL_GPL(regulator_is_enabled
);
2150 * regulator_can_change_voltage - check if regulator can change voltage
2151 * @regulator: regulator source
2153 * Returns positive if the regulator driver backing the source/client
2154 * can change its voltage, false otherwise. Useful for detecting fixed
2155 * or dummy regulators and disabling voltage change logic in the client
2158 int regulator_can_change_voltage(struct regulator
*regulator
)
2160 struct regulator_dev
*rdev
= regulator
->rdev
;
2162 if (rdev
->constraints
&&
2163 (rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
2164 if (rdev
->desc
->n_voltages
- rdev
->desc
->linear_min_sel
> 1)
2167 if (rdev
->desc
->continuous_voltage_range
&&
2168 rdev
->constraints
->min_uV
&& rdev
->constraints
->max_uV
&&
2169 rdev
->constraints
->min_uV
!= rdev
->constraints
->max_uV
)
2175 EXPORT_SYMBOL_GPL(regulator_can_change_voltage
);
2178 * regulator_count_voltages - count regulator_list_voltage() selectors
2179 * @regulator: regulator source
2181 * Returns number of selectors, or negative errno. Selectors are
2182 * numbered starting at zero, and typically correspond to bitfields
2183 * in hardware registers.
2185 int regulator_count_voltages(struct regulator
*regulator
)
2187 struct regulator_dev
*rdev
= regulator
->rdev
;
2189 if (rdev
->desc
->n_voltages
)
2190 return rdev
->desc
->n_voltages
;
2195 return regulator_count_voltages(rdev
->supply
);
2197 EXPORT_SYMBOL_GPL(regulator_count_voltages
);
2200 * regulator_list_voltage - enumerate supported voltages
2201 * @regulator: regulator source
2202 * @selector: identify voltage to list
2203 * Context: can sleep
2205 * Returns a voltage that can be passed to @regulator_set_voltage(),
2206 * zero if this selector code can't be used on this system, or a
2209 int regulator_list_voltage(struct regulator
*regulator
, unsigned selector
)
2211 struct regulator_dev
*rdev
= regulator
->rdev
;
2212 struct regulator_ops
*ops
= rdev
->desc
->ops
;
2215 if (rdev
->desc
->fixed_uV
&& rdev
->desc
->n_voltages
== 1 && !selector
)
2216 return rdev
->desc
->fixed_uV
;
2218 if (ops
->list_voltage
) {
2219 if (selector
>= rdev
->desc
->n_voltages
)
2221 mutex_lock(&rdev
->mutex
);
2222 ret
= ops
->list_voltage(rdev
, selector
);
2223 mutex_unlock(&rdev
->mutex
);
2224 } else if (rdev
->supply
) {
2225 ret
= regulator_list_voltage(rdev
->supply
, selector
);
2231 if (ret
< rdev
->constraints
->min_uV
)
2233 else if (ret
> rdev
->constraints
->max_uV
)
2239 EXPORT_SYMBOL_GPL(regulator_list_voltage
);
2242 * regulator_get_regmap - get the regulator's register map
2243 * @regulator: regulator source
2245 * Returns the register map for the given regulator, or an ERR_PTR value
2246 * if the regulator doesn't use regmap.
2248 struct regmap
*regulator_get_regmap(struct regulator
*regulator
)
2250 struct regmap
*map
= regulator
->rdev
->regmap
;
2252 return map
? map
: ERR_PTR(-EOPNOTSUPP
);
2256 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2257 * @regulator: regulator source
2258 * @vsel_reg: voltage selector register, output parameter
2259 * @vsel_mask: mask for voltage selector bitfield, output parameter
2261 * Returns the hardware register offset and bitmask used for setting the
2262 * regulator voltage. This might be useful when configuring voltage-scaling
2263 * hardware or firmware that can make I2C requests behind the kernel's back,
2266 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2267 * and 0 is returned, otherwise a negative errno is returned.
2269 int regulator_get_hardware_vsel_register(struct regulator
*regulator
,
2271 unsigned *vsel_mask
)
2273 struct regulator_dev
*rdev
= regulator
->rdev
;
2274 struct regulator_ops
*ops
= rdev
->desc
->ops
;
2276 if (ops
->set_voltage_sel
!= regulator_set_voltage_sel_regmap
)
2279 *vsel_reg
= rdev
->desc
->vsel_reg
;
2280 *vsel_mask
= rdev
->desc
->vsel_mask
;
2284 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register
);
2287 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2288 * @regulator: regulator source
2289 * @selector: identify voltage to list
2291 * Converts the selector to a hardware-specific voltage selector that can be
2292 * directly written to the regulator registers. The address of the voltage
2293 * register can be determined by calling @regulator_get_hardware_vsel_register.
2295 * On error a negative errno is returned.
2297 int regulator_list_hardware_vsel(struct regulator
*regulator
,
2300 struct regulator_dev
*rdev
= regulator
->rdev
;
2301 struct regulator_ops
*ops
= rdev
->desc
->ops
;
2303 if (selector
>= rdev
->desc
->n_voltages
)
2305 if (ops
->set_voltage_sel
!= regulator_set_voltage_sel_regmap
)
2310 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel
);
2313 * regulator_get_linear_step - return the voltage step size between VSEL values
2314 * @regulator: regulator source
2316 * Returns the voltage step size between VSEL values for linear
2317 * regulators, or return 0 if the regulator isn't a linear regulator.
2319 unsigned int regulator_get_linear_step(struct regulator
*regulator
)
2321 struct regulator_dev
*rdev
= regulator
->rdev
;
2323 return rdev
->desc
->uV_step
;
2325 EXPORT_SYMBOL_GPL(regulator_get_linear_step
);
2328 * regulator_is_supported_voltage - check if a voltage range can be supported
2330 * @regulator: Regulator to check.
2331 * @min_uV: Minimum required voltage in uV.
2332 * @max_uV: Maximum required voltage in uV.
2334 * Returns a boolean or a negative error code.
2336 int regulator_is_supported_voltage(struct regulator
*regulator
,
2337 int min_uV
, int max_uV
)
2339 struct regulator_dev
*rdev
= regulator
->rdev
;
2340 int i
, voltages
, ret
;
2342 /* If we can't change voltage check the current voltage */
2343 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
2344 ret
= regulator_get_voltage(regulator
);
2346 return min_uV
<= ret
&& ret
<= max_uV
;
2351 /* Any voltage within constrains range is fine? */
2352 if (rdev
->desc
->continuous_voltage_range
)
2353 return min_uV
>= rdev
->constraints
->min_uV
&&
2354 max_uV
<= rdev
->constraints
->max_uV
;
2356 ret
= regulator_count_voltages(regulator
);
2361 for (i
= 0; i
< voltages
; i
++) {
2362 ret
= regulator_list_voltage(regulator
, i
);
2364 if (ret
>= min_uV
&& ret
<= max_uV
)
2370 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage
);
2372 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
2373 int min_uV
, int max_uV
)
2378 unsigned int selector
;
2379 int old_selector
= -1;
2381 trace_regulator_set_voltage(rdev_get_name(rdev
), min_uV
, max_uV
);
2383 min_uV
+= rdev
->constraints
->uV_offset
;
2384 max_uV
+= rdev
->constraints
->uV_offset
;
2387 * If we can't obtain the old selector there is not enough
2388 * info to call set_voltage_time_sel().
2390 if (_regulator_is_enabled(rdev
) &&
2391 rdev
->desc
->ops
->set_voltage_time_sel
&&
2392 rdev
->desc
->ops
->get_voltage_sel
) {
2393 old_selector
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
2394 if (old_selector
< 0)
2395 return old_selector
;
2398 if (rdev
->desc
->ops
->set_voltage
) {
2399 ret
= rdev
->desc
->ops
->set_voltage(rdev
, min_uV
, max_uV
,
2403 if (rdev
->desc
->ops
->list_voltage
)
2404 best_val
= rdev
->desc
->ops
->list_voltage(rdev
,
2407 best_val
= _regulator_get_voltage(rdev
);
2410 } else if (rdev
->desc
->ops
->set_voltage_sel
) {
2411 if (rdev
->desc
->ops
->map_voltage
) {
2412 ret
= rdev
->desc
->ops
->map_voltage(rdev
, min_uV
,
2415 if (rdev
->desc
->ops
->list_voltage
==
2416 regulator_list_voltage_linear
)
2417 ret
= regulator_map_voltage_linear(rdev
,
2419 else if (rdev
->desc
->ops
->list_voltage
==
2420 regulator_list_voltage_linear_range
)
2421 ret
= regulator_map_voltage_linear_range(rdev
,
2424 ret
= regulator_map_voltage_iterate(rdev
,
2429 best_val
= rdev
->desc
->ops
->list_voltage(rdev
, ret
);
2430 if (min_uV
<= best_val
&& max_uV
>= best_val
) {
2432 if (old_selector
== selector
)
2435 ret
= rdev
->desc
->ops
->set_voltage_sel(
2445 /* Call set_voltage_time_sel if successfully obtained old_selector */
2446 if (ret
== 0 && !rdev
->constraints
->ramp_disable
&& old_selector
>= 0
2447 && old_selector
!= selector
) {
2449 delay
= rdev
->desc
->ops
->set_voltage_time_sel(rdev
,
2450 old_selector
, selector
);
2452 rdev_warn(rdev
, "set_voltage_time_sel() failed: %d\n",
2457 /* Insert any necessary delays */
2458 if (delay
>= 1000) {
2459 mdelay(delay
/ 1000);
2460 udelay(delay
% 1000);
2466 if (ret
== 0 && best_val
>= 0) {
2467 unsigned long data
= best_val
;
2469 _notifier_call_chain(rdev
, REGULATOR_EVENT_VOLTAGE_CHANGE
,
2473 trace_regulator_set_voltage_complete(rdev_get_name(rdev
), best_val
);
2479 * regulator_set_voltage - set regulator output voltage
2480 * @regulator: regulator source
2481 * @min_uV: Minimum required voltage in uV
2482 * @max_uV: Maximum acceptable voltage in uV
2484 * Sets a voltage regulator to the desired output voltage. This can be set
2485 * during any regulator state. IOW, regulator can be disabled or enabled.
2487 * If the regulator is enabled then the voltage will change to the new value
2488 * immediately otherwise if the regulator is disabled the regulator will
2489 * output at the new voltage when enabled.
2491 * NOTE: If the regulator is shared between several devices then the lowest
2492 * request voltage that meets the system constraints will be used.
2493 * Regulator system constraints must be set for this regulator before
2494 * calling this function otherwise this call will fail.
2496 int regulator_set_voltage(struct regulator
*regulator
, int min_uV
, int max_uV
)
2498 struct regulator_dev
*rdev
= regulator
->rdev
;
2500 int old_min_uV
, old_max_uV
;
2503 mutex_lock(&rdev
->mutex
);
2505 /* If we're setting the same range as last time the change
2506 * should be a noop (some cpufreq implementations use the same
2507 * voltage for multiple frequencies, for example).
2509 if (regulator
->min_uV
== min_uV
&& regulator
->max_uV
== max_uV
)
2512 /* If we're trying to set a range that overlaps the current voltage,
2513 * return succesfully even though the regulator does not support
2514 * changing the voltage.
2516 if (!(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_VOLTAGE
)) {
2517 current_uV
= _regulator_get_voltage(rdev
);
2518 if (min_uV
<= current_uV
&& current_uV
<= max_uV
) {
2519 regulator
->min_uV
= min_uV
;
2520 regulator
->max_uV
= max_uV
;
2526 if (!rdev
->desc
->ops
->set_voltage
&&
2527 !rdev
->desc
->ops
->set_voltage_sel
) {
2532 /* constraints check */
2533 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
2537 /* restore original values in case of error */
2538 old_min_uV
= regulator
->min_uV
;
2539 old_max_uV
= regulator
->max_uV
;
2540 regulator
->min_uV
= min_uV
;
2541 regulator
->max_uV
= max_uV
;
2543 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
);
2547 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
2552 mutex_unlock(&rdev
->mutex
);
2555 regulator
->min_uV
= old_min_uV
;
2556 regulator
->max_uV
= old_max_uV
;
2557 mutex_unlock(&rdev
->mutex
);
2560 EXPORT_SYMBOL_GPL(regulator_set_voltage
);
2563 * regulator_set_voltage_time - get raise/fall time
2564 * @regulator: regulator source
2565 * @old_uV: starting voltage in microvolts
2566 * @new_uV: target voltage in microvolts
2568 * Provided with the starting and ending voltage, this function attempts to
2569 * calculate the time in microseconds required to rise or fall to this new
2572 int regulator_set_voltage_time(struct regulator
*regulator
,
2573 int old_uV
, int new_uV
)
2575 struct regulator_dev
*rdev
= regulator
->rdev
;
2576 struct regulator_ops
*ops
= rdev
->desc
->ops
;
2582 /* Currently requires operations to do this */
2583 if (!ops
->list_voltage
|| !ops
->set_voltage_time_sel
2584 || !rdev
->desc
->n_voltages
)
2587 for (i
= 0; i
< rdev
->desc
->n_voltages
; i
++) {
2588 /* We only look for exact voltage matches here */
2589 voltage
= regulator_list_voltage(regulator
, i
);
2594 if (voltage
== old_uV
)
2596 if (voltage
== new_uV
)
2600 if (old_sel
< 0 || new_sel
< 0)
2603 return ops
->set_voltage_time_sel(rdev
, old_sel
, new_sel
);
2605 EXPORT_SYMBOL_GPL(regulator_set_voltage_time
);
2608 * regulator_set_voltage_time_sel - get raise/fall time
2609 * @rdev: regulator source device
2610 * @old_selector: selector for starting voltage
2611 * @new_selector: selector for target voltage
2613 * Provided with the starting and target voltage selectors, this function
2614 * returns time in microseconds required to rise or fall to this new voltage
2616 * Drivers providing ramp_delay in regulation_constraints can use this as their
2617 * set_voltage_time_sel() operation.
2619 int regulator_set_voltage_time_sel(struct regulator_dev
*rdev
,
2620 unsigned int old_selector
,
2621 unsigned int new_selector
)
2623 unsigned int ramp_delay
= 0;
2624 int old_volt
, new_volt
;
2626 if (rdev
->constraints
->ramp_delay
)
2627 ramp_delay
= rdev
->constraints
->ramp_delay
;
2628 else if (rdev
->desc
->ramp_delay
)
2629 ramp_delay
= rdev
->desc
->ramp_delay
;
2631 if (ramp_delay
== 0) {
2632 rdev_warn(rdev
, "ramp_delay not set\n");
2637 if (!rdev
->desc
->ops
->list_voltage
)
2640 old_volt
= rdev
->desc
->ops
->list_voltage(rdev
, old_selector
);
2641 new_volt
= rdev
->desc
->ops
->list_voltage(rdev
, new_selector
);
2643 return DIV_ROUND_UP(abs(new_volt
- old_volt
), ramp_delay
);
2645 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel
);
2648 * regulator_sync_voltage - re-apply last regulator output voltage
2649 * @regulator: regulator source
2651 * Re-apply the last configured voltage. This is intended to be used
2652 * where some external control source the consumer is cooperating with
2653 * has caused the configured voltage to change.
2655 int regulator_sync_voltage(struct regulator
*regulator
)
2657 struct regulator_dev
*rdev
= regulator
->rdev
;
2658 int ret
, min_uV
, max_uV
;
2660 mutex_lock(&rdev
->mutex
);
2662 if (!rdev
->desc
->ops
->set_voltage
&&
2663 !rdev
->desc
->ops
->set_voltage_sel
) {
2668 /* This is only going to work if we've had a voltage configured. */
2669 if (!regulator
->min_uV
&& !regulator
->max_uV
) {
2674 min_uV
= regulator
->min_uV
;
2675 max_uV
= regulator
->max_uV
;
2677 /* This should be a paranoia check... */
2678 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
2682 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
);
2686 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
2689 mutex_unlock(&rdev
->mutex
);
2692 EXPORT_SYMBOL_GPL(regulator_sync_voltage
);
2694 static int _regulator_get_voltage(struct regulator_dev
*rdev
)
2698 if (rdev
->desc
->ops
->get_voltage_sel
) {
2699 sel
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
2702 ret
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
2703 } else if (rdev
->desc
->ops
->get_voltage
) {
2704 ret
= rdev
->desc
->ops
->get_voltage(rdev
);
2705 } else if (rdev
->desc
->ops
->list_voltage
) {
2706 ret
= rdev
->desc
->ops
->list_voltage(rdev
, 0);
2707 } else if (rdev
->desc
->fixed_uV
&& (rdev
->desc
->n_voltages
== 1)) {
2708 ret
= rdev
->desc
->fixed_uV
;
2709 } else if (rdev
->supply
) {
2710 ret
= regulator_get_voltage(rdev
->supply
);
2717 return ret
- rdev
->constraints
->uV_offset
;
2721 * regulator_get_voltage - get regulator output voltage
2722 * @regulator: regulator source
2724 * This returns the current regulator voltage in uV.
2726 * NOTE: If the regulator is disabled it will return the voltage value. This
2727 * function should not be used to determine regulator state.
2729 int regulator_get_voltage(struct regulator
*regulator
)
2733 mutex_lock(®ulator
->rdev
->mutex
);
2735 ret
= _regulator_get_voltage(regulator
->rdev
);
2737 mutex_unlock(®ulator
->rdev
->mutex
);
2741 EXPORT_SYMBOL_GPL(regulator_get_voltage
);
2744 * regulator_set_current_limit - set regulator output current limit
2745 * @regulator: regulator source
2746 * @min_uA: Minimum supported current in uA
2747 * @max_uA: Maximum supported current in uA
2749 * Sets current sink to the desired output current. This can be set during
2750 * any regulator state. IOW, regulator can be disabled or enabled.
2752 * If the regulator is enabled then the current will change to the new value
2753 * immediately otherwise if the regulator is disabled the regulator will
2754 * output at the new current when enabled.
2756 * NOTE: Regulator system constraints must be set for this regulator before
2757 * calling this function otherwise this call will fail.
2759 int regulator_set_current_limit(struct regulator
*regulator
,
2760 int min_uA
, int max_uA
)
2762 struct regulator_dev
*rdev
= regulator
->rdev
;
2765 mutex_lock(&rdev
->mutex
);
2768 if (!rdev
->desc
->ops
->set_current_limit
) {
2773 /* constraints check */
2774 ret
= regulator_check_current_limit(rdev
, &min_uA
, &max_uA
);
2778 ret
= rdev
->desc
->ops
->set_current_limit(rdev
, min_uA
, max_uA
);
2780 mutex_unlock(&rdev
->mutex
);
2783 EXPORT_SYMBOL_GPL(regulator_set_current_limit
);
2785 static int _regulator_get_current_limit(struct regulator_dev
*rdev
)
2789 mutex_lock(&rdev
->mutex
);
2792 if (!rdev
->desc
->ops
->get_current_limit
) {
2797 ret
= rdev
->desc
->ops
->get_current_limit(rdev
);
2799 mutex_unlock(&rdev
->mutex
);
2804 * regulator_get_current_limit - get regulator output current
2805 * @regulator: regulator source
2807 * This returns the current supplied by the specified current sink in uA.
2809 * NOTE: If the regulator is disabled it will return the current value. This
2810 * function should not be used to determine regulator state.
2812 int regulator_get_current_limit(struct regulator
*regulator
)
2814 return _regulator_get_current_limit(regulator
->rdev
);
2816 EXPORT_SYMBOL_GPL(regulator_get_current_limit
);
2819 * regulator_set_mode - set regulator operating mode
2820 * @regulator: regulator source
2821 * @mode: operating mode - one of the REGULATOR_MODE constants
2823 * Set regulator operating mode to increase regulator efficiency or improve
2824 * regulation performance.
2826 * NOTE: Regulator system constraints must be set for this regulator before
2827 * calling this function otherwise this call will fail.
2829 int regulator_set_mode(struct regulator
*regulator
, unsigned int mode
)
2831 struct regulator_dev
*rdev
= regulator
->rdev
;
2833 int regulator_curr_mode
;
2835 mutex_lock(&rdev
->mutex
);
2838 if (!rdev
->desc
->ops
->set_mode
) {
2843 /* return if the same mode is requested */
2844 if (rdev
->desc
->ops
->get_mode
) {
2845 regulator_curr_mode
= rdev
->desc
->ops
->get_mode(rdev
);
2846 if (regulator_curr_mode
== mode
) {
2852 /* constraints check */
2853 ret
= regulator_mode_constrain(rdev
, &mode
);
2857 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
2859 mutex_unlock(&rdev
->mutex
);
2862 EXPORT_SYMBOL_GPL(regulator_set_mode
);
2864 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
)
2868 mutex_lock(&rdev
->mutex
);
2871 if (!rdev
->desc
->ops
->get_mode
) {
2876 ret
= rdev
->desc
->ops
->get_mode(rdev
);
2878 mutex_unlock(&rdev
->mutex
);
2883 * regulator_get_mode - get regulator operating mode
2884 * @regulator: regulator source
2886 * Get the current regulator operating mode.
2888 unsigned int regulator_get_mode(struct regulator
*regulator
)
2890 return _regulator_get_mode(regulator
->rdev
);
2892 EXPORT_SYMBOL_GPL(regulator_get_mode
);
2895 * regulator_set_optimum_mode - set regulator optimum operating mode
2896 * @regulator: regulator source
2897 * @uA_load: load current
2899 * Notifies the regulator core of a new device load. This is then used by
2900 * DRMS (if enabled by constraints) to set the most efficient regulator
2901 * operating mode for the new regulator loading.
2903 * Consumer devices notify their supply regulator of the maximum power
2904 * they will require (can be taken from device datasheet in the power
2905 * consumption tables) when they change operational status and hence power
2906 * state. Examples of operational state changes that can affect power
2907 * consumption are :-
2909 * o Device is opened / closed.
2910 * o Device I/O is about to begin or has just finished.
2911 * o Device is idling in between work.
2913 * This information is also exported via sysfs to userspace.
2915 * DRMS will sum the total requested load on the regulator and change
2916 * to the most efficient operating mode if platform constraints allow.
2918 * Returns the new regulator mode or error.
2920 int regulator_set_optimum_mode(struct regulator
*regulator
, int uA_load
)
2922 struct regulator_dev
*rdev
= regulator
->rdev
;
2923 struct regulator
*consumer
;
2924 int ret
, output_uV
, input_uV
= 0, total_uA_load
= 0;
2928 input_uV
= regulator_get_voltage(rdev
->supply
);
2930 mutex_lock(&rdev
->mutex
);
2933 * first check to see if we can set modes at all, otherwise just
2934 * tell the consumer everything is OK.
2936 regulator
->uA_load
= uA_load
;
2937 ret
= regulator_check_drms(rdev
);
2943 if (!rdev
->desc
->ops
->get_optimum_mode
)
2947 * we can actually do this so any errors are indicators of
2948 * potential real failure.
2952 if (!rdev
->desc
->ops
->set_mode
)
2955 /* get output voltage */
2956 output_uV
= _regulator_get_voltage(rdev
);
2957 if (output_uV
<= 0) {
2958 rdev_err(rdev
, "invalid output voltage found\n");
2962 /* No supply? Use constraint voltage */
2964 input_uV
= rdev
->constraints
->input_uV
;
2965 if (input_uV
<= 0) {
2966 rdev_err(rdev
, "invalid input voltage found\n");
2970 /* calc total requested load for this regulator */
2971 list_for_each_entry(consumer
, &rdev
->consumer_list
, list
)
2972 total_uA_load
+= consumer
->uA_load
;
2974 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
,
2975 input_uV
, output_uV
,
2977 ret
= regulator_mode_constrain(rdev
, &mode
);
2979 rdev_err(rdev
, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2980 total_uA_load
, input_uV
, output_uV
);
2984 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
2986 rdev_err(rdev
, "failed to set optimum mode %x\n", mode
);
2991 mutex_unlock(&rdev
->mutex
);
2994 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode
);
2997 * regulator_allow_bypass - allow the regulator to go into bypass mode
2999 * @regulator: Regulator to configure
3000 * @enable: enable or disable bypass mode
3002 * Allow the regulator to go into bypass mode if all other consumers
3003 * for the regulator also enable bypass mode and the machine
3004 * constraints allow this. Bypass mode means that the regulator is
3005 * simply passing the input directly to the output with no regulation.
3007 int regulator_allow_bypass(struct regulator
*regulator
, bool enable
)
3009 struct regulator_dev
*rdev
= regulator
->rdev
;
3012 if (!rdev
->desc
->ops
->set_bypass
)
3015 if (rdev
->constraints
&&
3016 !(rdev
->constraints
->valid_ops_mask
& REGULATOR_CHANGE_BYPASS
))
3019 mutex_lock(&rdev
->mutex
);
3021 if (enable
&& !regulator
->bypass
) {
3022 rdev
->bypass_count
++;
3024 if (rdev
->bypass_count
== rdev
->open_count
) {
3025 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
3027 rdev
->bypass_count
--;
3030 } else if (!enable
&& regulator
->bypass
) {
3031 rdev
->bypass_count
--;
3033 if (rdev
->bypass_count
!= rdev
->open_count
) {
3034 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
3036 rdev
->bypass_count
++;
3041 regulator
->bypass
= enable
;
3043 mutex_unlock(&rdev
->mutex
);
3047 EXPORT_SYMBOL_GPL(regulator_allow_bypass
);
3050 * regulator_register_notifier - register regulator event notifier
3051 * @regulator: regulator source
3052 * @nb: notifier block
3054 * Register notifier block to receive regulator events.
3056 int regulator_register_notifier(struct regulator
*regulator
,
3057 struct notifier_block
*nb
)
3059 return blocking_notifier_chain_register(®ulator
->rdev
->notifier
,
3062 EXPORT_SYMBOL_GPL(regulator_register_notifier
);
3065 * regulator_unregister_notifier - unregister regulator event notifier
3066 * @regulator: regulator source
3067 * @nb: notifier block
3069 * Unregister regulator event notifier block.
3071 int regulator_unregister_notifier(struct regulator
*regulator
,
3072 struct notifier_block
*nb
)
3074 return blocking_notifier_chain_unregister(®ulator
->rdev
->notifier
,
3077 EXPORT_SYMBOL_GPL(regulator_unregister_notifier
);
3079 /* notify regulator consumers and downstream regulator consumers.
3080 * Note mutex must be held by caller.
3082 static void _notifier_call_chain(struct regulator_dev
*rdev
,
3083 unsigned long event
, void *data
)
3085 /* call rdev chain first */
3086 blocking_notifier_call_chain(&rdev
->notifier
, event
, data
);
3090 * regulator_bulk_get - get multiple regulator consumers
3092 * @dev: Device to supply
3093 * @num_consumers: Number of consumers to register
3094 * @consumers: Configuration of consumers; clients are stored here.
3096 * @return 0 on success, an errno on failure.
3098 * This helper function allows drivers to get several regulator
3099 * consumers in one operation. If any of the regulators cannot be
3100 * acquired then any regulators that were allocated will be freed
3101 * before returning to the caller.
3103 int regulator_bulk_get(struct device
*dev
, int num_consumers
,
3104 struct regulator_bulk_data
*consumers
)
3109 for (i
= 0; i
< num_consumers
; i
++)
3110 consumers
[i
].consumer
= NULL
;
3112 for (i
= 0; i
< num_consumers
; i
++) {
3113 consumers
[i
].consumer
= regulator_get(dev
,
3114 consumers
[i
].supply
);
3115 if (IS_ERR(consumers
[i
].consumer
)) {
3116 ret
= PTR_ERR(consumers
[i
].consumer
);
3117 dev_err(dev
, "Failed to get supply '%s': %d\n",
3118 consumers
[i
].supply
, ret
);
3119 consumers
[i
].consumer
= NULL
;
3128 regulator_put(consumers
[i
].consumer
);
3132 EXPORT_SYMBOL_GPL(regulator_bulk_get
);
3134 static void regulator_bulk_enable_async(void *data
, async_cookie_t cookie
)
3136 struct regulator_bulk_data
*bulk
= data
;
3138 bulk
->ret
= regulator_enable(bulk
->consumer
);
3142 * regulator_bulk_enable - enable multiple regulator consumers
3144 * @num_consumers: Number of consumers
3145 * @consumers: Consumer data; clients are stored here.
3146 * @return 0 on success, an errno on failure
3148 * This convenience API allows consumers to enable multiple regulator
3149 * clients in a single API call. If any consumers cannot be enabled
3150 * then any others that were enabled will be disabled again prior to
3153 int regulator_bulk_enable(int num_consumers
,
3154 struct regulator_bulk_data
*consumers
)
3156 ASYNC_DOMAIN_EXCLUSIVE(async_domain
);
3160 for (i
= 0; i
< num_consumers
; i
++) {
3161 if (consumers
[i
].consumer
->always_on
)
3162 consumers
[i
].ret
= 0;
3164 async_schedule_domain(regulator_bulk_enable_async
,
3165 &consumers
[i
], &async_domain
);
3168 async_synchronize_full_domain(&async_domain
);
3170 /* If any consumer failed we need to unwind any that succeeded */
3171 for (i
= 0; i
< num_consumers
; i
++) {
3172 if (consumers
[i
].ret
!= 0) {
3173 ret
= consumers
[i
].ret
;
3181 for (i
= 0; i
< num_consumers
; i
++) {
3182 if (consumers
[i
].ret
< 0)
3183 pr_err("Failed to enable %s: %d\n", consumers
[i
].supply
,
3186 regulator_disable(consumers
[i
].consumer
);
3191 EXPORT_SYMBOL_GPL(regulator_bulk_enable
);
3194 * regulator_bulk_disable - disable multiple regulator consumers
3196 * @num_consumers: Number of consumers
3197 * @consumers: Consumer data; clients are stored here.
3198 * @return 0 on success, an errno on failure
3200 * This convenience API allows consumers to disable multiple regulator
3201 * clients in a single API call. If any consumers cannot be disabled
3202 * then any others that were disabled will be enabled again prior to
3205 int regulator_bulk_disable(int num_consumers
,
3206 struct regulator_bulk_data
*consumers
)
3211 for (i
= num_consumers
- 1; i
>= 0; --i
) {
3212 ret
= regulator_disable(consumers
[i
].consumer
);
3220 pr_err("Failed to disable %s: %d\n", consumers
[i
].supply
, ret
);
3221 for (++i
; i
< num_consumers
; ++i
) {
3222 r
= regulator_enable(consumers
[i
].consumer
);
3224 pr_err("Failed to reename %s: %d\n",
3225 consumers
[i
].supply
, r
);
3230 EXPORT_SYMBOL_GPL(regulator_bulk_disable
);
3233 * regulator_bulk_force_disable - force disable multiple regulator consumers
3235 * @num_consumers: Number of consumers
3236 * @consumers: Consumer data; clients are stored here.
3237 * @return 0 on success, an errno on failure
3239 * This convenience API allows consumers to forcibly disable multiple regulator
3240 * clients in a single API call.
3241 * NOTE: This should be used for situations when device damage will
3242 * likely occur if the regulators are not disabled (e.g. over temp).
3243 * Although regulator_force_disable function call for some consumers can
3244 * return error numbers, the function is called for all consumers.
3246 int regulator_bulk_force_disable(int num_consumers
,
3247 struct regulator_bulk_data
*consumers
)
3252 for (i
= 0; i
< num_consumers
; i
++)
3254 regulator_force_disable(consumers
[i
].consumer
);
3256 for (i
= 0; i
< num_consumers
; i
++) {
3257 if (consumers
[i
].ret
!= 0) {
3258 ret
= consumers
[i
].ret
;
3267 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable
);
3270 * regulator_bulk_free - free multiple regulator consumers
3272 * @num_consumers: Number of consumers
3273 * @consumers: Consumer data; clients are stored here.
3275 * This convenience API allows consumers to free multiple regulator
3276 * clients in a single API call.
3278 void regulator_bulk_free(int num_consumers
,
3279 struct regulator_bulk_data
*consumers
)
3283 for (i
= 0; i
< num_consumers
; i
++) {
3284 regulator_put(consumers
[i
].consumer
);
3285 consumers
[i
].consumer
= NULL
;
3288 EXPORT_SYMBOL_GPL(regulator_bulk_free
);
3291 * regulator_notifier_call_chain - call regulator event notifier
3292 * @rdev: regulator source
3293 * @event: notifier block
3294 * @data: callback-specific data.
3296 * Called by regulator drivers to notify clients a regulator event has
3297 * occurred. We also notify regulator clients downstream.
3298 * Note lock must be held by caller.
3300 int regulator_notifier_call_chain(struct regulator_dev
*rdev
,
3301 unsigned long event
, void *data
)
3303 _notifier_call_chain(rdev
, event
, data
);
3307 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain
);
3310 * regulator_mode_to_status - convert a regulator mode into a status
3312 * @mode: Mode to convert
3314 * Convert a regulator mode into a status.
3316 int regulator_mode_to_status(unsigned int mode
)
3319 case REGULATOR_MODE_FAST
:
3320 return REGULATOR_STATUS_FAST
;
3321 case REGULATOR_MODE_NORMAL
:
3322 return REGULATOR_STATUS_NORMAL
;
3323 case REGULATOR_MODE_IDLE
:
3324 return REGULATOR_STATUS_IDLE
;
3325 case REGULATOR_MODE_STANDBY
:
3326 return REGULATOR_STATUS_STANDBY
;
3328 return REGULATOR_STATUS_UNDEFINED
;
3331 EXPORT_SYMBOL_GPL(regulator_mode_to_status
);
3334 * To avoid cluttering sysfs (and memory) with useless state, only
3335 * create attributes that can be meaningfully displayed.
3337 static int add_regulator_attributes(struct regulator_dev
*rdev
)
3339 struct device
*dev
= &rdev
->dev
;
3340 struct regulator_ops
*ops
= rdev
->desc
->ops
;
3343 /* some attributes need specific methods to be displayed */
3344 if ((ops
->get_voltage
&& ops
->get_voltage(rdev
) >= 0) ||
3345 (ops
->get_voltage_sel
&& ops
->get_voltage_sel(rdev
) >= 0) ||
3346 (ops
->list_voltage
&& ops
->list_voltage(rdev
, 0) >= 0) ||
3347 (rdev
->desc
->fixed_uV
&& (rdev
->desc
->n_voltages
== 1))) {
3348 status
= device_create_file(dev
, &dev_attr_microvolts
);
3352 if (ops
->get_current_limit
) {
3353 status
= device_create_file(dev
, &dev_attr_microamps
);
3357 if (ops
->get_mode
) {
3358 status
= device_create_file(dev
, &dev_attr_opmode
);
3362 if (rdev
->ena_pin
|| ops
->is_enabled
) {
3363 status
= device_create_file(dev
, &dev_attr_state
);
3367 if (ops
->get_status
) {
3368 status
= device_create_file(dev
, &dev_attr_status
);
3372 if (ops
->get_bypass
) {
3373 status
= device_create_file(dev
, &dev_attr_bypass
);
3378 /* some attributes are type-specific */
3379 if (rdev
->desc
->type
== REGULATOR_CURRENT
) {
3380 status
= device_create_file(dev
, &dev_attr_requested_microamps
);
3385 /* all the other attributes exist to support constraints;
3386 * don't show them if there are no constraints, or if the
3387 * relevant supporting methods are missing.
3389 if (!rdev
->constraints
)
3392 /* constraints need specific supporting methods */
3393 if (ops
->set_voltage
|| ops
->set_voltage_sel
) {
3394 status
= device_create_file(dev
, &dev_attr_min_microvolts
);
3397 status
= device_create_file(dev
, &dev_attr_max_microvolts
);
3401 if (ops
->set_current_limit
) {
3402 status
= device_create_file(dev
, &dev_attr_min_microamps
);
3405 status
= device_create_file(dev
, &dev_attr_max_microamps
);
3410 status
= device_create_file(dev
, &dev_attr_suspend_standby_state
);
3413 status
= device_create_file(dev
, &dev_attr_suspend_mem_state
);
3416 status
= device_create_file(dev
, &dev_attr_suspend_disk_state
);
3420 if (ops
->set_suspend_voltage
) {
3421 status
= device_create_file(dev
,
3422 &dev_attr_suspend_standby_microvolts
);
3425 status
= device_create_file(dev
,
3426 &dev_attr_suspend_mem_microvolts
);
3429 status
= device_create_file(dev
,
3430 &dev_attr_suspend_disk_microvolts
);
3435 if (ops
->set_suspend_mode
) {
3436 status
= device_create_file(dev
,
3437 &dev_attr_suspend_standby_mode
);
3440 status
= device_create_file(dev
,
3441 &dev_attr_suspend_mem_mode
);
3444 status
= device_create_file(dev
,
3445 &dev_attr_suspend_disk_mode
);
3453 static void rdev_init_debugfs(struct regulator_dev
*rdev
)
3455 rdev
->debugfs
= debugfs_create_dir(rdev_get_name(rdev
), debugfs_root
);
3456 if (!rdev
->debugfs
) {
3457 rdev_warn(rdev
, "Failed to create debugfs directory\n");
3461 debugfs_create_u32("use_count", 0444, rdev
->debugfs
,
3463 debugfs_create_u32("open_count", 0444, rdev
->debugfs
,
3465 debugfs_create_u32("bypass_count", 0444, rdev
->debugfs
,
3466 &rdev
->bypass_count
);
3470 * regulator_register - register regulator
3471 * @regulator_desc: regulator to register
3472 * @config: runtime configuration for regulator
3474 * Called by regulator drivers to register a regulator.
3475 * Returns a valid pointer to struct regulator_dev on success
3476 * or an ERR_PTR() on error.
3478 struct regulator_dev
*
3479 regulator_register(const struct regulator_desc
*regulator_desc
,
3480 const struct regulator_config
*config
)
3482 const struct regulation_constraints
*constraints
= NULL
;
3483 const struct regulator_init_data
*init_data
;
3484 static atomic_t regulator_no
= ATOMIC_INIT(0);
3485 struct regulator_dev
*rdev
;
3488 const char *supply
= NULL
;
3490 if (regulator_desc
== NULL
|| config
== NULL
)
3491 return ERR_PTR(-EINVAL
);
3496 if (regulator_desc
->name
== NULL
|| regulator_desc
->ops
== NULL
)
3497 return ERR_PTR(-EINVAL
);
3499 if (regulator_desc
->type
!= REGULATOR_VOLTAGE
&&
3500 regulator_desc
->type
!= REGULATOR_CURRENT
)
3501 return ERR_PTR(-EINVAL
);
3503 /* Only one of each should be implemented */
3504 WARN_ON(regulator_desc
->ops
->get_voltage
&&
3505 regulator_desc
->ops
->get_voltage_sel
);
3506 WARN_ON(regulator_desc
->ops
->set_voltage
&&
3507 regulator_desc
->ops
->set_voltage_sel
);
3509 /* If we're using selectors we must implement list_voltage. */
3510 if (regulator_desc
->ops
->get_voltage_sel
&&
3511 !regulator_desc
->ops
->list_voltage
) {
3512 return ERR_PTR(-EINVAL
);
3514 if (regulator_desc
->ops
->set_voltage_sel
&&
3515 !regulator_desc
->ops
->list_voltage
) {
3516 return ERR_PTR(-EINVAL
);
3519 init_data
= config
->init_data
;
3521 rdev
= kzalloc(sizeof(struct regulator_dev
), GFP_KERNEL
);
3523 return ERR_PTR(-ENOMEM
);
3525 mutex_lock(®ulator_list_mutex
);
3527 mutex_init(&rdev
->mutex
);
3528 rdev
->reg_data
= config
->driver_data
;
3529 rdev
->owner
= regulator_desc
->owner
;
3530 rdev
->desc
= regulator_desc
;
3532 rdev
->regmap
= config
->regmap
;
3533 else if (dev_get_regmap(dev
, NULL
))
3534 rdev
->regmap
= dev_get_regmap(dev
, NULL
);
3535 else if (dev
->parent
)
3536 rdev
->regmap
= dev_get_regmap(dev
->parent
, NULL
);
3537 INIT_LIST_HEAD(&rdev
->consumer_list
);
3538 INIT_LIST_HEAD(&rdev
->list
);
3539 BLOCKING_INIT_NOTIFIER_HEAD(&rdev
->notifier
);
3540 INIT_DELAYED_WORK(&rdev
->disable_work
, regulator_disable_work
);
3542 /* preform any regulator specific init */
3543 if (init_data
&& init_data
->regulator_init
) {
3544 ret
= init_data
->regulator_init(rdev
->reg_data
);
3549 /* register with sysfs */
3550 rdev
->dev
.class = ®ulator_class
;
3551 rdev
->dev
.of_node
= of_node_get(config
->of_node
);
3552 rdev
->dev
.parent
= dev
;
3553 dev_set_name(&rdev
->dev
, "regulator.%d",
3554 atomic_inc_return(®ulator_no
) - 1);
3555 ret
= device_register(&rdev
->dev
);
3557 put_device(&rdev
->dev
);
3561 dev_set_drvdata(&rdev
->dev
, rdev
);
3563 if (config
->ena_gpio
&& gpio_is_valid(config
->ena_gpio
)) {
3564 ret
= regulator_ena_gpio_request(rdev
, config
);
3566 rdev_err(rdev
, "Failed to request enable GPIO%d: %d\n",
3567 config
->ena_gpio
, ret
);
3571 if (config
->ena_gpio_flags
& GPIOF_OUT_INIT_HIGH
)
3572 rdev
->ena_gpio_state
= 1;
3574 if (config
->ena_gpio_invert
)
3575 rdev
->ena_gpio_state
= !rdev
->ena_gpio_state
;
3578 /* set regulator constraints */
3580 constraints
= &init_data
->constraints
;
3582 ret
= set_machine_constraints(rdev
, constraints
);
3586 /* add attributes supported by this regulator */
3587 ret
= add_regulator_attributes(rdev
);
3591 if (init_data
&& init_data
->supply_regulator
)
3592 supply
= init_data
->supply_regulator
;
3593 else if (regulator_desc
->supply_name
)
3594 supply
= regulator_desc
->supply_name
;
3597 struct regulator_dev
*r
;
3599 r
= regulator_dev_lookup(dev
, supply
, &ret
);
3601 if (ret
== -ENODEV
) {
3603 * No supply was specified for this regulator and
3604 * there will never be one.
3609 dev_err(dev
, "Failed to find supply %s\n", supply
);
3610 ret
= -EPROBE_DEFER
;
3614 ret
= set_supply(rdev
, r
);
3618 /* Enable supply if rail is enabled */
3619 if (_regulator_is_enabled(rdev
)) {
3620 ret
= regulator_enable(rdev
->supply
);
3627 /* add consumers devices */
3629 for (i
= 0; i
< init_data
->num_consumer_supplies
; i
++) {
3630 ret
= set_consumer_device_supply(rdev
,
3631 init_data
->consumer_supplies
[i
].dev_name
,
3632 init_data
->consumer_supplies
[i
].supply
);
3634 dev_err(dev
, "Failed to set supply %s\n",
3635 init_data
->consumer_supplies
[i
].supply
);
3636 goto unset_supplies
;
3641 list_add(&rdev
->list
, ®ulator_list
);
3643 rdev_init_debugfs(rdev
);
3645 mutex_unlock(®ulator_list_mutex
);
3649 unset_regulator_supplies(rdev
);
3653 _regulator_put(rdev
->supply
);
3654 regulator_ena_gpio_free(rdev
);
3655 kfree(rdev
->constraints
);
3657 device_unregister(&rdev
->dev
);
3658 /* device core frees rdev */
3659 rdev
= ERR_PTR(ret
);
3664 rdev
= ERR_PTR(ret
);
3667 EXPORT_SYMBOL_GPL(regulator_register
);
3670 * regulator_unregister - unregister regulator
3671 * @rdev: regulator to unregister
3673 * Called by regulator drivers to unregister a regulator.
3675 void regulator_unregister(struct regulator_dev
*rdev
)
3681 while (rdev
->use_count
--)
3682 regulator_disable(rdev
->supply
);
3683 regulator_put(rdev
->supply
);
3685 mutex_lock(®ulator_list_mutex
);
3686 debugfs_remove_recursive(rdev
->debugfs
);
3687 flush_work(&rdev
->disable_work
.work
);
3688 WARN_ON(rdev
->open_count
);
3689 unset_regulator_supplies(rdev
);
3690 list_del(&rdev
->list
);
3691 kfree(rdev
->constraints
);
3692 regulator_ena_gpio_free(rdev
);
3693 of_node_put(rdev
->dev
.of_node
);
3694 device_unregister(&rdev
->dev
);
3695 mutex_unlock(®ulator_list_mutex
);
3697 EXPORT_SYMBOL_GPL(regulator_unregister
);
3700 * regulator_suspend_prepare - prepare regulators for system wide suspend
3701 * @state: system suspend state
3703 * Configure each regulator with it's suspend operating parameters for state.
3704 * This will usually be called by machine suspend code prior to supending.
3706 int regulator_suspend_prepare(suspend_state_t state
)
3708 struct regulator_dev
*rdev
;
3711 /* ON is handled by regulator active state */
3712 if (state
== PM_SUSPEND_ON
)
3715 mutex_lock(®ulator_list_mutex
);
3716 list_for_each_entry(rdev
, ®ulator_list
, list
) {
3718 mutex_lock(&rdev
->mutex
);
3719 ret
= suspend_prepare(rdev
, state
);
3720 mutex_unlock(&rdev
->mutex
);
3723 rdev_err(rdev
, "failed to prepare\n");
3728 mutex_unlock(®ulator_list_mutex
);
3731 EXPORT_SYMBOL_GPL(regulator_suspend_prepare
);
3734 * regulator_suspend_finish - resume regulators from system wide suspend
3736 * Turn on regulators that might be turned off by regulator_suspend_prepare
3737 * and that should be turned on according to the regulators properties.
3739 int regulator_suspend_finish(void)
3741 struct regulator_dev
*rdev
;
3744 mutex_lock(®ulator_list_mutex
);
3745 list_for_each_entry(rdev
, ®ulator_list
, list
) {
3746 mutex_lock(&rdev
->mutex
);
3747 if (rdev
->use_count
> 0 || rdev
->constraints
->always_on
) {
3748 error
= _regulator_do_enable(rdev
);
3752 if (!have_full_constraints())
3754 if (!_regulator_is_enabled(rdev
))
3757 error
= _regulator_do_disable(rdev
);
3762 mutex_unlock(&rdev
->mutex
);
3764 mutex_unlock(®ulator_list_mutex
);
3767 EXPORT_SYMBOL_GPL(regulator_suspend_finish
);
3770 * regulator_has_full_constraints - the system has fully specified constraints
3772 * Calling this function will cause the regulator API to disable all
3773 * regulators which have a zero use count and don't have an always_on
3774 * constraint in a late_initcall.
3776 * The intention is that this will become the default behaviour in a
3777 * future kernel release so users are encouraged to use this facility
3780 void regulator_has_full_constraints(void)
3782 has_full_constraints
= 1;
3784 EXPORT_SYMBOL_GPL(regulator_has_full_constraints
);
3787 * rdev_get_drvdata - get rdev regulator driver data
3790 * Get rdev regulator driver private data. This call can be used in the
3791 * regulator driver context.
3793 void *rdev_get_drvdata(struct regulator_dev
*rdev
)
3795 return rdev
->reg_data
;
3797 EXPORT_SYMBOL_GPL(rdev_get_drvdata
);
3800 * regulator_get_drvdata - get regulator driver data
3801 * @regulator: regulator
3803 * Get regulator driver private data. This call can be used in the consumer
3804 * driver context when non API regulator specific functions need to be called.
3806 void *regulator_get_drvdata(struct regulator
*regulator
)
3808 return regulator
->rdev
->reg_data
;
3810 EXPORT_SYMBOL_GPL(regulator_get_drvdata
);
3813 * regulator_set_drvdata - set regulator driver data
3814 * @regulator: regulator
3817 void regulator_set_drvdata(struct regulator
*regulator
, void *data
)
3819 regulator
->rdev
->reg_data
= data
;
3821 EXPORT_SYMBOL_GPL(regulator_set_drvdata
);
3824 * regulator_get_id - get regulator ID
3827 int rdev_get_id(struct regulator_dev
*rdev
)
3829 return rdev
->desc
->id
;
3831 EXPORT_SYMBOL_GPL(rdev_get_id
);
3833 struct device
*rdev_get_dev(struct regulator_dev
*rdev
)
3837 EXPORT_SYMBOL_GPL(rdev_get_dev
);
3839 void *regulator_get_init_drvdata(struct regulator_init_data
*reg_init_data
)
3841 return reg_init_data
->driver_data
;
3843 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata
);
3845 #ifdef CONFIG_DEBUG_FS
3846 static ssize_t
supply_map_read_file(struct file
*file
, char __user
*user_buf
,
3847 size_t count
, loff_t
*ppos
)
3849 char *buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3850 ssize_t len
, ret
= 0;
3851 struct regulator_map
*map
;
3856 list_for_each_entry(map
, ®ulator_map_list
, list
) {
3857 len
= snprintf(buf
+ ret
, PAGE_SIZE
- ret
,
3859 rdev_get_name(map
->regulator
), map
->dev_name
,
3863 if (ret
> PAGE_SIZE
) {
3869 ret
= simple_read_from_buffer(user_buf
, count
, ppos
, buf
, ret
);
3877 static const struct file_operations supply_map_fops
= {
3878 #ifdef CONFIG_DEBUG_FS
3879 .read
= supply_map_read_file
,
3880 .llseek
= default_llseek
,
3884 static int __init
regulator_init(void)
3888 ret
= class_register(®ulator_class
);
3890 debugfs_root
= debugfs_create_dir("regulator", NULL
);
3892 pr_warn("regulator: Failed to create debugfs directory\n");
3894 debugfs_create_file("supply_map", 0444, debugfs_root
, NULL
,
3897 regulator_dummy_init();
3902 /* init early to allow our consumers to complete system booting */
3903 core_initcall(regulator_init
);
3905 static int __init
regulator_init_complete(void)
3907 struct regulator_dev
*rdev
;
3908 struct regulator_ops
*ops
;
3909 struct regulation_constraints
*c
;
3913 * Since DT doesn't provide an idiomatic mechanism for
3914 * enabling full constraints and since it's much more natural
3915 * with DT to provide them just assume that a DT enabled
3916 * system has full constraints.
3918 if (of_have_populated_dt())
3919 has_full_constraints
= true;
3921 mutex_lock(®ulator_list_mutex
);
3923 /* If we have a full configuration then disable any regulators
3924 * we have permission to change the status for and which are
3925 * not in use or always_on. This is effectively the default
3926 * for DT and ACPI as they have full constraints.
3928 list_for_each_entry(rdev
, ®ulator_list
, list
) {
3929 ops
= rdev
->desc
->ops
;
3930 c
= rdev
->constraints
;
3932 if (c
&& c
->always_on
)
3935 if (c
&& !(c
->valid_ops_mask
& REGULATOR_CHANGE_STATUS
))
3938 mutex_lock(&rdev
->mutex
);
3940 if (rdev
->use_count
)
3943 /* If we can't read the status assume it's on. */
3944 if (ops
->is_enabled
)
3945 enabled
= ops
->is_enabled(rdev
);
3952 if (have_full_constraints()) {
3953 /* We log since this may kill the system if it
3955 rdev_info(rdev
, "disabling\n");
3956 ret
= _regulator_do_disable(rdev
);
3958 rdev_err(rdev
, "couldn't disable: %d\n", ret
);
3960 /* The intention is that in future we will
3961 * assume that full constraints are provided
3962 * so warn even if we aren't going to do
3965 rdev_warn(rdev
, "incomplete constraints, leaving on\n");
3969 mutex_unlock(&rdev
->mutex
);
3972 mutex_unlock(®ulator_list_mutex
);
3976 late_initcall_sync(regulator_init_complete
);