Merge branch 'prcm_scm_misc_fixes_3.2' of git://git.pwsan.com/linux-2.6 into fixes
[deliverable/linux.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #define pr_fmt(fmt) "%s: " fmt, __func__
17
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/slab.h>
23 #include <linux/async.h>
24 #include <linux/err.h>
25 #include <linux/mutex.h>
26 #include <linux/suspend.h>
27 #include <linux/delay.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/regulator/driver.h>
30 #include <linux/regulator/machine.h>
31
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/regulator.h>
34
35 #include "dummy.h"
36
37 #define rdev_crit(rdev, fmt, ...) \
38 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
39 #define rdev_err(rdev, fmt, ...) \
40 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41 #define rdev_warn(rdev, fmt, ...) \
42 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_info(rdev, fmt, ...) \
44 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_dbg(rdev, fmt, ...) \
46 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47
48 static DEFINE_MUTEX(regulator_list_mutex);
49 static LIST_HEAD(regulator_list);
50 static LIST_HEAD(regulator_map_list);
51 static bool has_full_constraints;
52 static bool board_wants_dummy_regulator;
53
54 #ifdef CONFIG_DEBUG_FS
55 static struct dentry *debugfs_root;
56 #endif
57
58 /*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63 struct regulator_map {
64 struct list_head list;
65 const char *dev_name; /* The dev_name() for the consumer */
66 const char *supply;
67 struct regulator_dev *regulator;
68 };
69
70 /*
71 * struct regulator
72 *
73 * One for each consumer device.
74 */
75 struct regulator {
76 struct device *dev;
77 struct list_head list;
78 int uA_load;
79 int min_uV;
80 int max_uV;
81 char *supply_name;
82 struct device_attribute dev_attr;
83 struct regulator_dev *rdev;
84 #ifdef CONFIG_DEBUG_FS
85 struct dentry *debugfs;
86 #endif
87 };
88
89 static int _regulator_is_enabled(struct regulator_dev *rdev);
90 static int _regulator_disable(struct regulator_dev *rdev);
91 static int _regulator_get_voltage(struct regulator_dev *rdev);
92 static int _regulator_get_current_limit(struct regulator_dev *rdev);
93 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
94 static void _notifier_call_chain(struct regulator_dev *rdev,
95 unsigned long event, void *data);
96 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
97 int min_uV, int max_uV);
98 static struct regulator *create_regulator(struct regulator_dev *rdev,
99 struct device *dev,
100 const char *supply_name);
101
102 static const char *rdev_get_name(struct regulator_dev *rdev)
103 {
104 if (rdev->constraints && rdev->constraints->name)
105 return rdev->constraints->name;
106 else if (rdev->desc->name)
107 return rdev->desc->name;
108 else
109 return "";
110 }
111
112 /* gets the regulator for a given consumer device */
113 static struct regulator *get_device_regulator(struct device *dev)
114 {
115 struct regulator *regulator = NULL;
116 struct regulator_dev *rdev;
117
118 mutex_lock(&regulator_list_mutex);
119 list_for_each_entry(rdev, &regulator_list, list) {
120 mutex_lock(&rdev->mutex);
121 list_for_each_entry(regulator, &rdev->consumer_list, list) {
122 if (regulator->dev == dev) {
123 mutex_unlock(&rdev->mutex);
124 mutex_unlock(&regulator_list_mutex);
125 return regulator;
126 }
127 }
128 mutex_unlock(&rdev->mutex);
129 }
130 mutex_unlock(&regulator_list_mutex);
131 return NULL;
132 }
133
134 /* Platform voltage constraint check */
135 static int regulator_check_voltage(struct regulator_dev *rdev,
136 int *min_uV, int *max_uV)
137 {
138 BUG_ON(*min_uV > *max_uV);
139
140 if (!rdev->constraints) {
141 rdev_err(rdev, "no constraints\n");
142 return -ENODEV;
143 }
144 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
145 rdev_err(rdev, "operation not allowed\n");
146 return -EPERM;
147 }
148
149 if (*max_uV > rdev->constraints->max_uV)
150 *max_uV = rdev->constraints->max_uV;
151 if (*min_uV < rdev->constraints->min_uV)
152 *min_uV = rdev->constraints->min_uV;
153
154 if (*min_uV > *max_uV) {
155 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
156 *min_uV, *max_uV);
157 return -EINVAL;
158 }
159
160 return 0;
161 }
162
163 /* Make sure we select a voltage that suits the needs of all
164 * regulator consumers
165 */
166 static int regulator_check_consumers(struct regulator_dev *rdev,
167 int *min_uV, int *max_uV)
168 {
169 struct regulator *regulator;
170
171 list_for_each_entry(regulator, &rdev->consumer_list, list) {
172 /*
173 * Assume consumers that didn't say anything are OK
174 * with anything in the constraint range.
175 */
176 if (!regulator->min_uV && !regulator->max_uV)
177 continue;
178
179 if (*max_uV > regulator->max_uV)
180 *max_uV = regulator->max_uV;
181 if (*min_uV < regulator->min_uV)
182 *min_uV = regulator->min_uV;
183 }
184
185 if (*min_uV > *max_uV)
186 return -EINVAL;
187
188 return 0;
189 }
190
191 /* current constraint check */
192 static int regulator_check_current_limit(struct regulator_dev *rdev,
193 int *min_uA, int *max_uA)
194 {
195 BUG_ON(*min_uA > *max_uA);
196
197 if (!rdev->constraints) {
198 rdev_err(rdev, "no constraints\n");
199 return -ENODEV;
200 }
201 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
202 rdev_err(rdev, "operation not allowed\n");
203 return -EPERM;
204 }
205
206 if (*max_uA > rdev->constraints->max_uA)
207 *max_uA = rdev->constraints->max_uA;
208 if (*min_uA < rdev->constraints->min_uA)
209 *min_uA = rdev->constraints->min_uA;
210
211 if (*min_uA > *max_uA) {
212 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
213 *min_uA, *max_uA);
214 return -EINVAL;
215 }
216
217 return 0;
218 }
219
220 /* operating mode constraint check */
221 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
222 {
223 switch (*mode) {
224 case REGULATOR_MODE_FAST:
225 case REGULATOR_MODE_NORMAL:
226 case REGULATOR_MODE_IDLE:
227 case REGULATOR_MODE_STANDBY:
228 break;
229 default:
230 rdev_err(rdev, "invalid mode %x specified\n", *mode);
231 return -EINVAL;
232 }
233
234 if (!rdev->constraints) {
235 rdev_err(rdev, "no constraints\n");
236 return -ENODEV;
237 }
238 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
239 rdev_err(rdev, "operation not allowed\n");
240 return -EPERM;
241 }
242
243 /* The modes are bitmasks, the most power hungry modes having
244 * the lowest values. If the requested mode isn't supported
245 * try higher modes. */
246 while (*mode) {
247 if (rdev->constraints->valid_modes_mask & *mode)
248 return 0;
249 *mode /= 2;
250 }
251
252 return -EINVAL;
253 }
254
255 /* dynamic regulator mode switching constraint check */
256 static int regulator_check_drms(struct regulator_dev *rdev)
257 {
258 if (!rdev->constraints) {
259 rdev_err(rdev, "no constraints\n");
260 return -ENODEV;
261 }
262 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
263 rdev_err(rdev, "operation not allowed\n");
264 return -EPERM;
265 }
266 return 0;
267 }
268
269 static ssize_t device_requested_uA_show(struct device *dev,
270 struct device_attribute *attr, char *buf)
271 {
272 struct regulator *regulator;
273
274 regulator = get_device_regulator(dev);
275 if (regulator == NULL)
276 return 0;
277
278 return sprintf(buf, "%d\n", regulator->uA_load);
279 }
280
281 static ssize_t regulator_uV_show(struct device *dev,
282 struct device_attribute *attr, char *buf)
283 {
284 struct regulator_dev *rdev = dev_get_drvdata(dev);
285 ssize_t ret;
286
287 mutex_lock(&rdev->mutex);
288 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
289 mutex_unlock(&rdev->mutex);
290
291 return ret;
292 }
293 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
294
295 static ssize_t regulator_uA_show(struct device *dev,
296 struct device_attribute *attr, char *buf)
297 {
298 struct regulator_dev *rdev = dev_get_drvdata(dev);
299
300 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
301 }
302 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
303
304 static ssize_t regulator_name_show(struct device *dev,
305 struct device_attribute *attr, char *buf)
306 {
307 struct regulator_dev *rdev = dev_get_drvdata(dev);
308
309 return sprintf(buf, "%s\n", rdev_get_name(rdev));
310 }
311
312 static ssize_t regulator_print_opmode(char *buf, int mode)
313 {
314 switch (mode) {
315 case REGULATOR_MODE_FAST:
316 return sprintf(buf, "fast\n");
317 case REGULATOR_MODE_NORMAL:
318 return sprintf(buf, "normal\n");
319 case REGULATOR_MODE_IDLE:
320 return sprintf(buf, "idle\n");
321 case REGULATOR_MODE_STANDBY:
322 return sprintf(buf, "standby\n");
323 }
324 return sprintf(buf, "unknown\n");
325 }
326
327 static ssize_t regulator_opmode_show(struct device *dev,
328 struct device_attribute *attr, char *buf)
329 {
330 struct regulator_dev *rdev = dev_get_drvdata(dev);
331
332 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
333 }
334 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
335
336 static ssize_t regulator_print_state(char *buf, int state)
337 {
338 if (state > 0)
339 return sprintf(buf, "enabled\n");
340 else if (state == 0)
341 return sprintf(buf, "disabled\n");
342 else
343 return sprintf(buf, "unknown\n");
344 }
345
346 static ssize_t regulator_state_show(struct device *dev,
347 struct device_attribute *attr, char *buf)
348 {
349 struct regulator_dev *rdev = dev_get_drvdata(dev);
350 ssize_t ret;
351
352 mutex_lock(&rdev->mutex);
353 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
354 mutex_unlock(&rdev->mutex);
355
356 return ret;
357 }
358 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
359
360 static ssize_t regulator_status_show(struct device *dev,
361 struct device_attribute *attr, char *buf)
362 {
363 struct regulator_dev *rdev = dev_get_drvdata(dev);
364 int status;
365 char *label;
366
367 status = rdev->desc->ops->get_status(rdev);
368 if (status < 0)
369 return status;
370
371 switch (status) {
372 case REGULATOR_STATUS_OFF:
373 label = "off";
374 break;
375 case REGULATOR_STATUS_ON:
376 label = "on";
377 break;
378 case REGULATOR_STATUS_ERROR:
379 label = "error";
380 break;
381 case REGULATOR_STATUS_FAST:
382 label = "fast";
383 break;
384 case REGULATOR_STATUS_NORMAL:
385 label = "normal";
386 break;
387 case REGULATOR_STATUS_IDLE:
388 label = "idle";
389 break;
390 case REGULATOR_STATUS_STANDBY:
391 label = "standby";
392 break;
393 default:
394 return -ERANGE;
395 }
396
397 return sprintf(buf, "%s\n", label);
398 }
399 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
400
401 static ssize_t regulator_min_uA_show(struct device *dev,
402 struct device_attribute *attr, char *buf)
403 {
404 struct regulator_dev *rdev = dev_get_drvdata(dev);
405
406 if (!rdev->constraints)
407 return sprintf(buf, "constraint not defined\n");
408
409 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
410 }
411 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
412
413 static ssize_t regulator_max_uA_show(struct device *dev,
414 struct device_attribute *attr, char *buf)
415 {
416 struct regulator_dev *rdev = dev_get_drvdata(dev);
417
418 if (!rdev->constraints)
419 return sprintf(buf, "constraint not defined\n");
420
421 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
422 }
423 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
424
425 static ssize_t regulator_min_uV_show(struct device *dev,
426 struct device_attribute *attr, char *buf)
427 {
428 struct regulator_dev *rdev = dev_get_drvdata(dev);
429
430 if (!rdev->constraints)
431 return sprintf(buf, "constraint not defined\n");
432
433 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
434 }
435 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
436
437 static ssize_t regulator_max_uV_show(struct device *dev,
438 struct device_attribute *attr, char *buf)
439 {
440 struct regulator_dev *rdev = dev_get_drvdata(dev);
441
442 if (!rdev->constraints)
443 return sprintf(buf, "constraint not defined\n");
444
445 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
446 }
447 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
448
449 static ssize_t regulator_total_uA_show(struct device *dev,
450 struct device_attribute *attr, char *buf)
451 {
452 struct regulator_dev *rdev = dev_get_drvdata(dev);
453 struct regulator *regulator;
454 int uA = 0;
455
456 mutex_lock(&rdev->mutex);
457 list_for_each_entry(regulator, &rdev->consumer_list, list)
458 uA += regulator->uA_load;
459 mutex_unlock(&rdev->mutex);
460 return sprintf(buf, "%d\n", uA);
461 }
462 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
463
464 static ssize_t regulator_num_users_show(struct device *dev,
465 struct device_attribute *attr, char *buf)
466 {
467 struct regulator_dev *rdev = dev_get_drvdata(dev);
468 return sprintf(buf, "%d\n", rdev->use_count);
469 }
470
471 static ssize_t regulator_type_show(struct device *dev,
472 struct device_attribute *attr, char *buf)
473 {
474 struct regulator_dev *rdev = dev_get_drvdata(dev);
475
476 switch (rdev->desc->type) {
477 case REGULATOR_VOLTAGE:
478 return sprintf(buf, "voltage\n");
479 case REGULATOR_CURRENT:
480 return sprintf(buf, "current\n");
481 }
482 return sprintf(buf, "unknown\n");
483 }
484
485 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
486 struct device_attribute *attr, char *buf)
487 {
488 struct regulator_dev *rdev = dev_get_drvdata(dev);
489
490 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
491 }
492 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
493 regulator_suspend_mem_uV_show, NULL);
494
495 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
496 struct device_attribute *attr, char *buf)
497 {
498 struct regulator_dev *rdev = dev_get_drvdata(dev);
499
500 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
501 }
502 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
503 regulator_suspend_disk_uV_show, NULL);
504
505 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
506 struct device_attribute *attr, char *buf)
507 {
508 struct regulator_dev *rdev = dev_get_drvdata(dev);
509
510 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
511 }
512 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
513 regulator_suspend_standby_uV_show, NULL);
514
515 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
516 struct device_attribute *attr, char *buf)
517 {
518 struct regulator_dev *rdev = dev_get_drvdata(dev);
519
520 return regulator_print_opmode(buf,
521 rdev->constraints->state_mem.mode);
522 }
523 static DEVICE_ATTR(suspend_mem_mode, 0444,
524 regulator_suspend_mem_mode_show, NULL);
525
526 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
527 struct device_attribute *attr, char *buf)
528 {
529 struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531 return regulator_print_opmode(buf,
532 rdev->constraints->state_disk.mode);
533 }
534 static DEVICE_ATTR(suspend_disk_mode, 0444,
535 regulator_suspend_disk_mode_show, NULL);
536
537 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
538 struct device_attribute *attr, char *buf)
539 {
540 struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542 return regulator_print_opmode(buf,
543 rdev->constraints->state_standby.mode);
544 }
545 static DEVICE_ATTR(suspend_standby_mode, 0444,
546 regulator_suspend_standby_mode_show, NULL);
547
548 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
549 struct device_attribute *attr, char *buf)
550 {
551 struct regulator_dev *rdev = dev_get_drvdata(dev);
552
553 return regulator_print_state(buf,
554 rdev->constraints->state_mem.enabled);
555 }
556 static DEVICE_ATTR(suspend_mem_state, 0444,
557 regulator_suspend_mem_state_show, NULL);
558
559 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
560 struct device_attribute *attr, char *buf)
561 {
562 struct regulator_dev *rdev = dev_get_drvdata(dev);
563
564 return regulator_print_state(buf,
565 rdev->constraints->state_disk.enabled);
566 }
567 static DEVICE_ATTR(suspend_disk_state, 0444,
568 regulator_suspend_disk_state_show, NULL);
569
570 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
571 struct device_attribute *attr, char *buf)
572 {
573 struct regulator_dev *rdev = dev_get_drvdata(dev);
574
575 return regulator_print_state(buf,
576 rdev->constraints->state_standby.enabled);
577 }
578 static DEVICE_ATTR(suspend_standby_state, 0444,
579 regulator_suspend_standby_state_show, NULL);
580
581
582 /*
583 * These are the only attributes are present for all regulators.
584 * Other attributes are a function of regulator functionality.
585 */
586 static struct device_attribute regulator_dev_attrs[] = {
587 __ATTR(name, 0444, regulator_name_show, NULL),
588 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
589 __ATTR(type, 0444, regulator_type_show, NULL),
590 __ATTR_NULL,
591 };
592
593 static void regulator_dev_release(struct device *dev)
594 {
595 struct regulator_dev *rdev = dev_get_drvdata(dev);
596 kfree(rdev);
597 }
598
599 static struct class regulator_class = {
600 .name = "regulator",
601 .dev_release = regulator_dev_release,
602 .dev_attrs = regulator_dev_attrs,
603 };
604
605 /* Calculate the new optimum regulator operating mode based on the new total
606 * consumer load. All locks held by caller */
607 static void drms_uA_update(struct regulator_dev *rdev)
608 {
609 struct regulator *sibling;
610 int current_uA = 0, output_uV, input_uV, err;
611 unsigned int mode;
612
613 err = regulator_check_drms(rdev);
614 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
615 (!rdev->desc->ops->get_voltage &&
616 !rdev->desc->ops->get_voltage_sel) ||
617 !rdev->desc->ops->set_mode)
618 return;
619
620 /* get output voltage */
621 output_uV = _regulator_get_voltage(rdev);
622 if (output_uV <= 0)
623 return;
624
625 /* get input voltage */
626 input_uV = 0;
627 if (rdev->supply)
628 input_uV = _regulator_get_voltage(rdev);
629 if (input_uV <= 0)
630 input_uV = rdev->constraints->input_uV;
631 if (input_uV <= 0)
632 return;
633
634 /* calc total requested load */
635 list_for_each_entry(sibling, &rdev->consumer_list, list)
636 current_uA += sibling->uA_load;
637
638 /* now get the optimum mode for our new total regulator load */
639 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
640 output_uV, current_uA);
641
642 /* check the new mode is allowed */
643 err = regulator_mode_constrain(rdev, &mode);
644 if (err == 0)
645 rdev->desc->ops->set_mode(rdev, mode);
646 }
647
648 static int suspend_set_state(struct regulator_dev *rdev,
649 struct regulator_state *rstate)
650 {
651 int ret = 0;
652 bool can_set_state;
653
654 can_set_state = rdev->desc->ops->set_suspend_enable &&
655 rdev->desc->ops->set_suspend_disable;
656
657 /* If we have no suspend mode configration don't set anything;
658 * only warn if the driver actually makes the suspend mode
659 * configurable.
660 */
661 if (!rstate->enabled && !rstate->disabled) {
662 if (can_set_state)
663 rdev_warn(rdev, "No configuration\n");
664 return 0;
665 }
666
667 if (rstate->enabled && rstate->disabled) {
668 rdev_err(rdev, "invalid configuration\n");
669 return -EINVAL;
670 }
671
672 if (!can_set_state) {
673 rdev_err(rdev, "no way to set suspend state\n");
674 return -EINVAL;
675 }
676
677 if (rstate->enabled)
678 ret = rdev->desc->ops->set_suspend_enable(rdev);
679 else
680 ret = rdev->desc->ops->set_suspend_disable(rdev);
681 if (ret < 0) {
682 rdev_err(rdev, "failed to enabled/disable\n");
683 return ret;
684 }
685
686 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
687 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
688 if (ret < 0) {
689 rdev_err(rdev, "failed to set voltage\n");
690 return ret;
691 }
692 }
693
694 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
695 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
696 if (ret < 0) {
697 rdev_err(rdev, "failed to set mode\n");
698 return ret;
699 }
700 }
701 return ret;
702 }
703
704 /* locks held by caller */
705 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
706 {
707 if (!rdev->constraints)
708 return -EINVAL;
709
710 switch (state) {
711 case PM_SUSPEND_STANDBY:
712 return suspend_set_state(rdev,
713 &rdev->constraints->state_standby);
714 case PM_SUSPEND_MEM:
715 return suspend_set_state(rdev,
716 &rdev->constraints->state_mem);
717 case PM_SUSPEND_MAX:
718 return suspend_set_state(rdev,
719 &rdev->constraints->state_disk);
720 default:
721 return -EINVAL;
722 }
723 }
724
725 static void print_constraints(struct regulator_dev *rdev)
726 {
727 struct regulation_constraints *constraints = rdev->constraints;
728 char buf[80] = "";
729 int count = 0;
730 int ret;
731
732 if (constraints->min_uV && constraints->max_uV) {
733 if (constraints->min_uV == constraints->max_uV)
734 count += sprintf(buf + count, "%d mV ",
735 constraints->min_uV / 1000);
736 else
737 count += sprintf(buf + count, "%d <--> %d mV ",
738 constraints->min_uV / 1000,
739 constraints->max_uV / 1000);
740 }
741
742 if (!constraints->min_uV ||
743 constraints->min_uV != constraints->max_uV) {
744 ret = _regulator_get_voltage(rdev);
745 if (ret > 0)
746 count += sprintf(buf + count, "at %d mV ", ret / 1000);
747 }
748
749 if (constraints->uV_offset)
750 count += sprintf(buf, "%dmV offset ",
751 constraints->uV_offset / 1000);
752
753 if (constraints->min_uA && constraints->max_uA) {
754 if (constraints->min_uA == constraints->max_uA)
755 count += sprintf(buf + count, "%d mA ",
756 constraints->min_uA / 1000);
757 else
758 count += sprintf(buf + count, "%d <--> %d mA ",
759 constraints->min_uA / 1000,
760 constraints->max_uA / 1000);
761 }
762
763 if (!constraints->min_uA ||
764 constraints->min_uA != constraints->max_uA) {
765 ret = _regulator_get_current_limit(rdev);
766 if (ret > 0)
767 count += sprintf(buf + count, "at %d mA ", ret / 1000);
768 }
769
770 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
771 count += sprintf(buf + count, "fast ");
772 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
773 count += sprintf(buf + count, "normal ");
774 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
775 count += sprintf(buf + count, "idle ");
776 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
777 count += sprintf(buf + count, "standby");
778
779 rdev_info(rdev, "%s\n", buf);
780 }
781
782 static int machine_constraints_voltage(struct regulator_dev *rdev,
783 struct regulation_constraints *constraints)
784 {
785 struct regulator_ops *ops = rdev->desc->ops;
786 int ret;
787
788 /* do we need to apply the constraint voltage */
789 if (rdev->constraints->apply_uV &&
790 rdev->constraints->min_uV == rdev->constraints->max_uV) {
791 ret = _regulator_do_set_voltage(rdev,
792 rdev->constraints->min_uV,
793 rdev->constraints->max_uV);
794 if (ret < 0) {
795 rdev_err(rdev, "failed to apply %duV constraint\n",
796 rdev->constraints->min_uV);
797 return ret;
798 }
799 }
800
801 /* constrain machine-level voltage specs to fit
802 * the actual range supported by this regulator.
803 */
804 if (ops->list_voltage && rdev->desc->n_voltages) {
805 int count = rdev->desc->n_voltages;
806 int i;
807 int min_uV = INT_MAX;
808 int max_uV = INT_MIN;
809 int cmin = constraints->min_uV;
810 int cmax = constraints->max_uV;
811
812 /* it's safe to autoconfigure fixed-voltage supplies
813 and the constraints are used by list_voltage. */
814 if (count == 1 && !cmin) {
815 cmin = 1;
816 cmax = INT_MAX;
817 constraints->min_uV = cmin;
818 constraints->max_uV = cmax;
819 }
820
821 /* voltage constraints are optional */
822 if ((cmin == 0) && (cmax == 0))
823 return 0;
824
825 /* else require explicit machine-level constraints */
826 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
827 rdev_err(rdev, "invalid voltage constraints\n");
828 return -EINVAL;
829 }
830
831 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
832 for (i = 0; i < count; i++) {
833 int value;
834
835 value = ops->list_voltage(rdev, i);
836 if (value <= 0)
837 continue;
838
839 /* maybe adjust [min_uV..max_uV] */
840 if (value >= cmin && value < min_uV)
841 min_uV = value;
842 if (value <= cmax && value > max_uV)
843 max_uV = value;
844 }
845
846 /* final: [min_uV..max_uV] valid iff constraints valid */
847 if (max_uV < min_uV) {
848 rdev_err(rdev, "unsupportable voltage constraints\n");
849 return -EINVAL;
850 }
851
852 /* use regulator's subset of machine constraints */
853 if (constraints->min_uV < min_uV) {
854 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
855 constraints->min_uV, min_uV);
856 constraints->min_uV = min_uV;
857 }
858 if (constraints->max_uV > max_uV) {
859 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
860 constraints->max_uV, max_uV);
861 constraints->max_uV = max_uV;
862 }
863 }
864
865 return 0;
866 }
867
868 /**
869 * set_machine_constraints - sets regulator constraints
870 * @rdev: regulator source
871 * @constraints: constraints to apply
872 *
873 * Allows platform initialisation code to define and constrain
874 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
875 * Constraints *must* be set by platform code in order for some
876 * regulator operations to proceed i.e. set_voltage, set_current_limit,
877 * set_mode.
878 */
879 static int set_machine_constraints(struct regulator_dev *rdev,
880 const struct regulation_constraints *constraints)
881 {
882 int ret = 0;
883 struct regulator_ops *ops = rdev->desc->ops;
884
885 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
886 GFP_KERNEL);
887 if (!rdev->constraints)
888 return -ENOMEM;
889
890 ret = machine_constraints_voltage(rdev, rdev->constraints);
891 if (ret != 0)
892 goto out;
893
894 /* do we need to setup our suspend state */
895 if (constraints->initial_state) {
896 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
897 if (ret < 0) {
898 rdev_err(rdev, "failed to set suspend state\n");
899 goto out;
900 }
901 }
902
903 if (constraints->initial_mode) {
904 if (!ops->set_mode) {
905 rdev_err(rdev, "no set_mode operation\n");
906 ret = -EINVAL;
907 goto out;
908 }
909
910 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
911 if (ret < 0) {
912 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
913 goto out;
914 }
915 }
916
917 /* If the constraints say the regulator should be on at this point
918 * and we have control then make sure it is enabled.
919 */
920 if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
921 ops->enable) {
922 ret = ops->enable(rdev);
923 if (ret < 0) {
924 rdev_err(rdev, "failed to enable\n");
925 goto out;
926 }
927 }
928
929 print_constraints(rdev);
930 return 0;
931 out:
932 kfree(rdev->constraints);
933 rdev->constraints = NULL;
934 return ret;
935 }
936
937 /**
938 * set_supply - set regulator supply regulator
939 * @rdev: regulator name
940 * @supply_rdev: supply regulator name
941 *
942 * Called by platform initialisation code to set the supply regulator for this
943 * regulator. This ensures that a regulators supply will also be enabled by the
944 * core if it's child is enabled.
945 */
946 static int set_supply(struct regulator_dev *rdev,
947 struct regulator_dev *supply_rdev)
948 {
949 int err;
950
951 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
952
953 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
954 if (IS_ERR(rdev->supply)) {
955 err = PTR_ERR(rdev->supply);
956 rdev->supply = NULL;
957 return err;
958 }
959
960 return 0;
961 }
962
963 /**
964 * set_consumer_device_supply - Bind a regulator to a symbolic supply
965 * @rdev: regulator source
966 * @consumer_dev: device the supply applies to
967 * @consumer_dev_name: dev_name() string for device supply applies to
968 * @supply: symbolic name for supply
969 *
970 * Allows platform initialisation code to map physical regulator
971 * sources to symbolic names for supplies for use by devices. Devices
972 * should use these symbolic names to request regulators, avoiding the
973 * need to provide board-specific regulator names as platform data.
974 *
975 * Only one of consumer_dev and consumer_dev_name may be specified.
976 */
977 static int set_consumer_device_supply(struct regulator_dev *rdev,
978 struct device *consumer_dev, const char *consumer_dev_name,
979 const char *supply)
980 {
981 struct regulator_map *node;
982 int has_dev;
983
984 if (consumer_dev && consumer_dev_name)
985 return -EINVAL;
986
987 if (!consumer_dev_name && consumer_dev)
988 consumer_dev_name = dev_name(consumer_dev);
989
990 if (supply == NULL)
991 return -EINVAL;
992
993 if (consumer_dev_name != NULL)
994 has_dev = 1;
995 else
996 has_dev = 0;
997
998 list_for_each_entry(node, &regulator_map_list, list) {
999 if (node->dev_name && consumer_dev_name) {
1000 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1001 continue;
1002 } else if (node->dev_name || consumer_dev_name) {
1003 continue;
1004 }
1005
1006 if (strcmp(node->supply, supply) != 0)
1007 continue;
1008
1009 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1010 dev_name(&node->regulator->dev),
1011 node->regulator->desc->name,
1012 supply,
1013 dev_name(&rdev->dev), rdev_get_name(rdev));
1014 return -EBUSY;
1015 }
1016
1017 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1018 if (node == NULL)
1019 return -ENOMEM;
1020
1021 node->regulator = rdev;
1022 node->supply = supply;
1023
1024 if (has_dev) {
1025 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1026 if (node->dev_name == NULL) {
1027 kfree(node);
1028 return -ENOMEM;
1029 }
1030 }
1031
1032 list_add(&node->list, &regulator_map_list);
1033 return 0;
1034 }
1035
1036 static void unset_regulator_supplies(struct regulator_dev *rdev)
1037 {
1038 struct regulator_map *node, *n;
1039
1040 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1041 if (rdev == node->regulator) {
1042 list_del(&node->list);
1043 kfree(node->dev_name);
1044 kfree(node);
1045 }
1046 }
1047 }
1048
1049 #define REG_STR_SIZE 64
1050
1051 static struct regulator *create_regulator(struct regulator_dev *rdev,
1052 struct device *dev,
1053 const char *supply_name)
1054 {
1055 struct regulator *regulator;
1056 char buf[REG_STR_SIZE];
1057 int err, size;
1058
1059 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1060 if (regulator == NULL)
1061 return NULL;
1062
1063 mutex_lock(&rdev->mutex);
1064 regulator->rdev = rdev;
1065 list_add(&regulator->list, &rdev->consumer_list);
1066
1067 if (dev) {
1068 /* create a 'requested_microamps_name' sysfs entry */
1069 size = scnprintf(buf, REG_STR_SIZE,
1070 "microamps_requested_%s-%s",
1071 dev_name(dev), supply_name);
1072 if (size >= REG_STR_SIZE)
1073 goto overflow_err;
1074
1075 regulator->dev = dev;
1076 sysfs_attr_init(&regulator->dev_attr.attr);
1077 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1078 if (regulator->dev_attr.attr.name == NULL)
1079 goto attr_name_err;
1080
1081 regulator->dev_attr.attr.mode = 0444;
1082 regulator->dev_attr.show = device_requested_uA_show;
1083 err = device_create_file(dev, &regulator->dev_attr);
1084 if (err < 0) {
1085 rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1086 goto attr_name_err;
1087 }
1088
1089 /* also add a link to the device sysfs entry */
1090 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1091 dev->kobj.name, supply_name);
1092 if (size >= REG_STR_SIZE)
1093 goto attr_err;
1094
1095 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1096 if (regulator->supply_name == NULL)
1097 goto attr_err;
1098
1099 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1100 buf);
1101 if (err) {
1102 rdev_warn(rdev, "could not add device link %s err %d\n",
1103 dev->kobj.name, err);
1104 goto link_name_err;
1105 }
1106 } else {
1107 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1108 if (regulator->supply_name == NULL)
1109 goto attr_err;
1110 }
1111
1112 #ifdef CONFIG_DEBUG_FS
1113 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1114 rdev->debugfs);
1115 if (IS_ERR_OR_NULL(regulator->debugfs)) {
1116 rdev_warn(rdev, "Failed to create debugfs directory\n");
1117 regulator->debugfs = NULL;
1118 } else {
1119 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1120 &regulator->uA_load);
1121 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1122 &regulator->min_uV);
1123 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1124 &regulator->max_uV);
1125 }
1126 #endif
1127
1128 mutex_unlock(&rdev->mutex);
1129 return regulator;
1130 link_name_err:
1131 kfree(regulator->supply_name);
1132 attr_err:
1133 device_remove_file(regulator->dev, &regulator->dev_attr);
1134 attr_name_err:
1135 kfree(regulator->dev_attr.attr.name);
1136 overflow_err:
1137 list_del(&regulator->list);
1138 kfree(regulator);
1139 mutex_unlock(&rdev->mutex);
1140 return NULL;
1141 }
1142
1143 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1144 {
1145 if (!rdev->desc->ops->enable_time)
1146 return 0;
1147 return rdev->desc->ops->enable_time(rdev);
1148 }
1149
1150 /* Internal regulator request function */
1151 static struct regulator *_regulator_get(struct device *dev, const char *id,
1152 int exclusive)
1153 {
1154 struct regulator_dev *rdev;
1155 struct regulator_map *map;
1156 struct regulator *regulator = ERR_PTR(-ENODEV);
1157 const char *devname = NULL;
1158 int ret;
1159
1160 if (id == NULL) {
1161 pr_err("get() with no identifier\n");
1162 return regulator;
1163 }
1164
1165 if (dev)
1166 devname = dev_name(dev);
1167
1168 mutex_lock(&regulator_list_mutex);
1169
1170 list_for_each_entry(map, &regulator_map_list, list) {
1171 /* If the mapping has a device set up it must match */
1172 if (map->dev_name &&
1173 (!devname || strcmp(map->dev_name, devname)))
1174 continue;
1175
1176 if (strcmp(map->supply, id) == 0) {
1177 rdev = map->regulator;
1178 goto found;
1179 }
1180 }
1181
1182 if (board_wants_dummy_regulator) {
1183 rdev = dummy_regulator_rdev;
1184 goto found;
1185 }
1186
1187 #ifdef CONFIG_REGULATOR_DUMMY
1188 if (!devname)
1189 devname = "deviceless";
1190
1191 /* If the board didn't flag that it was fully constrained then
1192 * substitute in a dummy regulator so consumers can continue.
1193 */
1194 if (!has_full_constraints) {
1195 pr_warn("%s supply %s not found, using dummy regulator\n",
1196 devname, id);
1197 rdev = dummy_regulator_rdev;
1198 goto found;
1199 }
1200 #endif
1201
1202 mutex_unlock(&regulator_list_mutex);
1203 return regulator;
1204
1205 found:
1206 if (rdev->exclusive) {
1207 regulator = ERR_PTR(-EPERM);
1208 goto out;
1209 }
1210
1211 if (exclusive && rdev->open_count) {
1212 regulator = ERR_PTR(-EBUSY);
1213 goto out;
1214 }
1215
1216 if (!try_module_get(rdev->owner))
1217 goto out;
1218
1219 regulator = create_regulator(rdev, dev, id);
1220 if (regulator == NULL) {
1221 regulator = ERR_PTR(-ENOMEM);
1222 module_put(rdev->owner);
1223 }
1224
1225 rdev->open_count++;
1226 if (exclusive) {
1227 rdev->exclusive = 1;
1228
1229 ret = _regulator_is_enabled(rdev);
1230 if (ret > 0)
1231 rdev->use_count = 1;
1232 else
1233 rdev->use_count = 0;
1234 }
1235
1236 out:
1237 mutex_unlock(&regulator_list_mutex);
1238
1239 return regulator;
1240 }
1241
1242 /**
1243 * regulator_get - lookup and obtain a reference to a regulator.
1244 * @dev: device for regulator "consumer"
1245 * @id: Supply name or regulator ID.
1246 *
1247 * Returns a struct regulator corresponding to the regulator producer,
1248 * or IS_ERR() condition containing errno.
1249 *
1250 * Use of supply names configured via regulator_set_device_supply() is
1251 * strongly encouraged. It is recommended that the supply name used
1252 * should match the name used for the supply and/or the relevant
1253 * device pins in the datasheet.
1254 */
1255 struct regulator *regulator_get(struct device *dev, const char *id)
1256 {
1257 return _regulator_get(dev, id, 0);
1258 }
1259 EXPORT_SYMBOL_GPL(regulator_get);
1260
1261 /**
1262 * regulator_get_exclusive - obtain exclusive access to a regulator.
1263 * @dev: device for regulator "consumer"
1264 * @id: Supply name or regulator ID.
1265 *
1266 * Returns a struct regulator corresponding to the regulator producer,
1267 * or IS_ERR() condition containing errno. Other consumers will be
1268 * unable to obtain this reference is held and the use count for the
1269 * regulator will be initialised to reflect the current state of the
1270 * regulator.
1271 *
1272 * This is intended for use by consumers which cannot tolerate shared
1273 * use of the regulator such as those which need to force the
1274 * regulator off for correct operation of the hardware they are
1275 * controlling.
1276 *
1277 * Use of supply names configured via regulator_set_device_supply() is
1278 * strongly encouraged. It is recommended that the supply name used
1279 * should match the name used for the supply and/or the relevant
1280 * device pins in the datasheet.
1281 */
1282 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1283 {
1284 return _regulator_get(dev, id, 1);
1285 }
1286 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1287
1288 /**
1289 * regulator_put - "free" the regulator source
1290 * @regulator: regulator source
1291 *
1292 * Note: drivers must ensure that all regulator_enable calls made on this
1293 * regulator source are balanced by regulator_disable calls prior to calling
1294 * this function.
1295 */
1296 void regulator_put(struct regulator *regulator)
1297 {
1298 struct regulator_dev *rdev;
1299
1300 if (regulator == NULL || IS_ERR(regulator))
1301 return;
1302
1303 mutex_lock(&regulator_list_mutex);
1304 rdev = regulator->rdev;
1305
1306 #ifdef CONFIG_DEBUG_FS
1307 debugfs_remove_recursive(regulator->debugfs);
1308 #endif
1309
1310 /* remove any sysfs entries */
1311 if (regulator->dev) {
1312 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1313 device_remove_file(regulator->dev, &regulator->dev_attr);
1314 kfree(regulator->dev_attr.attr.name);
1315 }
1316 kfree(regulator->supply_name);
1317 list_del(&regulator->list);
1318 kfree(regulator);
1319
1320 rdev->open_count--;
1321 rdev->exclusive = 0;
1322
1323 module_put(rdev->owner);
1324 mutex_unlock(&regulator_list_mutex);
1325 }
1326 EXPORT_SYMBOL_GPL(regulator_put);
1327
1328 static int _regulator_can_change_status(struct regulator_dev *rdev)
1329 {
1330 if (!rdev->constraints)
1331 return 0;
1332
1333 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1334 return 1;
1335 else
1336 return 0;
1337 }
1338
1339 /* locks held by regulator_enable() */
1340 static int _regulator_enable(struct regulator_dev *rdev)
1341 {
1342 int ret, delay;
1343
1344 /* check voltage and requested load before enabling */
1345 if (rdev->constraints &&
1346 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1347 drms_uA_update(rdev);
1348
1349 if (rdev->use_count == 0) {
1350 /* The regulator may on if it's not switchable or left on */
1351 ret = _regulator_is_enabled(rdev);
1352 if (ret == -EINVAL || ret == 0) {
1353 if (!_regulator_can_change_status(rdev))
1354 return -EPERM;
1355
1356 if (!rdev->desc->ops->enable)
1357 return -EINVAL;
1358
1359 /* Query before enabling in case configuration
1360 * dependent. */
1361 ret = _regulator_get_enable_time(rdev);
1362 if (ret >= 0) {
1363 delay = ret;
1364 } else {
1365 rdev_warn(rdev, "enable_time() failed: %d\n",
1366 ret);
1367 delay = 0;
1368 }
1369
1370 trace_regulator_enable(rdev_get_name(rdev));
1371
1372 /* Allow the regulator to ramp; it would be useful
1373 * to extend this for bulk operations so that the
1374 * regulators can ramp together. */
1375 ret = rdev->desc->ops->enable(rdev);
1376 if (ret < 0)
1377 return ret;
1378
1379 trace_regulator_enable_delay(rdev_get_name(rdev));
1380
1381 if (delay >= 1000) {
1382 mdelay(delay / 1000);
1383 udelay(delay % 1000);
1384 } else if (delay) {
1385 udelay(delay);
1386 }
1387
1388 trace_regulator_enable_complete(rdev_get_name(rdev));
1389
1390 } else if (ret < 0) {
1391 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1392 return ret;
1393 }
1394 /* Fallthrough on positive return values - already enabled */
1395 }
1396
1397 rdev->use_count++;
1398
1399 return 0;
1400 }
1401
1402 /**
1403 * regulator_enable - enable regulator output
1404 * @regulator: regulator source
1405 *
1406 * Request that the regulator be enabled with the regulator output at
1407 * the predefined voltage or current value. Calls to regulator_enable()
1408 * must be balanced with calls to regulator_disable().
1409 *
1410 * NOTE: the output value can be set by other drivers, boot loader or may be
1411 * hardwired in the regulator.
1412 */
1413 int regulator_enable(struct regulator *regulator)
1414 {
1415 struct regulator_dev *rdev = regulator->rdev;
1416 int ret = 0;
1417
1418 if (rdev->supply) {
1419 ret = regulator_enable(rdev->supply);
1420 if (ret != 0)
1421 return ret;
1422 }
1423
1424 mutex_lock(&rdev->mutex);
1425 ret = _regulator_enable(rdev);
1426 mutex_unlock(&rdev->mutex);
1427
1428 if (ret != 0 && rdev->supply)
1429 regulator_disable(rdev->supply);
1430
1431 return ret;
1432 }
1433 EXPORT_SYMBOL_GPL(regulator_enable);
1434
1435 /* locks held by regulator_disable() */
1436 static int _regulator_disable(struct regulator_dev *rdev)
1437 {
1438 int ret = 0;
1439
1440 if (WARN(rdev->use_count <= 0,
1441 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1442 return -EIO;
1443
1444 /* are we the last user and permitted to disable ? */
1445 if (rdev->use_count == 1 &&
1446 (rdev->constraints && !rdev->constraints->always_on)) {
1447
1448 /* we are last user */
1449 if (_regulator_can_change_status(rdev) &&
1450 rdev->desc->ops->disable) {
1451 trace_regulator_disable(rdev_get_name(rdev));
1452
1453 ret = rdev->desc->ops->disable(rdev);
1454 if (ret < 0) {
1455 rdev_err(rdev, "failed to disable\n");
1456 return ret;
1457 }
1458
1459 trace_regulator_disable_complete(rdev_get_name(rdev));
1460
1461 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1462 NULL);
1463 }
1464
1465 rdev->use_count = 0;
1466 } else if (rdev->use_count > 1) {
1467
1468 if (rdev->constraints &&
1469 (rdev->constraints->valid_ops_mask &
1470 REGULATOR_CHANGE_DRMS))
1471 drms_uA_update(rdev);
1472
1473 rdev->use_count--;
1474 }
1475
1476 return ret;
1477 }
1478
1479 /**
1480 * regulator_disable - disable regulator output
1481 * @regulator: regulator source
1482 *
1483 * Disable the regulator output voltage or current. Calls to
1484 * regulator_enable() must be balanced with calls to
1485 * regulator_disable().
1486 *
1487 * NOTE: this will only disable the regulator output if no other consumer
1488 * devices have it enabled, the regulator device supports disabling and
1489 * machine constraints permit this operation.
1490 */
1491 int regulator_disable(struct regulator *regulator)
1492 {
1493 struct regulator_dev *rdev = regulator->rdev;
1494 int ret = 0;
1495
1496 mutex_lock(&rdev->mutex);
1497 ret = _regulator_disable(rdev);
1498 mutex_unlock(&rdev->mutex);
1499
1500 if (ret == 0 && rdev->supply)
1501 regulator_disable(rdev->supply);
1502
1503 return ret;
1504 }
1505 EXPORT_SYMBOL_GPL(regulator_disable);
1506
1507 /* locks held by regulator_force_disable() */
1508 static int _regulator_force_disable(struct regulator_dev *rdev)
1509 {
1510 int ret = 0;
1511
1512 /* force disable */
1513 if (rdev->desc->ops->disable) {
1514 /* ah well, who wants to live forever... */
1515 ret = rdev->desc->ops->disable(rdev);
1516 if (ret < 0) {
1517 rdev_err(rdev, "failed to force disable\n");
1518 return ret;
1519 }
1520 /* notify other consumers that power has been forced off */
1521 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1522 REGULATOR_EVENT_DISABLE, NULL);
1523 }
1524
1525 return ret;
1526 }
1527
1528 /**
1529 * regulator_force_disable - force disable regulator output
1530 * @regulator: regulator source
1531 *
1532 * Forcibly disable the regulator output voltage or current.
1533 * NOTE: this *will* disable the regulator output even if other consumer
1534 * devices have it enabled. This should be used for situations when device
1535 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1536 */
1537 int regulator_force_disable(struct regulator *regulator)
1538 {
1539 struct regulator_dev *rdev = regulator->rdev;
1540 int ret;
1541
1542 mutex_lock(&rdev->mutex);
1543 regulator->uA_load = 0;
1544 ret = _regulator_force_disable(regulator->rdev);
1545 mutex_unlock(&rdev->mutex);
1546
1547 if (rdev->supply)
1548 while (rdev->open_count--)
1549 regulator_disable(rdev->supply);
1550
1551 return ret;
1552 }
1553 EXPORT_SYMBOL_GPL(regulator_force_disable);
1554
1555 static void regulator_disable_work(struct work_struct *work)
1556 {
1557 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1558 disable_work.work);
1559 int count, i, ret;
1560
1561 mutex_lock(&rdev->mutex);
1562
1563 BUG_ON(!rdev->deferred_disables);
1564
1565 count = rdev->deferred_disables;
1566 rdev->deferred_disables = 0;
1567
1568 for (i = 0; i < count; i++) {
1569 ret = _regulator_disable(rdev);
1570 if (ret != 0)
1571 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1572 }
1573
1574 mutex_unlock(&rdev->mutex);
1575
1576 if (rdev->supply) {
1577 for (i = 0; i < count; i++) {
1578 ret = regulator_disable(rdev->supply);
1579 if (ret != 0) {
1580 rdev_err(rdev,
1581 "Supply disable failed: %d\n", ret);
1582 }
1583 }
1584 }
1585 }
1586
1587 /**
1588 * regulator_disable_deferred - disable regulator output with delay
1589 * @regulator: regulator source
1590 * @ms: miliseconds until the regulator is disabled
1591 *
1592 * Execute regulator_disable() on the regulator after a delay. This
1593 * is intended for use with devices that require some time to quiesce.
1594 *
1595 * NOTE: this will only disable the regulator output if no other consumer
1596 * devices have it enabled, the regulator device supports disabling and
1597 * machine constraints permit this operation.
1598 */
1599 int regulator_disable_deferred(struct regulator *regulator, int ms)
1600 {
1601 struct regulator_dev *rdev = regulator->rdev;
1602 int ret;
1603
1604 mutex_lock(&rdev->mutex);
1605 rdev->deferred_disables++;
1606 mutex_unlock(&rdev->mutex);
1607
1608 ret = schedule_delayed_work(&rdev->disable_work,
1609 msecs_to_jiffies(ms));
1610 if (ret < 0)
1611 return ret;
1612 else
1613 return 0;
1614 }
1615 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1616
1617 static int _regulator_is_enabled(struct regulator_dev *rdev)
1618 {
1619 /* If we don't know then assume that the regulator is always on */
1620 if (!rdev->desc->ops->is_enabled)
1621 return 1;
1622
1623 return rdev->desc->ops->is_enabled(rdev);
1624 }
1625
1626 /**
1627 * regulator_is_enabled - is the regulator output enabled
1628 * @regulator: regulator source
1629 *
1630 * Returns positive if the regulator driver backing the source/client
1631 * has requested that the device be enabled, zero if it hasn't, else a
1632 * negative errno code.
1633 *
1634 * Note that the device backing this regulator handle can have multiple
1635 * users, so it might be enabled even if regulator_enable() was never
1636 * called for this particular source.
1637 */
1638 int regulator_is_enabled(struct regulator *regulator)
1639 {
1640 int ret;
1641
1642 mutex_lock(&regulator->rdev->mutex);
1643 ret = _regulator_is_enabled(regulator->rdev);
1644 mutex_unlock(&regulator->rdev->mutex);
1645
1646 return ret;
1647 }
1648 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1649
1650 /**
1651 * regulator_count_voltages - count regulator_list_voltage() selectors
1652 * @regulator: regulator source
1653 *
1654 * Returns number of selectors, or negative errno. Selectors are
1655 * numbered starting at zero, and typically correspond to bitfields
1656 * in hardware registers.
1657 */
1658 int regulator_count_voltages(struct regulator *regulator)
1659 {
1660 struct regulator_dev *rdev = regulator->rdev;
1661
1662 return rdev->desc->n_voltages ? : -EINVAL;
1663 }
1664 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1665
1666 /**
1667 * regulator_list_voltage - enumerate supported voltages
1668 * @regulator: regulator source
1669 * @selector: identify voltage to list
1670 * Context: can sleep
1671 *
1672 * Returns a voltage that can be passed to @regulator_set_voltage(),
1673 * zero if this selector code can't be used on this system, or a
1674 * negative errno.
1675 */
1676 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1677 {
1678 struct regulator_dev *rdev = regulator->rdev;
1679 struct regulator_ops *ops = rdev->desc->ops;
1680 int ret;
1681
1682 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1683 return -EINVAL;
1684
1685 mutex_lock(&rdev->mutex);
1686 ret = ops->list_voltage(rdev, selector);
1687 mutex_unlock(&rdev->mutex);
1688
1689 if (ret > 0) {
1690 if (ret < rdev->constraints->min_uV)
1691 ret = 0;
1692 else if (ret > rdev->constraints->max_uV)
1693 ret = 0;
1694 }
1695
1696 return ret;
1697 }
1698 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1699
1700 /**
1701 * regulator_is_supported_voltage - check if a voltage range can be supported
1702 *
1703 * @regulator: Regulator to check.
1704 * @min_uV: Minimum required voltage in uV.
1705 * @max_uV: Maximum required voltage in uV.
1706 *
1707 * Returns a boolean or a negative error code.
1708 */
1709 int regulator_is_supported_voltage(struct regulator *regulator,
1710 int min_uV, int max_uV)
1711 {
1712 int i, voltages, ret;
1713
1714 ret = regulator_count_voltages(regulator);
1715 if (ret < 0)
1716 return ret;
1717 voltages = ret;
1718
1719 for (i = 0; i < voltages; i++) {
1720 ret = regulator_list_voltage(regulator, i);
1721
1722 if (ret >= min_uV && ret <= max_uV)
1723 return 1;
1724 }
1725
1726 return 0;
1727 }
1728
1729 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1730 int min_uV, int max_uV)
1731 {
1732 int ret;
1733 int delay = 0;
1734 unsigned int selector;
1735
1736 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1737
1738 min_uV += rdev->constraints->uV_offset;
1739 max_uV += rdev->constraints->uV_offset;
1740
1741 if (rdev->desc->ops->set_voltage) {
1742 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1743 &selector);
1744
1745 if (rdev->desc->ops->list_voltage)
1746 selector = rdev->desc->ops->list_voltage(rdev,
1747 selector);
1748 else
1749 selector = -1;
1750 } else if (rdev->desc->ops->set_voltage_sel) {
1751 int best_val = INT_MAX;
1752 int i;
1753
1754 selector = 0;
1755
1756 /* Find the smallest voltage that falls within the specified
1757 * range.
1758 */
1759 for (i = 0; i < rdev->desc->n_voltages; i++) {
1760 ret = rdev->desc->ops->list_voltage(rdev, i);
1761 if (ret < 0)
1762 continue;
1763
1764 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1765 best_val = ret;
1766 selector = i;
1767 }
1768 }
1769
1770 /*
1771 * If we can't obtain the old selector there is not enough
1772 * info to call set_voltage_time_sel().
1773 */
1774 if (rdev->desc->ops->set_voltage_time_sel &&
1775 rdev->desc->ops->get_voltage_sel) {
1776 unsigned int old_selector = 0;
1777
1778 ret = rdev->desc->ops->get_voltage_sel(rdev);
1779 if (ret < 0)
1780 return ret;
1781 old_selector = ret;
1782 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1783 old_selector, selector);
1784 }
1785
1786 if (best_val != INT_MAX) {
1787 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1788 selector = best_val;
1789 } else {
1790 ret = -EINVAL;
1791 }
1792 } else {
1793 ret = -EINVAL;
1794 }
1795
1796 /* Insert any necessary delays */
1797 if (delay >= 1000) {
1798 mdelay(delay / 1000);
1799 udelay(delay % 1000);
1800 } else if (delay) {
1801 udelay(delay);
1802 }
1803
1804 if (ret == 0)
1805 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1806 NULL);
1807
1808 trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1809
1810 return ret;
1811 }
1812
1813 /**
1814 * regulator_set_voltage - set regulator output voltage
1815 * @regulator: regulator source
1816 * @min_uV: Minimum required voltage in uV
1817 * @max_uV: Maximum acceptable voltage in uV
1818 *
1819 * Sets a voltage regulator to the desired output voltage. This can be set
1820 * during any regulator state. IOW, regulator can be disabled or enabled.
1821 *
1822 * If the regulator is enabled then the voltage will change to the new value
1823 * immediately otherwise if the regulator is disabled the regulator will
1824 * output at the new voltage when enabled.
1825 *
1826 * NOTE: If the regulator is shared between several devices then the lowest
1827 * request voltage that meets the system constraints will be used.
1828 * Regulator system constraints must be set for this regulator before
1829 * calling this function otherwise this call will fail.
1830 */
1831 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1832 {
1833 struct regulator_dev *rdev = regulator->rdev;
1834 int ret = 0;
1835
1836 mutex_lock(&rdev->mutex);
1837
1838 /* If we're setting the same range as last time the change
1839 * should be a noop (some cpufreq implementations use the same
1840 * voltage for multiple frequencies, for example).
1841 */
1842 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1843 goto out;
1844
1845 /* sanity check */
1846 if (!rdev->desc->ops->set_voltage &&
1847 !rdev->desc->ops->set_voltage_sel) {
1848 ret = -EINVAL;
1849 goto out;
1850 }
1851
1852 /* constraints check */
1853 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1854 if (ret < 0)
1855 goto out;
1856 regulator->min_uV = min_uV;
1857 regulator->max_uV = max_uV;
1858
1859 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1860 if (ret < 0)
1861 goto out;
1862
1863 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1864
1865 out:
1866 mutex_unlock(&rdev->mutex);
1867 return ret;
1868 }
1869 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1870
1871 /**
1872 * regulator_set_voltage_time - get raise/fall time
1873 * @regulator: regulator source
1874 * @old_uV: starting voltage in microvolts
1875 * @new_uV: target voltage in microvolts
1876 *
1877 * Provided with the starting and ending voltage, this function attempts to
1878 * calculate the time in microseconds required to rise or fall to this new
1879 * voltage.
1880 */
1881 int regulator_set_voltage_time(struct regulator *regulator,
1882 int old_uV, int new_uV)
1883 {
1884 struct regulator_dev *rdev = regulator->rdev;
1885 struct regulator_ops *ops = rdev->desc->ops;
1886 int old_sel = -1;
1887 int new_sel = -1;
1888 int voltage;
1889 int i;
1890
1891 /* Currently requires operations to do this */
1892 if (!ops->list_voltage || !ops->set_voltage_time_sel
1893 || !rdev->desc->n_voltages)
1894 return -EINVAL;
1895
1896 for (i = 0; i < rdev->desc->n_voltages; i++) {
1897 /* We only look for exact voltage matches here */
1898 voltage = regulator_list_voltage(regulator, i);
1899 if (voltage < 0)
1900 return -EINVAL;
1901 if (voltage == 0)
1902 continue;
1903 if (voltage == old_uV)
1904 old_sel = i;
1905 if (voltage == new_uV)
1906 new_sel = i;
1907 }
1908
1909 if (old_sel < 0 || new_sel < 0)
1910 return -EINVAL;
1911
1912 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1913 }
1914 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1915
1916 /**
1917 * regulator_sync_voltage - re-apply last regulator output voltage
1918 * @regulator: regulator source
1919 *
1920 * Re-apply the last configured voltage. This is intended to be used
1921 * where some external control source the consumer is cooperating with
1922 * has caused the configured voltage to change.
1923 */
1924 int regulator_sync_voltage(struct regulator *regulator)
1925 {
1926 struct regulator_dev *rdev = regulator->rdev;
1927 int ret, min_uV, max_uV;
1928
1929 mutex_lock(&rdev->mutex);
1930
1931 if (!rdev->desc->ops->set_voltage &&
1932 !rdev->desc->ops->set_voltage_sel) {
1933 ret = -EINVAL;
1934 goto out;
1935 }
1936
1937 /* This is only going to work if we've had a voltage configured. */
1938 if (!regulator->min_uV && !regulator->max_uV) {
1939 ret = -EINVAL;
1940 goto out;
1941 }
1942
1943 min_uV = regulator->min_uV;
1944 max_uV = regulator->max_uV;
1945
1946 /* This should be a paranoia check... */
1947 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1948 if (ret < 0)
1949 goto out;
1950
1951 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1952 if (ret < 0)
1953 goto out;
1954
1955 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1956
1957 out:
1958 mutex_unlock(&rdev->mutex);
1959 return ret;
1960 }
1961 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1962
1963 static int _regulator_get_voltage(struct regulator_dev *rdev)
1964 {
1965 int sel, ret;
1966
1967 if (rdev->desc->ops->get_voltage_sel) {
1968 sel = rdev->desc->ops->get_voltage_sel(rdev);
1969 if (sel < 0)
1970 return sel;
1971 ret = rdev->desc->ops->list_voltage(rdev, sel);
1972 } else if (rdev->desc->ops->get_voltage) {
1973 ret = rdev->desc->ops->get_voltage(rdev);
1974 } else {
1975 return -EINVAL;
1976 }
1977
1978 if (ret < 0)
1979 return ret;
1980 return ret - rdev->constraints->uV_offset;
1981 }
1982
1983 /**
1984 * regulator_get_voltage - get regulator output voltage
1985 * @regulator: regulator source
1986 *
1987 * This returns the current regulator voltage in uV.
1988 *
1989 * NOTE: If the regulator is disabled it will return the voltage value. This
1990 * function should not be used to determine regulator state.
1991 */
1992 int regulator_get_voltage(struct regulator *regulator)
1993 {
1994 int ret;
1995
1996 mutex_lock(&regulator->rdev->mutex);
1997
1998 ret = _regulator_get_voltage(regulator->rdev);
1999
2000 mutex_unlock(&regulator->rdev->mutex);
2001
2002 return ret;
2003 }
2004 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2005
2006 /**
2007 * regulator_set_current_limit - set regulator output current limit
2008 * @regulator: regulator source
2009 * @min_uA: Minimuum supported current in uA
2010 * @max_uA: Maximum supported current in uA
2011 *
2012 * Sets current sink to the desired output current. This can be set during
2013 * any regulator state. IOW, regulator can be disabled or enabled.
2014 *
2015 * If the regulator is enabled then the current will change to the new value
2016 * immediately otherwise if the regulator is disabled the regulator will
2017 * output at the new current when enabled.
2018 *
2019 * NOTE: Regulator system constraints must be set for this regulator before
2020 * calling this function otherwise this call will fail.
2021 */
2022 int regulator_set_current_limit(struct regulator *regulator,
2023 int min_uA, int max_uA)
2024 {
2025 struct regulator_dev *rdev = regulator->rdev;
2026 int ret;
2027
2028 mutex_lock(&rdev->mutex);
2029
2030 /* sanity check */
2031 if (!rdev->desc->ops->set_current_limit) {
2032 ret = -EINVAL;
2033 goto out;
2034 }
2035
2036 /* constraints check */
2037 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2038 if (ret < 0)
2039 goto out;
2040
2041 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2042 out:
2043 mutex_unlock(&rdev->mutex);
2044 return ret;
2045 }
2046 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2047
2048 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2049 {
2050 int ret;
2051
2052 mutex_lock(&rdev->mutex);
2053
2054 /* sanity check */
2055 if (!rdev->desc->ops->get_current_limit) {
2056 ret = -EINVAL;
2057 goto out;
2058 }
2059
2060 ret = rdev->desc->ops->get_current_limit(rdev);
2061 out:
2062 mutex_unlock(&rdev->mutex);
2063 return ret;
2064 }
2065
2066 /**
2067 * regulator_get_current_limit - get regulator output current
2068 * @regulator: regulator source
2069 *
2070 * This returns the current supplied by the specified current sink in uA.
2071 *
2072 * NOTE: If the regulator is disabled it will return the current value. This
2073 * function should not be used to determine regulator state.
2074 */
2075 int regulator_get_current_limit(struct regulator *regulator)
2076 {
2077 return _regulator_get_current_limit(regulator->rdev);
2078 }
2079 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2080
2081 /**
2082 * regulator_set_mode - set regulator operating mode
2083 * @regulator: regulator source
2084 * @mode: operating mode - one of the REGULATOR_MODE constants
2085 *
2086 * Set regulator operating mode to increase regulator efficiency or improve
2087 * regulation performance.
2088 *
2089 * NOTE: Regulator system constraints must be set for this regulator before
2090 * calling this function otherwise this call will fail.
2091 */
2092 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2093 {
2094 struct regulator_dev *rdev = regulator->rdev;
2095 int ret;
2096 int regulator_curr_mode;
2097
2098 mutex_lock(&rdev->mutex);
2099
2100 /* sanity check */
2101 if (!rdev->desc->ops->set_mode) {
2102 ret = -EINVAL;
2103 goto out;
2104 }
2105
2106 /* return if the same mode is requested */
2107 if (rdev->desc->ops->get_mode) {
2108 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2109 if (regulator_curr_mode == mode) {
2110 ret = 0;
2111 goto out;
2112 }
2113 }
2114
2115 /* constraints check */
2116 ret = regulator_mode_constrain(rdev, &mode);
2117 if (ret < 0)
2118 goto out;
2119
2120 ret = rdev->desc->ops->set_mode(rdev, mode);
2121 out:
2122 mutex_unlock(&rdev->mutex);
2123 return ret;
2124 }
2125 EXPORT_SYMBOL_GPL(regulator_set_mode);
2126
2127 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2128 {
2129 int ret;
2130
2131 mutex_lock(&rdev->mutex);
2132
2133 /* sanity check */
2134 if (!rdev->desc->ops->get_mode) {
2135 ret = -EINVAL;
2136 goto out;
2137 }
2138
2139 ret = rdev->desc->ops->get_mode(rdev);
2140 out:
2141 mutex_unlock(&rdev->mutex);
2142 return ret;
2143 }
2144
2145 /**
2146 * regulator_get_mode - get regulator operating mode
2147 * @regulator: regulator source
2148 *
2149 * Get the current regulator operating mode.
2150 */
2151 unsigned int regulator_get_mode(struct regulator *regulator)
2152 {
2153 return _regulator_get_mode(regulator->rdev);
2154 }
2155 EXPORT_SYMBOL_GPL(regulator_get_mode);
2156
2157 /**
2158 * regulator_set_optimum_mode - set regulator optimum operating mode
2159 * @regulator: regulator source
2160 * @uA_load: load current
2161 *
2162 * Notifies the regulator core of a new device load. This is then used by
2163 * DRMS (if enabled by constraints) to set the most efficient regulator
2164 * operating mode for the new regulator loading.
2165 *
2166 * Consumer devices notify their supply regulator of the maximum power
2167 * they will require (can be taken from device datasheet in the power
2168 * consumption tables) when they change operational status and hence power
2169 * state. Examples of operational state changes that can affect power
2170 * consumption are :-
2171 *
2172 * o Device is opened / closed.
2173 * o Device I/O is about to begin or has just finished.
2174 * o Device is idling in between work.
2175 *
2176 * This information is also exported via sysfs to userspace.
2177 *
2178 * DRMS will sum the total requested load on the regulator and change
2179 * to the most efficient operating mode if platform constraints allow.
2180 *
2181 * Returns the new regulator mode or error.
2182 */
2183 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2184 {
2185 struct regulator_dev *rdev = regulator->rdev;
2186 struct regulator *consumer;
2187 int ret, output_uV, input_uV, total_uA_load = 0;
2188 unsigned int mode;
2189
2190 mutex_lock(&rdev->mutex);
2191
2192 /*
2193 * first check to see if we can set modes at all, otherwise just
2194 * tell the consumer everything is OK.
2195 */
2196 regulator->uA_load = uA_load;
2197 ret = regulator_check_drms(rdev);
2198 if (ret < 0) {
2199 ret = 0;
2200 goto out;
2201 }
2202
2203 if (!rdev->desc->ops->get_optimum_mode)
2204 goto out;
2205
2206 /*
2207 * we can actually do this so any errors are indicators of
2208 * potential real failure.
2209 */
2210 ret = -EINVAL;
2211
2212 /* get output voltage */
2213 output_uV = _regulator_get_voltage(rdev);
2214 if (output_uV <= 0) {
2215 rdev_err(rdev, "invalid output voltage found\n");
2216 goto out;
2217 }
2218
2219 /* get input voltage */
2220 input_uV = 0;
2221 if (rdev->supply)
2222 input_uV = regulator_get_voltage(rdev->supply);
2223 if (input_uV <= 0)
2224 input_uV = rdev->constraints->input_uV;
2225 if (input_uV <= 0) {
2226 rdev_err(rdev, "invalid input voltage found\n");
2227 goto out;
2228 }
2229
2230 /* calc total requested load for this regulator */
2231 list_for_each_entry(consumer, &rdev->consumer_list, list)
2232 total_uA_load += consumer->uA_load;
2233
2234 mode = rdev->desc->ops->get_optimum_mode(rdev,
2235 input_uV, output_uV,
2236 total_uA_load);
2237 ret = regulator_mode_constrain(rdev, &mode);
2238 if (ret < 0) {
2239 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2240 total_uA_load, input_uV, output_uV);
2241 goto out;
2242 }
2243
2244 ret = rdev->desc->ops->set_mode(rdev, mode);
2245 if (ret < 0) {
2246 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2247 goto out;
2248 }
2249 ret = mode;
2250 out:
2251 mutex_unlock(&rdev->mutex);
2252 return ret;
2253 }
2254 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2255
2256 /**
2257 * regulator_register_notifier - register regulator event notifier
2258 * @regulator: regulator source
2259 * @nb: notifier block
2260 *
2261 * Register notifier block to receive regulator events.
2262 */
2263 int regulator_register_notifier(struct regulator *regulator,
2264 struct notifier_block *nb)
2265 {
2266 return blocking_notifier_chain_register(&regulator->rdev->notifier,
2267 nb);
2268 }
2269 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2270
2271 /**
2272 * regulator_unregister_notifier - unregister regulator event notifier
2273 * @regulator: regulator source
2274 * @nb: notifier block
2275 *
2276 * Unregister regulator event notifier block.
2277 */
2278 int regulator_unregister_notifier(struct regulator *regulator,
2279 struct notifier_block *nb)
2280 {
2281 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2282 nb);
2283 }
2284 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2285
2286 /* notify regulator consumers and downstream regulator consumers.
2287 * Note mutex must be held by caller.
2288 */
2289 static void _notifier_call_chain(struct regulator_dev *rdev,
2290 unsigned long event, void *data)
2291 {
2292 /* call rdev chain first */
2293 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2294 }
2295
2296 /**
2297 * regulator_bulk_get - get multiple regulator consumers
2298 *
2299 * @dev: Device to supply
2300 * @num_consumers: Number of consumers to register
2301 * @consumers: Configuration of consumers; clients are stored here.
2302 *
2303 * @return 0 on success, an errno on failure.
2304 *
2305 * This helper function allows drivers to get several regulator
2306 * consumers in one operation. If any of the regulators cannot be
2307 * acquired then any regulators that were allocated will be freed
2308 * before returning to the caller.
2309 */
2310 int regulator_bulk_get(struct device *dev, int num_consumers,
2311 struct regulator_bulk_data *consumers)
2312 {
2313 int i;
2314 int ret;
2315
2316 for (i = 0; i < num_consumers; i++)
2317 consumers[i].consumer = NULL;
2318
2319 for (i = 0; i < num_consumers; i++) {
2320 consumers[i].consumer = regulator_get(dev,
2321 consumers[i].supply);
2322 if (IS_ERR(consumers[i].consumer)) {
2323 ret = PTR_ERR(consumers[i].consumer);
2324 dev_err(dev, "Failed to get supply '%s': %d\n",
2325 consumers[i].supply, ret);
2326 consumers[i].consumer = NULL;
2327 goto err;
2328 }
2329 }
2330
2331 return 0;
2332
2333 err:
2334 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2335 regulator_put(consumers[i].consumer);
2336
2337 return ret;
2338 }
2339 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2340
2341 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2342 {
2343 struct regulator_bulk_data *bulk = data;
2344
2345 bulk->ret = regulator_enable(bulk->consumer);
2346 }
2347
2348 /**
2349 * regulator_bulk_enable - enable multiple regulator consumers
2350 *
2351 * @num_consumers: Number of consumers
2352 * @consumers: Consumer data; clients are stored here.
2353 * @return 0 on success, an errno on failure
2354 *
2355 * This convenience API allows consumers to enable multiple regulator
2356 * clients in a single API call. If any consumers cannot be enabled
2357 * then any others that were enabled will be disabled again prior to
2358 * return.
2359 */
2360 int regulator_bulk_enable(int num_consumers,
2361 struct regulator_bulk_data *consumers)
2362 {
2363 LIST_HEAD(async_domain);
2364 int i;
2365 int ret = 0;
2366
2367 for (i = 0; i < num_consumers; i++)
2368 async_schedule_domain(regulator_bulk_enable_async,
2369 &consumers[i], &async_domain);
2370
2371 async_synchronize_full_domain(&async_domain);
2372
2373 /* If any consumer failed we need to unwind any that succeeded */
2374 for (i = 0; i < num_consumers; i++) {
2375 if (consumers[i].ret != 0) {
2376 ret = consumers[i].ret;
2377 goto err;
2378 }
2379 }
2380
2381 return 0;
2382
2383 err:
2384 for (i = 0; i < num_consumers; i++)
2385 if (consumers[i].ret == 0)
2386 regulator_disable(consumers[i].consumer);
2387 else
2388 pr_err("Failed to enable %s: %d\n",
2389 consumers[i].supply, consumers[i].ret);
2390
2391 return ret;
2392 }
2393 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2394
2395 /**
2396 * regulator_bulk_disable - disable multiple regulator consumers
2397 *
2398 * @num_consumers: Number of consumers
2399 * @consumers: Consumer data; clients are stored here.
2400 * @return 0 on success, an errno on failure
2401 *
2402 * This convenience API allows consumers to disable multiple regulator
2403 * clients in a single API call. If any consumers cannot be enabled
2404 * then any others that were disabled will be disabled again prior to
2405 * return.
2406 */
2407 int regulator_bulk_disable(int num_consumers,
2408 struct regulator_bulk_data *consumers)
2409 {
2410 int i;
2411 int ret;
2412
2413 for (i = 0; i < num_consumers; i++) {
2414 ret = regulator_disable(consumers[i].consumer);
2415 if (ret != 0)
2416 goto err;
2417 }
2418
2419 return 0;
2420
2421 err:
2422 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2423 for (--i; i >= 0; --i)
2424 regulator_enable(consumers[i].consumer);
2425
2426 return ret;
2427 }
2428 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2429
2430 /**
2431 * regulator_bulk_free - free multiple regulator consumers
2432 *
2433 * @num_consumers: Number of consumers
2434 * @consumers: Consumer data; clients are stored here.
2435 *
2436 * This convenience API allows consumers to free multiple regulator
2437 * clients in a single API call.
2438 */
2439 void regulator_bulk_free(int num_consumers,
2440 struct regulator_bulk_data *consumers)
2441 {
2442 int i;
2443
2444 for (i = 0; i < num_consumers; i++) {
2445 regulator_put(consumers[i].consumer);
2446 consumers[i].consumer = NULL;
2447 }
2448 }
2449 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2450
2451 /**
2452 * regulator_notifier_call_chain - call regulator event notifier
2453 * @rdev: regulator source
2454 * @event: notifier block
2455 * @data: callback-specific data.
2456 *
2457 * Called by regulator drivers to notify clients a regulator event has
2458 * occurred. We also notify regulator clients downstream.
2459 * Note lock must be held by caller.
2460 */
2461 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2462 unsigned long event, void *data)
2463 {
2464 _notifier_call_chain(rdev, event, data);
2465 return NOTIFY_DONE;
2466
2467 }
2468 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2469
2470 /**
2471 * regulator_mode_to_status - convert a regulator mode into a status
2472 *
2473 * @mode: Mode to convert
2474 *
2475 * Convert a regulator mode into a status.
2476 */
2477 int regulator_mode_to_status(unsigned int mode)
2478 {
2479 switch (mode) {
2480 case REGULATOR_MODE_FAST:
2481 return REGULATOR_STATUS_FAST;
2482 case REGULATOR_MODE_NORMAL:
2483 return REGULATOR_STATUS_NORMAL;
2484 case REGULATOR_MODE_IDLE:
2485 return REGULATOR_STATUS_IDLE;
2486 case REGULATOR_STATUS_STANDBY:
2487 return REGULATOR_STATUS_STANDBY;
2488 default:
2489 return 0;
2490 }
2491 }
2492 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2493
2494 /*
2495 * To avoid cluttering sysfs (and memory) with useless state, only
2496 * create attributes that can be meaningfully displayed.
2497 */
2498 static int add_regulator_attributes(struct regulator_dev *rdev)
2499 {
2500 struct device *dev = &rdev->dev;
2501 struct regulator_ops *ops = rdev->desc->ops;
2502 int status = 0;
2503
2504 /* some attributes need specific methods to be displayed */
2505 if (ops->get_voltage || ops->get_voltage_sel) {
2506 status = device_create_file(dev, &dev_attr_microvolts);
2507 if (status < 0)
2508 return status;
2509 }
2510 if (ops->get_current_limit) {
2511 status = device_create_file(dev, &dev_attr_microamps);
2512 if (status < 0)
2513 return status;
2514 }
2515 if (ops->get_mode) {
2516 status = device_create_file(dev, &dev_attr_opmode);
2517 if (status < 0)
2518 return status;
2519 }
2520 if (ops->is_enabled) {
2521 status = device_create_file(dev, &dev_attr_state);
2522 if (status < 0)
2523 return status;
2524 }
2525 if (ops->get_status) {
2526 status = device_create_file(dev, &dev_attr_status);
2527 if (status < 0)
2528 return status;
2529 }
2530
2531 /* some attributes are type-specific */
2532 if (rdev->desc->type == REGULATOR_CURRENT) {
2533 status = device_create_file(dev, &dev_attr_requested_microamps);
2534 if (status < 0)
2535 return status;
2536 }
2537
2538 /* all the other attributes exist to support constraints;
2539 * don't show them if there are no constraints, or if the
2540 * relevant supporting methods are missing.
2541 */
2542 if (!rdev->constraints)
2543 return status;
2544
2545 /* constraints need specific supporting methods */
2546 if (ops->set_voltage || ops->set_voltage_sel) {
2547 status = device_create_file(dev, &dev_attr_min_microvolts);
2548 if (status < 0)
2549 return status;
2550 status = device_create_file(dev, &dev_attr_max_microvolts);
2551 if (status < 0)
2552 return status;
2553 }
2554 if (ops->set_current_limit) {
2555 status = device_create_file(dev, &dev_attr_min_microamps);
2556 if (status < 0)
2557 return status;
2558 status = device_create_file(dev, &dev_attr_max_microamps);
2559 if (status < 0)
2560 return status;
2561 }
2562
2563 /* suspend mode constraints need multiple supporting methods */
2564 if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2565 return status;
2566
2567 status = device_create_file(dev, &dev_attr_suspend_standby_state);
2568 if (status < 0)
2569 return status;
2570 status = device_create_file(dev, &dev_attr_suspend_mem_state);
2571 if (status < 0)
2572 return status;
2573 status = device_create_file(dev, &dev_attr_suspend_disk_state);
2574 if (status < 0)
2575 return status;
2576
2577 if (ops->set_suspend_voltage) {
2578 status = device_create_file(dev,
2579 &dev_attr_suspend_standby_microvolts);
2580 if (status < 0)
2581 return status;
2582 status = device_create_file(dev,
2583 &dev_attr_suspend_mem_microvolts);
2584 if (status < 0)
2585 return status;
2586 status = device_create_file(dev,
2587 &dev_attr_suspend_disk_microvolts);
2588 if (status < 0)
2589 return status;
2590 }
2591
2592 if (ops->set_suspend_mode) {
2593 status = device_create_file(dev,
2594 &dev_attr_suspend_standby_mode);
2595 if (status < 0)
2596 return status;
2597 status = device_create_file(dev,
2598 &dev_attr_suspend_mem_mode);
2599 if (status < 0)
2600 return status;
2601 status = device_create_file(dev,
2602 &dev_attr_suspend_disk_mode);
2603 if (status < 0)
2604 return status;
2605 }
2606
2607 return status;
2608 }
2609
2610 static void rdev_init_debugfs(struct regulator_dev *rdev)
2611 {
2612 #ifdef CONFIG_DEBUG_FS
2613 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2614 if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2615 rdev_warn(rdev, "Failed to create debugfs directory\n");
2616 rdev->debugfs = NULL;
2617 return;
2618 }
2619
2620 debugfs_create_u32("use_count", 0444, rdev->debugfs,
2621 &rdev->use_count);
2622 debugfs_create_u32("open_count", 0444, rdev->debugfs,
2623 &rdev->open_count);
2624 #endif
2625 }
2626
2627 /**
2628 * regulator_register - register regulator
2629 * @regulator_desc: regulator to register
2630 * @dev: struct device for the regulator
2631 * @init_data: platform provided init data, passed through by driver
2632 * @driver_data: private regulator data
2633 *
2634 * Called by regulator drivers to register a regulator.
2635 * Returns 0 on success.
2636 */
2637 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2638 struct device *dev, const struct regulator_init_data *init_data,
2639 void *driver_data)
2640 {
2641 static atomic_t regulator_no = ATOMIC_INIT(0);
2642 struct regulator_dev *rdev;
2643 int ret, i;
2644
2645 if (regulator_desc == NULL)
2646 return ERR_PTR(-EINVAL);
2647
2648 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2649 return ERR_PTR(-EINVAL);
2650
2651 if (regulator_desc->type != REGULATOR_VOLTAGE &&
2652 regulator_desc->type != REGULATOR_CURRENT)
2653 return ERR_PTR(-EINVAL);
2654
2655 if (!init_data)
2656 return ERR_PTR(-EINVAL);
2657
2658 /* Only one of each should be implemented */
2659 WARN_ON(regulator_desc->ops->get_voltage &&
2660 regulator_desc->ops->get_voltage_sel);
2661 WARN_ON(regulator_desc->ops->set_voltage &&
2662 regulator_desc->ops->set_voltage_sel);
2663
2664 /* If we're using selectors we must implement list_voltage. */
2665 if (regulator_desc->ops->get_voltage_sel &&
2666 !regulator_desc->ops->list_voltage) {
2667 return ERR_PTR(-EINVAL);
2668 }
2669 if (regulator_desc->ops->set_voltage_sel &&
2670 !regulator_desc->ops->list_voltage) {
2671 return ERR_PTR(-EINVAL);
2672 }
2673
2674 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2675 if (rdev == NULL)
2676 return ERR_PTR(-ENOMEM);
2677
2678 mutex_lock(&regulator_list_mutex);
2679
2680 mutex_init(&rdev->mutex);
2681 rdev->reg_data = driver_data;
2682 rdev->owner = regulator_desc->owner;
2683 rdev->desc = regulator_desc;
2684 INIT_LIST_HEAD(&rdev->consumer_list);
2685 INIT_LIST_HEAD(&rdev->list);
2686 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2687 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2688
2689 /* preform any regulator specific init */
2690 if (init_data->regulator_init) {
2691 ret = init_data->regulator_init(rdev->reg_data);
2692 if (ret < 0)
2693 goto clean;
2694 }
2695
2696 /* register with sysfs */
2697 rdev->dev.class = &regulator_class;
2698 rdev->dev.parent = dev;
2699 dev_set_name(&rdev->dev, "regulator.%d",
2700 atomic_inc_return(&regulator_no) - 1);
2701 ret = device_register(&rdev->dev);
2702 if (ret != 0) {
2703 put_device(&rdev->dev);
2704 goto clean;
2705 }
2706
2707 dev_set_drvdata(&rdev->dev, rdev);
2708
2709 /* set regulator constraints */
2710 ret = set_machine_constraints(rdev, &init_data->constraints);
2711 if (ret < 0)
2712 goto scrub;
2713
2714 /* add attributes supported by this regulator */
2715 ret = add_regulator_attributes(rdev);
2716 if (ret < 0)
2717 goto scrub;
2718
2719 if (init_data->supply_regulator) {
2720 struct regulator_dev *r;
2721 int found = 0;
2722
2723 list_for_each_entry(r, &regulator_list, list) {
2724 if (strcmp(rdev_get_name(r),
2725 init_data->supply_regulator) == 0) {
2726 found = 1;
2727 break;
2728 }
2729 }
2730
2731 if (!found) {
2732 dev_err(dev, "Failed to find supply %s\n",
2733 init_data->supply_regulator);
2734 ret = -ENODEV;
2735 goto scrub;
2736 }
2737
2738 ret = set_supply(rdev, r);
2739 if (ret < 0)
2740 goto scrub;
2741 }
2742
2743 /* add consumers devices */
2744 for (i = 0; i < init_data->num_consumer_supplies; i++) {
2745 ret = set_consumer_device_supply(rdev,
2746 init_data->consumer_supplies[i].dev,
2747 init_data->consumer_supplies[i].dev_name,
2748 init_data->consumer_supplies[i].supply);
2749 if (ret < 0) {
2750 dev_err(dev, "Failed to set supply %s\n",
2751 init_data->consumer_supplies[i].supply);
2752 goto unset_supplies;
2753 }
2754 }
2755
2756 list_add(&rdev->list, &regulator_list);
2757
2758 rdev_init_debugfs(rdev);
2759 out:
2760 mutex_unlock(&regulator_list_mutex);
2761 return rdev;
2762
2763 unset_supplies:
2764 unset_regulator_supplies(rdev);
2765
2766 scrub:
2767 kfree(rdev->constraints);
2768 device_unregister(&rdev->dev);
2769 /* device core frees rdev */
2770 rdev = ERR_PTR(ret);
2771 goto out;
2772
2773 clean:
2774 kfree(rdev);
2775 rdev = ERR_PTR(ret);
2776 goto out;
2777 }
2778 EXPORT_SYMBOL_GPL(regulator_register);
2779
2780 /**
2781 * regulator_unregister - unregister regulator
2782 * @rdev: regulator to unregister
2783 *
2784 * Called by regulator drivers to unregister a regulator.
2785 */
2786 void regulator_unregister(struct regulator_dev *rdev)
2787 {
2788 if (rdev == NULL)
2789 return;
2790
2791 mutex_lock(&regulator_list_mutex);
2792 #ifdef CONFIG_DEBUG_FS
2793 debugfs_remove_recursive(rdev->debugfs);
2794 #endif
2795 flush_work_sync(&rdev->disable_work.work);
2796 WARN_ON(rdev->open_count);
2797 unset_regulator_supplies(rdev);
2798 list_del(&rdev->list);
2799 if (rdev->supply)
2800 regulator_put(rdev->supply);
2801 device_unregister(&rdev->dev);
2802 kfree(rdev->constraints);
2803 mutex_unlock(&regulator_list_mutex);
2804 }
2805 EXPORT_SYMBOL_GPL(regulator_unregister);
2806
2807 /**
2808 * regulator_suspend_prepare - prepare regulators for system wide suspend
2809 * @state: system suspend state
2810 *
2811 * Configure each regulator with it's suspend operating parameters for state.
2812 * This will usually be called by machine suspend code prior to supending.
2813 */
2814 int regulator_suspend_prepare(suspend_state_t state)
2815 {
2816 struct regulator_dev *rdev;
2817 int ret = 0;
2818
2819 /* ON is handled by regulator active state */
2820 if (state == PM_SUSPEND_ON)
2821 return -EINVAL;
2822
2823 mutex_lock(&regulator_list_mutex);
2824 list_for_each_entry(rdev, &regulator_list, list) {
2825
2826 mutex_lock(&rdev->mutex);
2827 ret = suspend_prepare(rdev, state);
2828 mutex_unlock(&rdev->mutex);
2829
2830 if (ret < 0) {
2831 rdev_err(rdev, "failed to prepare\n");
2832 goto out;
2833 }
2834 }
2835 out:
2836 mutex_unlock(&regulator_list_mutex);
2837 return ret;
2838 }
2839 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2840
2841 /**
2842 * regulator_suspend_finish - resume regulators from system wide suspend
2843 *
2844 * Turn on regulators that might be turned off by regulator_suspend_prepare
2845 * and that should be turned on according to the regulators properties.
2846 */
2847 int regulator_suspend_finish(void)
2848 {
2849 struct regulator_dev *rdev;
2850 int ret = 0, error;
2851
2852 mutex_lock(&regulator_list_mutex);
2853 list_for_each_entry(rdev, &regulator_list, list) {
2854 struct regulator_ops *ops = rdev->desc->ops;
2855
2856 mutex_lock(&rdev->mutex);
2857 if ((rdev->use_count > 0 || rdev->constraints->always_on) &&
2858 ops->enable) {
2859 error = ops->enable(rdev);
2860 if (error)
2861 ret = error;
2862 } else {
2863 if (!has_full_constraints)
2864 goto unlock;
2865 if (!ops->disable)
2866 goto unlock;
2867 if (ops->is_enabled && !ops->is_enabled(rdev))
2868 goto unlock;
2869
2870 error = ops->disable(rdev);
2871 if (error)
2872 ret = error;
2873 }
2874 unlock:
2875 mutex_unlock(&rdev->mutex);
2876 }
2877 mutex_unlock(&regulator_list_mutex);
2878 return ret;
2879 }
2880 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2881
2882 /**
2883 * regulator_has_full_constraints - the system has fully specified constraints
2884 *
2885 * Calling this function will cause the regulator API to disable all
2886 * regulators which have a zero use count and don't have an always_on
2887 * constraint in a late_initcall.
2888 *
2889 * The intention is that this will become the default behaviour in a
2890 * future kernel release so users are encouraged to use this facility
2891 * now.
2892 */
2893 void regulator_has_full_constraints(void)
2894 {
2895 has_full_constraints = 1;
2896 }
2897 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2898
2899 /**
2900 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2901 *
2902 * Calling this function will cause the regulator API to provide a
2903 * dummy regulator to consumers if no physical regulator is found,
2904 * allowing most consumers to proceed as though a regulator were
2905 * configured. This allows systems such as those with software
2906 * controllable regulators for the CPU core only to be brought up more
2907 * readily.
2908 */
2909 void regulator_use_dummy_regulator(void)
2910 {
2911 board_wants_dummy_regulator = true;
2912 }
2913 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2914
2915 /**
2916 * rdev_get_drvdata - get rdev regulator driver data
2917 * @rdev: regulator
2918 *
2919 * Get rdev regulator driver private data. This call can be used in the
2920 * regulator driver context.
2921 */
2922 void *rdev_get_drvdata(struct regulator_dev *rdev)
2923 {
2924 return rdev->reg_data;
2925 }
2926 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2927
2928 /**
2929 * regulator_get_drvdata - get regulator driver data
2930 * @regulator: regulator
2931 *
2932 * Get regulator driver private data. This call can be used in the consumer
2933 * driver context when non API regulator specific functions need to be called.
2934 */
2935 void *regulator_get_drvdata(struct regulator *regulator)
2936 {
2937 return regulator->rdev->reg_data;
2938 }
2939 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2940
2941 /**
2942 * regulator_set_drvdata - set regulator driver data
2943 * @regulator: regulator
2944 * @data: data
2945 */
2946 void regulator_set_drvdata(struct regulator *regulator, void *data)
2947 {
2948 regulator->rdev->reg_data = data;
2949 }
2950 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2951
2952 /**
2953 * regulator_get_id - get regulator ID
2954 * @rdev: regulator
2955 */
2956 int rdev_get_id(struct regulator_dev *rdev)
2957 {
2958 return rdev->desc->id;
2959 }
2960 EXPORT_SYMBOL_GPL(rdev_get_id);
2961
2962 struct device *rdev_get_dev(struct regulator_dev *rdev)
2963 {
2964 return &rdev->dev;
2965 }
2966 EXPORT_SYMBOL_GPL(rdev_get_dev);
2967
2968 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2969 {
2970 return reg_init_data->driver_data;
2971 }
2972 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2973
2974 #ifdef CONFIG_DEBUG_FS
2975 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
2976 size_t count, loff_t *ppos)
2977 {
2978 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2979 ssize_t len, ret = 0;
2980 struct regulator_map *map;
2981
2982 if (!buf)
2983 return -ENOMEM;
2984
2985 list_for_each_entry(map, &regulator_map_list, list) {
2986 len = snprintf(buf + ret, PAGE_SIZE - ret,
2987 "%s -> %s.%s\n",
2988 rdev_get_name(map->regulator), map->dev_name,
2989 map->supply);
2990 if (len >= 0)
2991 ret += len;
2992 if (ret > PAGE_SIZE) {
2993 ret = PAGE_SIZE;
2994 break;
2995 }
2996 }
2997
2998 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
2999
3000 kfree(buf);
3001
3002 return ret;
3003 }
3004
3005 static const struct file_operations supply_map_fops = {
3006 .read = supply_map_read_file,
3007 .llseek = default_llseek,
3008 };
3009 #endif
3010
3011 static int __init regulator_init(void)
3012 {
3013 int ret;
3014
3015 ret = class_register(&regulator_class);
3016
3017 #ifdef CONFIG_DEBUG_FS
3018 debugfs_root = debugfs_create_dir("regulator", NULL);
3019 if (IS_ERR(debugfs_root) || !debugfs_root) {
3020 pr_warn("regulator: Failed to create debugfs directory\n");
3021 debugfs_root = NULL;
3022 }
3023
3024 if (IS_ERR(debugfs_create_file("supply_map", 0444, debugfs_root,
3025 NULL, &supply_map_fops)))
3026 pr_warn("regulator: Failed to create supplies debugfs\n");
3027 #endif
3028
3029 regulator_dummy_init();
3030
3031 return ret;
3032 }
3033
3034 /* init early to allow our consumers to complete system booting */
3035 core_initcall(regulator_init);
3036
3037 static int __init regulator_init_complete(void)
3038 {
3039 struct regulator_dev *rdev;
3040 struct regulator_ops *ops;
3041 struct regulation_constraints *c;
3042 int enabled, ret;
3043
3044 mutex_lock(&regulator_list_mutex);
3045
3046 /* If we have a full configuration then disable any regulators
3047 * which are not in use or always_on. This will become the
3048 * default behaviour in the future.
3049 */
3050 list_for_each_entry(rdev, &regulator_list, list) {
3051 ops = rdev->desc->ops;
3052 c = rdev->constraints;
3053
3054 if (!ops->disable || (c && c->always_on))
3055 continue;
3056
3057 mutex_lock(&rdev->mutex);
3058
3059 if (rdev->use_count)
3060 goto unlock;
3061
3062 /* If we can't read the status assume it's on. */
3063 if (ops->is_enabled)
3064 enabled = ops->is_enabled(rdev);
3065 else
3066 enabled = 1;
3067
3068 if (!enabled)
3069 goto unlock;
3070
3071 if (has_full_constraints) {
3072 /* We log since this may kill the system if it
3073 * goes wrong. */
3074 rdev_info(rdev, "disabling\n");
3075 ret = ops->disable(rdev);
3076 if (ret != 0) {
3077 rdev_err(rdev, "couldn't disable: %d\n", ret);
3078 }
3079 } else {
3080 /* The intention is that in future we will
3081 * assume that full constraints are provided
3082 * so warn even if we aren't going to do
3083 * anything here.
3084 */
3085 rdev_warn(rdev, "incomplete constraints, leaving on\n");
3086 }
3087
3088 unlock:
3089 mutex_unlock(&rdev->mutex);
3090 }
3091
3092 mutex_unlock(&regulator_list_mutex);
3093
3094 return 0;
3095 }
3096 late_initcall(regulator_init_complete);
This page took 0.111812 seconds and 6 git commands to generate.