Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
[deliverable/linux.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59
60 static struct dentry *debugfs_root;
61
62 /*
63 * struct regulator_map
64 *
65 * Used to provide symbolic supply names to devices.
66 */
67 struct regulator_map {
68 struct list_head list;
69 const char *dev_name; /* The dev_name() for the consumer */
70 const char *supply;
71 struct regulator_dev *regulator;
72 };
73
74 /*
75 * struct regulator_enable_gpio
76 *
77 * Management for shared enable GPIO pin
78 */
79 struct regulator_enable_gpio {
80 struct list_head list;
81 struct gpio_desc *gpiod;
82 u32 enable_count; /* a number of enabled shared GPIO */
83 u32 request_count; /* a number of requested shared GPIO */
84 unsigned int ena_gpio_invert:1;
85 };
86
87 /*
88 * struct regulator_supply_alias
89 *
90 * Used to map lookups for a supply onto an alternative device.
91 */
92 struct regulator_supply_alias {
93 struct list_head list;
94 struct device *src_dev;
95 const char *src_supply;
96 struct device *alias_dev;
97 const char *alias_supply;
98 };
99
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static void _notifier_call_chain(struct regulator_dev *rdev,
106 unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108 int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110 struct device *dev,
111 const char *supply_name);
112
113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115 if (rdev->constraints && rdev->constraints->name)
116 return rdev->constraints->name;
117 else if (rdev->desc->name)
118 return rdev->desc->name;
119 else
120 return "";
121 }
122
123 static bool have_full_constraints(void)
124 {
125 return has_full_constraints || of_have_populated_dt();
126 }
127
128 /**
129 * of_get_regulator - get a regulator device node based on supply name
130 * @dev: Device pointer for the consumer (of regulator) device
131 * @supply: regulator supply name
132 *
133 * Extract the regulator device node corresponding to the supply name.
134 * returns the device node corresponding to the regulator if found, else
135 * returns NULL.
136 */
137 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138 {
139 struct device_node *regnode = NULL;
140 char prop_name[32]; /* 32 is max size of property name */
141
142 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143
144 snprintf(prop_name, 32, "%s-supply", supply);
145 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
146
147 if (!regnode) {
148 dev_dbg(dev, "Looking up %s property in node %s failed",
149 prop_name, dev->of_node->full_name);
150 return NULL;
151 }
152 return regnode;
153 }
154
155 static int _regulator_can_change_status(struct regulator_dev *rdev)
156 {
157 if (!rdev->constraints)
158 return 0;
159
160 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
161 return 1;
162 else
163 return 0;
164 }
165
166 /* Platform voltage constraint check */
167 static int regulator_check_voltage(struct regulator_dev *rdev,
168 int *min_uV, int *max_uV)
169 {
170 BUG_ON(*min_uV > *max_uV);
171
172 if (!rdev->constraints) {
173 rdev_err(rdev, "no constraints\n");
174 return -ENODEV;
175 }
176 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177 rdev_err(rdev, "operation not allowed\n");
178 return -EPERM;
179 }
180
181 if (*max_uV > rdev->constraints->max_uV)
182 *max_uV = rdev->constraints->max_uV;
183 if (*min_uV < rdev->constraints->min_uV)
184 *min_uV = rdev->constraints->min_uV;
185
186 if (*min_uV > *max_uV) {
187 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188 *min_uV, *max_uV);
189 return -EINVAL;
190 }
191
192 return 0;
193 }
194
195 /* Make sure we select a voltage that suits the needs of all
196 * regulator consumers
197 */
198 static int regulator_check_consumers(struct regulator_dev *rdev,
199 int *min_uV, int *max_uV)
200 {
201 struct regulator *regulator;
202
203 list_for_each_entry(regulator, &rdev->consumer_list, list) {
204 /*
205 * Assume consumers that didn't say anything are OK
206 * with anything in the constraint range.
207 */
208 if (!regulator->min_uV && !regulator->max_uV)
209 continue;
210
211 if (*max_uV > regulator->max_uV)
212 *max_uV = regulator->max_uV;
213 if (*min_uV < regulator->min_uV)
214 *min_uV = regulator->min_uV;
215 }
216
217 if (*min_uV > *max_uV) {
218 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
219 *min_uV, *max_uV);
220 return -EINVAL;
221 }
222
223 return 0;
224 }
225
226 /* current constraint check */
227 static int regulator_check_current_limit(struct regulator_dev *rdev,
228 int *min_uA, int *max_uA)
229 {
230 BUG_ON(*min_uA > *max_uA);
231
232 if (!rdev->constraints) {
233 rdev_err(rdev, "no constraints\n");
234 return -ENODEV;
235 }
236 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237 rdev_err(rdev, "operation not allowed\n");
238 return -EPERM;
239 }
240
241 if (*max_uA > rdev->constraints->max_uA)
242 *max_uA = rdev->constraints->max_uA;
243 if (*min_uA < rdev->constraints->min_uA)
244 *min_uA = rdev->constraints->min_uA;
245
246 if (*min_uA > *max_uA) {
247 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248 *min_uA, *max_uA);
249 return -EINVAL;
250 }
251
252 return 0;
253 }
254
255 /* operating mode constraint check */
256 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257 {
258 switch (*mode) {
259 case REGULATOR_MODE_FAST:
260 case REGULATOR_MODE_NORMAL:
261 case REGULATOR_MODE_IDLE:
262 case REGULATOR_MODE_STANDBY:
263 break;
264 default:
265 rdev_err(rdev, "invalid mode %x specified\n", *mode);
266 return -EINVAL;
267 }
268
269 if (!rdev->constraints) {
270 rdev_err(rdev, "no constraints\n");
271 return -ENODEV;
272 }
273 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274 rdev_err(rdev, "operation not allowed\n");
275 return -EPERM;
276 }
277
278 /* The modes are bitmasks, the most power hungry modes having
279 * the lowest values. If the requested mode isn't supported
280 * try higher modes. */
281 while (*mode) {
282 if (rdev->constraints->valid_modes_mask & *mode)
283 return 0;
284 *mode /= 2;
285 }
286
287 return -EINVAL;
288 }
289
290 /* dynamic regulator mode switching constraint check */
291 static int regulator_check_drms(struct regulator_dev *rdev)
292 {
293 if (!rdev->constraints) {
294 rdev_err(rdev, "no constraints\n");
295 return -ENODEV;
296 }
297 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298 rdev_err(rdev, "operation not allowed\n");
299 return -EPERM;
300 }
301 return 0;
302 }
303
304 static ssize_t regulator_uV_show(struct device *dev,
305 struct device_attribute *attr, char *buf)
306 {
307 struct regulator_dev *rdev = dev_get_drvdata(dev);
308 ssize_t ret;
309
310 mutex_lock(&rdev->mutex);
311 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
312 mutex_unlock(&rdev->mutex);
313
314 return ret;
315 }
316 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317
318 static ssize_t regulator_uA_show(struct device *dev,
319 struct device_attribute *attr, char *buf)
320 {
321 struct regulator_dev *rdev = dev_get_drvdata(dev);
322
323 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324 }
325 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326
327 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
328 char *buf)
329 {
330 struct regulator_dev *rdev = dev_get_drvdata(dev);
331
332 return sprintf(buf, "%s\n", rdev_get_name(rdev));
333 }
334 static DEVICE_ATTR_RO(name);
335
336 static ssize_t regulator_print_opmode(char *buf, int mode)
337 {
338 switch (mode) {
339 case REGULATOR_MODE_FAST:
340 return sprintf(buf, "fast\n");
341 case REGULATOR_MODE_NORMAL:
342 return sprintf(buf, "normal\n");
343 case REGULATOR_MODE_IDLE:
344 return sprintf(buf, "idle\n");
345 case REGULATOR_MODE_STANDBY:
346 return sprintf(buf, "standby\n");
347 }
348 return sprintf(buf, "unknown\n");
349 }
350
351 static ssize_t regulator_opmode_show(struct device *dev,
352 struct device_attribute *attr, char *buf)
353 {
354 struct regulator_dev *rdev = dev_get_drvdata(dev);
355
356 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 }
358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359
360 static ssize_t regulator_print_state(char *buf, int state)
361 {
362 if (state > 0)
363 return sprintf(buf, "enabled\n");
364 else if (state == 0)
365 return sprintf(buf, "disabled\n");
366 else
367 return sprintf(buf, "unknown\n");
368 }
369
370 static ssize_t regulator_state_show(struct device *dev,
371 struct device_attribute *attr, char *buf)
372 {
373 struct regulator_dev *rdev = dev_get_drvdata(dev);
374 ssize_t ret;
375
376 mutex_lock(&rdev->mutex);
377 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378 mutex_unlock(&rdev->mutex);
379
380 return ret;
381 }
382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383
384 static ssize_t regulator_status_show(struct device *dev,
385 struct device_attribute *attr, char *buf)
386 {
387 struct regulator_dev *rdev = dev_get_drvdata(dev);
388 int status;
389 char *label;
390
391 status = rdev->desc->ops->get_status(rdev);
392 if (status < 0)
393 return status;
394
395 switch (status) {
396 case REGULATOR_STATUS_OFF:
397 label = "off";
398 break;
399 case REGULATOR_STATUS_ON:
400 label = "on";
401 break;
402 case REGULATOR_STATUS_ERROR:
403 label = "error";
404 break;
405 case REGULATOR_STATUS_FAST:
406 label = "fast";
407 break;
408 case REGULATOR_STATUS_NORMAL:
409 label = "normal";
410 break;
411 case REGULATOR_STATUS_IDLE:
412 label = "idle";
413 break;
414 case REGULATOR_STATUS_STANDBY:
415 label = "standby";
416 break;
417 case REGULATOR_STATUS_BYPASS:
418 label = "bypass";
419 break;
420 case REGULATOR_STATUS_UNDEFINED:
421 label = "undefined";
422 break;
423 default:
424 return -ERANGE;
425 }
426
427 return sprintf(buf, "%s\n", label);
428 }
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431 static ssize_t regulator_min_uA_show(struct device *dev,
432 struct device_attribute *attr, char *buf)
433 {
434 struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436 if (!rdev->constraints)
437 return sprintf(buf, "constraint not defined\n");
438
439 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 }
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443 static ssize_t regulator_max_uA_show(struct device *dev,
444 struct device_attribute *attr, char *buf)
445 {
446 struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448 if (!rdev->constraints)
449 return sprintf(buf, "constraint not defined\n");
450
451 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 }
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455 static ssize_t regulator_min_uV_show(struct device *dev,
456 struct device_attribute *attr, char *buf)
457 {
458 struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460 if (!rdev->constraints)
461 return sprintf(buf, "constraint not defined\n");
462
463 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 }
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467 static ssize_t regulator_max_uV_show(struct device *dev,
468 struct device_attribute *attr, char *buf)
469 {
470 struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472 if (!rdev->constraints)
473 return sprintf(buf, "constraint not defined\n");
474
475 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 }
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479 static ssize_t regulator_total_uA_show(struct device *dev,
480 struct device_attribute *attr, char *buf)
481 {
482 struct regulator_dev *rdev = dev_get_drvdata(dev);
483 struct regulator *regulator;
484 int uA = 0;
485
486 mutex_lock(&rdev->mutex);
487 list_for_each_entry(regulator, &rdev->consumer_list, list)
488 uA += regulator->uA_load;
489 mutex_unlock(&rdev->mutex);
490 return sprintf(buf, "%d\n", uA);
491 }
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
495 char *buf)
496 {
497 struct regulator_dev *rdev = dev_get_drvdata(dev);
498 return sprintf(buf, "%d\n", rdev->use_count);
499 }
500 static DEVICE_ATTR_RO(num_users);
501
502 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
503 char *buf)
504 {
505 struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507 switch (rdev->desc->type) {
508 case REGULATOR_VOLTAGE:
509 return sprintf(buf, "voltage\n");
510 case REGULATOR_CURRENT:
511 return sprintf(buf, "current\n");
512 }
513 return sprintf(buf, "unknown\n");
514 }
515 static DEVICE_ATTR_RO(type);
516
517 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
518 struct device_attribute *attr, char *buf)
519 {
520 struct regulator_dev *rdev = dev_get_drvdata(dev);
521
522 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
523 }
524 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
525 regulator_suspend_mem_uV_show, NULL);
526
527 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
528 struct device_attribute *attr, char *buf)
529 {
530 struct regulator_dev *rdev = dev_get_drvdata(dev);
531
532 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
533 }
534 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
535 regulator_suspend_disk_uV_show, NULL);
536
537 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
538 struct device_attribute *attr, char *buf)
539 {
540 struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
543 }
544 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
545 regulator_suspend_standby_uV_show, NULL);
546
547 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
548 struct device_attribute *attr, char *buf)
549 {
550 struct regulator_dev *rdev = dev_get_drvdata(dev);
551
552 return regulator_print_opmode(buf,
553 rdev->constraints->state_mem.mode);
554 }
555 static DEVICE_ATTR(suspend_mem_mode, 0444,
556 regulator_suspend_mem_mode_show, NULL);
557
558 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
559 struct device_attribute *attr, char *buf)
560 {
561 struct regulator_dev *rdev = dev_get_drvdata(dev);
562
563 return regulator_print_opmode(buf,
564 rdev->constraints->state_disk.mode);
565 }
566 static DEVICE_ATTR(suspend_disk_mode, 0444,
567 regulator_suspend_disk_mode_show, NULL);
568
569 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
570 struct device_attribute *attr, char *buf)
571 {
572 struct regulator_dev *rdev = dev_get_drvdata(dev);
573
574 return regulator_print_opmode(buf,
575 rdev->constraints->state_standby.mode);
576 }
577 static DEVICE_ATTR(suspend_standby_mode, 0444,
578 regulator_suspend_standby_mode_show, NULL);
579
580 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
581 struct device_attribute *attr, char *buf)
582 {
583 struct regulator_dev *rdev = dev_get_drvdata(dev);
584
585 return regulator_print_state(buf,
586 rdev->constraints->state_mem.enabled);
587 }
588 static DEVICE_ATTR(suspend_mem_state, 0444,
589 regulator_suspend_mem_state_show, NULL);
590
591 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
592 struct device_attribute *attr, char *buf)
593 {
594 struct regulator_dev *rdev = dev_get_drvdata(dev);
595
596 return regulator_print_state(buf,
597 rdev->constraints->state_disk.enabled);
598 }
599 static DEVICE_ATTR(suspend_disk_state, 0444,
600 regulator_suspend_disk_state_show, NULL);
601
602 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
603 struct device_attribute *attr, char *buf)
604 {
605 struct regulator_dev *rdev = dev_get_drvdata(dev);
606
607 return regulator_print_state(buf,
608 rdev->constraints->state_standby.enabled);
609 }
610 static DEVICE_ATTR(suspend_standby_state, 0444,
611 regulator_suspend_standby_state_show, NULL);
612
613 static ssize_t regulator_bypass_show(struct device *dev,
614 struct device_attribute *attr, char *buf)
615 {
616 struct regulator_dev *rdev = dev_get_drvdata(dev);
617 const char *report;
618 bool bypass;
619 int ret;
620
621 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
622
623 if (ret != 0)
624 report = "unknown";
625 else if (bypass)
626 report = "enabled";
627 else
628 report = "disabled";
629
630 return sprintf(buf, "%s\n", report);
631 }
632 static DEVICE_ATTR(bypass, 0444,
633 regulator_bypass_show, NULL);
634
635 /*
636 * These are the only attributes are present for all regulators.
637 * Other attributes are a function of regulator functionality.
638 */
639 static struct attribute *regulator_dev_attrs[] = {
640 &dev_attr_name.attr,
641 &dev_attr_num_users.attr,
642 &dev_attr_type.attr,
643 NULL,
644 };
645 ATTRIBUTE_GROUPS(regulator_dev);
646
647 static void regulator_dev_release(struct device *dev)
648 {
649 struct regulator_dev *rdev = dev_get_drvdata(dev);
650 kfree(rdev);
651 }
652
653 static struct class regulator_class = {
654 .name = "regulator",
655 .dev_release = regulator_dev_release,
656 .dev_groups = regulator_dev_groups,
657 };
658
659 /* Calculate the new optimum regulator operating mode based on the new total
660 * consumer load. All locks held by caller */
661 static void drms_uA_update(struct regulator_dev *rdev)
662 {
663 struct regulator *sibling;
664 int current_uA = 0, output_uV, input_uV, err;
665 unsigned int mode;
666
667 err = regulator_check_drms(rdev);
668 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
669 (!rdev->desc->ops->get_voltage &&
670 !rdev->desc->ops->get_voltage_sel) ||
671 !rdev->desc->ops->set_mode)
672 return;
673
674 /* get output voltage */
675 output_uV = _regulator_get_voltage(rdev);
676 if (output_uV <= 0)
677 return;
678
679 /* get input voltage */
680 input_uV = 0;
681 if (rdev->supply)
682 input_uV = regulator_get_voltage(rdev->supply);
683 if (input_uV <= 0)
684 input_uV = rdev->constraints->input_uV;
685 if (input_uV <= 0)
686 return;
687
688 /* calc total requested load */
689 list_for_each_entry(sibling, &rdev->consumer_list, list)
690 current_uA += sibling->uA_load;
691
692 /* now get the optimum mode for our new total regulator load */
693 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
694 output_uV, current_uA);
695
696 /* check the new mode is allowed */
697 err = regulator_mode_constrain(rdev, &mode);
698 if (err == 0)
699 rdev->desc->ops->set_mode(rdev, mode);
700 }
701
702 static int suspend_set_state(struct regulator_dev *rdev,
703 struct regulator_state *rstate)
704 {
705 int ret = 0;
706
707 /* If we have no suspend mode configration don't set anything;
708 * only warn if the driver implements set_suspend_voltage or
709 * set_suspend_mode callback.
710 */
711 if (!rstate->enabled && !rstate->disabled) {
712 if (rdev->desc->ops->set_suspend_voltage ||
713 rdev->desc->ops->set_suspend_mode)
714 rdev_warn(rdev, "No configuration\n");
715 return 0;
716 }
717
718 if (rstate->enabled && rstate->disabled) {
719 rdev_err(rdev, "invalid configuration\n");
720 return -EINVAL;
721 }
722
723 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
724 ret = rdev->desc->ops->set_suspend_enable(rdev);
725 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
726 ret = rdev->desc->ops->set_suspend_disable(rdev);
727 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
728 ret = 0;
729
730 if (ret < 0) {
731 rdev_err(rdev, "failed to enabled/disable\n");
732 return ret;
733 }
734
735 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
736 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
737 if (ret < 0) {
738 rdev_err(rdev, "failed to set voltage\n");
739 return ret;
740 }
741 }
742
743 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
744 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
745 if (ret < 0) {
746 rdev_err(rdev, "failed to set mode\n");
747 return ret;
748 }
749 }
750 return ret;
751 }
752
753 /* locks held by caller */
754 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
755 {
756 if (!rdev->constraints)
757 return -EINVAL;
758
759 switch (state) {
760 case PM_SUSPEND_STANDBY:
761 return suspend_set_state(rdev,
762 &rdev->constraints->state_standby);
763 case PM_SUSPEND_MEM:
764 return suspend_set_state(rdev,
765 &rdev->constraints->state_mem);
766 case PM_SUSPEND_MAX:
767 return suspend_set_state(rdev,
768 &rdev->constraints->state_disk);
769 default:
770 return -EINVAL;
771 }
772 }
773
774 static void print_constraints(struct regulator_dev *rdev)
775 {
776 struct regulation_constraints *constraints = rdev->constraints;
777 char buf[80] = "";
778 int count = 0;
779 int ret;
780
781 if (constraints->min_uV && constraints->max_uV) {
782 if (constraints->min_uV == constraints->max_uV)
783 count += sprintf(buf + count, "%d mV ",
784 constraints->min_uV / 1000);
785 else
786 count += sprintf(buf + count, "%d <--> %d mV ",
787 constraints->min_uV / 1000,
788 constraints->max_uV / 1000);
789 }
790
791 if (!constraints->min_uV ||
792 constraints->min_uV != constraints->max_uV) {
793 ret = _regulator_get_voltage(rdev);
794 if (ret > 0)
795 count += sprintf(buf + count, "at %d mV ", ret / 1000);
796 }
797
798 if (constraints->uV_offset)
799 count += sprintf(buf, "%dmV offset ",
800 constraints->uV_offset / 1000);
801
802 if (constraints->min_uA && constraints->max_uA) {
803 if (constraints->min_uA == constraints->max_uA)
804 count += sprintf(buf + count, "%d mA ",
805 constraints->min_uA / 1000);
806 else
807 count += sprintf(buf + count, "%d <--> %d mA ",
808 constraints->min_uA / 1000,
809 constraints->max_uA / 1000);
810 }
811
812 if (!constraints->min_uA ||
813 constraints->min_uA != constraints->max_uA) {
814 ret = _regulator_get_current_limit(rdev);
815 if (ret > 0)
816 count += sprintf(buf + count, "at %d mA ", ret / 1000);
817 }
818
819 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
820 count += sprintf(buf + count, "fast ");
821 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
822 count += sprintf(buf + count, "normal ");
823 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
824 count += sprintf(buf + count, "idle ");
825 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
826 count += sprintf(buf + count, "standby");
827
828 if (!count)
829 sprintf(buf, "no parameters");
830
831 rdev_info(rdev, "%s\n", buf);
832
833 if ((constraints->min_uV != constraints->max_uV) &&
834 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
835 rdev_warn(rdev,
836 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
837 }
838
839 static int machine_constraints_voltage(struct regulator_dev *rdev,
840 struct regulation_constraints *constraints)
841 {
842 struct regulator_ops *ops = rdev->desc->ops;
843 int ret;
844
845 /* do we need to apply the constraint voltage */
846 if (rdev->constraints->apply_uV &&
847 rdev->constraints->min_uV == rdev->constraints->max_uV) {
848 int current_uV = _regulator_get_voltage(rdev);
849 if (current_uV < 0) {
850 rdev_err(rdev,
851 "failed to get the current voltage(%d)\n",
852 current_uV);
853 return current_uV;
854 }
855 if (current_uV < rdev->constraints->min_uV ||
856 current_uV > rdev->constraints->max_uV) {
857 ret = _regulator_do_set_voltage(
858 rdev, rdev->constraints->min_uV,
859 rdev->constraints->max_uV);
860 if (ret < 0) {
861 rdev_err(rdev,
862 "failed to apply %duV constraint(%d)\n",
863 rdev->constraints->min_uV, ret);
864 return ret;
865 }
866 }
867 }
868
869 /* constrain machine-level voltage specs to fit
870 * the actual range supported by this regulator.
871 */
872 if (ops->list_voltage && rdev->desc->n_voltages) {
873 int count = rdev->desc->n_voltages;
874 int i;
875 int min_uV = INT_MAX;
876 int max_uV = INT_MIN;
877 int cmin = constraints->min_uV;
878 int cmax = constraints->max_uV;
879
880 /* it's safe to autoconfigure fixed-voltage supplies
881 and the constraints are used by list_voltage. */
882 if (count == 1 && !cmin) {
883 cmin = 1;
884 cmax = INT_MAX;
885 constraints->min_uV = cmin;
886 constraints->max_uV = cmax;
887 }
888
889 /* voltage constraints are optional */
890 if ((cmin == 0) && (cmax == 0))
891 return 0;
892
893 /* else require explicit machine-level constraints */
894 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
895 rdev_err(rdev, "invalid voltage constraints\n");
896 return -EINVAL;
897 }
898
899 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
900 for (i = 0; i < count; i++) {
901 int value;
902
903 value = ops->list_voltage(rdev, i);
904 if (value <= 0)
905 continue;
906
907 /* maybe adjust [min_uV..max_uV] */
908 if (value >= cmin && value < min_uV)
909 min_uV = value;
910 if (value <= cmax && value > max_uV)
911 max_uV = value;
912 }
913
914 /* final: [min_uV..max_uV] valid iff constraints valid */
915 if (max_uV < min_uV) {
916 rdev_err(rdev,
917 "unsupportable voltage constraints %u-%uuV\n",
918 min_uV, max_uV);
919 return -EINVAL;
920 }
921
922 /* use regulator's subset of machine constraints */
923 if (constraints->min_uV < min_uV) {
924 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
925 constraints->min_uV, min_uV);
926 constraints->min_uV = min_uV;
927 }
928 if (constraints->max_uV > max_uV) {
929 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
930 constraints->max_uV, max_uV);
931 constraints->max_uV = max_uV;
932 }
933 }
934
935 return 0;
936 }
937
938 static int machine_constraints_current(struct regulator_dev *rdev,
939 struct regulation_constraints *constraints)
940 {
941 struct regulator_ops *ops = rdev->desc->ops;
942 int ret;
943
944 if (!constraints->min_uA && !constraints->max_uA)
945 return 0;
946
947 if (constraints->min_uA > constraints->max_uA) {
948 rdev_err(rdev, "Invalid current constraints\n");
949 return -EINVAL;
950 }
951
952 if (!ops->set_current_limit || !ops->get_current_limit) {
953 rdev_warn(rdev, "Operation of current configuration missing\n");
954 return 0;
955 }
956
957 /* Set regulator current in constraints range */
958 ret = ops->set_current_limit(rdev, constraints->min_uA,
959 constraints->max_uA);
960 if (ret < 0) {
961 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
962 return ret;
963 }
964
965 return 0;
966 }
967
968 static int _regulator_do_enable(struct regulator_dev *rdev);
969
970 /**
971 * set_machine_constraints - sets regulator constraints
972 * @rdev: regulator source
973 * @constraints: constraints to apply
974 *
975 * Allows platform initialisation code to define and constrain
976 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
977 * Constraints *must* be set by platform code in order for some
978 * regulator operations to proceed i.e. set_voltage, set_current_limit,
979 * set_mode.
980 */
981 static int set_machine_constraints(struct regulator_dev *rdev,
982 const struct regulation_constraints *constraints)
983 {
984 int ret = 0;
985 struct regulator_ops *ops = rdev->desc->ops;
986
987 if (constraints)
988 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
989 GFP_KERNEL);
990 else
991 rdev->constraints = kzalloc(sizeof(*constraints),
992 GFP_KERNEL);
993 if (!rdev->constraints)
994 return -ENOMEM;
995
996 ret = machine_constraints_voltage(rdev, rdev->constraints);
997 if (ret != 0)
998 goto out;
999
1000 ret = machine_constraints_current(rdev, rdev->constraints);
1001 if (ret != 0)
1002 goto out;
1003
1004 /* do we need to setup our suspend state */
1005 if (rdev->constraints->initial_state) {
1006 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1007 if (ret < 0) {
1008 rdev_err(rdev, "failed to set suspend state\n");
1009 goto out;
1010 }
1011 }
1012
1013 if (rdev->constraints->initial_mode) {
1014 if (!ops->set_mode) {
1015 rdev_err(rdev, "no set_mode operation\n");
1016 ret = -EINVAL;
1017 goto out;
1018 }
1019
1020 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1021 if (ret < 0) {
1022 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1023 goto out;
1024 }
1025 }
1026
1027 /* If the constraints say the regulator should be on at this point
1028 * and we have control then make sure it is enabled.
1029 */
1030 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1031 ret = _regulator_do_enable(rdev);
1032 if (ret < 0 && ret != -EINVAL) {
1033 rdev_err(rdev, "failed to enable\n");
1034 goto out;
1035 }
1036 }
1037
1038 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1039 && ops->set_ramp_delay) {
1040 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1041 if (ret < 0) {
1042 rdev_err(rdev, "failed to set ramp_delay\n");
1043 goto out;
1044 }
1045 }
1046
1047 print_constraints(rdev);
1048 return 0;
1049 out:
1050 kfree(rdev->constraints);
1051 rdev->constraints = NULL;
1052 return ret;
1053 }
1054
1055 /**
1056 * set_supply - set regulator supply regulator
1057 * @rdev: regulator name
1058 * @supply_rdev: supply regulator name
1059 *
1060 * Called by platform initialisation code to set the supply regulator for this
1061 * regulator. This ensures that a regulators supply will also be enabled by the
1062 * core if it's child is enabled.
1063 */
1064 static int set_supply(struct regulator_dev *rdev,
1065 struct regulator_dev *supply_rdev)
1066 {
1067 int err;
1068
1069 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1070
1071 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1072 if (rdev->supply == NULL) {
1073 err = -ENOMEM;
1074 return err;
1075 }
1076 supply_rdev->open_count++;
1077
1078 return 0;
1079 }
1080
1081 /**
1082 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1083 * @rdev: regulator source
1084 * @consumer_dev_name: dev_name() string for device supply applies to
1085 * @supply: symbolic name for supply
1086 *
1087 * Allows platform initialisation code to map physical regulator
1088 * sources to symbolic names for supplies for use by devices. Devices
1089 * should use these symbolic names to request regulators, avoiding the
1090 * need to provide board-specific regulator names as platform data.
1091 */
1092 static int set_consumer_device_supply(struct regulator_dev *rdev,
1093 const char *consumer_dev_name,
1094 const char *supply)
1095 {
1096 struct regulator_map *node;
1097 int has_dev;
1098
1099 if (supply == NULL)
1100 return -EINVAL;
1101
1102 if (consumer_dev_name != NULL)
1103 has_dev = 1;
1104 else
1105 has_dev = 0;
1106
1107 list_for_each_entry(node, &regulator_map_list, list) {
1108 if (node->dev_name && consumer_dev_name) {
1109 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1110 continue;
1111 } else if (node->dev_name || consumer_dev_name) {
1112 continue;
1113 }
1114
1115 if (strcmp(node->supply, supply) != 0)
1116 continue;
1117
1118 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1119 consumer_dev_name,
1120 dev_name(&node->regulator->dev),
1121 node->regulator->desc->name,
1122 supply,
1123 dev_name(&rdev->dev), rdev_get_name(rdev));
1124 return -EBUSY;
1125 }
1126
1127 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1128 if (node == NULL)
1129 return -ENOMEM;
1130
1131 node->regulator = rdev;
1132 node->supply = supply;
1133
1134 if (has_dev) {
1135 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1136 if (node->dev_name == NULL) {
1137 kfree(node);
1138 return -ENOMEM;
1139 }
1140 }
1141
1142 list_add(&node->list, &regulator_map_list);
1143 return 0;
1144 }
1145
1146 static void unset_regulator_supplies(struct regulator_dev *rdev)
1147 {
1148 struct regulator_map *node, *n;
1149
1150 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1151 if (rdev == node->regulator) {
1152 list_del(&node->list);
1153 kfree(node->dev_name);
1154 kfree(node);
1155 }
1156 }
1157 }
1158
1159 #define REG_STR_SIZE 64
1160
1161 static struct regulator *create_regulator(struct regulator_dev *rdev,
1162 struct device *dev,
1163 const char *supply_name)
1164 {
1165 struct regulator *regulator;
1166 char buf[REG_STR_SIZE];
1167 int err, size;
1168
1169 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1170 if (regulator == NULL)
1171 return NULL;
1172
1173 mutex_lock(&rdev->mutex);
1174 regulator->rdev = rdev;
1175 list_add(&regulator->list, &rdev->consumer_list);
1176
1177 if (dev) {
1178 regulator->dev = dev;
1179
1180 /* Add a link to the device sysfs entry */
1181 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1182 dev->kobj.name, supply_name);
1183 if (size >= REG_STR_SIZE)
1184 goto overflow_err;
1185
1186 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1187 if (regulator->supply_name == NULL)
1188 goto overflow_err;
1189
1190 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1191 buf);
1192 if (err) {
1193 rdev_warn(rdev, "could not add device link %s err %d\n",
1194 dev->kobj.name, err);
1195 /* non-fatal */
1196 }
1197 } else {
1198 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1199 if (regulator->supply_name == NULL)
1200 goto overflow_err;
1201 }
1202
1203 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1204 rdev->debugfs);
1205 if (!regulator->debugfs) {
1206 rdev_warn(rdev, "Failed to create debugfs directory\n");
1207 } else {
1208 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1209 &regulator->uA_load);
1210 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1211 &regulator->min_uV);
1212 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1213 &regulator->max_uV);
1214 }
1215
1216 /*
1217 * Check now if the regulator is an always on regulator - if
1218 * it is then we don't need to do nearly so much work for
1219 * enable/disable calls.
1220 */
1221 if (!_regulator_can_change_status(rdev) &&
1222 _regulator_is_enabled(rdev))
1223 regulator->always_on = true;
1224
1225 mutex_unlock(&rdev->mutex);
1226 return regulator;
1227 overflow_err:
1228 list_del(&regulator->list);
1229 kfree(regulator);
1230 mutex_unlock(&rdev->mutex);
1231 return NULL;
1232 }
1233
1234 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1235 {
1236 if (rdev->constraints && rdev->constraints->enable_time)
1237 return rdev->constraints->enable_time;
1238 if (!rdev->desc->ops->enable_time)
1239 return rdev->desc->enable_time;
1240 return rdev->desc->ops->enable_time(rdev);
1241 }
1242
1243 static struct regulator_supply_alias *regulator_find_supply_alias(
1244 struct device *dev, const char *supply)
1245 {
1246 struct regulator_supply_alias *map;
1247
1248 list_for_each_entry(map, &regulator_supply_alias_list, list)
1249 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1250 return map;
1251
1252 return NULL;
1253 }
1254
1255 static void regulator_supply_alias(struct device **dev, const char **supply)
1256 {
1257 struct regulator_supply_alias *map;
1258
1259 map = regulator_find_supply_alias(*dev, *supply);
1260 if (map) {
1261 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1262 *supply, map->alias_supply,
1263 dev_name(map->alias_dev));
1264 *dev = map->alias_dev;
1265 *supply = map->alias_supply;
1266 }
1267 }
1268
1269 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1270 const char *supply,
1271 int *ret)
1272 {
1273 struct regulator_dev *r;
1274 struct device_node *node;
1275 struct regulator_map *map;
1276 const char *devname = NULL;
1277
1278 regulator_supply_alias(&dev, &supply);
1279
1280 /* first do a dt based lookup */
1281 if (dev && dev->of_node) {
1282 node = of_get_regulator(dev, supply);
1283 if (node) {
1284 list_for_each_entry(r, &regulator_list, list)
1285 if (r->dev.parent &&
1286 node == r->dev.of_node)
1287 return r;
1288 *ret = -EPROBE_DEFER;
1289 return NULL;
1290 } else {
1291 /*
1292 * If we couldn't even get the node then it's
1293 * not just that the device didn't register
1294 * yet, there's no node and we'll never
1295 * succeed.
1296 */
1297 *ret = -ENODEV;
1298 }
1299 }
1300
1301 /* if not found, try doing it non-dt way */
1302 if (dev)
1303 devname = dev_name(dev);
1304
1305 list_for_each_entry(r, &regulator_list, list)
1306 if (strcmp(rdev_get_name(r), supply) == 0)
1307 return r;
1308
1309 list_for_each_entry(map, &regulator_map_list, list) {
1310 /* If the mapping has a device set up it must match */
1311 if (map->dev_name &&
1312 (!devname || strcmp(map->dev_name, devname)))
1313 continue;
1314
1315 if (strcmp(map->supply, supply) == 0)
1316 return map->regulator;
1317 }
1318
1319
1320 return NULL;
1321 }
1322
1323 /* Internal regulator request function */
1324 static struct regulator *_regulator_get(struct device *dev, const char *id,
1325 bool exclusive, bool allow_dummy)
1326 {
1327 struct regulator_dev *rdev;
1328 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1329 const char *devname = NULL;
1330 int ret;
1331
1332 if (id == NULL) {
1333 pr_err("get() with no identifier\n");
1334 return ERR_PTR(-EINVAL);
1335 }
1336
1337 if (dev)
1338 devname = dev_name(dev);
1339
1340 if (have_full_constraints())
1341 ret = -ENODEV;
1342 else
1343 ret = -EPROBE_DEFER;
1344
1345 mutex_lock(&regulator_list_mutex);
1346
1347 rdev = regulator_dev_lookup(dev, id, &ret);
1348 if (rdev)
1349 goto found;
1350
1351 regulator = ERR_PTR(ret);
1352
1353 /*
1354 * If we have return value from dev_lookup fail, we do not expect to
1355 * succeed, so, quit with appropriate error value
1356 */
1357 if (ret && ret != -ENODEV)
1358 goto out;
1359
1360 if (!devname)
1361 devname = "deviceless";
1362
1363 /*
1364 * Assume that a regulator is physically present and enabled
1365 * even if it isn't hooked up and just provide a dummy.
1366 */
1367 if (have_full_constraints() && allow_dummy) {
1368 pr_warn("%s supply %s not found, using dummy regulator\n",
1369 devname, id);
1370
1371 rdev = dummy_regulator_rdev;
1372 goto found;
1373 /* Don't log an error when called from regulator_get_optional() */
1374 } else if (!have_full_constraints() || exclusive) {
1375 dev_warn(dev, "dummy supplies not allowed\n");
1376 }
1377
1378 mutex_unlock(&regulator_list_mutex);
1379 return regulator;
1380
1381 found:
1382 if (rdev->exclusive) {
1383 regulator = ERR_PTR(-EPERM);
1384 goto out;
1385 }
1386
1387 if (exclusive && rdev->open_count) {
1388 regulator = ERR_PTR(-EBUSY);
1389 goto out;
1390 }
1391
1392 if (!try_module_get(rdev->owner))
1393 goto out;
1394
1395 regulator = create_regulator(rdev, dev, id);
1396 if (regulator == NULL) {
1397 regulator = ERR_PTR(-ENOMEM);
1398 module_put(rdev->owner);
1399 goto out;
1400 }
1401
1402 rdev->open_count++;
1403 if (exclusive) {
1404 rdev->exclusive = 1;
1405
1406 ret = _regulator_is_enabled(rdev);
1407 if (ret > 0)
1408 rdev->use_count = 1;
1409 else
1410 rdev->use_count = 0;
1411 }
1412
1413 out:
1414 mutex_unlock(&regulator_list_mutex);
1415
1416 return regulator;
1417 }
1418
1419 /**
1420 * regulator_get - lookup and obtain a reference to a regulator.
1421 * @dev: device for regulator "consumer"
1422 * @id: Supply name or regulator ID.
1423 *
1424 * Returns a struct regulator corresponding to the regulator producer,
1425 * or IS_ERR() condition containing errno.
1426 *
1427 * Use of supply names configured via regulator_set_device_supply() is
1428 * strongly encouraged. It is recommended that the supply name used
1429 * should match the name used for the supply and/or the relevant
1430 * device pins in the datasheet.
1431 */
1432 struct regulator *regulator_get(struct device *dev, const char *id)
1433 {
1434 return _regulator_get(dev, id, false, true);
1435 }
1436 EXPORT_SYMBOL_GPL(regulator_get);
1437
1438 /**
1439 * regulator_get_exclusive - obtain exclusive access to a regulator.
1440 * @dev: device for regulator "consumer"
1441 * @id: Supply name or regulator ID.
1442 *
1443 * Returns a struct regulator corresponding to the regulator producer,
1444 * or IS_ERR() condition containing errno. Other consumers will be
1445 * unable to obtain this regulator while this reference is held and the
1446 * use count for the regulator will be initialised to reflect the current
1447 * state of the regulator.
1448 *
1449 * This is intended for use by consumers which cannot tolerate shared
1450 * use of the regulator such as those which need to force the
1451 * regulator off for correct operation of the hardware they are
1452 * controlling.
1453 *
1454 * Use of supply names configured via regulator_set_device_supply() is
1455 * strongly encouraged. It is recommended that the supply name used
1456 * should match the name used for the supply and/or the relevant
1457 * device pins in the datasheet.
1458 */
1459 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1460 {
1461 return _regulator_get(dev, id, true, false);
1462 }
1463 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1464
1465 /**
1466 * regulator_get_optional - obtain optional access to a regulator.
1467 * @dev: device for regulator "consumer"
1468 * @id: Supply name or regulator ID.
1469 *
1470 * Returns a struct regulator corresponding to the regulator producer,
1471 * or IS_ERR() condition containing errno.
1472 *
1473 * This is intended for use by consumers for devices which can have
1474 * some supplies unconnected in normal use, such as some MMC devices.
1475 * It can allow the regulator core to provide stub supplies for other
1476 * supplies requested using normal regulator_get() calls without
1477 * disrupting the operation of drivers that can handle absent
1478 * supplies.
1479 *
1480 * Use of supply names configured via regulator_set_device_supply() is
1481 * strongly encouraged. It is recommended that the supply name used
1482 * should match the name used for the supply and/or the relevant
1483 * device pins in the datasheet.
1484 */
1485 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1486 {
1487 return _regulator_get(dev, id, false, false);
1488 }
1489 EXPORT_SYMBOL_GPL(regulator_get_optional);
1490
1491 /* Locks held by regulator_put() */
1492 static void _regulator_put(struct regulator *regulator)
1493 {
1494 struct regulator_dev *rdev;
1495
1496 if (regulator == NULL || IS_ERR(regulator))
1497 return;
1498
1499 rdev = regulator->rdev;
1500
1501 debugfs_remove_recursive(regulator->debugfs);
1502
1503 /* remove any sysfs entries */
1504 if (regulator->dev)
1505 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1506 kfree(regulator->supply_name);
1507 list_del(&regulator->list);
1508 kfree(regulator);
1509
1510 rdev->open_count--;
1511 rdev->exclusive = 0;
1512
1513 module_put(rdev->owner);
1514 }
1515
1516 /**
1517 * regulator_put - "free" the regulator source
1518 * @regulator: regulator source
1519 *
1520 * Note: drivers must ensure that all regulator_enable calls made on this
1521 * regulator source are balanced by regulator_disable calls prior to calling
1522 * this function.
1523 */
1524 void regulator_put(struct regulator *regulator)
1525 {
1526 mutex_lock(&regulator_list_mutex);
1527 _regulator_put(regulator);
1528 mutex_unlock(&regulator_list_mutex);
1529 }
1530 EXPORT_SYMBOL_GPL(regulator_put);
1531
1532 /**
1533 * regulator_register_supply_alias - Provide device alias for supply lookup
1534 *
1535 * @dev: device that will be given as the regulator "consumer"
1536 * @id: Supply name or regulator ID
1537 * @alias_dev: device that should be used to lookup the supply
1538 * @alias_id: Supply name or regulator ID that should be used to lookup the
1539 * supply
1540 *
1541 * All lookups for id on dev will instead be conducted for alias_id on
1542 * alias_dev.
1543 */
1544 int regulator_register_supply_alias(struct device *dev, const char *id,
1545 struct device *alias_dev,
1546 const char *alias_id)
1547 {
1548 struct regulator_supply_alias *map;
1549
1550 map = regulator_find_supply_alias(dev, id);
1551 if (map)
1552 return -EEXIST;
1553
1554 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1555 if (!map)
1556 return -ENOMEM;
1557
1558 map->src_dev = dev;
1559 map->src_supply = id;
1560 map->alias_dev = alias_dev;
1561 map->alias_supply = alias_id;
1562
1563 list_add(&map->list, &regulator_supply_alias_list);
1564
1565 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1566 id, dev_name(dev), alias_id, dev_name(alias_dev));
1567
1568 return 0;
1569 }
1570 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1571
1572 /**
1573 * regulator_unregister_supply_alias - Remove device alias
1574 *
1575 * @dev: device that will be given as the regulator "consumer"
1576 * @id: Supply name or regulator ID
1577 *
1578 * Remove a lookup alias if one exists for id on dev.
1579 */
1580 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1581 {
1582 struct regulator_supply_alias *map;
1583
1584 map = regulator_find_supply_alias(dev, id);
1585 if (map) {
1586 list_del(&map->list);
1587 kfree(map);
1588 }
1589 }
1590 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1591
1592 /**
1593 * regulator_bulk_register_supply_alias - register multiple aliases
1594 *
1595 * @dev: device that will be given as the regulator "consumer"
1596 * @id: List of supply names or regulator IDs
1597 * @alias_dev: device that should be used to lookup the supply
1598 * @alias_id: List of supply names or regulator IDs that should be used to
1599 * lookup the supply
1600 * @num_id: Number of aliases to register
1601 *
1602 * @return 0 on success, an errno on failure.
1603 *
1604 * This helper function allows drivers to register several supply
1605 * aliases in one operation. If any of the aliases cannot be
1606 * registered any aliases that were registered will be removed
1607 * before returning to the caller.
1608 */
1609 int regulator_bulk_register_supply_alias(struct device *dev,
1610 const char *const *id,
1611 struct device *alias_dev,
1612 const char *const *alias_id,
1613 int num_id)
1614 {
1615 int i;
1616 int ret;
1617
1618 for (i = 0; i < num_id; ++i) {
1619 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1620 alias_id[i]);
1621 if (ret < 0)
1622 goto err;
1623 }
1624
1625 return 0;
1626
1627 err:
1628 dev_err(dev,
1629 "Failed to create supply alias %s,%s -> %s,%s\n",
1630 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1631
1632 while (--i >= 0)
1633 regulator_unregister_supply_alias(dev, id[i]);
1634
1635 return ret;
1636 }
1637 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1638
1639 /**
1640 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1641 *
1642 * @dev: device that will be given as the regulator "consumer"
1643 * @id: List of supply names or regulator IDs
1644 * @num_id: Number of aliases to unregister
1645 *
1646 * This helper function allows drivers to unregister several supply
1647 * aliases in one operation.
1648 */
1649 void regulator_bulk_unregister_supply_alias(struct device *dev,
1650 const char *const *id,
1651 int num_id)
1652 {
1653 int i;
1654
1655 for (i = 0; i < num_id; ++i)
1656 regulator_unregister_supply_alias(dev, id[i]);
1657 }
1658 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1659
1660
1661 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1662 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1663 const struct regulator_config *config)
1664 {
1665 struct regulator_enable_gpio *pin;
1666 struct gpio_desc *gpiod;
1667 int ret;
1668
1669 gpiod = gpio_to_desc(config->ena_gpio);
1670
1671 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1672 if (pin->gpiod == gpiod) {
1673 rdev_dbg(rdev, "GPIO %d is already used\n",
1674 config->ena_gpio);
1675 goto update_ena_gpio_to_rdev;
1676 }
1677 }
1678
1679 ret = gpio_request_one(config->ena_gpio,
1680 GPIOF_DIR_OUT | config->ena_gpio_flags,
1681 rdev_get_name(rdev));
1682 if (ret)
1683 return ret;
1684
1685 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1686 if (pin == NULL) {
1687 gpio_free(config->ena_gpio);
1688 return -ENOMEM;
1689 }
1690
1691 pin->gpiod = gpiod;
1692 pin->ena_gpio_invert = config->ena_gpio_invert;
1693 list_add(&pin->list, &regulator_ena_gpio_list);
1694
1695 update_ena_gpio_to_rdev:
1696 pin->request_count++;
1697 rdev->ena_pin = pin;
1698 return 0;
1699 }
1700
1701 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1702 {
1703 struct regulator_enable_gpio *pin, *n;
1704
1705 if (!rdev->ena_pin)
1706 return;
1707
1708 /* Free the GPIO only in case of no use */
1709 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1710 if (pin->gpiod == rdev->ena_pin->gpiod) {
1711 if (pin->request_count <= 1) {
1712 pin->request_count = 0;
1713 gpiod_put(pin->gpiod);
1714 list_del(&pin->list);
1715 kfree(pin);
1716 } else {
1717 pin->request_count--;
1718 }
1719 }
1720 }
1721 }
1722
1723 /**
1724 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1725 * @rdev: regulator_dev structure
1726 * @enable: enable GPIO at initial use?
1727 *
1728 * GPIO is enabled in case of initial use. (enable_count is 0)
1729 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1730 */
1731 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1732 {
1733 struct regulator_enable_gpio *pin = rdev->ena_pin;
1734
1735 if (!pin)
1736 return -EINVAL;
1737
1738 if (enable) {
1739 /* Enable GPIO at initial use */
1740 if (pin->enable_count == 0)
1741 gpiod_set_value_cansleep(pin->gpiod,
1742 !pin->ena_gpio_invert);
1743
1744 pin->enable_count++;
1745 } else {
1746 if (pin->enable_count > 1) {
1747 pin->enable_count--;
1748 return 0;
1749 }
1750
1751 /* Disable GPIO if not used */
1752 if (pin->enable_count <= 1) {
1753 gpiod_set_value_cansleep(pin->gpiod,
1754 pin->ena_gpio_invert);
1755 pin->enable_count = 0;
1756 }
1757 }
1758
1759 return 0;
1760 }
1761
1762 static int _regulator_do_enable(struct regulator_dev *rdev)
1763 {
1764 int ret, delay;
1765
1766 /* Query before enabling in case configuration dependent. */
1767 ret = _regulator_get_enable_time(rdev);
1768 if (ret >= 0) {
1769 delay = ret;
1770 } else {
1771 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1772 delay = 0;
1773 }
1774
1775 trace_regulator_enable(rdev_get_name(rdev));
1776
1777 if (rdev->ena_pin) {
1778 ret = regulator_ena_gpio_ctrl(rdev, true);
1779 if (ret < 0)
1780 return ret;
1781 rdev->ena_gpio_state = 1;
1782 } else if (rdev->desc->ops->enable) {
1783 ret = rdev->desc->ops->enable(rdev);
1784 if (ret < 0)
1785 return ret;
1786 } else {
1787 return -EINVAL;
1788 }
1789
1790 /* Allow the regulator to ramp; it would be useful to extend
1791 * this for bulk operations so that the regulators can ramp
1792 * together. */
1793 trace_regulator_enable_delay(rdev_get_name(rdev));
1794
1795 /*
1796 * Delay for the requested amount of time as per the guidelines in:
1797 *
1798 * Documentation/timers/timers-howto.txt
1799 *
1800 * The assumption here is that regulators will never be enabled in
1801 * atomic context and therefore sleeping functions can be used.
1802 */
1803 if (delay) {
1804 unsigned int ms = delay / 1000;
1805 unsigned int us = delay % 1000;
1806
1807 if (ms > 0) {
1808 /*
1809 * For small enough values, handle super-millisecond
1810 * delays in the usleep_range() call below.
1811 */
1812 if (ms < 20)
1813 us += ms * 1000;
1814 else
1815 msleep(ms);
1816 }
1817
1818 /*
1819 * Give the scheduler some room to coalesce with any other
1820 * wakeup sources. For delays shorter than 10 us, don't even
1821 * bother setting up high-resolution timers and just busy-
1822 * loop.
1823 */
1824 if (us >= 10)
1825 usleep_range(us, us + 100);
1826 else
1827 udelay(us);
1828 }
1829
1830 trace_regulator_enable_complete(rdev_get_name(rdev));
1831
1832 return 0;
1833 }
1834
1835 /* locks held by regulator_enable() */
1836 static int _regulator_enable(struct regulator_dev *rdev)
1837 {
1838 int ret;
1839
1840 /* check voltage and requested load before enabling */
1841 if (rdev->constraints &&
1842 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1843 drms_uA_update(rdev);
1844
1845 if (rdev->use_count == 0) {
1846 /* The regulator may on if it's not switchable or left on */
1847 ret = _regulator_is_enabled(rdev);
1848 if (ret == -EINVAL || ret == 0) {
1849 if (!_regulator_can_change_status(rdev))
1850 return -EPERM;
1851
1852 ret = _regulator_do_enable(rdev);
1853 if (ret < 0)
1854 return ret;
1855
1856 } else if (ret < 0) {
1857 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1858 return ret;
1859 }
1860 /* Fallthrough on positive return values - already enabled */
1861 }
1862
1863 rdev->use_count++;
1864
1865 return 0;
1866 }
1867
1868 /**
1869 * regulator_enable - enable regulator output
1870 * @regulator: regulator source
1871 *
1872 * Request that the regulator be enabled with the regulator output at
1873 * the predefined voltage or current value. Calls to regulator_enable()
1874 * must be balanced with calls to regulator_disable().
1875 *
1876 * NOTE: the output value can be set by other drivers, boot loader or may be
1877 * hardwired in the regulator.
1878 */
1879 int regulator_enable(struct regulator *regulator)
1880 {
1881 struct regulator_dev *rdev = regulator->rdev;
1882 int ret = 0;
1883
1884 if (regulator->always_on)
1885 return 0;
1886
1887 if (rdev->supply) {
1888 ret = regulator_enable(rdev->supply);
1889 if (ret != 0)
1890 return ret;
1891 }
1892
1893 mutex_lock(&rdev->mutex);
1894 ret = _regulator_enable(rdev);
1895 mutex_unlock(&rdev->mutex);
1896
1897 if (ret != 0 && rdev->supply)
1898 regulator_disable(rdev->supply);
1899
1900 return ret;
1901 }
1902 EXPORT_SYMBOL_GPL(regulator_enable);
1903
1904 static int _regulator_do_disable(struct regulator_dev *rdev)
1905 {
1906 int ret;
1907
1908 trace_regulator_disable(rdev_get_name(rdev));
1909
1910 if (rdev->ena_pin) {
1911 ret = regulator_ena_gpio_ctrl(rdev, false);
1912 if (ret < 0)
1913 return ret;
1914 rdev->ena_gpio_state = 0;
1915
1916 } else if (rdev->desc->ops->disable) {
1917 ret = rdev->desc->ops->disable(rdev);
1918 if (ret != 0)
1919 return ret;
1920 }
1921
1922 trace_regulator_disable_complete(rdev_get_name(rdev));
1923
1924 return 0;
1925 }
1926
1927 /* locks held by regulator_disable() */
1928 static int _regulator_disable(struct regulator_dev *rdev)
1929 {
1930 int ret = 0;
1931
1932 if (WARN(rdev->use_count <= 0,
1933 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1934 return -EIO;
1935
1936 /* are we the last user and permitted to disable ? */
1937 if (rdev->use_count == 1 &&
1938 (rdev->constraints && !rdev->constraints->always_on)) {
1939
1940 /* we are last user */
1941 if (_regulator_can_change_status(rdev)) {
1942 ret = _regulator_do_disable(rdev);
1943 if (ret < 0) {
1944 rdev_err(rdev, "failed to disable\n");
1945 return ret;
1946 }
1947 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1948 NULL);
1949 }
1950
1951 rdev->use_count = 0;
1952 } else if (rdev->use_count > 1) {
1953
1954 if (rdev->constraints &&
1955 (rdev->constraints->valid_ops_mask &
1956 REGULATOR_CHANGE_DRMS))
1957 drms_uA_update(rdev);
1958
1959 rdev->use_count--;
1960 }
1961
1962 return ret;
1963 }
1964
1965 /**
1966 * regulator_disable - disable regulator output
1967 * @regulator: regulator source
1968 *
1969 * Disable the regulator output voltage or current. Calls to
1970 * regulator_enable() must be balanced with calls to
1971 * regulator_disable().
1972 *
1973 * NOTE: this will only disable the regulator output if no other consumer
1974 * devices have it enabled, the regulator device supports disabling and
1975 * machine constraints permit this operation.
1976 */
1977 int regulator_disable(struct regulator *regulator)
1978 {
1979 struct regulator_dev *rdev = regulator->rdev;
1980 int ret = 0;
1981
1982 if (regulator->always_on)
1983 return 0;
1984
1985 mutex_lock(&rdev->mutex);
1986 ret = _regulator_disable(rdev);
1987 mutex_unlock(&rdev->mutex);
1988
1989 if (ret == 0 && rdev->supply)
1990 regulator_disable(rdev->supply);
1991
1992 return ret;
1993 }
1994 EXPORT_SYMBOL_GPL(regulator_disable);
1995
1996 /* locks held by regulator_force_disable() */
1997 static int _regulator_force_disable(struct regulator_dev *rdev)
1998 {
1999 int ret = 0;
2000
2001 ret = _regulator_do_disable(rdev);
2002 if (ret < 0) {
2003 rdev_err(rdev, "failed to force disable\n");
2004 return ret;
2005 }
2006
2007 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2008 REGULATOR_EVENT_DISABLE, NULL);
2009
2010 return 0;
2011 }
2012
2013 /**
2014 * regulator_force_disable - force disable regulator output
2015 * @regulator: regulator source
2016 *
2017 * Forcibly disable the regulator output voltage or current.
2018 * NOTE: this *will* disable the regulator output even if other consumer
2019 * devices have it enabled. This should be used for situations when device
2020 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2021 */
2022 int regulator_force_disable(struct regulator *regulator)
2023 {
2024 struct regulator_dev *rdev = regulator->rdev;
2025 int ret;
2026
2027 mutex_lock(&rdev->mutex);
2028 regulator->uA_load = 0;
2029 ret = _regulator_force_disable(regulator->rdev);
2030 mutex_unlock(&rdev->mutex);
2031
2032 if (rdev->supply)
2033 while (rdev->open_count--)
2034 regulator_disable(rdev->supply);
2035
2036 return ret;
2037 }
2038 EXPORT_SYMBOL_GPL(regulator_force_disable);
2039
2040 static void regulator_disable_work(struct work_struct *work)
2041 {
2042 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2043 disable_work.work);
2044 int count, i, ret;
2045
2046 mutex_lock(&rdev->mutex);
2047
2048 BUG_ON(!rdev->deferred_disables);
2049
2050 count = rdev->deferred_disables;
2051 rdev->deferred_disables = 0;
2052
2053 for (i = 0; i < count; i++) {
2054 ret = _regulator_disable(rdev);
2055 if (ret != 0)
2056 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2057 }
2058
2059 mutex_unlock(&rdev->mutex);
2060
2061 if (rdev->supply) {
2062 for (i = 0; i < count; i++) {
2063 ret = regulator_disable(rdev->supply);
2064 if (ret != 0) {
2065 rdev_err(rdev,
2066 "Supply disable failed: %d\n", ret);
2067 }
2068 }
2069 }
2070 }
2071
2072 /**
2073 * regulator_disable_deferred - disable regulator output with delay
2074 * @regulator: regulator source
2075 * @ms: miliseconds until the regulator is disabled
2076 *
2077 * Execute regulator_disable() on the regulator after a delay. This
2078 * is intended for use with devices that require some time to quiesce.
2079 *
2080 * NOTE: this will only disable the regulator output if no other consumer
2081 * devices have it enabled, the regulator device supports disabling and
2082 * machine constraints permit this operation.
2083 */
2084 int regulator_disable_deferred(struct regulator *regulator, int ms)
2085 {
2086 struct regulator_dev *rdev = regulator->rdev;
2087 int ret;
2088
2089 if (regulator->always_on)
2090 return 0;
2091
2092 if (!ms)
2093 return regulator_disable(regulator);
2094
2095 mutex_lock(&rdev->mutex);
2096 rdev->deferred_disables++;
2097 mutex_unlock(&rdev->mutex);
2098
2099 ret = queue_delayed_work(system_power_efficient_wq,
2100 &rdev->disable_work,
2101 msecs_to_jiffies(ms));
2102 if (ret < 0)
2103 return ret;
2104 else
2105 return 0;
2106 }
2107 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2108
2109 static int _regulator_is_enabled(struct regulator_dev *rdev)
2110 {
2111 /* A GPIO control always takes precedence */
2112 if (rdev->ena_pin)
2113 return rdev->ena_gpio_state;
2114
2115 /* If we don't know then assume that the regulator is always on */
2116 if (!rdev->desc->ops->is_enabled)
2117 return 1;
2118
2119 return rdev->desc->ops->is_enabled(rdev);
2120 }
2121
2122 /**
2123 * regulator_is_enabled - is the regulator output enabled
2124 * @regulator: regulator source
2125 *
2126 * Returns positive if the regulator driver backing the source/client
2127 * has requested that the device be enabled, zero if it hasn't, else a
2128 * negative errno code.
2129 *
2130 * Note that the device backing this regulator handle can have multiple
2131 * users, so it might be enabled even if regulator_enable() was never
2132 * called for this particular source.
2133 */
2134 int regulator_is_enabled(struct regulator *regulator)
2135 {
2136 int ret;
2137
2138 if (regulator->always_on)
2139 return 1;
2140
2141 mutex_lock(&regulator->rdev->mutex);
2142 ret = _regulator_is_enabled(regulator->rdev);
2143 mutex_unlock(&regulator->rdev->mutex);
2144
2145 return ret;
2146 }
2147 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2148
2149 /**
2150 * regulator_can_change_voltage - check if regulator can change voltage
2151 * @regulator: regulator source
2152 *
2153 * Returns positive if the regulator driver backing the source/client
2154 * can change its voltage, false otherwise. Useful for detecting fixed
2155 * or dummy regulators and disabling voltage change logic in the client
2156 * driver.
2157 */
2158 int regulator_can_change_voltage(struct regulator *regulator)
2159 {
2160 struct regulator_dev *rdev = regulator->rdev;
2161
2162 if (rdev->constraints &&
2163 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2164 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2165 return 1;
2166
2167 if (rdev->desc->continuous_voltage_range &&
2168 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2169 rdev->constraints->min_uV != rdev->constraints->max_uV)
2170 return 1;
2171 }
2172
2173 return 0;
2174 }
2175 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2176
2177 /**
2178 * regulator_count_voltages - count regulator_list_voltage() selectors
2179 * @regulator: regulator source
2180 *
2181 * Returns number of selectors, or negative errno. Selectors are
2182 * numbered starting at zero, and typically correspond to bitfields
2183 * in hardware registers.
2184 */
2185 int regulator_count_voltages(struct regulator *regulator)
2186 {
2187 struct regulator_dev *rdev = regulator->rdev;
2188
2189 if (rdev->desc->n_voltages)
2190 return rdev->desc->n_voltages;
2191
2192 if (!rdev->supply)
2193 return -EINVAL;
2194
2195 return regulator_count_voltages(rdev->supply);
2196 }
2197 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2198
2199 /**
2200 * regulator_list_voltage - enumerate supported voltages
2201 * @regulator: regulator source
2202 * @selector: identify voltage to list
2203 * Context: can sleep
2204 *
2205 * Returns a voltage that can be passed to @regulator_set_voltage(),
2206 * zero if this selector code can't be used on this system, or a
2207 * negative errno.
2208 */
2209 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2210 {
2211 struct regulator_dev *rdev = regulator->rdev;
2212 struct regulator_ops *ops = rdev->desc->ops;
2213 int ret;
2214
2215 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2216 return rdev->desc->fixed_uV;
2217
2218 if (ops->list_voltage) {
2219 if (selector >= rdev->desc->n_voltages)
2220 return -EINVAL;
2221 mutex_lock(&rdev->mutex);
2222 ret = ops->list_voltage(rdev, selector);
2223 mutex_unlock(&rdev->mutex);
2224 } else if (rdev->supply) {
2225 ret = regulator_list_voltage(rdev->supply, selector);
2226 } else {
2227 return -EINVAL;
2228 }
2229
2230 if (ret > 0) {
2231 if (ret < rdev->constraints->min_uV)
2232 ret = 0;
2233 else if (ret > rdev->constraints->max_uV)
2234 ret = 0;
2235 }
2236
2237 return ret;
2238 }
2239 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2240
2241 /**
2242 * regulator_get_regmap - get the regulator's register map
2243 * @regulator: regulator source
2244 *
2245 * Returns the register map for the given regulator, or an ERR_PTR value
2246 * if the regulator doesn't use regmap.
2247 */
2248 struct regmap *regulator_get_regmap(struct regulator *regulator)
2249 {
2250 struct regmap *map = regulator->rdev->regmap;
2251
2252 return map ? map : ERR_PTR(-EOPNOTSUPP);
2253 }
2254
2255 /**
2256 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2257 * @regulator: regulator source
2258 * @vsel_reg: voltage selector register, output parameter
2259 * @vsel_mask: mask for voltage selector bitfield, output parameter
2260 *
2261 * Returns the hardware register offset and bitmask used for setting the
2262 * regulator voltage. This might be useful when configuring voltage-scaling
2263 * hardware or firmware that can make I2C requests behind the kernel's back,
2264 * for example.
2265 *
2266 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2267 * and 0 is returned, otherwise a negative errno is returned.
2268 */
2269 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2270 unsigned *vsel_reg,
2271 unsigned *vsel_mask)
2272 {
2273 struct regulator_dev *rdev = regulator->rdev;
2274 struct regulator_ops *ops = rdev->desc->ops;
2275
2276 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2277 return -EOPNOTSUPP;
2278
2279 *vsel_reg = rdev->desc->vsel_reg;
2280 *vsel_mask = rdev->desc->vsel_mask;
2281
2282 return 0;
2283 }
2284 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2285
2286 /**
2287 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2288 * @regulator: regulator source
2289 * @selector: identify voltage to list
2290 *
2291 * Converts the selector to a hardware-specific voltage selector that can be
2292 * directly written to the regulator registers. The address of the voltage
2293 * register can be determined by calling @regulator_get_hardware_vsel_register.
2294 *
2295 * On error a negative errno is returned.
2296 */
2297 int regulator_list_hardware_vsel(struct regulator *regulator,
2298 unsigned selector)
2299 {
2300 struct regulator_dev *rdev = regulator->rdev;
2301 struct regulator_ops *ops = rdev->desc->ops;
2302
2303 if (selector >= rdev->desc->n_voltages)
2304 return -EINVAL;
2305 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2306 return -EOPNOTSUPP;
2307
2308 return selector;
2309 }
2310 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2311
2312 /**
2313 * regulator_get_linear_step - return the voltage step size between VSEL values
2314 * @regulator: regulator source
2315 *
2316 * Returns the voltage step size between VSEL values for linear
2317 * regulators, or return 0 if the regulator isn't a linear regulator.
2318 */
2319 unsigned int regulator_get_linear_step(struct regulator *regulator)
2320 {
2321 struct regulator_dev *rdev = regulator->rdev;
2322
2323 return rdev->desc->uV_step;
2324 }
2325 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2326
2327 /**
2328 * regulator_is_supported_voltage - check if a voltage range can be supported
2329 *
2330 * @regulator: Regulator to check.
2331 * @min_uV: Minimum required voltage in uV.
2332 * @max_uV: Maximum required voltage in uV.
2333 *
2334 * Returns a boolean or a negative error code.
2335 */
2336 int regulator_is_supported_voltage(struct regulator *regulator,
2337 int min_uV, int max_uV)
2338 {
2339 struct regulator_dev *rdev = regulator->rdev;
2340 int i, voltages, ret;
2341
2342 /* If we can't change voltage check the current voltage */
2343 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2344 ret = regulator_get_voltage(regulator);
2345 if (ret >= 0)
2346 return min_uV <= ret && ret <= max_uV;
2347 else
2348 return ret;
2349 }
2350
2351 /* Any voltage within constrains range is fine? */
2352 if (rdev->desc->continuous_voltage_range)
2353 return min_uV >= rdev->constraints->min_uV &&
2354 max_uV <= rdev->constraints->max_uV;
2355
2356 ret = regulator_count_voltages(regulator);
2357 if (ret < 0)
2358 return ret;
2359 voltages = ret;
2360
2361 for (i = 0; i < voltages; i++) {
2362 ret = regulator_list_voltage(regulator, i);
2363
2364 if (ret >= min_uV && ret <= max_uV)
2365 return 1;
2366 }
2367
2368 return 0;
2369 }
2370 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2371
2372 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2373 int min_uV, int max_uV)
2374 {
2375 int ret;
2376 int delay = 0;
2377 int best_val = 0;
2378 unsigned int selector;
2379 int old_selector = -1;
2380
2381 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2382
2383 min_uV += rdev->constraints->uV_offset;
2384 max_uV += rdev->constraints->uV_offset;
2385
2386 /*
2387 * If we can't obtain the old selector there is not enough
2388 * info to call set_voltage_time_sel().
2389 */
2390 if (_regulator_is_enabled(rdev) &&
2391 rdev->desc->ops->set_voltage_time_sel &&
2392 rdev->desc->ops->get_voltage_sel) {
2393 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2394 if (old_selector < 0)
2395 return old_selector;
2396 }
2397
2398 if (rdev->desc->ops->set_voltage) {
2399 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2400 &selector);
2401
2402 if (ret >= 0) {
2403 if (rdev->desc->ops->list_voltage)
2404 best_val = rdev->desc->ops->list_voltage(rdev,
2405 selector);
2406 else
2407 best_val = _regulator_get_voltage(rdev);
2408 }
2409
2410 } else if (rdev->desc->ops->set_voltage_sel) {
2411 if (rdev->desc->ops->map_voltage) {
2412 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2413 max_uV);
2414 } else {
2415 if (rdev->desc->ops->list_voltage ==
2416 regulator_list_voltage_linear)
2417 ret = regulator_map_voltage_linear(rdev,
2418 min_uV, max_uV);
2419 else if (rdev->desc->ops->list_voltage ==
2420 regulator_list_voltage_linear_range)
2421 ret = regulator_map_voltage_linear_range(rdev,
2422 min_uV, max_uV);
2423 else
2424 ret = regulator_map_voltage_iterate(rdev,
2425 min_uV, max_uV);
2426 }
2427
2428 if (ret >= 0) {
2429 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2430 if (min_uV <= best_val && max_uV >= best_val) {
2431 selector = ret;
2432 if (old_selector == selector)
2433 ret = 0;
2434 else
2435 ret = rdev->desc->ops->set_voltage_sel(
2436 rdev, ret);
2437 } else {
2438 ret = -EINVAL;
2439 }
2440 }
2441 } else {
2442 ret = -EINVAL;
2443 }
2444
2445 /* Call set_voltage_time_sel if successfully obtained old_selector */
2446 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2447 && old_selector != selector) {
2448
2449 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2450 old_selector, selector);
2451 if (delay < 0) {
2452 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2453 delay);
2454 delay = 0;
2455 }
2456
2457 /* Insert any necessary delays */
2458 if (delay >= 1000) {
2459 mdelay(delay / 1000);
2460 udelay(delay % 1000);
2461 } else if (delay) {
2462 udelay(delay);
2463 }
2464 }
2465
2466 if (ret == 0 && best_val >= 0) {
2467 unsigned long data = best_val;
2468
2469 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2470 (void *)data);
2471 }
2472
2473 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2474
2475 return ret;
2476 }
2477
2478 /**
2479 * regulator_set_voltage - set regulator output voltage
2480 * @regulator: regulator source
2481 * @min_uV: Minimum required voltage in uV
2482 * @max_uV: Maximum acceptable voltage in uV
2483 *
2484 * Sets a voltage regulator to the desired output voltage. This can be set
2485 * during any regulator state. IOW, regulator can be disabled or enabled.
2486 *
2487 * If the regulator is enabled then the voltage will change to the new value
2488 * immediately otherwise if the regulator is disabled the regulator will
2489 * output at the new voltage when enabled.
2490 *
2491 * NOTE: If the regulator is shared between several devices then the lowest
2492 * request voltage that meets the system constraints will be used.
2493 * Regulator system constraints must be set for this regulator before
2494 * calling this function otherwise this call will fail.
2495 */
2496 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2497 {
2498 struct regulator_dev *rdev = regulator->rdev;
2499 int ret = 0;
2500 int old_min_uV, old_max_uV;
2501 int current_uV;
2502
2503 mutex_lock(&rdev->mutex);
2504
2505 /* If we're setting the same range as last time the change
2506 * should be a noop (some cpufreq implementations use the same
2507 * voltage for multiple frequencies, for example).
2508 */
2509 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2510 goto out;
2511
2512 /* If we're trying to set a range that overlaps the current voltage,
2513 * return succesfully even though the regulator does not support
2514 * changing the voltage.
2515 */
2516 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2517 current_uV = _regulator_get_voltage(rdev);
2518 if (min_uV <= current_uV && current_uV <= max_uV) {
2519 regulator->min_uV = min_uV;
2520 regulator->max_uV = max_uV;
2521 goto out;
2522 }
2523 }
2524
2525 /* sanity check */
2526 if (!rdev->desc->ops->set_voltage &&
2527 !rdev->desc->ops->set_voltage_sel) {
2528 ret = -EINVAL;
2529 goto out;
2530 }
2531
2532 /* constraints check */
2533 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2534 if (ret < 0)
2535 goto out;
2536
2537 /* restore original values in case of error */
2538 old_min_uV = regulator->min_uV;
2539 old_max_uV = regulator->max_uV;
2540 regulator->min_uV = min_uV;
2541 regulator->max_uV = max_uV;
2542
2543 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2544 if (ret < 0)
2545 goto out2;
2546
2547 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2548 if (ret < 0)
2549 goto out2;
2550
2551 out:
2552 mutex_unlock(&rdev->mutex);
2553 return ret;
2554 out2:
2555 regulator->min_uV = old_min_uV;
2556 regulator->max_uV = old_max_uV;
2557 mutex_unlock(&rdev->mutex);
2558 return ret;
2559 }
2560 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2561
2562 /**
2563 * regulator_set_voltage_time - get raise/fall time
2564 * @regulator: regulator source
2565 * @old_uV: starting voltage in microvolts
2566 * @new_uV: target voltage in microvolts
2567 *
2568 * Provided with the starting and ending voltage, this function attempts to
2569 * calculate the time in microseconds required to rise or fall to this new
2570 * voltage.
2571 */
2572 int regulator_set_voltage_time(struct regulator *regulator,
2573 int old_uV, int new_uV)
2574 {
2575 struct regulator_dev *rdev = regulator->rdev;
2576 struct regulator_ops *ops = rdev->desc->ops;
2577 int old_sel = -1;
2578 int new_sel = -1;
2579 int voltage;
2580 int i;
2581
2582 /* Currently requires operations to do this */
2583 if (!ops->list_voltage || !ops->set_voltage_time_sel
2584 || !rdev->desc->n_voltages)
2585 return -EINVAL;
2586
2587 for (i = 0; i < rdev->desc->n_voltages; i++) {
2588 /* We only look for exact voltage matches here */
2589 voltage = regulator_list_voltage(regulator, i);
2590 if (voltage < 0)
2591 return -EINVAL;
2592 if (voltage == 0)
2593 continue;
2594 if (voltage == old_uV)
2595 old_sel = i;
2596 if (voltage == new_uV)
2597 new_sel = i;
2598 }
2599
2600 if (old_sel < 0 || new_sel < 0)
2601 return -EINVAL;
2602
2603 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2604 }
2605 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2606
2607 /**
2608 * regulator_set_voltage_time_sel - get raise/fall time
2609 * @rdev: regulator source device
2610 * @old_selector: selector for starting voltage
2611 * @new_selector: selector for target voltage
2612 *
2613 * Provided with the starting and target voltage selectors, this function
2614 * returns time in microseconds required to rise or fall to this new voltage
2615 *
2616 * Drivers providing ramp_delay in regulation_constraints can use this as their
2617 * set_voltage_time_sel() operation.
2618 */
2619 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2620 unsigned int old_selector,
2621 unsigned int new_selector)
2622 {
2623 unsigned int ramp_delay = 0;
2624 int old_volt, new_volt;
2625
2626 if (rdev->constraints->ramp_delay)
2627 ramp_delay = rdev->constraints->ramp_delay;
2628 else if (rdev->desc->ramp_delay)
2629 ramp_delay = rdev->desc->ramp_delay;
2630
2631 if (ramp_delay == 0) {
2632 rdev_warn(rdev, "ramp_delay not set\n");
2633 return 0;
2634 }
2635
2636 /* sanity check */
2637 if (!rdev->desc->ops->list_voltage)
2638 return -EINVAL;
2639
2640 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2641 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2642
2643 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2644 }
2645 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2646
2647 /**
2648 * regulator_sync_voltage - re-apply last regulator output voltage
2649 * @regulator: regulator source
2650 *
2651 * Re-apply the last configured voltage. This is intended to be used
2652 * where some external control source the consumer is cooperating with
2653 * has caused the configured voltage to change.
2654 */
2655 int regulator_sync_voltage(struct regulator *regulator)
2656 {
2657 struct regulator_dev *rdev = regulator->rdev;
2658 int ret, min_uV, max_uV;
2659
2660 mutex_lock(&rdev->mutex);
2661
2662 if (!rdev->desc->ops->set_voltage &&
2663 !rdev->desc->ops->set_voltage_sel) {
2664 ret = -EINVAL;
2665 goto out;
2666 }
2667
2668 /* This is only going to work if we've had a voltage configured. */
2669 if (!regulator->min_uV && !regulator->max_uV) {
2670 ret = -EINVAL;
2671 goto out;
2672 }
2673
2674 min_uV = regulator->min_uV;
2675 max_uV = regulator->max_uV;
2676
2677 /* This should be a paranoia check... */
2678 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2679 if (ret < 0)
2680 goto out;
2681
2682 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2683 if (ret < 0)
2684 goto out;
2685
2686 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2687
2688 out:
2689 mutex_unlock(&rdev->mutex);
2690 return ret;
2691 }
2692 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2693
2694 static int _regulator_get_voltage(struct regulator_dev *rdev)
2695 {
2696 int sel, ret;
2697
2698 if (rdev->desc->ops->get_voltage_sel) {
2699 sel = rdev->desc->ops->get_voltage_sel(rdev);
2700 if (sel < 0)
2701 return sel;
2702 ret = rdev->desc->ops->list_voltage(rdev, sel);
2703 } else if (rdev->desc->ops->get_voltage) {
2704 ret = rdev->desc->ops->get_voltage(rdev);
2705 } else if (rdev->desc->ops->list_voltage) {
2706 ret = rdev->desc->ops->list_voltage(rdev, 0);
2707 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2708 ret = rdev->desc->fixed_uV;
2709 } else if (rdev->supply) {
2710 ret = regulator_get_voltage(rdev->supply);
2711 } else {
2712 return -EINVAL;
2713 }
2714
2715 if (ret < 0)
2716 return ret;
2717 return ret - rdev->constraints->uV_offset;
2718 }
2719
2720 /**
2721 * regulator_get_voltage - get regulator output voltage
2722 * @regulator: regulator source
2723 *
2724 * This returns the current regulator voltage in uV.
2725 *
2726 * NOTE: If the regulator is disabled it will return the voltage value. This
2727 * function should not be used to determine regulator state.
2728 */
2729 int regulator_get_voltage(struct regulator *regulator)
2730 {
2731 int ret;
2732
2733 mutex_lock(&regulator->rdev->mutex);
2734
2735 ret = _regulator_get_voltage(regulator->rdev);
2736
2737 mutex_unlock(&regulator->rdev->mutex);
2738
2739 return ret;
2740 }
2741 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2742
2743 /**
2744 * regulator_set_current_limit - set regulator output current limit
2745 * @regulator: regulator source
2746 * @min_uA: Minimum supported current in uA
2747 * @max_uA: Maximum supported current in uA
2748 *
2749 * Sets current sink to the desired output current. This can be set during
2750 * any regulator state. IOW, regulator can be disabled or enabled.
2751 *
2752 * If the regulator is enabled then the current will change to the new value
2753 * immediately otherwise if the regulator is disabled the regulator will
2754 * output at the new current when enabled.
2755 *
2756 * NOTE: Regulator system constraints must be set for this regulator before
2757 * calling this function otherwise this call will fail.
2758 */
2759 int regulator_set_current_limit(struct regulator *regulator,
2760 int min_uA, int max_uA)
2761 {
2762 struct regulator_dev *rdev = regulator->rdev;
2763 int ret;
2764
2765 mutex_lock(&rdev->mutex);
2766
2767 /* sanity check */
2768 if (!rdev->desc->ops->set_current_limit) {
2769 ret = -EINVAL;
2770 goto out;
2771 }
2772
2773 /* constraints check */
2774 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2775 if (ret < 0)
2776 goto out;
2777
2778 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2779 out:
2780 mutex_unlock(&rdev->mutex);
2781 return ret;
2782 }
2783 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2784
2785 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2786 {
2787 int ret;
2788
2789 mutex_lock(&rdev->mutex);
2790
2791 /* sanity check */
2792 if (!rdev->desc->ops->get_current_limit) {
2793 ret = -EINVAL;
2794 goto out;
2795 }
2796
2797 ret = rdev->desc->ops->get_current_limit(rdev);
2798 out:
2799 mutex_unlock(&rdev->mutex);
2800 return ret;
2801 }
2802
2803 /**
2804 * regulator_get_current_limit - get regulator output current
2805 * @regulator: regulator source
2806 *
2807 * This returns the current supplied by the specified current sink in uA.
2808 *
2809 * NOTE: If the regulator is disabled it will return the current value. This
2810 * function should not be used to determine regulator state.
2811 */
2812 int regulator_get_current_limit(struct regulator *regulator)
2813 {
2814 return _regulator_get_current_limit(regulator->rdev);
2815 }
2816 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2817
2818 /**
2819 * regulator_set_mode - set regulator operating mode
2820 * @regulator: regulator source
2821 * @mode: operating mode - one of the REGULATOR_MODE constants
2822 *
2823 * Set regulator operating mode to increase regulator efficiency or improve
2824 * regulation performance.
2825 *
2826 * NOTE: Regulator system constraints must be set for this regulator before
2827 * calling this function otherwise this call will fail.
2828 */
2829 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2830 {
2831 struct regulator_dev *rdev = regulator->rdev;
2832 int ret;
2833 int regulator_curr_mode;
2834
2835 mutex_lock(&rdev->mutex);
2836
2837 /* sanity check */
2838 if (!rdev->desc->ops->set_mode) {
2839 ret = -EINVAL;
2840 goto out;
2841 }
2842
2843 /* return if the same mode is requested */
2844 if (rdev->desc->ops->get_mode) {
2845 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2846 if (regulator_curr_mode == mode) {
2847 ret = 0;
2848 goto out;
2849 }
2850 }
2851
2852 /* constraints check */
2853 ret = regulator_mode_constrain(rdev, &mode);
2854 if (ret < 0)
2855 goto out;
2856
2857 ret = rdev->desc->ops->set_mode(rdev, mode);
2858 out:
2859 mutex_unlock(&rdev->mutex);
2860 return ret;
2861 }
2862 EXPORT_SYMBOL_GPL(regulator_set_mode);
2863
2864 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2865 {
2866 int ret;
2867
2868 mutex_lock(&rdev->mutex);
2869
2870 /* sanity check */
2871 if (!rdev->desc->ops->get_mode) {
2872 ret = -EINVAL;
2873 goto out;
2874 }
2875
2876 ret = rdev->desc->ops->get_mode(rdev);
2877 out:
2878 mutex_unlock(&rdev->mutex);
2879 return ret;
2880 }
2881
2882 /**
2883 * regulator_get_mode - get regulator operating mode
2884 * @regulator: regulator source
2885 *
2886 * Get the current regulator operating mode.
2887 */
2888 unsigned int regulator_get_mode(struct regulator *regulator)
2889 {
2890 return _regulator_get_mode(regulator->rdev);
2891 }
2892 EXPORT_SYMBOL_GPL(regulator_get_mode);
2893
2894 /**
2895 * regulator_set_optimum_mode - set regulator optimum operating mode
2896 * @regulator: regulator source
2897 * @uA_load: load current
2898 *
2899 * Notifies the regulator core of a new device load. This is then used by
2900 * DRMS (if enabled by constraints) to set the most efficient regulator
2901 * operating mode for the new regulator loading.
2902 *
2903 * Consumer devices notify their supply regulator of the maximum power
2904 * they will require (can be taken from device datasheet in the power
2905 * consumption tables) when they change operational status and hence power
2906 * state. Examples of operational state changes that can affect power
2907 * consumption are :-
2908 *
2909 * o Device is opened / closed.
2910 * o Device I/O is about to begin or has just finished.
2911 * o Device is idling in between work.
2912 *
2913 * This information is also exported via sysfs to userspace.
2914 *
2915 * DRMS will sum the total requested load on the regulator and change
2916 * to the most efficient operating mode if platform constraints allow.
2917 *
2918 * Returns the new regulator mode or error.
2919 */
2920 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2921 {
2922 struct regulator_dev *rdev = regulator->rdev;
2923 struct regulator *consumer;
2924 int ret, output_uV, input_uV = 0, total_uA_load = 0;
2925 unsigned int mode;
2926
2927 if (rdev->supply)
2928 input_uV = regulator_get_voltage(rdev->supply);
2929
2930 mutex_lock(&rdev->mutex);
2931
2932 /*
2933 * first check to see if we can set modes at all, otherwise just
2934 * tell the consumer everything is OK.
2935 */
2936 regulator->uA_load = uA_load;
2937 ret = regulator_check_drms(rdev);
2938 if (ret < 0) {
2939 ret = 0;
2940 goto out;
2941 }
2942
2943 if (!rdev->desc->ops->get_optimum_mode)
2944 goto out;
2945
2946 /*
2947 * we can actually do this so any errors are indicators of
2948 * potential real failure.
2949 */
2950 ret = -EINVAL;
2951
2952 if (!rdev->desc->ops->set_mode)
2953 goto out;
2954
2955 /* get output voltage */
2956 output_uV = _regulator_get_voltage(rdev);
2957 if (output_uV <= 0) {
2958 rdev_err(rdev, "invalid output voltage found\n");
2959 goto out;
2960 }
2961
2962 /* No supply? Use constraint voltage */
2963 if (input_uV <= 0)
2964 input_uV = rdev->constraints->input_uV;
2965 if (input_uV <= 0) {
2966 rdev_err(rdev, "invalid input voltage found\n");
2967 goto out;
2968 }
2969
2970 /* calc total requested load for this regulator */
2971 list_for_each_entry(consumer, &rdev->consumer_list, list)
2972 total_uA_load += consumer->uA_load;
2973
2974 mode = rdev->desc->ops->get_optimum_mode(rdev,
2975 input_uV, output_uV,
2976 total_uA_load);
2977 ret = regulator_mode_constrain(rdev, &mode);
2978 if (ret < 0) {
2979 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2980 total_uA_load, input_uV, output_uV);
2981 goto out;
2982 }
2983
2984 ret = rdev->desc->ops->set_mode(rdev, mode);
2985 if (ret < 0) {
2986 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2987 goto out;
2988 }
2989 ret = mode;
2990 out:
2991 mutex_unlock(&rdev->mutex);
2992 return ret;
2993 }
2994 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2995
2996 /**
2997 * regulator_allow_bypass - allow the regulator to go into bypass mode
2998 *
2999 * @regulator: Regulator to configure
3000 * @enable: enable or disable bypass mode
3001 *
3002 * Allow the regulator to go into bypass mode if all other consumers
3003 * for the regulator also enable bypass mode and the machine
3004 * constraints allow this. Bypass mode means that the regulator is
3005 * simply passing the input directly to the output with no regulation.
3006 */
3007 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3008 {
3009 struct regulator_dev *rdev = regulator->rdev;
3010 int ret = 0;
3011
3012 if (!rdev->desc->ops->set_bypass)
3013 return 0;
3014
3015 if (rdev->constraints &&
3016 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3017 return 0;
3018
3019 mutex_lock(&rdev->mutex);
3020
3021 if (enable && !regulator->bypass) {
3022 rdev->bypass_count++;
3023
3024 if (rdev->bypass_count == rdev->open_count) {
3025 ret = rdev->desc->ops->set_bypass(rdev, enable);
3026 if (ret != 0)
3027 rdev->bypass_count--;
3028 }
3029
3030 } else if (!enable && regulator->bypass) {
3031 rdev->bypass_count--;
3032
3033 if (rdev->bypass_count != rdev->open_count) {
3034 ret = rdev->desc->ops->set_bypass(rdev, enable);
3035 if (ret != 0)
3036 rdev->bypass_count++;
3037 }
3038 }
3039
3040 if (ret == 0)
3041 regulator->bypass = enable;
3042
3043 mutex_unlock(&rdev->mutex);
3044
3045 return ret;
3046 }
3047 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3048
3049 /**
3050 * regulator_register_notifier - register regulator event notifier
3051 * @regulator: regulator source
3052 * @nb: notifier block
3053 *
3054 * Register notifier block to receive regulator events.
3055 */
3056 int regulator_register_notifier(struct regulator *regulator,
3057 struct notifier_block *nb)
3058 {
3059 return blocking_notifier_chain_register(&regulator->rdev->notifier,
3060 nb);
3061 }
3062 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3063
3064 /**
3065 * regulator_unregister_notifier - unregister regulator event notifier
3066 * @regulator: regulator source
3067 * @nb: notifier block
3068 *
3069 * Unregister regulator event notifier block.
3070 */
3071 int regulator_unregister_notifier(struct regulator *regulator,
3072 struct notifier_block *nb)
3073 {
3074 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3075 nb);
3076 }
3077 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3078
3079 /* notify regulator consumers and downstream regulator consumers.
3080 * Note mutex must be held by caller.
3081 */
3082 static void _notifier_call_chain(struct regulator_dev *rdev,
3083 unsigned long event, void *data)
3084 {
3085 /* call rdev chain first */
3086 blocking_notifier_call_chain(&rdev->notifier, event, data);
3087 }
3088
3089 /**
3090 * regulator_bulk_get - get multiple regulator consumers
3091 *
3092 * @dev: Device to supply
3093 * @num_consumers: Number of consumers to register
3094 * @consumers: Configuration of consumers; clients are stored here.
3095 *
3096 * @return 0 on success, an errno on failure.
3097 *
3098 * This helper function allows drivers to get several regulator
3099 * consumers in one operation. If any of the regulators cannot be
3100 * acquired then any regulators that were allocated will be freed
3101 * before returning to the caller.
3102 */
3103 int regulator_bulk_get(struct device *dev, int num_consumers,
3104 struct regulator_bulk_data *consumers)
3105 {
3106 int i;
3107 int ret;
3108
3109 for (i = 0; i < num_consumers; i++)
3110 consumers[i].consumer = NULL;
3111
3112 for (i = 0; i < num_consumers; i++) {
3113 consumers[i].consumer = regulator_get(dev,
3114 consumers[i].supply);
3115 if (IS_ERR(consumers[i].consumer)) {
3116 ret = PTR_ERR(consumers[i].consumer);
3117 dev_err(dev, "Failed to get supply '%s': %d\n",
3118 consumers[i].supply, ret);
3119 consumers[i].consumer = NULL;
3120 goto err;
3121 }
3122 }
3123
3124 return 0;
3125
3126 err:
3127 while (--i >= 0)
3128 regulator_put(consumers[i].consumer);
3129
3130 return ret;
3131 }
3132 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3133
3134 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3135 {
3136 struct regulator_bulk_data *bulk = data;
3137
3138 bulk->ret = regulator_enable(bulk->consumer);
3139 }
3140
3141 /**
3142 * regulator_bulk_enable - enable multiple regulator consumers
3143 *
3144 * @num_consumers: Number of consumers
3145 * @consumers: Consumer data; clients are stored here.
3146 * @return 0 on success, an errno on failure
3147 *
3148 * This convenience API allows consumers to enable multiple regulator
3149 * clients in a single API call. If any consumers cannot be enabled
3150 * then any others that were enabled will be disabled again prior to
3151 * return.
3152 */
3153 int regulator_bulk_enable(int num_consumers,
3154 struct regulator_bulk_data *consumers)
3155 {
3156 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3157 int i;
3158 int ret = 0;
3159
3160 for (i = 0; i < num_consumers; i++) {
3161 if (consumers[i].consumer->always_on)
3162 consumers[i].ret = 0;
3163 else
3164 async_schedule_domain(regulator_bulk_enable_async,
3165 &consumers[i], &async_domain);
3166 }
3167
3168 async_synchronize_full_domain(&async_domain);
3169
3170 /* If any consumer failed we need to unwind any that succeeded */
3171 for (i = 0; i < num_consumers; i++) {
3172 if (consumers[i].ret != 0) {
3173 ret = consumers[i].ret;
3174 goto err;
3175 }
3176 }
3177
3178 return 0;
3179
3180 err:
3181 for (i = 0; i < num_consumers; i++) {
3182 if (consumers[i].ret < 0)
3183 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3184 consumers[i].ret);
3185 else
3186 regulator_disable(consumers[i].consumer);
3187 }
3188
3189 return ret;
3190 }
3191 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3192
3193 /**
3194 * regulator_bulk_disable - disable multiple regulator consumers
3195 *
3196 * @num_consumers: Number of consumers
3197 * @consumers: Consumer data; clients are stored here.
3198 * @return 0 on success, an errno on failure
3199 *
3200 * This convenience API allows consumers to disable multiple regulator
3201 * clients in a single API call. If any consumers cannot be disabled
3202 * then any others that were disabled will be enabled again prior to
3203 * return.
3204 */
3205 int regulator_bulk_disable(int num_consumers,
3206 struct regulator_bulk_data *consumers)
3207 {
3208 int i;
3209 int ret, r;
3210
3211 for (i = num_consumers - 1; i >= 0; --i) {
3212 ret = regulator_disable(consumers[i].consumer);
3213 if (ret != 0)
3214 goto err;
3215 }
3216
3217 return 0;
3218
3219 err:
3220 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3221 for (++i; i < num_consumers; ++i) {
3222 r = regulator_enable(consumers[i].consumer);
3223 if (r != 0)
3224 pr_err("Failed to reename %s: %d\n",
3225 consumers[i].supply, r);
3226 }
3227
3228 return ret;
3229 }
3230 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3231
3232 /**
3233 * regulator_bulk_force_disable - force disable multiple regulator consumers
3234 *
3235 * @num_consumers: Number of consumers
3236 * @consumers: Consumer data; clients are stored here.
3237 * @return 0 on success, an errno on failure
3238 *
3239 * This convenience API allows consumers to forcibly disable multiple regulator
3240 * clients in a single API call.
3241 * NOTE: This should be used for situations when device damage will
3242 * likely occur if the regulators are not disabled (e.g. over temp).
3243 * Although regulator_force_disable function call for some consumers can
3244 * return error numbers, the function is called for all consumers.
3245 */
3246 int regulator_bulk_force_disable(int num_consumers,
3247 struct regulator_bulk_data *consumers)
3248 {
3249 int i;
3250 int ret;
3251
3252 for (i = 0; i < num_consumers; i++)
3253 consumers[i].ret =
3254 regulator_force_disable(consumers[i].consumer);
3255
3256 for (i = 0; i < num_consumers; i++) {
3257 if (consumers[i].ret != 0) {
3258 ret = consumers[i].ret;
3259 goto out;
3260 }
3261 }
3262
3263 return 0;
3264 out:
3265 return ret;
3266 }
3267 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3268
3269 /**
3270 * regulator_bulk_free - free multiple regulator consumers
3271 *
3272 * @num_consumers: Number of consumers
3273 * @consumers: Consumer data; clients are stored here.
3274 *
3275 * This convenience API allows consumers to free multiple regulator
3276 * clients in a single API call.
3277 */
3278 void regulator_bulk_free(int num_consumers,
3279 struct regulator_bulk_data *consumers)
3280 {
3281 int i;
3282
3283 for (i = 0; i < num_consumers; i++) {
3284 regulator_put(consumers[i].consumer);
3285 consumers[i].consumer = NULL;
3286 }
3287 }
3288 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3289
3290 /**
3291 * regulator_notifier_call_chain - call regulator event notifier
3292 * @rdev: regulator source
3293 * @event: notifier block
3294 * @data: callback-specific data.
3295 *
3296 * Called by regulator drivers to notify clients a regulator event has
3297 * occurred. We also notify regulator clients downstream.
3298 * Note lock must be held by caller.
3299 */
3300 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3301 unsigned long event, void *data)
3302 {
3303 _notifier_call_chain(rdev, event, data);
3304 return NOTIFY_DONE;
3305
3306 }
3307 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3308
3309 /**
3310 * regulator_mode_to_status - convert a regulator mode into a status
3311 *
3312 * @mode: Mode to convert
3313 *
3314 * Convert a regulator mode into a status.
3315 */
3316 int regulator_mode_to_status(unsigned int mode)
3317 {
3318 switch (mode) {
3319 case REGULATOR_MODE_FAST:
3320 return REGULATOR_STATUS_FAST;
3321 case REGULATOR_MODE_NORMAL:
3322 return REGULATOR_STATUS_NORMAL;
3323 case REGULATOR_MODE_IDLE:
3324 return REGULATOR_STATUS_IDLE;
3325 case REGULATOR_MODE_STANDBY:
3326 return REGULATOR_STATUS_STANDBY;
3327 default:
3328 return REGULATOR_STATUS_UNDEFINED;
3329 }
3330 }
3331 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3332
3333 /*
3334 * To avoid cluttering sysfs (and memory) with useless state, only
3335 * create attributes that can be meaningfully displayed.
3336 */
3337 static int add_regulator_attributes(struct regulator_dev *rdev)
3338 {
3339 struct device *dev = &rdev->dev;
3340 struct regulator_ops *ops = rdev->desc->ops;
3341 int status = 0;
3342
3343 /* some attributes need specific methods to be displayed */
3344 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3345 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3346 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3347 (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3348 status = device_create_file(dev, &dev_attr_microvolts);
3349 if (status < 0)
3350 return status;
3351 }
3352 if (ops->get_current_limit) {
3353 status = device_create_file(dev, &dev_attr_microamps);
3354 if (status < 0)
3355 return status;
3356 }
3357 if (ops->get_mode) {
3358 status = device_create_file(dev, &dev_attr_opmode);
3359 if (status < 0)
3360 return status;
3361 }
3362 if (rdev->ena_pin || ops->is_enabled) {
3363 status = device_create_file(dev, &dev_attr_state);
3364 if (status < 0)
3365 return status;
3366 }
3367 if (ops->get_status) {
3368 status = device_create_file(dev, &dev_attr_status);
3369 if (status < 0)
3370 return status;
3371 }
3372 if (ops->get_bypass) {
3373 status = device_create_file(dev, &dev_attr_bypass);
3374 if (status < 0)
3375 return status;
3376 }
3377
3378 /* some attributes are type-specific */
3379 if (rdev->desc->type == REGULATOR_CURRENT) {
3380 status = device_create_file(dev, &dev_attr_requested_microamps);
3381 if (status < 0)
3382 return status;
3383 }
3384
3385 /* all the other attributes exist to support constraints;
3386 * don't show them if there are no constraints, or if the
3387 * relevant supporting methods are missing.
3388 */
3389 if (!rdev->constraints)
3390 return status;
3391
3392 /* constraints need specific supporting methods */
3393 if (ops->set_voltage || ops->set_voltage_sel) {
3394 status = device_create_file(dev, &dev_attr_min_microvolts);
3395 if (status < 0)
3396 return status;
3397 status = device_create_file(dev, &dev_attr_max_microvolts);
3398 if (status < 0)
3399 return status;
3400 }
3401 if (ops->set_current_limit) {
3402 status = device_create_file(dev, &dev_attr_min_microamps);
3403 if (status < 0)
3404 return status;
3405 status = device_create_file(dev, &dev_attr_max_microamps);
3406 if (status < 0)
3407 return status;
3408 }
3409
3410 status = device_create_file(dev, &dev_attr_suspend_standby_state);
3411 if (status < 0)
3412 return status;
3413 status = device_create_file(dev, &dev_attr_suspend_mem_state);
3414 if (status < 0)
3415 return status;
3416 status = device_create_file(dev, &dev_attr_suspend_disk_state);
3417 if (status < 0)
3418 return status;
3419
3420 if (ops->set_suspend_voltage) {
3421 status = device_create_file(dev,
3422 &dev_attr_suspend_standby_microvolts);
3423 if (status < 0)
3424 return status;
3425 status = device_create_file(dev,
3426 &dev_attr_suspend_mem_microvolts);
3427 if (status < 0)
3428 return status;
3429 status = device_create_file(dev,
3430 &dev_attr_suspend_disk_microvolts);
3431 if (status < 0)
3432 return status;
3433 }
3434
3435 if (ops->set_suspend_mode) {
3436 status = device_create_file(dev,
3437 &dev_attr_suspend_standby_mode);
3438 if (status < 0)
3439 return status;
3440 status = device_create_file(dev,
3441 &dev_attr_suspend_mem_mode);
3442 if (status < 0)
3443 return status;
3444 status = device_create_file(dev,
3445 &dev_attr_suspend_disk_mode);
3446 if (status < 0)
3447 return status;
3448 }
3449
3450 return status;
3451 }
3452
3453 static void rdev_init_debugfs(struct regulator_dev *rdev)
3454 {
3455 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3456 if (!rdev->debugfs) {
3457 rdev_warn(rdev, "Failed to create debugfs directory\n");
3458 return;
3459 }
3460
3461 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3462 &rdev->use_count);
3463 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3464 &rdev->open_count);
3465 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3466 &rdev->bypass_count);
3467 }
3468
3469 /**
3470 * regulator_register - register regulator
3471 * @regulator_desc: regulator to register
3472 * @config: runtime configuration for regulator
3473 *
3474 * Called by regulator drivers to register a regulator.
3475 * Returns a valid pointer to struct regulator_dev on success
3476 * or an ERR_PTR() on error.
3477 */
3478 struct regulator_dev *
3479 regulator_register(const struct regulator_desc *regulator_desc,
3480 const struct regulator_config *config)
3481 {
3482 const struct regulation_constraints *constraints = NULL;
3483 const struct regulator_init_data *init_data;
3484 static atomic_t regulator_no = ATOMIC_INIT(0);
3485 struct regulator_dev *rdev;
3486 struct device *dev;
3487 int ret, i;
3488 const char *supply = NULL;
3489
3490 if (regulator_desc == NULL || config == NULL)
3491 return ERR_PTR(-EINVAL);
3492
3493 dev = config->dev;
3494 WARN_ON(!dev);
3495
3496 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3497 return ERR_PTR(-EINVAL);
3498
3499 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3500 regulator_desc->type != REGULATOR_CURRENT)
3501 return ERR_PTR(-EINVAL);
3502
3503 /* Only one of each should be implemented */
3504 WARN_ON(regulator_desc->ops->get_voltage &&
3505 regulator_desc->ops->get_voltage_sel);
3506 WARN_ON(regulator_desc->ops->set_voltage &&
3507 regulator_desc->ops->set_voltage_sel);
3508
3509 /* If we're using selectors we must implement list_voltage. */
3510 if (regulator_desc->ops->get_voltage_sel &&
3511 !regulator_desc->ops->list_voltage) {
3512 return ERR_PTR(-EINVAL);
3513 }
3514 if (regulator_desc->ops->set_voltage_sel &&
3515 !regulator_desc->ops->list_voltage) {
3516 return ERR_PTR(-EINVAL);
3517 }
3518
3519 init_data = config->init_data;
3520
3521 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3522 if (rdev == NULL)
3523 return ERR_PTR(-ENOMEM);
3524
3525 mutex_lock(&regulator_list_mutex);
3526
3527 mutex_init(&rdev->mutex);
3528 rdev->reg_data = config->driver_data;
3529 rdev->owner = regulator_desc->owner;
3530 rdev->desc = regulator_desc;
3531 if (config->regmap)
3532 rdev->regmap = config->regmap;
3533 else if (dev_get_regmap(dev, NULL))
3534 rdev->regmap = dev_get_regmap(dev, NULL);
3535 else if (dev->parent)
3536 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3537 INIT_LIST_HEAD(&rdev->consumer_list);
3538 INIT_LIST_HEAD(&rdev->list);
3539 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3540 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3541
3542 /* preform any regulator specific init */
3543 if (init_data && init_data->regulator_init) {
3544 ret = init_data->regulator_init(rdev->reg_data);
3545 if (ret < 0)
3546 goto clean;
3547 }
3548
3549 /* register with sysfs */
3550 rdev->dev.class = &regulator_class;
3551 rdev->dev.of_node = of_node_get(config->of_node);
3552 rdev->dev.parent = dev;
3553 dev_set_name(&rdev->dev, "regulator.%d",
3554 atomic_inc_return(&regulator_no) - 1);
3555 ret = device_register(&rdev->dev);
3556 if (ret != 0) {
3557 put_device(&rdev->dev);
3558 goto clean;
3559 }
3560
3561 dev_set_drvdata(&rdev->dev, rdev);
3562
3563 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3564 ret = regulator_ena_gpio_request(rdev, config);
3565 if (ret != 0) {
3566 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3567 config->ena_gpio, ret);
3568 goto wash;
3569 }
3570
3571 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3572 rdev->ena_gpio_state = 1;
3573
3574 if (config->ena_gpio_invert)
3575 rdev->ena_gpio_state = !rdev->ena_gpio_state;
3576 }
3577
3578 /* set regulator constraints */
3579 if (init_data)
3580 constraints = &init_data->constraints;
3581
3582 ret = set_machine_constraints(rdev, constraints);
3583 if (ret < 0)
3584 goto scrub;
3585
3586 /* add attributes supported by this regulator */
3587 ret = add_regulator_attributes(rdev);
3588 if (ret < 0)
3589 goto scrub;
3590
3591 if (init_data && init_data->supply_regulator)
3592 supply = init_data->supply_regulator;
3593 else if (regulator_desc->supply_name)
3594 supply = regulator_desc->supply_name;
3595
3596 if (supply) {
3597 struct regulator_dev *r;
3598
3599 r = regulator_dev_lookup(dev, supply, &ret);
3600
3601 if (ret == -ENODEV) {
3602 /*
3603 * No supply was specified for this regulator and
3604 * there will never be one.
3605 */
3606 ret = 0;
3607 goto add_dev;
3608 } else if (!r) {
3609 dev_err(dev, "Failed to find supply %s\n", supply);
3610 ret = -EPROBE_DEFER;
3611 goto scrub;
3612 }
3613
3614 ret = set_supply(rdev, r);
3615 if (ret < 0)
3616 goto scrub;
3617
3618 /* Enable supply if rail is enabled */
3619 if (_regulator_is_enabled(rdev)) {
3620 ret = regulator_enable(rdev->supply);
3621 if (ret < 0)
3622 goto scrub;
3623 }
3624 }
3625
3626 add_dev:
3627 /* add consumers devices */
3628 if (init_data) {
3629 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3630 ret = set_consumer_device_supply(rdev,
3631 init_data->consumer_supplies[i].dev_name,
3632 init_data->consumer_supplies[i].supply);
3633 if (ret < 0) {
3634 dev_err(dev, "Failed to set supply %s\n",
3635 init_data->consumer_supplies[i].supply);
3636 goto unset_supplies;
3637 }
3638 }
3639 }
3640
3641 list_add(&rdev->list, &regulator_list);
3642
3643 rdev_init_debugfs(rdev);
3644 out:
3645 mutex_unlock(&regulator_list_mutex);
3646 return rdev;
3647
3648 unset_supplies:
3649 unset_regulator_supplies(rdev);
3650
3651 scrub:
3652 if (rdev->supply)
3653 _regulator_put(rdev->supply);
3654 regulator_ena_gpio_free(rdev);
3655 kfree(rdev->constraints);
3656 wash:
3657 device_unregister(&rdev->dev);
3658 /* device core frees rdev */
3659 rdev = ERR_PTR(ret);
3660 goto out;
3661
3662 clean:
3663 kfree(rdev);
3664 rdev = ERR_PTR(ret);
3665 goto out;
3666 }
3667 EXPORT_SYMBOL_GPL(regulator_register);
3668
3669 /**
3670 * regulator_unregister - unregister regulator
3671 * @rdev: regulator to unregister
3672 *
3673 * Called by regulator drivers to unregister a regulator.
3674 */
3675 void regulator_unregister(struct regulator_dev *rdev)
3676 {
3677 if (rdev == NULL)
3678 return;
3679
3680 if (rdev->supply) {
3681 while (rdev->use_count--)
3682 regulator_disable(rdev->supply);
3683 regulator_put(rdev->supply);
3684 }
3685 mutex_lock(&regulator_list_mutex);
3686 debugfs_remove_recursive(rdev->debugfs);
3687 flush_work(&rdev->disable_work.work);
3688 WARN_ON(rdev->open_count);
3689 unset_regulator_supplies(rdev);
3690 list_del(&rdev->list);
3691 kfree(rdev->constraints);
3692 regulator_ena_gpio_free(rdev);
3693 of_node_put(rdev->dev.of_node);
3694 device_unregister(&rdev->dev);
3695 mutex_unlock(&regulator_list_mutex);
3696 }
3697 EXPORT_SYMBOL_GPL(regulator_unregister);
3698
3699 /**
3700 * regulator_suspend_prepare - prepare regulators for system wide suspend
3701 * @state: system suspend state
3702 *
3703 * Configure each regulator with it's suspend operating parameters for state.
3704 * This will usually be called by machine suspend code prior to supending.
3705 */
3706 int regulator_suspend_prepare(suspend_state_t state)
3707 {
3708 struct regulator_dev *rdev;
3709 int ret = 0;
3710
3711 /* ON is handled by regulator active state */
3712 if (state == PM_SUSPEND_ON)
3713 return -EINVAL;
3714
3715 mutex_lock(&regulator_list_mutex);
3716 list_for_each_entry(rdev, &regulator_list, list) {
3717
3718 mutex_lock(&rdev->mutex);
3719 ret = suspend_prepare(rdev, state);
3720 mutex_unlock(&rdev->mutex);
3721
3722 if (ret < 0) {
3723 rdev_err(rdev, "failed to prepare\n");
3724 goto out;
3725 }
3726 }
3727 out:
3728 mutex_unlock(&regulator_list_mutex);
3729 return ret;
3730 }
3731 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3732
3733 /**
3734 * regulator_suspend_finish - resume regulators from system wide suspend
3735 *
3736 * Turn on regulators that might be turned off by regulator_suspend_prepare
3737 * and that should be turned on according to the regulators properties.
3738 */
3739 int regulator_suspend_finish(void)
3740 {
3741 struct regulator_dev *rdev;
3742 int ret = 0, error;
3743
3744 mutex_lock(&regulator_list_mutex);
3745 list_for_each_entry(rdev, &regulator_list, list) {
3746 mutex_lock(&rdev->mutex);
3747 if (rdev->use_count > 0 || rdev->constraints->always_on) {
3748 error = _regulator_do_enable(rdev);
3749 if (error)
3750 ret = error;
3751 } else {
3752 if (!have_full_constraints())
3753 goto unlock;
3754 if (!_regulator_is_enabled(rdev))
3755 goto unlock;
3756
3757 error = _regulator_do_disable(rdev);
3758 if (error)
3759 ret = error;
3760 }
3761 unlock:
3762 mutex_unlock(&rdev->mutex);
3763 }
3764 mutex_unlock(&regulator_list_mutex);
3765 return ret;
3766 }
3767 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3768
3769 /**
3770 * regulator_has_full_constraints - the system has fully specified constraints
3771 *
3772 * Calling this function will cause the regulator API to disable all
3773 * regulators which have a zero use count and don't have an always_on
3774 * constraint in a late_initcall.
3775 *
3776 * The intention is that this will become the default behaviour in a
3777 * future kernel release so users are encouraged to use this facility
3778 * now.
3779 */
3780 void regulator_has_full_constraints(void)
3781 {
3782 has_full_constraints = 1;
3783 }
3784 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3785
3786 /**
3787 * rdev_get_drvdata - get rdev regulator driver data
3788 * @rdev: regulator
3789 *
3790 * Get rdev regulator driver private data. This call can be used in the
3791 * regulator driver context.
3792 */
3793 void *rdev_get_drvdata(struct regulator_dev *rdev)
3794 {
3795 return rdev->reg_data;
3796 }
3797 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3798
3799 /**
3800 * regulator_get_drvdata - get regulator driver data
3801 * @regulator: regulator
3802 *
3803 * Get regulator driver private data. This call can be used in the consumer
3804 * driver context when non API regulator specific functions need to be called.
3805 */
3806 void *regulator_get_drvdata(struct regulator *regulator)
3807 {
3808 return regulator->rdev->reg_data;
3809 }
3810 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3811
3812 /**
3813 * regulator_set_drvdata - set regulator driver data
3814 * @regulator: regulator
3815 * @data: data
3816 */
3817 void regulator_set_drvdata(struct regulator *regulator, void *data)
3818 {
3819 regulator->rdev->reg_data = data;
3820 }
3821 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3822
3823 /**
3824 * regulator_get_id - get regulator ID
3825 * @rdev: regulator
3826 */
3827 int rdev_get_id(struct regulator_dev *rdev)
3828 {
3829 return rdev->desc->id;
3830 }
3831 EXPORT_SYMBOL_GPL(rdev_get_id);
3832
3833 struct device *rdev_get_dev(struct regulator_dev *rdev)
3834 {
3835 return &rdev->dev;
3836 }
3837 EXPORT_SYMBOL_GPL(rdev_get_dev);
3838
3839 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3840 {
3841 return reg_init_data->driver_data;
3842 }
3843 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3844
3845 #ifdef CONFIG_DEBUG_FS
3846 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3847 size_t count, loff_t *ppos)
3848 {
3849 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3850 ssize_t len, ret = 0;
3851 struct regulator_map *map;
3852
3853 if (!buf)
3854 return -ENOMEM;
3855
3856 list_for_each_entry(map, &regulator_map_list, list) {
3857 len = snprintf(buf + ret, PAGE_SIZE - ret,
3858 "%s -> %s.%s\n",
3859 rdev_get_name(map->regulator), map->dev_name,
3860 map->supply);
3861 if (len >= 0)
3862 ret += len;
3863 if (ret > PAGE_SIZE) {
3864 ret = PAGE_SIZE;
3865 break;
3866 }
3867 }
3868
3869 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3870
3871 kfree(buf);
3872
3873 return ret;
3874 }
3875 #endif
3876
3877 static const struct file_operations supply_map_fops = {
3878 #ifdef CONFIG_DEBUG_FS
3879 .read = supply_map_read_file,
3880 .llseek = default_llseek,
3881 #endif
3882 };
3883
3884 static int __init regulator_init(void)
3885 {
3886 int ret;
3887
3888 ret = class_register(&regulator_class);
3889
3890 debugfs_root = debugfs_create_dir("regulator", NULL);
3891 if (!debugfs_root)
3892 pr_warn("regulator: Failed to create debugfs directory\n");
3893
3894 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3895 &supply_map_fops);
3896
3897 regulator_dummy_init();
3898
3899 return ret;
3900 }
3901
3902 /* init early to allow our consumers to complete system booting */
3903 core_initcall(regulator_init);
3904
3905 static int __init regulator_init_complete(void)
3906 {
3907 struct regulator_dev *rdev;
3908 struct regulator_ops *ops;
3909 struct regulation_constraints *c;
3910 int enabled, ret;
3911
3912 /*
3913 * Since DT doesn't provide an idiomatic mechanism for
3914 * enabling full constraints and since it's much more natural
3915 * with DT to provide them just assume that a DT enabled
3916 * system has full constraints.
3917 */
3918 if (of_have_populated_dt())
3919 has_full_constraints = true;
3920
3921 mutex_lock(&regulator_list_mutex);
3922
3923 /* If we have a full configuration then disable any regulators
3924 * we have permission to change the status for and which are
3925 * not in use or always_on. This is effectively the default
3926 * for DT and ACPI as they have full constraints.
3927 */
3928 list_for_each_entry(rdev, &regulator_list, list) {
3929 ops = rdev->desc->ops;
3930 c = rdev->constraints;
3931
3932 if (c && c->always_on)
3933 continue;
3934
3935 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
3936 continue;
3937
3938 mutex_lock(&rdev->mutex);
3939
3940 if (rdev->use_count)
3941 goto unlock;
3942
3943 /* If we can't read the status assume it's on. */
3944 if (ops->is_enabled)
3945 enabled = ops->is_enabled(rdev);
3946 else
3947 enabled = 1;
3948
3949 if (!enabled)
3950 goto unlock;
3951
3952 if (have_full_constraints()) {
3953 /* We log since this may kill the system if it
3954 * goes wrong. */
3955 rdev_info(rdev, "disabling\n");
3956 ret = _regulator_do_disable(rdev);
3957 if (ret != 0)
3958 rdev_err(rdev, "couldn't disable: %d\n", ret);
3959 } else {
3960 /* The intention is that in future we will
3961 * assume that full constraints are provided
3962 * so warn even if we aren't going to do
3963 * anything here.
3964 */
3965 rdev_warn(rdev, "incomplete constraints, leaving on\n");
3966 }
3967
3968 unlock:
3969 mutex_unlock(&rdev->mutex);
3970 }
3971
3972 mutex_unlock(&regulator_list_mutex);
3973
3974 return 0;
3975 }
3976 late_initcall_sync(regulator_init_complete);
This page took 0.162425 seconds and 6 git commands to generate.