Merge remote-tracking branches 'asoc/topic/atmel', 'asoc/topic/cirrus' and 'asoc...
[deliverable/linux.git] / drivers / rtc / interface.c
1 /*
2 * RTC subsystem, interface functions
3 *
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
6 *
7 * based on arch/arm/common/rtctime.c
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/module.h>
17 #include <linux/log2.h>
18 #include <linux/workqueue.h>
19
20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22
23 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
24 {
25 int err;
26 if (!rtc->ops)
27 err = -ENODEV;
28 else if (!rtc->ops->read_time)
29 err = -EINVAL;
30 else {
31 memset(tm, 0, sizeof(struct rtc_time));
32 err = rtc->ops->read_time(rtc->dev.parent, tm);
33 }
34 return err;
35 }
36
37 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
38 {
39 int err;
40
41 err = mutex_lock_interruptible(&rtc->ops_lock);
42 if (err)
43 return err;
44
45 err = __rtc_read_time(rtc, tm);
46 mutex_unlock(&rtc->ops_lock);
47 return err;
48 }
49 EXPORT_SYMBOL_GPL(rtc_read_time);
50
51 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
52 {
53 int err;
54
55 err = rtc_valid_tm(tm);
56 if (err != 0)
57 return err;
58
59 err = mutex_lock_interruptible(&rtc->ops_lock);
60 if (err)
61 return err;
62
63 if (!rtc->ops)
64 err = -ENODEV;
65 else if (rtc->ops->set_time)
66 err = rtc->ops->set_time(rtc->dev.parent, tm);
67 else if (rtc->ops->set_mmss) {
68 unsigned long secs;
69 err = rtc_tm_to_time(tm, &secs);
70 if (err == 0)
71 err = rtc->ops->set_mmss(rtc->dev.parent, secs);
72 } else
73 err = -EINVAL;
74
75 pm_stay_awake(rtc->dev.parent);
76 mutex_unlock(&rtc->ops_lock);
77 /* A timer might have just expired */
78 schedule_work(&rtc->irqwork);
79 return err;
80 }
81 EXPORT_SYMBOL_GPL(rtc_set_time);
82
83 int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
84 {
85 int err;
86
87 err = mutex_lock_interruptible(&rtc->ops_lock);
88 if (err)
89 return err;
90
91 if (!rtc->ops)
92 err = -ENODEV;
93 else if (rtc->ops->set_mmss)
94 err = rtc->ops->set_mmss(rtc->dev.parent, secs);
95 else if (rtc->ops->read_time && rtc->ops->set_time) {
96 struct rtc_time new, old;
97
98 err = rtc->ops->read_time(rtc->dev.parent, &old);
99 if (err == 0) {
100 rtc_time_to_tm(secs, &new);
101
102 /*
103 * avoid writing when we're going to change the day of
104 * the month. We will retry in the next minute. This
105 * basically means that if the RTC must not drift
106 * by more than 1 minute in 11 minutes.
107 */
108 if (!((old.tm_hour == 23 && old.tm_min == 59) ||
109 (new.tm_hour == 23 && new.tm_min == 59)))
110 err = rtc->ops->set_time(rtc->dev.parent,
111 &new);
112 }
113 } else {
114 err = -EINVAL;
115 }
116
117 pm_stay_awake(rtc->dev.parent);
118 mutex_unlock(&rtc->ops_lock);
119 /* A timer might have just expired */
120 schedule_work(&rtc->irqwork);
121
122 return err;
123 }
124 EXPORT_SYMBOL_GPL(rtc_set_mmss);
125
126 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
127 {
128 int err;
129
130 err = mutex_lock_interruptible(&rtc->ops_lock);
131 if (err)
132 return err;
133
134 if (rtc->ops == NULL)
135 err = -ENODEV;
136 else if (!rtc->ops->read_alarm)
137 err = -EINVAL;
138 else {
139 memset(alarm, 0, sizeof(struct rtc_wkalrm));
140 err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
141 }
142
143 mutex_unlock(&rtc->ops_lock);
144 return err;
145 }
146
147 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
148 {
149 int err;
150 struct rtc_time before, now;
151 int first_time = 1;
152 unsigned long t_now, t_alm;
153 enum { none, day, month, year } missing = none;
154 unsigned days;
155
156 /* The lower level RTC driver may return -1 in some fields,
157 * creating invalid alarm->time values, for reasons like:
158 *
159 * - The hardware may not be capable of filling them in;
160 * many alarms match only on time-of-day fields, not
161 * day/month/year calendar data.
162 *
163 * - Some hardware uses illegal values as "wildcard" match
164 * values, which non-Linux firmware (like a BIOS) may try
165 * to set up as e.g. "alarm 15 minutes after each hour".
166 * Linux uses only oneshot alarms.
167 *
168 * When we see that here, we deal with it by using values from
169 * a current RTC timestamp for any missing (-1) values. The
170 * RTC driver prevents "periodic alarm" modes.
171 *
172 * But this can be racey, because some fields of the RTC timestamp
173 * may have wrapped in the interval since we read the RTC alarm,
174 * which would lead to us inserting inconsistent values in place
175 * of the -1 fields.
176 *
177 * Reading the alarm and timestamp in the reverse sequence
178 * would have the same race condition, and not solve the issue.
179 *
180 * So, we must first read the RTC timestamp,
181 * then read the RTC alarm value,
182 * and then read a second RTC timestamp.
183 *
184 * If any fields of the second timestamp have changed
185 * when compared with the first timestamp, then we know
186 * our timestamp may be inconsistent with that used by
187 * the low-level rtc_read_alarm_internal() function.
188 *
189 * So, when the two timestamps disagree, we just loop and do
190 * the process again to get a fully consistent set of values.
191 *
192 * This could all instead be done in the lower level driver,
193 * but since more than one lower level RTC implementation needs it,
194 * then it's probably best best to do it here instead of there..
195 */
196
197 /* Get the "before" timestamp */
198 err = rtc_read_time(rtc, &before);
199 if (err < 0)
200 return err;
201 do {
202 if (!first_time)
203 memcpy(&before, &now, sizeof(struct rtc_time));
204 first_time = 0;
205
206 /* get the RTC alarm values, which may be incomplete */
207 err = rtc_read_alarm_internal(rtc, alarm);
208 if (err)
209 return err;
210
211 /* full-function RTCs won't have such missing fields */
212 if (rtc_valid_tm(&alarm->time) == 0)
213 return 0;
214
215 /* get the "after" timestamp, to detect wrapped fields */
216 err = rtc_read_time(rtc, &now);
217 if (err < 0)
218 return err;
219
220 /* note that tm_sec is a "don't care" value here: */
221 } while ( before.tm_min != now.tm_min
222 || before.tm_hour != now.tm_hour
223 || before.tm_mon != now.tm_mon
224 || before.tm_year != now.tm_year);
225
226 /* Fill in the missing alarm fields using the timestamp; we
227 * know there's at least one since alarm->time is invalid.
228 */
229 if (alarm->time.tm_sec == -1)
230 alarm->time.tm_sec = now.tm_sec;
231 if (alarm->time.tm_min == -1)
232 alarm->time.tm_min = now.tm_min;
233 if (alarm->time.tm_hour == -1)
234 alarm->time.tm_hour = now.tm_hour;
235
236 /* For simplicity, only support date rollover for now */
237 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
238 alarm->time.tm_mday = now.tm_mday;
239 missing = day;
240 }
241 if ((unsigned)alarm->time.tm_mon >= 12) {
242 alarm->time.tm_mon = now.tm_mon;
243 if (missing == none)
244 missing = month;
245 }
246 if (alarm->time.tm_year == -1) {
247 alarm->time.tm_year = now.tm_year;
248 if (missing == none)
249 missing = year;
250 }
251
252 /* with luck, no rollover is needed */
253 rtc_tm_to_time(&now, &t_now);
254 rtc_tm_to_time(&alarm->time, &t_alm);
255 if (t_now < t_alm)
256 goto done;
257
258 switch (missing) {
259
260 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
261 * that will trigger at 5am will do so at 5am Tuesday, which
262 * could also be in the next month or year. This is a common
263 * case, especially for PCs.
264 */
265 case day:
266 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
267 t_alm += 24 * 60 * 60;
268 rtc_time_to_tm(t_alm, &alarm->time);
269 break;
270
271 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
272 * be next month. An alarm matching on the 30th, 29th, or 28th
273 * may end up in the month after that! Many newer PCs support
274 * this type of alarm.
275 */
276 case month:
277 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
278 do {
279 if (alarm->time.tm_mon < 11)
280 alarm->time.tm_mon++;
281 else {
282 alarm->time.tm_mon = 0;
283 alarm->time.tm_year++;
284 }
285 days = rtc_month_days(alarm->time.tm_mon,
286 alarm->time.tm_year);
287 } while (days < alarm->time.tm_mday);
288 break;
289
290 /* Year rollover ... easy except for leap years! */
291 case year:
292 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
293 do {
294 alarm->time.tm_year++;
295 } while (!is_leap_year(alarm->time.tm_year + 1900)
296 && rtc_valid_tm(&alarm->time) != 0);
297 break;
298
299 default:
300 dev_warn(&rtc->dev, "alarm rollover not handled\n");
301 }
302
303 done:
304 err = rtc_valid_tm(&alarm->time);
305
306 if (err) {
307 dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
308 alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
309 alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
310 alarm->time.tm_sec);
311 }
312
313 return err;
314 }
315
316 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
317 {
318 int err;
319
320 err = mutex_lock_interruptible(&rtc->ops_lock);
321 if (err)
322 return err;
323 if (rtc->ops == NULL)
324 err = -ENODEV;
325 else if (!rtc->ops->read_alarm)
326 err = -EINVAL;
327 else {
328 memset(alarm, 0, sizeof(struct rtc_wkalrm));
329 alarm->enabled = rtc->aie_timer.enabled;
330 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
331 }
332 mutex_unlock(&rtc->ops_lock);
333
334 return err;
335 }
336 EXPORT_SYMBOL_GPL(rtc_read_alarm);
337
338 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
339 {
340 struct rtc_time tm;
341 long now, scheduled;
342 int err;
343
344 err = rtc_valid_tm(&alarm->time);
345 if (err)
346 return err;
347 rtc_tm_to_time(&alarm->time, &scheduled);
348
349 /* Make sure we're not setting alarms in the past */
350 err = __rtc_read_time(rtc, &tm);
351 rtc_tm_to_time(&tm, &now);
352 if (scheduled <= now)
353 return -ETIME;
354 /*
355 * XXX - We just checked to make sure the alarm time is not
356 * in the past, but there is still a race window where if
357 * the is alarm set for the next second and the second ticks
358 * over right here, before we set the alarm.
359 */
360
361 if (!rtc->ops)
362 err = -ENODEV;
363 else if (!rtc->ops->set_alarm)
364 err = -EINVAL;
365 else
366 err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
367
368 return err;
369 }
370
371 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
372 {
373 int err;
374
375 err = rtc_valid_tm(&alarm->time);
376 if (err != 0)
377 return err;
378
379 err = mutex_lock_interruptible(&rtc->ops_lock);
380 if (err)
381 return err;
382 if (rtc->aie_timer.enabled)
383 rtc_timer_remove(rtc, &rtc->aie_timer);
384
385 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
386 rtc->aie_timer.period = ktime_set(0, 0);
387 if (alarm->enabled)
388 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
389
390 mutex_unlock(&rtc->ops_lock);
391 return err;
392 }
393 EXPORT_SYMBOL_GPL(rtc_set_alarm);
394
395 /* Called once per device from rtc_device_register */
396 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
397 {
398 int err;
399 struct rtc_time now;
400
401 err = rtc_valid_tm(&alarm->time);
402 if (err != 0)
403 return err;
404
405 err = rtc_read_time(rtc, &now);
406 if (err)
407 return err;
408
409 err = mutex_lock_interruptible(&rtc->ops_lock);
410 if (err)
411 return err;
412
413 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
414 rtc->aie_timer.period = ktime_set(0, 0);
415
416 /* Alarm has to be enabled & in the futrure for us to enqueue it */
417 if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
418 rtc->aie_timer.node.expires.tv64)) {
419
420 rtc->aie_timer.enabled = 1;
421 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
422 }
423 mutex_unlock(&rtc->ops_lock);
424 return err;
425 }
426 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
427
428
429
430 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
431 {
432 int err = mutex_lock_interruptible(&rtc->ops_lock);
433 if (err)
434 return err;
435
436 if (rtc->aie_timer.enabled != enabled) {
437 if (enabled)
438 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
439 else
440 rtc_timer_remove(rtc, &rtc->aie_timer);
441 }
442
443 if (err)
444 /* nothing */;
445 else if (!rtc->ops)
446 err = -ENODEV;
447 else if (!rtc->ops->alarm_irq_enable)
448 err = -EINVAL;
449 else
450 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
451
452 mutex_unlock(&rtc->ops_lock);
453 return err;
454 }
455 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
456
457 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
458 {
459 int err = mutex_lock_interruptible(&rtc->ops_lock);
460 if (err)
461 return err;
462
463 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
464 if (enabled == 0 && rtc->uie_irq_active) {
465 mutex_unlock(&rtc->ops_lock);
466 return rtc_dev_update_irq_enable_emul(rtc, 0);
467 }
468 #endif
469 /* make sure we're changing state */
470 if (rtc->uie_rtctimer.enabled == enabled)
471 goto out;
472
473 if (rtc->uie_unsupported) {
474 err = -EINVAL;
475 goto out;
476 }
477
478 if (enabled) {
479 struct rtc_time tm;
480 ktime_t now, onesec;
481
482 __rtc_read_time(rtc, &tm);
483 onesec = ktime_set(1, 0);
484 now = rtc_tm_to_ktime(tm);
485 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
486 rtc->uie_rtctimer.period = ktime_set(1, 0);
487 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
488 } else
489 rtc_timer_remove(rtc, &rtc->uie_rtctimer);
490
491 out:
492 mutex_unlock(&rtc->ops_lock);
493 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
494 /*
495 * Enable emulation if the driver did not provide
496 * the update_irq_enable function pointer or if returned
497 * -EINVAL to signal that it has been configured without
498 * interrupts or that are not available at the moment.
499 */
500 if (err == -EINVAL)
501 err = rtc_dev_update_irq_enable_emul(rtc, enabled);
502 #endif
503 return err;
504
505 }
506 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
507
508
509 /**
510 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
511 * @rtc: pointer to the rtc device
512 *
513 * This function is called when an AIE, UIE or PIE mode interrupt
514 * has occurred (or been emulated).
515 *
516 * Triggers the registered irq_task function callback.
517 */
518 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
519 {
520 unsigned long flags;
521
522 /* mark one irq of the appropriate mode */
523 spin_lock_irqsave(&rtc->irq_lock, flags);
524 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
525 spin_unlock_irqrestore(&rtc->irq_lock, flags);
526
527 /* call the task func */
528 spin_lock_irqsave(&rtc->irq_task_lock, flags);
529 if (rtc->irq_task)
530 rtc->irq_task->func(rtc->irq_task->private_data);
531 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
532
533 wake_up_interruptible(&rtc->irq_queue);
534 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
535 }
536
537
538 /**
539 * rtc_aie_update_irq - AIE mode rtctimer hook
540 * @private: pointer to the rtc_device
541 *
542 * This functions is called when the aie_timer expires.
543 */
544 void rtc_aie_update_irq(void *private)
545 {
546 struct rtc_device *rtc = (struct rtc_device *)private;
547 rtc_handle_legacy_irq(rtc, 1, RTC_AF);
548 }
549
550
551 /**
552 * rtc_uie_update_irq - UIE mode rtctimer hook
553 * @private: pointer to the rtc_device
554 *
555 * This functions is called when the uie_timer expires.
556 */
557 void rtc_uie_update_irq(void *private)
558 {
559 struct rtc_device *rtc = (struct rtc_device *)private;
560 rtc_handle_legacy_irq(rtc, 1, RTC_UF);
561 }
562
563
564 /**
565 * rtc_pie_update_irq - PIE mode hrtimer hook
566 * @timer: pointer to the pie mode hrtimer
567 *
568 * This function is used to emulate PIE mode interrupts
569 * using an hrtimer. This function is called when the periodic
570 * hrtimer expires.
571 */
572 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
573 {
574 struct rtc_device *rtc;
575 ktime_t period;
576 int count;
577 rtc = container_of(timer, struct rtc_device, pie_timer);
578
579 period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
580 count = hrtimer_forward_now(timer, period);
581
582 rtc_handle_legacy_irq(rtc, count, RTC_PF);
583
584 return HRTIMER_RESTART;
585 }
586
587 /**
588 * rtc_update_irq - Triggered when a RTC interrupt occurs.
589 * @rtc: the rtc device
590 * @num: how many irqs are being reported (usually one)
591 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
592 * Context: any
593 */
594 void rtc_update_irq(struct rtc_device *rtc,
595 unsigned long num, unsigned long events)
596 {
597 if (unlikely(IS_ERR_OR_NULL(rtc)))
598 return;
599
600 pm_stay_awake(rtc->dev.parent);
601 schedule_work(&rtc->irqwork);
602 }
603 EXPORT_SYMBOL_GPL(rtc_update_irq);
604
605 static int __rtc_match(struct device *dev, const void *data)
606 {
607 const char *name = data;
608
609 if (strcmp(dev_name(dev), name) == 0)
610 return 1;
611 return 0;
612 }
613
614 struct rtc_device *rtc_class_open(const char *name)
615 {
616 struct device *dev;
617 struct rtc_device *rtc = NULL;
618
619 dev = class_find_device(rtc_class, NULL, name, __rtc_match);
620 if (dev)
621 rtc = to_rtc_device(dev);
622
623 if (rtc) {
624 if (!try_module_get(rtc->owner)) {
625 put_device(dev);
626 rtc = NULL;
627 }
628 }
629
630 return rtc;
631 }
632 EXPORT_SYMBOL_GPL(rtc_class_open);
633
634 void rtc_class_close(struct rtc_device *rtc)
635 {
636 module_put(rtc->owner);
637 put_device(&rtc->dev);
638 }
639 EXPORT_SYMBOL_GPL(rtc_class_close);
640
641 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
642 {
643 int retval = -EBUSY;
644
645 if (task == NULL || task->func == NULL)
646 return -EINVAL;
647
648 /* Cannot register while the char dev is in use */
649 if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
650 return -EBUSY;
651
652 spin_lock_irq(&rtc->irq_task_lock);
653 if (rtc->irq_task == NULL) {
654 rtc->irq_task = task;
655 retval = 0;
656 }
657 spin_unlock_irq(&rtc->irq_task_lock);
658
659 clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
660
661 return retval;
662 }
663 EXPORT_SYMBOL_GPL(rtc_irq_register);
664
665 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
666 {
667 spin_lock_irq(&rtc->irq_task_lock);
668 if (rtc->irq_task == task)
669 rtc->irq_task = NULL;
670 spin_unlock_irq(&rtc->irq_task_lock);
671 }
672 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
673
674 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
675 {
676 /*
677 * We always cancel the timer here first, because otherwise
678 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
679 * when we manage to start the timer before the callback
680 * returns HRTIMER_RESTART.
681 *
682 * We cannot use hrtimer_cancel() here as a running callback
683 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
684 * would spin forever.
685 */
686 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
687 return -1;
688
689 if (enabled) {
690 ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
691
692 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
693 }
694 return 0;
695 }
696
697 /**
698 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
699 * @rtc: the rtc device
700 * @task: currently registered with rtc_irq_register()
701 * @enabled: true to enable periodic IRQs
702 * Context: any
703 *
704 * Note that rtc_irq_set_freq() should previously have been used to
705 * specify the desired frequency of periodic IRQ task->func() callbacks.
706 */
707 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
708 {
709 int err = 0;
710 unsigned long flags;
711
712 retry:
713 spin_lock_irqsave(&rtc->irq_task_lock, flags);
714 if (rtc->irq_task != NULL && task == NULL)
715 err = -EBUSY;
716 else if (rtc->irq_task != task)
717 err = -EACCES;
718 else {
719 if (rtc_update_hrtimer(rtc, enabled) < 0) {
720 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
721 cpu_relax();
722 goto retry;
723 }
724 rtc->pie_enabled = enabled;
725 }
726 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
727 return err;
728 }
729 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
730
731 /**
732 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
733 * @rtc: the rtc device
734 * @task: currently registered with rtc_irq_register()
735 * @freq: positive frequency with which task->func() will be called
736 * Context: any
737 *
738 * Note that rtc_irq_set_state() is used to enable or disable the
739 * periodic IRQs.
740 */
741 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
742 {
743 int err = 0;
744 unsigned long flags;
745
746 if (freq <= 0 || freq > RTC_MAX_FREQ)
747 return -EINVAL;
748 retry:
749 spin_lock_irqsave(&rtc->irq_task_lock, flags);
750 if (rtc->irq_task != NULL && task == NULL)
751 err = -EBUSY;
752 else if (rtc->irq_task != task)
753 err = -EACCES;
754 else {
755 rtc->irq_freq = freq;
756 if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
757 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
758 cpu_relax();
759 goto retry;
760 }
761 }
762 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
763 return err;
764 }
765 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
766
767 /**
768 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
769 * @rtc rtc device
770 * @timer timer being added.
771 *
772 * Enqueues a timer onto the rtc devices timerqueue and sets
773 * the next alarm event appropriately.
774 *
775 * Sets the enabled bit on the added timer.
776 *
777 * Must hold ops_lock for proper serialization of timerqueue
778 */
779 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
780 {
781 timer->enabled = 1;
782 timerqueue_add(&rtc->timerqueue, &timer->node);
783 if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
784 struct rtc_wkalrm alarm;
785 int err;
786 alarm.time = rtc_ktime_to_tm(timer->node.expires);
787 alarm.enabled = 1;
788 err = __rtc_set_alarm(rtc, &alarm);
789 if (err == -ETIME) {
790 pm_stay_awake(rtc->dev.parent);
791 schedule_work(&rtc->irqwork);
792 } else if (err) {
793 timerqueue_del(&rtc->timerqueue, &timer->node);
794 timer->enabled = 0;
795 return err;
796 }
797 }
798 return 0;
799 }
800
801 static void rtc_alarm_disable(struct rtc_device *rtc)
802 {
803 if (!rtc->ops || !rtc->ops->alarm_irq_enable)
804 return;
805
806 rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
807 }
808
809 /**
810 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
811 * @rtc rtc device
812 * @timer timer being removed.
813 *
814 * Removes a timer onto the rtc devices timerqueue and sets
815 * the next alarm event appropriately.
816 *
817 * Clears the enabled bit on the removed timer.
818 *
819 * Must hold ops_lock for proper serialization of timerqueue
820 */
821 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
822 {
823 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
824 timerqueue_del(&rtc->timerqueue, &timer->node);
825 timer->enabled = 0;
826 if (next == &timer->node) {
827 struct rtc_wkalrm alarm;
828 int err;
829 next = timerqueue_getnext(&rtc->timerqueue);
830 if (!next) {
831 rtc_alarm_disable(rtc);
832 return;
833 }
834 alarm.time = rtc_ktime_to_tm(next->expires);
835 alarm.enabled = 1;
836 err = __rtc_set_alarm(rtc, &alarm);
837 if (err == -ETIME) {
838 pm_stay_awake(rtc->dev.parent);
839 schedule_work(&rtc->irqwork);
840 }
841 }
842 }
843
844 /**
845 * rtc_timer_do_work - Expires rtc timers
846 * @rtc rtc device
847 * @timer timer being removed.
848 *
849 * Expires rtc timers. Reprograms next alarm event if needed.
850 * Called via worktask.
851 *
852 * Serializes access to timerqueue via ops_lock mutex
853 */
854 void rtc_timer_do_work(struct work_struct *work)
855 {
856 struct rtc_timer *timer;
857 struct timerqueue_node *next;
858 ktime_t now;
859 struct rtc_time tm;
860
861 struct rtc_device *rtc =
862 container_of(work, struct rtc_device, irqwork);
863
864 mutex_lock(&rtc->ops_lock);
865 again:
866 __rtc_read_time(rtc, &tm);
867 now = rtc_tm_to_ktime(tm);
868 while ((next = timerqueue_getnext(&rtc->timerqueue))) {
869 if (next->expires.tv64 > now.tv64)
870 break;
871
872 /* expire timer */
873 timer = container_of(next, struct rtc_timer, node);
874 timerqueue_del(&rtc->timerqueue, &timer->node);
875 timer->enabled = 0;
876 if (timer->task.func)
877 timer->task.func(timer->task.private_data);
878
879 /* Re-add/fwd periodic timers */
880 if (ktime_to_ns(timer->period)) {
881 timer->node.expires = ktime_add(timer->node.expires,
882 timer->period);
883 timer->enabled = 1;
884 timerqueue_add(&rtc->timerqueue, &timer->node);
885 }
886 }
887
888 /* Set next alarm */
889 if (next) {
890 struct rtc_wkalrm alarm;
891 int err;
892 alarm.time = rtc_ktime_to_tm(next->expires);
893 alarm.enabled = 1;
894 err = __rtc_set_alarm(rtc, &alarm);
895 if (err == -ETIME)
896 goto again;
897 } else
898 rtc_alarm_disable(rtc);
899
900 pm_relax(rtc->dev.parent);
901 mutex_unlock(&rtc->ops_lock);
902 }
903
904
905 /* rtc_timer_init - Initializes an rtc_timer
906 * @timer: timer to be intiialized
907 * @f: function pointer to be called when timer fires
908 * @data: private data passed to function pointer
909 *
910 * Kernel interface to initializing an rtc_timer.
911 */
912 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
913 {
914 timerqueue_init(&timer->node);
915 timer->enabled = 0;
916 timer->task.func = f;
917 timer->task.private_data = data;
918 }
919
920 /* rtc_timer_start - Sets an rtc_timer to fire in the future
921 * @ rtc: rtc device to be used
922 * @ timer: timer being set
923 * @ expires: time at which to expire the timer
924 * @ period: period that the timer will recur
925 *
926 * Kernel interface to set an rtc_timer
927 */
928 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
929 ktime_t expires, ktime_t period)
930 {
931 int ret = 0;
932 mutex_lock(&rtc->ops_lock);
933 if (timer->enabled)
934 rtc_timer_remove(rtc, timer);
935
936 timer->node.expires = expires;
937 timer->period = period;
938
939 ret = rtc_timer_enqueue(rtc, timer);
940
941 mutex_unlock(&rtc->ops_lock);
942 return ret;
943 }
944
945 /* rtc_timer_cancel - Stops an rtc_timer
946 * @ rtc: rtc device to be used
947 * @ timer: timer being set
948 *
949 * Kernel interface to cancel an rtc_timer
950 */
951 int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
952 {
953 int ret = 0;
954 mutex_lock(&rtc->ops_lock);
955 if (timer->enabled)
956 rtc_timer_remove(rtc, timer);
957 mutex_unlock(&rtc->ops_lock);
958 return ret;
959 }
960
961
This page took 0.136086 seconds and 6 git commands to generate.