Merge tag 'pinctrl-v4.4-2' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[deliverable/linux.git] / drivers / rtc / rtc-cmos.c
1 /*
2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
3 *
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 /*
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
20 *
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
26 *
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
41 #include <linux/pm.h>
42 #include <linux/of.h>
43 #include <linux/of_platform.h>
44
45 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
46 #include <asm-generic/rtc.h>
47
48 struct cmos_rtc {
49 struct rtc_device *rtc;
50 struct device *dev;
51 int irq;
52 struct resource *iomem;
53 time64_t alarm_expires;
54
55 void (*wake_on)(struct device *);
56 void (*wake_off)(struct device *);
57
58 u8 enabled_wake;
59 u8 suspend_ctrl;
60
61 /* newer hardware extends the original register set */
62 u8 day_alrm;
63 u8 mon_alrm;
64 u8 century;
65 };
66
67 /* both platform and pnp busses use negative numbers for invalid irqs */
68 #define is_valid_irq(n) ((n) > 0)
69
70 static const char driver_name[] = "rtc_cmos";
71
72 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
73 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
74 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
75 */
76 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
77
78 static inline int is_intr(u8 rtc_intr)
79 {
80 if (!(rtc_intr & RTC_IRQF))
81 return 0;
82 return rtc_intr & RTC_IRQMASK;
83 }
84
85 /*----------------------------------------------------------------*/
86
87 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
88 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
89 * used in a broken "legacy replacement" mode. The breakage includes
90 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
91 * other (better) use.
92 *
93 * When that broken mode is in use, platform glue provides a partial
94 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
95 * want to use HPET for anything except those IRQs though...
96 */
97 #ifdef CONFIG_HPET_EMULATE_RTC
98 #include <asm/hpet.h>
99 #else
100
101 static inline int is_hpet_enabled(void)
102 {
103 return 0;
104 }
105
106 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
107 {
108 return 0;
109 }
110
111 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
112 {
113 return 0;
114 }
115
116 static inline int
117 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
118 {
119 return 0;
120 }
121
122 static inline int hpet_set_periodic_freq(unsigned long freq)
123 {
124 return 0;
125 }
126
127 static inline int hpet_rtc_dropped_irq(void)
128 {
129 return 0;
130 }
131
132 static inline int hpet_rtc_timer_init(void)
133 {
134 return 0;
135 }
136
137 extern irq_handler_t hpet_rtc_interrupt;
138
139 static inline int hpet_register_irq_handler(irq_handler_t handler)
140 {
141 return 0;
142 }
143
144 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
145 {
146 return 0;
147 }
148
149 #endif
150
151 /*----------------------------------------------------------------*/
152
153 #ifdef RTC_PORT
154
155 /* Most newer x86 systems have two register banks, the first used
156 * for RTC and NVRAM and the second only for NVRAM. Caller must
157 * own rtc_lock ... and we won't worry about access during NMI.
158 */
159 #define can_bank2 true
160
161 static inline unsigned char cmos_read_bank2(unsigned char addr)
162 {
163 outb(addr, RTC_PORT(2));
164 return inb(RTC_PORT(3));
165 }
166
167 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
168 {
169 outb(addr, RTC_PORT(2));
170 outb(val, RTC_PORT(3));
171 }
172
173 #else
174
175 #define can_bank2 false
176
177 static inline unsigned char cmos_read_bank2(unsigned char addr)
178 {
179 return 0;
180 }
181
182 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
183 {
184 }
185
186 #endif
187
188 /*----------------------------------------------------------------*/
189
190 static int cmos_read_time(struct device *dev, struct rtc_time *t)
191 {
192 /* REVISIT: if the clock has a "century" register, use
193 * that instead of the heuristic in get_rtc_time().
194 * That'll make Y3K compatility (year > 2070) easy!
195 */
196 get_rtc_time(t);
197 return 0;
198 }
199
200 static int cmos_set_time(struct device *dev, struct rtc_time *t)
201 {
202 /* REVISIT: set the "century" register if available
203 *
204 * NOTE: this ignores the issue whereby updating the seconds
205 * takes effect exactly 500ms after we write the register.
206 * (Also queueing and other delays before we get this far.)
207 */
208 return set_rtc_time(t);
209 }
210
211 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
212 {
213 struct cmos_rtc *cmos = dev_get_drvdata(dev);
214 unsigned char rtc_control;
215
216 if (!is_valid_irq(cmos->irq))
217 return -EIO;
218
219 /* Basic alarms only support hour, minute, and seconds fields.
220 * Some also support day and month, for alarms up to a year in
221 * the future.
222 */
223 t->time.tm_mday = -1;
224 t->time.tm_mon = -1;
225
226 spin_lock_irq(&rtc_lock);
227 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
228 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
229 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
230
231 if (cmos->day_alrm) {
232 /* ignore upper bits on readback per ACPI spec */
233 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
234 if (!t->time.tm_mday)
235 t->time.tm_mday = -1;
236
237 if (cmos->mon_alrm) {
238 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
239 if (!t->time.tm_mon)
240 t->time.tm_mon = -1;
241 }
242 }
243
244 rtc_control = CMOS_READ(RTC_CONTROL);
245 spin_unlock_irq(&rtc_lock);
246
247 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
248 if (((unsigned)t->time.tm_sec) < 0x60)
249 t->time.tm_sec = bcd2bin(t->time.tm_sec);
250 else
251 t->time.tm_sec = -1;
252 if (((unsigned)t->time.tm_min) < 0x60)
253 t->time.tm_min = bcd2bin(t->time.tm_min);
254 else
255 t->time.tm_min = -1;
256 if (((unsigned)t->time.tm_hour) < 0x24)
257 t->time.tm_hour = bcd2bin(t->time.tm_hour);
258 else
259 t->time.tm_hour = -1;
260
261 if (cmos->day_alrm) {
262 if (((unsigned)t->time.tm_mday) <= 0x31)
263 t->time.tm_mday = bcd2bin(t->time.tm_mday);
264 else
265 t->time.tm_mday = -1;
266
267 if (cmos->mon_alrm) {
268 if (((unsigned)t->time.tm_mon) <= 0x12)
269 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
270 else
271 t->time.tm_mon = -1;
272 }
273 }
274 }
275 t->time.tm_year = -1;
276
277 t->enabled = !!(rtc_control & RTC_AIE);
278 t->pending = 0;
279
280 return 0;
281 }
282
283 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
284 {
285 unsigned char rtc_intr;
286
287 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
288 * allegedly some older rtcs need that to handle irqs properly
289 */
290 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
291
292 if (is_hpet_enabled())
293 return;
294
295 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
296 if (is_intr(rtc_intr))
297 rtc_update_irq(cmos->rtc, 1, rtc_intr);
298 }
299
300 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
301 {
302 unsigned char rtc_control;
303
304 /* flush any pending IRQ status, notably for update irqs,
305 * before we enable new IRQs
306 */
307 rtc_control = CMOS_READ(RTC_CONTROL);
308 cmos_checkintr(cmos, rtc_control);
309
310 rtc_control |= mask;
311 CMOS_WRITE(rtc_control, RTC_CONTROL);
312 hpet_set_rtc_irq_bit(mask);
313
314 cmos_checkintr(cmos, rtc_control);
315 }
316
317 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
318 {
319 unsigned char rtc_control;
320
321 rtc_control = CMOS_READ(RTC_CONTROL);
322 rtc_control &= ~mask;
323 CMOS_WRITE(rtc_control, RTC_CONTROL);
324 hpet_mask_rtc_irq_bit(mask);
325
326 cmos_checkintr(cmos, rtc_control);
327 }
328
329 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
330 {
331 struct cmos_rtc *cmos = dev_get_drvdata(dev);
332 unsigned char mon, mday, hrs, min, sec, rtc_control;
333
334 if (!is_valid_irq(cmos->irq))
335 return -EIO;
336
337 mon = t->time.tm_mon + 1;
338 mday = t->time.tm_mday;
339 hrs = t->time.tm_hour;
340 min = t->time.tm_min;
341 sec = t->time.tm_sec;
342
343 rtc_control = CMOS_READ(RTC_CONTROL);
344 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
345 /* Writing 0xff means "don't care" or "match all". */
346 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
347 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
348 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
349 min = (min < 60) ? bin2bcd(min) : 0xff;
350 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
351 }
352
353 spin_lock_irq(&rtc_lock);
354
355 /* next rtc irq must not be from previous alarm setting */
356 cmos_irq_disable(cmos, RTC_AIE);
357
358 /* update alarm */
359 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
360 CMOS_WRITE(min, RTC_MINUTES_ALARM);
361 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
362
363 /* the system may support an "enhanced" alarm */
364 if (cmos->day_alrm) {
365 CMOS_WRITE(mday, cmos->day_alrm);
366 if (cmos->mon_alrm)
367 CMOS_WRITE(mon, cmos->mon_alrm);
368 }
369
370 /* FIXME the HPET alarm glue currently ignores day_alrm
371 * and mon_alrm ...
372 */
373 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
374
375 if (t->enabled)
376 cmos_irq_enable(cmos, RTC_AIE);
377
378 spin_unlock_irq(&rtc_lock);
379
380 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
381
382 return 0;
383 }
384
385 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
386 {
387 struct cmos_rtc *cmos = dev_get_drvdata(dev);
388 unsigned long flags;
389
390 if (!is_valid_irq(cmos->irq))
391 return -EINVAL;
392
393 spin_lock_irqsave(&rtc_lock, flags);
394
395 if (enabled)
396 cmos_irq_enable(cmos, RTC_AIE);
397 else
398 cmos_irq_disable(cmos, RTC_AIE);
399
400 spin_unlock_irqrestore(&rtc_lock, flags);
401 return 0;
402 }
403
404 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
405
406 static int cmos_procfs(struct device *dev, struct seq_file *seq)
407 {
408 struct cmos_rtc *cmos = dev_get_drvdata(dev);
409 unsigned char rtc_control, valid;
410
411 spin_lock_irq(&rtc_lock);
412 rtc_control = CMOS_READ(RTC_CONTROL);
413 valid = CMOS_READ(RTC_VALID);
414 spin_unlock_irq(&rtc_lock);
415
416 /* NOTE: at least ICH6 reports battery status using a different
417 * (non-RTC) bit; and SQWE is ignored on many current systems.
418 */
419 seq_printf(seq,
420 "periodic_IRQ\t: %s\n"
421 "update_IRQ\t: %s\n"
422 "HPET_emulated\t: %s\n"
423 // "square_wave\t: %s\n"
424 "BCD\t\t: %s\n"
425 "DST_enable\t: %s\n"
426 "periodic_freq\t: %d\n"
427 "batt_status\t: %s\n",
428 (rtc_control & RTC_PIE) ? "yes" : "no",
429 (rtc_control & RTC_UIE) ? "yes" : "no",
430 is_hpet_enabled() ? "yes" : "no",
431 // (rtc_control & RTC_SQWE) ? "yes" : "no",
432 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
433 (rtc_control & RTC_DST_EN) ? "yes" : "no",
434 cmos->rtc->irq_freq,
435 (valid & RTC_VRT) ? "okay" : "dead");
436
437 return 0;
438 }
439
440 #else
441 #define cmos_procfs NULL
442 #endif
443
444 static const struct rtc_class_ops cmos_rtc_ops = {
445 .read_time = cmos_read_time,
446 .set_time = cmos_set_time,
447 .read_alarm = cmos_read_alarm,
448 .set_alarm = cmos_set_alarm,
449 .proc = cmos_procfs,
450 .alarm_irq_enable = cmos_alarm_irq_enable,
451 };
452
453 /*----------------------------------------------------------------*/
454
455 /*
456 * All these chips have at least 64 bytes of address space, shared by
457 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
458 * by boot firmware. Modern chips have 128 or 256 bytes.
459 */
460
461 #define NVRAM_OFFSET (RTC_REG_D + 1)
462
463 static ssize_t
464 cmos_nvram_read(struct file *filp, struct kobject *kobj,
465 struct bin_attribute *attr,
466 char *buf, loff_t off, size_t count)
467 {
468 int retval;
469
470 off += NVRAM_OFFSET;
471 spin_lock_irq(&rtc_lock);
472 for (retval = 0; count; count--, off++, retval++) {
473 if (off < 128)
474 *buf++ = CMOS_READ(off);
475 else if (can_bank2)
476 *buf++ = cmos_read_bank2(off);
477 else
478 break;
479 }
480 spin_unlock_irq(&rtc_lock);
481
482 return retval;
483 }
484
485 static ssize_t
486 cmos_nvram_write(struct file *filp, struct kobject *kobj,
487 struct bin_attribute *attr,
488 char *buf, loff_t off, size_t count)
489 {
490 struct cmos_rtc *cmos;
491 int retval;
492
493 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
494
495 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
496 * checksum on part of the NVRAM data. That's currently ignored
497 * here. If userspace is smart enough to know what fields of
498 * NVRAM to update, updating checksums is also part of its job.
499 */
500 off += NVRAM_OFFSET;
501 spin_lock_irq(&rtc_lock);
502 for (retval = 0; count; count--, off++, retval++) {
503 /* don't trash RTC registers */
504 if (off == cmos->day_alrm
505 || off == cmos->mon_alrm
506 || off == cmos->century)
507 buf++;
508 else if (off < 128)
509 CMOS_WRITE(*buf++, off);
510 else if (can_bank2)
511 cmos_write_bank2(*buf++, off);
512 else
513 break;
514 }
515 spin_unlock_irq(&rtc_lock);
516
517 return retval;
518 }
519
520 static struct bin_attribute nvram = {
521 .attr = {
522 .name = "nvram",
523 .mode = S_IRUGO | S_IWUSR,
524 },
525
526 .read = cmos_nvram_read,
527 .write = cmos_nvram_write,
528 /* size gets set up later */
529 };
530
531 /*----------------------------------------------------------------*/
532
533 static struct cmos_rtc cmos_rtc;
534
535 static irqreturn_t cmos_interrupt(int irq, void *p)
536 {
537 u8 irqstat;
538 u8 rtc_control;
539
540 spin_lock(&rtc_lock);
541
542 /* When the HPET interrupt handler calls us, the interrupt
543 * status is passed as arg1 instead of the irq number. But
544 * always clear irq status, even when HPET is in the way.
545 *
546 * Note that HPET and RTC are almost certainly out of phase,
547 * giving different IRQ status ...
548 */
549 irqstat = CMOS_READ(RTC_INTR_FLAGS);
550 rtc_control = CMOS_READ(RTC_CONTROL);
551 if (is_hpet_enabled())
552 irqstat = (unsigned long)irq & 0xF0;
553
554 /* If we were suspended, RTC_CONTROL may not be accurate since the
555 * bios may have cleared it.
556 */
557 if (!cmos_rtc.suspend_ctrl)
558 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
559 else
560 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
561
562 /* All Linux RTC alarms should be treated as if they were oneshot.
563 * Similar code may be needed in system wakeup paths, in case the
564 * alarm woke the system.
565 */
566 if (irqstat & RTC_AIE) {
567 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
568 rtc_control &= ~RTC_AIE;
569 CMOS_WRITE(rtc_control, RTC_CONTROL);
570 hpet_mask_rtc_irq_bit(RTC_AIE);
571 CMOS_READ(RTC_INTR_FLAGS);
572 }
573 spin_unlock(&rtc_lock);
574
575 if (is_intr(irqstat)) {
576 rtc_update_irq(p, 1, irqstat);
577 return IRQ_HANDLED;
578 } else
579 return IRQ_NONE;
580 }
581
582 #ifdef CONFIG_PNP
583 #define INITSECTION
584
585 #else
586 #define INITSECTION __init
587 #endif
588
589 static int INITSECTION
590 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
591 {
592 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
593 int retval = 0;
594 unsigned char rtc_control;
595 unsigned address_space;
596 u32 flags = 0;
597
598 /* there can be only one ... */
599 if (cmos_rtc.dev)
600 return -EBUSY;
601
602 if (!ports)
603 return -ENODEV;
604
605 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
606 *
607 * REVISIT non-x86 systems may instead use memory space resources
608 * (needing ioremap etc), not i/o space resources like this ...
609 */
610 if (RTC_IOMAPPED)
611 ports = request_region(ports->start, resource_size(ports),
612 driver_name);
613 else
614 ports = request_mem_region(ports->start, resource_size(ports),
615 driver_name);
616 if (!ports) {
617 dev_dbg(dev, "i/o registers already in use\n");
618 return -EBUSY;
619 }
620
621 cmos_rtc.irq = rtc_irq;
622 cmos_rtc.iomem = ports;
623
624 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
625 * driver did, but don't reject unknown configs. Old hardware
626 * won't address 128 bytes. Newer chips have multiple banks,
627 * though they may not be listed in one I/O resource.
628 */
629 #if defined(CONFIG_ATARI)
630 address_space = 64;
631 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
632 || defined(__sparc__) || defined(__mips__) \
633 || defined(__powerpc__)
634 address_space = 128;
635 #else
636 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
637 address_space = 128;
638 #endif
639 if (can_bank2 && ports->end > (ports->start + 1))
640 address_space = 256;
641
642 /* For ACPI systems extension info comes from the FADT. On others,
643 * board specific setup provides it as appropriate. Systems where
644 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
645 * some almost-clones) can provide hooks to make that behave.
646 *
647 * Note that ACPI doesn't preclude putting these registers into
648 * "extended" areas of the chip, including some that we won't yet
649 * expect CMOS_READ and friends to handle.
650 */
651 if (info) {
652 if (info->flags)
653 flags = info->flags;
654 if (info->address_space)
655 address_space = info->address_space;
656
657 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
658 cmos_rtc.day_alrm = info->rtc_day_alarm;
659 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
660 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
661 if (info->rtc_century && info->rtc_century < 128)
662 cmos_rtc.century = info->rtc_century;
663
664 if (info->wake_on && info->wake_off) {
665 cmos_rtc.wake_on = info->wake_on;
666 cmos_rtc.wake_off = info->wake_off;
667 }
668 }
669
670 cmos_rtc.dev = dev;
671 dev_set_drvdata(dev, &cmos_rtc);
672
673 cmos_rtc.rtc = rtc_device_register(driver_name, dev,
674 &cmos_rtc_ops, THIS_MODULE);
675 if (IS_ERR(cmos_rtc.rtc)) {
676 retval = PTR_ERR(cmos_rtc.rtc);
677 goto cleanup0;
678 }
679
680 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
681
682 spin_lock_irq(&rtc_lock);
683
684 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
685 /* force periodic irq to CMOS reset default of 1024Hz;
686 *
687 * REVISIT it's been reported that at least one x86_64 ALI
688 * mobo doesn't use 32KHz here ... for portability we might
689 * need to do something about other clock frequencies.
690 */
691 cmos_rtc.rtc->irq_freq = 1024;
692 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
693 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
694 }
695
696 /* disable irqs */
697 if (is_valid_irq(rtc_irq))
698 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
699
700 rtc_control = CMOS_READ(RTC_CONTROL);
701
702 spin_unlock_irq(&rtc_lock);
703
704 /* FIXME:
705 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
706 */
707 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
708 dev_warn(dev, "only 24-hr supported\n");
709 retval = -ENXIO;
710 goto cleanup1;
711 }
712
713 if (is_valid_irq(rtc_irq)) {
714 irq_handler_t rtc_cmos_int_handler;
715
716 if (is_hpet_enabled()) {
717 rtc_cmos_int_handler = hpet_rtc_interrupt;
718 retval = hpet_register_irq_handler(cmos_interrupt);
719 if (retval) {
720 dev_warn(dev, "hpet_register_irq_handler "
721 " failed in rtc_init().");
722 goto cleanup1;
723 }
724 } else
725 rtc_cmos_int_handler = cmos_interrupt;
726
727 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
728 0, dev_name(&cmos_rtc.rtc->dev),
729 cmos_rtc.rtc);
730 if (retval < 0) {
731 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
732 goto cleanup1;
733 }
734 }
735 hpet_rtc_timer_init();
736
737 /* export at least the first block of NVRAM */
738 nvram.size = address_space - NVRAM_OFFSET;
739 retval = sysfs_create_bin_file(&dev->kobj, &nvram);
740 if (retval < 0) {
741 dev_dbg(dev, "can't create nvram file? %d\n", retval);
742 goto cleanup2;
743 }
744
745 dev_info(dev, "%s%s, %zd bytes nvram%s\n",
746 !is_valid_irq(rtc_irq) ? "no alarms" :
747 cmos_rtc.mon_alrm ? "alarms up to one year" :
748 cmos_rtc.day_alrm ? "alarms up to one month" :
749 "alarms up to one day",
750 cmos_rtc.century ? ", y3k" : "",
751 nvram.size,
752 is_hpet_enabled() ? ", hpet irqs" : "");
753
754 return 0;
755
756 cleanup2:
757 if (is_valid_irq(rtc_irq))
758 free_irq(rtc_irq, cmos_rtc.rtc);
759 cleanup1:
760 cmos_rtc.dev = NULL;
761 rtc_device_unregister(cmos_rtc.rtc);
762 cleanup0:
763 if (RTC_IOMAPPED)
764 release_region(ports->start, resource_size(ports));
765 else
766 release_mem_region(ports->start, resource_size(ports));
767 return retval;
768 }
769
770 static void cmos_do_shutdown(int rtc_irq)
771 {
772 spin_lock_irq(&rtc_lock);
773 if (is_valid_irq(rtc_irq))
774 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
775 spin_unlock_irq(&rtc_lock);
776 }
777
778 static void __exit cmos_do_remove(struct device *dev)
779 {
780 struct cmos_rtc *cmos = dev_get_drvdata(dev);
781 struct resource *ports;
782
783 cmos_do_shutdown(cmos->irq);
784
785 sysfs_remove_bin_file(&dev->kobj, &nvram);
786
787 if (is_valid_irq(cmos->irq)) {
788 free_irq(cmos->irq, cmos->rtc);
789 hpet_unregister_irq_handler(cmos_interrupt);
790 }
791
792 rtc_device_unregister(cmos->rtc);
793 cmos->rtc = NULL;
794
795 ports = cmos->iomem;
796 if (RTC_IOMAPPED)
797 release_region(ports->start, resource_size(ports));
798 else
799 release_mem_region(ports->start, resource_size(ports));
800 cmos->iomem = NULL;
801
802 cmos->dev = NULL;
803 }
804
805 static int cmos_aie_poweroff(struct device *dev)
806 {
807 struct cmos_rtc *cmos = dev_get_drvdata(dev);
808 struct rtc_time now;
809 time64_t t_now;
810 int retval = 0;
811 unsigned char rtc_control;
812
813 if (!cmos->alarm_expires)
814 return -EINVAL;
815
816 spin_lock_irq(&rtc_lock);
817 rtc_control = CMOS_READ(RTC_CONTROL);
818 spin_unlock_irq(&rtc_lock);
819
820 /* We only care about the situation where AIE is disabled. */
821 if (rtc_control & RTC_AIE)
822 return -EBUSY;
823
824 cmos_read_time(dev, &now);
825 t_now = rtc_tm_to_time64(&now);
826
827 /*
828 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
829 * automatically right after shutdown on some buggy boxes.
830 * This automatic rebooting issue won't happen when the alarm
831 * time is larger than now+1 seconds.
832 *
833 * If the alarm time is equal to now+1 seconds, the issue can be
834 * prevented by cancelling the alarm.
835 */
836 if (cmos->alarm_expires == t_now + 1) {
837 struct rtc_wkalrm alarm;
838
839 /* Cancel the AIE timer by configuring the past time. */
840 rtc_time64_to_tm(t_now - 1, &alarm.time);
841 alarm.enabled = 0;
842 retval = cmos_set_alarm(dev, &alarm);
843 } else if (cmos->alarm_expires > t_now + 1) {
844 retval = -EBUSY;
845 }
846
847 return retval;
848 }
849
850 #ifdef CONFIG_PM
851
852 static int cmos_suspend(struct device *dev)
853 {
854 struct cmos_rtc *cmos = dev_get_drvdata(dev);
855 unsigned char tmp;
856
857 /* only the alarm might be a wakeup event source */
858 spin_lock_irq(&rtc_lock);
859 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
860 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
861 unsigned char mask;
862
863 if (device_may_wakeup(dev))
864 mask = RTC_IRQMASK & ~RTC_AIE;
865 else
866 mask = RTC_IRQMASK;
867 tmp &= ~mask;
868 CMOS_WRITE(tmp, RTC_CONTROL);
869 hpet_mask_rtc_irq_bit(mask);
870
871 cmos_checkintr(cmos, tmp);
872 }
873 spin_unlock_irq(&rtc_lock);
874
875 if (tmp & RTC_AIE) {
876 cmos->enabled_wake = 1;
877 if (cmos->wake_on)
878 cmos->wake_on(dev);
879 else
880 enable_irq_wake(cmos->irq);
881 }
882
883 dev_dbg(dev, "suspend%s, ctrl %02x\n",
884 (tmp & RTC_AIE) ? ", alarm may wake" : "",
885 tmp);
886
887 return 0;
888 }
889
890 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
891 * after a detour through G3 "mechanical off", although the ACPI spec
892 * says wakeup should only work from G1/S4 "hibernate". To most users,
893 * distinctions between S4 and S5 are pointless. So when the hardware
894 * allows, don't draw that distinction.
895 */
896 static inline int cmos_poweroff(struct device *dev)
897 {
898 return cmos_suspend(dev);
899 }
900
901 #ifdef CONFIG_PM_SLEEP
902
903 static int cmos_resume(struct device *dev)
904 {
905 struct cmos_rtc *cmos = dev_get_drvdata(dev);
906 unsigned char tmp;
907
908 if (cmos->enabled_wake) {
909 if (cmos->wake_off)
910 cmos->wake_off(dev);
911 else
912 disable_irq_wake(cmos->irq);
913 cmos->enabled_wake = 0;
914 }
915
916 spin_lock_irq(&rtc_lock);
917 tmp = cmos->suspend_ctrl;
918 cmos->suspend_ctrl = 0;
919 /* re-enable any irqs previously active */
920 if (tmp & RTC_IRQMASK) {
921 unsigned char mask;
922
923 if (device_may_wakeup(dev))
924 hpet_rtc_timer_init();
925
926 do {
927 CMOS_WRITE(tmp, RTC_CONTROL);
928 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
929
930 mask = CMOS_READ(RTC_INTR_FLAGS);
931 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
932 if (!is_hpet_enabled() || !is_intr(mask))
933 break;
934
935 /* force one-shot behavior if HPET blocked
936 * the wake alarm's irq
937 */
938 rtc_update_irq(cmos->rtc, 1, mask);
939 tmp &= ~RTC_AIE;
940 hpet_mask_rtc_irq_bit(RTC_AIE);
941 } while (mask & RTC_AIE);
942 }
943 spin_unlock_irq(&rtc_lock);
944
945 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
946
947 return 0;
948 }
949
950 #endif
951 #else
952
953 static inline int cmos_poweroff(struct device *dev)
954 {
955 return -ENOSYS;
956 }
957
958 #endif
959
960 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
961
962 /*----------------------------------------------------------------*/
963
964 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
965 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
966 * probably list them in similar PNPBIOS tables; so PNP is more common.
967 *
968 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
969 * predate even PNPBIOS should set up platform_bus devices.
970 */
971
972 #ifdef CONFIG_ACPI
973
974 #include <linux/acpi.h>
975
976 static u32 rtc_handler(void *context)
977 {
978 struct device *dev = context;
979
980 pm_wakeup_event(dev, 0);
981 acpi_clear_event(ACPI_EVENT_RTC);
982 acpi_disable_event(ACPI_EVENT_RTC, 0);
983 return ACPI_INTERRUPT_HANDLED;
984 }
985
986 static inline void rtc_wake_setup(struct device *dev)
987 {
988 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
989 /*
990 * After the RTC handler is installed, the Fixed_RTC event should
991 * be disabled. Only when the RTC alarm is set will it be enabled.
992 */
993 acpi_clear_event(ACPI_EVENT_RTC);
994 acpi_disable_event(ACPI_EVENT_RTC, 0);
995 }
996
997 static void rtc_wake_on(struct device *dev)
998 {
999 acpi_clear_event(ACPI_EVENT_RTC);
1000 acpi_enable_event(ACPI_EVENT_RTC, 0);
1001 }
1002
1003 static void rtc_wake_off(struct device *dev)
1004 {
1005 acpi_disable_event(ACPI_EVENT_RTC, 0);
1006 }
1007
1008 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1009 * its device node and pass extra config data. This helps its driver use
1010 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1011 * that this board's RTC is wakeup-capable (per ACPI spec).
1012 */
1013 static struct cmos_rtc_board_info acpi_rtc_info;
1014
1015 static void cmos_wake_setup(struct device *dev)
1016 {
1017 if (acpi_disabled)
1018 return;
1019
1020 rtc_wake_setup(dev);
1021 acpi_rtc_info.wake_on = rtc_wake_on;
1022 acpi_rtc_info.wake_off = rtc_wake_off;
1023
1024 /* workaround bug in some ACPI tables */
1025 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1026 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1027 acpi_gbl_FADT.month_alarm);
1028 acpi_gbl_FADT.month_alarm = 0;
1029 }
1030
1031 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1032 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1033 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1034
1035 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1036 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1037 dev_info(dev, "RTC can wake from S4\n");
1038
1039 dev->platform_data = &acpi_rtc_info;
1040
1041 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1042 device_init_wakeup(dev, 1);
1043 }
1044
1045 #else
1046
1047 static void cmos_wake_setup(struct device *dev)
1048 {
1049 }
1050
1051 #endif
1052
1053 #ifdef CONFIG_PNP
1054
1055 #include <linux/pnp.h>
1056
1057 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1058 {
1059 cmos_wake_setup(&pnp->dev);
1060
1061 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
1062 /* Some machines contain a PNP entry for the RTC, but
1063 * don't define the IRQ. It should always be safe to
1064 * hardcode it in these cases
1065 */
1066 return cmos_do_probe(&pnp->dev,
1067 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1068 else
1069 return cmos_do_probe(&pnp->dev,
1070 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1071 pnp_irq(pnp, 0));
1072 }
1073
1074 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1075 {
1076 cmos_do_remove(&pnp->dev);
1077 }
1078
1079 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1080 {
1081 struct device *dev = &pnp->dev;
1082 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1083
1084 if (system_state == SYSTEM_POWER_OFF) {
1085 int retval = cmos_poweroff(dev);
1086
1087 if (cmos_aie_poweroff(dev) < 0 && !retval)
1088 return;
1089 }
1090
1091 cmos_do_shutdown(cmos->irq);
1092 }
1093
1094 static const struct pnp_device_id rtc_ids[] = {
1095 { .id = "PNP0b00", },
1096 { .id = "PNP0b01", },
1097 { .id = "PNP0b02", },
1098 { },
1099 };
1100 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1101
1102 static struct pnp_driver cmos_pnp_driver = {
1103 .name = (char *) driver_name,
1104 .id_table = rtc_ids,
1105 .probe = cmos_pnp_probe,
1106 .remove = __exit_p(cmos_pnp_remove),
1107 .shutdown = cmos_pnp_shutdown,
1108
1109 /* flag ensures resume() gets called, and stops syslog spam */
1110 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1111 .driver = {
1112 .pm = &cmos_pm_ops,
1113 },
1114 };
1115
1116 #endif /* CONFIG_PNP */
1117
1118 #ifdef CONFIG_OF
1119 static const struct of_device_id of_cmos_match[] = {
1120 {
1121 .compatible = "motorola,mc146818",
1122 },
1123 { },
1124 };
1125 MODULE_DEVICE_TABLE(of, of_cmos_match);
1126
1127 static __init void cmos_of_init(struct platform_device *pdev)
1128 {
1129 struct device_node *node = pdev->dev.of_node;
1130 struct rtc_time time;
1131 int ret;
1132 const __be32 *val;
1133
1134 if (!node)
1135 return;
1136
1137 val = of_get_property(node, "ctrl-reg", NULL);
1138 if (val)
1139 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1140
1141 val = of_get_property(node, "freq-reg", NULL);
1142 if (val)
1143 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1144
1145 get_rtc_time(&time);
1146 ret = rtc_valid_tm(&time);
1147 if (ret) {
1148 struct rtc_time def_time = {
1149 .tm_year = 1,
1150 .tm_mday = 1,
1151 };
1152 set_rtc_time(&def_time);
1153 }
1154 }
1155 #else
1156 static inline void cmos_of_init(struct platform_device *pdev) {}
1157 #endif
1158 /*----------------------------------------------------------------*/
1159
1160 /* Platform setup should have set up an RTC device, when PNP is
1161 * unavailable ... this could happen even on (older) PCs.
1162 */
1163
1164 static int __init cmos_platform_probe(struct platform_device *pdev)
1165 {
1166 struct resource *resource;
1167 int irq;
1168
1169 cmos_of_init(pdev);
1170 cmos_wake_setup(&pdev->dev);
1171
1172 if (RTC_IOMAPPED)
1173 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1174 else
1175 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1176 irq = platform_get_irq(pdev, 0);
1177 if (irq < 0)
1178 irq = -1;
1179
1180 return cmos_do_probe(&pdev->dev, resource, irq);
1181 }
1182
1183 static int __exit cmos_platform_remove(struct platform_device *pdev)
1184 {
1185 cmos_do_remove(&pdev->dev);
1186 return 0;
1187 }
1188
1189 static void cmos_platform_shutdown(struct platform_device *pdev)
1190 {
1191 struct device *dev = &pdev->dev;
1192 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1193
1194 if (system_state == SYSTEM_POWER_OFF) {
1195 int retval = cmos_poweroff(dev);
1196
1197 if (cmos_aie_poweroff(dev) < 0 && !retval)
1198 return;
1199 }
1200
1201 cmos_do_shutdown(cmos->irq);
1202 }
1203
1204 /* work with hotplug and coldplug */
1205 MODULE_ALIAS("platform:rtc_cmos");
1206
1207 static struct platform_driver cmos_platform_driver = {
1208 .remove = __exit_p(cmos_platform_remove),
1209 .shutdown = cmos_platform_shutdown,
1210 .driver = {
1211 .name = driver_name,
1212 #ifdef CONFIG_PM
1213 .pm = &cmos_pm_ops,
1214 #endif
1215 .of_match_table = of_match_ptr(of_cmos_match),
1216 }
1217 };
1218
1219 #ifdef CONFIG_PNP
1220 static bool pnp_driver_registered;
1221 #endif
1222 static bool platform_driver_registered;
1223
1224 static int __init cmos_init(void)
1225 {
1226 int retval = 0;
1227
1228 #ifdef CONFIG_PNP
1229 retval = pnp_register_driver(&cmos_pnp_driver);
1230 if (retval == 0)
1231 pnp_driver_registered = true;
1232 #endif
1233
1234 if (!cmos_rtc.dev) {
1235 retval = platform_driver_probe(&cmos_platform_driver,
1236 cmos_platform_probe);
1237 if (retval == 0)
1238 platform_driver_registered = true;
1239 }
1240
1241 if (retval == 0)
1242 return 0;
1243
1244 #ifdef CONFIG_PNP
1245 if (pnp_driver_registered)
1246 pnp_unregister_driver(&cmos_pnp_driver);
1247 #endif
1248 return retval;
1249 }
1250 module_init(cmos_init);
1251
1252 static void __exit cmos_exit(void)
1253 {
1254 #ifdef CONFIG_PNP
1255 if (pnp_driver_registered)
1256 pnp_unregister_driver(&cmos_pnp_driver);
1257 #endif
1258 if (platform_driver_registered)
1259 platform_driver_unregister(&cmos_platform_driver);
1260 }
1261 module_exit(cmos_exit);
1262
1263
1264 MODULE_AUTHOR("David Brownell");
1265 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1266 MODULE_LICENSE("GPL");
This page took 0.064305 seconds and 5 git commands to generate.