mpt3sas: combine fw_event_work and its event_data
[deliverable/linux.git] / drivers / rtc / rtc-cmos.c
1 /*
2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
3 *
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 /*
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
20 *
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
26 *
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
30 */
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/spinlock.h>
36 #include <linux/platform_device.h>
37 #include <linux/log2.h>
38 #include <linux/pm.h>
39 #include <linux/of.h>
40 #include <linux/of_platform.h>
41 #include <linux/dmi.h>
42
43 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
44 #include <asm-generic/rtc.h>
45
46 struct cmos_rtc {
47 struct rtc_device *rtc;
48 struct device *dev;
49 int irq;
50 struct resource *iomem;
51
52 void (*wake_on)(struct device *);
53 void (*wake_off)(struct device *);
54
55 u8 enabled_wake;
56 u8 suspend_ctrl;
57
58 /* newer hardware extends the original register set */
59 u8 day_alrm;
60 u8 mon_alrm;
61 u8 century;
62 };
63
64 /* both platform and pnp busses use negative numbers for invalid irqs */
65 #define is_valid_irq(n) ((n) > 0)
66
67 static const char driver_name[] = "rtc_cmos";
68
69 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
70 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
71 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
72 */
73 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
74
75 static inline int is_intr(u8 rtc_intr)
76 {
77 if (!(rtc_intr & RTC_IRQF))
78 return 0;
79 return rtc_intr & RTC_IRQMASK;
80 }
81
82 /*----------------------------------------------------------------*/
83
84 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
85 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
86 * used in a broken "legacy replacement" mode. The breakage includes
87 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
88 * other (better) use.
89 *
90 * When that broken mode is in use, platform glue provides a partial
91 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
92 * want to use HPET for anything except those IRQs though...
93 */
94 #ifdef CONFIG_HPET_EMULATE_RTC
95 #include <asm/hpet.h>
96 #else
97
98 static inline int is_hpet_enabled(void)
99 {
100 return 0;
101 }
102
103 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
104 {
105 return 0;
106 }
107
108 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
109 {
110 return 0;
111 }
112
113 static inline int
114 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
115 {
116 return 0;
117 }
118
119 static inline int hpet_set_periodic_freq(unsigned long freq)
120 {
121 return 0;
122 }
123
124 static inline int hpet_rtc_dropped_irq(void)
125 {
126 return 0;
127 }
128
129 static inline int hpet_rtc_timer_init(void)
130 {
131 return 0;
132 }
133
134 extern irq_handler_t hpet_rtc_interrupt;
135
136 static inline int hpet_register_irq_handler(irq_handler_t handler)
137 {
138 return 0;
139 }
140
141 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
142 {
143 return 0;
144 }
145
146 #endif
147
148 /*----------------------------------------------------------------*/
149
150 #ifdef RTC_PORT
151
152 /* Most newer x86 systems have two register banks, the first used
153 * for RTC and NVRAM and the second only for NVRAM. Caller must
154 * own rtc_lock ... and we won't worry about access during NMI.
155 */
156 #define can_bank2 true
157
158 static inline unsigned char cmos_read_bank2(unsigned char addr)
159 {
160 outb(addr, RTC_PORT(2));
161 return inb(RTC_PORT(3));
162 }
163
164 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
165 {
166 outb(addr, RTC_PORT(2));
167 outb(val, RTC_PORT(3));
168 }
169
170 #else
171
172 #define can_bank2 false
173
174 static inline unsigned char cmos_read_bank2(unsigned char addr)
175 {
176 return 0;
177 }
178
179 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
180 {
181 }
182
183 #endif
184
185 /*----------------------------------------------------------------*/
186
187 static int cmos_read_time(struct device *dev, struct rtc_time *t)
188 {
189 /* REVISIT: if the clock has a "century" register, use
190 * that instead of the heuristic in get_rtc_time().
191 * That'll make Y3K compatility (year > 2070) easy!
192 */
193 get_rtc_time(t);
194 return 0;
195 }
196
197 static int cmos_set_time(struct device *dev, struct rtc_time *t)
198 {
199 /* REVISIT: set the "century" register if available
200 *
201 * NOTE: this ignores the issue whereby updating the seconds
202 * takes effect exactly 500ms after we write the register.
203 * (Also queueing and other delays before we get this far.)
204 */
205 return set_rtc_time(t);
206 }
207
208 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
209 {
210 struct cmos_rtc *cmos = dev_get_drvdata(dev);
211 unsigned char rtc_control;
212
213 if (!is_valid_irq(cmos->irq))
214 return -EIO;
215
216 /* Basic alarms only support hour, minute, and seconds fields.
217 * Some also support day and month, for alarms up to a year in
218 * the future.
219 */
220 t->time.tm_mday = -1;
221 t->time.tm_mon = -1;
222
223 spin_lock_irq(&rtc_lock);
224 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
225 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
226 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
227
228 if (cmos->day_alrm) {
229 /* ignore upper bits on readback per ACPI spec */
230 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
231 if (!t->time.tm_mday)
232 t->time.tm_mday = -1;
233
234 if (cmos->mon_alrm) {
235 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
236 if (!t->time.tm_mon)
237 t->time.tm_mon = -1;
238 }
239 }
240
241 rtc_control = CMOS_READ(RTC_CONTROL);
242 spin_unlock_irq(&rtc_lock);
243
244 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
245 if (((unsigned)t->time.tm_sec) < 0x60)
246 t->time.tm_sec = bcd2bin(t->time.tm_sec);
247 else
248 t->time.tm_sec = -1;
249 if (((unsigned)t->time.tm_min) < 0x60)
250 t->time.tm_min = bcd2bin(t->time.tm_min);
251 else
252 t->time.tm_min = -1;
253 if (((unsigned)t->time.tm_hour) < 0x24)
254 t->time.tm_hour = bcd2bin(t->time.tm_hour);
255 else
256 t->time.tm_hour = -1;
257
258 if (cmos->day_alrm) {
259 if (((unsigned)t->time.tm_mday) <= 0x31)
260 t->time.tm_mday = bcd2bin(t->time.tm_mday);
261 else
262 t->time.tm_mday = -1;
263
264 if (cmos->mon_alrm) {
265 if (((unsigned)t->time.tm_mon) <= 0x12)
266 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
267 else
268 t->time.tm_mon = -1;
269 }
270 }
271 }
272 t->time.tm_year = -1;
273
274 t->enabled = !!(rtc_control & RTC_AIE);
275 t->pending = 0;
276
277 return 0;
278 }
279
280 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
281 {
282 unsigned char rtc_intr;
283
284 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
285 * allegedly some older rtcs need that to handle irqs properly
286 */
287 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
288
289 if (is_hpet_enabled())
290 return;
291
292 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
293 if (is_intr(rtc_intr))
294 rtc_update_irq(cmos->rtc, 1, rtc_intr);
295 }
296
297 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
298 {
299 unsigned char rtc_control;
300
301 /* flush any pending IRQ status, notably for update irqs,
302 * before we enable new IRQs
303 */
304 rtc_control = CMOS_READ(RTC_CONTROL);
305 cmos_checkintr(cmos, rtc_control);
306
307 rtc_control |= mask;
308 CMOS_WRITE(rtc_control, RTC_CONTROL);
309 hpet_set_rtc_irq_bit(mask);
310
311 cmos_checkintr(cmos, rtc_control);
312 }
313
314 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
315 {
316 unsigned char rtc_control;
317
318 rtc_control = CMOS_READ(RTC_CONTROL);
319 rtc_control &= ~mask;
320 CMOS_WRITE(rtc_control, RTC_CONTROL);
321 hpet_mask_rtc_irq_bit(mask);
322
323 cmos_checkintr(cmos, rtc_control);
324 }
325
326 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
327 {
328 struct cmos_rtc *cmos = dev_get_drvdata(dev);
329 unsigned char mon, mday, hrs, min, sec, rtc_control;
330
331 if (!is_valid_irq(cmos->irq))
332 return -EIO;
333
334 mon = t->time.tm_mon + 1;
335 mday = t->time.tm_mday;
336 hrs = t->time.tm_hour;
337 min = t->time.tm_min;
338 sec = t->time.tm_sec;
339
340 rtc_control = CMOS_READ(RTC_CONTROL);
341 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
342 /* Writing 0xff means "don't care" or "match all". */
343 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
344 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
345 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
346 min = (min < 60) ? bin2bcd(min) : 0xff;
347 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
348 }
349
350 spin_lock_irq(&rtc_lock);
351
352 /* next rtc irq must not be from previous alarm setting */
353 cmos_irq_disable(cmos, RTC_AIE);
354
355 /* update alarm */
356 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
357 CMOS_WRITE(min, RTC_MINUTES_ALARM);
358 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
359
360 /* the system may support an "enhanced" alarm */
361 if (cmos->day_alrm) {
362 CMOS_WRITE(mday, cmos->day_alrm);
363 if (cmos->mon_alrm)
364 CMOS_WRITE(mon, cmos->mon_alrm);
365 }
366
367 /* FIXME the HPET alarm glue currently ignores day_alrm
368 * and mon_alrm ...
369 */
370 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
371
372 if (t->enabled)
373 cmos_irq_enable(cmos, RTC_AIE);
374
375 spin_unlock_irq(&rtc_lock);
376
377 return 0;
378 }
379
380 /*
381 * Do not disable RTC alarm on shutdown - workaround for b0rked BIOSes.
382 */
383 static bool alarm_disable_quirk;
384
385 static int __init set_alarm_disable_quirk(const struct dmi_system_id *id)
386 {
387 alarm_disable_quirk = true;
388 pr_info("rtc-cmos: BIOS has alarm-disable quirk. ");
389 pr_info("RTC alarms disabled\n");
390 return 0;
391 }
392
393 static const struct dmi_system_id rtc_quirks[] __initconst = {
394 /* https://bugzilla.novell.com/show_bug.cgi?id=805740 */
395 {
396 .callback = set_alarm_disable_quirk,
397 .ident = "IBM Truman",
398 .matches = {
399 DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
400 DMI_MATCH(DMI_PRODUCT_NAME, "4852570"),
401 },
402 },
403 /* https://bugzilla.novell.com/show_bug.cgi?id=812592 */
404 {
405 .callback = set_alarm_disable_quirk,
406 .ident = "Gigabyte GA-990XA-UD3",
407 .matches = {
408 DMI_MATCH(DMI_SYS_VENDOR,
409 "Gigabyte Technology Co., Ltd."),
410 DMI_MATCH(DMI_PRODUCT_NAME, "GA-990XA-UD3"),
411 },
412 },
413 /* http://permalink.gmane.org/gmane.linux.kernel/1604474 */
414 {
415 .callback = set_alarm_disable_quirk,
416 .ident = "Toshiba Satellite L300",
417 .matches = {
418 DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
419 DMI_MATCH(DMI_PRODUCT_NAME, "Satellite L300"),
420 },
421 },
422 {}
423 };
424
425 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
426 {
427 struct cmos_rtc *cmos = dev_get_drvdata(dev);
428 unsigned long flags;
429
430 if (!is_valid_irq(cmos->irq))
431 return -EINVAL;
432
433 if (alarm_disable_quirk)
434 return 0;
435
436 spin_lock_irqsave(&rtc_lock, flags);
437
438 if (enabled)
439 cmos_irq_enable(cmos, RTC_AIE);
440 else
441 cmos_irq_disable(cmos, RTC_AIE);
442
443 spin_unlock_irqrestore(&rtc_lock, flags);
444 return 0;
445 }
446
447 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
448
449 static int cmos_procfs(struct device *dev, struct seq_file *seq)
450 {
451 struct cmos_rtc *cmos = dev_get_drvdata(dev);
452 unsigned char rtc_control, valid;
453
454 spin_lock_irq(&rtc_lock);
455 rtc_control = CMOS_READ(RTC_CONTROL);
456 valid = CMOS_READ(RTC_VALID);
457 spin_unlock_irq(&rtc_lock);
458
459 /* NOTE: at least ICH6 reports battery status using a different
460 * (non-RTC) bit; and SQWE is ignored on many current systems.
461 */
462 return seq_printf(seq,
463 "periodic_IRQ\t: %s\n"
464 "update_IRQ\t: %s\n"
465 "HPET_emulated\t: %s\n"
466 // "square_wave\t: %s\n"
467 "BCD\t\t: %s\n"
468 "DST_enable\t: %s\n"
469 "periodic_freq\t: %d\n"
470 "batt_status\t: %s\n",
471 (rtc_control & RTC_PIE) ? "yes" : "no",
472 (rtc_control & RTC_UIE) ? "yes" : "no",
473 is_hpet_enabled() ? "yes" : "no",
474 // (rtc_control & RTC_SQWE) ? "yes" : "no",
475 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
476 (rtc_control & RTC_DST_EN) ? "yes" : "no",
477 cmos->rtc->irq_freq,
478 (valid & RTC_VRT) ? "okay" : "dead");
479 }
480
481 #else
482 #define cmos_procfs NULL
483 #endif
484
485 static const struct rtc_class_ops cmos_rtc_ops = {
486 .read_time = cmos_read_time,
487 .set_time = cmos_set_time,
488 .read_alarm = cmos_read_alarm,
489 .set_alarm = cmos_set_alarm,
490 .proc = cmos_procfs,
491 .alarm_irq_enable = cmos_alarm_irq_enable,
492 };
493
494 /*----------------------------------------------------------------*/
495
496 /*
497 * All these chips have at least 64 bytes of address space, shared by
498 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
499 * by boot firmware. Modern chips have 128 or 256 bytes.
500 */
501
502 #define NVRAM_OFFSET (RTC_REG_D + 1)
503
504 static ssize_t
505 cmos_nvram_read(struct file *filp, struct kobject *kobj,
506 struct bin_attribute *attr,
507 char *buf, loff_t off, size_t count)
508 {
509 int retval;
510
511 if (unlikely(off >= attr->size))
512 return 0;
513 if (unlikely(off < 0))
514 return -EINVAL;
515 if ((off + count) > attr->size)
516 count = attr->size - off;
517
518 off += NVRAM_OFFSET;
519 spin_lock_irq(&rtc_lock);
520 for (retval = 0; count; count--, off++, retval++) {
521 if (off < 128)
522 *buf++ = CMOS_READ(off);
523 else if (can_bank2)
524 *buf++ = cmos_read_bank2(off);
525 else
526 break;
527 }
528 spin_unlock_irq(&rtc_lock);
529
530 return retval;
531 }
532
533 static ssize_t
534 cmos_nvram_write(struct file *filp, struct kobject *kobj,
535 struct bin_attribute *attr,
536 char *buf, loff_t off, size_t count)
537 {
538 struct cmos_rtc *cmos;
539 int retval;
540
541 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
542 if (unlikely(off >= attr->size))
543 return -EFBIG;
544 if (unlikely(off < 0))
545 return -EINVAL;
546 if ((off + count) > attr->size)
547 count = attr->size - off;
548
549 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
550 * checksum on part of the NVRAM data. That's currently ignored
551 * here. If userspace is smart enough to know what fields of
552 * NVRAM to update, updating checksums is also part of its job.
553 */
554 off += NVRAM_OFFSET;
555 spin_lock_irq(&rtc_lock);
556 for (retval = 0; count; count--, off++, retval++) {
557 /* don't trash RTC registers */
558 if (off == cmos->day_alrm
559 || off == cmos->mon_alrm
560 || off == cmos->century)
561 buf++;
562 else if (off < 128)
563 CMOS_WRITE(*buf++, off);
564 else if (can_bank2)
565 cmos_write_bank2(*buf++, off);
566 else
567 break;
568 }
569 spin_unlock_irq(&rtc_lock);
570
571 return retval;
572 }
573
574 static struct bin_attribute nvram = {
575 .attr = {
576 .name = "nvram",
577 .mode = S_IRUGO | S_IWUSR,
578 },
579
580 .read = cmos_nvram_read,
581 .write = cmos_nvram_write,
582 /* size gets set up later */
583 };
584
585 /*----------------------------------------------------------------*/
586
587 static struct cmos_rtc cmos_rtc;
588
589 static irqreturn_t cmos_interrupt(int irq, void *p)
590 {
591 u8 irqstat;
592 u8 rtc_control;
593
594 spin_lock(&rtc_lock);
595
596 /* When the HPET interrupt handler calls us, the interrupt
597 * status is passed as arg1 instead of the irq number. But
598 * always clear irq status, even when HPET is in the way.
599 *
600 * Note that HPET and RTC are almost certainly out of phase,
601 * giving different IRQ status ...
602 */
603 irqstat = CMOS_READ(RTC_INTR_FLAGS);
604 rtc_control = CMOS_READ(RTC_CONTROL);
605 if (is_hpet_enabled())
606 irqstat = (unsigned long)irq & 0xF0;
607
608 /* If we were suspended, RTC_CONTROL may not be accurate since the
609 * bios may have cleared it.
610 */
611 if (!cmos_rtc.suspend_ctrl)
612 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
613 else
614 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
615
616 /* All Linux RTC alarms should be treated as if they were oneshot.
617 * Similar code may be needed in system wakeup paths, in case the
618 * alarm woke the system.
619 */
620 if (irqstat & RTC_AIE) {
621 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
622 rtc_control &= ~RTC_AIE;
623 CMOS_WRITE(rtc_control, RTC_CONTROL);
624 hpet_mask_rtc_irq_bit(RTC_AIE);
625 CMOS_READ(RTC_INTR_FLAGS);
626 }
627 spin_unlock(&rtc_lock);
628
629 if (is_intr(irqstat)) {
630 rtc_update_irq(p, 1, irqstat);
631 return IRQ_HANDLED;
632 } else
633 return IRQ_NONE;
634 }
635
636 #ifdef CONFIG_PNP
637 #define INITSECTION
638
639 #else
640 #define INITSECTION __init
641 #endif
642
643 static int INITSECTION
644 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
645 {
646 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
647 int retval = 0;
648 unsigned char rtc_control;
649 unsigned address_space;
650 u32 flags = 0;
651
652 /* there can be only one ... */
653 if (cmos_rtc.dev)
654 return -EBUSY;
655
656 if (!ports)
657 return -ENODEV;
658
659 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
660 *
661 * REVISIT non-x86 systems may instead use memory space resources
662 * (needing ioremap etc), not i/o space resources like this ...
663 */
664 if (RTC_IOMAPPED)
665 ports = request_region(ports->start, resource_size(ports),
666 driver_name);
667 else
668 ports = request_mem_region(ports->start, resource_size(ports),
669 driver_name);
670 if (!ports) {
671 dev_dbg(dev, "i/o registers already in use\n");
672 return -EBUSY;
673 }
674
675 cmos_rtc.irq = rtc_irq;
676 cmos_rtc.iomem = ports;
677
678 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
679 * driver did, but don't reject unknown configs. Old hardware
680 * won't address 128 bytes. Newer chips have multiple banks,
681 * though they may not be listed in one I/O resource.
682 */
683 #if defined(CONFIG_ATARI)
684 address_space = 64;
685 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
686 || defined(__sparc__) || defined(__mips__) \
687 || defined(__powerpc__)
688 address_space = 128;
689 #else
690 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
691 address_space = 128;
692 #endif
693 if (can_bank2 && ports->end > (ports->start + 1))
694 address_space = 256;
695
696 /* For ACPI systems extension info comes from the FADT. On others,
697 * board specific setup provides it as appropriate. Systems where
698 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
699 * some almost-clones) can provide hooks to make that behave.
700 *
701 * Note that ACPI doesn't preclude putting these registers into
702 * "extended" areas of the chip, including some that we won't yet
703 * expect CMOS_READ and friends to handle.
704 */
705 if (info) {
706 if (info->flags)
707 flags = info->flags;
708 if (info->address_space)
709 address_space = info->address_space;
710
711 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
712 cmos_rtc.day_alrm = info->rtc_day_alarm;
713 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
714 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
715 if (info->rtc_century && info->rtc_century < 128)
716 cmos_rtc.century = info->rtc_century;
717
718 if (info->wake_on && info->wake_off) {
719 cmos_rtc.wake_on = info->wake_on;
720 cmos_rtc.wake_off = info->wake_off;
721 }
722 }
723
724 cmos_rtc.dev = dev;
725 dev_set_drvdata(dev, &cmos_rtc);
726
727 cmos_rtc.rtc = rtc_device_register(driver_name, dev,
728 &cmos_rtc_ops, THIS_MODULE);
729 if (IS_ERR(cmos_rtc.rtc)) {
730 retval = PTR_ERR(cmos_rtc.rtc);
731 goto cleanup0;
732 }
733
734 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
735
736 spin_lock_irq(&rtc_lock);
737
738 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
739 /* force periodic irq to CMOS reset default of 1024Hz;
740 *
741 * REVISIT it's been reported that at least one x86_64 ALI
742 * mobo doesn't use 32KHz here ... for portability we might
743 * need to do something about other clock frequencies.
744 */
745 cmos_rtc.rtc->irq_freq = 1024;
746 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
747 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
748 }
749
750 /* disable irqs */
751 if (is_valid_irq(rtc_irq))
752 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
753
754 rtc_control = CMOS_READ(RTC_CONTROL);
755
756 spin_unlock_irq(&rtc_lock);
757
758 /* FIXME:
759 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
760 */
761 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
762 dev_warn(dev, "only 24-hr supported\n");
763 retval = -ENXIO;
764 goto cleanup1;
765 }
766
767 if (is_valid_irq(rtc_irq)) {
768 irq_handler_t rtc_cmos_int_handler;
769
770 if (is_hpet_enabled()) {
771 rtc_cmos_int_handler = hpet_rtc_interrupt;
772 retval = hpet_register_irq_handler(cmos_interrupt);
773 if (retval) {
774 dev_warn(dev, "hpet_register_irq_handler "
775 " failed in rtc_init().");
776 goto cleanup1;
777 }
778 } else
779 rtc_cmos_int_handler = cmos_interrupt;
780
781 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
782 0, dev_name(&cmos_rtc.rtc->dev),
783 cmos_rtc.rtc);
784 if (retval < 0) {
785 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
786 goto cleanup1;
787 }
788 }
789 hpet_rtc_timer_init();
790
791 /* export at least the first block of NVRAM */
792 nvram.size = address_space - NVRAM_OFFSET;
793 retval = sysfs_create_bin_file(&dev->kobj, &nvram);
794 if (retval < 0) {
795 dev_dbg(dev, "can't create nvram file? %d\n", retval);
796 goto cleanup2;
797 }
798
799 dev_info(dev, "%s%s, %zd bytes nvram%s\n",
800 !is_valid_irq(rtc_irq) ? "no alarms" :
801 cmos_rtc.mon_alrm ? "alarms up to one year" :
802 cmos_rtc.day_alrm ? "alarms up to one month" :
803 "alarms up to one day",
804 cmos_rtc.century ? ", y3k" : "",
805 nvram.size,
806 is_hpet_enabled() ? ", hpet irqs" : "");
807
808 return 0;
809
810 cleanup2:
811 if (is_valid_irq(rtc_irq))
812 free_irq(rtc_irq, cmos_rtc.rtc);
813 cleanup1:
814 cmos_rtc.dev = NULL;
815 rtc_device_unregister(cmos_rtc.rtc);
816 cleanup0:
817 if (RTC_IOMAPPED)
818 release_region(ports->start, resource_size(ports));
819 else
820 release_mem_region(ports->start, resource_size(ports));
821 return retval;
822 }
823
824 static void cmos_do_shutdown(int rtc_irq)
825 {
826 spin_lock_irq(&rtc_lock);
827 if (is_valid_irq(rtc_irq))
828 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
829 spin_unlock_irq(&rtc_lock);
830 }
831
832 static void __exit cmos_do_remove(struct device *dev)
833 {
834 struct cmos_rtc *cmos = dev_get_drvdata(dev);
835 struct resource *ports;
836
837 cmos_do_shutdown(cmos->irq);
838
839 sysfs_remove_bin_file(&dev->kobj, &nvram);
840
841 if (is_valid_irq(cmos->irq)) {
842 free_irq(cmos->irq, cmos->rtc);
843 hpet_unregister_irq_handler(cmos_interrupt);
844 }
845
846 rtc_device_unregister(cmos->rtc);
847 cmos->rtc = NULL;
848
849 ports = cmos->iomem;
850 if (RTC_IOMAPPED)
851 release_region(ports->start, resource_size(ports));
852 else
853 release_mem_region(ports->start, resource_size(ports));
854 cmos->iomem = NULL;
855
856 cmos->dev = NULL;
857 }
858
859 #ifdef CONFIG_PM_SLEEP
860
861 static int cmos_suspend(struct device *dev)
862 {
863 struct cmos_rtc *cmos = dev_get_drvdata(dev);
864 unsigned char tmp;
865
866 /* only the alarm might be a wakeup event source */
867 spin_lock_irq(&rtc_lock);
868 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
869 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
870 unsigned char mask;
871
872 if (device_may_wakeup(dev))
873 mask = RTC_IRQMASK & ~RTC_AIE;
874 else
875 mask = RTC_IRQMASK;
876 tmp &= ~mask;
877 CMOS_WRITE(tmp, RTC_CONTROL);
878 hpet_mask_rtc_irq_bit(mask);
879
880 cmos_checkintr(cmos, tmp);
881 }
882 spin_unlock_irq(&rtc_lock);
883
884 if (tmp & RTC_AIE) {
885 cmos->enabled_wake = 1;
886 if (cmos->wake_on)
887 cmos->wake_on(dev);
888 else
889 enable_irq_wake(cmos->irq);
890 }
891
892 dev_dbg(dev, "suspend%s, ctrl %02x\n",
893 (tmp & RTC_AIE) ? ", alarm may wake" : "",
894 tmp);
895
896 return 0;
897 }
898
899 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
900 * after a detour through G3 "mechanical off", although the ACPI spec
901 * says wakeup should only work from G1/S4 "hibernate". To most users,
902 * distinctions between S4 and S5 are pointless. So when the hardware
903 * allows, don't draw that distinction.
904 */
905 static inline int cmos_poweroff(struct device *dev)
906 {
907 return cmos_suspend(dev);
908 }
909
910 static int cmos_resume(struct device *dev)
911 {
912 struct cmos_rtc *cmos = dev_get_drvdata(dev);
913 unsigned char tmp;
914
915 if (cmos->enabled_wake) {
916 if (cmos->wake_off)
917 cmos->wake_off(dev);
918 else
919 disable_irq_wake(cmos->irq);
920 cmos->enabled_wake = 0;
921 }
922
923 spin_lock_irq(&rtc_lock);
924 tmp = cmos->suspend_ctrl;
925 cmos->suspend_ctrl = 0;
926 /* re-enable any irqs previously active */
927 if (tmp & RTC_IRQMASK) {
928 unsigned char mask;
929
930 if (device_may_wakeup(dev))
931 hpet_rtc_timer_init();
932
933 do {
934 CMOS_WRITE(tmp, RTC_CONTROL);
935 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
936
937 mask = CMOS_READ(RTC_INTR_FLAGS);
938 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
939 if (!is_hpet_enabled() || !is_intr(mask))
940 break;
941
942 /* force one-shot behavior if HPET blocked
943 * the wake alarm's irq
944 */
945 rtc_update_irq(cmos->rtc, 1, mask);
946 tmp &= ~RTC_AIE;
947 hpet_mask_rtc_irq_bit(RTC_AIE);
948 } while (mask & RTC_AIE);
949 }
950 spin_unlock_irq(&rtc_lock);
951
952 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
953
954 return 0;
955 }
956
957 #else
958
959 static inline int cmos_poweroff(struct device *dev)
960 {
961 return -ENOSYS;
962 }
963
964 #endif
965
966 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
967
968 /*----------------------------------------------------------------*/
969
970 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
971 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
972 * probably list them in similar PNPBIOS tables; so PNP is more common.
973 *
974 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
975 * predate even PNPBIOS should set up platform_bus devices.
976 */
977
978 #ifdef CONFIG_ACPI
979
980 #include <linux/acpi.h>
981
982 static u32 rtc_handler(void *context)
983 {
984 struct device *dev = context;
985
986 pm_wakeup_event(dev, 0);
987 acpi_clear_event(ACPI_EVENT_RTC);
988 acpi_disable_event(ACPI_EVENT_RTC, 0);
989 return ACPI_INTERRUPT_HANDLED;
990 }
991
992 static inline void rtc_wake_setup(struct device *dev)
993 {
994 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
995 /*
996 * After the RTC handler is installed, the Fixed_RTC event should
997 * be disabled. Only when the RTC alarm is set will it be enabled.
998 */
999 acpi_clear_event(ACPI_EVENT_RTC);
1000 acpi_disable_event(ACPI_EVENT_RTC, 0);
1001 }
1002
1003 static void rtc_wake_on(struct device *dev)
1004 {
1005 acpi_clear_event(ACPI_EVENT_RTC);
1006 acpi_enable_event(ACPI_EVENT_RTC, 0);
1007 }
1008
1009 static void rtc_wake_off(struct device *dev)
1010 {
1011 acpi_disable_event(ACPI_EVENT_RTC, 0);
1012 }
1013
1014 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1015 * its device node and pass extra config data. This helps its driver use
1016 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1017 * that this board's RTC is wakeup-capable (per ACPI spec).
1018 */
1019 static struct cmos_rtc_board_info acpi_rtc_info;
1020
1021 static void cmos_wake_setup(struct device *dev)
1022 {
1023 if (acpi_disabled)
1024 return;
1025
1026 rtc_wake_setup(dev);
1027 acpi_rtc_info.wake_on = rtc_wake_on;
1028 acpi_rtc_info.wake_off = rtc_wake_off;
1029
1030 /* workaround bug in some ACPI tables */
1031 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1032 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1033 acpi_gbl_FADT.month_alarm);
1034 acpi_gbl_FADT.month_alarm = 0;
1035 }
1036
1037 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1038 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1039 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1040
1041 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1042 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1043 dev_info(dev, "RTC can wake from S4\n");
1044
1045 dev->platform_data = &acpi_rtc_info;
1046
1047 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1048 device_init_wakeup(dev, 1);
1049 }
1050
1051 #else
1052
1053 static void cmos_wake_setup(struct device *dev)
1054 {
1055 }
1056
1057 #endif
1058
1059 #ifdef CONFIG_PNP
1060
1061 #include <linux/pnp.h>
1062
1063 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1064 {
1065 cmos_wake_setup(&pnp->dev);
1066
1067 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
1068 /* Some machines contain a PNP entry for the RTC, but
1069 * don't define the IRQ. It should always be safe to
1070 * hardcode it in these cases
1071 */
1072 return cmos_do_probe(&pnp->dev,
1073 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1074 else
1075 return cmos_do_probe(&pnp->dev,
1076 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1077 pnp_irq(pnp, 0));
1078 }
1079
1080 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1081 {
1082 cmos_do_remove(&pnp->dev);
1083 }
1084
1085 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1086 {
1087 struct device *dev = &pnp->dev;
1088 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1089
1090 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(dev))
1091 return;
1092
1093 cmos_do_shutdown(cmos->irq);
1094 }
1095
1096 static const struct pnp_device_id rtc_ids[] = {
1097 { .id = "PNP0b00", },
1098 { .id = "PNP0b01", },
1099 { .id = "PNP0b02", },
1100 { },
1101 };
1102 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1103
1104 static struct pnp_driver cmos_pnp_driver = {
1105 .name = (char *) driver_name,
1106 .id_table = rtc_ids,
1107 .probe = cmos_pnp_probe,
1108 .remove = __exit_p(cmos_pnp_remove),
1109 .shutdown = cmos_pnp_shutdown,
1110
1111 /* flag ensures resume() gets called, and stops syslog spam */
1112 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1113 .driver = {
1114 .pm = &cmos_pm_ops,
1115 },
1116 };
1117
1118 #endif /* CONFIG_PNP */
1119
1120 #ifdef CONFIG_OF
1121 static const struct of_device_id of_cmos_match[] = {
1122 {
1123 .compatible = "motorola,mc146818",
1124 },
1125 { },
1126 };
1127 MODULE_DEVICE_TABLE(of, of_cmos_match);
1128
1129 static __init void cmos_of_init(struct platform_device *pdev)
1130 {
1131 struct device_node *node = pdev->dev.of_node;
1132 struct rtc_time time;
1133 int ret;
1134 const __be32 *val;
1135
1136 if (!node)
1137 return;
1138
1139 val = of_get_property(node, "ctrl-reg", NULL);
1140 if (val)
1141 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1142
1143 val = of_get_property(node, "freq-reg", NULL);
1144 if (val)
1145 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1146
1147 get_rtc_time(&time);
1148 ret = rtc_valid_tm(&time);
1149 if (ret) {
1150 struct rtc_time def_time = {
1151 .tm_year = 1,
1152 .tm_mday = 1,
1153 };
1154 set_rtc_time(&def_time);
1155 }
1156 }
1157 #else
1158 static inline void cmos_of_init(struct platform_device *pdev) {}
1159 #endif
1160 /*----------------------------------------------------------------*/
1161
1162 /* Platform setup should have set up an RTC device, when PNP is
1163 * unavailable ... this could happen even on (older) PCs.
1164 */
1165
1166 static int __init cmos_platform_probe(struct platform_device *pdev)
1167 {
1168 struct resource *resource;
1169 int irq;
1170
1171 cmos_of_init(pdev);
1172 cmos_wake_setup(&pdev->dev);
1173
1174 if (RTC_IOMAPPED)
1175 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1176 else
1177 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1178 irq = platform_get_irq(pdev, 0);
1179 if (irq < 0)
1180 irq = -1;
1181
1182 return cmos_do_probe(&pdev->dev, resource, irq);
1183 }
1184
1185 static int __exit cmos_platform_remove(struct platform_device *pdev)
1186 {
1187 cmos_do_remove(&pdev->dev);
1188 return 0;
1189 }
1190
1191 static void cmos_platform_shutdown(struct platform_device *pdev)
1192 {
1193 struct device *dev = &pdev->dev;
1194 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1195
1196 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(dev))
1197 return;
1198
1199 cmos_do_shutdown(cmos->irq);
1200 }
1201
1202 /* work with hotplug and coldplug */
1203 MODULE_ALIAS("platform:rtc_cmos");
1204
1205 static struct platform_driver cmos_platform_driver = {
1206 .remove = __exit_p(cmos_platform_remove),
1207 .shutdown = cmos_platform_shutdown,
1208 .driver = {
1209 .name = driver_name,
1210 #ifdef CONFIG_PM
1211 .pm = &cmos_pm_ops,
1212 #endif
1213 .of_match_table = of_match_ptr(of_cmos_match),
1214 }
1215 };
1216
1217 #ifdef CONFIG_PNP
1218 static bool pnp_driver_registered;
1219 #endif
1220 static bool platform_driver_registered;
1221
1222 static int __init cmos_init(void)
1223 {
1224 int retval = 0;
1225
1226 #ifdef CONFIG_PNP
1227 retval = pnp_register_driver(&cmos_pnp_driver);
1228 if (retval == 0)
1229 pnp_driver_registered = true;
1230 #endif
1231
1232 if (!cmos_rtc.dev) {
1233 retval = platform_driver_probe(&cmos_platform_driver,
1234 cmos_platform_probe);
1235 if (retval == 0)
1236 platform_driver_registered = true;
1237 }
1238
1239 dmi_check_system(rtc_quirks);
1240
1241 if (retval == 0)
1242 return 0;
1243
1244 #ifdef CONFIG_PNP
1245 if (pnp_driver_registered)
1246 pnp_unregister_driver(&cmos_pnp_driver);
1247 #endif
1248 return retval;
1249 }
1250 module_init(cmos_init);
1251
1252 static void __exit cmos_exit(void)
1253 {
1254 #ifdef CONFIG_PNP
1255 if (pnp_driver_registered)
1256 pnp_unregister_driver(&cmos_pnp_driver);
1257 #endif
1258 if (platform_driver_registered)
1259 platform_driver_unregister(&cmos_platform_driver);
1260 }
1261 module_exit(cmos_exit);
1262
1263
1264 MODULE_AUTHOR("David Brownell");
1265 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1266 MODULE_LICENSE("GPL");
This page took 0.055963 seconds and 5 git commands to generate.