Merge remote-tracking branch 'asoc/topic/tlv320aic32x4' into asoc-next
[deliverable/linux.git] / drivers / rtc / rtc-stmp3xxx.c
1 /*
2 * Freescale STMP37XX/STMP378X Real Time Clock driver
3 *
4 * Copyright (c) 2007 Sigmatel, Inc.
5 * Peter Hartley, <peter.hartley@sigmatel.com>
6 *
7 * Copyright 2008 Freescale Semiconductor, Inc. All Rights Reserved.
8 * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
9 * Copyright 2011 Wolfram Sang, Pengutronix e.K.
10 */
11
12 /*
13 * The code contained herein is licensed under the GNU General Public
14 * License. You may obtain a copy of the GNU General Public License
15 * Version 2 or later at the following locations:
16 *
17 * http://www.opensource.org/licenses/gpl-license.html
18 * http://www.gnu.org/copyleft/gpl.html
19 */
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/io.h>
23 #include <linux/init.h>
24 #include <linux/platform_device.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/rtc.h>
28 #include <linux/slab.h>
29 #include <linux/of_device.h>
30 #include <linux/of.h>
31 #include <linux/stmp_device.h>
32 #include <linux/stmp3xxx_rtc_wdt.h>
33
34 #define STMP3XXX_RTC_CTRL 0x0
35 #define STMP3XXX_RTC_CTRL_ALARM_IRQ_EN 0x00000001
36 #define STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN 0x00000002
37 #define STMP3XXX_RTC_CTRL_ALARM_IRQ 0x00000004
38 #define STMP3XXX_RTC_CTRL_WATCHDOGEN 0x00000010
39
40 #define STMP3XXX_RTC_STAT 0x10
41 #define STMP3XXX_RTC_STAT_STALE_SHIFT 16
42 #define STMP3XXX_RTC_STAT_RTC_PRESENT 0x80000000
43 #define STMP3XXX_RTC_STAT_XTAL32000_PRESENT 0x10000000
44 #define STMP3XXX_RTC_STAT_XTAL32768_PRESENT 0x08000000
45
46 #define STMP3XXX_RTC_SECONDS 0x30
47
48 #define STMP3XXX_RTC_ALARM 0x40
49
50 #define STMP3XXX_RTC_WATCHDOG 0x50
51
52 #define STMP3XXX_RTC_PERSISTENT0 0x60
53 #define STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE (1 << 0)
54 #define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN (1 << 1)
55 #define STMP3XXX_RTC_PERSISTENT0_ALARM_EN (1 << 2)
56 #define STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP (1 << 4)
57 #define STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP (1 << 5)
58 #define STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ (1 << 6)
59 #define STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE (1 << 7)
60
61 #define STMP3XXX_RTC_PERSISTENT1 0x70
62 /* missing bitmask in headers */
63 #define STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER 0x80000000
64
65 struct stmp3xxx_rtc_data {
66 struct rtc_device *rtc;
67 void __iomem *io;
68 int irq_alarm;
69 };
70
71 #if IS_ENABLED(CONFIG_STMP3XXX_RTC_WATCHDOG)
72 /**
73 * stmp3xxx_wdt_set_timeout - configure the watchdog inside the STMP3xxx RTC
74 * @dev: the parent device of the watchdog (= the RTC)
75 * @timeout: the desired value for the timeout register of the watchdog.
76 * 0 disables the watchdog
77 *
78 * The watchdog needs one register and two bits which are in the RTC domain.
79 * To handle the resource conflict, the RTC driver will create another
80 * platform_device for the watchdog driver as a child of the RTC device.
81 * The watchdog driver is passed the below accessor function via platform_data
82 * to configure the watchdog. Locking is not needed because accessing SET/CLR
83 * registers is atomic.
84 */
85
86 static void stmp3xxx_wdt_set_timeout(struct device *dev, u32 timeout)
87 {
88 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
89
90 if (timeout) {
91 writel(timeout, rtc_data->io + STMP3XXX_RTC_WATCHDOG);
92 writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
93 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET);
94 writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
95 rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_SET);
96 } else {
97 writel(STMP3XXX_RTC_CTRL_WATCHDOGEN,
98 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
99 writel(STMP3XXX_RTC_PERSISTENT1_FORCE_UPDATER,
100 rtc_data->io + STMP3XXX_RTC_PERSISTENT1 + STMP_OFFSET_REG_CLR);
101 }
102 }
103
104 static struct stmp3xxx_wdt_pdata wdt_pdata = {
105 .wdt_set_timeout = stmp3xxx_wdt_set_timeout,
106 };
107
108 static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
109 {
110 struct platform_device *wdt_pdev =
111 platform_device_alloc("stmp3xxx_rtc_wdt", rtc_pdev->id);
112
113 if (wdt_pdev) {
114 wdt_pdev->dev.parent = &rtc_pdev->dev;
115 wdt_pdev->dev.platform_data = &wdt_pdata;
116 platform_device_add(wdt_pdev);
117 }
118 }
119 #else
120 static void stmp3xxx_wdt_register(struct platform_device *rtc_pdev)
121 {
122 }
123 #endif /* CONFIG_STMP3XXX_RTC_WATCHDOG */
124
125 static int stmp3xxx_wait_time(struct stmp3xxx_rtc_data *rtc_data)
126 {
127 int timeout = 5000; /* 3ms according to i.MX28 Ref Manual */
128 /*
129 * The i.MX28 Applications Processor Reference Manual, Rev. 1, 2010
130 * states:
131 * | The order in which registers are updated is
132 * | Persistent 0, 1, 2, 3, 4, 5, Alarm, Seconds.
133 * | (This list is in bitfield order, from LSB to MSB, as they would
134 * | appear in the STALE_REGS and NEW_REGS bitfields of the HW_RTC_STAT
135 * | register. For example, the Seconds register corresponds to
136 * | STALE_REGS or NEW_REGS containing 0x80.)
137 */
138 do {
139 if (!(readl(rtc_data->io + STMP3XXX_RTC_STAT) &
140 (0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)))
141 return 0;
142 udelay(1);
143 } while (--timeout > 0);
144 return (readl(rtc_data->io + STMP3XXX_RTC_STAT) &
145 (0x80 << STMP3XXX_RTC_STAT_STALE_SHIFT)) ? -ETIME : 0;
146 }
147
148 /* Time read/write */
149 static int stmp3xxx_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
150 {
151 int ret;
152 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
153
154 ret = stmp3xxx_wait_time(rtc_data);
155 if (ret)
156 return ret;
157
158 rtc_time_to_tm(readl(rtc_data->io + STMP3XXX_RTC_SECONDS), rtc_tm);
159 return 0;
160 }
161
162 static int stmp3xxx_rtc_set_mmss(struct device *dev, unsigned long t)
163 {
164 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
165
166 writel(t, rtc_data->io + STMP3XXX_RTC_SECONDS);
167 return stmp3xxx_wait_time(rtc_data);
168 }
169
170 /* interrupt(s) handler */
171 static irqreturn_t stmp3xxx_rtc_interrupt(int irq, void *dev_id)
172 {
173 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev_id);
174 u32 status = readl(rtc_data->io + STMP3XXX_RTC_CTRL);
175
176 if (status & STMP3XXX_RTC_CTRL_ALARM_IRQ) {
177 writel(STMP3XXX_RTC_CTRL_ALARM_IRQ,
178 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
179 rtc_update_irq(rtc_data->rtc, 1, RTC_AF | RTC_IRQF);
180 return IRQ_HANDLED;
181 }
182
183 return IRQ_NONE;
184 }
185
186 static int stmp3xxx_alarm_irq_enable(struct device *dev, unsigned int enabled)
187 {
188 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
189
190 if (enabled) {
191 writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
192 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
193 rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
194 STMP_OFFSET_REG_SET);
195 writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
196 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_SET);
197 } else {
198 writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
199 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN,
200 rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
201 STMP_OFFSET_REG_CLR);
202 writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
203 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
204 }
205 return 0;
206 }
207
208 static int stmp3xxx_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
209 {
210 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
211
212 rtc_time_to_tm(readl(rtc_data->io + STMP3XXX_RTC_ALARM), &alm->time);
213 return 0;
214 }
215
216 static int stmp3xxx_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
217 {
218 unsigned long t;
219 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
220
221 rtc_tm_to_time(&alm->time, &t);
222 writel(t, rtc_data->io + STMP3XXX_RTC_ALARM);
223
224 stmp3xxx_alarm_irq_enable(dev, alm->enabled);
225
226 return 0;
227 }
228
229 static struct rtc_class_ops stmp3xxx_rtc_ops = {
230 .alarm_irq_enable =
231 stmp3xxx_alarm_irq_enable,
232 .read_time = stmp3xxx_rtc_gettime,
233 .set_mmss = stmp3xxx_rtc_set_mmss,
234 .read_alarm = stmp3xxx_rtc_read_alarm,
235 .set_alarm = stmp3xxx_rtc_set_alarm,
236 };
237
238 static int stmp3xxx_rtc_remove(struct platform_device *pdev)
239 {
240 struct stmp3xxx_rtc_data *rtc_data = platform_get_drvdata(pdev);
241
242 if (!rtc_data)
243 return 0;
244
245 writel(STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
246 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
247
248 return 0;
249 }
250
251 static int stmp3xxx_rtc_probe(struct platform_device *pdev)
252 {
253 struct stmp3xxx_rtc_data *rtc_data;
254 struct resource *r;
255 u32 rtc_stat;
256 u32 pers0_set, pers0_clr;
257 u32 crystalfreq = 0;
258 int err;
259
260 rtc_data = devm_kzalloc(&pdev->dev, sizeof(*rtc_data), GFP_KERNEL);
261 if (!rtc_data)
262 return -ENOMEM;
263
264 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
265 if (!r) {
266 dev_err(&pdev->dev, "failed to get resource\n");
267 return -ENXIO;
268 }
269
270 rtc_data->io = devm_ioremap(&pdev->dev, r->start, resource_size(r));
271 if (!rtc_data->io) {
272 dev_err(&pdev->dev, "ioremap failed\n");
273 return -EIO;
274 }
275
276 rtc_data->irq_alarm = platform_get_irq(pdev, 0);
277
278 rtc_stat = readl(rtc_data->io + STMP3XXX_RTC_STAT);
279 if (!(rtc_stat & STMP3XXX_RTC_STAT_RTC_PRESENT)) {
280 dev_err(&pdev->dev, "no device onboard\n");
281 return -ENODEV;
282 }
283
284 platform_set_drvdata(pdev, rtc_data);
285
286 err = stmp_reset_block(rtc_data->io);
287 if (err) {
288 dev_err(&pdev->dev, "stmp_reset_block failed: %d\n", err);
289 return err;
290 }
291
292 /*
293 * Obviously the rtc needs a clock input to be able to run.
294 * This clock can be provided by an external 32k crystal. If that one is
295 * missing XTAL must not be disabled in suspend which consumes a
296 * lot of power. Normally the presence and exact frequency (supported
297 * are 32000 Hz and 32768 Hz) is detectable from fuses, but as reality
298 * proves these fuses are not blown correctly on all machines, so the
299 * frequency can be overridden in the device tree.
300 */
301 if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32000_PRESENT)
302 crystalfreq = 32000;
303 else if (rtc_stat & STMP3XXX_RTC_STAT_XTAL32768_PRESENT)
304 crystalfreq = 32768;
305
306 of_property_read_u32(pdev->dev.of_node, "stmp,crystal-freq",
307 &crystalfreq);
308
309 switch (crystalfreq) {
310 case 32000:
311 /* keep 32kHz crystal running in low-power mode */
312 pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ |
313 STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
314 STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
315 pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP;
316 break;
317 case 32768:
318 /* keep 32.768kHz crystal running in low-power mode */
319 pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
320 STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
321 pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP |
322 STMP3XXX_RTC_PERSISTENT0_XTAL32_FREQ;
323 break;
324 default:
325 dev_warn(&pdev->dev,
326 "invalid crystal-freq specified in device-tree. Assuming no crystal\n");
327 /* fall-through */
328 case 0:
329 /* keep XTAL on in low-power mode */
330 pers0_set = STMP3XXX_RTC_PERSISTENT0_XTAL24MHZ_PWRUP;
331 pers0_clr = STMP3XXX_RTC_PERSISTENT0_XTAL32KHZ_PWRUP |
332 STMP3XXX_RTC_PERSISTENT0_CLOCKSOURCE;
333 }
334
335 writel(pers0_set, rtc_data->io + STMP3XXX_RTC_PERSISTENT0 +
336 STMP_OFFSET_REG_SET);
337
338 writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
339 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
340 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE | pers0_clr,
341 rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR);
342
343 writel(STMP3XXX_RTC_CTRL_ONEMSEC_IRQ_EN |
344 STMP3XXX_RTC_CTRL_ALARM_IRQ_EN,
345 rtc_data->io + STMP3XXX_RTC_CTRL + STMP_OFFSET_REG_CLR);
346
347 rtc_data->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
348 &stmp3xxx_rtc_ops, THIS_MODULE);
349 if (IS_ERR(rtc_data->rtc))
350 return PTR_ERR(rtc_data->rtc);
351
352 err = devm_request_irq(&pdev->dev, rtc_data->irq_alarm,
353 stmp3xxx_rtc_interrupt, 0, "RTC alarm", &pdev->dev);
354 if (err) {
355 dev_err(&pdev->dev, "Cannot claim IRQ%d\n",
356 rtc_data->irq_alarm);
357 return err;
358 }
359
360 stmp3xxx_wdt_register(pdev);
361 return 0;
362 }
363
364 #ifdef CONFIG_PM_SLEEP
365 static int stmp3xxx_rtc_suspend(struct device *dev)
366 {
367 return 0;
368 }
369
370 static int stmp3xxx_rtc_resume(struct device *dev)
371 {
372 struct stmp3xxx_rtc_data *rtc_data = dev_get_drvdata(dev);
373
374 stmp_reset_block(rtc_data->io);
375 writel(STMP3XXX_RTC_PERSISTENT0_ALARM_EN |
376 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE_EN |
377 STMP3XXX_RTC_PERSISTENT0_ALARM_WAKE,
378 rtc_data->io + STMP3XXX_RTC_PERSISTENT0 + STMP_OFFSET_REG_CLR);
379 return 0;
380 }
381 #endif
382
383 static SIMPLE_DEV_PM_OPS(stmp3xxx_rtc_pm_ops, stmp3xxx_rtc_suspend,
384 stmp3xxx_rtc_resume);
385
386 static const struct of_device_id rtc_dt_ids[] = {
387 { .compatible = "fsl,stmp3xxx-rtc", },
388 { /* sentinel */ }
389 };
390 MODULE_DEVICE_TABLE(of, rtc_dt_ids);
391
392 static struct platform_driver stmp3xxx_rtcdrv = {
393 .probe = stmp3xxx_rtc_probe,
394 .remove = stmp3xxx_rtc_remove,
395 .driver = {
396 .name = "stmp3xxx-rtc",
397 .pm = &stmp3xxx_rtc_pm_ops,
398 .of_match_table = rtc_dt_ids,
399 },
400 };
401
402 module_platform_driver(stmp3xxx_rtcdrv);
403
404 MODULE_DESCRIPTION("STMP3xxx RTC Driver");
405 MODULE_AUTHOR("dmitry pervushin <dpervushin@embeddedalley.com> and "
406 "Wolfram Sang <w.sang@pengutronix.de>");
407 MODULE_LICENSE("GPL");
This page took 0.039657 seconds and 5 git commands to generate.