Merge branch 'lro'
[deliverable/linux.git] / drivers / s390 / crypto / z90main.c
1 /*
2 * linux/drivers/s390/crypto/z90main.c
3 *
4 * z90crypt 1.3.2
5 *
6 * Copyright (C) 2001, 2004 IBM Corporation
7 * Author(s): Robert Burroughs (burrough@us.ibm.com)
8 * Eric Rossman (edrossma@us.ibm.com)
9 *
10 * Hotplug & misc device support: Jochen Roehrig (roehrig@de.ibm.com)
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26
27 #include <asm/uaccess.h> // copy_(from|to)_user
28 #include <linux/compat.h>
29 #include <linux/compiler.h>
30 #include <linux/delay.h> // mdelay
31 #include <linux/init.h>
32 #include <linux/interrupt.h> // for tasklets
33 #include <linux/miscdevice.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/proc_fs.h>
37 #include <linux/syscalls.h>
38 #include "z90crypt.h"
39 #include "z90common.h"
40
41 /**
42 * Defaults that may be modified.
43 */
44
45 /**
46 * You can specify a different minor at compile time.
47 */
48 #ifndef Z90CRYPT_MINOR
49 #define Z90CRYPT_MINOR MISC_DYNAMIC_MINOR
50 #endif
51
52 /**
53 * You can specify a different domain at compile time or on the insmod
54 * command line.
55 */
56 #ifndef DOMAIN_INDEX
57 #define DOMAIN_INDEX -1
58 #endif
59
60 /**
61 * This is the name under which the device is registered in /proc/modules.
62 */
63 #define REG_NAME "z90crypt"
64
65 /**
66 * Cleanup should run every CLEANUPTIME seconds and should clean up requests
67 * older than CLEANUPTIME seconds in the past.
68 */
69 #ifndef CLEANUPTIME
70 #define CLEANUPTIME 15
71 #endif
72
73 /**
74 * Config should run every CONFIGTIME seconds
75 */
76 #ifndef CONFIGTIME
77 #define CONFIGTIME 30
78 #endif
79
80 /**
81 * The first execution of the config task should take place
82 * immediately after initialization
83 */
84 #ifndef INITIAL_CONFIGTIME
85 #define INITIAL_CONFIGTIME 1
86 #endif
87
88 /**
89 * Reader should run every READERTIME milliseconds
90 * With the 100Hz patch for s390, z90crypt can lock the system solid while
91 * under heavy load. We'll try to avoid that.
92 */
93 #ifndef READERTIME
94 #if HZ > 1000
95 #define READERTIME 2
96 #else
97 #define READERTIME 10
98 #endif
99 #endif
100
101 /**
102 * turn long device array index into device pointer
103 */
104 #define LONG2DEVPTR(ndx) (z90crypt.device_p[(ndx)])
105
106 /**
107 * turn short device array index into long device array index
108 */
109 #define SHRT2LONG(ndx) (z90crypt.overall_device_x.device_index[(ndx)])
110
111 /**
112 * turn short device array index into device pointer
113 */
114 #define SHRT2DEVPTR(ndx) LONG2DEVPTR(SHRT2LONG(ndx))
115
116 /**
117 * Status for a work-element
118 */
119 #define STAT_DEFAULT 0x00 // request has not been processed
120
121 #define STAT_ROUTED 0x80 // bit 7: requests get routed to specific device
122 // else, device is determined each write
123 #define STAT_FAILED 0x40 // bit 6: this bit is set if the request failed
124 // before being sent to the hardware.
125 #define STAT_WRITTEN 0x30 // bits 5-4: work to be done, not sent to device
126 // 0x20 // UNUSED state
127 #define STAT_READPEND 0x10 // bits 5-4: work done, we're returning data now
128 #define STAT_NOWORK 0x00 // bits off: no work on any queue
129 #define STAT_RDWRMASK 0x30 // mask for bits 5-4
130
131 /**
132 * Macros to check the status RDWRMASK
133 */
134 #define CHK_RDWRMASK(statbyte) ((statbyte) & STAT_RDWRMASK)
135 #define SET_RDWRMASK(statbyte, newval) \
136 {(statbyte) &= ~STAT_RDWRMASK; (statbyte) |= newval;}
137
138 /**
139 * Audit Trail. Progress of a Work element
140 * audit[0]: Unless noted otherwise, these bits are all set by the process
141 */
142 #define FP_COPYFROM 0x80 // Caller's buffer has been copied to work element
143 #define FP_BUFFREQ 0x40 // Low Level buffer requested
144 #define FP_BUFFGOT 0x20 // Low Level buffer obtained
145 #define FP_SENT 0x10 // Work element sent to a crypto device
146 // (may be set by process or by reader task)
147 #define FP_PENDING 0x08 // Work element placed on pending queue
148 // (may be set by process or by reader task)
149 #define FP_REQUEST 0x04 // Work element placed on request queue
150 #define FP_ASLEEP 0x02 // Work element about to sleep
151 #define FP_AWAKE 0x01 // Work element has been awakened
152
153 /**
154 * audit[1]: These bits are set by the reader task and/or the cleanup task
155 */
156 #define FP_NOTPENDING 0x80 // Work element removed from pending queue
157 #define FP_AWAKENING 0x40 // Caller about to be awakened
158 #define FP_TIMEDOUT 0x20 // Caller timed out
159 #define FP_RESPSIZESET 0x10 // Response size copied to work element
160 #define FP_RESPADDRCOPIED 0x08 // Response address copied to work element
161 #define FP_RESPBUFFCOPIED 0x04 // Response buffer copied to work element
162 #define FP_REMREQUEST 0x02 // Work element removed from request queue
163 #define FP_SIGNALED 0x01 // Work element was awakened by a signal
164
165 /**
166 * audit[2]: unused
167 */
168
169 /**
170 * state of the file handle in private_data.status
171 */
172 #define STAT_OPEN 0
173 #define STAT_CLOSED 1
174
175 /**
176 * PID() expands to the process ID of the current process
177 */
178 #define PID() (current->pid)
179
180 /**
181 * Selected Constants. The number of APs and the number of devices
182 */
183 #ifndef Z90CRYPT_NUM_APS
184 #define Z90CRYPT_NUM_APS 64
185 #endif
186 #ifndef Z90CRYPT_NUM_DEVS
187 #define Z90CRYPT_NUM_DEVS Z90CRYPT_NUM_APS
188 #endif
189
190 /**
191 * Buffer size for receiving responses. The maximum Response Size
192 * is actually the maximum request size, since in an error condition
193 * the request itself may be returned unchanged.
194 */
195 #define MAX_RESPONSE_SIZE 0x0000077C
196
197 /**
198 * A count and status-byte mask
199 */
200 struct status {
201 int st_count; // # of enabled devices
202 int disabled_count; // # of disabled devices
203 int user_disabled_count; // # of devices disabled via proc fs
204 unsigned char st_mask[Z90CRYPT_NUM_APS]; // current status mask
205 };
206
207 /**
208 * The array of device indexes is a mechanism for fast indexing into
209 * a long (and sparse) array. For instance, if APs 3, 9 and 47 are
210 * installed, z90CDeviceIndex[0] is 3, z90CDeviceIndex[1] is 9, and
211 * z90CDeviceIndex[2] is 47.
212 */
213 struct device_x {
214 int device_index[Z90CRYPT_NUM_DEVS];
215 };
216
217 /**
218 * All devices are arranged in a single array: 64 APs
219 */
220 struct device {
221 int dev_type; // PCICA, PCICC, PCIXCC_MCL2,
222 // PCIXCC_MCL3, CEX2C, CEX2A
223 enum devstat dev_stat; // current device status
224 int dev_self_x; // Index in array
225 int disabled; // Set when device is in error
226 int user_disabled; // Set when device is disabled by user
227 int dev_q_depth; // q depth
228 unsigned char * dev_resp_p; // Response buffer address
229 int dev_resp_l; // Response Buffer length
230 int dev_caller_count; // Number of callers
231 int dev_total_req_cnt; // # requests for device since load
232 struct list_head dev_caller_list; // List of callers
233 };
234
235 /**
236 * There's a struct status and a struct device_x for each device type.
237 */
238 struct hdware_block {
239 struct status hdware_mask;
240 struct status type_mask[Z90CRYPT_NUM_TYPES];
241 struct device_x type_x_addr[Z90CRYPT_NUM_TYPES];
242 unsigned char device_type_array[Z90CRYPT_NUM_APS];
243 };
244
245 /**
246 * z90crypt is the topmost data structure in the hierarchy.
247 */
248 struct z90crypt {
249 int max_count; // Nr of possible crypto devices
250 struct status mask;
251 int q_depth_array[Z90CRYPT_NUM_DEVS];
252 int dev_type_array[Z90CRYPT_NUM_DEVS];
253 struct device_x overall_device_x; // array device indexes
254 struct device * device_p[Z90CRYPT_NUM_DEVS];
255 int terminating;
256 int domain_established;// TRUE: domain has been found
257 int cdx; // Crypto Domain Index
258 int len; // Length of this data structure
259 struct hdware_block *hdware_info;
260 };
261
262 /**
263 * An array of these structures is pointed to from dev_caller
264 * The length of the array depends on the device type. For APs,
265 * there are 8.
266 *
267 * The caller buffer is allocated to the user at OPEN. At WRITE,
268 * it contains the request; at READ, the response. The function
269 * send_to_crypto_device converts the request to device-dependent
270 * form and use the caller's OPEN-allocated buffer for the response.
271 *
272 * For the contents of caller_dev_dep_req and caller_dev_dep_req_p
273 * because that points to it, see the discussion in z90hardware.c.
274 * Search for "extended request message block".
275 */
276 struct caller {
277 int caller_buf_l; // length of original request
278 unsigned char * caller_buf_p; // Original request on WRITE
279 int caller_dev_dep_req_l; // len device dependent request
280 unsigned char * caller_dev_dep_req_p; // Device dependent form
281 unsigned char caller_id[8]; // caller-supplied message id
282 struct list_head caller_liste;
283 unsigned char caller_dev_dep_req[MAX_RESPONSE_SIZE];
284 };
285
286 /**
287 * Function prototypes from z90hardware.c
288 */
289 enum hdstat query_online(int deviceNr, int cdx, int resetNr, int *q_depth,
290 int *dev_type);
291 enum devstat reset_device(int deviceNr, int cdx, int resetNr);
292 enum devstat send_to_AP(int dev_nr, int cdx, int msg_len, unsigned char *msg_ext);
293 enum devstat receive_from_AP(int dev_nr, int cdx, int resplen,
294 unsigned char *resp, unsigned char *psmid);
295 int convert_request(unsigned char *buffer, int func, unsigned short function,
296 int cdx, int dev_type, int *msg_l_p, unsigned char *msg_p);
297 int convert_response(unsigned char *response, unsigned char *buffer,
298 int *respbufflen_p, unsigned char *resp_buff);
299
300 /**
301 * Low level function prototypes
302 */
303 static int create_z90crypt(int *cdx_p);
304 static int refresh_z90crypt(int *cdx_p);
305 static int find_crypto_devices(struct status *deviceMask);
306 static int create_crypto_device(int index);
307 static int destroy_crypto_device(int index);
308 static void destroy_z90crypt(void);
309 static int refresh_index_array(struct status *status_str,
310 struct device_x *index_array);
311 static int probe_device_type(struct device *devPtr);
312 static int probe_PCIXCC_type(struct device *devPtr);
313
314 /**
315 * proc fs definitions
316 */
317 static struct proc_dir_entry *z90crypt_entry;
318
319 /**
320 * data structures
321 */
322
323 /**
324 * work_element.opener points back to this structure
325 */
326 struct priv_data {
327 pid_t opener_pid;
328 unsigned char status; // 0: open 1: closed
329 };
330
331 /**
332 * A work element is allocated for each request
333 */
334 struct work_element {
335 struct priv_data *priv_data;
336 pid_t pid;
337 int devindex; // index of device processing this w_e
338 // (If request did not specify device,
339 // -1 until placed onto a queue)
340 int devtype;
341 struct list_head liste; // used for requestq and pendingq
342 char buffer[128]; // local copy of user request
343 int buff_size; // size of the buffer for the request
344 char resp_buff[RESPBUFFSIZE];
345 int resp_buff_size;
346 char __user * resp_addr; // address of response in user space
347 unsigned int funccode; // function code of request
348 wait_queue_head_t waitq;
349 unsigned long requestsent; // time at which the request was sent
350 atomic_t alarmrung; // wake-up signal
351 unsigned char caller_id[8]; // pid + counter, for this w_e
352 unsigned char status[1]; // bits to mark status of the request
353 unsigned char audit[3]; // record of work element's progress
354 unsigned char * requestptr; // address of request buffer
355 int retcode; // return code of request
356 };
357
358 /**
359 * High level function prototypes
360 */
361 static int z90crypt_open(struct inode *, struct file *);
362 static int z90crypt_release(struct inode *, struct file *);
363 static ssize_t z90crypt_read(struct file *, char __user *, size_t, loff_t *);
364 static ssize_t z90crypt_write(struct file *, const char __user *,
365 size_t, loff_t *);
366 static long z90crypt_unlocked_ioctl(struct file *, unsigned int, unsigned long);
367 static long z90crypt_compat_ioctl(struct file *, unsigned int, unsigned long);
368
369 static void z90crypt_reader_task(unsigned long);
370 static void z90crypt_schedule_reader_task(unsigned long);
371 static void z90crypt_config_task(unsigned long);
372 static void z90crypt_cleanup_task(unsigned long);
373
374 static int z90crypt_status(char *, char **, off_t, int, int *, void *);
375 static int z90crypt_status_write(struct file *, const char __user *,
376 unsigned long, void *);
377
378 /**
379 * Storage allocated at initialization and used throughout the life of
380 * this insmod
381 */
382 static int domain = DOMAIN_INDEX;
383 static struct z90crypt z90crypt;
384 static int quiesce_z90crypt;
385 static spinlock_t queuespinlock;
386 static struct list_head request_list;
387 static int requestq_count;
388 static struct list_head pending_list;
389 static int pendingq_count;
390
391 static struct tasklet_struct reader_tasklet;
392 static struct timer_list reader_timer;
393 static struct timer_list config_timer;
394 static struct timer_list cleanup_timer;
395 static atomic_t total_open;
396 static atomic_t z90crypt_step;
397
398 static struct file_operations z90crypt_fops = {
399 .owner = THIS_MODULE,
400 .read = z90crypt_read,
401 .write = z90crypt_write,
402 .unlocked_ioctl = z90crypt_unlocked_ioctl,
403 #ifdef CONFIG_COMPAT
404 .compat_ioctl = z90crypt_compat_ioctl,
405 #endif
406 .open = z90crypt_open,
407 .release = z90crypt_release
408 };
409
410 static struct miscdevice z90crypt_misc_device = {
411 .minor = Z90CRYPT_MINOR,
412 .name = DEV_NAME,
413 .fops = &z90crypt_fops,
414 .devfs_name = DEV_NAME
415 };
416
417 /**
418 * Documentation values.
419 */
420 MODULE_AUTHOR("zSeries Linux Crypto Team: Robert H. Burroughs, Eric D. Rossman"
421 "and Jochen Roehrig");
422 MODULE_DESCRIPTION("zSeries Linux Cryptographic Coprocessor device driver, "
423 "Copyright 2001, 2005 IBM Corporation");
424 MODULE_LICENSE("GPL");
425 module_param(domain, int, 0);
426 MODULE_PARM_DESC(domain, "domain index for device");
427
428 #ifdef CONFIG_COMPAT
429 /**
430 * ioctl32 conversion routines
431 */
432 struct ica_rsa_modexpo_32 { // For 32-bit callers
433 compat_uptr_t inputdata;
434 unsigned int inputdatalength;
435 compat_uptr_t outputdata;
436 unsigned int outputdatalength;
437 compat_uptr_t b_key;
438 compat_uptr_t n_modulus;
439 };
440
441 static long
442 trans_modexpo32(struct file *filp, unsigned int cmd, unsigned long arg)
443 {
444 struct ica_rsa_modexpo_32 __user *mex32u = compat_ptr(arg);
445 struct ica_rsa_modexpo_32 mex32k;
446 struct ica_rsa_modexpo __user *mex64;
447 long ret = 0;
448 unsigned int i;
449
450 if (!access_ok(VERIFY_WRITE, mex32u, sizeof(struct ica_rsa_modexpo_32)))
451 return -EFAULT;
452 mex64 = compat_alloc_user_space(sizeof(struct ica_rsa_modexpo));
453 if (!access_ok(VERIFY_WRITE, mex64, sizeof(struct ica_rsa_modexpo)))
454 return -EFAULT;
455 if (copy_from_user(&mex32k, mex32u, sizeof(struct ica_rsa_modexpo_32)))
456 return -EFAULT;
457 if (__put_user(compat_ptr(mex32k.inputdata), &mex64->inputdata) ||
458 __put_user(mex32k.inputdatalength, &mex64->inputdatalength) ||
459 __put_user(compat_ptr(mex32k.outputdata), &mex64->outputdata) ||
460 __put_user(mex32k.outputdatalength, &mex64->outputdatalength) ||
461 __put_user(compat_ptr(mex32k.b_key), &mex64->b_key) ||
462 __put_user(compat_ptr(mex32k.n_modulus), &mex64->n_modulus))
463 return -EFAULT;
464 ret = z90crypt_unlocked_ioctl(filp, cmd, (unsigned long)mex64);
465 if (!ret)
466 if (__get_user(i, &mex64->outputdatalength) ||
467 __put_user(i, &mex32u->outputdatalength))
468 ret = -EFAULT;
469 return ret;
470 }
471
472 struct ica_rsa_modexpo_crt_32 { // For 32-bit callers
473 compat_uptr_t inputdata;
474 unsigned int inputdatalength;
475 compat_uptr_t outputdata;
476 unsigned int outputdatalength;
477 compat_uptr_t bp_key;
478 compat_uptr_t bq_key;
479 compat_uptr_t np_prime;
480 compat_uptr_t nq_prime;
481 compat_uptr_t u_mult_inv;
482 };
483
484 static long
485 trans_modexpo_crt32(struct file *filp, unsigned int cmd, unsigned long arg)
486 {
487 struct ica_rsa_modexpo_crt_32 __user *crt32u = compat_ptr(arg);
488 struct ica_rsa_modexpo_crt_32 crt32k;
489 struct ica_rsa_modexpo_crt __user *crt64;
490 long ret = 0;
491 unsigned int i;
492
493 if (!access_ok(VERIFY_WRITE, crt32u,
494 sizeof(struct ica_rsa_modexpo_crt_32)))
495 return -EFAULT;
496 crt64 = compat_alloc_user_space(sizeof(struct ica_rsa_modexpo_crt));
497 if (!access_ok(VERIFY_WRITE, crt64, sizeof(struct ica_rsa_modexpo_crt)))
498 return -EFAULT;
499 if (copy_from_user(&crt32k, crt32u,
500 sizeof(struct ica_rsa_modexpo_crt_32)))
501 return -EFAULT;
502 if (__put_user(compat_ptr(crt32k.inputdata), &crt64->inputdata) ||
503 __put_user(crt32k.inputdatalength, &crt64->inputdatalength) ||
504 __put_user(compat_ptr(crt32k.outputdata), &crt64->outputdata) ||
505 __put_user(crt32k.outputdatalength, &crt64->outputdatalength) ||
506 __put_user(compat_ptr(crt32k.bp_key), &crt64->bp_key) ||
507 __put_user(compat_ptr(crt32k.bq_key), &crt64->bq_key) ||
508 __put_user(compat_ptr(crt32k.np_prime), &crt64->np_prime) ||
509 __put_user(compat_ptr(crt32k.nq_prime), &crt64->nq_prime) ||
510 __put_user(compat_ptr(crt32k.u_mult_inv), &crt64->u_mult_inv))
511 return -EFAULT;
512 ret = z90crypt_unlocked_ioctl(filp, cmd, (unsigned long)crt64);
513 if (!ret)
514 if (__get_user(i, &crt64->outputdatalength) ||
515 __put_user(i, &crt32u->outputdatalength))
516 ret = -EFAULT;
517 return ret;
518 }
519
520 static long
521 z90crypt_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
522 {
523 switch (cmd) {
524 case ICAZ90STATUS:
525 case Z90QUIESCE:
526 case Z90STAT_TOTALCOUNT:
527 case Z90STAT_PCICACOUNT:
528 case Z90STAT_PCICCCOUNT:
529 case Z90STAT_PCIXCCCOUNT:
530 case Z90STAT_PCIXCCMCL2COUNT:
531 case Z90STAT_PCIXCCMCL3COUNT:
532 case Z90STAT_CEX2CCOUNT:
533 case Z90STAT_REQUESTQ_COUNT:
534 case Z90STAT_PENDINGQ_COUNT:
535 case Z90STAT_TOTALOPEN_COUNT:
536 case Z90STAT_DOMAIN_INDEX:
537 case Z90STAT_STATUS_MASK:
538 case Z90STAT_QDEPTH_MASK:
539 case Z90STAT_PERDEV_REQCNT:
540 return z90crypt_unlocked_ioctl(filp, cmd, arg);
541 case ICARSAMODEXPO:
542 return trans_modexpo32(filp, cmd, arg);
543 case ICARSACRT:
544 return trans_modexpo_crt32(filp, cmd, arg);
545 default:
546 return -ENOIOCTLCMD;
547 }
548 }
549 #endif
550
551 /**
552 * The module initialization code.
553 */
554 static int __init
555 z90crypt_init_module(void)
556 {
557 int result, nresult;
558 struct proc_dir_entry *entry;
559
560 PDEBUG("PID %d\n", PID());
561
562 if ((domain < -1) || (domain > 15)) {
563 PRINTKW("Invalid param: domain = %d. Not loading.\n", domain);
564 return -EINVAL;
565 }
566
567 /* Register as misc device with given minor (or get a dynamic one). */
568 result = misc_register(&z90crypt_misc_device);
569 if (result < 0) {
570 PRINTKW(KERN_ERR "misc_register (minor %d) failed with %d\n",
571 z90crypt_misc_device.minor, result);
572 return result;
573 }
574
575 PDEBUG("Registered " DEV_NAME " with result %d\n", result);
576
577 result = create_z90crypt(&domain);
578 if (result != 0) {
579 PRINTKW("create_z90crypt (domain index %d) failed with %d.\n",
580 domain, result);
581 result = -ENOMEM;
582 goto init_module_cleanup;
583 }
584
585 if (result == 0) {
586 PRINTKN("Version %d.%d.%d loaded, built on %s %s\n",
587 z90crypt_VERSION, z90crypt_RELEASE, z90crypt_VARIANT,
588 __DATE__, __TIME__);
589 PDEBUG("create_z90crypt (domain index %d) successful.\n",
590 domain);
591 } else
592 PRINTK("No devices at startup\n");
593
594 /* Initialize globals. */
595 spin_lock_init(&queuespinlock);
596
597 INIT_LIST_HEAD(&pending_list);
598 pendingq_count = 0;
599
600 INIT_LIST_HEAD(&request_list);
601 requestq_count = 0;
602
603 quiesce_z90crypt = 0;
604
605 atomic_set(&total_open, 0);
606 atomic_set(&z90crypt_step, 0);
607
608 /* Set up the cleanup task. */
609 init_timer(&cleanup_timer);
610 cleanup_timer.function = z90crypt_cleanup_task;
611 cleanup_timer.data = 0;
612 cleanup_timer.expires = jiffies + (CLEANUPTIME * HZ);
613 add_timer(&cleanup_timer);
614
615 /* Set up the proc file system */
616 entry = create_proc_entry("driver/z90crypt", 0644, 0);
617 if (entry) {
618 entry->nlink = 1;
619 entry->data = 0;
620 entry->read_proc = z90crypt_status;
621 entry->write_proc = z90crypt_status_write;
622 }
623 else
624 PRINTK("Couldn't create z90crypt proc entry\n");
625 z90crypt_entry = entry;
626
627 /* Set up the configuration task. */
628 init_timer(&config_timer);
629 config_timer.function = z90crypt_config_task;
630 config_timer.data = 0;
631 config_timer.expires = jiffies + (INITIAL_CONFIGTIME * HZ);
632 add_timer(&config_timer);
633
634 /* Set up the reader task */
635 tasklet_init(&reader_tasklet, z90crypt_reader_task, 0);
636 init_timer(&reader_timer);
637 reader_timer.function = z90crypt_schedule_reader_task;
638 reader_timer.data = 0;
639 reader_timer.expires = jiffies + (READERTIME * HZ / 1000);
640 add_timer(&reader_timer);
641
642 return 0; // success
643
644 init_module_cleanup:
645 if ((nresult = misc_deregister(&z90crypt_misc_device)))
646 PRINTK("misc_deregister failed with %d.\n", nresult);
647 else
648 PDEBUG("misc_deregister successful.\n");
649
650 return result; // failure
651 }
652
653 /**
654 * The module termination code
655 */
656 static void __exit
657 z90crypt_cleanup_module(void)
658 {
659 int nresult;
660
661 PDEBUG("PID %d\n", PID());
662
663 remove_proc_entry("driver/z90crypt", 0);
664
665 if ((nresult = misc_deregister(&z90crypt_misc_device)))
666 PRINTK("misc_deregister failed with %d.\n", nresult);
667 else
668 PDEBUG("misc_deregister successful.\n");
669
670 /* Remove the tasks */
671 tasklet_kill(&reader_tasklet);
672 del_timer(&reader_timer);
673 del_timer(&config_timer);
674 del_timer(&cleanup_timer);
675
676 destroy_z90crypt();
677
678 PRINTKN("Unloaded.\n");
679 }
680
681 /**
682 * Functions running under a process id
683 *
684 * The I/O functions:
685 * z90crypt_open
686 * z90crypt_release
687 * z90crypt_read
688 * z90crypt_write
689 * z90crypt_unlocked_ioctl
690 * z90crypt_status
691 * z90crypt_status_write
692 * disable_card
693 * enable_card
694 *
695 * Helper functions:
696 * z90crypt_rsa
697 * z90crypt_prepare
698 * z90crypt_send
699 * z90crypt_process_results
700 *
701 */
702 static int
703 z90crypt_open(struct inode *inode, struct file *filp)
704 {
705 struct priv_data *private_data_p;
706
707 if (quiesce_z90crypt)
708 return -EQUIESCE;
709
710 private_data_p = kmalloc(sizeof(struct priv_data), GFP_KERNEL);
711 if (!private_data_p) {
712 PRINTK("Memory allocate failed\n");
713 return -ENOMEM;
714 }
715
716 memset((void *)private_data_p, 0, sizeof(struct priv_data));
717 private_data_p->status = STAT_OPEN;
718 private_data_p->opener_pid = PID();
719 filp->private_data = private_data_p;
720 atomic_inc(&total_open);
721
722 return 0;
723 }
724
725 static int
726 z90crypt_release(struct inode *inode, struct file *filp)
727 {
728 struct priv_data *private_data_p = filp->private_data;
729
730 PDEBUG("PID %d (filp %p)\n", PID(), filp);
731
732 private_data_p->status = STAT_CLOSED;
733 memset(private_data_p, 0, sizeof(struct priv_data));
734 kfree(private_data_p);
735 atomic_dec(&total_open);
736
737 return 0;
738 }
739
740 /*
741 * there are two read functions, of which compile options will choose one
742 * without USE_GET_RANDOM_BYTES
743 * => read() always returns -EPERM;
744 * otherwise
745 * => read() uses get_random_bytes() kernel function
746 */
747 #ifndef USE_GET_RANDOM_BYTES
748 /**
749 * z90crypt_read will not be supported beyond z90crypt 1.3.1
750 */
751 static ssize_t
752 z90crypt_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
753 {
754 PDEBUG("filp %p (PID %d)\n", filp, PID());
755 return -EPERM;
756 }
757 #else // we want to use get_random_bytes
758 /**
759 * read() just returns a string of random bytes. Since we have no way
760 * to generate these cryptographically, we just execute get_random_bytes
761 * for the length specified.
762 */
763 #include <linux/random.h>
764 static ssize_t
765 z90crypt_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
766 {
767 unsigned char *temp_buff;
768
769 PDEBUG("filp %p (PID %d)\n", filp, PID());
770
771 if (quiesce_z90crypt)
772 return -EQUIESCE;
773 if (count < 0) {
774 PRINTK("Requested random byte count negative: %ld\n", count);
775 return -EINVAL;
776 }
777 if (count > RESPBUFFSIZE) {
778 PDEBUG("count[%d] > RESPBUFFSIZE", count);
779 return -EINVAL;
780 }
781 if (count == 0)
782 return 0;
783 temp_buff = kmalloc(RESPBUFFSIZE, GFP_KERNEL);
784 if (!temp_buff) {
785 PRINTK("Memory allocate failed\n");
786 return -ENOMEM;
787 }
788 get_random_bytes(temp_buff, count);
789
790 if (copy_to_user(buf, temp_buff, count) != 0) {
791 kfree(temp_buff);
792 return -EFAULT;
793 }
794 kfree(temp_buff);
795 return count;
796 }
797 #endif
798
799 /**
800 * Write is is not allowed
801 */
802 static ssize_t
803 z90crypt_write(struct file *filp, const char __user *buf, size_t count, loff_t *f_pos)
804 {
805 PDEBUG("filp %p (PID %d)\n", filp, PID());
806 return -EPERM;
807 }
808
809 /**
810 * New status functions
811 */
812 static inline int
813 get_status_totalcount(void)
814 {
815 return z90crypt.hdware_info->hdware_mask.st_count;
816 }
817
818 static inline int
819 get_status_PCICAcount(void)
820 {
821 return z90crypt.hdware_info->type_mask[PCICA].st_count;
822 }
823
824 static inline int
825 get_status_PCICCcount(void)
826 {
827 return z90crypt.hdware_info->type_mask[PCICC].st_count;
828 }
829
830 static inline int
831 get_status_PCIXCCcount(void)
832 {
833 return z90crypt.hdware_info->type_mask[PCIXCC_MCL2].st_count +
834 z90crypt.hdware_info->type_mask[PCIXCC_MCL3].st_count;
835 }
836
837 static inline int
838 get_status_PCIXCCMCL2count(void)
839 {
840 return z90crypt.hdware_info->type_mask[PCIXCC_MCL2].st_count;
841 }
842
843 static inline int
844 get_status_PCIXCCMCL3count(void)
845 {
846 return z90crypt.hdware_info->type_mask[PCIXCC_MCL3].st_count;
847 }
848
849 static inline int
850 get_status_CEX2Ccount(void)
851 {
852 return z90crypt.hdware_info->type_mask[CEX2C].st_count;
853 }
854
855 static inline int
856 get_status_CEX2Acount(void)
857 {
858 return z90crypt.hdware_info->type_mask[CEX2A].st_count;
859 }
860
861 static inline int
862 get_status_requestq_count(void)
863 {
864 return requestq_count;
865 }
866
867 static inline int
868 get_status_pendingq_count(void)
869 {
870 return pendingq_count;
871 }
872
873 static inline int
874 get_status_totalopen_count(void)
875 {
876 return atomic_read(&total_open);
877 }
878
879 static inline int
880 get_status_domain_index(void)
881 {
882 return z90crypt.cdx;
883 }
884
885 static inline unsigned char *
886 get_status_status_mask(unsigned char status[Z90CRYPT_NUM_APS])
887 {
888 int i, ix;
889
890 memcpy(status, z90crypt.hdware_info->device_type_array,
891 Z90CRYPT_NUM_APS);
892
893 for (i = 0; i < get_status_totalcount(); i++) {
894 ix = SHRT2LONG(i);
895 if (LONG2DEVPTR(ix)->user_disabled)
896 status[ix] = 0x0d;
897 }
898
899 return status;
900 }
901
902 static inline unsigned char *
903 get_status_qdepth_mask(unsigned char qdepth[Z90CRYPT_NUM_APS])
904 {
905 int i, ix;
906
907 memset(qdepth, 0, Z90CRYPT_NUM_APS);
908
909 for (i = 0; i < get_status_totalcount(); i++) {
910 ix = SHRT2LONG(i);
911 qdepth[ix] = LONG2DEVPTR(ix)->dev_caller_count;
912 }
913
914 return qdepth;
915 }
916
917 static inline unsigned int *
918 get_status_perdevice_reqcnt(unsigned int reqcnt[Z90CRYPT_NUM_APS])
919 {
920 int i, ix;
921
922 memset(reqcnt, 0, Z90CRYPT_NUM_APS * sizeof(int));
923
924 for (i = 0; i < get_status_totalcount(); i++) {
925 ix = SHRT2LONG(i);
926 reqcnt[ix] = LONG2DEVPTR(ix)->dev_total_req_cnt;
927 }
928
929 return reqcnt;
930 }
931
932 static inline void
933 init_work_element(struct work_element *we_p,
934 struct priv_data *priv_data, pid_t pid)
935 {
936 int step;
937
938 we_p->requestptr = (unsigned char *)we_p + sizeof(struct work_element);
939 /* Come up with a unique id for this caller. */
940 step = atomic_inc_return(&z90crypt_step);
941 memcpy(we_p->caller_id+0, (void *) &pid, sizeof(pid));
942 memcpy(we_p->caller_id+4, (void *) &step, sizeof(step));
943 we_p->pid = pid;
944 we_p->priv_data = priv_data;
945 we_p->status[0] = STAT_DEFAULT;
946 we_p->audit[0] = 0x00;
947 we_p->audit[1] = 0x00;
948 we_p->audit[2] = 0x00;
949 we_p->resp_buff_size = 0;
950 we_p->retcode = 0;
951 we_p->devindex = -1;
952 we_p->devtype = -1;
953 atomic_set(&we_p->alarmrung, 0);
954 init_waitqueue_head(&we_p->waitq);
955 INIT_LIST_HEAD(&(we_p->liste));
956 }
957
958 static inline int
959 allocate_work_element(struct work_element **we_pp,
960 struct priv_data *priv_data_p, pid_t pid)
961 {
962 struct work_element *we_p;
963
964 we_p = (struct work_element *) get_zeroed_page(GFP_KERNEL);
965 if (!we_p)
966 return -ENOMEM;
967 init_work_element(we_p, priv_data_p, pid);
968 *we_pp = we_p;
969 return 0;
970 }
971
972 static inline void
973 remove_device(struct device *device_p)
974 {
975 if (!device_p || (device_p->disabled != 0))
976 return;
977 device_p->disabled = 1;
978 z90crypt.hdware_info->type_mask[device_p->dev_type].disabled_count++;
979 z90crypt.hdware_info->hdware_mask.disabled_count++;
980 }
981
982 /**
983 * Bitlength limits for each card
984 *
985 * There are new MCLs which allow more bitlengths. See the table for details.
986 * The MCL must be applied and the newer bitlengths enabled for these to work.
987 *
988 * Card Type Old limit New limit
989 * PCICA ??-2048 same (the lower limit is less than 128 bit...)
990 * PCICC 512-1024 512-2048
991 * PCIXCC_MCL2 512-2048 ----- (applying any GA LIC will make an MCL3 card)
992 * PCIXCC_MCL3 ----- 128-2048
993 * CEX2C 512-2048 128-2048
994 *
995 * ext_bitlens (extended bitlengths) is a global, since you should not apply an
996 * MCL to just one card in a machine. We assume, at first, that all cards have
997 * these capabilities.
998 */
999 int ext_bitlens = 1; // This is global
1000 #define PCIXCC_MIN_MOD_SIZE 16 // 128 bits
1001 #define OLD_PCIXCC_MIN_MOD_SIZE 64 // 512 bits
1002 #define PCICC_MIN_MOD_SIZE 64 // 512 bits
1003 #define OLD_PCICC_MAX_MOD_SIZE 128 // 1024 bits
1004 #define MAX_MOD_SIZE 256 // 2048 bits
1005
1006 static inline int
1007 select_device_type(int *dev_type_p, int bytelength)
1008 {
1009 static int count = 0;
1010 int PCICA_avail, PCIXCC_MCL3_avail, CEX2C_avail, CEX2A_avail,
1011 index_to_use;
1012 struct status *stat;
1013 if ((*dev_type_p != PCICC) && (*dev_type_p != PCICA) &&
1014 (*dev_type_p != PCIXCC_MCL2) && (*dev_type_p != PCIXCC_MCL3) &&
1015 (*dev_type_p != CEX2C) && (*dev_type_p != CEX2A) &&
1016 (*dev_type_p != ANYDEV))
1017 return -1;
1018 if (*dev_type_p != ANYDEV) {
1019 stat = &z90crypt.hdware_info->type_mask[*dev_type_p];
1020 if (stat->st_count >
1021 (stat->disabled_count + stat->user_disabled_count))
1022 return 0;
1023 return -1;
1024 }
1025
1026 /**
1027 * Assumption: PCICA, PCIXCC_MCL3, CEX2C, and CEX2A are all similar in
1028 * speed.
1029 *
1030 * PCICA and CEX2A do NOT co-exist, so it would be either one or the
1031 * other present.
1032 */
1033 stat = &z90crypt.hdware_info->type_mask[PCICA];
1034 PCICA_avail = stat->st_count -
1035 (stat->disabled_count + stat->user_disabled_count);
1036 stat = &z90crypt.hdware_info->type_mask[PCIXCC_MCL3];
1037 PCIXCC_MCL3_avail = stat->st_count -
1038 (stat->disabled_count + stat->user_disabled_count);
1039 stat = &z90crypt.hdware_info->type_mask[CEX2C];
1040 CEX2C_avail = stat->st_count -
1041 (stat->disabled_count + stat->user_disabled_count);
1042 stat = &z90crypt.hdware_info->type_mask[CEX2A];
1043 CEX2A_avail = stat->st_count -
1044 (stat->disabled_count + stat->user_disabled_count);
1045 if (PCICA_avail || PCIXCC_MCL3_avail || CEX2C_avail || CEX2A_avail) {
1046 /**
1047 * bitlength is a factor, PCICA or CEX2A are the most capable,
1048 * even with the new MCL for PCIXCC.
1049 */
1050 if ((bytelength < PCIXCC_MIN_MOD_SIZE) ||
1051 (!ext_bitlens && (bytelength < OLD_PCIXCC_MIN_MOD_SIZE))) {
1052 if (PCICA_avail) {
1053 *dev_type_p = PCICA;
1054 return 0;
1055 }
1056 if (CEX2A_avail) {
1057 *dev_type_p = CEX2A;
1058 return 0;
1059 }
1060 return -1;
1061 }
1062
1063 index_to_use = count % (PCICA_avail + PCIXCC_MCL3_avail +
1064 CEX2C_avail + CEX2A_avail);
1065 if (index_to_use < PCICA_avail)
1066 *dev_type_p = PCICA;
1067 else if (index_to_use < (PCICA_avail + PCIXCC_MCL3_avail))
1068 *dev_type_p = PCIXCC_MCL3;
1069 else if (index_to_use < (PCICA_avail + PCIXCC_MCL3_avail +
1070 CEX2C_avail))
1071 *dev_type_p = CEX2C;
1072 else
1073 *dev_type_p = CEX2A;
1074 count++;
1075 return 0;
1076 }
1077
1078 /* Less than OLD_PCIXCC_MIN_MOD_SIZE cannot go to a PCIXCC_MCL2 */
1079 if (bytelength < OLD_PCIXCC_MIN_MOD_SIZE)
1080 return -1;
1081 stat = &z90crypt.hdware_info->type_mask[PCIXCC_MCL2];
1082 if (stat->st_count >
1083 (stat->disabled_count + stat->user_disabled_count)) {
1084 *dev_type_p = PCIXCC_MCL2;
1085 return 0;
1086 }
1087
1088 /**
1089 * Less than PCICC_MIN_MOD_SIZE or more than OLD_PCICC_MAX_MOD_SIZE
1090 * (if we don't have the MCL applied and the newer bitlengths enabled)
1091 * cannot go to a PCICC
1092 */
1093 if ((bytelength < PCICC_MIN_MOD_SIZE) ||
1094 (!ext_bitlens && (bytelength > OLD_PCICC_MAX_MOD_SIZE))) {
1095 return -1;
1096 }
1097 stat = &z90crypt.hdware_info->type_mask[PCICC];
1098 if (stat->st_count >
1099 (stat->disabled_count + stat->user_disabled_count)) {
1100 *dev_type_p = PCICC;
1101 return 0;
1102 }
1103
1104 return -1;
1105 }
1106
1107 /**
1108 * Try the selected number, then the selected type (can be ANYDEV)
1109 */
1110 static inline int
1111 select_device(int *dev_type_p, int *device_nr_p, int bytelength)
1112 {
1113 int i, indx, devTp, low_count, low_indx;
1114 struct device_x *index_p;
1115 struct device *dev_ptr;
1116
1117 PDEBUG("device type = %d, index = %d\n", *dev_type_p, *device_nr_p);
1118 if ((*device_nr_p >= 0) && (*device_nr_p < Z90CRYPT_NUM_DEVS)) {
1119 PDEBUG("trying index = %d\n", *device_nr_p);
1120 dev_ptr = z90crypt.device_p[*device_nr_p];
1121
1122 if (dev_ptr &&
1123 (dev_ptr->dev_stat != DEV_GONE) &&
1124 (dev_ptr->disabled == 0) &&
1125 (dev_ptr->user_disabled == 0)) {
1126 PDEBUG("selected by number, index = %d\n",
1127 *device_nr_p);
1128 *dev_type_p = dev_ptr->dev_type;
1129 return *device_nr_p;
1130 }
1131 }
1132 *device_nr_p = -1;
1133 PDEBUG("trying type = %d\n", *dev_type_p);
1134 devTp = *dev_type_p;
1135 if (select_device_type(&devTp, bytelength) == -1) {
1136 PDEBUG("failed to select by type\n");
1137 return -1;
1138 }
1139 PDEBUG("selected type = %d\n", devTp);
1140 index_p = &z90crypt.hdware_info->type_x_addr[devTp];
1141 low_count = 0x0000FFFF;
1142 low_indx = -1;
1143 for (i = 0; i < z90crypt.hdware_info->type_mask[devTp].st_count; i++) {
1144 indx = index_p->device_index[i];
1145 dev_ptr = z90crypt.device_p[indx];
1146 if (dev_ptr &&
1147 (dev_ptr->dev_stat != DEV_GONE) &&
1148 (dev_ptr->disabled == 0) &&
1149 (dev_ptr->user_disabled == 0) &&
1150 (devTp == dev_ptr->dev_type) &&
1151 (low_count > dev_ptr->dev_caller_count)) {
1152 low_count = dev_ptr->dev_caller_count;
1153 low_indx = indx;
1154 }
1155 }
1156 *device_nr_p = low_indx;
1157 return low_indx;
1158 }
1159
1160 static inline int
1161 send_to_crypto_device(struct work_element *we_p)
1162 {
1163 struct caller *caller_p;
1164 struct device *device_p;
1165 int dev_nr;
1166 int bytelen = ((struct ica_rsa_modexpo *)we_p->buffer)->inputdatalength;
1167
1168 if (!we_p->requestptr)
1169 return SEN_FATAL_ERROR;
1170 caller_p = (struct caller *)we_p->requestptr;
1171 dev_nr = we_p->devindex;
1172 if (select_device(&we_p->devtype, &dev_nr, bytelen) == -1) {
1173 if (z90crypt.hdware_info->hdware_mask.st_count != 0)
1174 return SEN_RETRY;
1175 else
1176 return SEN_NOT_AVAIL;
1177 }
1178 we_p->devindex = dev_nr;
1179 device_p = z90crypt.device_p[dev_nr];
1180 if (!device_p)
1181 return SEN_NOT_AVAIL;
1182 if (device_p->dev_type != we_p->devtype)
1183 return SEN_RETRY;
1184 if (device_p->dev_caller_count >= device_p->dev_q_depth)
1185 return SEN_QUEUE_FULL;
1186 PDEBUG("device number prior to send: %d\n", dev_nr);
1187 switch (send_to_AP(dev_nr, z90crypt.cdx,
1188 caller_p->caller_dev_dep_req_l,
1189 caller_p->caller_dev_dep_req_p)) {
1190 case DEV_SEN_EXCEPTION:
1191 PRINTKC("Exception during send to device %d\n", dev_nr);
1192 z90crypt.terminating = 1;
1193 return SEN_FATAL_ERROR;
1194 case DEV_GONE:
1195 PRINTK("Device %d not available\n", dev_nr);
1196 remove_device(device_p);
1197 return SEN_NOT_AVAIL;
1198 case DEV_EMPTY:
1199 return SEN_NOT_AVAIL;
1200 case DEV_NO_WORK:
1201 return SEN_FATAL_ERROR;
1202 case DEV_BAD_MESSAGE:
1203 return SEN_USER_ERROR;
1204 case DEV_QUEUE_FULL:
1205 return SEN_QUEUE_FULL;
1206 default:
1207 case DEV_ONLINE:
1208 break;
1209 }
1210 list_add_tail(&(caller_p->caller_liste), &(device_p->dev_caller_list));
1211 device_p->dev_caller_count++;
1212 return 0;
1213 }
1214
1215 /**
1216 * Send puts the user's work on one of two queues:
1217 * the pending queue if the send was successful
1218 * the request queue if the send failed because device full or busy
1219 */
1220 static inline int
1221 z90crypt_send(struct work_element *we_p, const char *buf)
1222 {
1223 int rv;
1224
1225 PDEBUG("PID %d\n", PID());
1226
1227 if (CHK_RDWRMASK(we_p->status[0]) != STAT_NOWORK) {
1228 PDEBUG("PID %d tried to send more work but has outstanding "
1229 "work.\n", PID());
1230 return -EWORKPEND;
1231 }
1232 we_p->devindex = -1; // Reset device number
1233 spin_lock_irq(&queuespinlock);
1234 rv = send_to_crypto_device(we_p);
1235 switch (rv) {
1236 case 0:
1237 we_p->requestsent = jiffies;
1238 we_p->audit[0] |= FP_SENT;
1239 list_add_tail(&we_p->liste, &pending_list);
1240 ++pendingq_count;
1241 we_p->audit[0] |= FP_PENDING;
1242 break;
1243 case SEN_BUSY:
1244 case SEN_QUEUE_FULL:
1245 rv = 0;
1246 we_p->devindex = -1; // any device will do
1247 we_p->requestsent = jiffies;
1248 list_add_tail(&we_p->liste, &request_list);
1249 ++requestq_count;
1250 we_p->audit[0] |= FP_REQUEST;
1251 break;
1252 case SEN_RETRY:
1253 rv = -ERESTARTSYS;
1254 break;
1255 case SEN_NOT_AVAIL:
1256 PRINTK("*** No devices available.\n");
1257 rv = we_p->retcode = -ENODEV;
1258 we_p->status[0] |= STAT_FAILED;
1259 break;
1260 case REC_OPERAND_INV:
1261 case REC_OPERAND_SIZE:
1262 case REC_EVEN_MOD:
1263 case REC_INVALID_PAD:
1264 rv = we_p->retcode = -EINVAL;
1265 we_p->status[0] |= STAT_FAILED;
1266 break;
1267 default:
1268 we_p->retcode = rv;
1269 we_p->status[0] |= STAT_FAILED;
1270 break;
1271 }
1272 if (rv != -ERESTARTSYS)
1273 SET_RDWRMASK(we_p->status[0], STAT_WRITTEN);
1274 spin_unlock_irq(&queuespinlock);
1275 if (rv == 0)
1276 tasklet_schedule(&reader_tasklet);
1277 return rv;
1278 }
1279
1280 /**
1281 * process_results copies the user's work from kernel space.
1282 */
1283 static inline int
1284 z90crypt_process_results(struct work_element *we_p, char __user *buf)
1285 {
1286 int rv;
1287
1288 PDEBUG("we_p %p (PID %d)\n", we_p, PID());
1289
1290 LONG2DEVPTR(we_p->devindex)->dev_total_req_cnt++;
1291 SET_RDWRMASK(we_p->status[0], STAT_READPEND);
1292
1293 rv = 0;
1294 if (!we_p->buffer) {
1295 PRINTK("we_p %p PID %d in STAT_READPEND: buffer NULL.\n",
1296 we_p, PID());
1297 rv = -ENOBUFF;
1298 }
1299
1300 if (!rv)
1301 if ((rv = copy_to_user(buf, we_p->buffer, we_p->buff_size))) {
1302 PDEBUG("copy_to_user failed: rv = %d\n", rv);
1303 rv = -EFAULT;
1304 }
1305
1306 if (!rv)
1307 rv = we_p->retcode;
1308 if (!rv)
1309 if (we_p->resp_buff_size
1310 && copy_to_user(we_p->resp_addr, we_p->resp_buff,
1311 we_p->resp_buff_size))
1312 rv = -EFAULT;
1313
1314 SET_RDWRMASK(we_p->status[0], STAT_NOWORK);
1315 return rv;
1316 }
1317
1318 static unsigned char NULL_psmid[8] =
1319 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
1320
1321 /**
1322 * Used in device configuration functions
1323 */
1324 #define MAX_RESET 90
1325
1326 /**
1327 * This is used only for PCICC support
1328 */
1329 static inline int
1330 is_PKCS11_padded(unsigned char *buffer, int length)
1331 {
1332 int i;
1333 if ((buffer[0] != 0x00) || (buffer[1] != 0x01))
1334 return 0;
1335 for (i = 2; i < length; i++)
1336 if (buffer[i] != 0xFF)
1337 break;
1338 if ((i < 10) || (i == length))
1339 return 0;
1340 if (buffer[i] != 0x00)
1341 return 0;
1342 return 1;
1343 }
1344
1345 /**
1346 * This is used only for PCICC support
1347 */
1348 static inline int
1349 is_PKCS12_padded(unsigned char *buffer, int length)
1350 {
1351 int i;
1352 if ((buffer[0] != 0x00) || (buffer[1] != 0x02))
1353 return 0;
1354 for (i = 2; i < length; i++)
1355 if (buffer[i] == 0x00)
1356 break;
1357 if ((i < 10) || (i == length))
1358 return 0;
1359 if (buffer[i] != 0x00)
1360 return 0;
1361 return 1;
1362 }
1363
1364 /**
1365 * builds struct caller and converts message from generic format to
1366 * device-dependent format
1367 * func is ICARSAMODEXPO or ICARSACRT
1368 * function is PCI_FUNC_KEY_ENCRYPT or PCI_FUNC_KEY_DECRYPT
1369 */
1370 static inline int
1371 build_caller(struct work_element *we_p, short function)
1372 {
1373 int rv;
1374 struct caller *caller_p = (struct caller *)we_p->requestptr;
1375
1376 if ((we_p->devtype != PCICC) && (we_p->devtype != PCICA) &&
1377 (we_p->devtype != PCIXCC_MCL2) && (we_p->devtype != PCIXCC_MCL3) &&
1378 (we_p->devtype != CEX2C) && (we_p->devtype != CEX2A))
1379 return SEN_NOT_AVAIL;
1380
1381 memcpy(caller_p->caller_id, we_p->caller_id,
1382 sizeof(caller_p->caller_id));
1383 caller_p->caller_dev_dep_req_p = caller_p->caller_dev_dep_req;
1384 caller_p->caller_dev_dep_req_l = MAX_RESPONSE_SIZE;
1385 caller_p->caller_buf_p = we_p->buffer;
1386 INIT_LIST_HEAD(&(caller_p->caller_liste));
1387
1388 rv = convert_request(we_p->buffer, we_p->funccode, function,
1389 z90crypt.cdx, we_p->devtype,
1390 &caller_p->caller_dev_dep_req_l,
1391 caller_p->caller_dev_dep_req_p);
1392 if (rv) {
1393 if (rv == SEN_NOT_AVAIL)
1394 PDEBUG("request can't be processed on hdwr avail\n");
1395 else
1396 PRINTK("Error from convert_request: %d\n", rv);
1397 }
1398 else
1399 memcpy(&(caller_p->caller_dev_dep_req_p[4]), we_p->caller_id,8);
1400 return rv;
1401 }
1402
1403 static inline void
1404 unbuild_caller(struct device *device_p, struct caller *caller_p)
1405 {
1406 if (!caller_p)
1407 return;
1408 if (caller_p->caller_liste.next && caller_p->caller_liste.prev)
1409 if (!list_empty(&caller_p->caller_liste)) {
1410 list_del_init(&caller_p->caller_liste);
1411 device_p->dev_caller_count--;
1412 }
1413 memset(caller_p->caller_id, 0, sizeof(caller_p->caller_id));
1414 }
1415
1416 static inline int
1417 get_crypto_request_buffer(struct work_element *we_p)
1418 {
1419 struct ica_rsa_modexpo *mex_p;
1420 struct ica_rsa_modexpo_crt *crt_p;
1421 unsigned char *temp_buffer;
1422 short function;
1423 int rv;
1424
1425 mex_p = (struct ica_rsa_modexpo *) we_p->buffer;
1426 crt_p = (struct ica_rsa_modexpo_crt *) we_p->buffer;
1427
1428 PDEBUG("device type input = %d\n", we_p->devtype);
1429
1430 if (z90crypt.terminating)
1431 return REC_NO_RESPONSE;
1432 if (memcmp(we_p->caller_id, NULL_psmid, 8) == 0) {
1433 PRINTK("psmid zeroes\n");
1434 return SEN_FATAL_ERROR;
1435 }
1436 if (!we_p->buffer) {
1437 PRINTK("buffer pointer NULL\n");
1438 return SEN_USER_ERROR;
1439 }
1440 if (!we_p->requestptr) {
1441 PRINTK("caller pointer NULL\n");
1442 return SEN_USER_ERROR;
1443 }
1444
1445 if ((we_p->devtype != PCICA) && (we_p->devtype != PCICC) &&
1446 (we_p->devtype != PCIXCC_MCL2) && (we_p->devtype != PCIXCC_MCL3) &&
1447 (we_p->devtype != CEX2C) && (we_p->devtype != CEX2A) &&
1448 (we_p->devtype != ANYDEV)) {
1449 PRINTK("invalid device type\n");
1450 return SEN_USER_ERROR;
1451 }
1452
1453 if ((mex_p->inputdatalength < 1) ||
1454 (mex_p->inputdatalength > MAX_MOD_SIZE)) {
1455 PRINTK("inputdatalength[%d] is not valid\n",
1456 mex_p->inputdatalength);
1457 return SEN_USER_ERROR;
1458 }
1459
1460 if (mex_p->outputdatalength < mex_p->inputdatalength) {
1461 PRINTK("outputdatalength[%d] < inputdatalength[%d]\n",
1462 mex_p->outputdatalength, mex_p->inputdatalength);
1463 return SEN_USER_ERROR;
1464 }
1465
1466 if (!mex_p->inputdata || !mex_p->outputdata) {
1467 PRINTK("inputdata[%p] or outputdata[%p] is NULL\n",
1468 mex_p->outputdata, mex_p->inputdata);
1469 return SEN_USER_ERROR;
1470 }
1471
1472 /**
1473 * As long as outputdatalength is big enough, we can set the
1474 * outputdatalength equal to the inputdatalength, since that is the
1475 * number of bytes we will copy in any case
1476 */
1477 mex_p->outputdatalength = mex_p->inputdatalength;
1478
1479 rv = 0;
1480 switch (we_p->funccode) {
1481 case ICARSAMODEXPO:
1482 if (!mex_p->b_key || !mex_p->n_modulus)
1483 rv = SEN_USER_ERROR;
1484 break;
1485 case ICARSACRT:
1486 if (!IS_EVEN(crt_p->inputdatalength)) {
1487 PRINTK("inputdatalength[%d] is odd, CRT form\n",
1488 crt_p->inputdatalength);
1489 rv = SEN_USER_ERROR;
1490 break;
1491 }
1492 if (!crt_p->bp_key ||
1493 !crt_p->bq_key ||
1494 !crt_p->np_prime ||
1495 !crt_p->nq_prime ||
1496 !crt_p->u_mult_inv) {
1497 PRINTK("CRT form, bad data: %p/%p/%p/%p/%p\n",
1498 crt_p->bp_key, crt_p->bq_key,
1499 crt_p->np_prime, crt_p->nq_prime,
1500 crt_p->u_mult_inv);
1501 rv = SEN_USER_ERROR;
1502 }
1503 break;
1504 default:
1505 PRINTK("bad func = %d\n", we_p->funccode);
1506 rv = SEN_USER_ERROR;
1507 break;
1508 }
1509 if (rv != 0)
1510 return rv;
1511
1512 if (select_device_type(&we_p->devtype, mex_p->inputdatalength) < 0)
1513 return SEN_NOT_AVAIL;
1514
1515 temp_buffer = (unsigned char *)we_p + sizeof(struct work_element) +
1516 sizeof(struct caller);
1517 if (copy_from_user(temp_buffer, mex_p->inputdata,
1518 mex_p->inputdatalength) != 0)
1519 return SEN_RELEASED;
1520
1521 function = PCI_FUNC_KEY_ENCRYPT;
1522 switch (we_p->devtype) {
1523 /* PCICA and CEX2A do everything with a simple RSA mod-expo operation */
1524 case PCICA:
1525 case CEX2A:
1526 function = PCI_FUNC_KEY_ENCRYPT;
1527 break;
1528 /**
1529 * PCIXCC_MCL2 does all Mod-Expo form with a simple RSA mod-expo
1530 * operation, and all CRT forms with a PKCS-1.2 format decrypt.
1531 * PCIXCC_MCL3 and CEX2C do all Mod-Expo and CRT forms with a simple RSA
1532 * mod-expo operation
1533 */
1534 case PCIXCC_MCL2:
1535 if (we_p->funccode == ICARSAMODEXPO)
1536 function = PCI_FUNC_KEY_ENCRYPT;
1537 else
1538 function = PCI_FUNC_KEY_DECRYPT;
1539 break;
1540 case PCIXCC_MCL3:
1541 case CEX2C:
1542 if (we_p->funccode == ICARSAMODEXPO)
1543 function = PCI_FUNC_KEY_ENCRYPT;
1544 else
1545 function = PCI_FUNC_KEY_DECRYPT;
1546 break;
1547 /**
1548 * PCICC does everything as a PKCS-1.2 format request
1549 */
1550 case PCICC:
1551 /* PCICC cannot handle input that is is PKCS#1.1 padded */
1552 if (is_PKCS11_padded(temp_buffer, mex_p->inputdatalength)) {
1553 return SEN_NOT_AVAIL;
1554 }
1555 if (we_p->funccode == ICARSAMODEXPO) {
1556 if (is_PKCS12_padded(temp_buffer,
1557 mex_p->inputdatalength))
1558 function = PCI_FUNC_KEY_ENCRYPT;
1559 else
1560 function = PCI_FUNC_KEY_DECRYPT;
1561 } else
1562 /* all CRT forms are decrypts */
1563 function = PCI_FUNC_KEY_DECRYPT;
1564 break;
1565 }
1566 PDEBUG("function: %04x\n", function);
1567 rv = build_caller(we_p, function);
1568 PDEBUG("rv from build_caller = %d\n", rv);
1569 return rv;
1570 }
1571
1572 static inline int
1573 z90crypt_prepare(struct work_element *we_p, unsigned int funccode,
1574 const char __user *buffer)
1575 {
1576 int rv;
1577
1578 we_p->devindex = -1;
1579 if (funccode == ICARSAMODEXPO)
1580 we_p->buff_size = sizeof(struct ica_rsa_modexpo);
1581 else
1582 we_p->buff_size = sizeof(struct ica_rsa_modexpo_crt);
1583
1584 if (copy_from_user(we_p->buffer, buffer, we_p->buff_size))
1585 return -EFAULT;
1586
1587 we_p->audit[0] |= FP_COPYFROM;
1588 SET_RDWRMASK(we_p->status[0], STAT_WRITTEN);
1589 we_p->funccode = funccode;
1590 we_p->devtype = -1;
1591 we_p->audit[0] |= FP_BUFFREQ;
1592 rv = get_crypto_request_buffer(we_p);
1593 switch (rv) {
1594 case 0:
1595 we_p->audit[0] |= FP_BUFFGOT;
1596 break;
1597 case SEN_USER_ERROR:
1598 rv = -EINVAL;
1599 break;
1600 case SEN_QUEUE_FULL:
1601 rv = 0;
1602 break;
1603 case SEN_RELEASED:
1604 rv = -EFAULT;
1605 break;
1606 case REC_NO_RESPONSE:
1607 rv = -ENODEV;
1608 break;
1609 case SEN_NOT_AVAIL:
1610 case EGETBUFF:
1611 rv = -EGETBUFF;
1612 break;
1613 default:
1614 PRINTK("rv = %d\n", rv);
1615 rv = -EGETBUFF;
1616 break;
1617 }
1618 if (CHK_RDWRMASK(we_p->status[0]) == STAT_WRITTEN)
1619 SET_RDWRMASK(we_p->status[0], STAT_DEFAULT);
1620 return rv;
1621 }
1622
1623 static inline void
1624 purge_work_element(struct work_element *we_p)
1625 {
1626 struct list_head *lptr;
1627
1628 spin_lock_irq(&queuespinlock);
1629 list_for_each(lptr, &request_list) {
1630 if (lptr == &we_p->liste) {
1631 list_del_init(lptr);
1632 requestq_count--;
1633 break;
1634 }
1635 }
1636 list_for_each(lptr, &pending_list) {
1637 if (lptr == &we_p->liste) {
1638 list_del_init(lptr);
1639 pendingq_count--;
1640 break;
1641 }
1642 }
1643 spin_unlock_irq(&queuespinlock);
1644 }
1645
1646 /**
1647 * Build the request and send it.
1648 */
1649 static inline int
1650 z90crypt_rsa(struct priv_data *private_data_p, pid_t pid,
1651 unsigned int cmd, unsigned long arg)
1652 {
1653 struct work_element *we_p;
1654 int rv;
1655
1656 if ((rv = allocate_work_element(&we_p, private_data_p, pid))) {
1657 PDEBUG("PID %d: allocate_work_element returned ENOMEM\n", pid);
1658 return rv;
1659 }
1660 if ((rv = z90crypt_prepare(we_p, cmd, (const char __user *)arg)))
1661 PDEBUG("PID %d: rv = %d from z90crypt_prepare\n", pid, rv);
1662 if (!rv)
1663 if ((rv = z90crypt_send(we_p, (const char *)arg)))
1664 PDEBUG("PID %d: rv %d from z90crypt_send.\n", pid, rv);
1665 if (!rv) {
1666 we_p->audit[0] |= FP_ASLEEP;
1667 wait_event(we_p->waitq, atomic_read(&we_p->alarmrung));
1668 we_p->audit[0] |= FP_AWAKE;
1669 rv = we_p->retcode;
1670 }
1671 if (!rv)
1672 rv = z90crypt_process_results(we_p, (char __user *)arg);
1673
1674 if ((we_p->status[0] & STAT_FAILED)) {
1675 switch (rv) {
1676 /**
1677 * EINVAL *after* receive is almost always a padding error or
1678 * length error issued by a coprocessor (not an accelerator).
1679 * We convert this return value to -EGETBUFF which should
1680 * trigger a fallback to software.
1681 */
1682 case -EINVAL:
1683 if ((we_p->devtype != PCICA) &&
1684 (we_p->devtype != CEX2A))
1685 rv = -EGETBUFF;
1686 break;
1687 case -ETIMEOUT:
1688 if (z90crypt.mask.st_count > 0)
1689 rv = -ERESTARTSYS; // retry with another
1690 else
1691 rv = -ENODEV; // no cards left
1692 /* fall through to clean up request queue */
1693 case -ERESTARTSYS:
1694 case -ERELEASED:
1695 switch (CHK_RDWRMASK(we_p->status[0])) {
1696 case STAT_WRITTEN:
1697 purge_work_element(we_p);
1698 break;
1699 case STAT_READPEND:
1700 case STAT_NOWORK:
1701 default:
1702 break;
1703 }
1704 break;
1705 default:
1706 we_p->status[0] ^= STAT_FAILED;
1707 break;
1708 }
1709 }
1710 free_page((long)we_p);
1711 return rv;
1712 }
1713
1714 /**
1715 * This function is a little long, but it's really just one large switch
1716 * statement.
1717 */
1718 static long
1719 z90crypt_unlocked_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1720 {
1721 struct priv_data *private_data_p = filp->private_data;
1722 unsigned char *status;
1723 unsigned char *qdepth;
1724 unsigned int *reqcnt;
1725 struct ica_z90_status *pstat;
1726 int ret, i, loopLim, tempstat;
1727 static int deprecated_msg_count1 = 0;
1728 static int deprecated_msg_count2 = 0;
1729
1730 PDEBUG("filp %p (PID %d), cmd 0x%08X\n", filp, PID(), cmd);
1731 PDEBUG("cmd 0x%08X: dir %s, size 0x%04X, type 0x%02X, nr 0x%02X\n",
1732 cmd,
1733 !_IOC_DIR(cmd) ? "NO"
1734 : ((_IOC_DIR(cmd) == (_IOC_READ|_IOC_WRITE)) ? "RW"
1735 : ((_IOC_DIR(cmd) == _IOC_READ) ? "RD"
1736 : "WR")),
1737 _IOC_SIZE(cmd), _IOC_TYPE(cmd), _IOC_NR(cmd));
1738
1739 if (_IOC_TYPE(cmd) != Z90_IOCTL_MAGIC) {
1740 PRINTK("cmd 0x%08X contains bad magic\n", cmd);
1741 return -ENOTTY;
1742 }
1743
1744 ret = 0;
1745 switch (cmd) {
1746 case ICARSAMODEXPO:
1747 case ICARSACRT:
1748 if (quiesce_z90crypt) {
1749 ret = -EQUIESCE;
1750 break;
1751 }
1752 ret = -ENODEV; // Default if no devices
1753 loopLim = z90crypt.hdware_info->hdware_mask.st_count -
1754 (z90crypt.hdware_info->hdware_mask.disabled_count +
1755 z90crypt.hdware_info->hdware_mask.user_disabled_count);
1756 for (i = 0; i < loopLim; i++) {
1757 ret = z90crypt_rsa(private_data_p, PID(), cmd, arg);
1758 if (ret != -ERESTARTSYS)
1759 break;
1760 }
1761 if (ret == -ERESTARTSYS)
1762 ret = -ENODEV;
1763 break;
1764
1765 case Z90STAT_TOTALCOUNT:
1766 tempstat = get_status_totalcount();
1767 if (copy_to_user((int __user *)arg, &tempstat,sizeof(int)) != 0)
1768 ret = -EFAULT;
1769 break;
1770
1771 case Z90STAT_PCICACOUNT:
1772 tempstat = get_status_PCICAcount();
1773 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1774 ret = -EFAULT;
1775 break;
1776
1777 case Z90STAT_PCICCCOUNT:
1778 tempstat = get_status_PCICCcount();
1779 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1780 ret = -EFAULT;
1781 break;
1782
1783 case Z90STAT_PCIXCCMCL2COUNT:
1784 tempstat = get_status_PCIXCCMCL2count();
1785 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1786 ret = -EFAULT;
1787 break;
1788
1789 case Z90STAT_PCIXCCMCL3COUNT:
1790 tempstat = get_status_PCIXCCMCL3count();
1791 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1792 ret = -EFAULT;
1793 break;
1794
1795 case Z90STAT_CEX2CCOUNT:
1796 tempstat = get_status_CEX2Ccount();
1797 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1798 ret = -EFAULT;
1799 break;
1800
1801 case Z90STAT_CEX2ACOUNT:
1802 tempstat = get_status_CEX2Acount();
1803 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1804 ret = -EFAULT;
1805 break;
1806
1807 case Z90STAT_REQUESTQ_COUNT:
1808 tempstat = get_status_requestq_count();
1809 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1810 ret = -EFAULT;
1811 break;
1812
1813 case Z90STAT_PENDINGQ_COUNT:
1814 tempstat = get_status_pendingq_count();
1815 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1816 ret = -EFAULT;
1817 break;
1818
1819 case Z90STAT_TOTALOPEN_COUNT:
1820 tempstat = get_status_totalopen_count();
1821 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1822 ret = -EFAULT;
1823 break;
1824
1825 case Z90STAT_DOMAIN_INDEX:
1826 tempstat = get_status_domain_index();
1827 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1828 ret = -EFAULT;
1829 break;
1830
1831 case Z90STAT_STATUS_MASK:
1832 status = kmalloc(Z90CRYPT_NUM_APS, GFP_KERNEL);
1833 if (!status) {
1834 PRINTK("kmalloc for status failed!\n");
1835 ret = -ENOMEM;
1836 break;
1837 }
1838 get_status_status_mask(status);
1839 if (copy_to_user((char __user *) arg, status, Z90CRYPT_NUM_APS)
1840 != 0)
1841 ret = -EFAULT;
1842 kfree(status);
1843 break;
1844
1845 case Z90STAT_QDEPTH_MASK:
1846 qdepth = kmalloc(Z90CRYPT_NUM_APS, GFP_KERNEL);
1847 if (!qdepth) {
1848 PRINTK("kmalloc for qdepth failed!\n");
1849 ret = -ENOMEM;
1850 break;
1851 }
1852 get_status_qdepth_mask(qdepth);
1853 if (copy_to_user((char __user *) arg, qdepth, Z90CRYPT_NUM_APS) != 0)
1854 ret = -EFAULT;
1855 kfree(qdepth);
1856 break;
1857
1858 case Z90STAT_PERDEV_REQCNT:
1859 reqcnt = kmalloc(sizeof(int) * Z90CRYPT_NUM_APS, GFP_KERNEL);
1860 if (!reqcnt) {
1861 PRINTK("kmalloc for reqcnt failed!\n");
1862 ret = -ENOMEM;
1863 break;
1864 }
1865 get_status_perdevice_reqcnt(reqcnt);
1866 if (copy_to_user((char __user *) arg, reqcnt,
1867 Z90CRYPT_NUM_APS * sizeof(int)) != 0)
1868 ret = -EFAULT;
1869 kfree(reqcnt);
1870 break;
1871
1872 /* THIS IS DEPRECATED. USE THE NEW STATUS CALLS */
1873 case ICAZ90STATUS:
1874 if (deprecated_msg_count1 < 20) {
1875 PRINTK("deprecated call to ioctl (ICAZ90STATUS)!\n");
1876 deprecated_msg_count1++;
1877 if (deprecated_msg_count1 == 20)
1878 PRINTK("No longer issuing messages related to "
1879 "deprecated call to ICAZ90STATUS.\n");
1880 }
1881
1882 pstat = kmalloc(sizeof(struct ica_z90_status), GFP_KERNEL);
1883 if (!pstat) {
1884 PRINTK("kmalloc for pstat failed!\n");
1885 ret = -ENOMEM;
1886 break;
1887 }
1888
1889 pstat->totalcount = get_status_totalcount();
1890 pstat->leedslitecount = get_status_PCICAcount();
1891 pstat->leeds2count = get_status_PCICCcount();
1892 pstat->requestqWaitCount = get_status_requestq_count();
1893 pstat->pendingqWaitCount = get_status_pendingq_count();
1894 pstat->totalOpenCount = get_status_totalopen_count();
1895 pstat->cryptoDomain = get_status_domain_index();
1896 get_status_status_mask(pstat->status);
1897 get_status_qdepth_mask(pstat->qdepth);
1898
1899 if (copy_to_user((struct ica_z90_status __user *) arg, pstat,
1900 sizeof(struct ica_z90_status)) != 0)
1901 ret = -EFAULT;
1902 kfree(pstat);
1903 break;
1904
1905 /* THIS IS DEPRECATED. USE THE NEW STATUS CALLS */
1906 case Z90STAT_PCIXCCCOUNT:
1907 if (deprecated_msg_count2 < 20) {
1908 PRINTK("deprecated ioctl (Z90STAT_PCIXCCCOUNT)!\n");
1909 deprecated_msg_count2++;
1910 if (deprecated_msg_count2 == 20)
1911 PRINTK("No longer issuing messages about depre"
1912 "cated ioctl Z90STAT_PCIXCCCOUNT.\n");
1913 }
1914
1915 tempstat = get_status_PCIXCCcount();
1916 if (copy_to_user((int *)arg, &tempstat, sizeof(int)) != 0)
1917 ret = -EFAULT;
1918 break;
1919
1920 case Z90QUIESCE:
1921 if (current->euid != 0) {
1922 PRINTK("QUIESCE fails: euid %d\n",
1923 current->euid);
1924 ret = -EACCES;
1925 } else {
1926 PRINTK("QUIESCE device from PID %d\n", PID());
1927 quiesce_z90crypt = 1;
1928 }
1929 break;
1930
1931 default:
1932 /* user passed an invalid IOCTL number */
1933 PDEBUG("cmd 0x%08X contains invalid ioctl code\n", cmd);
1934 ret = -ENOTTY;
1935 break;
1936 }
1937
1938 return ret;
1939 }
1940
1941 static inline int
1942 sprintcl(unsigned char *outaddr, unsigned char *addr, unsigned int len)
1943 {
1944 int hl, i;
1945
1946 hl = 0;
1947 for (i = 0; i < len; i++)
1948 hl += sprintf(outaddr+hl, "%01x", (unsigned int) addr[i]);
1949 hl += sprintf(outaddr+hl, " ");
1950
1951 return hl;
1952 }
1953
1954 static inline int
1955 sprintrw(unsigned char *outaddr, unsigned char *addr, unsigned int len)
1956 {
1957 int hl, inl, c, cx;
1958
1959 hl = sprintf(outaddr, " ");
1960 inl = 0;
1961 for (c = 0; c < (len / 16); c++) {
1962 hl += sprintcl(outaddr+hl, addr+inl, 16);
1963 inl += 16;
1964 }
1965
1966 cx = len%16;
1967 if (cx) {
1968 hl += sprintcl(outaddr+hl, addr+inl, cx);
1969 inl += cx;
1970 }
1971
1972 hl += sprintf(outaddr+hl, "\n");
1973
1974 return hl;
1975 }
1976
1977 static inline int
1978 sprinthx(unsigned char *title, unsigned char *outaddr,
1979 unsigned char *addr, unsigned int len)
1980 {
1981 int hl, inl, r, rx;
1982
1983 hl = sprintf(outaddr, "\n%s\n", title);
1984 inl = 0;
1985 for (r = 0; r < (len / 64); r++) {
1986 hl += sprintrw(outaddr+hl, addr+inl, 64);
1987 inl += 64;
1988 }
1989 rx = len % 64;
1990 if (rx) {
1991 hl += sprintrw(outaddr+hl, addr+inl, rx);
1992 inl += rx;
1993 }
1994
1995 hl += sprintf(outaddr+hl, "\n");
1996
1997 return hl;
1998 }
1999
2000 static inline int
2001 sprinthx4(unsigned char *title, unsigned char *outaddr,
2002 unsigned int *array, unsigned int len)
2003 {
2004 int hl, r;
2005
2006 hl = sprintf(outaddr, "\n%s\n", title);
2007
2008 for (r = 0; r < len; r++) {
2009 if ((r % 8) == 0)
2010 hl += sprintf(outaddr+hl, " ");
2011 hl += sprintf(outaddr+hl, "%08X ", array[r]);
2012 if ((r % 8) == 7)
2013 hl += sprintf(outaddr+hl, "\n");
2014 }
2015
2016 hl += sprintf(outaddr+hl, "\n");
2017
2018 return hl;
2019 }
2020
2021 static int
2022 z90crypt_status(char *resp_buff, char **start, off_t offset,
2023 int count, int *eof, void *data)
2024 {
2025 unsigned char *workarea;
2026 int len;
2027
2028 /* resp_buff is a page. Use the right half for a work area */
2029 workarea = resp_buff+2000;
2030 len = 0;
2031 len += sprintf(resp_buff+len, "\nz90crypt version: %d.%d.%d\n",
2032 z90crypt_VERSION, z90crypt_RELEASE, z90crypt_VARIANT);
2033 len += sprintf(resp_buff+len, "Cryptographic domain: %d\n",
2034 get_status_domain_index());
2035 len += sprintf(resp_buff+len, "Total device count: %d\n",
2036 get_status_totalcount());
2037 len += sprintf(resp_buff+len, "PCICA count: %d\n",
2038 get_status_PCICAcount());
2039 len += sprintf(resp_buff+len, "PCICC count: %d\n",
2040 get_status_PCICCcount());
2041 len += sprintf(resp_buff+len, "PCIXCC MCL2 count: %d\n",
2042 get_status_PCIXCCMCL2count());
2043 len += sprintf(resp_buff+len, "PCIXCC MCL3 count: %d\n",
2044 get_status_PCIXCCMCL3count());
2045 len += sprintf(resp_buff+len, "CEX2C count: %d\n",
2046 get_status_CEX2Ccount());
2047 len += sprintf(resp_buff+len, "CEX2A count: %d\n",
2048 get_status_CEX2Acount());
2049 len += sprintf(resp_buff+len, "requestq count: %d\n",
2050 get_status_requestq_count());
2051 len += sprintf(resp_buff+len, "pendingq count: %d\n",
2052 get_status_pendingq_count());
2053 len += sprintf(resp_buff+len, "Total open handles: %d\n\n",
2054 get_status_totalopen_count());
2055 len += sprinthx(
2056 "Online devices: 1=PCICA 2=PCICC 3=PCIXCC(MCL2) "
2057 "4=PCIXCC(MCL3) 5=CEX2C 6=CEX2A",
2058 resp_buff+len,
2059 get_status_status_mask(workarea),
2060 Z90CRYPT_NUM_APS);
2061 len += sprinthx("Waiting work element counts",
2062 resp_buff+len,
2063 get_status_qdepth_mask(workarea),
2064 Z90CRYPT_NUM_APS);
2065 len += sprinthx4(
2066 "Per-device successfully completed request counts",
2067 resp_buff+len,
2068 get_status_perdevice_reqcnt((unsigned int *)workarea),
2069 Z90CRYPT_NUM_APS);
2070 *eof = 1;
2071 memset(workarea, 0, Z90CRYPT_NUM_APS * sizeof(unsigned int));
2072 return len;
2073 }
2074
2075 static inline void
2076 disable_card(int card_index)
2077 {
2078 struct device *devp;
2079
2080 devp = LONG2DEVPTR(card_index);
2081 if (!devp || devp->user_disabled)
2082 return;
2083 devp->user_disabled = 1;
2084 z90crypt.hdware_info->hdware_mask.user_disabled_count++;
2085 if (devp->dev_type == -1)
2086 return;
2087 z90crypt.hdware_info->type_mask[devp->dev_type].user_disabled_count++;
2088 }
2089
2090 static inline void
2091 enable_card(int card_index)
2092 {
2093 struct device *devp;
2094
2095 devp = LONG2DEVPTR(card_index);
2096 if (!devp || !devp->user_disabled)
2097 return;
2098 devp->user_disabled = 0;
2099 z90crypt.hdware_info->hdware_mask.user_disabled_count--;
2100 if (devp->dev_type == -1)
2101 return;
2102 z90crypt.hdware_info->type_mask[devp->dev_type].user_disabled_count--;
2103 }
2104
2105 static int
2106 z90crypt_status_write(struct file *file, const char __user *buffer,
2107 unsigned long count, void *data)
2108 {
2109 int j, eol;
2110 unsigned char *lbuf, *ptr;
2111 unsigned int local_count;
2112
2113 #define LBUFSIZE 1200
2114 lbuf = kmalloc(LBUFSIZE, GFP_KERNEL);
2115 if (!lbuf) {
2116 PRINTK("kmalloc failed!\n");
2117 return 0;
2118 }
2119
2120 if (count <= 0)
2121 return 0;
2122
2123 local_count = UMIN((unsigned int)count, LBUFSIZE-1);
2124
2125 if (copy_from_user(lbuf, buffer, local_count) != 0) {
2126 kfree(lbuf);
2127 return -EFAULT;
2128 }
2129
2130 lbuf[local_count] = '\0';
2131
2132 ptr = strstr(lbuf, "Online devices");
2133 if (ptr == 0) {
2134 PRINTK("Unable to parse data (missing \"Online devices\")\n");
2135 kfree(lbuf);
2136 return count;
2137 }
2138
2139 ptr = strstr(ptr, "\n");
2140 if (ptr == 0) {
2141 PRINTK("Unable to parse data (missing newline after \"Online devices\")\n");
2142 kfree(lbuf);
2143 return count;
2144 }
2145 ptr++;
2146
2147 if (strstr(ptr, "Waiting work element counts") == NULL) {
2148 PRINTK("Unable to parse data (missing \"Waiting work element counts\")\n");
2149 kfree(lbuf);
2150 return count;
2151 }
2152
2153 j = 0;
2154 eol = 0;
2155 while ((j < 64) && (*ptr != '\0')) {
2156 switch (*ptr) {
2157 case '\t':
2158 case ' ':
2159 break;
2160 case '\n':
2161 default:
2162 eol = 1;
2163 break;
2164 case '0': // no device
2165 case '1': // PCICA
2166 case '2': // PCICC
2167 case '3': // PCIXCC_MCL2
2168 case '4': // PCIXCC_MCL3
2169 case '5': // CEX2C
2170 case '6': // CEX2A
2171 j++;
2172 break;
2173 case 'd':
2174 case 'D':
2175 disable_card(j);
2176 j++;
2177 break;
2178 case 'e':
2179 case 'E':
2180 enable_card(j);
2181 j++;
2182 break;
2183 }
2184 if (eol)
2185 break;
2186 ptr++;
2187 }
2188
2189 kfree(lbuf);
2190 return count;
2191 }
2192
2193 /**
2194 * Functions that run under a timer, with no process id
2195 *
2196 * The task functions:
2197 * z90crypt_reader_task
2198 * helper_send_work
2199 * helper_handle_work_element
2200 * helper_receive_rc
2201 * z90crypt_config_task
2202 * z90crypt_cleanup_task
2203 *
2204 * Helper functions:
2205 * z90crypt_schedule_reader_timer
2206 * z90crypt_schedule_reader_task
2207 * z90crypt_schedule_config_task
2208 * z90crypt_schedule_cleanup_task
2209 */
2210 static inline int
2211 receive_from_crypto_device(int index, unsigned char *psmid, int *buff_len_p,
2212 unsigned char *buff, unsigned char __user **dest_p_p)
2213 {
2214 int dv, rv;
2215 struct device *dev_ptr;
2216 struct caller *caller_p;
2217 struct ica_rsa_modexpo *icaMsg_p;
2218 struct list_head *ptr, *tptr;
2219
2220 memcpy(psmid, NULL_psmid, sizeof(NULL_psmid));
2221
2222 if (z90crypt.terminating)
2223 return REC_FATAL_ERROR;
2224
2225 caller_p = 0;
2226 dev_ptr = z90crypt.device_p[index];
2227 rv = 0;
2228 do {
2229 if (!dev_ptr || dev_ptr->disabled) {
2230 rv = REC_NO_WORK; // a disabled device can't return work
2231 break;
2232 }
2233 if (dev_ptr->dev_self_x != index) {
2234 PRINTKC("Corrupt dev ptr\n");
2235 z90crypt.terminating = 1;
2236 rv = REC_FATAL_ERROR;
2237 break;
2238 }
2239 if (!dev_ptr->dev_resp_l || !dev_ptr->dev_resp_p) {
2240 dv = DEV_REC_EXCEPTION;
2241 PRINTK("dev_resp_l = %d, dev_resp_p = %p\n",
2242 dev_ptr->dev_resp_l, dev_ptr->dev_resp_p);
2243 } else {
2244 PDEBUG("Dequeue called for device %d\n", index);
2245 dv = receive_from_AP(index, z90crypt.cdx,
2246 dev_ptr->dev_resp_l,
2247 dev_ptr->dev_resp_p, psmid);
2248 }
2249 switch (dv) {
2250 case DEV_REC_EXCEPTION:
2251 rv = REC_FATAL_ERROR;
2252 z90crypt.terminating = 1;
2253 PRINTKC("Exception in receive from device %d\n",
2254 index);
2255 break;
2256 case DEV_ONLINE:
2257 rv = 0;
2258 break;
2259 case DEV_EMPTY:
2260 rv = REC_EMPTY;
2261 break;
2262 case DEV_NO_WORK:
2263 rv = REC_NO_WORK;
2264 break;
2265 case DEV_BAD_MESSAGE:
2266 case DEV_GONE:
2267 case REC_HARDWAR_ERR:
2268 default:
2269 rv = REC_NO_RESPONSE;
2270 break;
2271 }
2272 if (rv)
2273 break;
2274 if (dev_ptr->dev_caller_count <= 0) {
2275 rv = REC_USER_GONE;
2276 break;
2277 }
2278
2279 list_for_each_safe(ptr, tptr, &dev_ptr->dev_caller_list) {
2280 caller_p = list_entry(ptr, struct caller, caller_liste);
2281 if (!memcmp(caller_p->caller_id, psmid,
2282 sizeof(caller_p->caller_id))) {
2283 if (!list_empty(&caller_p->caller_liste)) {
2284 list_del_init(ptr);
2285 dev_ptr->dev_caller_count--;
2286 break;
2287 }
2288 }
2289 caller_p = 0;
2290 }
2291 if (!caller_p) {
2292 PRINTKW("Unable to locate PSMID %02X%02X%02X%02X%02X"
2293 "%02X%02X%02X in device list\n",
2294 psmid[0], psmid[1], psmid[2], psmid[3],
2295 psmid[4], psmid[5], psmid[6], psmid[7]);
2296 rv = REC_USER_GONE;
2297 break;
2298 }
2299
2300 PDEBUG("caller_p after successful receive: %p\n", caller_p);
2301 rv = convert_response(dev_ptr->dev_resp_p,
2302 caller_p->caller_buf_p, buff_len_p, buff);
2303 switch (rv) {
2304 case REC_USE_PCICA:
2305 break;
2306 case REC_OPERAND_INV:
2307 case REC_OPERAND_SIZE:
2308 case REC_EVEN_MOD:
2309 case REC_INVALID_PAD:
2310 PDEBUG("device %d: 'user error' %d\n", index, rv);
2311 break;
2312 case WRONG_DEVICE_TYPE:
2313 case REC_HARDWAR_ERR:
2314 case REC_BAD_MESSAGE:
2315 PRINTKW("device %d: hardware error %d\n", index, rv);
2316 rv = REC_NO_RESPONSE;
2317 break;
2318 default:
2319 PDEBUG("device %d: rv = %d\n", index, rv);
2320 break;
2321 }
2322 } while (0);
2323
2324 switch (rv) {
2325 case 0:
2326 PDEBUG("Successful receive from device %d\n", index);
2327 icaMsg_p = (struct ica_rsa_modexpo *)caller_p->caller_buf_p;
2328 *dest_p_p = icaMsg_p->outputdata;
2329 if (*buff_len_p == 0)
2330 PRINTK("Zero *buff_len_p\n");
2331 break;
2332 case REC_NO_RESPONSE:
2333 PRINTKW("Removing device %d from availability\n", index);
2334 remove_device(dev_ptr);
2335 break;
2336 }
2337
2338 if (caller_p)
2339 unbuild_caller(dev_ptr, caller_p);
2340
2341 return rv;
2342 }
2343
2344 static inline void
2345 helper_send_work(int index)
2346 {
2347 struct work_element *rq_p;
2348 int rv;
2349
2350 if (list_empty(&request_list))
2351 return;
2352 requestq_count--;
2353 rq_p = list_entry(request_list.next, struct work_element, liste);
2354 list_del_init(&rq_p->liste);
2355 rq_p->audit[1] |= FP_REMREQUEST;
2356 if (rq_p->devtype == SHRT2DEVPTR(index)->dev_type) {
2357 rq_p->devindex = SHRT2LONG(index);
2358 rv = send_to_crypto_device(rq_p);
2359 if (rv == 0) {
2360 rq_p->requestsent = jiffies;
2361 rq_p->audit[0] |= FP_SENT;
2362 list_add_tail(&rq_p->liste, &pending_list);
2363 ++pendingq_count;
2364 rq_p->audit[0] |= FP_PENDING;
2365 } else {
2366 switch (rv) {
2367 case REC_OPERAND_INV:
2368 case REC_OPERAND_SIZE:
2369 case REC_EVEN_MOD:
2370 case REC_INVALID_PAD:
2371 rq_p->retcode = -EINVAL;
2372 break;
2373 case SEN_NOT_AVAIL:
2374 case SEN_RETRY:
2375 case REC_NO_RESPONSE:
2376 default:
2377 if (z90crypt.mask.st_count > 1)
2378 rq_p->retcode =
2379 -ERESTARTSYS;
2380 else
2381 rq_p->retcode = -ENODEV;
2382 break;
2383 }
2384 rq_p->status[0] |= STAT_FAILED;
2385 rq_p->audit[1] |= FP_AWAKENING;
2386 atomic_set(&rq_p->alarmrung, 1);
2387 wake_up(&rq_p->waitq);
2388 }
2389 } else {
2390 if (z90crypt.mask.st_count > 1)
2391 rq_p->retcode = -ERESTARTSYS;
2392 else
2393 rq_p->retcode = -ENODEV;
2394 rq_p->status[0] |= STAT_FAILED;
2395 rq_p->audit[1] |= FP_AWAKENING;
2396 atomic_set(&rq_p->alarmrung, 1);
2397 wake_up(&rq_p->waitq);
2398 }
2399 }
2400
2401 static inline void
2402 helper_handle_work_element(int index, unsigned char psmid[8], int rc,
2403 int buff_len, unsigned char *buff,
2404 unsigned char __user *resp_addr)
2405 {
2406 struct work_element *pq_p;
2407 struct list_head *lptr, *tptr;
2408
2409 pq_p = 0;
2410 list_for_each_safe(lptr, tptr, &pending_list) {
2411 pq_p = list_entry(lptr, struct work_element, liste);
2412 if (!memcmp(pq_p->caller_id, psmid, sizeof(pq_p->caller_id))) {
2413 list_del_init(lptr);
2414 pendingq_count--;
2415 pq_p->audit[1] |= FP_NOTPENDING;
2416 break;
2417 }
2418 pq_p = 0;
2419 }
2420
2421 if (!pq_p) {
2422 PRINTK("device %d has work but no caller exists on pending Q\n",
2423 SHRT2LONG(index));
2424 return;
2425 }
2426
2427 switch (rc) {
2428 case 0:
2429 pq_p->resp_buff_size = buff_len;
2430 pq_p->audit[1] |= FP_RESPSIZESET;
2431 if (buff_len) {
2432 pq_p->resp_addr = resp_addr;
2433 pq_p->audit[1] |= FP_RESPADDRCOPIED;
2434 memcpy(pq_p->resp_buff, buff, buff_len);
2435 pq_p->audit[1] |= FP_RESPBUFFCOPIED;
2436 }
2437 break;
2438 case REC_OPERAND_INV:
2439 case REC_OPERAND_SIZE:
2440 case REC_EVEN_MOD:
2441 case REC_INVALID_PAD:
2442 PDEBUG("-EINVAL after application error %d\n", rc);
2443 pq_p->retcode = -EINVAL;
2444 pq_p->status[0] |= STAT_FAILED;
2445 break;
2446 case REC_USE_PCICA:
2447 pq_p->retcode = -ERESTARTSYS;
2448 pq_p->status[0] |= STAT_FAILED;
2449 break;
2450 case REC_NO_RESPONSE:
2451 default:
2452 if (z90crypt.mask.st_count > 1)
2453 pq_p->retcode = -ERESTARTSYS;
2454 else
2455 pq_p->retcode = -ENODEV;
2456 pq_p->status[0] |= STAT_FAILED;
2457 break;
2458 }
2459 if ((pq_p->status[0] != STAT_FAILED) || (pq_p->retcode != -ERELEASED)) {
2460 pq_p->audit[1] |= FP_AWAKENING;
2461 atomic_set(&pq_p->alarmrung, 1);
2462 wake_up(&pq_p->waitq);
2463 }
2464 }
2465
2466 /**
2467 * return TRUE if the work element should be removed from the queue
2468 */
2469 static inline int
2470 helper_receive_rc(int index, int *rc_p)
2471 {
2472 switch (*rc_p) {
2473 case 0:
2474 case REC_OPERAND_INV:
2475 case REC_OPERAND_SIZE:
2476 case REC_EVEN_MOD:
2477 case REC_INVALID_PAD:
2478 case REC_USE_PCICA:
2479 break;
2480
2481 case REC_BUSY:
2482 case REC_NO_WORK:
2483 case REC_EMPTY:
2484 case REC_RETRY_DEV:
2485 case REC_FATAL_ERROR:
2486 return 0;
2487
2488 case REC_NO_RESPONSE:
2489 break;
2490
2491 default:
2492 PRINTK("rc %d, device %d converted to REC_NO_RESPONSE\n",
2493 *rc_p, SHRT2LONG(index));
2494 *rc_p = REC_NO_RESPONSE;
2495 break;
2496 }
2497 return 1;
2498 }
2499
2500 static inline void
2501 z90crypt_schedule_reader_timer(void)
2502 {
2503 if (timer_pending(&reader_timer))
2504 return;
2505 if (mod_timer(&reader_timer, jiffies+(READERTIME*HZ/1000)) != 0)
2506 PRINTK("Timer pending while modifying reader timer\n");
2507 }
2508
2509 static void
2510 z90crypt_reader_task(unsigned long ptr)
2511 {
2512 int workavail, index, rc, buff_len;
2513 unsigned char psmid[8];
2514 unsigned char __user *resp_addr;
2515 static unsigned char buff[1024];
2516
2517 /**
2518 * we use workavail = 2 to ensure 2 passes with nothing dequeued before
2519 * exiting the loop. If (pendingq_count+requestq_count) == 0 after the
2520 * loop, there is no work remaining on the queues.
2521 */
2522 resp_addr = 0;
2523 workavail = 2;
2524 buff_len = 0;
2525 while (workavail) {
2526 workavail--;
2527 rc = 0;
2528 spin_lock_irq(&queuespinlock);
2529 memset(buff, 0x00, sizeof(buff));
2530
2531 /* Dequeue once from each device in round robin. */
2532 for (index = 0; index < z90crypt.mask.st_count; index++) {
2533 PDEBUG("About to receive.\n");
2534 rc = receive_from_crypto_device(SHRT2LONG(index),
2535 psmid,
2536 &buff_len,
2537 buff,
2538 &resp_addr);
2539 PDEBUG("Dequeued: rc = %d.\n", rc);
2540
2541 if (helper_receive_rc(index, &rc)) {
2542 if (rc != REC_NO_RESPONSE) {
2543 helper_send_work(index);
2544 workavail = 2;
2545 }
2546
2547 helper_handle_work_element(index, psmid, rc,
2548 buff_len, buff,
2549 resp_addr);
2550 }
2551
2552 if (rc == REC_FATAL_ERROR)
2553 PRINTKW("REC_FATAL_ERROR from device %d!\n",
2554 SHRT2LONG(index));
2555 }
2556 spin_unlock_irq(&queuespinlock);
2557 }
2558
2559 if (pendingq_count + requestq_count)
2560 z90crypt_schedule_reader_timer();
2561 }
2562
2563 static inline void
2564 z90crypt_schedule_config_task(unsigned int expiration)
2565 {
2566 if (timer_pending(&config_timer))
2567 return;
2568 if (mod_timer(&config_timer, jiffies+(expiration*HZ)) != 0)
2569 PRINTK("Timer pending while modifying config timer\n");
2570 }
2571
2572 static void
2573 z90crypt_config_task(unsigned long ptr)
2574 {
2575 int rc;
2576
2577 PDEBUG("jiffies %ld\n", jiffies);
2578
2579 if ((rc = refresh_z90crypt(&z90crypt.cdx)))
2580 PRINTK("Error %d detected in refresh_z90crypt.\n", rc);
2581 /* If return was fatal, don't bother reconfiguring */
2582 if ((rc != TSQ_FATAL_ERROR) && (rc != RSQ_FATAL_ERROR))
2583 z90crypt_schedule_config_task(CONFIGTIME);
2584 }
2585
2586 static inline void
2587 z90crypt_schedule_cleanup_task(void)
2588 {
2589 if (timer_pending(&cleanup_timer))
2590 return;
2591 if (mod_timer(&cleanup_timer, jiffies+(CLEANUPTIME*HZ)) != 0)
2592 PRINTK("Timer pending while modifying cleanup timer\n");
2593 }
2594
2595 static inline void
2596 helper_drain_queues(void)
2597 {
2598 struct work_element *pq_p;
2599 struct list_head *lptr, *tptr;
2600
2601 list_for_each_safe(lptr, tptr, &pending_list) {
2602 pq_p = list_entry(lptr, struct work_element, liste);
2603 pq_p->retcode = -ENODEV;
2604 pq_p->status[0] |= STAT_FAILED;
2605 unbuild_caller(LONG2DEVPTR(pq_p->devindex),
2606 (struct caller *)pq_p->requestptr);
2607 list_del_init(lptr);
2608 pendingq_count--;
2609 pq_p->audit[1] |= FP_NOTPENDING;
2610 pq_p->audit[1] |= FP_AWAKENING;
2611 atomic_set(&pq_p->alarmrung, 1);
2612 wake_up(&pq_p->waitq);
2613 }
2614
2615 list_for_each_safe(lptr, tptr, &request_list) {
2616 pq_p = list_entry(lptr, struct work_element, liste);
2617 pq_p->retcode = -ENODEV;
2618 pq_p->status[0] |= STAT_FAILED;
2619 list_del_init(lptr);
2620 requestq_count--;
2621 pq_p->audit[1] |= FP_REMREQUEST;
2622 pq_p->audit[1] |= FP_AWAKENING;
2623 atomic_set(&pq_p->alarmrung, 1);
2624 wake_up(&pq_p->waitq);
2625 }
2626 }
2627
2628 static inline void
2629 helper_timeout_requests(void)
2630 {
2631 struct work_element *pq_p;
2632 struct list_head *lptr, *tptr;
2633 long timelimit;
2634
2635 timelimit = jiffies - (CLEANUPTIME * HZ);
2636 /* The list is in strict chronological order */
2637 list_for_each_safe(lptr, tptr, &pending_list) {
2638 pq_p = list_entry(lptr, struct work_element, liste);
2639 if (pq_p->requestsent >= timelimit)
2640 break;
2641 PRINTKW("Purging(PQ) PSMID %02X%02X%02X%02X%02X%02X%02X%02X\n",
2642 ((struct caller *)pq_p->requestptr)->caller_id[0],
2643 ((struct caller *)pq_p->requestptr)->caller_id[1],
2644 ((struct caller *)pq_p->requestptr)->caller_id[2],
2645 ((struct caller *)pq_p->requestptr)->caller_id[3],
2646 ((struct caller *)pq_p->requestptr)->caller_id[4],
2647 ((struct caller *)pq_p->requestptr)->caller_id[5],
2648 ((struct caller *)pq_p->requestptr)->caller_id[6],
2649 ((struct caller *)pq_p->requestptr)->caller_id[7]);
2650 pq_p->retcode = -ETIMEOUT;
2651 pq_p->status[0] |= STAT_FAILED;
2652 /* get this off any caller queue it may be on */
2653 unbuild_caller(LONG2DEVPTR(pq_p->devindex),
2654 (struct caller *) pq_p->requestptr);
2655 list_del_init(lptr);
2656 pendingq_count--;
2657 pq_p->audit[1] |= FP_TIMEDOUT;
2658 pq_p->audit[1] |= FP_NOTPENDING;
2659 pq_p->audit[1] |= FP_AWAKENING;
2660 atomic_set(&pq_p->alarmrung, 1);
2661 wake_up(&pq_p->waitq);
2662 }
2663
2664 /**
2665 * If pending count is zero, items left on the request queue may
2666 * never be processed.
2667 */
2668 if (pendingq_count <= 0) {
2669 list_for_each_safe(lptr, tptr, &request_list) {
2670 pq_p = list_entry(lptr, struct work_element, liste);
2671 if (pq_p->requestsent >= timelimit)
2672 break;
2673 PRINTKW("Purging(RQ) PSMID %02X%02X%02X%02X%02X%02X%02X%02X\n",
2674 ((struct caller *)pq_p->requestptr)->caller_id[0],
2675 ((struct caller *)pq_p->requestptr)->caller_id[1],
2676 ((struct caller *)pq_p->requestptr)->caller_id[2],
2677 ((struct caller *)pq_p->requestptr)->caller_id[3],
2678 ((struct caller *)pq_p->requestptr)->caller_id[4],
2679 ((struct caller *)pq_p->requestptr)->caller_id[5],
2680 ((struct caller *)pq_p->requestptr)->caller_id[6],
2681 ((struct caller *)pq_p->requestptr)->caller_id[7]);
2682 pq_p->retcode = -ETIMEOUT;
2683 pq_p->status[0] |= STAT_FAILED;
2684 list_del_init(lptr);
2685 requestq_count--;
2686 pq_p->audit[1] |= FP_TIMEDOUT;
2687 pq_p->audit[1] |= FP_REMREQUEST;
2688 pq_p->audit[1] |= FP_AWAKENING;
2689 atomic_set(&pq_p->alarmrung, 1);
2690 wake_up(&pq_p->waitq);
2691 }
2692 }
2693 }
2694
2695 static void
2696 z90crypt_cleanup_task(unsigned long ptr)
2697 {
2698 PDEBUG("jiffies %ld\n", jiffies);
2699 spin_lock_irq(&queuespinlock);
2700 if (z90crypt.mask.st_count <= 0) // no devices!
2701 helper_drain_queues();
2702 else
2703 helper_timeout_requests();
2704 spin_unlock_irq(&queuespinlock);
2705 z90crypt_schedule_cleanup_task();
2706 }
2707
2708 static void
2709 z90crypt_schedule_reader_task(unsigned long ptr)
2710 {
2711 tasklet_schedule(&reader_tasklet);
2712 }
2713
2714 /**
2715 * Lowlevel Functions:
2716 *
2717 * create_z90crypt: creates and initializes basic data structures
2718 * refresh_z90crypt: re-initializes basic data structures
2719 * find_crypto_devices: returns a count and mask of hardware status
2720 * create_crypto_device: builds the descriptor for a device
2721 * destroy_crypto_device: unallocates the descriptor for a device
2722 * destroy_z90crypt: drains all work, unallocates structs
2723 */
2724
2725 /**
2726 * build the z90crypt root structure using the given domain index
2727 */
2728 static int
2729 create_z90crypt(int *cdx_p)
2730 {
2731 struct hdware_block *hdware_blk_p;
2732
2733 memset(&z90crypt, 0x00, sizeof(struct z90crypt));
2734 z90crypt.domain_established = 0;
2735 z90crypt.len = sizeof(struct z90crypt);
2736 z90crypt.max_count = Z90CRYPT_NUM_DEVS;
2737 z90crypt.cdx = *cdx_p;
2738
2739 hdware_blk_p = (struct hdware_block *)
2740 kmalloc(sizeof(struct hdware_block), GFP_ATOMIC);
2741 if (!hdware_blk_p) {
2742 PDEBUG("kmalloc for hardware block failed\n");
2743 return ENOMEM;
2744 }
2745 memset(hdware_blk_p, 0x00, sizeof(struct hdware_block));
2746 z90crypt.hdware_info = hdware_blk_p;
2747
2748 return 0;
2749 }
2750
2751 static inline int
2752 helper_scan_devices(int cdx_array[16], int *cdx_p, int *correct_cdx_found)
2753 {
2754 enum hdstat hd_stat;
2755 int q_depth, dev_type;
2756 int indx, chkdom, numdomains;
2757
2758 q_depth = dev_type = numdomains = 0;
2759 for (chkdom = 0; chkdom <= 15; cdx_array[chkdom++] = -1);
2760 for (indx = 0; indx < z90crypt.max_count; indx++) {
2761 hd_stat = HD_NOT_THERE;
2762 numdomains = 0;
2763 for (chkdom = 0; chkdom <= 15; chkdom++) {
2764 hd_stat = query_online(indx, chkdom, MAX_RESET,
2765 &q_depth, &dev_type);
2766 if (hd_stat == HD_TSQ_EXCEPTION) {
2767 z90crypt.terminating = 1;
2768 PRINTKC("exception taken!\n");
2769 break;
2770 }
2771 if (hd_stat == HD_ONLINE) {
2772 cdx_array[numdomains++] = chkdom;
2773 if (*cdx_p == chkdom) {
2774 *correct_cdx_found = 1;
2775 break;
2776 }
2777 }
2778 }
2779 if ((*correct_cdx_found == 1) || (numdomains != 0))
2780 break;
2781 if (z90crypt.terminating)
2782 break;
2783 }
2784 return numdomains;
2785 }
2786
2787 static inline int
2788 probe_crypto_domain(int *cdx_p)
2789 {
2790 int cdx_array[16];
2791 char cdx_array_text[53], temp[5];
2792 int correct_cdx_found, numdomains;
2793
2794 correct_cdx_found = 0;
2795 numdomains = helper_scan_devices(cdx_array, cdx_p, &correct_cdx_found);
2796
2797 if (z90crypt.terminating)
2798 return TSQ_FATAL_ERROR;
2799
2800 if (correct_cdx_found)
2801 return 0;
2802
2803 if (numdomains == 0) {
2804 PRINTKW("Unable to find crypto domain: No devices found\n");
2805 return Z90C_NO_DEVICES;
2806 }
2807
2808 if (numdomains == 1) {
2809 if (*cdx_p == -1) {
2810 *cdx_p = cdx_array[0];
2811 return 0;
2812 }
2813 PRINTKW("incorrect domain: specified = %d, found = %d\n",
2814 *cdx_p, cdx_array[0]);
2815 return Z90C_INCORRECT_DOMAIN;
2816 }
2817
2818 numdomains--;
2819 sprintf(cdx_array_text, "%d", cdx_array[numdomains]);
2820 while (numdomains) {
2821 numdomains--;
2822 sprintf(temp, ", %d", cdx_array[numdomains]);
2823 strcat(cdx_array_text, temp);
2824 }
2825
2826 PRINTKW("ambiguous domain detected: specified = %d, found array = %s\n",
2827 *cdx_p, cdx_array_text);
2828 return Z90C_AMBIGUOUS_DOMAIN;
2829 }
2830
2831 static int
2832 refresh_z90crypt(int *cdx_p)
2833 {
2834 int i, j, indx, rv;
2835 static struct status local_mask;
2836 struct device *devPtr;
2837 unsigned char oldStat, newStat;
2838 int return_unchanged;
2839
2840 if (z90crypt.len != sizeof(z90crypt))
2841 return ENOTINIT;
2842 if (z90crypt.terminating)
2843 return TSQ_FATAL_ERROR;
2844 rv = 0;
2845 if (!z90crypt.hdware_info->hdware_mask.st_count &&
2846 !z90crypt.domain_established) {
2847 rv = probe_crypto_domain(cdx_p);
2848 if (z90crypt.terminating)
2849 return TSQ_FATAL_ERROR;
2850 if (rv == Z90C_NO_DEVICES)
2851 return 0; // try later
2852 if (rv)
2853 return rv;
2854 z90crypt.cdx = *cdx_p;
2855 z90crypt.domain_established = 1;
2856 }
2857 rv = find_crypto_devices(&local_mask);
2858 if (rv) {
2859 PRINTK("find crypto devices returned %d\n", rv);
2860 return rv;
2861 }
2862 if (!memcmp(&local_mask, &z90crypt.hdware_info->hdware_mask,
2863 sizeof(struct status))) {
2864 return_unchanged = 1;
2865 for (i = 0; i < Z90CRYPT_NUM_TYPES; i++) {
2866 /**
2867 * Check for disabled cards. If any device is marked
2868 * disabled, destroy it.
2869 */
2870 for (j = 0;
2871 j < z90crypt.hdware_info->type_mask[i].st_count;
2872 j++) {
2873 indx = z90crypt.hdware_info->type_x_addr[i].
2874 device_index[j];
2875 devPtr = z90crypt.device_p[indx];
2876 if (devPtr && devPtr->disabled) {
2877 local_mask.st_mask[indx] = HD_NOT_THERE;
2878 return_unchanged = 0;
2879 }
2880 }
2881 }
2882 if (return_unchanged == 1)
2883 return 0;
2884 }
2885
2886 spin_lock_irq(&queuespinlock);
2887 for (i = 0; i < z90crypt.max_count; i++) {
2888 oldStat = z90crypt.hdware_info->hdware_mask.st_mask[i];
2889 newStat = local_mask.st_mask[i];
2890 if ((oldStat == HD_ONLINE) && (newStat != HD_ONLINE))
2891 destroy_crypto_device(i);
2892 else if ((oldStat != HD_ONLINE) && (newStat == HD_ONLINE)) {
2893 rv = create_crypto_device(i);
2894 if (rv >= REC_FATAL_ERROR)
2895 return rv;
2896 if (rv != 0) {
2897 local_mask.st_mask[i] = HD_NOT_THERE;
2898 local_mask.st_count--;
2899 }
2900 }
2901 }
2902 memcpy(z90crypt.hdware_info->hdware_mask.st_mask, local_mask.st_mask,
2903 sizeof(local_mask.st_mask));
2904 z90crypt.hdware_info->hdware_mask.st_count = local_mask.st_count;
2905 z90crypt.hdware_info->hdware_mask.disabled_count =
2906 local_mask.disabled_count;
2907 refresh_index_array(&z90crypt.mask, &z90crypt.overall_device_x);
2908 for (i = 0; i < Z90CRYPT_NUM_TYPES; i++)
2909 refresh_index_array(&(z90crypt.hdware_info->type_mask[i]),
2910 &(z90crypt.hdware_info->type_x_addr[i]));
2911 spin_unlock_irq(&queuespinlock);
2912
2913 return rv;
2914 }
2915
2916 static int
2917 find_crypto_devices(struct status *deviceMask)
2918 {
2919 int i, q_depth, dev_type;
2920 enum hdstat hd_stat;
2921
2922 deviceMask->st_count = 0;
2923 deviceMask->disabled_count = 0;
2924 deviceMask->user_disabled_count = 0;
2925
2926 for (i = 0; i < z90crypt.max_count; i++) {
2927 hd_stat = query_online(i, z90crypt.cdx, MAX_RESET, &q_depth,
2928 &dev_type);
2929 if (hd_stat == HD_TSQ_EXCEPTION) {
2930 z90crypt.terminating = 1;
2931 PRINTKC("Exception during probe for crypto devices\n");
2932 return TSQ_FATAL_ERROR;
2933 }
2934 deviceMask->st_mask[i] = hd_stat;
2935 if (hd_stat == HD_ONLINE) {
2936 PDEBUG("Got an online crypto!: %d\n", i);
2937 PDEBUG("Got a queue depth of %d\n", q_depth);
2938 PDEBUG("Got a device type of %d\n", dev_type);
2939 if (q_depth <= 0)
2940 return TSQ_FATAL_ERROR;
2941 deviceMask->st_count++;
2942 z90crypt.q_depth_array[i] = q_depth;
2943 z90crypt.dev_type_array[i] = dev_type;
2944 }
2945 }
2946
2947 return 0;
2948 }
2949
2950 static int
2951 refresh_index_array(struct status *status_str, struct device_x *index_array)
2952 {
2953 int i, count;
2954 enum devstat stat;
2955
2956 i = -1;
2957 count = 0;
2958 do {
2959 stat = status_str->st_mask[++i];
2960 if (stat == DEV_ONLINE)
2961 index_array->device_index[count++] = i;
2962 } while ((i < Z90CRYPT_NUM_DEVS) && (count < status_str->st_count));
2963
2964 return count;
2965 }
2966
2967 static int
2968 create_crypto_device(int index)
2969 {
2970 int rv, devstat, total_size;
2971 struct device *dev_ptr;
2972 struct status *type_str_p;
2973 int deviceType;
2974
2975 dev_ptr = z90crypt.device_p[index];
2976 if (!dev_ptr) {
2977 total_size = sizeof(struct device) +
2978 z90crypt.q_depth_array[index] * sizeof(int);
2979
2980 dev_ptr = (struct device *) kmalloc(total_size, GFP_ATOMIC);
2981 if (!dev_ptr) {
2982 PRINTK("kmalloc device %d failed\n", index);
2983 return ENOMEM;
2984 }
2985 memset(dev_ptr, 0, total_size);
2986 dev_ptr->dev_resp_p = kmalloc(MAX_RESPONSE_SIZE, GFP_ATOMIC);
2987 if (!dev_ptr->dev_resp_p) {
2988 kfree(dev_ptr);
2989 PRINTK("kmalloc device %d rec buffer failed\n", index);
2990 return ENOMEM;
2991 }
2992 dev_ptr->dev_resp_l = MAX_RESPONSE_SIZE;
2993 INIT_LIST_HEAD(&(dev_ptr->dev_caller_list));
2994 }
2995
2996 devstat = reset_device(index, z90crypt.cdx, MAX_RESET);
2997 if (devstat == DEV_RSQ_EXCEPTION) {
2998 PRINTK("exception during reset device %d\n", index);
2999 kfree(dev_ptr->dev_resp_p);
3000 kfree(dev_ptr);
3001 return RSQ_FATAL_ERROR;
3002 }
3003 if (devstat == DEV_ONLINE) {
3004 dev_ptr->dev_self_x = index;
3005 dev_ptr->dev_type = z90crypt.dev_type_array[index];
3006 if (dev_ptr->dev_type == NILDEV) {
3007 rv = probe_device_type(dev_ptr);
3008 if (rv) {
3009 PRINTK("rv = %d from probe_device_type %d\n",
3010 rv, index);
3011 kfree(dev_ptr->dev_resp_p);
3012 kfree(dev_ptr);
3013 return rv;
3014 }
3015 }
3016 if (dev_ptr->dev_type == PCIXCC_UNK) {
3017 rv = probe_PCIXCC_type(dev_ptr);
3018 if (rv) {
3019 PRINTK("rv = %d from probe_PCIXCC_type %d\n",
3020 rv, index);
3021 kfree(dev_ptr->dev_resp_p);
3022 kfree(dev_ptr);
3023 return rv;
3024 }
3025 }
3026 deviceType = dev_ptr->dev_type;
3027 z90crypt.dev_type_array[index] = deviceType;
3028 if (deviceType == PCICA)
3029 z90crypt.hdware_info->device_type_array[index] = 1;
3030 else if (deviceType == PCICC)
3031 z90crypt.hdware_info->device_type_array[index] = 2;
3032 else if (deviceType == PCIXCC_MCL2)
3033 z90crypt.hdware_info->device_type_array[index] = 3;
3034 else if (deviceType == PCIXCC_MCL3)
3035 z90crypt.hdware_info->device_type_array[index] = 4;
3036 else if (deviceType == CEX2C)
3037 z90crypt.hdware_info->device_type_array[index] = 5;
3038 else if (deviceType == CEX2A)
3039 z90crypt.hdware_info->device_type_array[index] = 6;
3040 else // No idea how this would happen.
3041 z90crypt.hdware_info->device_type_array[index] = -1;
3042 }
3043
3044 /**
3045 * 'q_depth' returned by the hardware is one less than
3046 * the actual depth
3047 */
3048 dev_ptr->dev_q_depth = z90crypt.q_depth_array[index];
3049 dev_ptr->dev_type = z90crypt.dev_type_array[index];
3050 dev_ptr->dev_stat = devstat;
3051 dev_ptr->disabled = 0;
3052 z90crypt.device_p[index] = dev_ptr;
3053
3054 if (devstat == DEV_ONLINE) {
3055 if (z90crypt.mask.st_mask[index] != DEV_ONLINE) {
3056 z90crypt.mask.st_mask[index] = DEV_ONLINE;
3057 z90crypt.mask.st_count++;
3058 }
3059 deviceType = dev_ptr->dev_type;
3060 type_str_p = &z90crypt.hdware_info->type_mask[deviceType];
3061 if (type_str_p->st_mask[index] != DEV_ONLINE) {
3062 type_str_p->st_mask[index] = DEV_ONLINE;
3063 type_str_p->st_count++;
3064 }
3065 }
3066
3067 return 0;
3068 }
3069
3070 static int
3071 destroy_crypto_device(int index)
3072 {
3073 struct device *dev_ptr;
3074 int t, disabledFlag;
3075
3076 dev_ptr = z90crypt.device_p[index];
3077
3078 /* remember device type; get rid of device struct */
3079 if (dev_ptr) {
3080 disabledFlag = dev_ptr->disabled;
3081 t = dev_ptr->dev_type;
3082 kfree(dev_ptr->dev_resp_p);
3083 kfree(dev_ptr);
3084 } else {
3085 disabledFlag = 0;
3086 t = -1;
3087 }
3088 z90crypt.device_p[index] = 0;
3089
3090 /* if the type is valid, remove the device from the type_mask */
3091 if ((t != -1) && z90crypt.hdware_info->type_mask[t].st_mask[index]) {
3092 z90crypt.hdware_info->type_mask[t].st_mask[index] = 0x00;
3093 z90crypt.hdware_info->type_mask[t].st_count--;
3094 if (disabledFlag == 1)
3095 z90crypt.hdware_info->type_mask[t].disabled_count--;
3096 }
3097 if (z90crypt.mask.st_mask[index] != DEV_GONE) {
3098 z90crypt.mask.st_mask[index] = DEV_GONE;
3099 z90crypt.mask.st_count--;
3100 }
3101 z90crypt.hdware_info->device_type_array[index] = 0;
3102
3103 return 0;
3104 }
3105
3106 static void
3107 destroy_z90crypt(void)
3108 {
3109 int i;
3110
3111 for (i = 0; i < z90crypt.max_count; i++)
3112 if (z90crypt.device_p[i])
3113 destroy_crypto_device(i);
3114 kfree(z90crypt.hdware_info);
3115 memset((void *)&z90crypt, 0, sizeof(z90crypt));
3116 }
3117
3118 static unsigned char static_testmsg[384] = {
3119 0x00,0x00,0x00,0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x00,0x06,0x00,0x00,
3120 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x58,
3121 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x43,0x43,
3122 0x41,0x2d,0x41,0x50,0x50,0x4c,0x20,0x20,0x20,0x01,0x01,0x01,0x00,0x00,0x00,0x00,
3123 0x50,0x4b,0x00,0x00,0x00,0x00,0x01,0x1c,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3124 0x00,0x00,0x00,0x00,0x00,0x00,0x05,0xb8,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3125 0x00,0x00,0x00,0x00,0x70,0x00,0x41,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x54,0x32,
3126 0x01,0x00,0xa0,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3127 0xb8,0x05,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3128 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3129 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3130 0x00,0x00,0x00,0x00,0x00,0x00,0x0a,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3131 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00,0x49,0x43,0x53,0x46,
3132 0x20,0x20,0x20,0x20,0x50,0x4b,0x0a,0x00,0x50,0x4b,0x43,0x53,0x2d,0x31,0x2e,0x32,
3133 0x37,0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,
3134 0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,
3135 0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,0x55,0x66,
3136 0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x5d,0x00,0x5b,0x00,0x77,0x88,0x1e,0x00,0x00,
3137 0x57,0x00,0x00,0x00,0x00,0x04,0x00,0x00,0x4f,0x00,0x00,0x00,0x03,0x02,0x00,0x00,
3138 0x40,0x01,0x00,0x01,0xce,0x02,0x68,0x2d,0x5f,0xa9,0xde,0x0c,0xf6,0xd2,0x7b,0x58,
3139 0x4b,0xf9,0x28,0x68,0x3d,0xb4,0xf4,0xef,0x78,0xd5,0xbe,0x66,0x63,0x42,0xef,0xf8,
3140 0xfd,0xa4,0xf8,0xb0,0x8e,0x29,0xc2,0xc9,0x2e,0xd8,0x45,0xb8,0x53,0x8c,0x6f,0x4e,
3141 0x72,0x8f,0x6c,0x04,0x9c,0x88,0xfc,0x1e,0xc5,0x83,0x55,0x57,0xf7,0xdd,0xfd,0x4f,
3142 0x11,0x36,0x95,0x5d,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
3143 };
3144
3145 static int
3146 probe_device_type(struct device *devPtr)
3147 {
3148 int rv, dv, i, index, length;
3149 unsigned char psmid[8];
3150 static unsigned char loc_testmsg[sizeof(static_testmsg)];
3151
3152 index = devPtr->dev_self_x;
3153 rv = 0;
3154 do {
3155 memcpy(loc_testmsg, static_testmsg, sizeof(static_testmsg));
3156 length = sizeof(static_testmsg) - 24;
3157 /* the -24 allows for the header */
3158 dv = send_to_AP(index, z90crypt.cdx, length, loc_testmsg);
3159 if (dv) {
3160 PDEBUG("dv returned by send during probe: %d\n", dv);
3161 if (dv == DEV_SEN_EXCEPTION) {
3162 rv = SEN_FATAL_ERROR;
3163 PRINTKC("exception in send to AP %d\n", index);
3164 break;
3165 }
3166 PDEBUG("return value from send_to_AP: %d\n", rv);
3167 switch (dv) {
3168 case DEV_GONE:
3169 PDEBUG("dev %d not available\n", index);
3170 rv = SEN_NOT_AVAIL;
3171 break;
3172 case DEV_ONLINE:
3173 rv = 0;
3174 break;
3175 case DEV_EMPTY:
3176 rv = SEN_NOT_AVAIL;
3177 break;
3178 case DEV_NO_WORK:
3179 rv = SEN_FATAL_ERROR;
3180 break;
3181 case DEV_BAD_MESSAGE:
3182 rv = SEN_USER_ERROR;
3183 break;
3184 case DEV_QUEUE_FULL:
3185 rv = SEN_QUEUE_FULL;
3186 break;
3187 default:
3188 PRINTK("unknown dv=%d for dev %d\n", dv, index);
3189 rv = SEN_NOT_AVAIL;
3190 break;
3191 }
3192 }
3193
3194 if (rv)
3195 break;
3196
3197 for (i = 0; i < 6; i++) {
3198 mdelay(300);
3199 dv = receive_from_AP(index, z90crypt.cdx,
3200 devPtr->dev_resp_l,
3201 devPtr->dev_resp_p, psmid);
3202 PDEBUG("dv returned by DQ = %d\n", dv);
3203 if (dv == DEV_REC_EXCEPTION) {
3204 rv = REC_FATAL_ERROR;
3205 PRINTKC("exception in dequeue %d\n",
3206 index);
3207 break;
3208 }
3209 switch (dv) {
3210 case DEV_ONLINE:
3211 rv = 0;
3212 break;
3213 case DEV_EMPTY:
3214 rv = REC_EMPTY;
3215 break;
3216 case DEV_NO_WORK:
3217 rv = REC_NO_WORK;
3218 break;
3219 case DEV_BAD_MESSAGE:
3220 case DEV_GONE:
3221 default:
3222 rv = REC_NO_RESPONSE;
3223 break;
3224 }
3225 if ((rv != 0) && (rv != REC_NO_WORK))
3226 break;
3227 if (rv == 0)
3228 break;
3229 }
3230 if (rv)
3231 break;
3232 rv = (devPtr->dev_resp_p[0] == 0x00) &&
3233 (devPtr->dev_resp_p[1] == 0x86);
3234 if (rv)
3235 devPtr->dev_type = PCICC;
3236 else
3237 devPtr->dev_type = PCICA;
3238 rv = 0;
3239 } while (0);
3240 /* In a general error case, the card is not marked online */
3241 return rv;
3242 }
3243
3244 static unsigned char MCL3_testmsg[] = {
3245 0x00,0x00,0x00,0x00,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,
3246 0x00,0x06,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3247 0x00,0x00,0x00,0x58,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3248 0x43,0x41,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3249 0x00,0x00,0x00,0x00,0x50,0x4B,0x00,0x00,0x00,0x00,0x01,0xC4,0x00,0x00,0x00,0x00,
3250 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x07,0x24,0x00,0x00,0x00,0x00,
3251 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xDC,0x02,0x00,0x00,0x00,0x54,0x32,
3252 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xE8,0x00,0x00,0x00,0x00,0x00,0x00,0x07,0x24,
3253 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3254 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3255 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3256 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3257 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3258 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3259 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3260 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3261 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3262 0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3263 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3264 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3265 0x00,0x00,0x00,0x00,0x50,0x4B,0x00,0x0A,0x4D,0x52,0x50,0x20,0x20,0x20,0x20,0x20,
3266 0x00,0x42,0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D,
3267 0x0E,0x0F,0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xAA,0xBB,0xCC,0xDD,
3268 0xEE,0xFF,0xFF,0xEE,0xDD,0xCC,0xBB,0xAA,0x99,0x88,0x77,0x66,0x55,0x44,0x33,0x22,
3269 0x11,0x00,0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF,0xFE,0xDC,0xBA,0x98,0x76,0x54,
3270 0x32,0x10,0x00,0x9A,0x00,0x98,0x00,0x00,0x1E,0x00,0x00,0x94,0x00,0x00,0x00,0x00,
3271 0x04,0x00,0x00,0x8C,0x00,0x00,0x00,0x40,0x02,0x00,0x00,0x40,0xBA,0xE8,0x23,0x3C,
3272 0x75,0xF3,0x91,0x61,0xD6,0x73,0x39,0xCF,0x7B,0x6D,0x8E,0x61,0x97,0x63,0x9E,0xD9,
3273 0x60,0x55,0xD6,0xC7,0xEF,0xF8,0x1E,0x63,0x95,0x17,0xCC,0x28,0x45,0x60,0x11,0xC5,
3274 0xC4,0x4E,0x66,0xC6,0xE6,0xC3,0xDE,0x8A,0x19,0x30,0xCF,0x0E,0xD7,0xAA,0xDB,0x01,
3275 0xD8,0x00,0xBB,0x8F,0x39,0x9F,0x64,0x28,0xF5,0x7A,0x77,0x49,0xCC,0x6B,0xA3,0x91,
3276 0x97,0x70,0xE7,0x60,0x1E,0x39,0xE1,0xE5,0x33,0xE1,0x15,0x63,0x69,0x08,0x80,0x4C,
3277 0x67,0xC4,0x41,0x8F,0x48,0xDF,0x26,0x98,0xF1,0xD5,0x8D,0x88,0xD9,0x6A,0xA4,0x96,
3278 0xC5,0x84,0xD9,0x30,0x49,0x67,0x7D,0x19,0xB1,0xB3,0x45,0x4D,0xB2,0x53,0x9A,0x47,
3279 0x3C,0x7C,0x55,0xBF,0xCC,0x85,0x00,0x36,0xF1,0x3D,0x93,0x53
3280 };
3281
3282 static int
3283 probe_PCIXCC_type(struct device *devPtr)
3284 {
3285 int rv, dv, i, index, length;
3286 unsigned char psmid[8];
3287 static unsigned char loc_testmsg[548];
3288 struct CPRBX *cprbx_p;
3289
3290 index = devPtr->dev_self_x;
3291 rv = 0;
3292 do {
3293 memcpy(loc_testmsg, MCL3_testmsg, sizeof(MCL3_testmsg));
3294 length = sizeof(MCL3_testmsg) - 0x0C;
3295 dv = send_to_AP(index, z90crypt.cdx, length, loc_testmsg);
3296 if (dv) {
3297 PDEBUG("dv returned = %d\n", dv);
3298 if (dv == DEV_SEN_EXCEPTION) {
3299 rv = SEN_FATAL_ERROR;
3300 PRINTKC("exception in send to AP %d\n", index);
3301 break;
3302 }
3303 PDEBUG("return value from send_to_AP: %d\n", rv);
3304 switch (dv) {
3305 case DEV_GONE:
3306 PDEBUG("dev %d not available\n", index);
3307 rv = SEN_NOT_AVAIL;
3308 break;
3309 case DEV_ONLINE:
3310 rv = 0;
3311 break;
3312 case DEV_EMPTY:
3313 rv = SEN_NOT_AVAIL;
3314 break;
3315 case DEV_NO_WORK:
3316 rv = SEN_FATAL_ERROR;
3317 break;
3318 case DEV_BAD_MESSAGE:
3319 rv = SEN_USER_ERROR;
3320 break;
3321 case DEV_QUEUE_FULL:
3322 rv = SEN_QUEUE_FULL;
3323 break;
3324 default:
3325 PRINTK("unknown dv=%d for dev %d\n", dv, index);
3326 rv = SEN_NOT_AVAIL;
3327 break;
3328 }
3329 }
3330
3331 if (rv)
3332 break;
3333
3334 for (i = 0; i < 6; i++) {
3335 mdelay(300);
3336 dv = receive_from_AP(index, z90crypt.cdx,
3337 devPtr->dev_resp_l,
3338 devPtr->dev_resp_p, psmid);
3339 PDEBUG("dv returned by DQ = %d\n", dv);
3340 if (dv == DEV_REC_EXCEPTION) {
3341 rv = REC_FATAL_ERROR;
3342 PRINTKC("exception in dequeue %d\n",
3343 index);
3344 break;
3345 }
3346 switch (dv) {
3347 case DEV_ONLINE:
3348 rv = 0;
3349 break;
3350 case DEV_EMPTY:
3351 rv = REC_EMPTY;
3352 break;
3353 case DEV_NO_WORK:
3354 rv = REC_NO_WORK;
3355 break;
3356 case DEV_BAD_MESSAGE:
3357 case DEV_GONE:
3358 default:
3359 rv = REC_NO_RESPONSE;
3360 break;
3361 }
3362 if ((rv != 0) && (rv != REC_NO_WORK))
3363 break;
3364 if (rv == 0)
3365 break;
3366 }
3367 if (rv)
3368 break;
3369 cprbx_p = (struct CPRBX *) (devPtr->dev_resp_p + 48);
3370 if ((cprbx_p->ccp_rtcode == 8) && (cprbx_p->ccp_rscode == 33)) {
3371 devPtr->dev_type = PCIXCC_MCL2;
3372 PDEBUG("device %d is MCL2\n", index);
3373 } else {
3374 devPtr->dev_type = PCIXCC_MCL3;
3375 PDEBUG("device %d is MCL3\n", index);
3376 }
3377 } while (0);
3378 /* In a general error case, the card is not marked online */
3379 return rv;
3380 }
3381
3382 module_init(z90crypt_init_module);
3383 module_exit(z90crypt_cleanup_module);
This page took 0.334703 seconds and 6 git commands to generate.