35968bdb48666e9603de837aefecd687ed5cbcea
[deliverable/linux.git] / drivers / scsi / cxlflash / main.c
1 /*
2 * CXL Flash Device Driver
3 *
4 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
5 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
6 *
7 * Copyright (C) 2015 IBM Corporation
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15 #include <linux/delay.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/pci.h>
19
20 #include <asm/unaligned.h>
21
22 #include <misc/cxl.h>
23
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_host.h>
26 #include <uapi/scsi/cxlflash_ioctl.h>
27
28 #include "main.h"
29 #include "sislite.h"
30 #include "common.h"
31
32 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
33 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
34 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
35 MODULE_LICENSE("GPL");
36
37 /**
38 * cmd_checkout() - checks out an AFU command
39 * @afu: AFU to checkout from.
40 *
41 * Commands are checked out in a round-robin fashion. Note that since
42 * the command pool is larger than the hardware queue, the majority of
43 * times we will only loop once or twice before getting a command. The
44 * buffer and CDB within the command are initialized (zeroed) prior to
45 * returning.
46 *
47 * Return: The checked out command or NULL when command pool is empty.
48 */
49 static struct afu_cmd *cmd_checkout(struct afu *afu)
50 {
51 int k, dec = CXLFLASH_NUM_CMDS;
52 struct afu_cmd *cmd;
53
54 while (dec--) {
55 k = (afu->cmd_couts++ & (CXLFLASH_NUM_CMDS - 1));
56
57 cmd = &afu->cmd[k];
58
59 if (!atomic_dec_if_positive(&cmd->free)) {
60 pr_devel("%s: returning found index=%d cmd=%p\n",
61 __func__, cmd->slot, cmd);
62 memset(cmd->buf, 0, CMD_BUFSIZE);
63 memset(cmd->rcb.cdb, 0, sizeof(cmd->rcb.cdb));
64 return cmd;
65 }
66 }
67
68 return NULL;
69 }
70
71 /**
72 * cmd_checkin() - checks in an AFU command
73 * @cmd: AFU command to checkin.
74 *
75 * Safe to pass commands that have already been checked in. Several
76 * internal tracking fields are reset as part of the checkin. Note
77 * that these are intentionally reset prior to toggling the free bit
78 * to avoid clobbering values in the event that the command is checked
79 * out right away.
80 */
81 static void cmd_checkin(struct afu_cmd *cmd)
82 {
83 cmd->rcb.scp = NULL;
84 cmd->rcb.timeout = 0;
85 cmd->sa.ioasc = 0;
86 cmd->cmd_tmf = false;
87 cmd->sa.host_use[0] = 0; /* clears both completion and retry bytes */
88
89 if (unlikely(atomic_inc_return(&cmd->free) != 1)) {
90 pr_err("%s: Freeing cmd (%d) that is not in use!\n",
91 __func__, cmd->slot);
92 return;
93 }
94
95 pr_devel("%s: released cmd %p index=%d\n", __func__, cmd, cmd->slot);
96 }
97
98 /**
99 * process_cmd_err() - command error handler
100 * @cmd: AFU command that experienced the error.
101 * @scp: SCSI command associated with the AFU command in error.
102 *
103 * Translates error bits from AFU command to SCSI command results.
104 */
105 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
106 {
107 struct sisl_ioarcb *ioarcb;
108 struct sisl_ioasa *ioasa;
109 u32 resid;
110
111 if (unlikely(!cmd))
112 return;
113
114 ioarcb = &(cmd->rcb);
115 ioasa = &(cmd->sa);
116
117 if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
118 resid = ioasa->resid;
119 scsi_set_resid(scp, resid);
120 pr_debug("%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
121 __func__, cmd, scp, resid);
122 }
123
124 if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
125 pr_debug("%s: cmd underrun cmd = %p scp = %p\n",
126 __func__, cmd, scp);
127 scp->result = (DID_ERROR << 16);
128 }
129
130 pr_debug("%s: cmd failed afu_rc=%d scsi_rc=%d fc_rc=%d "
131 "afu_extra=0x%X, scsi_extra=0x%X, fc_extra=0x%X\n",
132 __func__, ioasa->rc.afu_rc, ioasa->rc.scsi_rc,
133 ioasa->rc.fc_rc, ioasa->afu_extra, ioasa->scsi_extra,
134 ioasa->fc_extra);
135
136 if (ioasa->rc.scsi_rc) {
137 /* We have a SCSI status */
138 if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
139 memcpy(scp->sense_buffer, ioasa->sense_data,
140 SISL_SENSE_DATA_LEN);
141 scp->result = ioasa->rc.scsi_rc;
142 } else
143 scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
144 }
145
146 /*
147 * We encountered an error. Set scp->result based on nature
148 * of error.
149 */
150 if (ioasa->rc.fc_rc) {
151 /* We have an FC status */
152 switch (ioasa->rc.fc_rc) {
153 case SISL_FC_RC_LINKDOWN:
154 scp->result = (DID_REQUEUE << 16);
155 break;
156 case SISL_FC_RC_RESID:
157 /* This indicates an FCP resid underrun */
158 if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
159 /* If the SISL_RC_FLAGS_OVERRUN flag was set,
160 * then we will handle this error else where.
161 * If not then we must handle it here.
162 * This is probably an AFU bug.
163 */
164 scp->result = (DID_ERROR << 16);
165 }
166 break;
167 case SISL_FC_RC_RESIDERR:
168 /* Resid mismatch between adapter and device */
169 case SISL_FC_RC_TGTABORT:
170 case SISL_FC_RC_ABORTOK:
171 case SISL_FC_RC_ABORTFAIL:
172 case SISL_FC_RC_NOLOGI:
173 case SISL_FC_RC_ABORTPEND:
174 case SISL_FC_RC_WRABORTPEND:
175 case SISL_FC_RC_NOEXP:
176 case SISL_FC_RC_INUSE:
177 scp->result = (DID_ERROR << 16);
178 break;
179 }
180 }
181
182 if (ioasa->rc.afu_rc) {
183 /* We have an AFU error */
184 switch (ioasa->rc.afu_rc) {
185 case SISL_AFU_RC_NO_CHANNELS:
186 scp->result = (DID_NO_CONNECT << 16);
187 break;
188 case SISL_AFU_RC_DATA_DMA_ERR:
189 switch (ioasa->afu_extra) {
190 case SISL_AFU_DMA_ERR_PAGE_IN:
191 /* Retry */
192 scp->result = (DID_IMM_RETRY << 16);
193 break;
194 case SISL_AFU_DMA_ERR_INVALID_EA:
195 default:
196 scp->result = (DID_ERROR << 16);
197 }
198 break;
199 case SISL_AFU_RC_OUT_OF_DATA_BUFS:
200 /* Retry */
201 scp->result = (DID_ALLOC_FAILURE << 16);
202 break;
203 default:
204 scp->result = (DID_ERROR << 16);
205 }
206 }
207 }
208
209 /**
210 * cmd_complete() - command completion handler
211 * @cmd: AFU command that has completed.
212 *
213 * Prepares and submits command that has either completed or timed out to
214 * the SCSI stack. Checks AFU command back into command pool for non-internal
215 * (rcb.scp populated) commands.
216 */
217 static void cmd_complete(struct afu_cmd *cmd)
218 {
219 struct scsi_cmnd *scp;
220 ulong lock_flags;
221 struct afu *afu = cmd->parent;
222 struct cxlflash_cfg *cfg = afu->parent;
223 bool cmd_is_tmf;
224
225 spin_lock_irqsave(&cmd->slock, lock_flags);
226 cmd->sa.host_use_b[0] |= B_DONE;
227 spin_unlock_irqrestore(&cmd->slock, lock_flags);
228
229 if (cmd->rcb.scp) {
230 scp = cmd->rcb.scp;
231 if (unlikely(cmd->sa.ioasc))
232 process_cmd_err(cmd, scp);
233 else
234 scp->result = (DID_OK << 16);
235
236 cmd_is_tmf = cmd->cmd_tmf;
237 cmd_checkin(cmd); /* Don't use cmd after here */
238
239 pr_debug_ratelimited("%s: calling scsi_done scp=%p result=%X "
240 "ioasc=%d\n", __func__, scp, scp->result,
241 cmd->sa.ioasc);
242
243 scsi_dma_unmap(scp);
244 scp->scsi_done(scp);
245
246 if (cmd_is_tmf) {
247 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
248 cfg->tmf_active = false;
249 wake_up_all_locked(&cfg->tmf_waitq);
250 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
251 }
252 } else
253 complete(&cmd->cevent);
254 }
255
256 /**
257 * context_reset() - timeout handler for AFU commands
258 * @cmd: AFU command that timed out.
259 *
260 * Sends a reset to the AFU.
261 */
262 static void context_reset(struct afu_cmd *cmd)
263 {
264 int nretry = 0;
265 u64 rrin = 0x1;
266 u64 room = 0;
267 struct afu *afu = cmd->parent;
268 ulong lock_flags;
269
270 pr_debug("%s: cmd=%p\n", __func__, cmd);
271
272 spin_lock_irqsave(&cmd->slock, lock_flags);
273
274 /* Already completed? */
275 if (cmd->sa.host_use_b[0] & B_DONE) {
276 spin_unlock_irqrestore(&cmd->slock, lock_flags);
277 return;
278 }
279
280 cmd->sa.host_use_b[0] |= (B_DONE | B_ERROR | B_TIMEOUT);
281 spin_unlock_irqrestore(&cmd->slock, lock_flags);
282
283 /*
284 * We really want to send this reset at all costs, so spread
285 * out wait time on successive retries for available room.
286 */
287 do {
288 room = readq_be(&afu->host_map->cmd_room);
289 atomic64_set(&afu->room, room);
290 if (room)
291 goto write_rrin;
292 udelay(nretry);
293 } while (nretry++ < MC_ROOM_RETRY_CNT);
294
295 pr_err("%s: no cmd_room to send reset\n", __func__);
296 return;
297
298 write_rrin:
299 nretry = 0;
300 writeq_be(rrin, &afu->host_map->ioarrin);
301 do {
302 rrin = readq_be(&afu->host_map->ioarrin);
303 if (rrin != 0x1)
304 break;
305 /* Double delay each time */
306 udelay(2 << nretry);
307 } while (nretry++ < MC_ROOM_RETRY_CNT);
308 }
309
310 /**
311 * send_cmd() - sends an AFU command
312 * @afu: AFU associated with the host.
313 * @cmd: AFU command to send.
314 *
315 * Return:
316 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
317 */
318 static int send_cmd(struct afu *afu, struct afu_cmd *cmd)
319 {
320 struct cxlflash_cfg *cfg = afu->parent;
321 struct device *dev = &cfg->dev->dev;
322 int nretry = 0;
323 int rc = 0;
324 u64 room;
325 long newval;
326
327 /*
328 * This routine is used by critical users such an AFU sync and to
329 * send a task management function (TMF). Thus we want to retry a
330 * bit before returning an error. To avoid the performance penalty
331 * of MMIO, we spread the update of 'room' over multiple commands.
332 */
333 retry:
334 newval = atomic64_dec_if_positive(&afu->room);
335 if (!newval) {
336 do {
337 room = readq_be(&afu->host_map->cmd_room);
338 atomic64_set(&afu->room, room);
339 if (room)
340 goto write_ioarrin;
341 udelay(nretry);
342 } while (nretry++ < MC_ROOM_RETRY_CNT);
343
344 dev_err(dev, "%s: no cmd_room to send 0x%X\n",
345 __func__, cmd->rcb.cdb[0]);
346
347 goto no_room;
348 } else if (unlikely(newval < 0)) {
349 /* This should be rare. i.e. Only if two threads race and
350 * decrement before the MMIO read is done. In this case
351 * just benefit from the other thread having updated
352 * afu->room.
353 */
354 if (nretry++ < MC_ROOM_RETRY_CNT) {
355 udelay(nretry);
356 goto retry;
357 }
358
359 goto no_room;
360 }
361
362 write_ioarrin:
363 writeq_be((u64)&cmd->rcb, &afu->host_map->ioarrin);
364 out:
365 pr_devel("%s: cmd=%p len=%d ea=%p rc=%d\n", __func__, cmd,
366 cmd->rcb.data_len, (void *)cmd->rcb.data_ea, rc);
367 return rc;
368
369 no_room:
370 afu->read_room = true;
371 kref_get(&cfg->afu->mapcount);
372 schedule_work(&cfg->work_q);
373 rc = SCSI_MLQUEUE_HOST_BUSY;
374 goto out;
375 }
376
377 /**
378 * wait_resp() - polls for a response or timeout to a sent AFU command
379 * @afu: AFU associated with the host.
380 * @cmd: AFU command that was sent.
381 */
382 static void wait_resp(struct afu *afu, struct afu_cmd *cmd)
383 {
384 ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
385
386 timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
387 if (!timeout)
388 context_reset(cmd);
389
390 if (unlikely(cmd->sa.ioasc != 0))
391 pr_err("%s: CMD 0x%X failed, IOASC: flags 0x%X, afu_rc 0x%X, "
392 "scsi_rc 0x%X, fc_rc 0x%X\n", __func__, cmd->rcb.cdb[0],
393 cmd->sa.rc.flags, cmd->sa.rc.afu_rc, cmd->sa.rc.scsi_rc,
394 cmd->sa.rc.fc_rc);
395 }
396
397 /**
398 * send_tmf() - sends a Task Management Function (TMF)
399 * @afu: AFU to checkout from.
400 * @scp: SCSI command from stack.
401 * @tmfcmd: TMF command to send.
402 *
403 * Return:
404 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
405 */
406 static int send_tmf(struct afu *afu, struct scsi_cmnd *scp, u64 tmfcmd)
407 {
408 struct afu_cmd *cmd;
409
410 u32 port_sel = scp->device->channel + 1;
411 short lflag = 0;
412 struct Scsi_Host *host = scp->device->host;
413 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
414 struct device *dev = &cfg->dev->dev;
415 ulong lock_flags;
416 int rc = 0;
417 ulong to;
418
419 cmd = cmd_checkout(afu);
420 if (unlikely(!cmd)) {
421 dev_err(dev, "%s: could not get a free command\n", __func__);
422 rc = SCSI_MLQUEUE_HOST_BUSY;
423 goto out;
424 }
425
426 /* When Task Management Function is active do not send another */
427 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
428 if (cfg->tmf_active)
429 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
430 !cfg->tmf_active,
431 cfg->tmf_slock);
432 cfg->tmf_active = true;
433 cmd->cmd_tmf = true;
434 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
435
436 cmd->rcb.ctx_id = afu->ctx_hndl;
437 cmd->rcb.port_sel = port_sel;
438 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
439
440 lflag = SISL_REQ_FLAGS_TMF_CMD;
441
442 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
443 SISL_REQ_FLAGS_SUP_UNDERRUN | lflag);
444
445 /* Stash the scp in the reserved field, for reuse during interrupt */
446 cmd->rcb.scp = scp;
447
448 /* Copy the CDB from the cmd passed in */
449 memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
450
451 /* Send the command */
452 rc = send_cmd(afu, cmd);
453 if (unlikely(rc)) {
454 cmd_checkin(cmd);
455 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
456 cfg->tmf_active = false;
457 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
458 goto out;
459 }
460
461 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
462 to = msecs_to_jiffies(5000);
463 to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
464 !cfg->tmf_active,
465 cfg->tmf_slock,
466 to);
467 if (!to) {
468 cfg->tmf_active = false;
469 dev_err(dev, "%s: TMF timed out!\n", __func__);
470 rc = -1;
471 }
472 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
473 out:
474 return rc;
475 }
476
477 static void afu_unmap(struct kref *ref)
478 {
479 struct afu *afu = container_of(ref, struct afu, mapcount);
480
481 if (likely(afu->afu_map)) {
482 cxl_psa_unmap((void __iomem *)afu->afu_map);
483 afu->afu_map = NULL;
484 }
485 }
486
487 /**
488 * cxlflash_driver_info() - information handler for this host driver
489 * @host: SCSI host associated with device.
490 *
491 * Return: A string describing the device.
492 */
493 static const char *cxlflash_driver_info(struct Scsi_Host *host)
494 {
495 return CXLFLASH_ADAPTER_NAME;
496 }
497
498 /**
499 * cxlflash_queuecommand() - sends a mid-layer request
500 * @host: SCSI host associated with device.
501 * @scp: SCSI command to send.
502 *
503 * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
504 */
505 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
506 {
507 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
508 struct afu *afu = cfg->afu;
509 struct device *dev = &cfg->dev->dev;
510 struct afu_cmd *cmd;
511 u32 port_sel = scp->device->channel + 1;
512 int nseg, i, ncount;
513 struct scatterlist *sg;
514 ulong lock_flags;
515 short lflag = 0;
516 int rc = 0;
517 int kref_got = 0;
518
519 dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
520 "cdb=(%08X-%08X-%08X-%08X)\n",
521 __func__, scp, host->host_no, scp->device->channel,
522 scp->device->id, scp->device->lun,
523 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
524 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
525 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
526 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
527
528 /*
529 * If a Task Management Function is active, wait for it to complete
530 * before continuing with regular commands.
531 */
532 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
533 if (cfg->tmf_active) {
534 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
535 rc = SCSI_MLQUEUE_HOST_BUSY;
536 goto out;
537 }
538 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
539
540 switch (cfg->state) {
541 case STATE_RESET:
542 dev_dbg_ratelimited(dev, "%s: device is in reset!\n", __func__);
543 rc = SCSI_MLQUEUE_HOST_BUSY;
544 goto out;
545 case STATE_FAILTERM:
546 dev_dbg_ratelimited(dev, "%s: device has failed!\n", __func__);
547 scp->result = (DID_NO_CONNECT << 16);
548 scp->scsi_done(scp);
549 rc = 0;
550 goto out;
551 default:
552 break;
553 }
554
555 cmd = cmd_checkout(afu);
556 if (unlikely(!cmd)) {
557 dev_err(dev, "%s: could not get a free command\n", __func__);
558 rc = SCSI_MLQUEUE_HOST_BUSY;
559 goto out;
560 }
561
562 kref_get(&cfg->afu->mapcount);
563 kref_got = 1;
564
565 cmd->rcb.ctx_id = afu->ctx_hndl;
566 cmd->rcb.port_sel = port_sel;
567 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
568
569 if (scp->sc_data_direction == DMA_TO_DEVICE)
570 lflag = SISL_REQ_FLAGS_HOST_WRITE;
571 else
572 lflag = SISL_REQ_FLAGS_HOST_READ;
573
574 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
575 SISL_REQ_FLAGS_SUP_UNDERRUN | lflag);
576
577 /* Stash the scp in the reserved field, for reuse during interrupt */
578 cmd->rcb.scp = scp;
579
580 nseg = scsi_dma_map(scp);
581 if (unlikely(nseg < 0)) {
582 dev_err(dev, "%s: Fail DMA map! nseg=%d\n",
583 __func__, nseg);
584 rc = SCSI_MLQUEUE_HOST_BUSY;
585 goto out;
586 }
587
588 ncount = scsi_sg_count(scp);
589 scsi_for_each_sg(scp, sg, ncount, i) {
590 cmd->rcb.data_len = sg_dma_len(sg);
591 cmd->rcb.data_ea = sg_dma_address(sg);
592 }
593
594 /* Copy the CDB from the scsi_cmnd passed in */
595 memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
596
597 /* Send the command */
598 rc = send_cmd(afu, cmd);
599 if (unlikely(rc)) {
600 cmd_checkin(cmd);
601 scsi_dma_unmap(scp);
602 }
603
604 out:
605 if (kref_got)
606 kref_put(&afu->mapcount, afu_unmap);
607 pr_devel("%s: returning rc=%d\n", __func__, rc);
608 return rc;
609 }
610
611 /**
612 * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
613 * @cfg: Internal structure associated with the host.
614 */
615 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
616 {
617 struct pci_dev *pdev = cfg->dev;
618
619 if (pci_channel_offline(pdev))
620 wait_event_timeout(cfg->reset_waitq,
621 !pci_channel_offline(pdev),
622 CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
623 }
624
625 /**
626 * free_mem() - free memory associated with the AFU
627 * @cfg: Internal structure associated with the host.
628 */
629 static void free_mem(struct cxlflash_cfg *cfg)
630 {
631 int i;
632 char *buf = NULL;
633 struct afu *afu = cfg->afu;
634
635 if (cfg->afu) {
636 for (i = 0; i < CXLFLASH_NUM_CMDS; i++) {
637 buf = afu->cmd[i].buf;
638 if (!((u64)buf & (PAGE_SIZE - 1)))
639 free_page((ulong)buf);
640 }
641
642 free_pages((ulong)afu, get_order(sizeof(struct afu)));
643 cfg->afu = NULL;
644 }
645 }
646
647 /**
648 * stop_afu() - stops the AFU command timers and unmaps the MMIO space
649 * @cfg: Internal structure associated with the host.
650 *
651 * Safe to call with AFU in a partially allocated/initialized state.
652 *
653 * Cleans up all state associated with the command queue, and unmaps
654 * the MMIO space.
655 *
656 * - complete() will take care of commands we initiated (they'll be checked
657 * in as part of the cleanup that occurs after the completion)
658 *
659 * - cmd_checkin() will take care of entries that we did not initiate and that
660 * have not (and will not) complete because they are sitting on a [now stale]
661 * hardware queue
662 */
663 static void stop_afu(struct cxlflash_cfg *cfg)
664 {
665 int i;
666 struct afu *afu = cfg->afu;
667 struct afu_cmd *cmd;
668
669 if (likely(afu)) {
670 for (i = 0; i < CXLFLASH_NUM_CMDS; i++) {
671 cmd = &afu->cmd[i];
672 complete(&cmd->cevent);
673 if (!atomic_read(&cmd->free))
674 cmd_checkin(cmd);
675 }
676
677 if (likely(afu->afu_map)) {
678 cxl_psa_unmap((void __iomem *)afu->afu_map);
679 afu->afu_map = NULL;
680 }
681 kref_put(&afu->mapcount, afu_unmap);
682 }
683 }
684
685 /**
686 * term_mc() - terminates the master context
687 * @cfg: Internal structure associated with the host.
688 * @level: Depth of allocation, where to begin waterfall tear down.
689 *
690 * Safe to call with AFU/MC in partially allocated/initialized state.
691 */
692 static void term_mc(struct cxlflash_cfg *cfg, enum undo_level level)
693 {
694 int rc = 0;
695 struct afu *afu = cfg->afu;
696 struct device *dev = &cfg->dev->dev;
697
698 if (!afu || !cfg->mcctx) {
699 dev_err(dev, "%s: returning from term_mc with NULL afu or MC\n",
700 __func__);
701 return;
702 }
703
704 switch (level) {
705 case UNDO_START:
706 rc = cxl_stop_context(cfg->mcctx);
707 BUG_ON(rc);
708 case UNMAP_THREE:
709 cxl_unmap_afu_irq(cfg->mcctx, 3, afu);
710 case UNMAP_TWO:
711 cxl_unmap_afu_irq(cfg->mcctx, 2, afu);
712 case UNMAP_ONE:
713 cxl_unmap_afu_irq(cfg->mcctx, 1, afu);
714 case FREE_IRQ:
715 cxl_free_afu_irqs(cfg->mcctx);
716 case RELEASE_CONTEXT:
717 cfg->mcctx = NULL;
718 }
719 }
720
721 /**
722 * term_afu() - terminates the AFU
723 * @cfg: Internal structure associated with the host.
724 *
725 * Safe to call with AFU/MC in partially allocated/initialized state.
726 */
727 static void term_afu(struct cxlflash_cfg *cfg)
728 {
729 if (cfg->afu)
730 stop_afu(cfg);
731
732 term_mc(cfg, UNDO_START);
733
734 pr_debug("%s: returning\n", __func__);
735 }
736
737 /**
738 * cxlflash_remove() - PCI entry point to tear down host
739 * @pdev: PCI device associated with the host.
740 *
741 * Safe to use as a cleanup in partially allocated/initialized state.
742 */
743 static void cxlflash_remove(struct pci_dev *pdev)
744 {
745 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
746 ulong lock_flags;
747
748 /* If a Task Management Function is active, wait for it to complete
749 * before continuing with remove.
750 */
751 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
752 if (cfg->tmf_active)
753 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
754 !cfg->tmf_active,
755 cfg->tmf_slock);
756 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
757
758 cfg->state = STATE_FAILTERM;
759 cxlflash_stop_term_user_contexts(cfg);
760
761 switch (cfg->init_state) {
762 case INIT_STATE_SCSI:
763 cxlflash_term_local_luns(cfg);
764 scsi_remove_host(cfg->host);
765 /* fall through */
766 case INIT_STATE_AFU:
767 cancel_work_sync(&cfg->work_q);
768 term_afu(cfg);
769 case INIT_STATE_PCI:
770 pci_disable_device(pdev);
771 case INIT_STATE_NONE:
772 free_mem(cfg);
773 scsi_host_put(cfg->host);
774 break;
775 }
776
777 pr_debug("%s: returning\n", __func__);
778 }
779
780 /**
781 * alloc_mem() - allocates the AFU and its command pool
782 * @cfg: Internal structure associated with the host.
783 *
784 * A partially allocated state remains on failure.
785 *
786 * Return:
787 * 0 on success
788 * -ENOMEM on failure to allocate memory
789 */
790 static int alloc_mem(struct cxlflash_cfg *cfg)
791 {
792 int rc = 0;
793 int i;
794 char *buf = NULL;
795 struct device *dev = &cfg->dev->dev;
796
797 /* AFU is ~12k, i.e. only one 64k page or up to four 4k pages */
798 cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
799 get_order(sizeof(struct afu)));
800 if (unlikely(!cfg->afu)) {
801 dev_err(dev, "%s: cannot get %d free pages\n",
802 __func__, get_order(sizeof(struct afu)));
803 rc = -ENOMEM;
804 goto out;
805 }
806 cfg->afu->parent = cfg;
807 cfg->afu->afu_map = NULL;
808
809 for (i = 0; i < CXLFLASH_NUM_CMDS; buf += CMD_BUFSIZE, i++) {
810 if (!((u64)buf & (PAGE_SIZE - 1))) {
811 buf = (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
812 if (unlikely(!buf)) {
813 dev_err(dev,
814 "%s: Allocate command buffers fail!\n",
815 __func__);
816 rc = -ENOMEM;
817 free_mem(cfg);
818 goto out;
819 }
820 }
821
822 cfg->afu->cmd[i].buf = buf;
823 atomic_set(&cfg->afu->cmd[i].free, 1);
824 cfg->afu->cmd[i].slot = i;
825 }
826
827 out:
828 return rc;
829 }
830
831 /**
832 * init_pci() - initializes the host as a PCI device
833 * @cfg: Internal structure associated with the host.
834 *
835 * Return: 0 on success, -errno on failure
836 */
837 static int init_pci(struct cxlflash_cfg *cfg)
838 {
839 struct pci_dev *pdev = cfg->dev;
840 int rc = 0;
841
842 rc = pci_enable_device(pdev);
843 if (rc || pci_channel_offline(pdev)) {
844 if (pci_channel_offline(pdev)) {
845 cxlflash_wait_for_pci_err_recovery(cfg);
846 rc = pci_enable_device(pdev);
847 }
848
849 if (rc) {
850 dev_err(&pdev->dev, "%s: Cannot enable adapter\n",
851 __func__);
852 cxlflash_wait_for_pci_err_recovery(cfg);
853 goto out;
854 }
855 }
856
857 out:
858 pr_debug("%s: returning rc=%d\n", __func__, rc);
859 return rc;
860 }
861
862 /**
863 * init_scsi() - adds the host to the SCSI stack and kicks off host scan
864 * @cfg: Internal structure associated with the host.
865 *
866 * Return: 0 on success, -errno on failure
867 */
868 static int init_scsi(struct cxlflash_cfg *cfg)
869 {
870 struct pci_dev *pdev = cfg->dev;
871 int rc = 0;
872
873 rc = scsi_add_host(cfg->host, &pdev->dev);
874 if (rc) {
875 dev_err(&pdev->dev, "%s: scsi_add_host failed (rc=%d)\n",
876 __func__, rc);
877 goto out;
878 }
879
880 scsi_scan_host(cfg->host);
881
882 out:
883 pr_debug("%s: returning rc=%d\n", __func__, rc);
884 return rc;
885 }
886
887 /**
888 * set_port_online() - transitions the specified host FC port to online state
889 * @fc_regs: Top of MMIO region defined for specified port.
890 *
891 * The provided MMIO region must be mapped prior to call. Online state means
892 * that the FC link layer has synced, completed the handshaking process, and
893 * is ready for login to start.
894 */
895 static void set_port_online(__be64 __iomem *fc_regs)
896 {
897 u64 cmdcfg;
898
899 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
900 cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */
901 cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */
902 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
903 }
904
905 /**
906 * set_port_offline() - transitions the specified host FC port to offline state
907 * @fc_regs: Top of MMIO region defined for specified port.
908 *
909 * The provided MMIO region must be mapped prior to call.
910 */
911 static void set_port_offline(__be64 __iomem *fc_regs)
912 {
913 u64 cmdcfg;
914
915 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
916 cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */
917 cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */
918 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
919 }
920
921 /**
922 * wait_port_online() - waits for the specified host FC port come online
923 * @fc_regs: Top of MMIO region defined for specified port.
924 * @delay_us: Number of microseconds to delay between reading port status.
925 * @nretry: Number of cycles to retry reading port status.
926 *
927 * The provided MMIO region must be mapped prior to call. This will timeout
928 * when the cable is not plugged in.
929 *
930 * Return:
931 * TRUE (1) when the specified port is online
932 * FALSE (0) when the specified port fails to come online after timeout
933 * -EINVAL when @delay_us is less than 1000
934 */
935 static int wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
936 {
937 u64 status;
938
939 if (delay_us < 1000) {
940 pr_err("%s: invalid delay specified %d\n", __func__, delay_us);
941 return -EINVAL;
942 }
943
944 do {
945 msleep(delay_us / 1000);
946 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
947 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
948 nretry--);
949
950 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
951 }
952
953 /**
954 * wait_port_offline() - waits for the specified host FC port go offline
955 * @fc_regs: Top of MMIO region defined for specified port.
956 * @delay_us: Number of microseconds to delay between reading port status.
957 * @nretry: Number of cycles to retry reading port status.
958 *
959 * The provided MMIO region must be mapped prior to call.
960 *
961 * Return:
962 * TRUE (1) when the specified port is offline
963 * FALSE (0) when the specified port fails to go offline after timeout
964 * -EINVAL when @delay_us is less than 1000
965 */
966 static int wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
967 {
968 u64 status;
969
970 if (delay_us < 1000) {
971 pr_err("%s: invalid delay specified %d\n", __func__, delay_us);
972 return -EINVAL;
973 }
974
975 do {
976 msleep(delay_us / 1000);
977 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
978 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
979 nretry--);
980
981 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
982 }
983
984 /**
985 * afu_set_wwpn() - configures the WWPN for the specified host FC port
986 * @afu: AFU associated with the host that owns the specified FC port.
987 * @port: Port number being configured.
988 * @fc_regs: Top of MMIO region defined for specified port.
989 * @wwpn: The world-wide-port-number previously discovered for port.
990 *
991 * The provided MMIO region must be mapped prior to call. As part of the
992 * sequence to configure the WWPN, the port is toggled offline and then back
993 * online. This toggling action can cause this routine to delay up to a few
994 * seconds. When configured to use the internal LUN feature of the AFU, a
995 * failure to come online is overridden.
996 *
997 * Return:
998 * 0 when the WWPN is successfully written and the port comes back online
999 * -1 when the port fails to go offline or come back up online
1000 */
1001 static int afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs,
1002 u64 wwpn)
1003 {
1004 int rc = 0;
1005
1006 set_port_offline(fc_regs);
1007
1008 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1009 FC_PORT_STATUS_RETRY_CNT)) {
1010 pr_debug("%s: wait on port %d to go offline timed out\n",
1011 __func__, port);
1012 rc = -1; /* but continue on to leave the port back online */
1013 }
1014
1015 if (rc == 0)
1016 writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
1017
1018 /* Always return success after programming WWPN */
1019 rc = 0;
1020
1021 set_port_online(fc_regs);
1022
1023 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1024 FC_PORT_STATUS_RETRY_CNT)) {
1025 pr_err("%s: wait on port %d to go online timed out\n",
1026 __func__, port);
1027 }
1028
1029 pr_debug("%s: returning rc=%d\n", __func__, rc);
1030
1031 return rc;
1032 }
1033
1034 /**
1035 * afu_link_reset() - resets the specified host FC port
1036 * @afu: AFU associated with the host that owns the specified FC port.
1037 * @port: Port number being configured.
1038 * @fc_regs: Top of MMIO region defined for specified port.
1039 *
1040 * The provided MMIO region must be mapped prior to call. The sequence to
1041 * reset the port involves toggling it offline and then back online. This
1042 * action can cause this routine to delay up to a few seconds. An effort
1043 * is made to maintain link with the device by switching to host to use
1044 * the alternate port exclusively while the reset takes place.
1045 * failure to come online is overridden.
1046 */
1047 static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs)
1048 {
1049 u64 port_sel;
1050
1051 /* first switch the AFU to the other links, if any */
1052 port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
1053 port_sel &= ~(1ULL << port);
1054 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1055 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1056
1057 set_port_offline(fc_regs);
1058 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1059 FC_PORT_STATUS_RETRY_CNT))
1060 pr_err("%s: wait on port %d to go offline timed out\n",
1061 __func__, port);
1062
1063 set_port_online(fc_regs);
1064 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1065 FC_PORT_STATUS_RETRY_CNT))
1066 pr_err("%s: wait on port %d to go online timed out\n",
1067 __func__, port);
1068
1069 /* switch back to include this port */
1070 port_sel |= (1ULL << port);
1071 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1072 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1073
1074 pr_debug("%s: returning port_sel=%lld\n", __func__, port_sel);
1075 }
1076
1077 /*
1078 * Asynchronous interrupt information table
1079 */
1080 static const struct asyc_intr_info ainfo[] = {
1081 {SISL_ASTATUS_FC0_OTHER, "other error", 0, CLR_FC_ERROR | LINK_RESET},
1082 {SISL_ASTATUS_FC0_LOGO, "target initiated LOGO", 0, 0},
1083 {SISL_ASTATUS_FC0_CRC_T, "CRC threshold exceeded", 0, LINK_RESET},
1084 {SISL_ASTATUS_FC0_LOGI_R, "login timed out, retrying", 0, LINK_RESET},
1085 {SISL_ASTATUS_FC0_LOGI_F, "login failed", 0, CLR_FC_ERROR},
1086 {SISL_ASTATUS_FC0_LOGI_S, "login succeeded", 0, SCAN_HOST},
1087 {SISL_ASTATUS_FC0_LINK_DN, "link down", 0, 0},
1088 {SISL_ASTATUS_FC0_LINK_UP, "link up", 0, SCAN_HOST},
1089 {SISL_ASTATUS_FC1_OTHER, "other error", 1, CLR_FC_ERROR | LINK_RESET},
1090 {SISL_ASTATUS_FC1_LOGO, "target initiated LOGO", 1, 0},
1091 {SISL_ASTATUS_FC1_CRC_T, "CRC threshold exceeded", 1, LINK_RESET},
1092 {SISL_ASTATUS_FC1_LOGI_R, "login timed out, retrying", 1, LINK_RESET},
1093 {SISL_ASTATUS_FC1_LOGI_F, "login failed", 1, CLR_FC_ERROR},
1094 {SISL_ASTATUS_FC1_LOGI_S, "login succeeded", 1, SCAN_HOST},
1095 {SISL_ASTATUS_FC1_LINK_DN, "link down", 1, 0},
1096 {SISL_ASTATUS_FC1_LINK_UP, "link up", 1, SCAN_HOST},
1097 {0x0, "", 0, 0} /* terminator */
1098 };
1099
1100 /**
1101 * find_ainfo() - locates and returns asynchronous interrupt information
1102 * @status: Status code set by AFU on error.
1103 *
1104 * Return: The located information or NULL when the status code is invalid.
1105 */
1106 static const struct asyc_intr_info *find_ainfo(u64 status)
1107 {
1108 const struct asyc_intr_info *info;
1109
1110 for (info = &ainfo[0]; info->status; info++)
1111 if (info->status == status)
1112 return info;
1113
1114 return NULL;
1115 }
1116
1117 /**
1118 * afu_err_intr_init() - clears and initializes the AFU for error interrupts
1119 * @afu: AFU associated with the host.
1120 */
1121 static void afu_err_intr_init(struct afu *afu)
1122 {
1123 int i;
1124 u64 reg;
1125
1126 /* global async interrupts: AFU clears afu_ctrl on context exit
1127 * if async interrupts were sent to that context. This prevents
1128 * the AFU form sending further async interrupts when
1129 * there is
1130 * nobody to receive them.
1131 */
1132
1133 /* mask all */
1134 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
1135 /* set LISN# to send and point to master context */
1136 reg = ((u64) (((afu->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
1137
1138 if (afu->internal_lun)
1139 reg |= 1; /* Bit 63 indicates local lun */
1140 writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
1141 /* clear all */
1142 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1143 /* unmask bits that are of interest */
1144 /* note: afu can send an interrupt after this step */
1145 writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
1146 /* clear again in case a bit came on after previous clear but before */
1147 /* unmask */
1148 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1149
1150 /* Clear/Set internal lun bits */
1151 reg = readq_be(&afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]);
1152 reg &= SISL_FC_INTERNAL_MASK;
1153 if (afu->internal_lun)
1154 reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
1155 writeq_be(reg, &afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]);
1156
1157 /* now clear FC errors */
1158 for (i = 0; i < NUM_FC_PORTS; i++) {
1159 writeq_be(0xFFFFFFFFU,
1160 &afu->afu_map->global.fc_regs[i][FC_ERROR / 8]);
1161 writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRCAP / 8]);
1162 }
1163
1164 /* sync interrupts for master's IOARRIN write */
1165 /* note that unlike asyncs, there can be no pending sync interrupts */
1166 /* at this time (this is a fresh context and master has not written */
1167 /* IOARRIN yet), so there is nothing to clear. */
1168
1169 /* set LISN#, it is always sent to the context that wrote IOARRIN */
1170 writeq_be(SISL_MSI_SYNC_ERROR, &afu->host_map->ctx_ctrl);
1171 writeq_be(SISL_ISTATUS_MASK, &afu->host_map->intr_mask);
1172 }
1173
1174 /**
1175 * cxlflash_sync_err_irq() - interrupt handler for synchronous errors
1176 * @irq: Interrupt number.
1177 * @data: Private data provided at interrupt registration, the AFU.
1178 *
1179 * Return: Always return IRQ_HANDLED.
1180 */
1181 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
1182 {
1183 struct afu *afu = (struct afu *)data;
1184 u64 reg;
1185 u64 reg_unmasked;
1186
1187 reg = readq_be(&afu->host_map->intr_status);
1188 reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
1189
1190 if (reg_unmasked == 0UL) {
1191 pr_err("%s: %llX: spurious interrupt, intr_status %016llX\n",
1192 __func__, (u64)afu, reg);
1193 goto cxlflash_sync_err_irq_exit;
1194 }
1195
1196 pr_err("%s: %llX: unexpected interrupt, intr_status %016llX\n",
1197 __func__, (u64)afu, reg);
1198
1199 writeq_be(reg_unmasked, &afu->host_map->intr_clear);
1200
1201 cxlflash_sync_err_irq_exit:
1202 pr_debug("%s: returning rc=%d\n", __func__, IRQ_HANDLED);
1203 return IRQ_HANDLED;
1204 }
1205
1206 /**
1207 * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
1208 * @irq: Interrupt number.
1209 * @data: Private data provided at interrupt registration, the AFU.
1210 *
1211 * Return: Always return IRQ_HANDLED.
1212 */
1213 static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
1214 {
1215 struct afu *afu = (struct afu *)data;
1216 struct afu_cmd *cmd;
1217 bool toggle = afu->toggle;
1218 u64 entry,
1219 *hrrq_start = afu->hrrq_start,
1220 *hrrq_end = afu->hrrq_end,
1221 *hrrq_curr = afu->hrrq_curr;
1222
1223 /* Process however many RRQ entries that are ready */
1224 while (true) {
1225 entry = *hrrq_curr;
1226
1227 if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
1228 break;
1229
1230 cmd = (struct afu_cmd *)(entry & ~SISL_RESP_HANDLE_T_BIT);
1231 cmd_complete(cmd);
1232
1233 /* Advance to next entry or wrap and flip the toggle bit */
1234 if (hrrq_curr < hrrq_end)
1235 hrrq_curr++;
1236 else {
1237 hrrq_curr = hrrq_start;
1238 toggle ^= SISL_RESP_HANDLE_T_BIT;
1239 }
1240 }
1241
1242 afu->hrrq_curr = hrrq_curr;
1243 afu->toggle = toggle;
1244
1245 return IRQ_HANDLED;
1246 }
1247
1248 /**
1249 * cxlflash_async_err_irq() - interrupt handler for asynchronous errors
1250 * @irq: Interrupt number.
1251 * @data: Private data provided at interrupt registration, the AFU.
1252 *
1253 * Return: Always return IRQ_HANDLED.
1254 */
1255 static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
1256 {
1257 struct afu *afu = (struct afu *)data;
1258 struct cxlflash_cfg *cfg = afu->parent;
1259 struct device *dev = &cfg->dev->dev;
1260 u64 reg_unmasked;
1261 const struct asyc_intr_info *info;
1262 struct sisl_global_map __iomem *global = &afu->afu_map->global;
1263 u64 reg;
1264 u8 port;
1265 int i;
1266
1267 reg = readq_be(&global->regs.aintr_status);
1268 reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
1269
1270 if (reg_unmasked == 0) {
1271 dev_err(dev, "%s: spurious interrupt, aintr_status 0x%016llX\n",
1272 __func__, reg);
1273 goto out;
1274 }
1275
1276 /* FYI, it is 'okay' to clear AFU status before FC_ERROR */
1277 writeq_be(reg_unmasked, &global->regs.aintr_clear);
1278
1279 /* Check each bit that is on */
1280 for (i = 0; reg_unmasked; i++, reg_unmasked = (reg_unmasked >> 1)) {
1281 info = find_ainfo(1ULL << i);
1282 if (((reg_unmasked & 0x1) == 0) || !info)
1283 continue;
1284
1285 port = info->port;
1286
1287 dev_err(dev, "%s: FC Port %d -> %s, fc_status 0x%08llX\n",
1288 __func__, port, info->desc,
1289 readq_be(&global->fc_regs[port][FC_STATUS / 8]));
1290
1291 /*
1292 * Do link reset first, some OTHER errors will set FC_ERROR
1293 * again if cleared before or w/o a reset
1294 */
1295 if (info->action & LINK_RESET) {
1296 dev_err(dev, "%s: FC Port %d: resetting link\n",
1297 __func__, port);
1298 cfg->lr_state = LINK_RESET_REQUIRED;
1299 cfg->lr_port = port;
1300 kref_get(&cfg->afu->mapcount);
1301 schedule_work(&cfg->work_q);
1302 }
1303
1304 if (info->action & CLR_FC_ERROR) {
1305 reg = readq_be(&global->fc_regs[port][FC_ERROR / 8]);
1306
1307 /*
1308 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP
1309 * should be the same and tracing one is sufficient.
1310 */
1311
1312 dev_err(dev, "%s: fc %d: clearing fc_error 0x%08llX\n",
1313 __func__, port, reg);
1314
1315 writeq_be(reg, &global->fc_regs[port][FC_ERROR / 8]);
1316 writeq_be(0, &global->fc_regs[port][FC_ERRCAP / 8]);
1317 }
1318
1319 if (info->action & SCAN_HOST) {
1320 atomic_inc(&cfg->scan_host_needed);
1321 kref_get(&cfg->afu->mapcount);
1322 schedule_work(&cfg->work_q);
1323 }
1324 }
1325
1326 out:
1327 dev_dbg(dev, "%s: returning IRQ_HANDLED, afu=%p\n", __func__, afu);
1328 return IRQ_HANDLED;
1329 }
1330
1331 /**
1332 * start_context() - starts the master context
1333 * @cfg: Internal structure associated with the host.
1334 *
1335 * Return: A success or failure value from CXL services.
1336 */
1337 static int start_context(struct cxlflash_cfg *cfg)
1338 {
1339 int rc = 0;
1340
1341 rc = cxl_start_context(cfg->mcctx,
1342 cfg->afu->work.work_element_descriptor,
1343 NULL);
1344
1345 pr_debug("%s: returning rc=%d\n", __func__, rc);
1346 return rc;
1347 }
1348
1349 /**
1350 * read_vpd() - obtains the WWPNs from VPD
1351 * @cfg: Internal structure associated with the host.
1352 * @wwpn: Array of size NUM_FC_PORTS to pass back WWPNs
1353 *
1354 * Return: 0 on success, -errno on failure
1355 */
1356 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
1357 {
1358 struct pci_dev *dev = cfg->dev;
1359 int rc = 0;
1360 int ro_start, ro_size, i, j, k;
1361 ssize_t vpd_size;
1362 char vpd_data[CXLFLASH_VPD_LEN];
1363 char tmp_buf[WWPN_BUF_LEN] = { 0 };
1364 char *wwpn_vpd_tags[NUM_FC_PORTS] = { "V5", "V6" };
1365
1366 /* Get the VPD data from the device */
1367 vpd_size = cxl_read_adapter_vpd(dev, vpd_data, sizeof(vpd_data));
1368 if (unlikely(vpd_size <= 0)) {
1369 dev_err(&dev->dev, "%s: Unable to read VPD (size = %ld)\n",
1370 __func__, vpd_size);
1371 rc = -ENODEV;
1372 goto out;
1373 }
1374
1375 /* Get the read only section offset */
1376 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size,
1377 PCI_VPD_LRDT_RO_DATA);
1378 if (unlikely(ro_start < 0)) {
1379 dev_err(&dev->dev, "%s: VPD Read-only data not found\n",
1380 __func__);
1381 rc = -ENODEV;
1382 goto out;
1383 }
1384
1385 /* Get the read only section size, cap when extends beyond read VPD */
1386 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
1387 j = ro_size;
1388 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1389 if (unlikely((i + j) > vpd_size)) {
1390 pr_debug("%s: Might need to read more VPD (%d > %ld)\n",
1391 __func__, (i + j), vpd_size);
1392 ro_size = vpd_size - i;
1393 }
1394
1395 /*
1396 * Find the offset of the WWPN tag within the read only
1397 * VPD data and validate the found field (partials are
1398 * no good to us). Convert the ASCII data to an integer
1399 * value. Note that we must copy to a temporary buffer
1400 * because the conversion service requires that the ASCII
1401 * string be terminated.
1402 */
1403 for (k = 0; k < NUM_FC_PORTS; k++) {
1404 j = ro_size;
1405 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1406
1407 i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]);
1408 if (unlikely(i < 0)) {
1409 dev_err(&dev->dev, "%s: Port %d WWPN not found "
1410 "in VPD\n", __func__, k);
1411 rc = -ENODEV;
1412 goto out;
1413 }
1414
1415 j = pci_vpd_info_field_size(&vpd_data[i]);
1416 i += PCI_VPD_INFO_FLD_HDR_SIZE;
1417 if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) {
1418 dev_err(&dev->dev, "%s: Port %d WWPN incomplete or "
1419 "VPD corrupt\n",
1420 __func__, k);
1421 rc = -ENODEV;
1422 goto out;
1423 }
1424
1425 memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
1426 rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
1427 if (unlikely(rc)) {
1428 dev_err(&dev->dev, "%s: Fail to convert port %d WWPN "
1429 "to integer\n", __func__, k);
1430 rc = -ENODEV;
1431 goto out;
1432 }
1433 }
1434
1435 out:
1436 pr_debug("%s: returning rc=%d\n", __func__, rc);
1437 return rc;
1438 }
1439
1440 /**
1441 * init_pcr() - initialize the provisioning and control registers
1442 * @cfg: Internal structure associated with the host.
1443 *
1444 * Also sets up fast access to the mapped registers and initializes AFU
1445 * command fields that never change.
1446 */
1447 static void init_pcr(struct cxlflash_cfg *cfg)
1448 {
1449 struct afu *afu = cfg->afu;
1450 struct sisl_ctrl_map __iomem *ctrl_map;
1451 int i;
1452
1453 for (i = 0; i < MAX_CONTEXT; i++) {
1454 ctrl_map = &afu->afu_map->ctrls[i].ctrl;
1455 /* Disrupt any clients that could be running */
1456 /* e.g. clients that survived a master restart */
1457 writeq_be(0, &ctrl_map->rht_start);
1458 writeq_be(0, &ctrl_map->rht_cnt_id);
1459 writeq_be(0, &ctrl_map->ctx_cap);
1460 }
1461
1462 /* Copy frequently used fields into afu */
1463 afu->ctx_hndl = (u16) cxl_process_element(cfg->mcctx);
1464 afu->host_map = &afu->afu_map->hosts[afu->ctx_hndl].host;
1465 afu->ctrl_map = &afu->afu_map->ctrls[afu->ctx_hndl].ctrl;
1466
1467 /* Program the Endian Control for the master context */
1468 writeq_be(SISL_ENDIAN_CTRL, &afu->host_map->endian_ctrl);
1469
1470 /* Initialize cmd fields that never change */
1471 for (i = 0; i < CXLFLASH_NUM_CMDS; i++) {
1472 afu->cmd[i].rcb.ctx_id = afu->ctx_hndl;
1473 afu->cmd[i].rcb.msi = SISL_MSI_RRQ_UPDATED;
1474 afu->cmd[i].rcb.rrq = 0x0;
1475 }
1476 }
1477
1478 /**
1479 * init_global() - initialize AFU global registers
1480 * @cfg: Internal structure associated with the host.
1481 */
1482 static int init_global(struct cxlflash_cfg *cfg)
1483 {
1484 struct afu *afu = cfg->afu;
1485 struct device *dev = &cfg->dev->dev;
1486 u64 wwpn[NUM_FC_PORTS]; /* wwpn of AFU ports */
1487 int i = 0, num_ports = 0;
1488 int rc = 0;
1489 u64 reg;
1490
1491 rc = read_vpd(cfg, &wwpn[0]);
1492 if (rc) {
1493 dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
1494 goto out;
1495 }
1496
1497 pr_debug("%s: wwpn0=0x%llX wwpn1=0x%llX\n", __func__, wwpn[0], wwpn[1]);
1498
1499 /* Set up RRQ in AFU for master issued cmds */
1500 writeq_be((u64) afu->hrrq_start, &afu->host_map->rrq_start);
1501 writeq_be((u64) afu->hrrq_end, &afu->host_map->rrq_end);
1502
1503 /* AFU configuration */
1504 reg = readq_be(&afu->afu_map->global.regs.afu_config);
1505 reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
1506 /* enable all auto retry options and control endianness */
1507 /* leave others at default: */
1508 /* CTX_CAP write protected, mbox_r does not clear on read and */
1509 /* checker on if dual afu */
1510 writeq_be(reg, &afu->afu_map->global.regs.afu_config);
1511
1512 /* Global port select: select either port */
1513 if (afu->internal_lun) {
1514 /* Only use port 0 */
1515 writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
1516 num_ports = NUM_FC_PORTS - 1;
1517 } else {
1518 writeq_be(BOTH_PORTS, &afu->afu_map->global.regs.afu_port_sel);
1519 num_ports = NUM_FC_PORTS;
1520 }
1521
1522 for (i = 0; i < num_ports; i++) {
1523 /* Unmask all errors (but they are still masked at AFU) */
1524 writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRMSK / 8]);
1525 /* Clear CRC error cnt & set a threshold */
1526 (void)readq_be(&afu->afu_map->global.
1527 fc_regs[i][FC_CNT_CRCERR / 8]);
1528 writeq_be(MC_CRC_THRESH, &afu->afu_map->global.fc_regs[i]
1529 [FC_CRC_THRESH / 8]);
1530
1531 /* Set WWPNs. If already programmed, wwpn[i] is 0 */
1532 if (wwpn[i] != 0 &&
1533 afu_set_wwpn(afu, i,
1534 &afu->afu_map->global.fc_regs[i][0],
1535 wwpn[i])) {
1536 dev_err(dev, "%s: failed to set WWPN on port %d\n",
1537 __func__, i);
1538 rc = -EIO;
1539 goto out;
1540 }
1541 /* Programming WWPN back to back causes additional
1542 * offline/online transitions and a PLOGI
1543 */
1544 msleep(100);
1545 }
1546
1547 /* Set up master's own CTX_CAP to allow real mode, host translation */
1548 /* tables, afu cmds and read/write GSCSI cmds. */
1549 /* First, unlock ctx_cap write by reading mbox */
1550 (void)readq_be(&afu->ctrl_map->mbox_r); /* unlock ctx_cap */
1551 writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
1552 SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
1553 SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
1554 &afu->ctrl_map->ctx_cap);
1555 /* Initialize heartbeat */
1556 afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
1557
1558 out:
1559 return rc;
1560 }
1561
1562 /**
1563 * start_afu() - initializes and starts the AFU
1564 * @cfg: Internal structure associated with the host.
1565 */
1566 static int start_afu(struct cxlflash_cfg *cfg)
1567 {
1568 struct afu *afu = cfg->afu;
1569 struct afu_cmd *cmd;
1570
1571 int i = 0;
1572 int rc = 0;
1573
1574 for (i = 0; i < CXLFLASH_NUM_CMDS; i++) {
1575 cmd = &afu->cmd[i];
1576
1577 init_completion(&cmd->cevent);
1578 spin_lock_init(&cmd->slock);
1579 cmd->parent = afu;
1580 }
1581
1582 init_pcr(cfg);
1583
1584 /* After an AFU reset, RRQ entries are stale, clear them */
1585 memset(&afu->rrq_entry, 0, sizeof(afu->rrq_entry));
1586
1587 /* Initialize RRQ pointers */
1588 afu->hrrq_start = &afu->rrq_entry[0];
1589 afu->hrrq_end = &afu->rrq_entry[NUM_RRQ_ENTRY - 1];
1590 afu->hrrq_curr = afu->hrrq_start;
1591 afu->toggle = 1;
1592
1593 rc = init_global(cfg);
1594
1595 pr_debug("%s: returning rc=%d\n", __func__, rc);
1596 return rc;
1597 }
1598
1599 /**
1600 * init_mc() - create and register as the master context
1601 * @cfg: Internal structure associated with the host.
1602 *
1603 * Return: 0 on success, -errno on failure
1604 */
1605 static int init_mc(struct cxlflash_cfg *cfg)
1606 {
1607 struct cxl_context *ctx;
1608 struct device *dev = &cfg->dev->dev;
1609 struct afu *afu = cfg->afu;
1610 int rc = 0;
1611 enum undo_level level;
1612
1613 ctx = cxl_get_context(cfg->dev);
1614 if (unlikely(!ctx))
1615 return -ENOMEM;
1616 cfg->mcctx = ctx;
1617
1618 /* Set it up as a master with the CXL */
1619 cxl_set_master(ctx);
1620
1621 /* During initialization reset the AFU to start from a clean slate */
1622 rc = cxl_afu_reset(cfg->mcctx);
1623 if (unlikely(rc)) {
1624 dev_err(dev, "%s: initial AFU reset failed rc=%d\n",
1625 __func__, rc);
1626 level = RELEASE_CONTEXT;
1627 goto out;
1628 }
1629
1630 rc = cxl_allocate_afu_irqs(ctx, 3);
1631 if (unlikely(rc)) {
1632 dev_err(dev, "%s: call to allocate_afu_irqs failed rc=%d!\n",
1633 __func__, rc);
1634 level = RELEASE_CONTEXT;
1635 goto out;
1636 }
1637
1638 rc = cxl_map_afu_irq(ctx, 1, cxlflash_sync_err_irq, afu,
1639 "SISL_MSI_SYNC_ERROR");
1640 if (unlikely(rc <= 0)) {
1641 dev_err(dev, "%s: IRQ 1 (SISL_MSI_SYNC_ERROR) map failed!\n",
1642 __func__);
1643 level = FREE_IRQ;
1644 goto out;
1645 }
1646
1647 rc = cxl_map_afu_irq(ctx, 2, cxlflash_rrq_irq, afu,
1648 "SISL_MSI_RRQ_UPDATED");
1649 if (unlikely(rc <= 0)) {
1650 dev_err(dev, "%s: IRQ 2 (SISL_MSI_RRQ_UPDATED) map failed!\n",
1651 __func__);
1652 level = UNMAP_ONE;
1653 goto out;
1654 }
1655
1656 rc = cxl_map_afu_irq(ctx, 3, cxlflash_async_err_irq, afu,
1657 "SISL_MSI_ASYNC_ERROR");
1658 if (unlikely(rc <= 0)) {
1659 dev_err(dev, "%s: IRQ 3 (SISL_MSI_ASYNC_ERROR) map failed!\n",
1660 __func__);
1661 level = UNMAP_TWO;
1662 goto out;
1663 }
1664
1665 rc = 0;
1666
1667 /* This performs the equivalent of the CXL_IOCTL_START_WORK.
1668 * The CXL_IOCTL_GET_PROCESS_ELEMENT is implicit in the process
1669 * element (pe) that is embedded in the context (ctx)
1670 */
1671 rc = start_context(cfg);
1672 if (unlikely(rc)) {
1673 dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
1674 level = UNMAP_THREE;
1675 goto out;
1676 }
1677 ret:
1678 pr_debug("%s: returning rc=%d\n", __func__, rc);
1679 return rc;
1680 out:
1681 term_mc(cfg, level);
1682 goto ret;
1683 }
1684
1685 /**
1686 * init_afu() - setup as master context and start AFU
1687 * @cfg: Internal structure associated with the host.
1688 *
1689 * This routine is a higher level of control for configuring the
1690 * AFU on probe and reset paths.
1691 *
1692 * Return: 0 on success, -errno on failure
1693 */
1694 static int init_afu(struct cxlflash_cfg *cfg)
1695 {
1696 u64 reg;
1697 int rc = 0;
1698 struct afu *afu = cfg->afu;
1699 struct device *dev = &cfg->dev->dev;
1700
1701 cxl_perst_reloads_same_image(cfg->cxl_afu, true);
1702
1703 rc = init_mc(cfg);
1704 if (rc) {
1705 dev_err(dev, "%s: call to init_mc failed, rc=%d!\n",
1706 __func__, rc);
1707 goto out;
1708 }
1709
1710 /* Map the entire MMIO space of the AFU */
1711 afu->afu_map = cxl_psa_map(cfg->mcctx);
1712 if (!afu->afu_map) {
1713 dev_err(dev, "%s: call to cxl_psa_map failed!\n", __func__);
1714 rc = -ENOMEM;
1715 goto err1;
1716 }
1717 kref_init(&afu->mapcount);
1718
1719 /* No byte reverse on reading afu_version or string will be backwards */
1720 reg = readq(&afu->afu_map->global.regs.afu_version);
1721 memcpy(afu->version, &reg, sizeof(reg));
1722 afu->interface_version =
1723 readq_be(&afu->afu_map->global.regs.interface_version);
1724 if ((afu->interface_version + 1) == 0) {
1725 pr_err("Back level AFU, please upgrade. AFU version %s "
1726 "interface version 0x%llx\n", afu->version,
1727 afu->interface_version);
1728 rc = -EINVAL;
1729 goto err2;
1730 }
1731
1732 pr_debug("%s: afu version %s, interface version 0x%llX\n", __func__,
1733 afu->version, afu->interface_version);
1734
1735 rc = start_afu(cfg);
1736 if (rc) {
1737 dev_err(dev, "%s: call to start_afu failed, rc=%d!\n",
1738 __func__, rc);
1739 goto err2;
1740 }
1741
1742 afu_err_intr_init(cfg->afu);
1743 atomic64_set(&afu->room, readq_be(&afu->host_map->cmd_room));
1744
1745 /* Restore the LUN mappings */
1746 cxlflash_restore_luntable(cfg);
1747 out:
1748 pr_debug("%s: returning rc=%d\n", __func__, rc);
1749 return rc;
1750
1751 err2:
1752 kref_put(&afu->mapcount, afu_unmap);
1753 err1:
1754 term_mc(cfg, UNDO_START);
1755 goto out;
1756 }
1757
1758 /**
1759 * cxlflash_afu_sync() - builds and sends an AFU sync command
1760 * @afu: AFU associated with the host.
1761 * @ctx_hndl_u: Identifies context requesting sync.
1762 * @res_hndl_u: Identifies resource requesting sync.
1763 * @mode: Type of sync to issue (lightweight, heavyweight, global).
1764 *
1765 * The AFU can only take 1 sync command at a time. This routine enforces this
1766 * limitation by using a mutex to provide exclusive access to the AFU during
1767 * the sync. This design point requires calling threads to not be on interrupt
1768 * context due to the possibility of sleeping during concurrent sync operations.
1769 *
1770 * AFU sync operations are only necessary and allowed when the device is
1771 * operating normally. When not operating normally, sync requests can occur as
1772 * part of cleaning up resources associated with an adapter prior to removal.
1773 * In this scenario, these requests are simply ignored (safe due to the AFU
1774 * going away).
1775 *
1776 * Return:
1777 * 0 on success
1778 * -1 on failure
1779 */
1780 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx_hndl_u,
1781 res_hndl_t res_hndl_u, u8 mode)
1782 {
1783 struct cxlflash_cfg *cfg = afu->parent;
1784 struct device *dev = &cfg->dev->dev;
1785 struct afu_cmd *cmd = NULL;
1786 int rc = 0;
1787 int retry_cnt = 0;
1788 static DEFINE_MUTEX(sync_active);
1789
1790 if (cfg->state != STATE_NORMAL) {
1791 pr_debug("%s: Sync not required! (%u)\n", __func__, cfg->state);
1792 return 0;
1793 }
1794
1795 mutex_lock(&sync_active);
1796 retry:
1797 cmd = cmd_checkout(afu);
1798 if (unlikely(!cmd)) {
1799 retry_cnt++;
1800 udelay(1000 * retry_cnt);
1801 if (retry_cnt < MC_RETRY_CNT)
1802 goto retry;
1803 dev_err(dev, "%s: could not get a free command\n", __func__);
1804 rc = -1;
1805 goto out;
1806 }
1807
1808 pr_debug("%s: afu=%p cmd=%p %d\n", __func__, afu, cmd, ctx_hndl_u);
1809
1810 memset(cmd->rcb.cdb, 0, sizeof(cmd->rcb.cdb));
1811
1812 cmd->rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
1813 cmd->rcb.port_sel = 0x0; /* NA */
1814 cmd->rcb.lun_id = 0x0; /* NA */
1815 cmd->rcb.data_len = 0x0;
1816 cmd->rcb.data_ea = 0x0;
1817 cmd->rcb.timeout = MC_AFU_SYNC_TIMEOUT;
1818
1819 cmd->rcb.cdb[0] = 0xC0; /* AFU Sync */
1820 cmd->rcb.cdb[1] = mode;
1821
1822 /* The cdb is aligned, no unaligned accessors required */
1823 *((__be16 *)&cmd->rcb.cdb[2]) = cpu_to_be16(ctx_hndl_u);
1824 *((__be32 *)&cmd->rcb.cdb[4]) = cpu_to_be32(res_hndl_u);
1825
1826 rc = send_cmd(afu, cmd);
1827 if (unlikely(rc))
1828 goto out;
1829
1830 wait_resp(afu, cmd);
1831
1832 /* Set on timeout */
1833 if (unlikely((cmd->sa.ioasc != 0) ||
1834 (cmd->sa.host_use_b[0] & B_ERROR)))
1835 rc = -1;
1836 out:
1837 mutex_unlock(&sync_active);
1838 if (cmd)
1839 cmd_checkin(cmd);
1840 pr_debug("%s: returning rc=%d\n", __func__, rc);
1841 return rc;
1842 }
1843
1844 /**
1845 * afu_reset() - resets the AFU
1846 * @cfg: Internal structure associated with the host.
1847 *
1848 * Return: 0 on success, -errno on failure
1849 */
1850 static int afu_reset(struct cxlflash_cfg *cfg)
1851 {
1852 int rc = 0;
1853 /* Stop the context before the reset. Since the context is
1854 * no longer available restart it after the reset is complete
1855 */
1856
1857 term_afu(cfg);
1858
1859 rc = init_afu(cfg);
1860
1861 pr_debug("%s: returning rc=%d\n", __func__, rc);
1862 return rc;
1863 }
1864
1865 /**
1866 * cxlflash_eh_device_reset_handler() - reset a single LUN
1867 * @scp: SCSI command to send.
1868 *
1869 * Return:
1870 * SUCCESS as defined in scsi/scsi.h
1871 * FAILED as defined in scsi/scsi.h
1872 */
1873 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
1874 {
1875 int rc = SUCCESS;
1876 struct Scsi_Host *host = scp->device->host;
1877 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
1878 struct afu *afu = cfg->afu;
1879 int rcr = 0;
1880
1881 pr_debug("%s: (scp=%p) %d/%d/%d/%llu "
1882 "cdb=(%08X-%08X-%08X-%08X)\n", __func__, scp,
1883 host->host_no, scp->device->channel,
1884 scp->device->id, scp->device->lun,
1885 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
1886 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
1887 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
1888 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
1889
1890 retry:
1891 switch (cfg->state) {
1892 case STATE_NORMAL:
1893 rcr = send_tmf(afu, scp, TMF_LUN_RESET);
1894 if (unlikely(rcr))
1895 rc = FAILED;
1896 break;
1897 case STATE_RESET:
1898 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
1899 goto retry;
1900 default:
1901 rc = FAILED;
1902 break;
1903 }
1904
1905 pr_debug("%s: returning rc=%d\n", __func__, rc);
1906 return rc;
1907 }
1908
1909 /**
1910 * cxlflash_eh_host_reset_handler() - reset the host adapter
1911 * @scp: SCSI command from stack identifying host.
1912 *
1913 * Return:
1914 * SUCCESS as defined in scsi/scsi.h
1915 * FAILED as defined in scsi/scsi.h
1916 */
1917 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
1918 {
1919 int rc = SUCCESS;
1920 int rcr = 0;
1921 struct Scsi_Host *host = scp->device->host;
1922 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
1923
1924 pr_debug("%s: (scp=%p) %d/%d/%d/%llu "
1925 "cdb=(%08X-%08X-%08X-%08X)\n", __func__, scp,
1926 host->host_no, scp->device->channel,
1927 scp->device->id, scp->device->lun,
1928 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
1929 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
1930 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
1931 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
1932
1933 switch (cfg->state) {
1934 case STATE_NORMAL:
1935 cfg->state = STATE_RESET;
1936 cxlflash_mark_contexts_error(cfg);
1937 rcr = afu_reset(cfg);
1938 if (rcr) {
1939 rc = FAILED;
1940 cfg->state = STATE_FAILTERM;
1941 } else
1942 cfg->state = STATE_NORMAL;
1943 wake_up_all(&cfg->reset_waitq);
1944 break;
1945 case STATE_RESET:
1946 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
1947 if (cfg->state == STATE_NORMAL)
1948 break;
1949 /* fall through */
1950 default:
1951 rc = FAILED;
1952 break;
1953 }
1954
1955 pr_debug("%s: returning rc=%d\n", __func__, rc);
1956 return rc;
1957 }
1958
1959 /**
1960 * cxlflash_change_queue_depth() - change the queue depth for the device
1961 * @sdev: SCSI device destined for queue depth change.
1962 * @qdepth: Requested queue depth value to set.
1963 *
1964 * The requested queue depth is capped to the maximum supported value.
1965 *
1966 * Return: The actual queue depth set.
1967 */
1968 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
1969 {
1970
1971 if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
1972 qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
1973
1974 scsi_change_queue_depth(sdev, qdepth);
1975 return sdev->queue_depth;
1976 }
1977
1978 /**
1979 * cxlflash_show_port_status() - queries and presents the current port status
1980 * @port: Desired port for status reporting.
1981 * @afu: AFU owning the specified port.
1982 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
1983 *
1984 * Return: The size of the ASCII string returned in @buf.
1985 */
1986 static ssize_t cxlflash_show_port_status(u32 port, struct afu *afu, char *buf)
1987 {
1988 char *disp_status;
1989 u64 status;
1990 __be64 __iomem *fc_regs;
1991
1992 if (port >= NUM_FC_PORTS)
1993 return 0;
1994
1995 fc_regs = &afu->afu_map->global.fc_regs[port][0];
1996 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1997 status &= FC_MTIP_STATUS_MASK;
1998
1999 if (status == FC_MTIP_STATUS_ONLINE)
2000 disp_status = "online";
2001 else if (status == FC_MTIP_STATUS_OFFLINE)
2002 disp_status = "offline";
2003 else
2004 disp_status = "unknown";
2005
2006 return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
2007 }
2008
2009 /**
2010 * port0_show() - queries and presents the current status of port 0
2011 * @dev: Generic device associated with the host owning the port.
2012 * @attr: Device attribute representing the port.
2013 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2014 *
2015 * Return: The size of the ASCII string returned in @buf.
2016 */
2017 static ssize_t port0_show(struct device *dev,
2018 struct device_attribute *attr,
2019 char *buf)
2020 {
2021 struct Scsi_Host *shost = class_to_shost(dev);
2022 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2023 struct afu *afu = cfg->afu;
2024
2025 return cxlflash_show_port_status(0, afu, buf);
2026 }
2027
2028 /**
2029 * port1_show() - queries and presents the current status of port 1
2030 * @dev: Generic device associated with the host owning the port.
2031 * @attr: Device attribute representing the port.
2032 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2033 *
2034 * Return: The size of the ASCII string returned in @buf.
2035 */
2036 static ssize_t port1_show(struct device *dev,
2037 struct device_attribute *attr,
2038 char *buf)
2039 {
2040 struct Scsi_Host *shost = class_to_shost(dev);
2041 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2042 struct afu *afu = cfg->afu;
2043
2044 return cxlflash_show_port_status(1, afu, buf);
2045 }
2046
2047 /**
2048 * lun_mode_show() - presents the current LUN mode of the host
2049 * @dev: Generic device associated with the host.
2050 * @attr: Device attribute representing the LUN mode.
2051 * @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
2052 *
2053 * Return: The size of the ASCII string returned in @buf.
2054 */
2055 static ssize_t lun_mode_show(struct device *dev,
2056 struct device_attribute *attr, char *buf)
2057 {
2058 struct Scsi_Host *shost = class_to_shost(dev);
2059 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2060 struct afu *afu = cfg->afu;
2061
2062 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
2063 }
2064
2065 /**
2066 * lun_mode_store() - sets the LUN mode of the host
2067 * @dev: Generic device associated with the host.
2068 * @attr: Device attribute representing the LUN mode.
2069 * @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
2070 * @count: Length of data resizing in @buf.
2071 *
2072 * The CXL Flash AFU supports a dummy LUN mode where the external
2073 * links and storage are not required. Space on the FPGA is used
2074 * to create 1 or 2 small LUNs which are presented to the system
2075 * as if they were a normal storage device. This feature is useful
2076 * during development and also provides manufacturing with a way
2077 * to test the AFU without an actual device.
2078 *
2079 * 0 = external LUN[s] (default)
2080 * 1 = internal LUN (1 x 64K, 512B blocks, id 0)
2081 * 2 = internal LUN (1 x 64K, 4K blocks, id 0)
2082 * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
2083 * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
2084 *
2085 * Return: The size of the ASCII string returned in @buf.
2086 */
2087 static ssize_t lun_mode_store(struct device *dev,
2088 struct device_attribute *attr,
2089 const char *buf, size_t count)
2090 {
2091 struct Scsi_Host *shost = class_to_shost(dev);
2092 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2093 struct afu *afu = cfg->afu;
2094 int rc;
2095 u32 lun_mode;
2096
2097 rc = kstrtouint(buf, 10, &lun_mode);
2098 if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
2099 afu->internal_lun = lun_mode;
2100
2101 /*
2102 * When configured for internal LUN, there is only one channel,
2103 * channel number 0, else there will be 2 (default).
2104 */
2105 if (afu->internal_lun)
2106 shost->max_channel = 0;
2107 else
2108 shost->max_channel = NUM_FC_PORTS - 1;
2109
2110 afu_reset(cfg);
2111 scsi_scan_host(cfg->host);
2112 }
2113
2114 return count;
2115 }
2116
2117 /**
2118 * ioctl_version_show() - presents the current ioctl version of the host
2119 * @dev: Generic device associated with the host.
2120 * @attr: Device attribute representing the ioctl version.
2121 * @buf: Buffer of length PAGE_SIZE to report back the ioctl version.
2122 *
2123 * Return: The size of the ASCII string returned in @buf.
2124 */
2125 static ssize_t ioctl_version_show(struct device *dev,
2126 struct device_attribute *attr, char *buf)
2127 {
2128 return scnprintf(buf, PAGE_SIZE, "%u\n", DK_CXLFLASH_VERSION_0);
2129 }
2130
2131 /**
2132 * cxlflash_show_port_lun_table() - queries and presents the port LUN table
2133 * @port: Desired port for status reporting.
2134 * @afu: AFU owning the specified port.
2135 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2136 *
2137 * Return: The size of the ASCII string returned in @buf.
2138 */
2139 static ssize_t cxlflash_show_port_lun_table(u32 port,
2140 struct afu *afu,
2141 char *buf)
2142 {
2143 int i;
2144 ssize_t bytes = 0;
2145 __be64 __iomem *fc_port;
2146
2147 if (port >= NUM_FC_PORTS)
2148 return 0;
2149
2150 fc_port = &afu->afu_map->global.fc_port[port][0];
2151
2152 for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
2153 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2154 "%03d: %016llX\n", i, readq_be(&fc_port[i]));
2155 return bytes;
2156 }
2157
2158 /**
2159 * port0_lun_table_show() - presents the current LUN table of port 0
2160 * @dev: Generic device associated with the host owning the port.
2161 * @attr: Device attribute representing the port.
2162 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2163 *
2164 * Return: The size of the ASCII string returned in @buf.
2165 */
2166 static ssize_t port0_lun_table_show(struct device *dev,
2167 struct device_attribute *attr,
2168 char *buf)
2169 {
2170 struct Scsi_Host *shost = class_to_shost(dev);
2171 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2172 struct afu *afu = cfg->afu;
2173
2174 return cxlflash_show_port_lun_table(0, afu, buf);
2175 }
2176
2177 /**
2178 * port1_lun_table_show() - presents the current LUN table of port 1
2179 * @dev: Generic device associated with the host owning the port.
2180 * @attr: Device attribute representing the port.
2181 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2182 *
2183 * Return: The size of the ASCII string returned in @buf.
2184 */
2185 static ssize_t port1_lun_table_show(struct device *dev,
2186 struct device_attribute *attr,
2187 char *buf)
2188 {
2189 struct Scsi_Host *shost = class_to_shost(dev);
2190 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2191 struct afu *afu = cfg->afu;
2192
2193 return cxlflash_show_port_lun_table(1, afu, buf);
2194 }
2195
2196 /**
2197 * mode_show() - presents the current mode of the device
2198 * @dev: Generic device associated with the device.
2199 * @attr: Device attribute representing the device mode.
2200 * @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
2201 *
2202 * Return: The size of the ASCII string returned in @buf.
2203 */
2204 static ssize_t mode_show(struct device *dev,
2205 struct device_attribute *attr, char *buf)
2206 {
2207 struct scsi_device *sdev = to_scsi_device(dev);
2208
2209 return scnprintf(buf, PAGE_SIZE, "%s\n",
2210 sdev->hostdata ? "superpipe" : "legacy");
2211 }
2212
2213 /*
2214 * Host attributes
2215 */
2216 static DEVICE_ATTR_RO(port0);
2217 static DEVICE_ATTR_RO(port1);
2218 static DEVICE_ATTR_RW(lun_mode);
2219 static DEVICE_ATTR_RO(ioctl_version);
2220 static DEVICE_ATTR_RO(port0_lun_table);
2221 static DEVICE_ATTR_RO(port1_lun_table);
2222
2223 static struct device_attribute *cxlflash_host_attrs[] = {
2224 &dev_attr_port0,
2225 &dev_attr_port1,
2226 &dev_attr_lun_mode,
2227 &dev_attr_ioctl_version,
2228 &dev_attr_port0_lun_table,
2229 &dev_attr_port1_lun_table,
2230 NULL
2231 };
2232
2233 /*
2234 * Device attributes
2235 */
2236 static DEVICE_ATTR_RO(mode);
2237
2238 static struct device_attribute *cxlflash_dev_attrs[] = {
2239 &dev_attr_mode,
2240 NULL
2241 };
2242
2243 /*
2244 * Host template
2245 */
2246 static struct scsi_host_template driver_template = {
2247 .module = THIS_MODULE,
2248 .name = CXLFLASH_ADAPTER_NAME,
2249 .info = cxlflash_driver_info,
2250 .ioctl = cxlflash_ioctl,
2251 .proc_name = CXLFLASH_NAME,
2252 .queuecommand = cxlflash_queuecommand,
2253 .eh_device_reset_handler = cxlflash_eh_device_reset_handler,
2254 .eh_host_reset_handler = cxlflash_eh_host_reset_handler,
2255 .change_queue_depth = cxlflash_change_queue_depth,
2256 .cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN,
2257 .can_queue = CXLFLASH_MAX_CMDS,
2258 .this_id = -1,
2259 .sg_tablesize = SG_NONE, /* No scatter gather support */
2260 .max_sectors = CXLFLASH_MAX_SECTORS,
2261 .use_clustering = ENABLE_CLUSTERING,
2262 .shost_attrs = cxlflash_host_attrs,
2263 .sdev_attrs = cxlflash_dev_attrs,
2264 };
2265
2266 /*
2267 * Device dependent values
2268 */
2269 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS };
2270 static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS };
2271
2272 /*
2273 * PCI device binding table
2274 */
2275 static struct pci_device_id cxlflash_pci_table[] = {
2276 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
2277 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
2278 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT,
2279 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals},
2280 {}
2281 };
2282
2283 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
2284
2285 /**
2286 * cxlflash_worker_thread() - work thread handler for the AFU
2287 * @work: Work structure contained within cxlflash associated with host.
2288 *
2289 * Handles the following events:
2290 * - Link reset which cannot be performed on interrupt context due to
2291 * blocking up to a few seconds
2292 * - Read AFU command room
2293 * - Rescan the host
2294 */
2295 static void cxlflash_worker_thread(struct work_struct *work)
2296 {
2297 struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
2298 work_q);
2299 struct afu *afu = cfg->afu;
2300 struct device *dev = &cfg->dev->dev;
2301 int port;
2302 ulong lock_flags;
2303
2304 /* Avoid MMIO if the device has failed */
2305
2306 if (cfg->state != STATE_NORMAL)
2307 return;
2308
2309 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
2310
2311 if (cfg->lr_state == LINK_RESET_REQUIRED) {
2312 port = cfg->lr_port;
2313 if (port < 0)
2314 dev_err(dev, "%s: invalid port index %d\n",
2315 __func__, port);
2316 else {
2317 spin_unlock_irqrestore(cfg->host->host_lock,
2318 lock_flags);
2319
2320 /* The reset can block... */
2321 afu_link_reset(afu, port,
2322 &afu->afu_map->global.fc_regs[port][0]);
2323 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
2324 }
2325
2326 cfg->lr_state = LINK_RESET_COMPLETE;
2327 }
2328
2329 if (afu->read_room) {
2330 atomic64_set(&afu->room, readq_be(&afu->host_map->cmd_room));
2331 afu->read_room = false;
2332 }
2333
2334 spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
2335
2336 if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
2337 scsi_scan_host(cfg->host);
2338 kref_put(&afu->mapcount, afu_unmap);
2339 }
2340
2341 /**
2342 * cxlflash_probe() - PCI entry point to add host
2343 * @pdev: PCI device associated with the host.
2344 * @dev_id: PCI device id associated with device.
2345 *
2346 * Return: 0 on success, -errno on failure
2347 */
2348 static int cxlflash_probe(struct pci_dev *pdev,
2349 const struct pci_device_id *dev_id)
2350 {
2351 struct Scsi_Host *host;
2352 struct cxlflash_cfg *cfg = NULL;
2353 struct dev_dependent_vals *ddv;
2354 int rc = 0;
2355
2356 dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
2357 __func__, pdev->irq);
2358
2359 ddv = (struct dev_dependent_vals *)dev_id->driver_data;
2360 driver_template.max_sectors = ddv->max_sectors;
2361
2362 host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
2363 if (!host) {
2364 dev_err(&pdev->dev, "%s: call to scsi_host_alloc failed!\n",
2365 __func__);
2366 rc = -ENOMEM;
2367 goto out;
2368 }
2369
2370 host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
2371 host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
2372 host->max_channel = NUM_FC_PORTS - 1;
2373 host->unique_id = host->host_no;
2374 host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
2375
2376 cfg = (struct cxlflash_cfg *)host->hostdata;
2377 cfg->host = host;
2378 rc = alloc_mem(cfg);
2379 if (rc) {
2380 dev_err(&pdev->dev, "%s: call to alloc_mem failed!\n",
2381 __func__);
2382 rc = -ENOMEM;
2383 scsi_host_put(cfg->host);
2384 goto out;
2385 }
2386
2387 cfg->init_state = INIT_STATE_NONE;
2388 cfg->dev = pdev;
2389 cfg->cxl_fops = cxlflash_cxl_fops;
2390
2391 /*
2392 * The promoted LUNs move to the top of the LUN table. The rest stay
2393 * on the bottom half. The bottom half grows from the end
2394 * (index = 255), whereas the top half grows from the beginning
2395 * (index = 0).
2396 */
2397 cfg->promote_lun_index = 0;
2398 cfg->last_lun_index[0] = CXLFLASH_NUM_VLUNS/2 - 1;
2399 cfg->last_lun_index[1] = CXLFLASH_NUM_VLUNS/2 - 1;
2400
2401 cfg->dev_id = (struct pci_device_id *)dev_id;
2402
2403 init_waitqueue_head(&cfg->tmf_waitq);
2404 init_waitqueue_head(&cfg->reset_waitq);
2405
2406 INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
2407 cfg->lr_state = LINK_RESET_INVALID;
2408 cfg->lr_port = -1;
2409 spin_lock_init(&cfg->tmf_slock);
2410 mutex_init(&cfg->ctx_tbl_list_mutex);
2411 mutex_init(&cfg->ctx_recovery_mutex);
2412 init_rwsem(&cfg->ioctl_rwsem);
2413 INIT_LIST_HEAD(&cfg->ctx_err_recovery);
2414 INIT_LIST_HEAD(&cfg->lluns);
2415
2416 pci_set_drvdata(pdev, cfg);
2417
2418 cfg->cxl_afu = cxl_pci_to_afu(pdev);
2419
2420 rc = init_pci(cfg);
2421 if (rc) {
2422 dev_err(&pdev->dev, "%s: call to init_pci "
2423 "failed rc=%d!\n", __func__, rc);
2424 goto out_remove;
2425 }
2426 cfg->init_state = INIT_STATE_PCI;
2427
2428 rc = init_afu(cfg);
2429 if (rc) {
2430 dev_err(&pdev->dev, "%s: call to init_afu "
2431 "failed rc=%d!\n", __func__, rc);
2432 goto out_remove;
2433 }
2434 cfg->init_state = INIT_STATE_AFU;
2435
2436 rc = init_scsi(cfg);
2437 if (rc) {
2438 dev_err(&pdev->dev, "%s: call to init_scsi "
2439 "failed rc=%d!\n", __func__, rc);
2440 goto out_remove;
2441 }
2442 cfg->init_state = INIT_STATE_SCSI;
2443
2444 out:
2445 pr_debug("%s: returning rc=%d\n", __func__, rc);
2446 return rc;
2447
2448 out_remove:
2449 cxlflash_remove(pdev);
2450 goto out;
2451 }
2452
2453 /**
2454 * drain_ioctls() - wait until all currently executing ioctls have completed
2455 * @cfg: Internal structure associated with the host.
2456 *
2457 * Obtain write access to read/write semaphore that wraps ioctl
2458 * handling to 'drain' ioctls currently executing.
2459 */
2460 static void drain_ioctls(struct cxlflash_cfg *cfg)
2461 {
2462 down_write(&cfg->ioctl_rwsem);
2463 up_write(&cfg->ioctl_rwsem);
2464 }
2465
2466 /**
2467 * cxlflash_pci_error_detected() - called when a PCI error is detected
2468 * @pdev: PCI device struct.
2469 * @state: PCI channel state.
2470 *
2471 * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
2472 */
2473 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
2474 pci_channel_state_t state)
2475 {
2476 int rc = 0;
2477 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2478 struct device *dev = &cfg->dev->dev;
2479
2480 dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
2481
2482 switch (state) {
2483 case pci_channel_io_frozen:
2484 cfg->state = STATE_RESET;
2485 scsi_block_requests(cfg->host);
2486 drain_ioctls(cfg);
2487 rc = cxlflash_mark_contexts_error(cfg);
2488 if (unlikely(rc))
2489 dev_err(dev, "%s: Failed to mark user contexts!(%d)\n",
2490 __func__, rc);
2491 stop_afu(cfg);
2492 term_mc(cfg, UNDO_START);
2493 return PCI_ERS_RESULT_NEED_RESET;
2494 case pci_channel_io_perm_failure:
2495 cfg->state = STATE_FAILTERM;
2496 wake_up_all(&cfg->reset_waitq);
2497 scsi_unblock_requests(cfg->host);
2498 return PCI_ERS_RESULT_DISCONNECT;
2499 default:
2500 break;
2501 }
2502 return PCI_ERS_RESULT_NEED_RESET;
2503 }
2504
2505 /**
2506 * cxlflash_pci_slot_reset() - called when PCI slot has been reset
2507 * @pdev: PCI device struct.
2508 *
2509 * This routine is called by the pci error recovery code after the PCI
2510 * slot has been reset, just before we should resume normal operations.
2511 *
2512 * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
2513 */
2514 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
2515 {
2516 int rc = 0;
2517 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2518 struct device *dev = &cfg->dev->dev;
2519
2520 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
2521
2522 rc = init_afu(cfg);
2523 if (unlikely(rc)) {
2524 dev_err(dev, "%s: EEH recovery failed! (%d)\n", __func__, rc);
2525 return PCI_ERS_RESULT_DISCONNECT;
2526 }
2527
2528 return PCI_ERS_RESULT_RECOVERED;
2529 }
2530
2531 /**
2532 * cxlflash_pci_resume() - called when normal operation can resume
2533 * @pdev: PCI device struct
2534 */
2535 static void cxlflash_pci_resume(struct pci_dev *pdev)
2536 {
2537 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2538 struct device *dev = &cfg->dev->dev;
2539
2540 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
2541
2542 cfg->state = STATE_NORMAL;
2543 wake_up_all(&cfg->reset_waitq);
2544 scsi_unblock_requests(cfg->host);
2545 }
2546
2547 static const struct pci_error_handlers cxlflash_err_handler = {
2548 .error_detected = cxlflash_pci_error_detected,
2549 .slot_reset = cxlflash_pci_slot_reset,
2550 .resume = cxlflash_pci_resume,
2551 };
2552
2553 /*
2554 * PCI device structure
2555 */
2556 static struct pci_driver cxlflash_driver = {
2557 .name = CXLFLASH_NAME,
2558 .id_table = cxlflash_pci_table,
2559 .probe = cxlflash_probe,
2560 .remove = cxlflash_remove,
2561 .err_handler = &cxlflash_err_handler,
2562 };
2563
2564 /**
2565 * init_cxlflash() - module entry point
2566 *
2567 * Return: 0 on success, -errno on failure
2568 */
2569 static int __init init_cxlflash(void)
2570 {
2571 pr_info("%s: %s\n", __func__, CXLFLASH_ADAPTER_NAME);
2572
2573 cxlflash_list_init();
2574
2575 return pci_register_driver(&cxlflash_driver);
2576 }
2577
2578 /**
2579 * exit_cxlflash() - module exit point
2580 */
2581 static void __exit exit_cxlflash(void)
2582 {
2583 cxlflash_term_global_luns();
2584 cxlflash_free_errpage();
2585
2586 pci_unregister_driver(&cxlflash_driver);
2587 }
2588
2589 module_init(init_cxlflash);
2590 module_exit(exit_cxlflash);
This page took 0.124229 seconds and 5 git commands to generate.