Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf
[deliverable/linux.git] / drivers / scsi / hpsa.c
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2014-2015 PMC-Sierra, Inc.
4 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 *
15 * Questions/Comments/Bugfixes to storagedev@pmcs.com
16 *
17 */
18
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/pci-aspm.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_transport_sas.h>
45 #include <scsi/scsi_dbg.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
57
58 /*
59 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
60 * with an optional trailing '-' followed by a byte value (0-255).
61 */
62 #define HPSA_DRIVER_VERSION "3.4.14-0"
63 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
64 #define HPSA "hpsa"
65
66 /* How long to wait for CISS doorbell communication */
67 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
68 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
69 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
70 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
71 #define MAX_IOCTL_CONFIG_WAIT 1000
72
73 /*define how many times we will try a command because of bus resets */
74 #define MAX_CMD_RETRIES 3
75
76 /* Embedded module documentation macros - see modules.h */
77 MODULE_AUTHOR("Hewlett-Packard Company");
78 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
79 HPSA_DRIVER_VERSION);
80 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
81 MODULE_VERSION(HPSA_DRIVER_VERSION);
82 MODULE_LICENSE("GPL");
83
84 static int hpsa_allow_any;
85 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
86 MODULE_PARM_DESC(hpsa_allow_any,
87 "Allow hpsa driver to access unknown HP Smart Array hardware");
88 static int hpsa_simple_mode;
89 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
90 MODULE_PARM_DESC(hpsa_simple_mode,
91 "Use 'simple mode' rather than 'performant mode'");
92
93 /* define the PCI info for the cards we can control */
94 static const struct pci_device_id hpsa_pci_device_id[] = {
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
133 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
134 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
135 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
147 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148 {0,}
149 };
150
151 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
152
153 /* board_id = Subsystem Device ID & Vendor ID
154 * product = Marketing Name for the board
155 * access = Address of the struct of function pointers
156 */
157 static struct board_type products[] = {
158 {0x3241103C, "Smart Array P212", &SA5_access},
159 {0x3243103C, "Smart Array P410", &SA5_access},
160 {0x3245103C, "Smart Array P410i", &SA5_access},
161 {0x3247103C, "Smart Array P411", &SA5_access},
162 {0x3249103C, "Smart Array P812", &SA5_access},
163 {0x324A103C, "Smart Array P712m", &SA5_access},
164 {0x324B103C, "Smart Array P711m", &SA5_access},
165 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
166 {0x3350103C, "Smart Array P222", &SA5_access},
167 {0x3351103C, "Smart Array P420", &SA5_access},
168 {0x3352103C, "Smart Array P421", &SA5_access},
169 {0x3353103C, "Smart Array P822", &SA5_access},
170 {0x3354103C, "Smart Array P420i", &SA5_access},
171 {0x3355103C, "Smart Array P220i", &SA5_access},
172 {0x3356103C, "Smart Array P721m", &SA5_access},
173 {0x1921103C, "Smart Array P830i", &SA5_access},
174 {0x1922103C, "Smart Array P430", &SA5_access},
175 {0x1923103C, "Smart Array P431", &SA5_access},
176 {0x1924103C, "Smart Array P830", &SA5_access},
177 {0x1926103C, "Smart Array P731m", &SA5_access},
178 {0x1928103C, "Smart Array P230i", &SA5_access},
179 {0x1929103C, "Smart Array P530", &SA5_access},
180 {0x21BD103C, "Smart Array P244br", &SA5_access},
181 {0x21BE103C, "Smart Array P741m", &SA5_access},
182 {0x21BF103C, "Smart HBA H240ar", &SA5_access},
183 {0x21C0103C, "Smart Array P440ar", &SA5_access},
184 {0x21C1103C, "Smart Array P840ar", &SA5_access},
185 {0x21C2103C, "Smart Array P440", &SA5_access},
186 {0x21C3103C, "Smart Array P441", &SA5_access},
187 {0x21C4103C, "Smart Array", &SA5_access},
188 {0x21C5103C, "Smart Array P841", &SA5_access},
189 {0x21C6103C, "Smart HBA H244br", &SA5_access},
190 {0x21C7103C, "Smart HBA H240", &SA5_access},
191 {0x21C8103C, "Smart HBA H241", &SA5_access},
192 {0x21C9103C, "Smart Array", &SA5_access},
193 {0x21CA103C, "Smart Array P246br", &SA5_access},
194 {0x21CB103C, "Smart Array P840", &SA5_access},
195 {0x21CC103C, "Smart Array", &SA5_access},
196 {0x21CD103C, "Smart Array", &SA5_access},
197 {0x21CE103C, "Smart HBA", &SA5_access},
198 {0x05809005, "SmartHBA-SA", &SA5_access},
199 {0x05819005, "SmartHBA-SA 8i", &SA5_access},
200 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
201 {0x05839005, "SmartHBA-SA 8e", &SA5_access},
202 {0x05849005, "SmartHBA-SA 16i", &SA5_access},
203 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
204 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
205 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
206 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
207 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
208 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
209 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
210 };
211
212 static struct scsi_transport_template *hpsa_sas_transport_template;
213 static int hpsa_add_sas_host(struct ctlr_info *h);
214 static void hpsa_delete_sas_host(struct ctlr_info *h);
215 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
216 struct hpsa_scsi_dev_t *device);
217 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
218 static struct hpsa_scsi_dev_t
219 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
220 struct sas_rphy *rphy);
221
222 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
223 static const struct scsi_cmnd hpsa_cmd_busy;
224 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
225 static const struct scsi_cmnd hpsa_cmd_idle;
226 static int number_of_controllers;
227
228 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
229 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
230 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
231
232 #ifdef CONFIG_COMPAT
233 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
234 void __user *arg);
235 #endif
236
237 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
238 static struct CommandList *cmd_alloc(struct ctlr_info *h);
239 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
240 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
241 struct scsi_cmnd *scmd);
242 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
243 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
244 int cmd_type);
245 static void hpsa_free_cmd_pool(struct ctlr_info *h);
246 #define VPD_PAGE (1 << 8)
247 #define HPSA_SIMPLE_ERROR_BITS 0x03
248
249 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
250 static void hpsa_scan_start(struct Scsi_Host *);
251 static int hpsa_scan_finished(struct Scsi_Host *sh,
252 unsigned long elapsed_time);
253 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
254
255 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
256 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
257 static int hpsa_slave_alloc(struct scsi_device *sdev);
258 static int hpsa_slave_configure(struct scsi_device *sdev);
259 static void hpsa_slave_destroy(struct scsi_device *sdev);
260
261 static void hpsa_update_scsi_devices(struct ctlr_info *h);
262 static int check_for_unit_attention(struct ctlr_info *h,
263 struct CommandList *c);
264 static void check_ioctl_unit_attention(struct ctlr_info *h,
265 struct CommandList *c);
266 /* performant mode helper functions */
267 static void calc_bucket_map(int *bucket, int num_buckets,
268 int nsgs, int min_blocks, u32 *bucket_map);
269 static void hpsa_free_performant_mode(struct ctlr_info *h);
270 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
271 static inline u32 next_command(struct ctlr_info *h, u8 q);
272 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
273 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
274 u64 *cfg_offset);
275 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
276 unsigned long *memory_bar);
277 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
278 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
279 int wait_for_ready);
280 static inline void finish_cmd(struct CommandList *c);
281 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
282 #define BOARD_NOT_READY 0
283 #define BOARD_READY 1
284 static void hpsa_drain_accel_commands(struct ctlr_info *h);
285 static void hpsa_flush_cache(struct ctlr_info *h);
286 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
287 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
288 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
289 static void hpsa_command_resubmit_worker(struct work_struct *work);
290 static u32 lockup_detected(struct ctlr_info *h);
291 static int detect_controller_lockup(struct ctlr_info *h);
292 static void hpsa_disable_rld_caching(struct ctlr_info *h);
293 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
294 struct ReportExtendedLUNdata *buf, int bufsize);
295 static int hpsa_luns_changed(struct ctlr_info *h);
296
297 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
298 {
299 unsigned long *priv = shost_priv(sdev->host);
300 return (struct ctlr_info *) *priv;
301 }
302
303 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
304 {
305 unsigned long *priv = shost_priv(sh);
306 return (struct ctlr_info *) *priv;
307 }
308
309 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
310 {
311 return c->scsi_cmd == SCSI_CMD_IDLE;
312 }
313
314 static inline bool hpsa_is_pending_event(struct CommandList *c)
315 {
316 return c->abort_pending || c->reset_pending;
317 }
318
319 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
320 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
321 u8 *sense_key, u8 *asc, u8 *ascq)
322 {
323 struct scsi_sense_hdr sshdr;
324 bool rc;
325
326 *sense_key = -1;
327 *asc = -1;
328 *ascq = -1;
329
330 if (sense_data_len < 1)
331 return;
332
333 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
334 if (rc) {
335 *sense_key = sshdr.sense_key;
336 *asc = sshdr.asc;
337 *ascq = sshdr.ascq;
338 }
339 }
340
341 static int check_for_unit_attention(struct ctlr_info *h,
342 struct CommandList *c)
343 {
344 u8 sense_key, asc, ascq;
345 int sense_len;
346
347 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
348 sense_len = sizeof(c->err_info->SenseInfo);
349 else
350 sense_len = c->err_info->SenseLen;
351
352 decode_sense_data(c->err_info->SenseInfo, sense_len,
353 &sense_key, &asc, &ascq);
354 if (sense_key != UNIT_ATTENTION || asc == 0xff)
355 return 0;
356
357 switch (asc) {
358 case STATE_CHANGED:
359 dev_warn(&h->pdev->dev,
360 "%s: a state change detected, command retried\n",
361 h->devname);
362 break;
363 case LUN_FAILED:
364 dev_warn(&h->pdev->dev,
365 "%s: LUN failure detected\n", h->devname);
366 break;
367 case REPORT_LUNS_CHANGED:
368 dev_warn(&h->pdev->dev,
369 "%s: report LUN data changed\n", h->devname);
370 /*
371 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
372 * target (array) devices.
373 */
374 break;
375 case POWER_OR_RESET:
376 dev_warn(&h->pdev->dev,
377 "%s: a power on or device reset detected\n",
378 h->devname);
379 break;
380 case UNIT_ATTENTION_CLEARED:
381 dev_warn(&h->pdev->dev,
382 "%s: unit attention cleared by another initiator\n",
383 h->devname);
384 break;
385 default:
386 dev_warn(&h->pdev->dev,
387 "%s: unknown unit attention detected\n",
388 h->devname);
389 break;
390 }
391 return 1;
392 }
393
394 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
395 {
396 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
397 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
398 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
399 return 0;
400 dev_warn(&h->pdev->dev, HPSA "device busy");
401 return 1;
402 }
403
404 static u32 lockup_detected(struct ctlr_info *h);
405 static ssize_t host_show_lockup_detected(struct device *dev,
406 struct device_attribute *attr, char *buf)
407 {
408 int ld;
409 struct ctlr_info *h;
410 struct Scsi_Host *shost = class_to_shost(dev);
411
412 h = shost_to_hba(shost);
413 ld = lockup_detected(h);
414
415 return sprintf(buf, "ld=%d\n", ld);
416 }
417
418 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
419 struct device_attribute *attr,
420 const char *buf, size_t count)
421 {
422 int status, len;
423 struct ctlr_info *h;
424 struct Scsi_Host *shost = class_to_shost(dev);
425 char tmpbuf[10];
426
427 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
428 return -EACCES;
429 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
430 strncpy(tmpbuf, buf, len);
431 tmpbuf[len] = '\0';
432 if (sscanf(tmpbuf, "%d", &status) != 1)
433 return -EINVAL;
434 h = shost_to_hba(shost);
435 h->acciopath_status = !!status;
436 dev_warn(&h->pdev->dev,
437 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
438 h->acciopath_status ? "enabled" : "disabled");
439 return count;
440 }
441
442 static ssize_t host_store_raid_offload_debug(struct device *dev,
443 struct device_attribute *attr,
444 const char *buf, size_t count)
445 {
446 int debug_level, len;
447 struct ctlr_info *h;
448 struct Scsi_Host *shost = class_to_shost(dev);
449 char tmpbuf[10];
450
451 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
452 return -EACCES;
453 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
454 strncpy(tmpbuf, buf, len);
455 tmpbuf[len] = '\0';
456 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
457 return -EINVAL;
458 if (debug_level < 0)
459 debug_level = 0;
460 h = shost_to_hba(shost);
461 h->raid_offload_debug = debug_level;
462 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
463 h->raid_offload_debug);
464 return count;
465 }
466
467 static ssize_t host_store_rescan(struct device *dev,
468 struct device_attribute *attr,
469 const char *buf, size_t count)
470 {
471 struct ctlr_info *h;
472 struct Scsi_Host *shost = class_to_shost(dev);
473 h = shost_to_hba(shost);
474 hpsa_scan_start(h->scsi_host);
475 return count;
476 }
477
478 static ssize_t host_show_firmware_revision(struct device *dev,
479 struct device_attribute *attr, char *buf)
480 {
481 struct ctlr_info *h;
482 struct Scsi_Host *shost = class_to_shost(dev);
483 unsigned char *fwrev;
484
485 h = shost_to_hba(shost);
486 if (!h->hba_inquiry_data)
487 return 0;
488 fwrev = &h->hba_inquiry_data[32];
489 return snprintf(buf, 20, "%c%c%c%c\n",
490 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
491 }
492
493 static ssize_t host_show_commands_outstanding(struct device *dev,
494 struct device_attribute *attr, char *buf)
495 {
496 struct Scsi_Host *shost = class_to_shost(dev);
497 struct ctlr_info *h = shost_to_hba(shost);
498
499 return snprintf(buf, 20, "%d\n",
500 atomic_read(&h->commands_outstanding));
501 }
502
503 static ssize_t host_show_transport_mode(struct device *dev,
504 struct device_attribute *attr, char *buf)
505 {
506 struct ctlr_info *h;
507 struct Scsi_Host *shost = class_to_shost(dev);
508
509 h = shost_to_hba(shost);
510 return snprintf(buf, 20, "%s\n",
511 h->transMethod & CFGTBL_Trans_Performant ?
512 "performant" : "simple");
513 }
514
515 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
516 struct device_attribute *attr, char *buf)
517 {
518 struct ctlr_info *h;
519 struct Scsi_Host *shost = class_to_shost(dev);
520
521 h = shost_to_hba(shost);
522 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
523 (h->acciopath_status == 1) ? "enabled" : "disabled");
524 }
525
526 /* List of controllers which cannot be hard reset on kexec with reset_devices */
527 static u32 unresettable_controller[] = {
528 0x324a103C, /* Smart Array P712m */
529 0x324b103C, /* Smart Array P711m */
530 0x3223103C, /* Smart Array P800 */
531 0x3234103C, /* Smart Array P400 */
532 0x3235103C, /* Smart Array P400i */
533 0x3211103C, /* Smart Array E200i */
534 0x3212103C, /* Smart Array E200 */
535 0x3213103C, /* Smart Array E200i */
536 0x3214103C, /* Smart Array E200i */
537 0x3215103C, /* Smart Array E200i */
538 0x3237103C, /* Smart Array E500 */
539 0x323D103C, /* Smart Array P700m */
540 0x40800E11, /* Smart Array 5i */
541 0x409C0E11, /* Smart Array 6400 */
542 0x409D0E11, /* Smart Array 6400 EM */
543 0x40700E11, /* Smart Array 5300 */
544 0x40820E11, /* Smart Array 532 */
545 0x40830E11, /* Smart Array 5312 */
546 0x409A0E11, /* Smart Array 641 */
547 0x409B0E11, /* Smart Array 642 */
548 0x40910E11, /* Smart Array 6i */
549 };
550
551 /* List of controllers which cannot even be soft reset */
552 static u32 soft_unresettable_controller[] = {
553 0x40800E11, /* Smart Array 5i */
554 0x40700E11, /* Smart Array 5300 */
555 0x40820E11, /* Smart Array 532 */
556 0x40830E11, /* Smart Array 5312 */
557 0x409A0E11, /* Smart Array 641 */
558 0x409B0E11, /* Smart Array 642 */
559 0x40910E11, /* Smart Array 6i */
560 /* Exclude 640x boards. These are two pci devices in one slot
561 * which share a battery backed cache module. One controls the
562 * cache, the other accesses the cache through the one that controls
563 * it. If we reset the one controlling the cache, the other will
564 * likely not be happy. Just forbid resetting this conjoined mess.
565 * The 640x isn't really supported by hpsa anyway.
566 */
567 0x409C0E11, /* Smart Array 6400 */
568 0x409D0E11, /* Smart Array 6400 EM */
569 };
570
571 static u32 needs_abort_tags_swizzled[] = {
572 0x323D103C, /* Smart Array P700m */
573 0x324a103C, /* Smart Array P712m */
574 0x324b103C, /* SmartArray P711m */
575 };
576
577 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
578 {
579 int i;
580
581 for (i = 0; i < nelems; i++)
582 if (a[i] == board_id)
583 return 1;
584 return 0;
585 }
586
587 static int ctlr_is_hard_resettable(u32 board_id)
588 {
589 return !board_id_in_array(unresettable_controller,
590 ARRAY_SIZE(unresettable_controller), board_id);
591 }
592
593 static int ctlr_is_soft_resettable(u32 board_id)
594 {
595 return !board_id_in_array(soft_unresettable_controller,
596 ARRAY_SIZE(soft_unresettable_controller), board_id);
597 }
598
599 static int ctlr_is_resettable(u32 board_id)
600 {
601 return ctlr_is_hard_resettable(board_id) ||
602 ctlr_is_soft_resettable(board_id);
603 }
604
605 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
606 {
607 return board_id_in_array(needs_abort_tags_swizzled,
608 ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
609 }
610
611 static ssize_t host_show_resettable(struct device *dev,
612 struct device_attribute *attr, char *buf)
613 {
614 struct ctlr_info *h;
615 struct Scsi_Host *shost = class_to_shost(dev);
616
617 h = shost_to_hba(shost);
618 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
619 }
620
621 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
622 {
623 return (scsi3addr[3] & 0xC0) == 0x40;
624 }
625
626 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
627 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
628 };
629 #define HPSA_RAID_0 0
630 #define HPSA_RAID_4 1
631 #define HPSA_RAID_1 2 /* also used for RAID 10 */
632 #define HPSA_RAID_5 3 /* also used for RAID 50 */
633 #define HPSA_RAID_51 4
634 #define HPSA_RAID_6 5 /* also used for RAID 60 */
635 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
636 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
637 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
638
639 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
640 {
641 return !device->physical_device;
642 }
643
644 static ssize_t raid_level_show(struct device *dev,
645 struct device_attribute *attr, char *buf)
646 {
647 ssize_t l = 0;
648 unsigned char rlevel;
649 struct ctlr_info *h;
650 struct scsi_device *sdev;
651 struct hpsa_scsi_dev_t *hdev;
652 unsigned long flags;
653
654 sdev = to_scsi_device(dev);
655 h = sdev_to_hba(sdev);
656 spin_lock_irqsave(&h->lock, flags);
657 hdev = sdev->hostdata;
658 if (!hdev) {
659 spin_unlock_irqrestore(&h->lock, flags);
660 return -ENODEV;
661 }
662
663 /* Is this even a logical drive? */
664 if (!is_logical_device(hdev)) {
665 spin_unlock_irqrestore(&h->lock, flags);
666 l = snprintf(buf, PAGE_SIZE, "N/A\n");
667 return l;
668 }
669
670 rlevel = hdev->raid_level;
671 spin_unlock_irqrestore(&h->lock, flags);
672 if (rlevel > RAID_UNKNOWN)
673 rlevel = RAID_UNKNOWN;
674 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
675 return l;
676 }
677
678 static ssize_t lunid_show(struct device *dev,
679 struct device_attribute *attr, char *buf)
680 {
681 struct ctlr_info *h;
682 struct scsi_device *sdev;
683 struct hpsa_scsi_dev_t *hdev;
684 unsigned long flags;
685 unsigned char lunid[8];
686
687 sdev = to_scsi_device(dev);
688 h = sdev_to_hba(sdev);
689 spin_lock_irqsave(&h->lock, flags);
690 hdev = sdev->hostdata;
691 if (!hdev) {
692 spin_unlock_irqrestore(&h->lock, flags);
693 return -ENODEV;
694 }
695 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
696 spin_unlock_irqrestore(&h->lock, flags);
697 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
698 lunid[0], lunid[1], lunid[2], lunid[3],
699 lunid[4], lunid[5], lunid[6], lunid[7]);
700 }
701
702 static ssize_t unique_id_show(struct device *dev,
703 struct device_attribute *attr, char *buf)
704 {
705 struct ctlr_info *h;
706 struct scsi_device *sdev;
707 struct hpsa_scsi_dev_t *hdev;
708 unsigned long flags;
709 unsigned char sn[16];
710
711 sdev = to_scsi_device(dev);
712 h = sdev_to_hba(sdev);
713 spin_lock_irqsave(&h->lock, flags);
714 hdev = sdev->hostdata;
715 if (!hdev) {
716 spin_unlock_irqrestore(&h->lock, flags);
717 return -ENODEV;
718 }
719 memcpy(sn, hdev->device_id, sizeof(sn));
720 spin_unlock_irqrestore(&h->lock, flags);
721 return snprintf(buf, 16 * 2 + 2,
722 "%02X%02X%02X%02X%02X%02X%02X%02X"
723 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
724 sn[0], sn[1], sn[2], sn[3],
725 sn[4], sn[5], sn[6], sn[7],
726 sn[8], sn[9], sn[10], sn[11],
727 sn[12], sn[13], sn[14], sn[15]);
728 }
729
730 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
731 struct device_attribute *attr, char *buf)
732 {
733 struct ctlr_info *h;
734 struct scsi_device *sdev;
735 struct hpsa_scsi_dev_t *hdev;
736 unsigned long flags;
737 int offload_enabled;
738
739 sdev = to_scsi_device(dev);
740 h = sdev_to_hba(sdev);
741 spin_lock_irqsave(&h->lock, flags);
742 hdev = sdev->hostdata;
743 if (!hdev) {
744 spin_unlock_irqrestore(&h->lock, flags);
745 return -ENODEV;
746 }
747 offload_enabled = hdev->offload_enabled;
748 spin_unlock_irqrestore(&h->lock, flags);
749 return snprintf(buf, 20, "%d\n", offload_enabled);
750 }
751
752 #define MAX_PATHS 8
753 static ssize_t path_info_show(struct device *dev,
754 struct device_attribute *attr, char *buf)
755 {
756 struct ctlr_info *h;
757 struct scsi_device *sdev;
758 struct hpsa_scsi_dev_t *hdev;
759 unsigned long flags;
760 int i;
761 int output_len = 0;
762 u8 box;
763 u8 bay;
764 u8 path_map_index = 0;
765 char *active;
766 unsigned char phys_connector[2];
767
768 sdev = to_scsi_device(dev);
769 h = sdev_to_hba(sdev);
770 spin_lock_irqsave(&h->devlock, flags);
771 hdev = sdev->hostdata;
772 if (!hdev) {
773 spin_unlock_irqrestore(&h->devlock, flags);
774 return -ENODEV;
775 }
776
777 bay = hdev->bay;
778 for (i = 0; i < MAX_PATHS; i++) {
779 path_map_index = 1<<i;
780 if (i == hdev->active_path_index)
781 active = "Active";
782 else if (hdev->path_map & path_map_index)
783 active = "Inactive";
784 else
785 continue;
786
787 output_len += scnprintf(buf + output_len,
788 PAGE_SIZE - output_len,
789 "[%d:%d:%d:%d] %20.20s ",
790 h->scsi_host->host_no,
791 hdev->bus, hdev->target, hdev->lun,
792 scsi_device_type(hdev->devtype));
793
794 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
795 output_len += scnprintf(buf + output_len,
796 PAGE_SIZE - output_len,
797 "%s\n", active);
798 continue;
799 }
800
801 box = hdev->box[i];
802 memcpy(&phys_connector, &hdev->phys_connector[i],
803 sizeof(phys_connector));
804 if (phys_connector[0] < '0')
805 phys_connector[0] = '0';
806 if (phys_connector[1] < '0')
807 phys_connector[1] = '0';
808 output_len += scnprintf(buf + output_len,
809 PAGE_SIZE - output_len,
810 "PORT: %.2s ",
811 phys_connector);
812 if (hdev->devtype == TYPE_DISK && hdev->expose_device) {
813 if (box == 0 || box == 0xFF) {
814 output_len += scnprintf(buf + output_len,
815 PAGE_SIZE - output_len,
816 "BAY: %hhu %s\n",
817 bay, active);
818 } else {
819 output_len += scnprintf(buf + output_len,
820 PAGE_SIZE - output_len,
821 "BOX: %hhu BAY: %hhu %s\n",
822 box, bay, active);
823 }
824 } else if (box != 0 && box != 0xFF) {
825 output_len += scnprintf(buf + output_len,
826 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
827 box, active);
828 } else
829 output_len += scnprintf(buf + output_len,
830 PAGE_SIZE - output_len, "%s\n", active);
831 }
832
833 spin_unlock_irqrestore(&h->devlock, flags);
834 return output_len;
835 }
836
837 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
838 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
839 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
840 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
841 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
842 host_show_hp_ssd_smart_path_enabled, NULL);
843 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
844 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
845 host_show_hp_ssd_smart_path_status,
846 host_store_hp_ssd_smart_path_status);
847 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
848 host_store_raid_offload_debug);
849 static DEVICE_ATTR(firmware_revision, S_IRUGO,
850 host_show_firmware_revision, NULL);
851 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
852 host_show_commands_outstanding, NULL);
853 static DEVICE_ATTR(transport_mode, S_IRUGO,
854 host_show_transport_mode, NULL);
855 static DEVICE_ATTR(resettable, S_IRUGO,
856 host_show_resettable, NULL);
857 static DEVICE_ATTR(lockup_detected, S_IRUGO,
858 host_show_lockup_detected, NULL);
859
860 static struct device_attribute *hpsa_sdev_attrs[] = {
861 &dev_attr_raid_level,
862 &dev_attr_lunid,
863 &dev_attr_unique_id,
864 &dev_attr_hp_ssd_smart_path_enabled,
865 &dev_attr_path_info,
866 NULL,
867 };
868
869 static struct device_attribute *hpsa_shost_attrs[] = {
870 &dev_attr_rescan,
871 &dev_attr_firmware_revision,
872 &dev_attr_commands_outstanding,
873 &dev_attr_transport_mode,
874 &dev_attr_resettable,
875 &dev_attr_hp_ssd_smart_path_status,
876 &dev_attr_raid_offload_debug,
877 &dev_attr_lockup_detected,
878 NULL,
879 };
880
881 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_ABORTS + \
882 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
883
884 static struct scsi_host_template hpsa_driver_template = {
885 .module = THIS_MODULE,
886 .name = HPSA,
887 .proc_name = HPSA,
888 .queuecommand = hpsa_scsi_queue_command,
889 .scan_start = hpsa_scan_start,
890 .scan_finished = hpsa_scan_finished,
891 .change_queue_depth = hpsa_change_queue_depth,
892 .this_id = -1,
893 .use_clustering = ENABLE_CLUSTERING,
894 .eh_abort_handler = hpsa_eh_abort_handler,
895 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
896 .ioctl = hpsa_ioctl,
897 .slave_alloc = hpsa_slave_alloc,
898 .slave_configure = hpsa_slave_configure,
899 .slave_destroy = hpsa_slave_destroy,
900 #ifdef CONFIG_COMPAT
901 .compat_ioctl = hpsa_compat_ioctl,
902 #endif
903 .sdev_attrs = hpsa_sdev_attrs,
904 .shost_attrs = hpsa_shost_attrs,
905 .max_sectors = 8192,
906 .no_write_same = 1,
907 };
908
909 static inline u32 next_command(struct ctlr_info *h, u8 q)
910 {
911 u32 a;
912 struct reply_queue_buffer *rq = &h->reply_queue[q];
913
914 if (h->transMethod & CFGTBL_Trans_io_accel1)
915 return h->access.command_completed(h, q);
916
917 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
918 return h->access.command_completed(h, q);
919
920 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
921 a = rq->head[rq->current_entry];
922 rq->current_entry++;
923 atomic_dec(&h->commands_outstanding);
924 } else {
925 a = FIFO_EMPTY;
926 }
927 /* Check for wraparound */
928 if (rq->current_entry == h->max_commands) {
929 rq->current_entry = 0;
930 rq->wraparound ^= 1;
931 }
932 return a;
933 }
934
935 /*
936 * There are some special bits in the bus address of the
937 * command that we have to set for the controller to know
938 * how to process the command:
939 *
940 * Normal performant mode:
941 * bit 0: 1 means performant mode, 0 means simple mode.
942 * bits 1-3 = block fetch table entry
943 * bits 4-6 = command type (== 0)
944 *
945 * ioaccel1 mode:
946 * bit 0 = "performant mode" bit.
947 * bits 1-3 = block fetch table entry
948 * bits 4-6 = command type (== 110)
949 * (command type is needed because ioaccel1 mode
950 * commands are submitted through the same register as normal
951 * mode commands, so this is how the controller knows whether
952 * the command is normal mode or ioaccel1 mode.)
953 *
954 * ioaccel2 mode:
955 * bit 0 = "performant mode" bit.
956 * bits 1-4 = block fetch table entry (note extra bit)
957 * bits 4-6 = not needed, because ioaccel2 mode has
958 * a separate special register for submitting commands.
959 */
960
961 /*
962 * set_performant_mode: Modify the tag for cciss performant
963 * set bit 0 for pull model, bits 3-1 for block fetch
964 * register number
965 */
966 #define DEFAULT_REPLY_QUEUE (-1)
967 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
968 int reply_queue)
969 {
970 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
971 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
972 if (unlikely(!h->msix_vector))
973 return;
974 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
975 c->Header.ReplyQueue =
976 raw_smp_processor_id() % h->nreply_queues;
977 else
978 c->Header.ReplyQueue = reply_queue % h->nreply_queues;
979 }
980 }
981
982 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
983 struct CommandList *c,
984 int reply_queue)
985 {
986 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
987
988 /*
989 * Tell the controller to post the reply to the queue for this
990 * processor. This seems to give the best I/O throughput.
991 */
992 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
993 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
994 else
995 cp->ReplyQueue = reply_queue % h->nreply_queues;
996 /*
997 * Set the bits in the address sent down to include:
998 * - performant mode bit (bit 0)
999 * - pull count (bits 1-3)
1000 * - command type (bits 4-6)
1001 */
1002 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1003 IOACCEL1_BUSADDR_CMDTYPE;
1004 }
1005
1006 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1007 struct CommandList *c,
1008 int reply_queue)
1009 {
1010 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1011 &h->ioaccel2_cmd_pool[c->cmdindex];
1012
1013 /* Tell the controller to post the reply to the queue for this
1014 * processor. This seems to give the best I/O throughput.
1015 */
1016 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1017 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1018 else
1019 cp->reply_queue = reply_queue % h->nreply_queues;
1020 /* Set the bits in the address sent down to include:
1021 * - performant mode bit not used in ioaccel mode 2
1022 * - pull count (bits 0-3)
1023 * - command type isn't needed for ioaccel2
1024 */
1025 c->busaddr |= h->ioaccel2_blockFetchTable[0];
1026 }
1027
1028 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1029 struct CommandList *c,
1030 int reply_queue)
1031 {
1032 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1033
1034 /*
1035 * Tell the controller to post the reply to the queue for this
1036 * processor. This seems to give the best I/O throughput.
1037 */
1038 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1039 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1040 else
1041 cp->reply_queue = reply_queue % h->nreply_queues;
1042 /*
1043 * Set the bits in the address sent down to include:
1044 * - performant mode bit not used in ioaccel mode 2
1045 * - pull count (bits 0-3)
1046 * - command type isn't needed for ioaccel2
1047 */
1048 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1049 }
1050
1051 static int is_firmware_flash_cmd(u8 *cdb)
1052 {
1053 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1054 }
1055
1056 /*
1057 * During firmware flash, the heartbeat register may not update as frequently
1058 * as it should. So we dial down lockup detection during firmware flash. and
1059 * dial it back up when firmware flash completes.
1060 */
1061 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1062 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1063 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1064 struct CommandList *c)
1065 {
1066 if (!is_firmware_flash_cmd(c->Request.CDB))
1067 return;
1068 atomic_inc(&h->firmware_flash_in_progress);
1069 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1070 }
1071
1072 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1073 struct CommandList *c)
1074 {
1075 if (is_firmware_flash_cmd(c->Request.CDB) &&
1076 atomic_dec_and_test(&h->firmware_flash_in_progress))
1077 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1078 }
1079
1080 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1081 struct CommandList *c, int reply_queue)
1082 {
1083 dial_down_lockup_detection_during_fw_flash(h, c);
1084 atomic_inc(&h->commands_outstanding);
1085 switch (c->cmd_type) {
1086 case CMD_IOACCEL1:
1087 set_ioaccel1_performant_mode(h, c, reply_queue);
1088 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1089 break;
1090 case CMD_IOACCEL2:
1091 set_ioaccel2_performant_mode(h, c, reply_queue);
1092 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1093 break;
1094 case IOACCEL2_TMF:
1095 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1096 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1097 break;
1098 default:
1099 set_performant_mode(h, c, reply_queue);
1100 h->access.submit_command(h, c);
1101 }
1102 }
1103
1104 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1105 {
1106 if (unlikely(hpsa_is_pending_event(c)))
1107 return finish_cmd(c);
1108
1109 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1110 }
1111
1112 static inline int is_hba_lunid(unsigned char scsi3addr[])
1113 {
1114 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1115 }
1116
1117 static inline int is_scsi_rev_5(struct ctlr_info *h)
1118 {
1119 if (!h->hba_inquiry_data)
1120 return 0;
1121 if ((h->hba_inquiry_data[2] & 0x07) == 5)
1122 return 1;
1123 return 0;
1124 }
1125
1126 static int hpsa_find_target_lun(struct ctlr_info *h,
1127 unsigned char scsi3addr[], int bus, int *target, int *lun)
1128 {
1129 /* finds an unused bus, target, lun for a new physical device
1130 * assumes h->devlock is held
1131 */
1132 int i, found = 0;
1133 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1134
1135 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1136
1137 for (i = 0; i < h->ndevices; i++) {
1138 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1139 __set_bit(h->dev[i]->target, lun_taken);
1140 }
1141
1142 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1143 if (i < HPSA_MAX_DEVICES) {
1144 /* *bus = 1; */
1145 *target = i;
1146 *lun = 0;
1147 found = 1;
1148 }
1149 return !found;
1150 }
1151
1152 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1153 struct hpsa_scsi_dev_t *dev, char *description)
1154 {
1155 #define LABEL_SIZE 25
1156 char label[LABEL_SIZE];
1157
1158 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1159 return;
1160
1161 switch (dev->devtype) {
1162 case TYPE_RAID:
1163 snprintf(label, LABEL_SIZE, "controller");
1164 break;
1165 case TYPE_ENCLOSURE:
1166 snprintf(label, LABEL_SIZE, "enclosure");
1167 break;
1168 case TYPE_DISK:
1169 if (dev->external)
1170 snprintf(label, LABEL_SIZE, "external");
1171 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1172 snprintf(label, LABEL_SIZE, "%s",
1173 raid_label[PHYSICAL_DRIVE]);
1174 else
1175 snprintf(label, LABEL_SIZE, "RAID-%s",
1176 dev->raid_level > RAID_UNKNOWN ? "?" :
1177 raid_label[dev->raid_level]);
1178 break;
1179 case TYPE_ROM:
1180 snprintf(label, LABEL_SIZE, "rom");
1181 break;
1182 case TYPE_TAPE:
1183 snprintf(label, LABEL_SIZE, "tape");
1184 break;
1185 case TYPE_MEDIUM_CHANGER:
1186 snprintf(label, LABEL_SIZE, "changer");
1187 break;
1188 default:
1189 snprintf(label, LABEL_SIZE, "UNKNOWN");
1190 break;
1191 }
1192
1193 dev_printk(level, &h->pdev->dev,
1194 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1195 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1196 description,
1197 scsi_device_type(dev->devtype),
1198 dev->vendor,
1199 dev->model,
1200 label,
1201 dev->offload_config ? '+' : '-',
1202 dev->offload_enabled ? '+' : '-',
1203 dev->expose_device);
1204 }
1205
1206 /* Add an entry into h->dev[] array. */
1207 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1208 struct hpsa_scsi_dev_t *device,
1209 struct hpsa_scsi_dev_t *added[], int *nadded)
1210 {
1211 /* assumes h->devlock is held */
1212 int n = h->ndevices;
1213 int i;
1214 unsigned char addr1[8], addr2[8];
1215 struct hpsa_scsi_dev_t *sd;
1216
1217 if (n >= HPSA_MAX_DEVICES) {
1218 dev_err(&h->pdev->dev, "too many devices, some will be "
1219 "inaccessible.\n");
1220 return -1;
1221 }
1222
1223 /* physical devices do not have lun or target assigned until now. */
1224 if (device->lun != -1)
1225 /* Logical device, lun is already assigned. */
1226 goto lun_assigned;
1227
1228 /* If this device a non-zero lun of a multi-lun device
1229 * byte 4 of the 8-byte LUN addr will contain the logical
1230 * unit no, zero otherwise.
1231 */
1232 if (device->scsi3addr[4] == 0) {
1233 /* This is not a non-zero lun of a multi-lun device */
1234 if (hpsa_find_target_lun(h, device->scsi3addr,
1235 device->bus, &device->target, &device->lun) != 0)
1236 return -1;
1237 goto lun_assigned;
1238 }
1239
1240 /* This is a non-zero lun of a multi-lun device.
1241 * Search through our list and find the device which
1242 * has the same 8 byte LUN address, excepting byte 4 and 5.
1243 * Assign the same bus and target for this new LUN.
1244 * Use the logical unit number from the firmware.
1245 */
1246 memcpy(addr1, device->scsi3addr, 8);
1247 addr1[4] = 0;
1248 addr1[5] = 0;
1249 for (i = 0; i < n; i++) {
1250 sd = h->dev[i];
1251 memcpy(addr2, sd->scsi3addr, 8);
1252 addr2[4] = 0;
1253 addr2[5] = 0;
1254 /* differ only in byte 4 and 5? */
1255 if (memcmp(addr1, addr2, 8) == 0) {
1256 device->bus = sd->bus;
1257 device->target = sd->target;
1258 device->lun = device->scsi3addr[4];
1259 break;
1260 }
1261 }
1262 if (device->lun == -1) {
1263 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1264 " suspect firmware bug or unsupported hardware "
1265 "configuration.\n");
1266 return -1;
1267 }
1268
1269 lun_assigned:
1270
1271 h->dev[n] = device;
1272 h->ndevices++;
1273 added[*nadded] = device;
1274 (*nadded)++;
1275 hpsa_show_dev_msg(KERN_INFO, h, device,
1276 device->expose_device ? "added" : "masked");
1277 device->offload_to_be_enabled = device->offload_enabled;
1278 device->offload_enabled = 0;
1279 return 0;
1280 }
1281
1282 /* Update an entry in h->dev[] array. */
1283 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1284 int entry, struct hpsa_scsi_dev_t *new_entry)
1285 {
1286 int offload_enabled;
1287 /* assumes h->devlock is held */
1288 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1289
1290 /* Raid level changed. */
1291 h->dev[entry]->raid_level = new_entry->raid_level;
1292
1293 /* Raid offload parameters changed. Careful about the ordering. */
1294 if (new_entry->offload_config && new_entry->offload_enabled) {
1295 /*
1296 * if drive is newly offload_enabled, we want to copy the
1297 * raid map data first. If previously offload_enabled and
1298 * offload_config were set, raid map data had better be
1299 * the same as it was before. if raid map data is changed
1300 * then it had better be the case that
1301 * h->dev[entry]->offload_enabled is currently 0.
1302 */
1303 h->dev[entry]->raid_map = new_entry->raid_map;
1304 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1305 }
1306 if (new_entry->hba_ioaccel_enabled) {
1307 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1308 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1309 }
1310 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1311 h->dev[entry]->offload_config = new_entry->offload_config;
1312 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1313 h->dev[entry]->queue_depth = new_entry->queue_depth;
1314
1315 /*
1316 * We can turn off ioaccel offload now, but need to delay turning
1317 * it on until we can update h->dev[entry]->phys_disk[], but we
1318 * can't do that until all the devices are updated.
1319 */
1320 h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1321 if (!new_entry->offload_enabled)
1322 h->dev[entry]->offload_enabled = 0;
1323
1324 offload_enabled = h->dev[entry]->offload_enabled;
1325 h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1326 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1327 h->dev[entry]->offload_enabled = offload_enabled;
1328 }
1329
1330 /* Replace an entry from h->dev[] array. */
1331 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1332 int entry, struct hpsa_scsi_dev_t *new_entry,
1333 struct hpsa_scsi_dev_t *added[], int *nadded,
1334 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1335 {
1336 /* assumes h->devlock is held */
1337 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1338 removed[*nremoved] = h->dev[entry];
1339 (*nremoved)++;
1340
1341 /*
1342 * New physical devices won't have target/lun assigned yet
1343 * so we need to preserve the values in the slot we are replacing.
1344 */
1345 if (new_entry->target == -1) {
1346 new_entry->target = h->dev[entry]->target;
1347 new_entry->lun = h->dev[entry]->lun;
1348 }
1349
1350 h->dev[entry] = new_entry;
1351 added[*nadded] = new_entry;
1352 (*nadded)++;
1353 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1354 new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1355 new_entry->offload_enabled = 0;
1356 }
1357
1358 /* Remove an entry from h->dev[] array. */
1359 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1360 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1361 {
1362 /* assumes h->devlock is held */
1363 int i;
1364 struct hpsa_scsi_dev_t *sd;
1365
1366 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1367
1368 sd = h->dev[entry];
1369 removed[*nremoved] = h->dev[entry];
1370 (*nremoved)++;
1371
1372 for (i = entry; i < h->ndevices-1; i++)
1373 h->dev[i] = h->dev[i+1];
1374 h->ndevices--;
1375 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1376 }
1377
1378 #define SCSI3ADDR_EQ(a, b) ( \
1379 (a)[7] == (b)[7] && \
1380 (a)[6] == (b)[6] && \
1381 (a)[5] == (b)[5] && \
1382 (a)[4] == (b)[4] && \
1383 (a)[3] == (b)[3] && \
1384 (a)[2] == (b)[2] && \
1385 (a)[1] == (b)[1] && \
1386 (a)[0] == (b)[0])
1387
1388 static void fixup_botched_add(struct ctlr_info *h,
1389 struct hpsa_scsi_dev_t *added)
1390 {
1391 /* called when scsi_add_device fails in order to re-adjust
1392 * h->dev[] to match the mid layer's view.
1393 */
1394 unsigned long flags;
1395 int i, j;
1396
1397 spin_lock_irqsave(&h->lock, flags);
1398 for (i = 0; i < h->ndevices; i++) {
1399 if (h->dev[i] == added) {
1400 for (j = i; j < h->ndevices-1; j++)
1401 h->dev[j] = h->dev[j+1];
1402 h->ndevices--;
1403 break;
1404 }
1405 }
1406 spin_unlock_irqrestore(&h->lock, flags);
1407 kfree(added);
1408 }
1409
1410 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1411 struct hpsa_scsi_dev_t *dev2)
1412 {
1413 /* we compare everything except lun and target as these
1414 * are not yet assigned. Compare parts likely
1415 * to differ first
1416 */
1417 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1418 sizeof(dev1->scsi3addr)) != 0)
1419 return 0;
1420 if (memcmp(dev1->device_id, dev2->device_id,
1421 sizeof(dev1->device_id)) != 0)
1422 return 0;
1423 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1424 return 0;
1425 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1426 return 0;
1427 if (dev1->devtype != dev2->devtype)
1428 return 0;
1429 if (dev1->bus != dev2->bus)
1430 return 0;
1431 return 1;
1432 }
1433
1434 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1435 struct hpsa_scsi_dev_t *dev2)
1436 {
1437 /* Device attributes that can change, but don't mean
1438 * that the device is a different device, nor that the OS
1439 * needs to be told anything about the change.
1440 */
1441 if (dev1->raid_level != dev2->raid_level)
1442 return 1;
1443 if (dev1->offload_config != dev2->offload_config)
1444 return 1;
1445 if (dev1->offload_enabled != dev2->offload_enabled)
1446 return 1;
1447 if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1448 if (dev1->queue_depth != dev2->queue_depth)
1449 return 1;
1450 return 0;
1451 }
1452
1453 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1454 * and return needle location in *index. If scsi3addr matches, but not
1455 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1456 * location in *index.
1457 * In the case of a minor device attribute change, such as RAID level, just
1458 * return DEVICE_UPDATED, along with the updated device's location in index.
1459 * If needle not found, return DEVICE_NOT_FOUND.
1460 */
1461 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1462 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1463 int *index)
1464 {
1465 int i;
1466 #define DEVICE_NOT_FOUND 0
1467 #define DEVICE_CHANGED 1
1468 #define DEVICE_SAME 2
1469 #define DEVICE_UPDATED 3
1470 if (needle == NULL)
1471 return DEVICE_NOT_FOUND;
1472
1473 for (i = 0; i < haystack_size; i++) {
1474 if (haystack[i] == NULL) /* previously removed. */
1475 continue;
1476 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1477 *index = i;
1478 if (device_is_the_same(needle, haystack[i])) {
1479 if (device_updated(needle, haystack[i]))
1480 return DEVICE_UPDATED;
1481 return DEVICE_SAME;
1482 } else {
1483 /* Keep offline devices offline */
1484 if (needle->volume_offline)
1485 return DEVICE_NOT_FOUND;
1486 return DEVICE_CHANGED;
1487 }
1488 }
1489 }
1490 *index = -1;
1491 return DEVICE_NOT_FOUND;
1492 }
1493
1494 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1495 unsigned char scsi3addr[])
1496 {
1497 struct offline_device_entry *device;
1498 unsigned long flags;
1499
1500 /* Check to see if device is already on the list */
1501 spin_lock_irqsave(&h->offline_device_lock, flags);
1502 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1503 if (memcmp(device->scsi3addr, scsi3addr,
1504 sizeof(device->scsi3addr)) == 0) {
1505 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1506 return;
1507 }
1508 }
1509 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1510
1511 /* Device is not on the list, add it. */
1512 device = kmalloc(sizeof(*device), GFP_KERNEL);
1513 if (!device) {
1514 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1515 return;
1516 }
1517 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1518 spin_lock_irqsave(&h->offline_device_lock, flags);
1519 list_add_tail(&device->offline_list, &h->offline_device_list);
1520 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1521 }
1522
1523 /* Print a message explaining various offline volume states */
1524 static void hpsa_show_volume_status(struct ctlr_info *h,
1525 struct hpsa_scsi_dev_t *sd)
1526 {
1527 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1528 dev_info(&h->pdev->dev,
1529 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1530 h->scsi_host->host_no,
1531 sd->bus, sd->target, sd->lun);
1532 switch (sd->volume_offline) {
1533 case HPSA_LV_OK:
1534 break;
1535 case HPSA_LV_UNDERGOING_ERASE:
1536 dev_info(&h->pdev->dev,
1537 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1538 h->scsi_host->host_no,
1539 sd->bus, sd->target, sd->lun);
1540 break;
1541 case HPSA_LV_NOT_AVAILABLE:
1542 dev_info(&h->pdev->dev,
1543 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1544 h->scsi_host->host_no,
1545 sd->bus, sd->target, sd->lun);
1546 break;
1547 case HPSA_LV_UNDERGOING_RPI:
1548 dev_info(&h->pdev->dev,
1549 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1550 h->scsi_host->host_no,
1551 sd->bus, sd->target, sd->lun);
1552 break;
1553 case HPSA_LV_PENDING_RPI:
1554 dev_info(&h->pdev->dev,
1555 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1556 h->scsi_host->host_no,
1557 sd->bus, sd->target, sd->lun);
1558 break;
1559 case HPSA_LV_ENCRYPTED_NO_KEY:
1560 dev_info(&h->pdev->dev,
1561 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1562 h->scsi_host->host_no,
1563 sd->bus, sd->target, sd->lun);
1564 break;
1565 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1566 dev_info(&h->pdev->dev,
1567 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1568 h->scsi_host->host_no,
1569 sd->bus, sd->target, sd->lun);
1570 break;
1571 case HPSA_LV_UNDERGOING_ENCRYPTION:
1572 dev_info(&h->pdev->dev,
1573 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1574 h->scsi_host->host_no,
1575 sd->bus, sd->target, sd->lun);
1576 break;
1577 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1578 dev_info(&h->pdev->dev,
1579 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1580 h->scsi_host->host_no,
1581 sd->bus, sd->target, sd->lun);
1582 break;
1583 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1584 dev_info(&h->pdev->dev,
1585 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1586 h->scsi_host->host_no,
1587 sd->bus, sd->target, sd->lun);
1588 break;
1589 case HPSA_LV_PENDING_ENCRYPTION:
1590 dev_info(&h->pdev->dev,
1591 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1592 h->scsi_host->host_no,
1593 sd->bus, sd->target, sd->lun);
1594 break;
1595 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1596 dev_info(&h->pdev->dev,
1597 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1598 h->scsi_host->host_no,
1599 sd->bus, sd->target, sd->lun);
1600 break;
1601 }
1602 }
1603
1604 /*
1605 * Figure the list of physical drive pointers for a logical drive with
1606 * raid offload configured.
1607 */
1608 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1609 struct hpsa_scsi_dev_t *dev[], int ndevices,
1610 struct hpsa_scsi_dev_t *logical_drive)
1611 {
1612 struct raid_map_data *map = &logical_drive->raid_map;
1613 struct raid_map_disk_data *dd = &map->data[0];
1614 int i, j;
1615 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1616 le16_to_cpu(map->metadata_disks_per_row);
1617 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1618 le16_to_cpu(map->layout_map_count) *
1619 total_disks_per_row;
1620 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1621 total_disks_per_row;
1622 int qdepth;
1623
1624 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1625 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1626
1627 logical_drive->nphysical_disks = nraid_map_entries;
1628
1629 qdepth = 0;
1630 for (i = 0; i < nraid_map_entries; i++) {
1631 logical_drive->phys_disk[i] = NULL;
1632 if (!logical_drive->offload_config)
1633 continue;
1634 for (j = 0; j < ndevices; j++) {
1635 if (dev[j] == NULL)
1636 continue;
1637 if (dev[j]->devtype != TYPE_DISK)
1638 continue;
1639 if (is_logical_device(dev[j]))
1640 continue;
1641 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1642 continue;
1643
1644 logical_drive->phys_disk[i] = dev[j];
1645 if (i < nphys_disk)
1646 qdepth = min(h->nr_cmds, qdepth +
1647 logical_drive->phys_disk[i]->queue_depth);
1648 break;
1649 }
1650
1651 /*
1652 * This can happen if a physical drive is removed and
1653 * the logical drive is degraded. In that case, the RAID
1654 * map data will refer to a physical disk which isn't actually
1655 * present. And in that case offload_enabled should already
1656 * be 0, but we'll turn it off here just in case
1657 */
1658 if (!logical_drive->phys_disk[i]) {
1659 logical_drive->offload_enabled = 0;
1660 logical_drive->offload_to_be_enabled = 0;
1661 logical_drive->queue_depth = 8;
1662 }
1663 }
1664 if (nraid_map_entries)
1665 /*
1666 * This is correct for reads, too high for full stripe writes,
1667 * way too high for partial stripe writes
1668 */
1669 logical_drive->queue_depth = qdepth;
1670 else
1671 logical_drive->queue_depth = h->nr_cmds;
1672 }
1673
1674 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1675 struct hpsa_scsi_dev_t *dev[], int ndevices)
1676 {
1677 int i;
1678
1679 for (i = 0; i < ndevices; i++) {
1680 if (dev[i] == NULL)
1681 continue;
1682 if (dev[i]->devtype != TYPE_DISK)
1683 continue;
1684 if (!is_logical_device(dev[i]))
1685 continue;
1686
1687 /*
1688 * If offload is currently enabled, the RAID map and
1689 * phys_disk[] assignment *better* not be changing
1690 * and since it isn't changing, we do not need to
1691 * update it.
1692 */
1693 if (dev[i]->offload_enabled)
1694 continue;
1695
1696 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1697 }
1698 }
1699
1700 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1701 {
1702 int rc = 0;
1703
1704 if (!h->scsi_host)
1705 return 1;
1706
1707 if (is_logical_device(device)) /* RAID */
1708 rc = scsi_add_device(h->scsi_host, device->bus,
1709 device->target, device->lun);
1710 else /* HBA */
1711 rc = hpsa_add_sas_device(h->sas_host, device);
1712
1713 return rc;
1714 }
1715
1716 static void hpsa_remove_device(struct ctlr_info *h,
1717 struct hpsa_scsi_dev_t *device)
1718 {
1719 struct scsi_device *sdev = NULL;
1720
1721 if (!h->scsi_host)
1722 return;
1723
1724 if (is_logical_device(device)) { /* RAID */
1725 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1726 device->target, device->lun);
1727 if (sdev) {
1728 scsi_remove_device(sdev);
1729 scsi_device_put(sdev);
1730 } else {
1731 /*
1732 * We don't expect to get here. Future commands
1733 * to this device will get a selection timeout as
1734 * if the device were gone.
1735 */
1736 hpsa_show_dev_msg(KERN_WARNING, h, device,
1737 "didn't find device for removal.");
1738 }
1739 } else /* HBA */
1740 hpsa_remove_sas_device(device);
1741 }
1742
1743 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1744 struct hpsa_scsi_dev_t *sd[], int nsds)
1745 {
1746 /* sd contains scsi3 addresses and devtypes, and inquiry
1747 * data. This function takes what's in sd to be the current
1748 * reality and updates h->dev[] to reflect that reality.
1749 */
1750 int i, entry, device_change, changes = 0;
1751 struct hpsa_scsi_dev_t *csd;
1752 unsigned long flags;
1753 struct hpsa_scsi_dev_t **added, **removed;
1754 int nadded, nremoved;
1755
1756 /*
1757 * A reset can cause a device status to change
1758 * re-schedule the scan to see what happened.
1759 */
1760 if (h->reset_in_progress) {
1761 h->drv_req_rescan = 1;
1762 return;
1763 }
1764
1765 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1766 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1767
1768 if (!added || !removed) {
1769 dev_warn(&h->pdev->dev, "out of memory in "
1770 "adjust_hpsa_scsi_table\n");
1771 goto free_and_out;
1772 }
1773
1774 spin_lock_irqsave(&h->devlock, flags);
1775
1776 /* find any devices in h->dev[] that are not in
1777 * sd[] and remove them from h->dev[], and for any
1778 * devices which have changed, remove the old device
1779 * info and add the new device info.
1780 * If minor device attributes change, just update
1781 * the existing device structure.
1782 */
1783 i = 0;
1784 nremoved = 0;
1785 nadded = 0;
1786 while (i < h->ndevices) {
1787 csd = h->dev[i];
1788 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1789 if (device_change == DEVICE_NOT_FOUND) {
1790 changes++;
1791 hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1792 continue; /* remove ^^^, hence i not incremented */
1793 } else if (device_change == DEVICE_CHANGED) {
1794 changes++;
1795 hpsa_scsi_replace_entry(h, i, sd[entry],
1796 added, &nadded, removed, &nremoved);
1797 /* Set it to NULL to prevent it from being freed
1798 * at the bottom of hpsa_update_scsi_devices()
1799 */
1800 sd[entry] = NULL;
1801 } else if (device_change == DEVICE_UPDATED) {
1802 hpsa_scsi_update_entry(h, i, sd[entry]);
1803 }
1804 i++;
1805 }
1806
1807 /* Now, make sure every device listed in sd[] is also
1808 * listed in h->dev[], adding them if they aren't found
1809 */
1810
1811 for (i = 0; i < nsds; i++) {
1812 if (!sd[i]) /* if already added above. */
1813 continue;
1814
1815 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1816 * as the SCSI mid-layer does not handle such devices well.
1817 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1818 * at 160Hz, and prevents the system from coming up.
1819 */
1820 if (sd[i]->volume_offline) {
1821 hpsa_show_volume_status(h, sd[i]);
1822 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1823 continue;
1824 }
1825
1826 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1827 h->ndevices, &entry);
1828 if (device_change == DEVICE_NOT_FOUND) {
1829 changes++;
1830 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1831 break;
1832 sd[i] = NULL; /* prevent from being freed later. */
1833 } else if (device_change == DEVICE_CHANGED) {
1834 /* should never happen... */
1835 changes++;
1836 dev_warn(&h->pdev->dev,
1837 "device unexpectedly changed.\n");
1838 /* but if it does happen, we just ignore that device */
1839 }
1840 }
1841 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1842
1843 /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1844 * any logical drives that need it enabled.
1845 */
1846 for (i = 0; i < h->ndevices; i++) {
1847 if (h->dev[i] == NULL)
1848 continue;
1849 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1850 }
1851
1852 spin_unlock_irqrestore(&h->devlock, flags);
1853
1854 /* Monitor devices which are in one of several NOT READY states to be
1855 * brought online later. This must be done without holding h->devlock,
1856 * so don't touch h->dev[]
1857 */
1858 for (i = 0; i < nsds; i++) {
1859 if (!sd[i]) /* if already added above. */
1860 continue;
1861 if (sd[i]->volume_offline)
1862 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1863 }
1864
1865 /* Don't notify scsi mid layer of any changes the first time through
1866 * (or if there are no changes) scsi_scan_host will do it later the
1867 * first time through.
1868 */
1869 if (!changes)
1870 goto free_and_out;
1871
1872 /* Notify scsi mid layer of any removed devices */
1873 for (i = 0; i < nremoved; i++) {
1874 if (removed[i] == NULL)
1875 continue;
1876 if (removed[i]->expose_device)
1877 hpsa_remove_device(h, removed[i]);
1878 kfree(removed[i]);
1879 removed[i] = NULL;
1880 }
1881
1882 /* Notify scsi mid layer of any added devices */
1883 for (i = 0; i < nadded; i++) {
1884 int rc = 0;
1885
1886 if (added[i] == NULL)
1887 continue;
1888 if (!(added[i]->expose_device))
1889 continue;
1890 rc = hpsa_add_device(h, added[i]);
1891 if (!rc)
1892 continue;
1893 dev_warn(&h->pdev->dev,
1894 "addition failed %d, device not added.", rc);
1895 /* now we have to remove it from h->dev,
1896 * since it didn't get added to scsi mid layer
1897 */
1898 fixup_botched_add(h, added[i]);
1899 h->drv_req_rescan = 1;
1900 }
1901
1902 free_and_out:
1903 kfree(added);
1904 kfree(removed);
1905 }
1906
1907 /*
1908 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1909 * Assume's h->devlock is held.
1910 */
1911 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1912 int bus, int target, int lun)
1913 {
1914 int i;
1915 struct hpsa_scsi_dev_t *sd;
1916
1917 for (i = 0; i < h->ndevices; i++) {
1918 sd = h->dev[i];
1919 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1920 return sd;
1921 }
1922 return NULL;
1923 }
1924
1925 static int hpsa_slave_alloc(struct scsi_device *sdev)
1926 {
1927 struct hpsa_scsi_dev_t *sd;
1928 unsigned long flags;
1929 struct ctlr_info *h;
1930
1931 h = sdev_to_hba(sdev);
1932 spin_lock_irqsave(&h->devlock, flags);
1933 if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
1934 struct scsi_target *starget;
1935 struct sas_rphy *rphy;
1936
1937 starget = scsi_target(sdev);
1938 rphy = target_to_rphy(starget);
1939 sd = hpsa_find_device_by_sas_rphy(h, rphy);
1940 if (sd) {
1941 sd->target = sdev_id(sdev);
1942 sd->lun = sdev->lun;
1943 }
1944 } else
1945 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1946 sdev_id(sdev), sdev->lun);
1947
1948 if (sd && sd->expose_device) {
1949 atomic_set(&sd->ioaccel_cmds_out, 0);
1950 sdev->hostdata = sd;
1951 } else
1952 sdev->hostdata = NULL;
1953 spin_unlock_irqrestore(&h->devlock, flags);
1954 return 0;
1955 }
1956
1957 /* configure scsi device based on internal per-device structure */
1958 static int hpsa_slave_configure(struct scsi_device *sdev)
1959 {
1960 struct hpsa_scsi_dev_t *sd;
1961 int queue_depth;
1962
1963 sd = sdev->hostdata;
1964 sdev->no_uld_attach = !sd || !sd->expose_device;
1965
1966 if (sd)
1967 queue_depth = sd->queue_depth != 0 ?
1968 sd->queue_depth : sdev->host->can_queue;
1969 else
1970 queue_depth = sdev->host->can_queue;
1971
1972 scsi_change_queue_depth(sdev, queue_depth);
1973
1974 return 0;
1975 }
1976
1977 static void hpsa_slave_destroy(struct scsi_device *sdev)
1978 {
1979 /* nothing to do. */
1980 }
1981
1982 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1983 {
1984 int i;
1985
1986 if (!h->ioaccel2_cmd_sg_list)
1987 return;
1988 for (i = 0; i < h->nr_cmds; i++) {
1989 kfree(h->ioaccel2_cmd_sg_list[i]);
1990 h->ioaccel2_cmd_sg_list[i] = NULL;
1991 }
1992 kfree(h->ioaccel2_cmd_sg_list);
1993 h->ioaccel2_cmd_sg_list = NULL;
1994 }
1995
1996 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1997 {
1998 int i;
1999
2000 if (h->chainsize <= 0)
2001 return 0;
2002
2003 h->ioaccel2_cmd_sg_list =
2004 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2005 GFP_KERNEL);
2006 if (!h->ioaccel2_cmd_sg_list)
2007 return -ENOMEM;
2008 for (i = 0; i < h->nr_cmds; i++) {
2009 h->ioaccel2_cmd_sg_list[i] =
2010 kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2011 h->maxsgentries, GFP_KERNEL);
2012 if (!h->ioaccel2_cmd_sg_list[i])
2013 goto clean;
2014 }
2015 return 0;
2016
2017 clean:
2018 hpsa_free_ioaccel2_sg_chain_blocks(h);
2019 return -ENOMEM;
2020 }
2021
2022 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2023 {
2024 int i;
2025
2026 if (!h->cmd_sg_list)
2027 return;
2028 for (i = 0; i < h->nr_cmds; i++) {
2029 kfree(h->cmd_sg_list[i]);
2030 h->cmd_sg_list[i] = NULL;
2031 }
2032 kfree(h->cmd_sg_list);
2033 h->cmd_sg_list = NULL;
2034 }
2035
2036 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2037 {
2038 int i;
2039
2040 if (h->chainsize <= 0)
2041 return 0;
2042
2043 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2044 GFP_KERNEL);
2045 if (!h->cmd_sg_list) {
2046 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
2047 return -ENOMEM;
2048 }
2049 for (i = 0; i < h->nr_cmds; i++) {
2050 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2051 h->chainsize, GFP_KERNEL);
2052 if (!h->cmd_sg_list[i]) {
2053 dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
2054 goto clean;
2055 }
2056 }
2057 return 0;
2058
2059 clean:
2060 hpsa_free_sg_chain_blocks(h);
2061 return -ENOMEM;
2062 }
2063
2064 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2065 struct io_accel2_cmd *cp, struct CommandList *c)
2066 {
2067 struct ioaccel2_sg_element *chain_block;
2068 u64 temp64;
2069 u32 chain_size;
2070
2071 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2072 chain_size = le32_to_cpu(cp->sg[0].length);
2073 temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2074 PCI_DMA_TODEVICE);
2075 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2076 /* prevent subsequent unmapping */
2077 cp->sg->address = 0;
2078 return -1;
2079 }
2080 cp->sg->address = cpu_to_le64(temp64);
2081 return 0;
2082 }
2083
2084 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2085 struct io_accel2_cmd *cp)
2086 {
2087 struct ioaccel2_sg_element *chain_sg;
2088 u64 temp64;
2089 u32 chain_size;
2090
2091 chain_sg = cp->sg;
2092 temp64 = le64_to_cpu(chain_sg->address);
2093 chain_size = le32_to_cpu(cp->sg[0].length);
2094 pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2095 }
2096
2097 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2098 struct CommandList *c)
2099 {
2100 struct SGDescriptor *chain_sg, *chain_block;
2101 u64 temp64;
2102 u32 chain_len;
2103
2104 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2105 chain_block = h->cmd_sg_list[c->cmdindex];
2106 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2107 chain_len = sizeof(*chain_sg) *
2108 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2109 chain_sg->Len = cpu_to_le32(chain_len);
2110 temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2111 PCI_DMA_TODEVICE);
2112 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2113 /* prevent subsequent unmapping */
2114 chain_sg->Addr = cpu_to_le64(0);
2115 return -1;
2116 }
2117 chain_sg->Addr = cpu_to_le64(temp64);
2118 return 0;
2119 }
2120
2121 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2122 struct CommandList *c)
2123 {
2124 struct SGDescriptor *chain_sg;
2125
2126 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2127 return;
2128
2129 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2130 pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2131 le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2132 }
2133
2134
2135 /* Decode the various types of errors on ioaccel2 path.
2136 * Return 1 for any error that should generate a RAID path retry.
2137 * Return 0 for errors that don't require a RAID path retry.
2138 */
2139 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2140 struct CommandList *c,
2141 struct scsi_cmnd *cmd,
2142 struct io_accel2_cmd *c2)
2143 {
2144 int data_len;
2145 int retry = 0;
2146 u32 ioaccel2_resid = 0;
2147
2148 switch (c2->error_data.serv_response) {
2149 case IOACCEL2_SERV_RESPONSE_COMPLETE:
2150 switch (c2->error_data.status) {
2151 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2152 break;
2153 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2154 cmd->result |= SAM_STAT_CHECK_CONDITION;
2155 if (c2->error_data.data_present !=
2156 IOACCEL2_SENSE_DATA_PRESENT) {
2157 memset(cmd->sense_buffer, 0,
2158 SCSI_SENSE_BUFFERSIZE);
2159 break;
2160 }
2161 /* copy the sense data */
2162 data_len = c2->error_data.sense_data_len;
2163 if (data_len > SCSI_SENSE_BUFFERSIZE)
2164 data_len = SCSI_SENSE_BUFFERSIZE;
2165 if (data_len > sizeof(c2->error_data.sense_data_buff))
2166 data_len =
2167 sizeof(c2->error_data.sense_data_buff);
2168 memcpy(cmd->sense_buffer,
2169 c2->error_data.sense_data_buff, data_len);
2170 retry = 1;
2171 break;
2172 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2173 retry = 1;
2174 break;
2175 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2176 retry = 1;
2177 break;
2178 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2179 retry = 1;
2180 break;
2181 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2182 retry = 1;
2183 break;
2184 default:
2185 retry = 1;
2186 break;
2187 }
2188 break;
2189 case IOACCEL2_SERV_RESPONSE_FAILURE:
2190 switch (c2->error_data.status) {
2191 case IOACCEL2_STATUS_SR_IO_ERROR:
2192 case IOACCEL2_STATUS_SR_IO_ABORTED:
2193 case IOACCEL2_STATUS_SR_OVERRUN:
2194 retry = 1;
2195 break;
2196 case IOACCEL2_STATUS_SR_UNDERRUN:
2197 cmd->result = (DID_OK << 16); /* host byte */
2198 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2199 ioaccel2_resid = get_unaligned_le32(
2200 &c2->error_data.resid_cnt[0]);
2201 scsi_set_resid(cmd, ioaccel2_resid);
2202 break;
2203 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2204 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2205 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2206 /* We will get an event from ctlr to trigger rescan */
2207 retry = 1;
2208 break;
2209 default:
2210 retry = 1;
2211 }
2212 break;
2213 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2214 break;
2215 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2216 break;
2217 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2218 retry = 1;
2219 break;
2220 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2221 break;
2222 default:
2223 retry = 1;
2224 break;
2225 }
2226
2227 return retry; /* retry on raid path? */
2228 }
2229
2230 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2231 struct CommandList *c)
2232 {
2233 bool do_wake = false;
2234
2235 /*
2236 * Prevent the following race in the abort handler:
2237 *
2238 * 1. LLD is requested to abort a SCSI command
2239 * 2. The SCSI command completes
2240 * 3. The struct CommandList associated with step 2 is made available
2241 * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2242 * 5. Abort handler follows scsi_cmnd->host_scribble and
2243 * finds struct CommandList and tries to aborts it
2244 * Now we have aborted the wrong command.
2245 *
2246 * Reset c->scsi_cmd here so that the abort or reset handler will know
2247 * this command has completed. Then, check to see if the handler is
2248 * waiting for this command, and, if so, wake it.
2249 */
2250 c->scsi_cmd = SCSI_CMD_IDLE;
2251 mb(); /* Declare command idle before checking for pending events. */
2252 if (c->abort_pending) {
2253 do_wake = true;
2254 c->abort_pending = false;
2255 }
2256 if (c->reset_pending) {
2257 unsigned long flags;
2258 struct hpsa_scsi_dev_t *dev;
2259
2260 /*
2261 * There appears to be a reset pending; lock the lock and
2262 * reconfirm. If so, then decrement the count of outstanding
2263 * commands and wake the reset command if this is the last one.
2264 */
2265 spin_lock_irqsave(&h->lock, flags);
2266 dev = c->reset_pending; /* Re-fetch under the lock. */
2267 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2268 do_wake = true;
2269 c->reset_pending = NULL;
2270 spin_unlock_irqrestore(&h->lock, flags);
2271 }
2272
2273 if (do_wake)
2274 wake_up_all(&h->event_sync_wait_queue);
2275 }
2276
2277 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2278 struct CommandList *c)
2279 {
2280 hpsa_cmd_resolve_events(h, c);
2281 cmd_tagged_free(h, c);
2282 }
2283
2284 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2285 struct CommandList *c, struct scsi_cmnd *cmd)
2286 {
2287 hpsa_cmd_resolve_and_free(h, c);
2288 cmd->scsi_done(cmd);
2289 }
2290
2291 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2292 {
2293 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2294 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2295 }
2296
2297 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2298 {
2299 cmd->result = DID_ABORT << 16;
2300 }
2301
2302 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2303 struct scsi_cmnd *cmd)
2304 {
2305 hpsa_set_scsi_cmd_aborted(cmd);
2306 dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2307 c->Request.CDB, c->err_info->ScsiStatus);
2308 hpsa_cmd_resolve_and_free(h, c);
2309 }
2310
2311 static void process_ioaccel2_completion(struct ctlr_info *h,
2312 struct CommandList *c, struct scsi_cmnd *cmd,
2313 struct hpsa_scsi_dev_t *dev)
2314 {
2315 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2316
2317 /* check for good status */
2318 if (likely(c2->error_data.serv_response == 0 &&
2319 c2->error_data.status == 0))
2320 return hpsa_cmd_free_and_done(h, c, cmd);
2321
2322 /*
2323 * Any RAID offload error results in retry which will use
2324 * the normal I/O path so the controller can handle whatever's
2325 * wrong.
2326 */
2327 if (is_logical_device(dev) &&
2328 c2->error_data.serv_response ==
2329 IOACCEL2_SERV_RESPONSE_FAILURE) {
2330 if (c2->error_data.status ==
2331 IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2332 dev->offload_enabled = 0;
2333
2334 return hpsa_retry_cmd(h, c);
2335 }
2336
2337 if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2338 return hpsa_retry_cmd(h, c);
2339
2340 return hpsa_cmd_free_and_done(h, c, cmd);
2341 }
2342
2343 /* Returns 0 on success, < 0 otherwise. */
2344 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2345 struct CommandList *cp)
2346 {
2347 u8 tmf_status = cp->err_info->ScsiStatus;
2348
2349 switch (tmf_status) {
2350 case CISS_TMF_COMPLETE:
2351 /*
2352 * CISS_TMF_COMPLETE never happens, instead,
2353 * ei->CommandStatus == 0 for this case.
2354 */
2355 case CISS_TMF_SUCCESS:
2356 return 0;
2357 case CISS_TMF_INVALID_FRAME:
2358 case CISS_TMF_NOT_SUPPORTED:
2359 case CISS_TMF_FAILED:
2360 case CISS_TMF_WRONG_LUN:
2361 case CISS_TMF_OVERLAPPED_TAG:
2362 break;
2363 default:
2364 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2365 tmf_status);
2366 break;
2367 }
2368 return -tmf_status;
2369 }
2370
2371 static void complete_scsi_command(struct CommandList *cp)
2372 {
2373 struct scsi_cmnd *cmd;
2374 struct ctlr_info *h;
2375 struct ErrorInfo *ei;
2376 struct hpsa_scsi_dev_t *dev;
2377 struct io_accel2_cmd *c2;
2378
2379 u8 sense_key;
2380 u8 asc; /* additional sense code */
2381 u8 ascq; /* additional sense code qualifier */
2382 unsigned long sense_data_size;
2383
2384 ei = cp->err_info;
2385 cmd = cp->scsi_cmd;
2386 h = cp->h;
2387 dev = cmd->device->hostdata;
2388 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2389
2390 scsi_dma_unmap(cmd); /* undo the DMA mappings */
2391 if ((cp->cmd_type == CMD_SCSI) &&
2392 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2393 hpsa_unmap_sg_chain_block(h, cp);
2394
2395 if ((cp->cmd_type == CMD_IOACCEL2) &&
2396 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2397 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2398
2399 cmd->result = (DID_OK << 16); /* host byte */
2400 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2401
2402 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2403 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2404
2405 /*
2406 * We check for lockup status here as it may be set for
2407 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2408 * fail_all_oustanding_cmds()
2409 */
2410 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2411 /* DID_NO_CONNECT will prevent a retry */
2412 cmd->result = DID_NO_CONNECT << 16;
2413 return hpsa_cmd_free_and_done(h, cp, cmd);
2414 }
2415
2416 if ((unlikely(hpsa_is_pending_event(cp)))) {
2417 if (cp->reset_pending)
2418 return hpsa_cmd_resolve_and_free(h, cp);
2419 if (cp->abort_pending)
2420 return hpsa_cmd_abort_and_free(h, cp, cmd);
2421 }
2422
2423 if (cp->cmd_type == CMD_IOACCEL2)
2424 return process_ioaccel2_completion(h, cp, cmd, dev);
2425
2426 scsi_set_resid(cmd, ei->ResidualCnt);
2427 if (ei->CommandStatus == 0)
2428 return hpsa_cmd_free_and_done(h, cp, cmd);
2429
2430 /* For I/O accelerator commands, copy over some fields to the normal
2431 * CISS header used below for error handling.
2432 */
2433 if (cp->cmd_type == CMD_IOACCEL1) {
2434 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2435 cp->Header.SGList = scsi_sg_count(cmd);
2436 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2437 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2438 IOACCEL1_IOFLAGS_CDBLEN_MASK;
2439 cp->Header.tag = c->tag;
2440 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2441 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2442
2443 /* Any RAID offload error results in retry which will use
2444 * the normal I/O path so the controller can handle whatever's
2445 * wrong.
2446 */
2447 if (is_logical_device(dev)) {
2448 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2449 dev->offload_enabled = 0;
2450 return hpsa_retry_cmd(h, cp);
2451 }
2452 }
2453
2454 /* an error has occurred */
2455 switch (ei->CommandStatus) {
2456
2457 case CMD_TARGET_STATUS:
2458 cmd->result |= ei->ScsiStatus;
2459 /* copy the sense data */
2460 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2461 sense_data_size = SCSI_SENSE_BUFFERSIZE;
2462 else
2463 sense_data_size = sizeof(ei->SenseInfo);
2464 if (ei->SenseLen < sense_data_size)
2465 sense_data_size = ei->SenseLen;
2466 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2467 if (ei->ScsiStatus)
2468 decode_sense_data(ei->SenseInfo, sense_data_size,
2469 &sense_key, &asc, &ascq);
2470 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2471 if (sense_key == ABORTED_COMMAND) {
2472 cmd->result |= DID_SOFT_ERROR << 16;
2473 break;
2474 }
2475 break;
2476 }
2477 /* Problem was not a check condition
2478 * Pass it up to the upper layers...
2479 */
2480 if (ei->ScsiStatus) {
2481 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2482 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2483 "Returning result: 0x%x\n",
2484 cp, ei->ScsiStatus,
2485 sense_key, asc, ascq,
2486 cmd->result);
2487 } else { /* scsi status is zero??? How??? */
2488 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2489 "Returning no connection.\n", cp),
2490
2491 /* Ordinarily, this case should never happen,
2492 * but there is a bug in some released firmware
2493 * revisions that allows it to happen if, for
2494 * example, a 4100 backplane loses power and
2495 * the tape drive is in it. We assume that
2496 * it's a fatal error of some kind because we
2497 * can't show that it wasn't. We will make it
2498 * look like selection timeout since that is
2499 * the most common reason for this to occur,
2500 * and it's severe enough.
2501 */
2502
2503 cmd->result = DID_NO_CONNECT << 16;
2504 }
2505 break;
2506
2507 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2508 break;
2509 case CMD_DATA_OVERRUN:
2510 dev_warn(&h->pdev->dev,
2511 "CDB %16phN data overrun\n", cp->Request.CDB);
2512 break;
2513 case CMD_INVALID: {
2514 /* print_bytes(cp, sizeof(*cp), 1, 0);
2515 print_cmd(cp); */
2516 /* We get CMD_INVALID if you address a non-existent device
2517 * instead of a selection timeout (no response). You will
2518 * see this if you yank out a drive, then try to access it.
2519 * This is kind of a shame because it means that any other
2520 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2521 * missing target. */
2522 cmd->result = DID_NO_CONNECT << 16;
2523 }
2524 break;
2525 case CMD_PROTOCOL_ERR:
2526 cmd->result = DID_ERROR << 16;
2527 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2528 cp->Request.CDB);
2529 break;
2530 case CMD_HARDWARE_ERR:
2531 cmd->result = DID_ERROR << 16;
2532 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2533 cp->Request.CDB);
2534 break;
2535 case CMD_CONNECTION_LOST:
2536 cmd->result = DID_ERROR << 16;
2537 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2538 cp->Request.CDB);
2539 break;
2540 case CMD_ABORTED:
2541 /* Return now to avoid calling scsi_done(). */
2542 return hpsa_cmd_abort_and_free(h, cp, cmd);
2543 case CMD_ABORT_FAILED:
2544 cmd->result = DID_ERROR << 16;
2545 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2546 cp->Request.CDB);
2547 break;
2548 case CMD_UNSOLICITED_ABORT:
2549 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2550 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2551 cp->Request.CDB);
2552 break;
2553 case CMD_TIMEOUT:
2554 cmd->result = DID_TIME_OUT << 16;
2555 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2556 cp->Request.CDB);
2557 break;
2558 case CMD_UNABORTABLE:
2559 cmd->result = DID_ERROR << 16;
2560 dev_warn(&h->pdev->dev, "Command unabortable\n");
2561 break;
2562 case CMD_TMF_STATUS:
2563 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2564 cmd->result = DID_ERROR << 16;
2565 break;
2566 case CMD_IOACCEL_DISABLED:
2567 /* This only handles the direct pass-through case since RAID
2568 * offload is handled above. Just attempt a retry.
2569 */
2570 cmd->result = DID_SOFT_ERROR << 16;
2571 dev_warn(&h->pdev->dev,
2572 "cp %p had HP SSD Smart Path error\n", cp);
2573 break;
2574 default:
2575 cmd->result = DID_ERROR << 16;
2576 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2577 cp, ei->CommandStatus);
2578 }
2579
2580 return hpsa_cmd_free_and_done(h, cp, cmd);
2581 }
2582
2583 static void hpsa_pci_unmap(struct pci_dev *pdev,
2584 struct CommandList *c, int sg_used, int data_direction)
2585 {
2586 int i;
2587
2588 for (i = 0; i < sg_used; i++)
2589 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2590 le32_to_cpu(c->SG[i].Len),
2591 data_direction);
2592 }
2593
2594 static int hpsa_map_one(struct pci_dev *pdev,
2595 struct CommandList *cp,
2596 unsigned char *buf,
2597 size_t buflen,
2598 int data_direction)
2599 {
2600 u64 addr64;
2601
2602 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2603 cp->Header.SGList = 0;
2604 cp->Header.SGTotal = cpu_to_le16(0);
2605 return 0;
2606 }
2607
2608 addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2609 if (dma_mapping_error(&pdev->dev, addr64)) {
2610 /* Prevent subsequent unmap of something never mapped */
2611 cp->Header.SGList = 0;
2612 cp->Header.SGTotal = cpu_to_le16(0);
2613 return -1;
2614 }
2615 cp->SG[0].Addr = cpu_to_le64(addr64);
2616 cp->SG[0].Len = cpu_to_le32(buflen);
2617 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2618 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
2619 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2620 return 0;
2621 }
2622
2623 #define NO_TIMEOUT ((unsigned long) -1)
2624 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2625 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2626 struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2627 {
2628 DECLARE_COMPLETION_ONSTACK(wait);
2629
2630 c->waiting = &wait;
2631 __enqueue_cmd_and_start_io(h, c, reply_queue);
2632 if (timeout_msecs == NO_TIMEOUT) {
2633 /* TODO: get rid of this no-timeout thing */
2634 wait_for_completion_io(&wait);
2635 return IO_OK;
2636 }
2637 if (!wait_for_completion_io_timeout(&wait,
2638 msecs_to_jiffies(timeout_msecs))) {
2639 dev_warn(&h->pdev->dev, "Command timed out.\n");
2640 return -ETIMEDOUT;
2641 }
2642 return IO_OK;
2643 }
2644
2645 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2646 int reply_queue, unsigned long timeout_msecs)
2647 {
2648 if (unlikely(lockup_detected(h))) {
2649 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2650 return IO_OK;
2651 }
2652 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2653 }
2654
2655 static u32 lockup_detected(struct ctlr_info *h)
2656 {
2657 int cpu;
2658 u32 rc, *lockup_detected;
2659
2660 cpu = get_cpu();
2661 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2662 rc = *lockup_detected;
2663 put_cpu();
2664 return rc;
2665 }
2666
2667 #define MAX_DRIVER_CMD_RETRIES 25
2668 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2669 struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2670 {
2671 int backoff_time = 10, retry_count = 0;
2672 int rc;
2673
2674 do {
2675 memset(c->err_info, 0, sizeof(*c->err_info));
2676 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2677 timeout_msecs);
2678 if (rc)
2679 break;
2680 retry_count++;
2681 if (retry_count > 3) {
2682 msleep(backoff_time);
2683 if (backoff_time < 1000)
2684 backoff_time *= 2;
2685 }
2686 } while ((check_for_unit_attention(h, c) ||
2687 check_for_busy(h, c)) &&
2688 retry_count <= MAX_DRIVER_CMD_RETRIES);
2689 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2690 if (retry_count > MAX_DRIVER_CMD_RETRIES)
2691 rc = -EIO;
2692 return rc;
2693 }
2694
2695 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2696 struct CommandList *c)
2697 {
2698 const u8 *cdb = c->Request.CDB;
2699 const u8 *lun = c->Header.LUN.LunAddrBytes;
2700
2701 dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2702 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2703 txt, lun[0], lun[1], lun[2], lun[3],
2704 lun[4], lun[5], lun[6], lun[7],
2705 cdb[0], cdb[1], cdb[2], cdb[3],
2706 cdb[4], cdb[5], cdb[6], cdb[7],
2707 cdb[8], cdb[9], cdb[10], cdb[11],
2708 cdb[12], cdb[13], cdb[14], cdb[15]);
2709 }
2710
2711 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2712 struct CommandList *cp)
2713 {
2714 const struct ErrorInfo *ei = cp->err_info;
2715 struct device *d = &cp->h->pdev->dev;
2716 u8 sense_key, asc, ascq;
2717 int sense_len;
2718
2719 switch (ei->CommandStatus) {
2720 case CMD_TARGET_STATUS:
2721 if (ei->SenseLen > sizeof(ei->SenseInfo))
2722 sense_len = sizeof(ei->SenseInfo);
2723 else
2724 sense_len = ei->SenseLen;
2725 decode_sense_data(ei->SenseInfo, sense_len,
2726 &sense_key, &asc, &ascq);
2727 hpsa_print_cmd(h, "SCSI status", cp);
2728 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2729 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2730 sense_key, asc, ascq);
2731 else
2732 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2733 if (ei->ScsiStatus == 0)
2734 dev_warn(d, "SCSI status is abnormally zero. "
2735 "(probably indicates selection timeout "
2736 "reported incorrectly due to a known "
2737 "firmware bug, circa July, 2001.)\n");
2738 break;
2739 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2740 break;
2741 case CMD_DATA_OVERRUN:
2742 hpsa_print_cmd(h, "overrun condition", cp);
2743 break;
2744 case CMD_INVALID: {
2745 /* controller unfortunately reports SCSI passthru's
2746 * to non-existent targets as invalid commands.
2747 */
2748 hpsa_print_cmd(h, "invalid command", cp);
2749 dev_warn(d, "probably means device no longer present\n");
2750 }
2751 break;
2752 case CMD_PROTOCOL_ERR:
2753 hpsa_print_cmd(h, "protocol error", cp);
2754 break;
2755 case CMD_HARDWARE_ERR:
2756 hpsa_print_cmd(h, "hardware error", cp);
2757 break;
2758 case CMD_CONNECTION_LOST:
2759 hpsa_print_cmd(h, "connection lost", cp);
2760 break;
2761 case CMD_ABORTED:
2762 hpsa_print_cmd(h, "aborted", cp);
2763 break;
2764 case CMD_ABORT_FAILED:
2765 hpsa_print_cmd(h, "abort failed", cp);
2766 break;
2767 case CMD_UNSOLICITED_ABORT:
2768 hpsa_print_cmd(h, "unsolicited abort", cp);
2769 break;
2770 case CMD_TIMEOUT:
2771 hpsa_print_cmd(h, "timed out", cp);
2772 break;
2773 case CMD_UNABORTABLE:
2774 hpsa_print_cmd(h, "unabortable", cp);
2775 break;
2776 case CMD_CTLR_LOCKUP:
2777 hpsa_print_cmd(h, "controller lockup detected", cp);
2778 break;
2779 default:
2780 hpsa_print_cmd(h, "unknown status", cp);
2781 dev_warn(d, "Unknown command status %x\n",
2782 ei->CommandStatus);
2783 }
2784 }
2785
2786 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2787 u16 page, unsigned char *buf,
2788 unsigned char bufsize)
2789 {
2790 int rc = IO_OK;
2791 struct CommandList *c;
2792 struct ErrorInfo *ei;
2793
2794 c = cmd_alloc(h);
2795
2796 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2797 page, scsi3addr, TYPE_CMD)) {
2798 rc = -1;
2799 goto out;
2800 }
2801 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2802 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2803 if (rc)
2804 goto out;
2805 ei = c->err_info;
2806 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2807 hpsa_scsi_interpret_error(h, c);
2808 rc = -1;
2809 }
2810 out:
2811 cmd_free(h, c);
2812 return rc;
2813 }
2814
2815 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2816 u8 reset_type, int reply_queue)
2817 {
2818 int rc = IO_OK;
2819 struct CommandList *c;
2820 struct ErrorInfo *ei;
2821
2822 c = cmd_alloc(h);
2823
2824
2825 /* fill_cmd can't fail here, no data buffer to map. */
2826 (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2827 scsi3addr, TYPE_MSG);
2828 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2829 if (rc) {
2830 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2831 goto out;
2832 }
2833 /* no unmap needed here because no data xfer. */
2834
2835 ei = c->err_info;
2836 if (ei->CommandStatus != 0) {
2837 hpsa_scsi_interpret_error(h, c);
2838 rc = -1;
2839 }
2840 out:
2841 cmd_free(h, c);
2842 return rc;
2843 }
2844
2845 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2846 struct hpsa_scsi_dev_t *dev,
2847 unsigned char *scsi3addr)
2848 {
2849 int i;
2850 bool match = false;
2851 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2852 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2853
2854 if (hpsa_is_cmd_idle(c))
2855 return false;
2856
2857 switch (c->cmd_type) {
2858 case CMD_SCSI:
2859 case CMD_IOCTL_PEND:
2860 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2861 sizeof(c->Header.LUN.LunAddrBytes));
2862 break;
2863
2864 case CMD_IOACCEL1:
2865 case CMD_IOACCEL2:
2866 if (c->phys_disk == dev) {
2867 /* HBA mode match */
2868 match = true;
2869 } else {
2870 /* Possible RAID mode -- check each phys dev. */
2871 /* FIXME: Do we need to take out a lock here? If
2872 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2873 * instead. */
2874 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2875 /* FIXME: an alternate test might be
2876 *
2877 * match = dev->phys_disk[i]->ioaccel_handle
2878 * == c2->scsi_nexus; */
2879 match = dev->phys_disk[i] == c->phys_disk;
2880 }
2881 }
2882 break;
2883
2884 case IOACCEL2_TMF:
2885 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2886 match = dev->phys_disk[i]->ioaccel_handle ==
2887 le32_to_cpu(ac->it_nexus);
2888 }
2889 break;
2890
2891 case 0: /* The command is in the middle of being initialized. */
2892 match = false;
2893 break;
2894
2895 default:
2896 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2897 c->cmd_type);
2898 BUG();
2899 }
2900
2901 return match;
2902 }
2903
2904 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
2905 unsigned char *scsi3addr, u8 reset_type, int reply_queue)
2906 {
2907 int i;
2908 int rc = 0;
2909
2910 /* We can really only handle one reset at a time */
2911 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
2912 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
2913 return -EINTR;
2914 }
2915
2916 BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
2917
2918 for (i = 0; i < h->nr_cmds; i++) {
2919 struct CommandList *c = h->cmd_pool + i;
2920 int refcount = atomic_inc_return(&c->refcount);
2921
2922 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
2923 unsigned long flags;
2924
2925 /*
2926 * Mark the target command as having a reset pending,
2927 * then lock a lock so that the command cannot complete
2928 * while we're considering it. If the command is not
2929 * idle then count it; otherwise revoke the event.
2930 */
2931 c->reset_pending = dev;
2932 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
2933 if (!hpsa_is_cmd_idle(c))
2934 atomic_inc(&dev->reset_cmds_out);
2935 else
2936 c->reset_pending = NULL;
2937 spin_unlock_irqrestore(&h->lock, flags);
2938 }
2939
2940 cmd_free(h, c);
2941 }
2942
2943 rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
2944 if (!rc)
2945 wait_event(h->event_sync_wait_queue,
2946 atomic_read(&dev->reset_cmds_out) == 0 ||
2947 lockup_detected(h));
2948
2949 if (unlikely(lockup_detected(h))) {
2950 dev_warn(&h->pdev->dev,
2951 "Controller lockup detected during reset wait\n");
2952 rc = -ENODEV;
2953 }
2954
2955 if (unlikely(rc))
2956 atomic_set(&dev->reset_cmds_out, 0);
2957
2958 mutex_unlock(&h->reset_mutex);
2959 return rc;
2960 }
2961
2962 static void hpsa_get_raid_level(struct ctlr_info *h,
2963 unsigned char *scsi3addr, unsigned char *raid_level)
2964 {
2965 int rc;
2966 unsigned char *buf;
2967
2968 *raid_level = RAID_UNKNOWN;
2969 buf = kzalloc(64, GFP_KERNEL);
2970 if (!buf)
2971 return;
2972 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2973 if (rc == 0)
2974 *raid_level = buf[8];
2975 if (*raid_level > RAID_UNKNOWN)
2976 *raid_level = RAID_UNKNOWN;
2977 kfree(buf);
2978 return;
2979 }
2980
2981 #define HPSA_MAP_DEBUG
2982 #ifdef HPSA_MAP_DEBUG
2983 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2984 struct raid_map_data *map_buff)
2985 {
2986 struct raid_map_disk_data *dd = &map_buff->data[0];
2987 int map, row, col;
2988 u16 map_cnt, row_cnt, disks_per_row;
2989
2990 if (rc != 0)
2991 return;
2992
2993 /* Show details only if debugging has been activated. */
2994 if (h->raid_offload_debug < 2)
2995 return;
2996
2997 dev_info(&h->pdev->dev, "structure_size = %u\n",
2998 le32_to_cpu(map_buff->structure_size));
2999 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3000 le32_to_cpu(map_buff->volume_blk_size));
3001 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3002 le64_to_cpu(map_buff->volume_blk_cnt));
3003 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3004 map_buff->phys_blk_shift);
3005 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3006 map_buff->parity_rotation_shift);
3007 dev_info(&h->pdev->dev, "strip_size = %u\n",
3008 le16_to_cpu(map_buff->strip_size));
3009 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3010 le64_to_cpu(map_buff->disk_starting_blk));
3011 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3012 le64_to_cpu(map_buff->disk_blk_cnt));
3013 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3014 le16_to_cpu(map_buff->data_disks_per_row));
3015 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3016 le16_to_cpu(map_buff->metadata_disks_per_row));
3017 dev_info(&h->pdev->dev, "row_cnt = %u\n",
3018 le16_to_cpu(map_buff->row_cnt));
3019 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3020 le16_to_cpu(map_buff->layout_map_count));
3021 dev_info(&h->pdev->dev, "flags = 0x%x\n",
3022 le16_to_cpu(map_buff->flags));
3023 dev_info(&h->pdev->dev, "encrypytion = %s\n",
3024 le16_to_cpu(map_buff->flags) &
3025 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
3026 dev_info(&h->pdev->dev, "dekindex = %u\n",
3027 le16_to_cpu(map_buff->dekindex));
3028 map_cnt = le16_to_cpu(map_buff->layout_map_count);
3029 for (map = 0; map < map_cnt; map++) {
3030 dev_info(&h->pdev->dev, "Map%u:\n", map);
3031 row_cnt = le16_to_cpu(map_buff->row_cnt);
3032 for (row = 0; row < row_cnt; row++) {
3033 dev_info(&h->pdev->dev, " Row%u:\n", row);
3034 disks_per_row =
3035 le16_to_cpu(map_buff->data_disks_per_row);
3036 for (col = 0; col < disks_per_row; col++, dd++)
3037 dev_info(&h->pdev->dev,
3038 " D%02u: h=0x%04x xor=%u,%u\n",
3039 col, dd->ioaccel_handle,
3040 dd->xor_mult[0], dd->xor_mult[1]);
3041 disks_per_row =
3042 le16_to_cpu(map_buff->metadata_disks_per_row);
3043 for (col = 0; col < disks_per_row; col++, dd++)
3044 dev_info(&h->pdev->dev,
3045 " M%02u: h=0x%04x xor=%u,%u\n",
3046 col, dd->ioaccel_handle,
3047 dd->xor_mult[0], dd->xor_mult[1]);
3048 }
3049 }
3050 }
3051 #else
3052 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3053 __attribute__((unused)) int rc,
3054 __attribute__((unused)) struct raid_map_data *map_buff)
3055 {
3056 }
3057 #endif
3058
3059 static int hpsa_get_raid_map(struct ctlr_info *h,
3060 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3061 {
3062 int rc = 0;
3063 struct CommandList *c;
3064 struct ErrorInfo *ei;
3065
3066 c = cmd_alloc(h);
3067
3068 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3069 sizeof(this_device->raid_map), 0,
3070 scsi3addr, TYPE_CMD)) {
3071 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3072 cmd_free(h, c);
3073 return -1;
3074 }
3075 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3076 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3077 if (rc)
3078 goto out;
3079 ei = c->err_info;
3080 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3081 hpsa_scsi_interpret_error(h, c);
3082 rc = -1;
3083 goto out;
3084 }
3085 cmd_free(h, c);
3086
3087 /* @todo in the future, dynamically allocate RAID map memory */
3088 if (le32_to_cpu(this_device->raid_map.structure_size) >
3089 sizeof(this_device->raid_map)) {
3090 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3091 rc = -1;
3092 }
3093 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3094 return rc;
3095 out:
3096 cmd_free(h, c);
3097 return rc;
3098 }
3099
3100 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3101 unsigned char scsi3addr[], u16 bmic_device_index,
3102 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3103 {
3104 int rc = IO_OK;
3105 struct CommandList *c;
3106 struct ErrorInfo *ei;
3107
3108 c = cmd_alloc(h);
3109
3110 rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3111 0, RAID_CTLR_LUNID, TYPE_CMD);
3112 if (rc)
3113 goto out;
3114
3115 c->Request.CDB[2] = bmic_device_index & 0xff;
3116 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3117
3118 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3119 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3120 if (rc)
3121 goto out;
3122 ei = c->err_info;
3123 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3124 hpsa_scsi_interpret_error(h, c);
3125 rc = -1;
3126 }
3127 out:
3128 cmd_free(h, c);
3129 return rc;
3130 }
3131
3132 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3133 struct bmic_identify_controller *buf, size_t bufsize)
3134 {
3135 int rc = IO_OK;
3136 struct CommandList *c;
3137 struct ErrorInfo *ei;
3138
3139 c = cmd_alloc(h);
3140
3141 rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3142 0, RAID_CTLR_LUNID, TYPE_CMD);
3143 if (rc)
3144 goto out;
3145
3146 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3147 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3148 if (rc)
3149 goto out;
3150 ei = c->err_info;
3151 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3152 hpsa_scsi_interpret_error(h, c);
3153 rc = -1;
3154 }
3155 out:
3156 cmd_free(h, c);
3157 return rc;
3158 }
3159
3160 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3161 unsigned char scsi3addr[], u16 bmic_device_index,
3162 struct bmic_identify_physical_device *buf, size_t bufsize)
3163 {
3164 int rc = IO_OK;
3165 struct CommandList *c;
3166 struct ErrorInfo *ei;
3167
3168 c = cmd_alloc(h);
3169 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3170 0, RAID_CTLR_LUNID, TYPE_CMD);
3171 if (rc)
3172 goto out;
3173
3174 c->Request.CDB[2] = bmic_device_index & 0xff;
3175 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3176
3177 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3178 NO_TIMEOUT);
3179 ei = c->err_info;
3180 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3181 hpsa_scsi_interpret_error(h, c);
3182 rc = -1;
3183 }
3184 out:
3185 cmd_free(h, c);
3186
3187 return rc;
3188 }
3189
3190 /*
3191 * get enclosure information
3192 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3193 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3194 * Uses id_physical_device to determine the box_index.
3195 */
3196 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3197 unsigned char *scsi3addr,
3198 struct ReportExtendedLUNdata *rlep, int rle_index,
3199 struct hpsa_scsi_dev_t *encl_dev)
3200 {
3201 int rc = -1;
3202 struct CommandList *c = NULL;
3203 struct ErrorInfo *ei = NULL;
3204 struct bmic_sense_storage_box_params *bssbp = NULL;
3205 struct bmic_identify_physical_device *id_phys = NULL;
3206 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3207 u16 bmic_device_index = 0;
3208
3209 bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3210
3211 if (bmic_device_index == 0xFF00)
3212 goto out;
3213
3214 bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3215 if (!bssbp)
3216 goto out;
3217
3218 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3219 if (!id_phys)
3220 goto out;
3221
3222 rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3223 id_phys, sizeof(*id_phys));
3224 if (rc) {
3225 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3226 __func__, encl_dev->external, bmic_device_index);
3227 goto out;
3228 }
3229
3230 c = cmd_alloc(h);
3231
3232 rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3233 sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3234
3235 if (rc)
3236 goto out;
3237
3238 if (id_phys->phys_connector[1] == 'E')
3239 c->Request.CDB[5] = id_phys->box_index;
3240 else
3241 c->Request.CDB[5] = 0;
3242
3243 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3244 NO_TIMEOUT);
3245 if (rc)
3246 goto out;
3247
3248 ei = c->err_info;
3249 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3250 rc = -1;
3251 goto out;
3252 }
3253
3254 encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3255 memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3256 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3257
3258 rc = IO_OK;
3259 out:
3260 kfree(bssbp);
3261 kfree(id_phys);
3262
3263 if (c)
3264 cmd_free(h, c);
3265
3266 if (rc != IO_OK)
3267 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3268 "Error, could not get enclosure information\n");
3269 }
3270
3271 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3272 unsigned char *scsi3addr)
3273 {
3274 struct ReportExtendedLUNdata *physdev;
3275 u32 nphysicals;
3276 u64 sa = 0;
3277 int i;
3278
3279 physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3280 if (!physdev)
3281 return 0;
3282
3283 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3284 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3285 kfree(physdev);
3286 return 0;
3287 }
3288 nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3289
3290 for (i = 0; i < nphysicals; i++)
3291 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3292 sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3293 break;
3294 }
3295
3296 kfree(physdev);
3297
3298 return sa;
3299 }
3300
3301 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3302 struct hpsa_scsi_dev_t *dev)
3303 {
3304 int rc;
3305 u64 sa = 0;
3306
3307 if (is_hba_lunid(scsi3addr)) {
3308 struct bmic_sense_subsystem_info *ssi;
3309
3310 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3311 if (ssi == NULL) {
3312 dev_warn(&h->pdev->dev,
3313 "%s: out of memory\n", __func__);
3314 return;
3315 }
3316
3317 rc = hpsa_bmic_sense_subsystem_information(h,
3318 scsi3addr, 0, ssi, sizeof(*ssi));
3319 if (rc == 0) {
3320 sa = get_unaligned_be64(ssi->primary_world_wide_id);
3321 h->sas_address = sa;
3322 }
3323
3324 kfree(ssi);
3325 } else
3326 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3327
3328 dev->sas_address = sa;
3329 }
3330
3331 /* Get a device id from inquiry page 0x83 */
3332 static int hpsa_vpd_page_supported(struct ctlr_info *h,
3333 unsigned char scsi3addr[], u8 page)
3334 {
3335 int rc;
3336 int i;
3337 int pages;
3338 unsigned char *buf, bufsize;
3339
3340 buf = kzalloc(256, GFP_KERNEL);
3341 if (!buf)
3342 return 0;
3343
3344 /* Get the size of the page list first */
3345 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3346 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3347 buf, HPSA_VPD_HEADER_SZ);
3348 if (rc != 0)
3349 goto exit_unsupported;
3350 pages = buf[3];
3351 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3352 bufsize = pages + HPSA_VPD_HEADER_SZ;
3353 else
3354 bufsize = 255;
3355
3356 /* Get the whole VPD page list */
3357 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3358 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3359 buf, bufsize);
3360 if (rc != 0)
3361 goto exit_unsupported;
3362
3363 pages = buf[3];
3364 for (i = 1; i <= pages; i++)
3365 if (buf[3 + i] == page)
3366 goto exit_supported;
3367 exit_unsupported:
3368 kfree(buf);
3369 return 0;
3370 exit_supported:
3371 kfree(buf);
3372 return 1;
3373 }
3374
3375 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3376 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3377 {
3378 int rc;
3379 unsigned char *buf;
3380 u8 ioaccel_status;
3381
3382 this_device->offload_config = 0;
3383 this_device->offload_enabled = 0;
3384 this_device->offload_to_be_enabled = 0;
3385
3386 buf = kzalloc(64, GFP_KERNEL);
3387 if (!buf)
3388 return;
3389 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3390 goto out;
3391 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3392 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3393 if (rc != 0)
3394 goto out;
3395
3396 #define IOACCEL_STATUS_BYTE 4
3397 #define OFFLOAD_CONFIGURED_BIT 0x01
3398 #define OFFLOAD_ENABLED_BIT 0x02
3399 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3400 this_device->offload_config =
3401 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3402 if (this_device->offload_config) {
3403 this_device->offload_enabled =
3404 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3405 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3406 this_device->offload_enabled = 0;
3407 }
3408 this_device->offload_to_be_enabled = this_device->offload_enabled;
3409 out:
3410 kfree(buf);
3411 return;
3412 }
3413
3414 /* Get the device id from inquiry page 0x83 */
3415 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3416 unsigned char *device_id, int index, int buflen)
3417 {
3418 int rc;
3419 unsigned char *buf;
3420
3421 if (buflen > 16)
3422 buflen = 16;
3423 buf = kzalloc(64, GFP_KERNEL);
3424 if (!buf)
3425 return -ENOMEM;
3426 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3427 if (rc == 0)
3428 memcpy(device_id, &buf[index], buflen);
3429
3430 kfree(buf);
3431
3432 return rc != 0;
3433 }
3434
3435 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3436 void *buf, int bufsize,
3437 int extended_response)
3438 {
3439 int rc = IO_OK;
3440 struct CommandList *c;
3441 unsigned char scsi3addr[8];
3442 struct ErrorInfo *ei;
3443
3444 c = cmd_alloc(h);
3445
3446 /* address the controller */
3447 memset(scsi3addr, 0, sizeof(scsi3addr));
3448 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3449 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3450 rc = -1;
3451 goto out;
3452 }
3453 if (extended_response)
3454 c->Request.CDB[1] = extended_response;
3455 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3456 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3457 if (rc)
3458 goto out;
3459 ei = c->err_info;
3460 if (ei->CommandStatus != 0 &&
3461 ei->CommandStatus != CMD_DATA_UNDERRUN) {
3462 hpsa_scsi_interpret_error(h, c);
3463 rc = -1;
3464 } else {
3465 struct ReportLUNdata *rld = buf;
3466
3467 if (rld->extended_response_flag != extended_response) {
3468 dev_err(&h->pdev->dev,
3469 "report luns requested format %u, got %u\n",
3470 extended_response,
3471 rld->extended_response_flag);
3472 rc = -1;
3473 }
3474 }
3475 out:
3476 cmd_free(h, c);
3477 return rc;
3478 }
3479
3480 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3481 struct ReportExtendedLUNdata *buf, int bufsize)
3482 {
3483 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3484 HPSA_REPORT_PHYS_EXTENDED);
3485 }
3486
3487 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3488 struct ReportLUNdata *buf, int bufsize)
3489 {
3490 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3491 }
3492
3493 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3494 int bus, int target, int lun)
3495 {
3496 device->bus = bus;
3497 device->target = target;
3498 device->lun = lun;
3499 }
3500
3501 /* Use VPD inquiry to get details of volume status */
3502 static int hpsa_get_volume_status(struct ctlr_info *h,
3503 unsigned char scsi3addr[])
3504 {
3505 int rc;
3506 int status;
3507 int size;
3508 unsigned char *buf;
3509
3510 buf = kzalloc(64, GFP_KERNEL);
3511 if (!buf)
3512 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3513
3514 /* Does controller have VPD for logical volume status? */
3515 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3516 goto exit_failed;
3517
3518 /* Get the size of the VPD return buffer */
3519 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3520 buf, HPSA_VPD_HEADER_SZ);
3521 if (rc != 0)
3522 goto exit_failed;
3523 size = buf[3];
3524
3525 /* Now get the whole VPD buffer */
3526 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3527 buf, size + HPSA_VPD_HEADER_SZ);
3528 if (rc != 0)
3529 goto exit_failed;
3530 status = buf[4]; /* status byte */
3531
3532 kfree(buf);
3533 return status;
3534 exit_failed:
3535 kfree(buf);
3536 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3537 }
3538
3539 /* Determine offline status of a volume.
3540 * Return either:
3541 * 0 (not offline)
3542 * 0xff (offline for unknown reasons)
3543 * # (integer code indicating one of several NOT READY states
3544 * describing why a volume is to be kept offline)
3545 */
3546 static int hpsa_volume_offline(struct ctlr_info *h,
3547 unsigned char scsi3addr[])
3548 {
3549 struct CommandList *c;
3550 unsigned char *sense;
3551 u8 sense_key, asc, ascq;
3552 int sense_len;
3553 int rc, ldstat = 0;
3554 u16 cmd_status;
3555 u8 scsi_status;
3556 #define ASC_LUN_NOT_READY 0x04
3557 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3558 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3559
3560 c = cmd_alloc(h);
3561
3562 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3563 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3564 if (rc) {
3565 cmd_free(h, c);
3566 return 0;
3567 }
3568 sense = c->err_info->SenseInfo;
3569 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3570 sense_len = sizeof(c->err_info->SenseInfo);
3571 else
3572 sense_len = c->err_info->SenseLen;
3573 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3574 cmd_status = c->err_info->CommandStatus;
3575 scsi_status = c->err_info->ScsiStatus;
3576 cmd_free(h, c);
3577 /* Is the volume 'not ready'? */
3578 if (cmd_status != CMD_TARGET_STATUS ||
3579 scsi_status != SAM_STAT_CHECK_CONDITION ||
3580 sense_key != NOT_READY ||
3581 asc != ASC_LUN_NOT_READY) {
3582 return 0;
3583 }
3584
3585 /* Determine the reason for not ready state */
3586 ldstat = hpsa_get_volume_status(h, scsi3addr);
3587
3588 /* Keep volume offline in certain cases: */
3589 switch (ldstat) {
3590 case HPSA_LV_UNDERGOING_ERASE:
3591 case HPSA_LV_NOT_AVAILABLE:
3592 case HPSA_LV_UNDERGOING_RPI:
3593 case HPSA_LV_PENDING_RPI:
3594 case HPSA_LV_ENCRYPTED_NO_KEY:
3595 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3596 case HPSA_LV_UNDERGOING_ENCRYPTION:
3597 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3598 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3599 return ldstat;
3600 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3601 /* If VPD status page isn't available,
3602 * use ASC/ASCQ to determine state
3603 */
3604 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3605 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3606 return ldstat;
3607 break;
3608 default:
3609 break;
3610 }
3611 return 0;
3612 }
3613
3614 /*
3615 * Find out if a logical device supports aborts by simply trying one.
3616 * Smart Array may claim not to support aborts on logical drives, but
3617 * if a MSA2000 * is connected, the drives on that will be presented
3618 * by the Smart Array as logical drives, and aborts may be sent to
3619 * those devices successfully. So the simplest way to find out is
3620 * to simply try an abort and see how the device responds.
3621 */
3622 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3623 unsigned char *scsi3addr)
3624 {
3625 struct CommandList *c;
3626 struct ErrorInfo *ei;
3627 int rc = 0;
3628
3629 u64 tag = (u64) -1; /* bogus tag */
3630
3631 /* Assume that physical devices support aborts */
3632 if (!is_logical_dev_addr_mode(scsi3addr))
3633 return 1;
3634
3635 c = cmd_alloc(h);
3636
3637 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3638 (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3639 /* no unmap needed here because no data xfer. */
3640 ei = c->err_info;
3641 switch (ei->CommandStatus) {
3642 case CMD_INVALID:
3643 rc = 0;
3644 break;
3645 case CMD_UNABORTABLE:
3646 case CMD_ABORT_FAILED:
3647 rc = 1;
3648 break;
3649 case CMD_TMF_STATUS:
3650 rc = hpsa_evaluate_tmf_status(h, c);
3651 break;
3652 default:
3653 rc = 0;
3654 break;
3655 }
3656 cmd_free(h, c);
3657 return rc;
3658 }
3659
3660 static void sanitize_inquiry_string(unsigned char *s, int len)
3661 {
3662 bool terminated = false;
3663
3664 for (; len > 0; (--len, ++s)) {
3665 if (*s == 0)
3666 terminated = true;
3667 if (terminated || *s < 0x20 || *s > 0x7e)
3668 *s = ' ';
3669 }
3670 }
3671
3672 static int hpsa_update_device_info(struct ctlr_info *h,
3673 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3674 unsigned char *is_OBDR_device)
3675 {
3676
3677 #define OBDR_SIG_OFFSET 43
3678 #define OBDR_TAPE_SIG "$DR-10"
3679 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3680 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3681
3682 unsigned char *inq_buff;
3683 unsigned char *obdr_sig;
3684 int rc = 0;
3685
3686 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3687 if (!inq_buff) {
3688 rc = -ENOMEM;
3689 goto bail_out;
3690 }
3691
3692 /* Do an inquiry to the device to see what it is. */
3693 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3694 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3695 /* Inquiry failed (msg printed already) */
3696 dev_err(&h->pdev->dev,
3697 "hpsa_update_device_info: inquiry failed\n");
3698 rc = -EIO;
3699 goto bail_out;
3700 }
3701
3702 sanitize_inquiry_string(&inq_buff[8], 8);
3703 sanitize_inquiry_string(&inq_buff[16], 16);
3704
3705 this_device->devtype = (inq_buff[0] & 0x1f);
3706 memcpy(this_device->scsi3addr, scsi3addr, 8);
3707 memcpy(this_device->vendor, &inq_buff[8],
3708 sizeof(this_device->vendor));
3709 memcpy(this_device->model, &inq_buff[16],
3710 sizeof(this_device->model));
3711 memset(this_device->device_id, 0,
3712 sizeof(this_device->device_id));
3713 hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3714 sizeof(this_device->device_id));
3715
3716 if (this_device->devtype == TYPE_DISK &&
3717 is_logical_dev_addr_mode(scsi3addr)) {
3718 int volume_offline;
3719
3720 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3721 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3722 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3723 volume_offline = hpsa_volume_offline(h, scsi3addr);
3724 if (volume_offline < 0 || volume_offline > 0xff)
3725 volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3726 this_device->volume_offline = volume_offline & 0xff;
3727 } else {
3728 this_device->raid_level = RAID_UNKNOWN;
3729 this_device->offload_config = 0;
3730 this_device->offload_enabled = 0;
3731 this_device->offload_to_be_enabled = 0;
3732 this_device->hba_ioaccel_enabled = 0;
3733 this_device->volume_offline = 0;
3734 this_device->queue_depth = h->nr_cmds;
3735 }
3736
3737 if (is_OBDR_device) {
3738 /* See if this is a One-Button-Disaster-Recovery device
3739 * by looking for "$DR-10" at offset 43 in inquiry data.
3740 */
3741 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3742 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3743 strncmp(obdr_sig, OBDR_TAPE_SIG,
3744 OBDR_SIG_LEN) == 0);
3745 }
3746 kfree(inq_buff);
3747 return 0;
3748
3749 bail_out:
3750 kfree(inq_buff);
3751 return rc;
3752 }
3753
3754 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3755 struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3756 {
3757 unsigned long flags;
3758 int rc, entry;
3759 /*
3760 * See if this device supports aborts. If we already know
3761 * the device, we already know if it supports aborts, otherwise
3762 * we have to find out if it supports aborts by trying one.
3763 */
3764 spin_lock_irqsave(&h->devlock, flags);
3765 rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3766 if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3767 entry >= 0 && entry < h->ndevices) {
3768 dev->supports_aborts = h->dev[entry]->supports_aborts;
3769 spin_unlock_irqrestore(&h->devlock, flags);
3770 } else {
3771 spin_unlock_irqrestore(&h->devlock, flags);
3772 dev->supports_aborts =
3773 hpsa_device_supports_aborts(h, scsi3addr);
3774 if (dev->supports_aborts < 0)
3775 dev->supports_aborts = 0;
3776 }
3777 }
3778
3779 /*
3780 * Helper function to assign bus, target, lun mapping of devices.
3781 * Logical drive target and lun are assigned at this time, but
3782 * physical device lun and target assignment are deferred (assigned
3783 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3784 */
3785 static void figure_bus_target_lun(struct ctlr_info *h,
3786 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3787 {
3788 u32 lunid = get_unaligned_le32(lunaddrbytes);
3789
3790 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3791 /* physical device, target and lun filled in later */
3792 if (is_hba_lunid(lunaddrbytes))
3793 hpsa_set_bus_target_lun(device,
3794 HPSA_HBA_BUS, 0, lunid & 0x3fff);
3795 else
3796 /* defer target, lun assignment for physical devices */
3797 hpsa_set_bus_target_lun(device,
3798 HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3799 return;
3800 }
3801 /* It's a logical device */
3802 if (device->external) {
3803 hpsa_set_bus_target_lun(device,
3804 HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3805 lunid & 0x00ff);
3806 return;
3807 }
3808 hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3809 0, lunid & 0x3fff);
3810 }
3811
3812
3813 /*
3814 * Get address of physical disk used for an ioaccel2 mode command:
3815 * 1. Extract ioaccel2 handle from the command.
3816 * 2. Find a matching ioaccel2 handle from list of physical disks.
3817 * 3. Return:
3818 * 1 and set scsi3addr to address of matching physical
3819 * 0 if no matching physical disk was found.
3820 */
3821 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3822 struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3823 {
3824 struct io_accel2_cmd *c2 =
3825 &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3826 unsigned long flags;
3827 int i;
3828
3829 spin_lock_irqsave(&h->devlock, flags);
3830 for (i = 0; i < h->ndevices; i++)
3831 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3832 memcpy(scsi3addr, h->dev[i]->scsi3addr,
3833 sizeof(h->dev[i]->scsi3addr));
3834 spin_unlock_irqrestore(&h->devlock, flags);
3835 return 1;
3836 }
3837 spin_unlock_irqrestore(&h->devlock, flags);
3838 return 0;
3839 }
3840
3841 static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3842 int i, int nphysicals, int nlocal_logicals)
3843 {
3844 /* In report logicals, local logicals are listed first,
3845 * then any externals.
3846 */
3847 int logicals_start = nphysicals + (raid_ctlr_position == 0);
3848
3849 if (i == raid_ctlr_position)
3850 return 0;
3851
3852 if (i < logicals_start)
3853 return 0;
3854
3855 /* i is in logicals range, but still within local logicals */
3856 if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3857 return 0;
3858
3859 return 1; /* it's an external lun */
3860 }
3861
3862 /*
3863 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
3864 * logdev. The number of luns in physdev and logdev are returned in
3865 * *nphysicals and *nlogicals, respectively.
3866 * Returns 0 on success, -1 otherwise.
3867 */
3868 static int hpsa_gather_lun_info(struct ctlr_info *h,
3869 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3870 struct ReportLUNdata *logdev, u32 *nlogicals)
3871 {
3872 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3873 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3874 return -1;
3875 }
3876 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3877 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3878 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3879 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3880 *nphysicals = HPSA_MAX_PHYS_LUN;
3881 }
3882 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3883 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3884 return -1;
3885 }
3886 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3887 /* Reject Logicals in excess of our max capability. */
3888 if (*nlogicals > HPSA_MAX_LUN) {
3889 dev_warn(&h->pdev->dev,
3890 "maximum logical LUNs (%d) exceeded. "
3891 "%d LUNs ignored.\n", HPSA_MAX_LUN,
3892 *nlogicals - HPSA_MAX_LUN);
3893 *nlogicals = HPSA_MAX_LUN;
3894 }
3895 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3896 dev_warn(&h->pdev->dev,
3897 "maximum logical + physical LUNs (%d) exceeded. "
3898 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3899 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3900 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3901 }
3902 return 0;
3903 }
3904
3905 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3906 int i, int nphysicals, int nlogicals,
3907 struct ReportExtendedLUNdata *physdev_list,
3908 struct ReportLUNdata *logdev_list)
3909 {
3910 /* Helper function, figure out where the LUN ID info is coming from
3911 * given index i, lists of physical and logical devices, where in
3912 * the list the raid controller is supposed to appear (first or last)
3913 */
3914
3915 int logicals_start = nphysicals + (raid_ctlr_position == 0);
3916 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3917
3918 if (i == raid_ctlr_position)
3919 return RAID_CTLR_LUNID;
3920
3921 if (i < logicals_start)
3922 return &physdev_list->LUN[i -
3923 (raid_ctlr_position == 0)].lunid[0];
3924
3925 if (i < last_device)
3926 return &logdev_list->LUN[i - nphysicals -
3927 (raid_ctlr_position == 0)][0];
3928 BUG();
3929 return NULL;
3930 }
3931
3932 /* get physical drive ioaccel handle and queue depth */
3933 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3934 struct hpsa_scsi_dev_t *dev,
3935 struct ReportExtendedLUNdata *rlep, int rle_index,
3936 struct bmic_identify_physical_device *id_phys)
3937 {
3938 int rc;
3939 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3940
3941 dev->ioaccel_handle = rle->ioaccel_handle;
3942 if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
3943 dev->hba_ioaccel_enabled = 1;
3944 memset(id_phys, 0, sizeof(*id_phys));
3945 rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
3946 GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
3947 sizeof(*id_phys));
3948 if (!rc)
3949 /* Reserve space for FW operations */
3950 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3951 #define DRIVE_QUEUE_DEPTH 7
3952 dev->queue_depth =
3953 le16_to_cpu(id_phys->current_queue_depth_limit) -
3954 DRIVE_CMDS_RESERVED_FOR_FW;
3955 else
3956 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3957 }
3958
3959 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
3960 struct ReportExtendedLUNdata *rlep, int rle_index,
3961 struct bmic_identify_physical_device *id_phys)
3962 {
3963 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3964
3965 if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
3966 this_device->hba_ioaccel_enabled = 1;
3967
3968 memcpy(&this_device->active_path_index,
3969 &id_phys->active_path_number,
3970 sizeof(this_device->active_path_index));
3971 memcpy(&this_device->path_map,
3972 &id_phys->redundant_path_present_map,
3973 sizeof(this_device->path_map));
3974 memcpy(&this_device->box,
3975 &id_phys->alternate_paths_phys_box_on_port,
3976 sizeof(this_device->box));
3977 memcpy(&this_device->phys_connector,
3978 &id_phys->alternate_paths_phys_connector,
3979 sizeof(this_device->phys_connector));
3980 memcpy(&this_device->bay,
3981 &id_phys->phys_bay_in_box,
3982 sizeof(this_device->bay));
3983 }
3984
3985 /* get number of local logical disks. */
3986 static int hpsa_set_local_logical_count(struct ctlr_info *h,
3987 struct bmic_identify_controller *id_ctlr,
3988 u32 *nlocals)
3989 {
3990 int rc;
3991
3992 if (!id_ctlr) {
3993 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
3994 __func__);
3995 return -ENOMEM;
3996 }
3997 memset(id_ctlr, 0, sizeof(*id_ctlr));
3998 rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
3999 if (!rc)
4000 if (id_ctlr->configured_logical_drive_count < 256)
4001 *nlocals = id_ctlr->configured_logical_drive_count;
4002 else
4003 *nlocals = le16_to_cpu(
4004 id_ctlr->extended_logical_unit_count);
4005 else
4006 *nlocals = -1;
4007 return rc;
4008 }
4009
4010
4011 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4012 {
4013 /* the idea here is we could get notified
4014 * that some devices have changed, so we do a report
4015 * physical luns and report logical luns cmd, and adjust
4016 * our list of devices accordingly.
4017 *
4018 * The scsi3addr's of devices won't change so long as the
4019 * adapter is not reset. That means we can rescan and
4020 * tell which devices we already know about, vs. new
4021 * devices, vs. disappearing devices.
4022 */
4023 struct ReportExtendedLUNdata *physdev_list = NULL;
4024 struct ReportLUNdata *logdev_list = NULL;
4025 struct bmic_identify_physical_device *id_phys = NULL;
4026 struct bmic_identify_controller *id_ctlr = NULL;
4027 u32 nphysicals = 0;
4028 u32 nlogicals = 0;
4029 u32 nlocal_logicals = 0;
4030 u32 ndev_allocated = 0;
4031 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4032 int ncurrent = 0;
4033 int i, n_ext_target_devs, ndevs_to_allocate;
4034 int raid_ctlr_position;
4035 bool physical_device;
4036 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4037
4038 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4039 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4040 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4041 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4042 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4043 id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4044
4045 if (!currentsd || !physdev_list || !logdev_list ||
4046 !tmpdevice || !id_phys || !id_ctlr) {
4047 dev_err(&h->pdev->dev, "out of memory\n");
4048 goto out;
4049 }
4050 memset(lunzerobits, 0, sizeof(lunzerobits));
4051
4052 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4053
4054 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4055 logdev_list, &nlogicals)) {
4056 h->drv_req_rescan = 1;
4057 goto out;
4058 }
4059
4060 /* Set number of local logicals (non PTRAID) */
4061 if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4062 dev_warn(&h->pdev->dev,
4063 "%s: Can't determine number of local logical devices.\n",
4064 __func__);
4065 }
4066
4067 /* We might see up to the maximum number of logical and physical disks
4068 * plus external target devices, and a device for the local RAID
4069 * controller.
4070 */
4071 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4072
4073 /* Allocate the per device structures */
4074 for (i = 0; i < ndevs_to_allocate; i++) {
4075 if (i >= HPSA_MAX_DEVICES) {
4076 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4077 " %d devices ignored.\n", HPSA_MAX_DEVICES,
4078 ndevs_to_allocate - HPSA_MAX_DEVICES);
4079 break;
4080 }
4081
4082 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4083 if (!currentsd[i]) {
4084 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
4085 __FILE__, __LINE__);
4086 h->drv_req_rescan = 1;
4087 goto out;
4088 }
4089 ndev_allocated++;
4090 }
4091
4092 if (is_scsi_rev_5(h))
4093 raid_ctlr_position = 0;
4094 else
4095 raid_ctlr_position = nphysicals + nlogicals;
4096
4097 /* adjust our table of devices */
4098 n_ext_target_devs = 0;
4099 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4100 u8 *lunaddrbytes, is_OBDR = 0;
4101 int rc = 0;
4102 int phys_dev_index = i - (raid_ctlr_position == 0);
4103
4104 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4105
4106 /* Figure out where the LUN ID info is coming from */
4107 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4108 i, nphysicals, nlogicals, physdev_list, logdev_list);
4109
4110 /* skip masked non-disk devices */
4111 if (MASKED_DEVICE(lunaddrbytes) && physical_device &&
4112 (physdev_list->LUN[phys_dev_index].device_type != 0x06) &&
4113 (physdev_list->LUN[phys_dev_index].device_flags & 0x01))
4114 continue;
4115
4116 /* Get device type, vendor, model, device id */
4117 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4118 &is_OBDR);
4119 if (rc == -ENOMEM) {
4120 dev_warn(&h->pdev->dev,
4121 "Out of memory, rescan deferred.\n");
4122 h->drv_req_rescan = 1;
4123 goto out;
4124 }
4125 if (rc) {
4126 dev_warn(&h->pdev->dev,
4127 "Inquiry failed, skipping device.\n");
4128 continue;
4129 }
4130
4131 /* Determine if this is a lun from an external target array */
4132 tmpdevice->external =
4133 figure_external_status(h, raid_ctlr_position, i,
4134 nphysicals, nlocal_logicals);
4135
4136 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4137 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4138 this_device = currentsd[ncurrent];
4139
4140 /* Turn on discovery_polling if there are ext target devices.
4141 * Event-based change notification is unreliable for those.
4142 */
4143 if (!h->discovery_polling) {
4144 if (tmpdevice->external) {
4145 h->discovery_polling = 1;
4146 dev_info(&h->pdev->dev,
4147 "External target, activate discovery polling.\n");
4148 }
4149 }
4150
4151
4152 *this_device = *tmpdevice;
4153 this_device->physical_device = physical_device;
4154
4155 /*
4156 * Expose all devices except for physical devices that
4157 * are masked.
4158 */
4159 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4160 this_device->expose_device = 0;
4161 else
4162 this_device->expose_device = 1;
4163
4164
4165 /*
4166 * Get the SAS address for physical devices that are exposed.
4167 */
4168 if (this_device->physical_device && this_device->expose_device)
4169 hpsa_get_sas_address(h, lunaddrbytes, this_device);
4170
4171 switch (this_device->devtype) {
4172 case TYPE_ROM:
4173 /* We don't *really* support actual CD-ROM devices,
4174 * just "One Button Disaster Recovery" tape drive
4175 * which temporarily pretends to be a CD-ROM drive.
4176 * So we check that the device is really an OBDR tape
4177 * device by checking for "$DR-10" in bytes 43-48 of
4178 * the inquiry data.
4179 */
4180 if (is_OBDR)
4181 ncurrent++;
4182 break;
4183 case TYPE_DISK:
4184 if (this_device->physical_device) {
4185 /* The disk is in HBA mode. */
4186 /* Never use RAID mapper in HBA mode. */
4187 this_device->offload_enabled = 0;
4188 hpsa_get_ioaccel_drive_info(h, this_device,
4189 physdev_list, phys_dev_index, id_phys);
4190 hpsa_get_path_info(this_device,
4191 physdev_list, phys_dev_index, id_phys);
4192 }
4193 ncurrent++;
4194 break;
4195 case TYPE_TAPE:
4196 case TYPE_MEDIUM_CHANGER:
4197 ncurrent++;
4198 break;
4199 case TYPE_ENCLOSURE:
4200 hpsa_get_enclosure_info(h, lunaddrbytes,
4201 physdev_list, phys_dev_index,
4202 this_device);
4203 ncurrent++;
4204 break;
4205 case TYPE_RAID:
4206 /* Only present the Smartarray HBA as a RAID controller.
4207 * If it's a RAID controller other than the HBA itself
4208 * (an external RAID controller, MSA500 or similar)
4209 * don't present it.
4210 */
4211 if (!is_hba_lunid(lunaddrbytes))
4212 break;
4213 ncurrent++;
4214 break;
4215 default:
4216 break;
4217 }
4218 if (ncurrent >= HPSA_MAX_DEVICES)
4219 break;
4220 }
4221
4222 if (h->sas_host == NULL) {
4223 int rc = 0;
4224
4225 rc = hpsa_add_sas_host(h);
4226 if (rc) {
4227 dev_warn(&h->pdev->dev,
4228 "Could not add sas host %d\n", rc);
4229 goto out;
4230 }
4231 }
4232
4233 adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4234 out:
4235 kfree(tmpdevice);
4236 for (i = 0; i < ndev_allocated; i++)
4237 kfree(currentsd[i]);
4238 kfree(currentsd);
4239 kfree(physdev_list);
4240 kfree(logdev_list);
4241 kfree(id_ctlr);
4242 kfree(id_phys);
4243 }
4244
4245 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4246 struct scatterlist *sg)
4247 {
4248 u64 addr64 = (u64) sg_dma_address(sg);
4249 unsigned int len = sg_dma_len(sg);
4250
4251 desc->Addr = cpu_to_le64(addr64);
4252 desc->Len = cpu_to_le32(len);
4253 desc->Ext = 0;
4254 }
4255
4256 /*
4257 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4258 * dma mapping and fills in the scatter gather entries of the
4259 * hpsa command, cp.
4260 */
4261 static int hpsa_scatter_gather(struct ctlr_info *h,
4262 struct CommandList *cp,
4263 struct scsi_cmnd *cmd)
4264 {
4265 struct scatterlist *sg;
4266 int use_sg, i, sg_limit, chained, last_sg;
4267 struct SGDescriptor *curr_sg;
4268
4269 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4270
4271 use_sg = scsi_dma_map(cmd);
4272 if (use_sg < 0)
4273 return use_sg;
4274
4275 if (!use_sg)
4276 goto sglist_finished;
4277
4278 /*
4279 * If the number of entries is greater than the max for a single list,
4280 * then we have a chained list; we will set up all but one entry in the
4281 * first list (the last entry is saved for link information);
4282 * otherwise, we don't have a chained list and we'll set up at each of
4283 * the entries in the one list.
4284 */
4285 curr_sg = cp->SG;
4286 chained = use_sg > h->max_cmd_sg_entries;
4287 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4288 last_sg = scsi_sg_count(cmd) - 1;
4289 scsi_for_each_sg(cmd, sg, sg_limit, i) {
4290 hpsa_set_sg_descriptor(curr_sg, sg);
4291 curr_sg++;
4292 }
4293
4294 if (chained) {
4295 /*
4296 * Continue with the chained list. Set curr_sg to the chained
4297 * list. Modify the limit to the total count less the entries
4298 * we've already set up. Resume the scan at the list entry
4299 * where the previous loop left off.
4300 */
4301 curr_sg = h->cmd_sg_list[cp->cmdindex];
4302 sg_limit = use_sg - sg_limit;
4303 for_each_sg(sg, sg, sg_limit, i) {
4304 hpsa_set_sg_descriptor(curr_sg, sg);
4305 curr_sg++;
4306 }
4307 }
4308
4309 /* Back the pointer up to the last entry and mark it as "last". */
4310 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4311
4312 if (use_sg + chained > h->maxSG)
4313 h->maxSG = use_sg + chained;
4314
4315 if (chained) {
4316 cp->Header.SGList = h->max_cmd_sg_entries;
4317 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4318 if (hpsa_map_sg_chain_block(h, cp)) {
4319 scsi_dma_unmap(cmd);
4320 return -1;
4321 }
4322 return 0;
4323 }
4324
4325 sglist_finished:
4326
4327 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
4328 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4329 return 0;
4330 }
4331
4332 #define IO_ACCEL_INELIGIBLE (1)
4333 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4334 {
4335 int is_write = 0;
4336 u32 block;
4337 u32 block_cnt;
4338
4339 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4340 switch (cdb[0]) {
4341 case WRITE_6:
4342 case WRITE_12:
4343 is_write = 1;
4344 case READ_6:
4345 case READ_12:
4346 if (*cdb_len == 6) {
4347 block = get_unaligned_be16(&cdb[2]);
4348 block_cnt = cdb[4];
4349 if (block_cnt == 0)
4350 block_cnt = 256;
4351 } else {
4352 BUG_ON(*cdb_len != 12);
4353 block = get_unaligned_be32(&cdb[2]);
4354 block_cnt = get_unaligned_be32(&cdb[6]);
4355 }
4356 if (block_cnt > 0xffff)
4357 return IO_ACCEL_INELIGIBLE;
4358
4359 cdb[0] = is_write ? WRITE_10 : READ_10;
4360 cdb[1] = 0;
4361 cdb[2] = (u8) (block >> 24);
4362 cdb[3] = (u8) (block >> 16);
4363 cdb[4] = (u8) (block >> 8);
4364 cdb[5] = (u8) (block);
4365 cdb[6] = 0;
4366 cdb[7] = (u8) (block_cnt >> 8);
4367 cdb[8] = (u8) (block_cnt);
4368 cdb[9] = 0;
4369 *cdb_len = 10;
4370 break;
4371 }
4372 return 0;
4373 }
4374
4375 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4376 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4377 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4378 {
4379 struct scsi_cmnd *cmd = c->scsi_cmd;
4380 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4381 unsigned int len;
4382 unsigned int total_len = 0;
4383 struct scatterlist *sg;
4384 u64 addr64;
4385 int use_sg, i;
4386 struct SGDescriptor *curr_sg;
4387 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4388
4389 /* TODO: implement chaining support */
4390 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4391 atomic_dec(&phys_disk->ioaccel_cmds_out);
4392 return IO_ACCEL_INELIGIBLE;
4393 }
4394
4395 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4396
4397 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4398 atomic_dec(&phys_disk->ioaccel_cmds_out);
4399 return IO_ACCEL_INELIGIBLE;
4400 }
4401
4402 c->cmd_type = CMD_IOACCEL1;
4403
4404 /* Adjust the DMA address to point to the accelerated command buffer */
4405 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4406 (c->cmdindex * sizeof(*cp));
4407 BUG_ON(c->busaddr & 0x0000007F);
4408
4409 use_sg = scsi_dma_map(cmd);
4410 if (use_sg < 0) {
4411 atomic_dec(&phys_disk->ioaccel_cmds_out);
4412 return use_sg;
4413 }
4414
4415 if (use_sg) {
4416 curr_sg = cp->SG;
4417 scsi_for_each_sg(cmd, sg, use_sg, i) {
4418 addr64 = (u64) sg_dma_address(sg);
4419 len = sg_dma_len(sg);
4420 total_len += len;
4421 curr_sg->Addr = cpu_to_le64(addr64);
4422 curr_sg->Len = cpu_to_le32(len);
4423 curr_sg->Ext = cpu_to_le32(0);
4424 curr_sg++;
4425 }
4426 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4427
4428 switch (cmd->sc_data_direction) {
4429 case DMA_TO_DEVICE:
4430 control |= IOACCEL1_CONTROL_DATA_OUT;
4431 break;
4432 case DMA_FROM_DEVICE:
4433 control |= IOACCEL1_CONTROL_DATA_IN;
4434 break;
4435 case DMA_NONE:
4436 control |= IOACCEL1_CONTROL_NODATAXFER;
4437 break;
4438 default:
4439 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4440 cmd->sc_data_direction);
4441 BUG();
4442 break;
4443 }
4444 } else {
4445 control |= IOACCEL1_CONTROL_NODATAXFER;
4446 }
4447
4448 c->Header.SGList = use_sg;
4449 /* Fill out the command structure to submit */
4450 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4451 cp->transfer_len = cpu_to_le32(total_len);
4452 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4453 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4454 cp->control = cpu_to_le32(control);
4455 memcpy(cp->CDB, cdb, cdb_len);
4456 memcpy(cp->CISS_LUN, scsi3addr, 8);
4457 /* Tag was already set at init time. */
4458 enqueue_cmd_and_start_io(h, c);
4459 return 0;
4460 }
4461
4462 /*
4463 * Queue a command directly to a device behind the controller using the
4464 * I/O accelerator path.
4465 */
4466 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4467 struct CommandList *c)
4468 {
4469 struct scsi_cmnd *cmd = c->scsi_cmd;
4470 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4471
4472 c->phys_disk = dev;
4473
4474 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4475 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4476 }
4477
4478 /*
4479 * Set encryption parameters for the ioaccel2 request
4480 */
4481 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4482 struct CommandList *c, struct io_accel2_cmd *cp)
4483 {
4484 struct scsi_cmnd *cmd = c->scsi_cmd;
4485 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4486 struct raid_map_data *map = &dev->raid_map;
4487 u64 first_block;
4488
4489 /* Are we doing encryption on this device */
4490 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4491 return;
4492 /* Set the data encryption key index. */
4493 cp->dekindex = map->dekindex;
4494
4495 /* Set the encryption enable flag, encoded into direction field. */
4496 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4497
4498 /* Set encryption tweak values based on logical block address
4499 * If block size is 512, tweak value is LBA.
4500 * For other block sizes, tweak is (LBA * block size)/ 512)
4501 */
4502 switch (cmd->cmnd[0]) {
4503 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4504 case WRITE_6:
4505 case READ_6:
4506 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4507 break;
4508 case WRITE_10:
4509 case READ_10:
4510 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4511 case WRITE_12:
4512 case READ_12:
4513 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4514 break;
4515 case WRITE_16:
4516 case READ_16:
4517 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4518 break;
4519 default:
4520 dev_err(&h->pdev->dev,
4521 "ERROR: %s: size (0x%x) not supported for encryption\n",
4522 __func__, cmd->cmnd[0]);
4523 BUG();
4524 break;
4525 }
4526
4527 if (le32_to_cpu(map->volume_blk_size) != 512)
4528 first_block = first_block *
4529 le32_to_cpu(map->volume_blk_size)/512;
4530
4531 cp->tweak_lower = cpu_to_le32(first_block);
4532 cp->tweak_upper = cpu_to_le32(first_block >> 32);
4533 }
4534
4535 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4536 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4537 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4538 {
4539 struct scsi_cmnd *cmd = c->scsi_cmd;
4540 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4541 struct ioaccel2_sg_element *curr_sg;
4542 int use_sg, i;
4543 struct scatterlist *sg;
4544 u64 addr64;
4545 u32 len;
4546 u32 total_len = 0;
4547
4548 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4549
4550 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4551 atomic_dec(&phys_disk->ioaccel_cmds_out);
4552 return IO_ACCEL_INELIGIBLE;
4553 }
4554
4555 c->cmd_type = CMD_IOACCEL2;
4556 /* Adjust the DMA address to point to the accelerated command buffer */
4557 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4558 (c->cmdindex * sizeof(*cp));
4559 BUG_ON(c->busaddr & 0x0000007F);
4560
4561 memset(cp, 0, sizeof(*cp));
4562 cp->IU_type = IOACCEL2_IU_TYPE;
4563
4564 use_sg = scsi_dma_map(cmd);
4565 if (use_sg < 0) {
4566 atomic_dec(&phys_disk->ioaccel_cmds_out);
4567 return use_sg;
4568 }
4569
4570 if (use_sg) {
4571 curr_sg = cp->sg;
4572 if (use_sg > h->ioaccel_maxsg) {
4573 addr64 = le64_to_cpu(
4574 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4575 curr_sg->address = cpu_to_le64(addr64);
4576 curr_sg->length = 0;
4577 curr_sg->reserved[0] = 0;
4578 curr_sg->reserved[1] = 0;
4579 curr_sg->reserved[2] = 0;
4580 curr_sg->chain_indicator = 0x80;
4581
4582 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4583 }
4584 scsi_for_each_sg(cmd, sg, use_sg, i) {
4585 addr64 = (u64) sg_dma_address(sg);
4586 len = sg_dma_len(sg);
4587 total_len += len;
4588 curr_sg->address = cpu_to_le64(addr64);
4589 curr_sg->length = cpu_to_le32(len);
4590 curr_sg->reserved[0] = 0;
4591 curr_sg->reserved[1] = 0;
4592 curr_sg->reserved[2] = 0;
4593 curr_sg->chain_indicator = 0;
4594 curr_sg++;
4595 }
4596
4597 switch (cmd->sc_data_direction) {
4598 case DMA_TO_DEVICE:
4599 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4600 cp->direction |= IOACCEL2_DIR_DATA_OUT;
4601 break;
4602 case DMA_FROM_DEVICE:
4603 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4604 cp->direction |= IOACCEL2_DIR_DATA_IN;
4605 break;
4606 case DMA_NONE:
4607 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4608 cp->direction |= IOACCEL2_DIR_NO_DATA;
4609 break;
4610 default:
4611 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4612 cmd->sc_data_direction);
4613 BUG();
4614 break;
4615 }
4616 } else {
4617 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4618 cp->direction |= IOACCEL2_DIR_NO_DATA;
4619 }
4620
4621 /* Set encryption parameters, if necessary */
4622 set_encrypt_ioaccel2(h, c, cp);
4623
4624 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4625 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4626 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4627
4628 cp->data_len = cpu_to_le32(total_len);
4629 cp->err_ptr = cpu_to_le64(c->busaddr +
4630 offsetof(struct io_accel2_cmd, error_data));
4631 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4632
4633 /* fill in sg elements */
4634 if (use_sg > h->ioaccel_maxsg) {
4635 cp->sg_count = 1;
4636 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4637 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4638 atomic_dec(&phys_disk->ioaccel_cmds_out);
4639 scsi_dma_unmap(cmd);
4640 return -1;
4641 }
4642 } else
4643 cp->sg_count = (u8) use_sg;
4644
4645 enqueue_cmd_and_start_io(h, c);
4646 return 0;
4647 }
4648
4649 /*
4650 * Queue a command to the correct I/O accelerator path.
4651 */
4652 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4653 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4654 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4655 {
4656 /* Try to honor the device's queue depth */
4657 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4658 phys_disk->queue_depth) {
4659 atomic_dec(&phys_disk->ioaccel_cmds_out);
4660 return IO_ACCEL_INELIGIBLE;
4661 }
4662 if (h->transMethod & CFGTBL_Trans_io_accel1)
4663 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4664 cdb, cdb_len, scsi3addr,
4665 phys_disk);
4666 else
4667 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4668 cdb, cdb_len, scsi3addr,
4669 phys_disk);
4670 }
4671
4672 static void raid_map_helper(struct raid_map_data *map,
4673 int offload_to_mirror, u32 *map_index, u32 *current_group)
4674 {
4675 if (offload_to_mirror == 0) {
4676 /* use physical disk in the first mirrored group. */
4677 *map_index %= le16_to_cpu(map->data_disks_per_row);
4678 return;
4679 }
4680 do {
4681 /* determine mirror group that *map_index indicates */
4682 *current_group = *map_index /
4683 le16_to_cpu(map->data_disks_per_row);
4684 if (offload_to_mirror == *current_group)
4685 continue;
4686 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4687 /* select map index from next group */
4688 *map_index += le16_to_cpu(map->data_disks_per_row);
4689 (*current_group)++;
4690 } else {
4691 /* select map index from first group */
4692 *map_index %= le16_to_cpu(map->data_disks_per_row);
4693 *current_group = 0;
4694 }
4695 } while (offload_to_mirror != *current_group);
4696 }
4697
4698 /*
4699 * Attempt to perform offload RAID mapping for a logical volume I/O.
4700 */
4701 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4702 struct CommandList *c)
4703 {
4704 struct scsi_cmnd *cmd = c->scsi_cmd;
4705 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4706 struct raid_map_data *map = &dev->raid_map;
4707 struct raid_map_disk_data *dd = &map->data[0];
4708 int is_write = 0;
4709 u32 map_index;
4710 u64 first_block, last_block;
4711 u32 block_cnt;
4712 u32 blocks_per_row;
4713 u64 first_row, last_row;
4714 u32 first_row_offset, last_row_offset;
4715 u32 first_column, last_column;
4716 u64 r0_first_row, r0_last_row;
4717 u32 r5or6_blocks_per_row;
4718 u64 r5or6_first_row, r5or6_last_row;
4719 u32 r5or6_first_row_offset, r5or6_last_row_offset;
4720 u32 r5or6_first_column, r5or6_last_column;
4721 u32 total_disks_per_row;
4722 u32 stripesize;
4723 u32 first_group, last_group, current_group;
4724 u32 map_row;
4725 u32 disk_handle;
4726 u64 disk_block;
4727 u32 disk_block_cnt;
4728 u8 cdb[16];
4729 u8 cdb_len;
4730 u16 strip_size;
4731 #if BITS_PER_LONG == 32
4732 u64 tmpdiv;
4733 #endif
4734 int offload_to_mirror;
4735
4736 /* check for valid opcode, get LBA and block count */
4737 switch (cmd->cmnd[0]) {
4738 case WRITE_6:
4739 is_write = 1;
4740 case READ_6:
4741 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4742 block_cnt = cmd->cmnd[4];
4743 if (block_cnt == 0)
4744 block_cnt = 256;
4745 break;
4746 case WRITE_10:
4747 is_write = 1;
4748 case READ_10:
4749 first_block =
4750 (((u64) cmd->cmnd[2]) << 24) |
4751 (((u64) cmd->cmnd[3]) << 16) |
4752 (((u64) cmd->cmnd[4]) << 8) |
4753 cmd->cmnd[5];
4754 block_cnt =
4755 (((u32) cmd->cmnd[7]) << 8) |
4756 cmd->cmnd[8];
4757 break;
4758 case WRITE_12:
4759 is_write = 1;
4760 case READ_12:
4761 first_block =
4762 (((u64) cmd->cmnd[2]) << 24) |
4763 (((u64) cmd->cmnd[3]) << 16) |
4764 (((u64) cmd->cmnd[4]) << 8) |
4765 cmd->cmnd[5];
4766 block_cnt =
4767 (((u32) cmd->cmnd[6]) << 24) |
4768 (((u32) cmd->cmnd[7]) << 16) |
4769 (((u32) cmd->cmnd[8]) << 8) |
4770 cmd->cmnd[9];
4771 break;
4772 case WRITE_16:
4773 is_write = 1;
4774 case READ_16:
4775 first_block =
4776 (((u64) cmd->cmnd[2]) << 56) |
4777 (((u64) cmd->cmnd[3]) << 48) |
4778 (((u64) cmd->cmnd[4]) << 40) |
4779 (((u64) cmd->cmnd[5]) << 32) |
4780 (((u64) cmd->cmnd[6]) << 24) |
4781 (((u64) cmd->cmnd[7]) << 16) |
4782 (((u64) cmd->cmnd[8]) << 8) |
4783 cmd->cmnd[9];
4784 block_cnt =
4785 (((u32) cmd->cmnd[10]) << 24) |
4786 (((u32) cmd->cmnd[11]) << 16) |
4787 (((u32) cmd->cmnd[12]) << 8) |
4788 cmd->cmnd[13];
4789 break;
4790 default:
4791 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4792 }
4793 last_block = first_block + block_cnt - 1;
4794
4795 /* check for write to non-RAID-0 */
4796 if (is_write && dev->raid_level != 0)
4797 return IO_ACCEL_INELIGIBLE;
4798
4799 /* check for invalid block or wraparound */
4800 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4801 last_block < first_block)
4802 return IO_ACCEL_INELIGIBLE;
4803
4804 /* calculate stripe information for the request */
4805 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4806 le16_to_cpu(map->strip_size);
4807 strip_size = le16_to_cpu(map->strip_size);
4808 #if BITS_PER_LONG == 32
4809 tmpdiv = first_block;
4810 (void) do_div(tmpdiv, blocks_per_row);
4811 first_row = tmpdiv;
4812 tmpdiv = last_block;
4813 (void) do_div(tmpdiv, blocks_per_row);
4814 last_row = tmpdiv;
4815 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4816 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4817 tmpdiv = first_row_offset;
4818 (void) do_div(tmpdiv, strip_size);
4819 first_column = tmpdiv;
4820 tmpdiv = last_row_offset;
4821 (void) do_div(tmpdiv, strip_size);
4822 last_column = tmpdiv;
4823 #else
4824 first_row = first_block / blocks_per_row;
4825 last_row = last_block / blocks_per_row;
4826 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4827 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4828 first_column = first_row_offset / strip_size;
4829 last_column = last_row_offset / strip_size;
4830 #endif
4831
4832 /* if this isn't a single row/column then give to the controller */
4833 if ((first_row != last_row) || (first_column != last_column))
4834 return IO_ACCEL_INELIGIBLE;
4835
4836 /* proceeding with driver mapping */
4837 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4838 le16_to_cpu(map->metadata_disks_per_row);
4839 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4840 le16_to_cpu(map->row_cnt);
4841 map_index = (map_row * total_disks_per_row) + first_column;
4842
4843 switch (dev->raid_level) {
4844 case HPSA_RAID_0:
4845 break; /* nothing special to do */
4846 case HPSA_RAID_1:
4847 /* Handles load balance across RAID 1 members.
4848 * (2-drive R1 and R10 with even # of drives.)
4849 * Appropriate for SSDs, not optimal for HDDs
4850 */
4851 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4852 if (dev->offload_to_mirror)
4853 map_index += le16_to_cpu(map->data_disks_per_row);
4854 dev->offload_to_mirror = !dev->offload_to_mirror;
4855 break;
4856 case HPSA_RAID_ADM:
4857 /* Handles N-way mirrors (R1-ADM)
4858 * and R10 with # of drives divisible by 3.)
4859 */
4860 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4861
4862 offload_to_mirror = dev->offload_to_mirror;
4863 raid_map_helper(map, offload_to_mirror,
4864 &map_index, &current_group);
4865 /* set mirror group to use next time */
4866 offload_to_mirror =
4867 (offload_to_mirror >=
4868 le16_to_cpu(map->layout_map_count) - 1)
4869 ? 0 : offload_to_mirror + 1;
4870 dev->offload_to_mirror = offload_to_mirror;
4871 /* Avoid direct use of dev->offload_to_mirror within this
4872 * function since multiple threads might simultaneously
4873 * increment it beyond the range of dev->layout_map_count -1.
4874 */
4875 break;
4876 case HPSA_RAID_5:
4877 case HPSA_RAID_6:
4878 if (le16_to_cpu(map->layout_map_count) <= 1)
4879 break;
4880
4881 /* Verify first and last block are in same RAID group */
4882 r5or6_blocks_per_row =
4883 le16_to_cpu(map->strip_size) *
4884 le16_to_cpu(map->data_disks_per_row);
4885 BUG_ON(r5or6_blocks_per_row == 0);
4886 stripesize = r5or6_blocks_per_row *
4887 le16_to_cpu(map->layout_map_count);
4888 #if BITS_PER_LONG == 32
4889 tmpdiv = first_block;
4890 first_group = do_div(tmpdiv, stripesize);
4891 tmpdiv = first_group;
4892 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4893 first_group = tmpdiv;
4894 tmpdiv = last_block;
4895 last_group = do_div(tmpdiv, stripesize);
4896 tmpdiv = last_group;
4897 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4898 last_group = tmpdiv;
4899 #else
4900 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4901 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
4902 #endif
4903 if (first_group != last_group)
4904 return IO_ACCEL_INELIGIBLE;
4905
4906 /* Verify request is in a single row of RAID 5/6 */
4907 #if BITS_PER_LONG == 32
4908 tmpdiv = first_block;
4909 (void) do_div(tmpdiv, stripesize);
4910 first_row = r5or6_first_row = r0_first_row = tmpdiv;
4911 tmpdiv = last_block;
4912 (void) do_div(tmpdiv, stripesize);
4913 r5or6_last_row = r0_last_row = tmpdiv;
4914 #else
4915 first_row = r5or6_first_row = r0_first_row =
4916 first_block / stripesize;
4917 r5or6_last_row = r0_last_row = last_block / stripesize;
4918 #endif
4919 if (r5or6_first_row != r5or6_last_row)
4920 return IO_ACCEL_INELIGIBLE;
4921
4922
4923 /* Verify request is in a single column */
4924 #if BITS_PER_LONG == 32
4925 tmpdiv = first_block;
4926 first_row_offset = do_div(tmpdiv, stripesize);
4927 tmpdiv = first_row_offset;
4928 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4929 r5or6_first_row_offset = first_row_offset;
4930 tmpdiv = last_block;
4931 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4932 tmpdiv = r5or6_last_row_offset;
4933 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4934 tmpdiv = r5or6_first_row_offset;
4935 (void) do_div(tmpdiv, map->strip_size);
4936 first_column = r5or6_first_column = tmpdiv;
4937 tmpdiv = r5or6_last_row_offset;
4938 (void) do_div(tmpdiv, map->strip_size);
4939 r5or6_last_column = tmpdiv;
4940 #else
4941 first_row_offset = r5or6_first_row_offset =
4942 (u32)((first_block % stripesize) %
4943 r5or6_blocks_per_row);
4944
4945 r5or6_last_row_offset =
4946 (u32)((last_block % stripesize) %
4947 r5or6_blocks_per_row);
4948
4949 first_column = r5or6_first_column =
4950 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4951 r5or6_last_column =
4952 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4953 #endif
4954 if (r5or6_first_column != r5or6_last_column)
4955 return IO_ACCEL_INELIGIBLE;
4956
4957 /* Request is eligible */
4958 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4959 le16_to_cpu(map->row_cnt);
4960
4961 map_index = (first_group *
4962 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4963 (map_row * total_disks_per_row) + first_column;
4964 break;
4965 default:
4966 return IO_ACCEL_INELIGIBLE;
4967 }
4968
4969 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4970 return IO_ACCEL_INELIGIBLE;
4971
4972 c->phys_disk = dev->phys_disk[map_index];
4973
4974 disk_handle = dd[map_index].ioaccel_handle;
4975 disk_block = le64_to_cpu(map->disk_starting_blk) +
4976 first_row * le16_to_cpu(map->strip_size) +
4977 (first_row_offset - first_column *
4978 le16_to_cpu(map->strip_size));
4979 disk_block_cnt = block_cnt;
4980
4981 /* handle differing logical/physical block sizes */
4982 if (map->phys_blk_shift) {
4983 disk_block <<= map->phys_blk_shift;
4984 disk_block_cnt <<= map->phys_blk_shift;
4985 }
4986 BUG_ON(disk_block_cnt > 0xffff);
4987
4988 /* build the new CDB for the physical disk I/O */
4989 if (disk_block > 0xffffffff) {
4990 cdb[0] = is_write ? WRITE_16 : READ_16;
4991 cdb[1] = 0;
4992 cdb[2] = (u8) (disk_block >> 56);
4993 cdb[3] = (u8) (disk_block >> 48);
4994 cdb[4] = (u8) (disk_block >> 40);
4995 cdb[5] = (u8) (disk_block >> 32);
4996 cdb[6] = (u8) (disk_block >> 24);
4997 cdb[7] = (u8) (disk_block >> 16);
4998 cdb[8] = (u8) (disk_block >> 8);
4999 cdb[9] = (u8) (disk_block);
5000 cdb[10] = (u8) (disk_block_cnt >> 24);
5001 cdb[11] = (u8) (disk_block_cnt >> 16);
5002 cdb[12] = (u8) (disk_block_cnt >> 8);
5003 cdb[13] = (u8) (disk_block_cnt);
5004 cdb[14] = 0;
5005 cdb[15] = 0;
5006 cdb_len = 16;
5007 } else {
5008 cdb[0] = is_write ? WRITE_10 : READ_10;
5009 cdb[1] = 0;
5010 cdb[2] = (u8) (disk_block >> 24);
5011 cdb[3] = (u8) (disk_block >> 16);
5012 cdb[4] = (u8) (disk_block >> 8);
5013 cdb[5] = (u8) (disk_block);
5014 cdb[6] = 0;
5015 cdb[7] = (u8) (disk_block_cnt >> 8);
5016 cdb[8] = (u8) (disk_block_cnt);
5017 cdb[9] = 0;
5018 cdb_len = 10;
5019 }
5020 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5021 dev->scsi3addr,
5022 dev->phys_disk[map_index]);
5023 }
5024
5025 /*
5026 * Submit commands down the "normal" RAID stack path
5027 * All callers to hpsa_ciss_submit must check lockup_detected
5028 * beforehand, before (opt.) and after calling cmd_alloc
5029 */
5030 static int hpsa_ciss_submit(struct ctlr_info *h,
5031 struct CommandList *c, struct scsi_cmnd *cmd,
5032 unsigned char scsi3addr[])
5033 {
5034 cmd->host_scribble = (unsigned char *) c;
5035 c->cmd_type = CMD_SCSI;
5036 c->scsi_cmd = cmd;
5037 c->Header.ReplyQueue = 0; /* unused in simple mode */
5038 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5039 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5040
5041 /* Fill in the request block... */
5042
5043 c->Request.Timeout = 0;
5044 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5045 c->Request.CDBLen = cmd->cmd_len;
5046 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5047 switch (cmd->sc_data_direction) {
5048 case DMA_TO_DEVICE:
5049 c->Request.type_attr_dir =
5050 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5051 break;
5052 case DMA_FROM_DEVICE:
5053 c->Request.type_attr_dir =
5054 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5055 break;
5056 case DMA_NONE:
5057 c->Request.type_attr_dir =
5058 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5059 break;
5060 case DMA_BIDIRECTIONAL:
5061 /* This can happen if a buggy application does a scsi passthru
5062 * and sets both inlen and outlen to non-zero. ( see
5063 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5064 */
5065
5066 c->Request.type_attr_dir =
5067 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5068 /* This is technically wrong, and hpsa controllers should
5069 * reject it with CMD_INVALID, which is the most correct
5070 * response, but non-fibre backends appear to let it
5071 * slide by, and give the same results as if this field
5072 * were set correctly. Either way is acceptable for
5073 * our purposes here.
5074 */
5075
5076 break;
5077
5078 default:
5079 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5080 cmd->sc_data_direction);
5081 BUG();
5082 break;
5083 }
5084
5085 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5086 hpsa_cmd_resolve_and_free(h, c);
5087 return SCSI_MLQUEUE_HOST_BUSY;
5088 }
5089 enqueue_cmd_and_start_io(h, c);
5090 /* the cmd'll come back via intr handler in complete_scsi_command() */
5091 return 0;
5092 }
5093
5094 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5095 struct CommandList *c)
5096 {
5097 dma_addr_t cmd_dma_handle, err_dma_handle;
5098
5099 /* Zero out all of commandlist except the last field, refcount */
5100 memset(c, 0, offsetof(struct CommandList, refcount));
5101 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5102 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5103 c->err_info = h->errinfo_pool + index;
5104 memset(c->err_info, 0, sizeof(*c->err_info));
5105 err_dma_handle = h->errinfo_pool_dhandle
5106 + index * sizeof(*c->err_info);
5107 c->cmdindex = index;
5108 c->busaddr = (u32) cmd_dma_handle;
5109 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5110 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5111 c->h = h;
5112 c->scsi_cmd = SCSI_CMD_IDLE;
5113 }
5114
5115 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5116 {
5117 int i;
5118
5119 for (i = 0; i < h->nr_cmds; i++) {
5120 struct CommandList *c = h->cmd_pool + i;
5121
5122 hpsa_cmd_init(h, i, c);
5123 atomic_set(&c->refcount, 0);
5124 }
5125 }
5126
5127 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5128 struct CommandList *c)
5129 {
5130 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5131
5132 BUG_ON(c->cmdindex != index);
5133
5134 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5135 memset(c->err_info, 0, sizeof(*c->err_info));
5136 c->busaddr = (u32) cmd_dma_handle;
5137 }
5138
5139 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5140 struct CommandList *c, struct scsi_cmnd *cmd,
5141 unsigned char *scsi3addr)
5142 {
5143 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5144 int rc = IO_ACCEL_INELIGIBLE;
5145
5146 cmd->host_scribble = (unsigned char *) c;
5147
5148 if (dev->offload_enabled) {
5149 hpsa_cmd_init(h, c->cmdindex, c);
5150 c->cmd_type = CMD_SCSI;
5151 c->scsi_cmd = cmd;
5152 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5153 if (rc < 0) /* scsi_dma_map failed. */
5154 rc = SCSI_MLQUEUE_HOST_BUSY;
5155 } else if (dev->hba_ioaccel_enabled) {
5156 hpsa_cmd_init(h, c->cmdindex, c);
5157 c->cmd_type = CMD_SCSI;
5158 c->scsi_cmd = cmd;
5159 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5160 if (rc < 0) /* scsi_dma_map failed. */
5161 rc = SCSI_MLQUEUE_HOST_BUSY;
5162 }
5163 return rc;
5164 }
5165
5166 static void hpsa_command_resubmit_worker(struct work_struct *work)
5167 {
5168 struct scsi_cmnd *cmd;
5169 struct hpsa_scsi_dev_t *dev;
5170 struct CommandList *c = container_of(work, struct CommandList, work);
5171
5172 cmd = c->scsi_cmd;
5173 dev = cmd->device->hostdata;
5174 if (!dev) {
5175 cmd->result = DID_NO_CONNECT << 16;
5176 return hpsa_cmd_free_and_done(c->h, c, cmd);
5177 }
5178 if (c->reset_pending)
5179 return hpsa_cmd_resolve_and_free(c->h, c);
5180 if (c->abort_pending)
5181 return hpsa_cmd_abort_and_free(c->h, c, cmd);
5182 if (c->cmd_type == CMD_IOACCEL2) {
5183 struct ctlr_info *h = c->h;
5184 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5185 int rc;
5186
5187 if (c2->error_data.serv_response ==
5188 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5189 rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5190 if (rc == 0)
5191 return;
5192 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5193 /*
5194 * If we get here, it means dma mapping failed.
5195 * Try again via scsi mid layer, which will
5196 * then get SCSI_MLQUEUE_HOST_BUSY.
5197 */
5198 cmd->result = DID_IMM_RETRY << 16;
5199 return hpsa_cmd_free_and_done(h, c, cmd);
5200 }
5201 /* else, fall thru and resubmit down CISS path */
5202 }
5203 }
5204 hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5205 if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5206 /*
5207 * If we get here, it means dma mapping failed. Try
5208 * again via scsi mid layer, which will then get
5209 * SCSI_MLQUEUE_HOST_BUSY.
5210 *
5211 * hpsa_ciss_submit will have already freed c
5212 * if it encountered a dma mapping failure.
5213 */
5214 cmd->result = DID_IMM_RETRY << 16;
5215 cmd->scsi_done(cmd);
5216 }
5217 }
5218
5219 /* Running in struct Scsi_Host->host_lock less mode */
5220 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5221 {
5222 struct ctlr_info *h;
5223 struct hpsa_scsi_dev_t *dev;
5224 unsigned char scsi3addr[8];
5225 struct CommandList *c;
5226 int rc = 0;
5227
5228 /* Get the ptr to our adapter structure out of cmd->host. */
5229 h = sdev_to_hba(cmd->device);
5230
5231 BUG_ON(cmd->request->tag < 0);
5232
5233 dev = cmd->device->hostdata;
5234 if (!dev) {
5235 cmd->result = DID_NO_CONNECT << 16;
5236 cmd->scsi_done(cmd);
5237 return 0;
5238 }
5239
5240 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5241
5242 if (unlikely(lockup_detected(h))) {
5243 cmd->result = DID_NO_CONNECT << 16;
5244 cmd->scsi_done(cmd);
5245 return 0;
5246 }
5247 c = cmd_tagged_alloc(h, cmd);
5248
5249 /*
5250 * Call alternate submit routine for I/O accelerated commands.
5251 * Retries always go down the normal I/O path.
5252 */
5253 if (likely(cmd->retries == 0 &&
5254 cmd->request->cmd_type == REQ_TYPE_FS &&
5255 h->acciopath_status)) {
5256 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5257 if (rc == 0)
5258 return 0;
5259 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5260 hpsa_cmd_resolve_and_free(h, c);
5261 return SCSI_MLQUEUE_HOST_BUSY;
5262 }
5263 }
5264 return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5265 }
5266
5267 static void hpsa_scan_complete(struct ctlr_info *h)
5268 {
5269 unsigned long flags;
5270
5271 spin_lock_irqsave(&h->scan_lock, flags);
5272 h->scan_finished = 1;
5273 wake_up_all(&h->scan_wait_queue);
5274 spin_unlock_irqrestore(&h->scan_lock, flags);
5275 }
5276
5277 static void hpsa_scan_start(struct Scsi_Host *sh)
5278 {
5279 struct ctlr_info *h = shost_to_hba(sh);
5280 unsigned long flags;
5281
5282 /*
5283 * Don't let rescans be initiated on a controller known to be locked
5284 * up. If the controller locks up *during* a rescan, that thread is
5285 * probably hosed, but at least we can prevent new rescan threads from
5286 * piling up on a locked up controller.
5287 */
5288 if (unlikely(lockup_detected(h)))
5289 return hpsa_scan_complete(h);
5290
5291 /* wait until any scan already in progress is finished. */
5292 while (1) {
5293 spin_lock_irqsave(&h->scan_lock, flags);
5294 if (h->scan_finished)
5295 break;
5296 spin_unlock_irqrestore(&h->scan_lock, flags);
5297 wait_event(h->scan_wait_queue, h->scan_finished);
5298 /* Note: We don't need to worry about a race between this
5299 * thread and driver unload because the midlayer will
5300 * have incremented the reference count, so unload won't
5301 * happen if we're in here.
5302 */
5303 }
5304 h->scan_finished = 0; /* mark scan as in progress */
5305 spin_unlock_irqrestore(&h->scan_lock, flags);
5306
5307 if (unlikely(lockup_detected(h)))
5308 return hpsa_scan_complete(h);
5309
5310 hpsa_update_scsi_devices(h);
5311
5312 hpsa_scan_complete(h);
5313 }
5314
5315 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5316 {
5317 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5318
5319 if (!logical_drive)
5320 return -ENODEV;
5321
5322 if (qdepth < 1)
5323 qdepth = 1;
5324 else if (qdepth > logical_drive->queue_depth)
5325 qdepth = logical_drive->queue_depth;
5326
5327 return scsi_change_queue_depth(sdev, qdepth);
5328 }
5329
5330 static int hpsa_scan_finished(struct Scsi_Host *sh,
5331 unsigned long elapsed_time)
5332 {
5333 struct ctlr_info *h = shost_to_hba(sh);
5334 unsigned long flags;
5335 int finished;
5336
5337 spin_lock_irqsave(&h->scan_lock, flags);
5338 finished = h->scan_finished;
5339 spin_unlock_irqrestore(&h->scan_lock, flags);
5340 return finished;
5341 }
5342
5343 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5344 {
5345 struct Scsi_Host *sh;
5346
5347 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5348 if (sh == NULL) {
5349 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5350 return -ENOMEM;
5351 }
5352
5353 sh->io_port = 0;
5354 sh->n_io_port = 0;
5355 sh->this_id = -1;
5356 sh->max_channel = 3;
5357 sh->max_cmd_len = MAX_COMMAND_SIZE;
5358 sh->max_lun = HPSA_MAX_LUN;
5359 sh->max_id = HPSA_MAX_LUN;
5360 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5361 sh->cmd_per_lun = sh->can_queue;
5362 sh->sg_tablesize = h->maxsgentries;
5363 sh->transportt = hpsa_sas_transport_template;
5364 sh->hostdata[0] = (unsigned long) h;
5365 sh->irq = h->intr[h->intr_mode];
5366 sh->unique_id = sh->irq;
5367
5368 h->scsi_host = sh;
5369 return 0;
5370 }
5371
5372 static int hpsa_scsi_add_host(struct ctlr_info *h)
5373 {
5374 int rv;
5375
5376 rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5377 if (rv) {
5378 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5379 return rv;
5380 }
5381 scsi_scan_host(h->scsi_host);
5382 return 0;
5383 }
5384
5385 /*
5386 * The block layer has already gone to the trouble of picking out a unique,
5387 * small-integer tag for this request. We use an offset from that value as
5388 * an index to select our command block. (The offset allows us to reserve the
5389 * low-numbered entries for our own uses.)
5390 */
5391 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5392 {
5393 int idx = scmd->request->tag;
5394
5395 if (idx < 0)
5396 return idx;
5397
5398 /* Offset to leave space for internal cmds. */
5399 return idx += HPSA_NRESERVED_CMDS;
5400 }
5401
5402 /*
5403 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5404 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5405 */
5406 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5407 struct CommandList *c, unsigned char lunaddr[],
5408 int reply_queue)
5409 {
5410 int rc;
5411
5412 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5413 (void) fill_cmd(c, TEST_UNIT_READY, h,
5414 NULL, 0, 0, lunaddr, TYPE_CMD);
5415 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5416 if (rc)
5417 return rc;
5418 /* no unmap needed here because no data xfer. */
5419
5420 /* Check if the unit is already ready. */
5421 if (c->err_info->CommandStatus == CMD_SUCCESS)
5422 return 0;
5423
5424 /*
5425 * The first command sent after reset will receive "unit attention" to
5426 * indicate that the LUN has been reset...this is actually what we're
5427 * looking for (but, success is good too).
5428 */
5429 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5430 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5431 (c->err_info->SenseInfo[2] == NO_SENSE ||
5432 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5433 return 0;
5434
5435 return 1;
5436 }
5437
5438 /*
5439 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5440 * returns zero when the unit is ready, and non-zero when giving up.
5441 */
5442 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5443 struct CommandList *c,
5444 unsigned char lunaddr[], int reply_queue)
5445 {
5446 int rc;
5447 int count = 0;
5448 int waittime = 1; /* seconds */
5449
5450 /* Send test unit ready until device ready, or give up. */
5451 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5452
5453 /*
5454 * Wait for a bit. do this first, because if we send
5455 * the TUR right away, the reset will just abort it.
5456 */
5457 msleep(1000 * waittime);
5458
5459 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5460 if (!rc)
5461 break;
5462
5463 /* Increase wait time with each try, up to a point. */
5464 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5465 waittime *= 2;
5466
5467 dev_warn(&h->pdev->dev,
5468 "waiting %d secs for device to become ready.\n",
5469 waittime);
5470 }
5471
5472 return rc;
5473 }
5474
5475 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5476 unsigned char lunaddr[],
5477 int reply_queue)
5478 {
5479 int first_queue;
5480 int last_queue;
5481 int rq;
5482 int rc = 0;
5483 struct CommandList *c;
5484
5485 c = cmd_alloc(h);
5486
5487 /*
5488 * If no specific reply queue was requested, then send the TUR
5489 * repeatedly, requesting a reply on each reply queue; otherwise execute
5490 * the loop exactly once using only the specified queue.
5491 */
5492 if (reply_queue == DEFAULT_REPLY_QUEUE) {
5493 first_queue = 0;
5494 last_queue = h->nreply_queues - 1;
5495 } else {
5496 first_queue = reply_queue;
5497 last_queue = reply_queue;
5498 }
5499
5500 for (rq = first_queue; rq <= last_queue; rq++) {
5501 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5502 if (rc)
5503 break;
5504 }
5505
5506 if (rc)
5507 dev_warn(&h->pdev->dev, "giving up on device.\n");
5508 else
5509 dev_warn(&h->pdev->dev, "device is ready.\n");
5510
5511 cmd_free(h, c);
5512 return rc;
5513 }
5514
5515 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5516 * complaining. Doing a host- or bus-reset can't do anything good here.
5517 */
5518 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5519 {
5520 int rc;
5521 struct ctlr_info *h;
5522 struct hpsa_scsi_dev_t *dev;
5523 u8 reset_type;
5524 char msg[48];
5525
5526 /* find the controller to which the command to be aborted was sent */
5527 h = sdev_to_hba(scsicmd->device);
5528 if (h == NULL) /* paranoia */
5529 return FAILED;
5530
5531 if (lockup_detected(h))
5532 return FAILED;
5533
5534 dev = scsicmd->device->hostdata;
5535 if (!dev) {
5536 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5537 return FAILED;
5538 }
5539
5540 /* if controller locked up, we can guarantee command won't complete */
5541 if (lockup_detected(h)) {
5542 snprintf(msg, sizeof(msg),
5543 "cmd %d RESET FAILED, lockup detected",
5544 hpsa_get_cmd_index(scsicmd));
5545 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5546 return FAILED;
5547 }
5548
5549 /* this reset request might be the result of a lockup; check */
5550 if (detect_controller_lockup(h)) {
5551 snprintf(msg, sizeof(msg),
5552 "cmd %d RESET FAILED, new lockup detected",
5553 hpsa_get_cmd_index(scsicmd));
5554 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5555 return FAILED;
5556 }
5557
5558 /* Do not attempt on controller */
5559 if (is_hba_lunid(dev->scsi3addr))
5560 return SUCCESS;
5561
5562 if (is_logical_dev_addr_mode(dev->scsi3addr))
5563 reset_type = HPSA_DEVICE_RESET_MSG;
5564 else
5565 reset_type = HPSA_PHYS_TARGET_RESET;
5566
5567 sprintf(msg, "resetting %s",
5568 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5569 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5570
5571 h->reset_in_progress = 1;
5572
5573 /* send a reset to the SCSI LUN which the command was sent to */
5574 rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5575 DEFAULT_REPLY_QUEUE);
5576 sprintf(msg, "reset %s %s",
5577 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5578 rc == 0 ? "completed successfully" : "failed");
5579 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5580 h->reset_in_progress = 0;
5581 return rc == 0 ? SUCCESS : FAILED;
5582 }
5583
5584 static void swizzle_abort_tag(u8 *tag)
5585 {
5586 u8 original_tag[8];
5587
5588 memcpy(original_tag, tag, 8);
5589 tag[0] = original_tag[3];
5590 tag[1] = original_tag[2];
5591 tag[2] = original_tag[1];
5592 tag[3] = original_tag[0];
5593 tag[4] = original_tag[7];
5594 tag[5] = original_tag[6];
5595 tag[6] = original_tag[5];
5596 tag[7] = original_tag[4];
5597 }
5598
5599 static void hpsa_get_tag(struct ctlr_info *h,
5600 struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5601 {
5602 u64 tag;
5603 if (c->cmd_type == CMD_IOACCEL1) {
5604 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5605 &h->ioaccel_cmd_pool[c->cmdindex];
5606 tag = le64_to_cpu(cm1->tag);
5607 *tagupper = cpu_to_le32(tag >> 32);
5608 *taglower = cpu_to_le32(tag);
5609 return;
5610 }
5611 if (c->cmd_type == CMD_IOACCEL2) {
5612 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5613 &h->ioaccel2_cmd_pool[c->cmdindex];
5614 /* upper tag not used in ioaccel2 mode */
5615 memset(tagupper, 0, sizeof(*tagupper));
5616 *taglower = cm2->Tag;
5617 return;
5618 }
5619 tag = le64_to_cpu(c->Header.tag);
5620 *tagupper = cpu_to_le32(tag >> 32);
5621 *taglower = cpu_to_le32(tag);
5622 }
5623
5624 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5625 struct CommandList *abort, int reply_queue)
5626 {
5627 int rc = IO_OK;
5628 struct CommandList *c;
5629 struct ErrorInfo *ei;
5630 __le32 tagupper, taglower;
5631
5632 c = cmd_alloc(h);
5633
5634 /* fill_cmd can't fail here, no buffer to map */
5635 (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5636 0, 0, scsi3addr, TYPE_MSG);
5637 if (h->needs_abort_tags_swizzled)
5638 swizzle_abort_tag(&c->Request.CDB[4]);
5639 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5640 hpsa_get_tag(h, abort, &taglower, &tagupper);
5641 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5642 __func__, tagupper, taglower);
5643 /* no unmap needed here because no data xfer. */
5644
5645 ei = c->err_info;
5646 switch (ei->CommandStatus) {
5647 case CMD_SUCCESS:
5648 break;
5649 case CMD_TMF_STATUS:
5650 rc = hpsa_evaluate_tmf_status(h, c);
5651 break;
5652 case CMD_UNABORTABLE: /* Very common, don't make noise. */
5653 rc = -1;
5654 break;
5655 default:
5656 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5657 __func__, tagupper, taglower);
5658 hpsa_scsi_interpret_error(h, c);
5659 rc = -1;
5660 break;
5661 }
5662 cmd_free(h, c);
5663 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5664 __func__, tagupper, taglower);
5665 return rc;
5666 }
5667
5668 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5669 struct CommandList *command_to_abort, int reply_queue)
5670 {
5671 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5672 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5673 struct io_accel2_cmd *c2a =
5674 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5675 struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5676 struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5677
5678 /*
5679 * We're overlaying struct hpsa_tmf_struct on top of something which
5680 * was allocated as a struct io_accel2_cmd, so we better be sure it
5681 * actually fits, and doesn't overrun the error info space.
5682 */
5683 BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5684 sizeof(struct io_accel2_cmd));
5685 BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5686 offsetof(struct hpsa_tmf_struct, error_len) +
5687 sizeof(ac->error_len));
5688
5689 c->cmd_type = IOACCEL2_TMF;
5690 c->scsi_cmd = SCSI_CMD_BUSY;
5691
5692 /* Adjust the DMA address to point to the accelerated command buffer */
5693 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5694 (c->cmdindex * sizeof(struct io_accel2_cmd));
5695 BUG_ON(c->busaddr & 0x0000007F);
5696
5697 memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5698 ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5699 ac->reply_queue = reply_queue;
5700 ac->tmf = IOACCEL2_TMF_ABORT;
5701 ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5702 memset(ac->lun_id, 0, sizeof(ac->lun_id));
5703 ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5704 ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5705 ac->error_ptr = cpu_to_le64(c->busaddr +
5706 offsetof(struct io_accel2_cmd, error_data));
5707 ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5708 }
5709
5710 /* ioaccel2 path firmware cannot handle abort task requests.
5711 * Change abort requests to physical target reset, and send to the
5712 * address of the physical disk used for the ioaccel 2 command.
5713 * Return 0 on success (IO_OK)
5714 * -1 on failure
5715 */
5716
5717 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5718 unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5719 {
5720 int rc = IO_OK;
5721 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5722 struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5723 unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5724 unsigned char *psa = &phys_scsi3addr[0];
5725
5726 /* Get a pointer to the hpsa logical device. */
5727 scmd = abort->scsi_cmd;
5728 dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5729 if (dev == NULL) {
5730 dev_warn(&h->pdev->dev,
5731 "Cannot abort: no device pointer for command.\n");
5732 return -1; /* not abortable */
5733 }
5734
5735 if (h->raid_offload_debug > 0)
5736 dev_info(&h->pdev->dev,
5737 "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5738 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5739 "Reset as abort",
5740 scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5741 scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5742
5743 if (!dev->offload_enabled) {
5744 dev_warn(&h->pdev->dev,
5745 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5746 return -1; /* not abortable */
5747 }
5748
5749 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5750 if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5751 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5752 return -1; /* not abortable */
5753 }
5754
5755 /* send the reset */
5756 if (h->raid_offload_debug > 0)
5757 dev_info(&h->pdev->dev,
5758 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5759 psa[0], psa[1], psa[2], psa[3],
5760 psa[4], psa[5], psa[6], psa[7]);
5761 rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5762 if (rc != 0) {
5763 dev_warn(&h->pdev->dev,
5764 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5765 psa[0], psa[1], psa[2], psa[3],
5766 psa[4], psa[5], psa[6], psa[7]);
5767 return rc; /* failed to reset */
5768 }
5769
5770 /* wait for device to recover */
5771 if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5772 dev_warn(&h->pdev->dev,
5773 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5774 psa[0], psa[1], psa[2], psa[3],
5775 psa[4], psa[5], psa[6], psa[7]);
5776 return -1; /* failed to recover */
5777 }
5778
5779 /* device recovered */
5780 dev_info(&h->pdev->dev,
5781 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5782 psa[0], psa[1], psa[2], psa[3],
5783 psa[4], psa[5], psa[6], psa[7]);
5784
5785 return rc; /* success */
5786 }
5787
5788 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5789 struct CommandList *abort, int reply_queue)
5790 {
5791 int rc = IO_OK;
5792 struct CommandList *c;
5793 __le32 taglower, tagupper;
5794 struct hpsa_scsi_dev_t *dev;
5795 struct io_accel2_cmd *c2;
5796
5797 dev = abort->scsi_cmd->device->hostdata;
5798 if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5799 return -1;
5800
5801 c = cmd_alloc(h);
5802 setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5803 c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5804 (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5805 hpsa_get_tag(h, abort, &taglower, &tagupper);
5806 dev_dbg(&h->pdev->dev,
5807 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5808 __func__, tagupper, taglower);
5809 /* no unmap needed here because no data xfer. */
5810
5811 dev_dbg(&h->pdev->dev,
5812 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5813 __func__, tagupper, taglower, c2->error_data.serv_response);
5814 switch (c2->error_data.serv_response) {
5815 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5816 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5817 rc = 0;
5818 break;
5819 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5820 case IOACCEL2_SERV_RESPONSE_FAILURE:
5821 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5822 rc = -1;
5823 break;
5824 default:
5825 dev_warn(&h->pdev->dev,
5826 "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5827 __func__, tagupper, taglower,
5828 c2->error_data.serv_response);
5829 rc = -1;
5830 }
5831 cmd_free(h, c);
5832 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5833 tagupper, taglower);
5834 return rc;
5835 }
5836
5837 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5838 unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5839 {
5840 /*
5841 * ioccelerator mode 2 commands should be aborted via the
5842 * accelerated path, since RAID path is unaware of these commands,
5843 * but not all underlying firmware can handle abort TMF.
5844 * Change abort to physical device reset when abort TMF is unsupported.
5845 */
5846 if (abort->cmd_type == CMD_IOACCEL2) {
5847 if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
5848 return hpsa_send_abort_ioaccel2(h, abort,
5849 reply_queue);
5850 else
5851 return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5852 abort, reply_queue);
5853 }
5854 return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5855 }
5856
5857 /* Find out which reply queue a command was meant to return on */
5858 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5859 struct CommandList *c)
5860 {
5861 if (c->cmd_type == CMD_IOACCEL2)
5862 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5863 return c->Header.ReplyQueue;
5864 }
5865
5866 /*
5867 * Limit concurrency of abort commands to prevent
5868 * over-subscription of commands
5869 */
5870 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5871 {
5872 #define ABORT_CMD_WAIT_MSECS 5000
5873 return !wait_event_timeout(h->abort_cmd_wait_queue,
5874 atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5875 msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5876 }
5877
5878 /* Send an abort for the specified command.
5879 * If the device and controller support it,
5880 * send a task abort request.
5881 */
5882 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5883 {
5884
5885 int rc;
5886 struct ctlr_info *h;
5887 struct hpsa_scsi_dev_t *dev;
5888 struct CommandList *abort; /* pointer to command to be aborted */
5889 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
5890 char msg[256]; /* For debug messaging. */
5891 int ml = 0;
5892 __le32 tagupper, taglower;
5893 int refcount, reply_queue;
5894
5895 if (sc == NULL)
5896 return FAILED;
5897
5898 if (sc->device == NULL)
5899 return FAILED;
5900
5901 /* Find the controller of the command to be aborted */
5902 h = sdev_to_hba(sc->device);
5903 if (h == NULL)
5904 return FAILED;
5905
5906 /* Find the device of the command to be aborted */
5907 dev = sc->device->hostdata;
5908 if (!dev) {
5909 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5910 msg);
5911 return FAILED;
5912 }
5913
5914 /* If controller locked up, we can guarantee command won't complete */
5915 if (lockup_detected(h)) {
5916 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5917 "ABORT FAILED, lockup detected");
5918 return FAILED;
5919 }
5920
5921 /* This is a good time to check if controller lockup has occurred */
5922 if (detect_controller_lockup(h)) {
5923 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5924 "ABORT FAILED, new lockup detected");
5925 return FAILED;
5926 }
5927
5928 /* Check that controller supports some kind of task abort */
5929 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5930 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5931 return FAILED;
5932
5933 memset(msg, 0, sizeof(msg));
5934 ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5935 h->scsi_host->host_no, sc->device->channel,
5936 sc->device->id, sc->device->lun,
5937 "Aborting command", sc);
5938
5939 /* Get SCSI command to be aborted */
5940 abort = (struct CommandList *) sc->host_scribble;
5941 if (abort == NULL) {
5942 /* This can happen if the command already completed. */
5943 return SUCCESS;
5944 }
5945 refcount = atomic_inc_return(&abort->refcount);
5946 if (refcount == 1) { /* Command is done already. */
5947 cmd_free(h, abort);
5948 return SUCCESS;
5949 }
5950
5951 /* Don't bother trying the abort if we know it won't work. */
5952 if (abort->cmd_type != CMD_IOACCEL2 &&
5953 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5954 cmd_free(h, abort);
5955 return FAILED;
5956 }
5957
5958 /*
5959 * Check that we're aborting the right command.
5960 * It's possible the CommandList already completed and got re-used.
5961 */
5962 if (abort->scsi_cmd != sc) {
5963 cmd_free(h, abort);
5964 return SUCCESS;
5965 }
5966
5967 abort->abort_pending = true;
5968 hpsa_get_tag(h, abort, &taglower, &tagupper);
5969 reply_queue = hpsa_extract_reply_queue(h, abort);
5970 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5971 as = abort->scsi_cmd;
5972 if (as != NULL)
5973 ml += sprintf(msg+ml,
5974 "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5975 as->cmd_len, as->cmnd[0], as->cmnd[1],
5976 as->serial_number);
5977 dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5978 hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5979
5980 /*
5981 * Command is in flight, or possibly already completed
5982 * by the firmware (but not to the scsi mid layer) but we can't
5983 * distinguish which. Send the abort down.
5984 */
5985 if (wait_for_available_abort_cmd(h)) {
5986 dev_warn(&h->pdev->dev,
5987 "%s FAILED, timeout waiting for an abort command to become available.\n",
5988 msg);
5989 cmd_free(h, abort);
5990 return FAILED;
5991 }
5992 rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
5993 atomic_inc(&h->abort_cmds_available);
5994 wake_up_all(&h->abort_cmd_wait_queue);
5995 if (rc != 0) {
5996 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
5997 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5998 "FAILED to abort command");
5999 cmd_free(h, abort);
6000 return FAILED;
6001 }
6002 dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6003 wait_event(h->event_sync_wait_queue,
6004 abort->scsi_cmd != sc || lockup_detected(h));
6005 cmd_free(h, abort);
6006 return !lockup_detected(h) ? SUCCESS : FAILED;
6007 }
6008
6009 /*
6010 * For operations with an associated SCSI command, a command block is allocated
6011 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6012 * block request tag as an index into a table of entries. cmd_tagged_free() is
6013 * the complement, although cmd_free() may be called instead.
6014 */
6015 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6016 struct scsi_cmnd *scmd)
6017 {
6018 int idx = hpsa_get_cmd_index(scmd);
6019 struct CommandList *c = h->cmd_pool + idx;
6020
6021 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6022 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6023 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6024 /* The index value comes from the block layer, so if it's out of
6025 * bounds, it's probably not our bug.
6026 */
6027 BUG();
6028 }
6029
6030 atomic_inc(&c->refcount);
6031 if (unlikely(!hpsa_is_cmd_idle(c))) {
6032 /*
6033 * We expect that the SCSI layer will hand us a unique tag
6034 * value. Thus, there should never be a collision here between
6035 * two requests...because if the selected command isn't idle
6036 * then someone is going to be very disappointed.
6037 */
6038 dev_err(&h->pdev->dev,
6039 "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6040 idx);
6041 if (c->scsi_cmd != NULL)
6042 scsi_print_command(c->scsi_cmd);
6043 scsi_print_command(scmd);
6044 }
6045
6046 hpsa_cmd_partial_init(h, idx, c);
6047 return c;
6048 }
6049
6050 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6051 {
6052 /*
6053 * Release our reference to the block. We don't need to do anything
6054 * else to free it, because it is accessed by index. (There's no point
6055 * in checking the result of the decrement, since we cannot guarantee
6056 * that there isn't a concurrent abort which is also accessing it.)
6057 */
6058 (void)atomic_dec(&c->refcount);
6059 }
6060
6061 /*
6062 * For operations that cannot sleep, a command block is allocated at init,
6063 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6064 * which ones are free or in use. Lock must be held when calling this.
6065 * cmd_free() is the complement.
6066 * This function never gives up and returns NULL. If it hangs,
6067 * another thread must call cmd_free() to free some tags.
6068 */
6069
6070 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6071 {
6072 struct CommandList *c;
6073 int refcount, i;
6074 int offset = 0;
6075
6076 /*
6077 * There is some *extremely* small but non-zero chance that that
6078 * multiple threads could get in here, and one thread could
6079 * be scanning through the list of bits looking for a free
6080 * one, but the free ones are always behind him, and other
6081 * threads sneak in behind him and eat them before he can
6082 * get to them, so that while there is always a free one, a
6083 * very unlucky thread might be starved anyway, never able to
6084 * beat the other threads. In reality, this happens so
6085 * infrequently as to be indistinguishable from never.
6086 *
6087 * Note that we start allocating commands before the SCSI host structure
6088 * is initialized. Since the search starts at bit zero, this
6089 * all works, since we have at least one command structure available;
6090 * however, it means that the structures with the low indexes have to be
6091 * reserved for driver-initiated requests, while requests from the block
6092 * layer will use the higher indexes.
6093 */
6094
6095 for (;;) {
6096 i = find_next_zero_bit(h->cmd_pool_bits,
6097 HPSA_NRESERVED_CMDS,
6098 offset);
6099 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6100 offset = 0;
6101 continue;
6102 }
6103 c = h->cmd_pool + i;
6104 refcount = atomic_inc_return(&c->refcount);
6105 if (unlikely(refcount > 1)) {
6106 cmd_free(h, c); /* already in use */
6107 offset = (i + 1) % HPSA_NRESERVED_CMDS;
6108 continue;
6109 }
6110 set_bit(i & (BITS_PER_LONG - 1),
6111 h->cmd_pool_bits + (i / BITS_PER_LONG));
6112 break; /* it's ours now. */
6113 }
6114 hpsa_cmd_partial_init(h, i, c);
6115 return c;
6116 }
6117
6118 /*
6119 * This is the complementary operation to cmd_alloc(). Note, however, in some
6120 * corner cases it may also be used to free blocks allocated by
6121 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6122 * the clear-bit is harmless.
6123 */
6124 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6125 {
6126 if (atomic_dec_and_test(&c->refcount)) {
6127 int i;
6128
6129 i = c - h->cmd_pool;
6130 clear_bit(i & (BITS_PER_LONG - 1),
6131 h->cmd_pool_bits + (i / BITS_PER_LONG));
6132 }
6133 }
6134
6135 #ifdef CONFIG_COMPAT
6136
6137 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6138 void __user *arg)
6139 {
6140 IOCTL32_Command_struct __user *arg32 =
6141 (IOCTL32_Command_struct __user *) arg;
6142 IOCTL_Command_struct arg64;
6143 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6144 int err;
6145 u32 cp;
6146
6147 memset(&arg64, 0, sizeof(arg64));
6148 err = 0;
6149 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6150 sizeof(arg64.LUN_info));
6151 err |= copy_from_user(&arg64.Request, &arg32->Request,
6152 sizeof(arg64.Request));
6153 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6154 sizeof(arg64.error_info));
6155 err |= get_user(arg64.buf_size, &arg32->buf_size);
6156 err |= get_user(cp, &arg32->buf);
6157 arg64.buf = compat_ptr(cp);
6158 err |= copy_to_user(p, &arg64, sizeof(arg64));
6159
6160 if (err)
6161 return -EFAULT;
6162
6163 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6164 if (err)
6165 return err;
6166 err |= copy_in_user(&arg32->error_info, &p->error_info,
6167 sizeof(arg32->error_info));
6168 if (err)
6169 return -EFAULT;
6170 return err;
6171 }
6172
6173 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6174 int cmd, void __user *arg)
6175 {
6176 BIG_IOCTL32_Command_struct __user *arg32 =
6177 (BIG_IOCTL32_Command_struct __user *) arg;
6178 BIG_IOCTL_Command_struct arg64;
6179 BIG_IOCTL_Command_struct __user *p =
6180 compat_alloc_user_space(sizeof(arg64));
6181 int err;
6182 u32 cp;
6183
6184 memset(&arg64, 0, sizeof(arg64));
6185 err = 0;
6186 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6187 sizeof(arg64.LUN_info));
6188 err |= copy_from_user(&arg64.Request, &arg32->Request,
6189 sizeof(arg64.Request));
6190 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6191 sizeof(arg64.error_info));
6192 err |= get_user(arg64.buf_size, &arg32->buf_size);
6193 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6194 err |= get_user(cp, &arg32->buf);
6195 arg64.buf = compat_ptr(cp);
6196 err |= copy_to_user(p, &arg64, sizeof(arg64));
6197
6198 if (err)
6199 return -EFAULT;
6200
6201 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6202 if (err)
6203 return err;
6204 err |= copy_in_user(&arg32->error_info, &p->error_info,
6205 sizeof(arg32->error_info));
6206 if (err)
6207 return -EFAULT;
6208 return err;
6209 }
6210
6211 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6212 {
6213 switch (cmd) {
6214 case CCISS_GETPCIINFO:
6215 case CCISS_GETINTINFO:
6216 case CCISS_SETINTINFO:
6217 case CCISS_GETNODENAME:
6218 case CCISS_SETNODENAME:
6219 case CCISS_GETHEARTBEAT:
6220 case CCISS_GETBUSTYPES:
6221 case CCISS_GETFIRMVER:
6222 case CCISS_GETDRIVVER:
6223 case CCISS_REVALIDVOLS:
6224 case CCISS_DEREGDISK:
6225 case CCISS_REGNEWDISK:
6226 case CCISS_REGNEWD:
6227 case CCISS_RESCANDISK:
6228 case CCISS_GETLUNINFO:
6229 return hpsa_ioctl(dev, cmd, arg);
6230
6231 case CCISS_PASSTHRU32:
6232 return hpsa_ioctl32_passthru(dev, cmd, arg);
6233 case CCISS_BIG_PASSTHRU32:
6234 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6235
6236 default:
6237 return -ENOIOCTLCMD;
6238 }
6239 }
6240 #endif
6241
6242 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6243 {
6244 struct hpsa_pci_info pciinfo;
6245
6246 if (!argp)
6247 return -EINVAL;
6248 pciinfo.domain = pci_domain_nr(h->pdev->bus);
6249 pciinfo.bus = h->pdev->bus->number;
6250 pciinfo.dev_fn = h->pdev->devfn;
6251 pciinfo.board_id = h->board_id;
6252 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6253 return -EFAULT;
6254 return 0;
6255 }
6256
6257 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6258 {
6259 DriverVer_type DriverVer;
6260 unsigned char vmaj, vmin, vsubmin;
6261 int rc;
6262
6263 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6264 &vmaj, &vmin, &vsubmin);
6265 if (rc != 3) {
6266 dev_info(&h->pdev->dev, "driver version string '%s' "
6267 "unrecognized.", HPSA_DRIVER_VERSION);
6268 vmaj = 0;
6269 vmin = 0;
6270 vsubmin = 0;
6271 }
6272 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6273 if (!argp)
6274 return -EINVAL;
6275 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6276 return -EFAULT;
6277 return 0;
6278 }
6279
6280 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6281 {
6282 IOCTL_Command_struct iocommand;
6283 struct CommandList *c;
6284 char *buff = NULL;
6285 u64 temp64;
6286 int rc = 0;
6287
6288 if (!argp)
6289 return -EINVAL;
6290 if (!capable(CAP_SYS_RAWIO))
6291 return -EPERM;
6292 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6293 return -EFAULT;
6294 if ((iocommand.buf_size < 1) &&
6295 (iocommand.Request.Type.Direction != XFER_NONE)) {
6296 return -EINVAL;
6297 }
6298 if (iocommand.buf_size > 0) {
6299 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6300 if (buff == NULL)
6301 return -ENOMEM;
6302 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6303 /* Copy the data into the buffer we created */
6304 if (copy_from_user(buff, iocommand.buf,
6305 iocommand.buf_size)) {
6306 rc = -EFAULT;
6307 goto out_kfree;
6308 }
6309 } else {
6310 memset(buff, 0, iocommand.buf_size);
6311 }
6312 }
6313 c = cmd_alloc(h);
6314
6315 /* Fill in the command type */
6316 c->cmd_type = CMD_IOCTL_PEND;
6317 c->scsi_cmd = SCSI_CMD_BUSY;
6318 /* Fill in Command Header */
6319 c->Header.ReplyQueue = 0; /* unused in simple mode */
6320 if (iocommand.buf_size > 0) { /* buffer to fill */
6321 c->Header.SGList = 1;
6322 c->Header.SGTotal = cpu_to_le16(1);
6323 } else { /* no buffers to fill */
6324 c->Header.SGList = 0;
6325 c->Header.SGTotal = cpu_to_le16(0);
6326 }
6327 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6328
6329 /* Fill in Request block */
6330 memcpy(&c->Request, &iocommand.Request,
6331 sizeof(c->Request));
6332
6333 /* Fill in the scatter gather information */
6334 if (iocommand.buf_size > 0) {
6335 temp64 = pci_map_single(h->pdev, buff,
6336 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6337 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6338 c->SG[0].Addr = cpu_to_le64(0);
6339 c->SG[0].Len = cpu_to_le32(0);
6340 rc = -ENOMEM;
6341 goto out;
6342 }
6343 c->SG[0].Addr = cpu_to_le64(temp64);
6344 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6345 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6346 }
6347 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6348 if (iocommand.buf_size > 0)
6349 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6350 check_ioctl_unit_attention(h, c);
6351 if (rc) {
6352 rc = -EIO;
6353 goto out;
6354 }
6355
6356 /* Copy the error information out */
6357 memcpy(&iocommand.error_info, c->err_info,
6358 sizeof(iocommand.error_info));
6359 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6360 rc = -EFAULT;
6361 goto out;
6362 }
6363 if ((iocommand.Request.Type.Direction & XFER_READ) &&
6364 iocommand.buf_size > 0) {
6365 /* Copy the data out of the buffer we created */
6366 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6367 rc = -EFAULT;
6368 goto out;
6369 }
6370 }
6371 out:
6372 cmd_free(h, c);
6373 out_kfree:
6374 kfree(buff);
6375 return rc;
6376 }
6377
6378 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6379 {
6380 BIG_IOCTL_Command_struct *ioc;
6381 struct CommandList *c;
6382 unsigned char **buff = NULL;
6383 int *buff_size = NULL;
6384 u64 temp64;
6385 BYTE sg_used = 0;
6386 int status = 0;
6387 u32 left;
6388 u32 sz;
6389 BYTE __user *data_ptr;
6390
6391 if (!argp)
6392 return -EINVAL;
6393 if (!capable(CAP_SYS_RAWIO))
6394 return -EPERM;
6395 ioc = (BIG_IOCTL_Command_struct *)
6396 kmalloc(sizeof(*ioc), GFP_KERNEL);
6397 if (!ioc) {
6398 status = -ENOMEM;
6399 goto cleanup1;
6400 }
6401 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6402 status = -EFAULT;
6403 goto cleanup1;
6404 }
6405 if ((ioc->buf_size < 1) &&
6406 (ioc->Request.Type.Direction != XFER_NONE)) {
6407 status = -EINVAL;
6408 goto cleanup1;
6409 }
6410 /* Check kmalloc limits using all SGs */
6411 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6412 status = -EINVAL;
6413 goto cleanup1;
6414 }
6415 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6416 status = -EINVAL;
6417 goto cleanup1;
6418 }
6419 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6420 if (!buff) {
6421 status = -ENOMEM;
6422 goto cleanup1;
6423 }
6424 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6425 if (!buff_size) {
6426 status = -ENOMEM;
6427 goto cleanup1;
6428 }
6429 left = ioc->buf_size;
6430 data_ptr = ioc->buf;
6431 while (left) {
6432 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6433 buff_size[sg_used] = sz;
6434 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6435 if (buff[sg_used] == NULL) {
6436 status = -ENOMEM;
6437 goto cleanup1;
6438 }
6439 if (ioc->Request.Type.Direction & XFER_WRITE) {
6440 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6441 status = -EFAULT;
6442 goto cleanup1;
6443 }
6444 } else
6445 memset(buff[sg_used], 0, sz);
6446 left -= sz;
6447 data_ptr += sz;
6448 sg_used++;
6449 }
6450 c = cmd_alloc(h);
6451
6452 c->cmd_type = CMD_IOCTL_PEND;
6453 c->scsi_cmd = SCSI_CMD_BUSY;
6454 c->Header.ReplyQueue = 0;
6455 c->Header.SGList = (u8) sg_used;
6456 c->Header.SGTotal = cpu_to_le16(sg_used);
6457 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6458 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6459 if (ioc->buf_size > 0) {
6460 int i;
6461 for (i = 0; i < sg_used; i++) {
6462 temp64 = pci_map_single(h->pdev, buff[i],
6463 buff_size[i], PCI_DMA_BIDIRECTIONAL);
6464 if (dma_mapping_error(&h->pdev->dev,
6465 (dma_addr_t) temp64)) {
6466 c->SG[i].Addr = cpu_to_le64(0);
6467 c->SG[i].Len = cpu_to_le32(0);
6468 hpsa_pci_unmap(h->pdev, c, i,
6469 PCI_DMA_BIDIRECTIONAL);
6470 status = -ENOMEM;
6471 goto cleanup0;
6472 }
6473 c->SG[i].Addr = cpu_to_le64(temp64);
6474 c->SG[i].Len = cpu_to_le32(buff_size[i]);
6475 c->SG[i].Ext = cpu_to_le32(0);
6476 }
6477 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6478 }
6479 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6480 if (sg_used)
6481 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6482 check_ioctl_unit_attention(h, c);
6483 if (status) {
6484 status = -EIO;
6485 goto cleanup0;
6486 }
6487
6488 /* Copy the error information out */
6489 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6490 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6491 status = -EFAULT;
6492 goto cleanup0;
6493 }
6494 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6495 int i;
6496
6497 /* Copy the data out of the buffer we created */
6498 BYTE __user *ptr = ioc->buf;
6499 for (i = 0; i < sg_used; i++) {
6500 if (copy_to_user(ptr, buff[i], buff_size[i])) {
6501 status = -EFAULT;
6502 goto cleanup0;
6503 }
6504 ptr += buff_size[i];
6505 }
6506 }
6507 status = 0;
6508 cleanup0:
6509 cmd_free(h, c);
6510 cleanup1:
6511 if (buff) {
6512 int i;
6513
6514 for (i = 0; i < sg_used; i++)
6515 kfree(buff[i]);
6516 kfree(buff);
6517 }
6518 kfree(buff_size);
6519 kfree(ioc);
6520 return status;
6521 }
6522
6523 static void check_ioctl_unit_attention(struct ctlr_info *h,
6524 struct CommandList *c)
6525 {
6526 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6527 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6528 (void) check_for_unit_attention(h, c);
6529 }
6530
6531 /*
6532 * ioctl
6533 */
6534 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6535 {
6536 struct ctlr_info *h;
6537 void __user *argp = (void __user *)arg;
6538 int rc;
6539
6540 h = sdev_to_hba(dev);
6541
6542 switch (cmd) {
6543 case CCISS_DEREGDISK:
6544 case CCISS_REGNEWDISK:
6545 case CCISS_REGNEWD:
6546 hpsa_scan_start(h->scsi_host);
6547 return 0;
6548 case CCISS_GETPCIINFO:
6549 return hpsa_getpciinfo_ioctl(h, argp);
6550 case CCISS_GETDRIVVER:
6551 return hpsa_getdrivver_ioctl(h, argp);
6552 case CCISS_PASSTHRU:
6553 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6554 return -EAGAIN;
6555 rc = hpsa_passthru_ioctl(h, argp);
6556 atomic_inc(&h->passthru_cmds_avail);
6557 return rc;
6558 case CCISS_BIG_PASSTHRU:
6559 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6560 return -EAGAIN;
6561 rc = hpsa_big_passthru_ioctl(h, argp);
6562 atomic_inc(&h->passthru_cmds_avail);
6563 return rc;
6564 default:
6565 return -ENOTTY;
6566 }
6567 }
6568
6569 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6570 u8 reset_type)
6571 {
6572 struct CommandList *c;
6573
6574 c = cmd_alloc(h);
6575
6576 /* fill_cmd can't fail here, no data buffer to map */
6577 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6578 RAID_CTLR_LUNID, TYPE_MSG);
6579 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6580 c->waiting = NULL;
6581 enqueue_cmd_and_start_io(h, c);
6582 /* Don't wait for completion, the reset won't complete. Don't free
6583 * the command either. This is the last command we will send before
6584 * re-initializing everything, so it doesn't matter and won't leak.
6585 */
6586 return;
6587 }
6588
6589 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6590 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6591 int cmd_type)
6592 {
6593 int pci_dir = XFER_NONE;
6594 u64 tag; /* for commands to be aborted */
6595
6596 c->cmd_type = CMD_IOCTL_PEND;
6597 c->scsi_cmd = SCSI_CMD_BUSY;
6598 c->Header.ReplyQueue = 0;
6599 if (buff != NULL && size > 0) {
6600 c->Header.SGList = 1;
6601 c->Header.SGTotal = cpu_to_le16(1);
6602 } else {
6603 c->Header.SGList = 0;
6604 c->Header.SGTotal = cpu_to_le16(0);
6605 }
6606 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6607
6608 if (cmd_type == TYPE_CMD) {
6609 switch (cmd) {
6610 case HPSA_INQUIRY:
6611 /* are we trying to read a vital product page */
6612 if (page_code & VPD_PAGE) {
6613 c->Request.CDB[1] = 0x01;
6614 c->Request.CDB[2] = (page_code & 0xff);
6615 }
6616 c->Request.CDBLen = 6;
6617 c->Request.type_attr_dir =
6618 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6619 c->Request.Timeout = 0;
6620 c->Request.CDB[0] = HPSA_INQUIRY;
6621 c->Request.CDB[4] = size & 0xFF;
6622 break;
6623 case HPSA_REPORT_LOG:
6624 case HPSA_REPORT_PHYS:
6625 /* Talking to controller so It's a physical command
6626 mode = 00 target = 0. Nothing to write.
6627 */
6628 c->Request.CDBLen = 12;
6629 c->Request.type_attr_dir =
6630 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6631 c->Request.Timeout = 0;
6632 c->Request.CDB[0] = cmd;
6633 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6634 c->Request.CDB[7] = (size >> 16) & 0xFF;
6635 c->Request.CDB[8] = (size >> 8) & 0xFF;
6636 c->Request.CDB[9] = size & 0xFF;
6637 break;
6638 case BMIC_SENSE_DIAG_OPTIONS:
6639 c->Request.CDBLen = 16;
6640 c->Request.type_attr_dir =
6641 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6642 c->Request.Timeout = 0;
6643 /* Spec says this should be BMIC_WRITE */
6644 c->Request.CDB[0] = BMIC_READ;
6645 c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6646 break;
6647 case BMIC_SET_DIAG_OPTIONS:
6648 c->Request.CDBLen = 16;
6649 c->Request.type_attr_dir =
6650 TYPE_ATTR_DIR(cmd_type,
6651 ATTR_SIMPLE, XFER_WRITE);
6652 c->Request.Timeout = 0;
6653 c->Request.CDB[0] = BMIC_WRITE;
6654 c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6655 break;
6656 case HPSA_CACHE_FLUSH:
6657 c->Request.CDBLen = 12;
6658 c->Request.type_attr_dir =
6659 TYPE_ATTR_DIR(cmd_type,
6660 ATTR_SIMPLE, XFER_WRITE);
6661 c->Request.Timeout = 0;
6662 c->Request.CDB[0] = BMIC_WRITE;
6663 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6664 c->Request.CDB[7] = (size >> 8) & 0xFF;
6665 c->Request.CDB[8] = size & 0xFF;
6666 break;
6667 case TEST_UNIT_READY:
6668 c->Request.CDBLen = 6;
6669 c->Request.type_attr_dir =
6670 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6671 c->Request.Timeout = 0;
6672 break;
6673 case HPSA_GET_RAID_MAP:
6674 c->Request.CDBLen = 12;
6675 c->Request.type_attr_dir =
6676 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6677 c->Request.Timeout = 0;
6678 c->Request.CDB[0] = HPSA_CISS_READ;
6679 c->Request.CDB[1] = cmd;
6680 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6681 c->Request.CDB[7] = (size >> 16) & 0xFF;
6682 c->Request.CDB[8] = (size >> 8) & 0xFF;
6683 c->Request.CDB[9] = size & 0xFF;
6684 break;
6685 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6686 c->Request.CDBLen = 10;
6687 c->Request.type_attr_dir =
6688 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6689 c->Request.Timeout = 0;
6690 c->Request.CDB[0] = BMIC_READ;
6691 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6692 c->Request.CDB[7] = (size >> 16) & 0xFF;
6693 c->Request.CDB[8] = (size >> 8) & 0xFF;
6694 break;
6695 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6696 c->Request.CDBLen = 10;
6697 c->Request.type_attr_dir =
6698 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6699 c->Request.Timeout = 0;
6700 c->Request.CDB[0] = BMIC_READ;
6701 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6702 c->Request.CDB[7] = (size >> 16) & 0xFF;
6703 c->Request.CDB[8] = (size >> 8) & 0XFF;
6704 break;
6705 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6706 c->Request.CDBLen = 10;
6707 c->Request.type_attr_dir =
6708 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6709 c->Request.Timeout = 0;
6710 c->Request.CDB[0] = BMIC_READ;
6711 c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6712 c->Request.CDB[7] = (size >> 16) & 0xFF;
6713 c->Request.CDB[8] = (size >> 8) & 0XFF;
6714 break;
6715 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6716 c->Request.CDBLen = 10;
6717 c->Request.type_attr_dir =
6718 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6719 c->Request.Timeout = 0;
6720 c->Request.CDB[0] = BMIC_READ;
6721 c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6722 c->Request.CDB[7] = (size >> 16) & 0xFF;
6723 c->Request.CDB[8] = (size >> 8) & 0XFF;
6724 break;
6725 case BMIC_IDENTIFY_CONTROLLER:
6726 c->Request.CDBLen = 10;
6727 c->Request.type_attr_dir =
6728 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6729 c->Request.Timeout = 0;
6730 c->Request.CDB[0] = BMIC_READ;
6731 c->Request.CDB[1] = 0;
6732 c->Request.CDB[2] = 0;
6733 c->Request.CDB[3] = 0;
6734 c->Request.CDB[4] = 0;
6735 c->Request.CDB[5] = 0;
6736 c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6737 c->Request.CDB[7] = (size >> 16) & 0xFF;
6738 c->Request.CDB[8] = (size >> 8) & 0XFF;
6739 c->Request.CDB[9] = 0;
6740 break;
6741 default:
6742 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6743 BUG();
6744 return -1;
6745 }
6746 } else if (cmd_type == TYPE_MSG) {
6747 switch (cmd) {
6748
6749 case HPSA_PHYS_TARGET_RESET:
6750 c->Request.CDBLen = 16;
6751 c->Request.type_attr_dir =
6752 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6753 c->Request.Timeout = 0; /* Don't time out */
6754 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6755 c->Request.CDB[0] = HPSA_RESET;
6756 c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6757 /* Physical target reset needs no control bytes 4-7*/
6758 c->Request.CDB[4] = 0x00;
6759 c->Request.CDB[5] = 0x00;
6760 c->Request.CDB[6] = 0x00;
6761 c->Request.CDB[7] = 0x00;
6762 break;
6763 case HPSA_DEVICE_RESET_MSG:
6764 c->Request.CDBLen = 16;
6765 c->Request.type_attr_dir =
6766 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6767 c->Request.Timeout = 0; /* Don't time out */
6768 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6769 c->Request.CDB[0] = cmd;
6770 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6771 /* If bytes 4-7 are zero, it means reset the */
6772 /* LunID device */
6773 c->Request.CDB[4] = 0x00;
6774 c->Request.CDB[5] = 0x00;
6775 c->Request.CDB[6] = 0x00;
6776 c->Request.CDB[7] = 0x00;
6777 break;
6778 case HPSA_ABORT_MSG:
6779 memcpy(&tag, buff, sizeof(tag));
6780 dev_dbg(&h->pdev->dev,
6781 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6782 tag, c->Header.tag);
6783 c->Request.CDBLen = 16;
6784 c->Request.type_attr_dir =
6785 TYPE_ATTR_DIR(cmd_type,
6786 ATTR_SIMPLE, XFER_WRITE);
6787 c->Request.Timeout = 0; /* Don't time out */
6788 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6789 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6790 c->Request.CDB[2] = 0x00; /* reserved */
6791 c->Request.CDB[3] = 0x00; /* reserved */
6792 /* Tag to abort goes in CDB[4]-CDB[11] */
6793 memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6794 c->Request.CDB[12] = 0x00; /* reserved */
6795 c->Request.CDB[13] = 0x00; /* reserved */
6796 c->Request.CDB[14] = 0x00; /* reserved */
6797 c->Request.CDB[15] = 0x00; /* reserved */
6798 break;
6799 default:
6800 dev_warn(&h->pdev->dev, "unknown message type %d\n",
6801 cmd);
6802 BUG();
6803 }
6804 } else {
6805 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6806 BUG();
6807 }
6808
6809 switch (GET_DIR(c->Request.type_attr_dir)) {
6810 case XFER_READ:
6811 pci_dir = PCI_DMA_FROMDEVICE;
6812 break;
6813 case XFER_WRITE:
6814 pci_dir = PCI_DMA_TODEVICE;
6815 break;
6816 case XFER_NONE:
6817 pci_dir = PCI_DMA_NONE;
6818 break;
6819 default:
6820 pci_dir = PCI_DMA_BIDIRECTIONAL;
6821 }
6822 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6823 return -1;
6824 return 0;
6825 }
6826
6827 /*
6828 * Map (physical) PCI mem into (virtual) kernel space
6829 */
6830 static void __iomem *remap_pci_mem(ulong base, ulong size)
6831 {
6832 ulong page_base = ((ulong) base) & PAGE_MASK;
6833 ulong page_offs = ((ulong) base) - page_base;
6834 void __iomem *page_remapped = ioremap_nocache(page_base,
6835 page_offs + size);
6836
6837 return page_remapped ? (page_remapped + page_offs) : NULL;
6838 }
6839
6840 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6841 {
6842 return h->access.command_completed(h, q);
6843 }
6844
6845 static inline bool interrupt_pending(struct ctlr_info *h)
6846 {
6847 return h->access.intr_pending(h);
6848 }
6849
6850 static inline long interrupt_not_for_us(struct ctlr_info *h)
6851 {
6852 return (h->access.intr_pending(h) == 0) ||
6853 (h->interrupts_enabled == 0);
6854 }
6855
6856 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6857 u32 raw_tag)
6858 {
6859 if (unlikely(tag_index >= h->nr_cmds)) {
6860 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6861 return 1;
6862 }
6863 return 0;
6864 }
6865
6866 static inline void finish_cmd(struct CommandList *c)
6867 {
6868 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6869 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6870 || c->cmd_type == CMD_IOACCEL2))
6871 complete_scsi_command(c);
6872 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6873 complete(c->waiting);
6874 }
6875
6876 /* process completion of an indexed ("direct lookup") command */
6877 static inline void process_indexed_cmd(struct ctlr_info *h,
6878 u32 raw_tag)
6879 {
6880 u32 tag_index;
6881 struct CommandList *c;
6882
6883 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6884 if (!bad_tag(h, tag_index, raw_tag)) {
6885 c = h->cmd_pool + tag_index;
6886 finish_cmd(c);
6887 }
6888 }
6889
6890 /* Some controllers, like p400, will give us one interrupt
6891 * after a soft reset, even if we turned interrupts off.
6892 * Only need to check for this in the hpsa_xxx_discard_completions
6893 * functions.
6894 */
6895 static int ignore_bogus_interrupt(struct ctlr_info *h)
6896 {
6897 if (likely(!reset_devices))
6898 return 0;
6899
6900 if (likely(h->interrupts_enabled))
6901 return 0;
6902
6903 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6904 "(known firmware bug.) Ignoring.\n");
6905
6906 return 1;
6907 }
6908
6909 /*
6910 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6911 * Relies on (h-q[x] == x) being true for x such that
6912 * 0 <= x < MAX_REPLY_QUEUES.
6913 */
6914 static struct ctlr_info *queue_to_hba(u8 *queue)
6915 {
6916 return container_of((queue - *queue), struct ctlr_info, q[0]);
6917 }
6918
6919 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6920 {
6921 struct ctlr_info *h = queue_to_hba(queue);
6922 u8 q = *(u8 *) queue;
6923 u32 raw_tag;
6924
6925 if (ignore_bogus_interrupt(h))
6926 return IRQ_NONE;
6927
6928 if (interrupt_not_for_us(h))
6929 return IRQ_NONE;
6930 h->last_intr_timestamp = get_jiffies_64();
6931 while (interrupt_pending(h)) {
6932 raw_tag = get_next_completion(h, q);
6933 while (raw_tag != FIFO_EMPTY)
6934 raw_tag = next_command(h, q);
6935 }
6936 return IRQ_HANDLED;
6937 }
6938
6939 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6940 {
6941 struct ctlr_info *h = queue_to_hba(queue);
6942 u32 raw_tag;
6943 u8 q = *(u8 *) queue;
6944
6945 if (ignore_bogus_interrupt(h))
6946 return IRQ_NONE;
6947
6948 h->last_intr_timestamp = get_jiffies_64();
6949 raw_tag = get_next_completion(h, q);
6950 while (raw_tag != FIFO_EMPTY)
6951 raw_tag = next_command(h, q);
6952 return IRQ_HANDLED;
6953 }
6954
6955 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6956 {
6957 struct ctlr_info *h = queue_to_hba((u8 *) queue);
6958 u32 raw_tag;
6959 u8 q = *(u8 *) queue;
6960
6961 if (interrupt_not_for_us(h))
6962 return IRQ_NONE;
6963 h->last_intr_timestamp = get_jiffies_64();
6964 while (interrupt_pending(h)) {
6965 raw_tag = get_next_completion(h, q);
6966 while (raw_tag != FIFO_EMPTY) {
6967 process_indexed_cmd(h, raw_tag);
6968 raw_tag = next_command(h, q);
6969 }
6970 }
6971 return IRQ_HANDLED;
6972 }
6973
6974 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6975 {
6976 struct ctlr_info *h = queue_to_hba(queue);
6977 u32 raw_tag;
6978 u8 q = *(u8 *) queue;
6979
6980 h->last_intr_timestamp = get_jiffies_64();
6981 raw_tag = get_next_completion(h, q);
6982 while (raw_tag != FIFO_EMPTY) {
6983 process_indexed_cmd(h, raw_tag);
6984 raw_tag = next_command(h, q);
6985 }
6986 return IRQ_HANDLED;
6987 }
6988
6989 /* Send a message CDB to the firmware. Careful, this only works
6990 * in simple mode, not performant mode due to the tag lookup.
6991 * We only ever use this immediately after a controller reset.
6992 */
6993 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6994 unsigned char type)
6995 {
6996 struct Command {
6997 struct CommandListHeader CommandHeader;
6998 struct RequestBlock Request;
6999 struct ErrDescriptor ErrorDescriptor;
7000 };
7001 struct Command *cmd;
7002 static const size_t cmd_sz = sizeof(*cmd) +
7003 sizeof(cmd->ErrorDescriptor);
7004 dma_addr_t paddr64;
7005 __le32 paddr32;
7006 u32 tag;
7007 void __iomem *vaddr;
7008 int i, err;
7009
7010 vaddr = pci_ioremap_bar(pdev, 0);
7011 if (vaddr == NULL)
7012 return -ENOMEM;
7013
7014 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7015 * CCISS commands, so they must be allocated from the lower 4GiB of
7016 * memory.
7017 */
7018 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7019 if (err) {
7020 iounmap(vaddr);
7021 return err;
7022 }
7023
7024 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7025 if (cmd == NULL) {
7026 iounmap(vaddr);
7027 return -ENOMEM;
7028 }
7029
7030 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7031 * although there's no guarantee, we assume that the address is at
7032 * least 4-byte aligned (most likely, it's page-aligned).
7033 */
7034 paddr32 = cpu_to_le32(paddr64);
7035
7036 cmd->CommandHeader.ReplyQueue = 0;
7037 cmd->CommandHeader.SGList = 0;
7038 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7039 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7040 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7041
7042 cmd->Request.CDBLen = 16;
7043 cmd->Request.type_attr_dir =
7044 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7045 cmd->Request.Timeout = 0; /* Don't time out */
7046 cmd->Request.CDB[0] = opcode;
7047 cmd->Request.CDB[1] = type;
7048 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7049 cmd->ErrorDescriptor.Addr =
7050 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7051 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7052
7053 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7054
7055 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7056 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7057 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7058 break;
7059 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7060 }
7061
7062 iounmap(vaddr);
7063
7064 /* we leak the DMA buffer here ... no choice since the controller could
7065 * still complete the command.
7066 */
7067 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7068 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7069 opcode, type);
7070 return -ETIMEDOUT;
7071 }
7072
7073 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7074
7075 if (tag & HPSA_ERROR_BIT) {
7076 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7077 opcode, type);
7078 return -EIO;
7079 }
7080
7081 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7082 opcode, type);
7083 return 0;
7084 }
7085
7086 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7087
7088 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7089 void __iomem *vaddr, u32 use_doorbell)
7090 {
7091
7092 if (use_doorbell) {
7093 /* For everything after the P600, the PCI power state method
7094 * of resetting the controller doesn't work, so we have this
7095 * other way using the doorbell register.
7096 */
7097 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7098 writel(use_doorbell, vaddr + SA5_DOORBELL);
7099
7100 /* PMC hardware guys tell us we need a 10 second delay after
7101 * doorbell reset and before any attempt to talk to the board
7102 * at all to ensure that this actually works and doesn't fall
7103 * over in some weird corner cases.
7104 */
7105 msleep(10000);
7106 } else { /* Try to do it the PCI power state way */
7107
7108 /* Quoting from the Open CISS Specification: "The Power
7109 * Management Control/Status Register (CSR) controls the power
7110 * state of the device. The normal operating state is D0,
7111 * CSR=00h. The software off state is D3, CSR=03h. To reset
7112 * the controller, place the interface device in D3 then to D0,
7113 * this causes a secondary PCI reset which will reset the
7114 * controller." */
7115
7116 int rc = 0;
7117
7118 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7119
7120 /* enter the D3hot power management state */
7121 rc = pci_set_power_state(pdev, PCI_D3hot);
7122 if (rc)
7123 return rc;
7124
7125 msleep(500);
7126
7127 /* enter the D0 power management state */
7128 rc = pci_set_power_state(pdev, PCI_D0);
7129 if (rc)
7130 return rc;
7131
7132 /*
7133 * The P600 requires a small delay when changing states.
7134 * Otherwise we may think the board did not reset and we bail.
7135 * This for kdump only and is particular to the P600.
7136 */
7137 msleep(500);
7138 }
7139 return 0;
7140 }
7141
7142 static void init_driver_version(char *driver_version, int len)
7143 {
7144 memset(driver_version, 0, len);
7145 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7146 }
7147
7148 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7149 {
7150 char *driver_version;
7151 int i, size = sizeof(cfgtable->driver_version);
7152
7153 driver_version = kmalloc(size, GFP_KERNEL);
7154 if (!driver_version)
7155 return -ENOMEM;
7156
7157 init_driver_version(driver_version, size);
7158 for (i = 0; i < size; i++)
7159 writeb(driver_version[i], &cfgtable->driver_version[i]);
7160 kfree(driver_version);
7161 return 0;
7162 }
7163
7164 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7165 unsigned char *driver_ver)
7166 {
7167 int i;
7168
7169 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7170 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7171 }
7172
7173 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7174 {
7175
7176 char *driver_ver, *old_driver_ver;
7177 int rc, size = sizeof(cfgtable->driver_version);
7178
7179 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7180 if (!old_driver_ver)
7181 return -ENOMEM;
7182 driver_ver = old_driver_ver + size;
7183
7184 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7185 * should have been changed, otherwise we know the reset failed.
7186 */
7187 init_driver_version(old_driver_ver, size);
7188 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7189 rc = !memcmp(driver_ver, old_driver_ver, size);
7190 kfree(old_driver_ver);
7191 return rc;
7192 }
7193 /* This does a hard reset of the controller using PCI power management
7194 * states or the using the doorbell register.
7195 */
7196 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7197 {
7198 u64 cfg_offset;
7199 u32 cfg_base_addr;
7200 u64 cfg_base_addr_index;
7201 void __iomem *vaddr;
7202 unsigned long paddr;
7203 u32 misc_fw_support;
7204 int rc;
7205 struct CfgTable __iomem *cfgtable;
7206 u32 use_doorbell;
7207 u16 command_register;
7208
7209 /* For controllers as old as the P600, this is very nearly
7210 * the same thing as
7211 *
7212 * pci_save_state(pci_dev);
7213 * pci_set_power_state(pci_dev, PCI_D3hot);
7214 * pci_set_power_state(pci_dev, PCI_D0);
7215 * pci_restore_state(pci_dev);
7216 *
7217 * For controllers newer than the P600, the pci power state
7218 * method of resetting doesn't work so we have another way
7219 * using the doorbell register.
7220 */
7221
7222 if (!ctlr_is_resettable(board_id)) {
7223 dev_warn(&pdev->dev, "Controller not resettable\n");
7224 return -ENODEV;
7225 }
7226
7227 /* if controller is soft- but not hard resettable... */
7228 if (!ctlr_is_hard_resettable(board_id))
7229 return -ENOTSUPP; /* try soft reset later. */
7230
7231 /* Save the PCI command register */
7232 pci_read_config_word(pdev, 4, &command_register);
7233 pci_save_state(pdev);
7234
7235 /* find the first memory BAR, so we can find the cfg table */
7236 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7237 if (rc)
7238 return rc;
7239 vaddr = remap_pci_mem(paddr, 0x250);
7240 if (!vaddr)
7241 return -ENOMEM;
7242
7243 /* find cfgtable in order to check if reset via doorbell is supported */
7244 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7245 &cfg_base_addr_index, &cfg_offset);
7246 if (rc)
7247 goto unmap_vaddr;
7248 cfgtable = remap_pci_mem(pci_resource_start(pdev,
7249 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7250 if (!cfgtable) {
7251 rc = -ENOMEM;
7252 goto unmap_vaddr;
7253 }
7254 rc = write_driver_ver_to_cfgtable(cfgtable);
7255 if (rc)
7256 goto unmap_cfgtable;
7257
7258 /* If reset via doorbell register is supported, use that.
7259 * There are two such methods. Favor the newest method.
7260 */
7261 misc_fw_support = readl(&cfgtable->misc_fw_support);
7262 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7263 if (use_doorbell) {
7264 use_doorbell = DOORBELL_CTLR_RESET2;
7265 } else {
7266 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7267 if (use_doorbell) {
7268 dev_warn(&pdev->dev,
7269 "Soft reset not supported. Firmware update is required.\n");
7270 rc = -ENOTSUPP; /* try soft reset */
7271 goto unmap_cfgtable;
7272 }
7273 }
7274
7275 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7276 if (rc)
7277 goto unmap_cfgtable;
7278
7279 pci_restore_state(pdev);
7280 pci_write_config_word(pdev, 4, command_register);
7281
7282 /* Some devices (notably the HP Smart Array 5i Controller)
7283 need a little pause here */
7284 msleep(HPSA_POST_RESET_PAUSE_MSECS);
7285
7286 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7287 if (rc) {
7288 dev_warn(&pdev->dev,
7289 "Failed waiting for board to become ready after hard reset\n");
7290 goto unmap_cfgtable;
7291 }
7292
7293 rc = controller_reset_failed(vaddr);
7294 if (rc < 0)
7295 goto unmap_cfgtable;
7296 if (rc) {
7297 dev_warn(&pdev->dev, "Unable to successfully reset "
7298 "controller. Will try soft reset.\n");
7299 rc = -ENOTSUPP;
7300 } else {
7301 dev_info(&pdev->dev, "board ready after hard reset.\n");
7302 }
7303
7304 unmap_cfgtable:
7305 iounmap(cfgtable);
7306
7307 unmap_vaddr:
7308 iounmap(vaddr);
7309 return rc;
7310 }
7311
7312 /*
7313 * We cannot read the structure directly, for portability we must use
7314 * the io functions.
7315 * This is for debug only.
7316 */
7317 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7318 {
7319 #ifdef HPSA_DEBUG
7320 int i;
7321 char temp_name[17];
7322
7323 dev_info(dev, "Controller Configuration information\n");
7324 dev_info(dev, "------------------------------------\n");
7325 for (i = 0; i < 4; i++)
7326 temp_name[i] = readb(&(tb->Signature[i]));
7327 temp_name[4] = '\0';
7328 dev_info(dev, " Signature = %s\n", temp_name);
7329 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
7330 dev_info(dev, " Transport methods supported = 0x%x\n",
7331 readl(&(tb->TransportSupport)));
7332 dev_info(dev, " Transport methods active = 0x%x\n",
7333 readl(&(tb->TransportActive)));
7334 dev_info(dev, " Requested transport Method = 0x%x\n",
7335 readl(&(tb->HostWrite.TransportRequest)));
7336 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
7337 readl(&(tb->HostWrite.CoalIntDelay)));
7338 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
7339 readl(&(tb->HostWrite.CoalIntCount)));
7340 dev_info(dev, " Max outstanding commands = %d\n",
7341 readl(&(tb->CmdsOutMax)));
7342 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7343 for (i = 0; i < 16; i++)
7344 temp_name[i] = readb(&(tb->ServerName[i]));
7345 temp_name[16] = '\0';
7346 dev_info(dev, " Server Name = %s\n", temp_name);
7347 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
7348 readl(&(tb->HeartBeat)));
7349 #endif /* HPSA_DEBUG */
7350 }
7351
7352 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7353 {
7354 int i, offset, mem_type, bar_type;
7355
7356 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7357 return 0;
7358 offset = 0;
7359 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7360 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7361 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7362 offset += 4;
7363 else {
7364 mem_type = pci_resource_flags(pdev, i) &
7365 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7366 switch (mem_type) {
7367 case PCI_BASE_ADDRESS_MEM_TYPE_32:
7368 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7369 offset += 4; /* 32 bit */
7370 break;
7371 case PCI_BASE_ADDRESS_MEM_TYPE_64:
7372 offset += 8;
7373 break;
7374 default: /* reserved in PCI 2.2 */
7375 dev_warn(&pdev->dev,
7376 "base address is invalid\n");
7377 return -1;
7378 break;
7379 }
7380 }
7381 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7382 return i + 1;
7383 }
7384 return -1;
7385 }
7386
7387 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7388 {
7389 if (h->msix_vector) {
7390 if (h->pdev->msix_enabled)
7391 pci_disable_msix(h->pdev);
7392 h->msix_vector = 0;
7393 } else if (h->msi_vector) {
7394 if (h->pdev->msi_enabled)
7395 pci_disable_msi(h->pdev);
7396 h->msi_vector = 0;
7397 }
7398 }
7399
7400 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7401 * controllers that are capable. If not, we use legacy INTx mode.
7402 */
7403 static void hpsa_interrupt_mode(struct ctlr_info *h)
7404 {
7405 #ifdef CONFIG_PCI_MSI
7406 int err, i;
7407 struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7408
7409 for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7410 hpsa_msix_entries[i].vector = 0;
7411 hpsa_msix_entries[i].entry = i;
7412 }
7413
7414 /* Some boards advertise MSI but don't really support it */
7415 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7416 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7417 goto default_int_mode;
7418 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7419 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7420 h->msix_vector = MAX_REPLY_QUEUES;
7421 if (h->msix_vector > num_online_cpus())
7422 h->msix_vector = num_online_cpus();
7423 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7424 1, h->msix_vector);
7425 if (err < 0) {
7426 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7427 h->msix_vector = 0;
7428 goto single_msi_mode;
7429 } else if (err < h->msix_vector) {
7430 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7431 "available\n", err);
7432 }
7433 h->msix_vector = err;
7434 for (i = 0; i < h->msix_vector; i++)
7435 h->intr[i] = hpsa_msix_entries[i].vector;
7436 return;
7437 }
7438 single_msi_mode:
7439 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7440 dev_info(&h->pdev->dev, "MSI capable controller\n");
7441 if (!pci_enable_msi(h->pdev))
7442 h->msi_vector = 1;
7443 else
7444 dev_warn(&h->pdev->dev, "MSI init failed\n");
7445 }
7446 default_int_mode:
7447 #endif /* CONFIG_PCI_MSI */
7448 /* if we get here we're going to use the default interrupt mode */
7449 h->intr[h->intr_mode] = h->pdev->irq;
7450 }
7451
7452 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7453 {
7454 int i;
7455 u32 subsystem_vendor_id, subsystem_device_id;
7456
7457 subsystem_vendor_id = pdev->subsystem_vendor;
7458 subsystem_device_id = pdev->subsystem_device;
7459 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7460 subsystem_vendor_id;
7461
7462 for (i = 0; i < ARRAY_SIZE(products); i++)
7463 if (*board_id == products[i].board_id)
7464 return i;
7465
7466 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7467 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7468 !hpsa_allow_any) {
7469 dev_warn(&pdev->dev, "unrecognized board ID: "
7470 "0x%08x, ignoring.\n", *board_id);
7471 return -ENODEV;
7472 }
7473 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7474 }
7475
7476 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7477 unsigned long *memory_bar)
7478 {
7479 int i;
7480
7481 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7482 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7483 /* addressing mode bits already removed */
7484 *memory_bar = pci_resource_start(pdev, i);
7485 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7486 *memory_bar);
7487 return 0;
7488 }
7489 dev_warn(&pdev->dev, "no memory BAR found\n");
7490 return -ENODEV;
7491 }
7492
7493 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7494 int wait_for_ready)
7495 {
7496 int i, iterations;
7497 u32 scratchpad;
7498 if (wait_for_ready)
7499 iterations = HPSA_BOARD_READY_ITERATIONS;
7500 else
7501 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7502
7503 for (i = 0; i < iterations; i++) {
7504 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7505 if (wait_for_ready) {
7506 if (scratchpad == HPSA_FIRMWARE_READY)
7507 return 0;
7508 } else {
7509 if (scratchpad != HPSA_FIRMWARE_READY)
7510 return 0;
7511 }
7512 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7513 }
7514 dev_warn(&pdev->dev, "board not ready, timed out.\n");
7515 return -ENODEV;
7516 }
7517
7518 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7519 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7520 u64 *cfg_offset)
7521 {
7522 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7523 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7524 *cfg_base_addr &= (u32) 0x0000ffff;
7525 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7526 if (*cfg_base_addr_index == -1) {
7527 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7528 return -ENODEV;
7529 }
7530 return 0;
7531 }
7532
7533 static void hpsa_free_cfgtables(struct ctlr_info *h)
7534 {
7535 if (h->transtable) {
7536 iounmap(h->transtable);
7537 h->transtable = NULL;
7538 }
7539 if (h->cfgtable) {
7540 iounmap(h->cfgtable);
7541 h->cfgtable = NULL;
7542 }
7543 }
7544
7545 /* Find and map CISS config table and transfer table
7546 + * several items must be unmapped (freed) later
7547 + * */
7548 static int hpsa_find_cfgtables(struct ctlr_info *h)
7549 {
7550 u64 cfg_offset;
7551 u32 cfg_base_addr;
7552 u64 cfg_base_addr_index;
7553 u32 trans_offset;
7554 int rc;
7555
7556 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7557 &cfg_base_addr_index, &cfg_offset);
7558 if (rc)
7559 return rc;
7560 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7561 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7562 if (!h->cfgtable) {
7563 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7564 return -ENOMEM;
7565 }
7566 rc = write_driver_ver_to_cfgtable(h->cfgtable);
7567 if (rc)
7568 return rc;
7569 /* Find performant mode table. */
7570 trans_offset = readl(&h->cfgtable->TransMethodOffset);
7571 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7572 cfg_base_addr_index)+cfg_offset+trans_offset,
7573 sizeof(*h->transtable));
7574 if (!h->transtable) {
7575 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7576 hpsa_free_cfgtables(h);
7577 return -ENOMEM;
7578 }
7579 return 0;
7580 }
7581
7582 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7583 {
7584 #define MIN_MAX_COMMANDS 16
7585 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7586
7587 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7588
7589 /* Limit commands in memory limited kdump scenario. */
7590 if (reset_devices && h->max_commands > 32)
7591 h->max_commands = 32;
7592
7593 if (h->max_commands < MIN_MAX_COMMANDS) {
7594 dev_warn(&h->pdev->dev,
7595 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7596 h->max_commands,
7597 MIN_MAX_COMMANDS);
7598 h->max_commands = MIN_MAX_COMMANDS;
7599 }
7600 }
7601
7602 /* If the controller reports that the total max sg entries is greater than 512,
7603 * then we know that chained SG blocks work. (Original smart arrays did not
7604 * support chained SG blocks and would return zero for max sg entries.)
7605 */
7606 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7607 {
7608 return h->maxsgentries > 512;
7609 }
7610
7611 /* Interrogate the hardware for some limits:
7612 * max commands, max SG elements without chaining, and with chaining,
7613 * SG chain block size, etc.
7614 */
7615 static void hpsa_find_board_params(struct ctlr_info *h)
7616 {
7617 hpsa_get_max_perf_mode_cmds(h);
7618 h->nr_cmds = h->max_commands;
7619 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7620 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7621 if (hpsa_supports_chained_sg_blocks(h)) {
7622 /* Limit in-command s/g elements to 32 save dma'able memory. */
7623 h->max_cmd_sg_entries = 32;
7624 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7625 h->maxsgentries--; /* save one for chain pointer */
7626 } else {
7627 /*
7628 * Original smart arrays supported at most 31 s/g entries
7629 * embedded inline in the command (trying to use more
7630 * would lock up the controller)
7631 */
7632 h->max_cmd_sg_entries = 31;
7633 h->maxsgentries = 31; /* default to traditional values */
7634 h->chainsize = 0;
7635 }
7636
7637 /* Find out what task management functions are supported and cache */
7638 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7639 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7640 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7641 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7642 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7643 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7644 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7645 }
7646
7647 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7648 {
7649 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7650 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7651 return false;
7652 }
7653 return true;
7654 }
7655
7656 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7657 {
7658 u32 driver_support;
7659
7660 driver_support = readl(&(h->cfgtable->driver_support));
7661 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7662 #ifdef CONFIG_X86
7663 driver_support |= ENABLE_SCSI_PREFETCH;
7664 #endif
7665 driver_support |= ENABLE_UNIT_ATTN;
7666 writel(driver_support, &(h->cfgtable->driver_support));
7667 }
7668
7669 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7670 * in a prefetch beyond physical memory.
7671 */
7672 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7673 {
7674 u32 dma_prefetch;
7675
7676 if (h->board_id != 0x3225103C)
7677 return;
7678 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7679 dma_prefetch |= 0x8000;
7680 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7681 }
7682
7683 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7684 {
7685 int i;
7686 u32 doorbell_value;
7687 unsigned long flags;
7688 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7689 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7690 spin_lock_irqsave(&h->lock, flags);
7691 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7692 spin_unlock_irqrestore(&h->lock, flags);
7693 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7694 goto done;
7695 /* delay and try again */
7696 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7697 }
7698 return -ENODEV;
7699 done:
7700 return 0;
7701 }
7702
7703 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7704 {
7705 int i;
7706 u32 doorbell_value;
7707 unsigned long flags;
7708
7709 /* under certain very rare conditions, this can take awhile.
7710 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7711 * as we enter this code.)
7712 */
7713 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7714 if (h->remove_in_progress)
7715 goto done;
7716 spin_lock_irqsave(&h->lock, flags);
7717 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7718 spin_unlock_irqrestore(&h->lock, flags);
7719 if (!(doorbell_value & CFGTBL_ChangeReq))
7720 goto done;
7721 /* delay and try again */
7722 msleep(MODE_CHANGE_WAIT_INTERVAL);
7723 }
7724 return -ENODEV;
7725 done:
7726 return 0;
7727 }
7728
7729 /* return -ENODEV or other reason on error, 0 on success */
7730 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7731 {
7732 u32 trans_support;
7733
7734 trans_support = readl(&(h->cfgtable->TransportSupport));
7735 if (!(trans_support & SIMPLE_MODE))
7736 return -ENOTSUPP;
7737
7738 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7739
7740 /* Update the field, and then ring the doorbell */
7741 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7742 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7743 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7744 if (hpsa_wait_for_mode_change_ack(h))
7745 goto error;
7746 print_cfg_table(&h->pdev->dev, h->cfgtable);
7747 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7748 goto error;
7749 h->transMethod = CFGTBL_Trans_Simple;
7750 return 0;
7751 error:
7752 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7753 return -ENODEV;
7754 }
7755
7756 /* free items allocated or mapped by hpsa_pci_init */
7757 static void hpsa_free_pci_init(struct ctlr_info *h)
7758 {
7759 hpsa_free_cfgtables(h); /* pci_init 4 */
7760 iounmap(h->vaddr); /* pci_init 3 */
7761 h->vaddr = NULL;
7762 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
7763 /*
7764 * call pci_disable_device before pci_release_regions per
7765 * Documentation/PCI/pci.txt
7766 */
7767 pci_disable_device(h->pdev); /* pci_init 1 */
7768 pci_release_regions(h->pdev); /* pci_init 2 */
7769 }
7770
7771 /* several items must be freed later */
7772 static int hpsa_pci_init(struct ctlr_info *h)
7773 {
7774 int prod_index, err;
7775
7776 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7777 if (prod_index < 0)
7778 return prod_index;
7779 h->product_name = products[prod_index].product_name;
7780 h->access = *(products[prod_index].access);
7781
7782 h->needs_abort_tags_swizzled =
7783 ctlr_needs_abort_tags_swizzled(h->board_id);
7784
7785 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7786 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7787
7788 err = pci_enable_device(h->pdev);
7789 if (err) {
7790 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7791 pci_disable_device(h->pdev);
7792 return err;
7793 }
7794
7795 err = pci_request_regions(h->pdev, HPSA);
7796 if (err) {
7797 dev_err(&h->pdev->dev,
7798 "failed to obtain PCI resources\n");
7799 pci_disable_device(h->pdev);
7800 return err;
7801 }
7802
7803 pci_set_master(h->pdev);
7804
7805 hpsa_interrupt_mode(h);
7806 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7807 if (err)
7808 goto clean2; /* intmode+region, pci */
7809 h->vaddr = remap_pci_mem(h->paddr, 0x250);
7810 if (!h->vaddr) {
7811 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7812 err = -ENOMEM;
7813 goto clean2; /* intmode+region, pci */
7814 }
7815 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7816 if (err)
7817 goto clean3; /* vaddr, intmode+region, pci */
7818 err = hpsa_find_cfgtables(h);
7819 if (err)
7820 goto clean3; /* vaddr, intmode+region, pci */
7821 hpsa_find_board_params(h);
7822
7823 if (!hpsa_CISS_signature_present(h)) {
7824 err = -ENODEV;
7825 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7826 }
7827 hpsa_set_driver_support_bits(h);
7828 hpsa_p600_dma_prefetch_quirk(h);
7829 err = hpsa_enter_simple_mode(h);
7830 if (err)
7831 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7832 return 0;
7833
7834 clean4: /* cfgtables, vaddr, intmode+region, pci */
7835 hpsa_free_cfgtables(h);
7836 clean3: /* vaddr, intmode+region, pci */
7837 iounmap(h->vaddr);
7838 h->vaddr = NULL;
7839 clean2: /* intmode+region, pci */
7840 hpsa_disable_interrupt_mode(h);
7841 /*
7842 * call pci_disable_device before pci_release_regions per
7843 * Documentation/PCI/pci.txt
7844 */
7845 pci_disable_device(h->pdev);
7846 pci_release_regions(h->pdev);
7847 return err;
7848 }
7849
7850 static void hpsa_hba_inquiry(struct ctlr_info *h)
7851 {
7852 int rc;
7853
7854 #define HBA_INQUIRY_BYTE_COUNT 64
7855 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7856 if (!h->hba_inquiry_data)
7857 return;
7858 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7859 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7860 if (rc != 0) {
7861 kfree(h->hba_inquiry_data);
7862 h->hba_inquiry_data = NULL;
7863 }
7864 }
7865
7866 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7867 {
7868 int rc, i;
7869 void __iomem *vaddr;
7870
7871 if (!reset_devices)
7872 return 0;
7873
7874 /* kdump kernel is loading, we don't know in which state is
7875 * the pci interface. The dev->enable_cnt is equal zero
7876 * so we call enable+disable, wait a while and switch it on.
7877 */
7878 rc = pci_enable_device(pdev);
7879 if (rc) {
7880 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7881 return -ENODEV;
7882 }
7883 pci_disable_device(pdev);
7884 msleep(260); /* a randomly chosen number */
7885 rc = pci_enable_device(pdev);
7886 if (rc) {
7887 dev_warn(&pdev->dev, "failed to enable device.\n");
7888 return -ENODEV;
7889 }
7890
7891 pci_set_master(pdev);
7892
7893 vaddr = pci_ioremap_bar(pdev, 0);
7894 if (vaddr == NULL) {
7895 rc = -ENOMEM;
7896 goto out_disable;
7897 }
7898 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7899 iounmap(vaddr);
7900
7901 /* Reset the controller with a PCI power-cycle or via doorbell */
7902 rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7903
7904 /* -ENOTSUPP here means we cannot reset the controller
7905 * but it's already (and still) up and running in
7906 * "performant mode". Or, it might be 640x, which can't reset
7907 * due to concerns about shared bbwc between 6402/6404 pair.
7908 */
7909 if (rc)
7910 goto out_disable;
7911
7912 /* Now try to get the controller to respond to a no-op */
7913 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7914 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7915 if (hpsa_noop(pdev) == 0)
7916 break;
7917 else
7918 dev_warn(&pdev->dev, "no-op failed%s\n",
7919 (i < 11 ? "; re-trying" : ""));
7920 }
7921
7922 out_disable:
7923
7924 pci_disable_device(pdev);
7925 return rc;
7926 }
7927
7928 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7929 {
7930 kfree(h->cmd_pool_bits);
7931 h->cmd_pool_bits = NULL;
7932 if (h->cmd_pool) {
7933 pci_free_consistent(h->pdev,
7934 h->nr_cmds * sizeof(struct CommandList),
7935 h->cmd_pool,
7936 h->cmd_pool_dhandle);
7937 h->cmd_pool = NULL;
7938 h->cmd_pool_dhandle = 0;
7939 }
7940 if (h->errinfo_pool) {
7941 pci_free_consistent(h->pdev,
7942 h->nr_cmds * sizeof(struct ErrorInfo),
7943 h->errinfo_pool,
7944 h->errinfo_pool_dhandle);
7945 h->errinfo_pool = NULL;
7946 h->errinfo_pool_dhandle = 0;
7947 }
7948 }
7949
7950 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7951 {
7952 h->cmd_pool_bits = kzalloc(
7953 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7954 sizeof(unsigned long), GFP_KERNEL);
7955 h->cmd_pool = pci_alloc_consistent(h->pdev,
7956 h->nr_cmds * sizeof(*h->cmd_pool),
7957 &(h->cmd_pool_dhandle));
7958 h->errinfo_pool = pci_alloc_consistent(h->pdev,
7959 h->nr_cmds * sizeof(*h->errinfo_pool),
7960 &(h->errinfo_pool_dhandle));
7961 if ((h->cmd_pool_bits == NULL)
7962 || (h->cmd_pool == NULL)
7963 || (h->errinfo_pool == NULL)) {
7964 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7965 goto clean_up;
7966 }
7967 hpsa_preinitialize_commands(h);
7968 return 0;
7969 clean_up:
7970 hpsa_free_cmd_pool(h);
7971 return -ENOMEM;
7972 }
7973
7974 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
7975 {
7976 int i, cpu;
7977
7978 cpu = cpumask_first(cpu_online_mask);
7979 for (i = 0; i < h->msix_vector; i++) {
7980 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7981 cpu = cpumask_next(cpu, cpu_online_mask);
7982 }
7983 }
7984
7985 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7986 static void hpsa_free_irqs(struct ctlr_info *h)
7987 {
7988 int i;
7989
7990 if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7991 /* Single reply queue, only one irq to free */
7992 i = h->intr_mode;
7993 irq_set_affinity_hint(h->intr[i], NULL);
7994 free_irq(h->intr[i], &h->q[i]);
7995 h->q[i] = 0;
7996 return;
7997 }
7998
7999 for (i = 0; i < h->msix_vector; i++) {
8000 irq_set_affinity_hint(h->intr[i], NULL);
8001 free_irq(h->intr[i], &h->q[i]);
8002 h->q[i] = 0;
8003 }
8004 for (; i < MAX_REPLY_QUEUES; i++)
8005 h->q[i] = 0;
8006 }
8007
8008 /* returns 0 on success; cleans up and returns -Enn on error */
8009 static int hpsa_request_irqs(struct ctlr_info *h,
8010 irqreturn_t (*msixhandler)(int, void *),
8011 irqreturn_t (*intxhandler)(int, void *))
8012 {
8013 int rc, i;
8014
8015 /*
8016 * initialize h->q[x] = x so that interrupt handlers know which
8017 * queue to process.
8018 */
8019 for (i = 0; i < MAX_REPLY_QUEUES; i++)
8020 h->q[i] = (u8) i;
8021
8022 if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
8023 /* If performant mode and MSI-X, use multiple reply queues */
8024 for (i = 0; i < h->msix_vector; i++) {
8025 sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8026 rc = request_irq(h->intr[i], msixhandler,
8027 0, h->intrname[i],
8028 &h->q[i]);
8029 if (rc) {
8030 int j;
8031
8032 dev_err(&h->pdev->dev,
8033 "failed to get irq %d for %s\n",
8034 h->intr[i], h->devname);
8035 for (j = 0; j < i; j++) {
8036 free_irq(h->intr[j], &h->q[j]);
8037 h->q[j] = 0;
8038 }
8039 for (; j < MAX_REPLY_QUEUES; j++)
8040 h->q[j] = 0;
8041 return rc;
8042 }
8043 }
8044 hpsa_irq_affinity_hints(h);
8045 } else {
8046 /* Use single reply pool */
8047 if (h->msix_vector > 0 || h->msi_vector) {
8048 if (h->msix_vector)
8049 sprintf(h->intrname[h->intr_mode],
8050 "%s-msix", h->devname);
8051 else
8052 sprintf(h->intrname[h->intr_mode],
8053 "%s-msi", h->devname);
8054 rc = request_irq(h->intr[h->intr_mode],
8055 msixhandler, 0,
8056 h->intrname[h->intr_mode],
8057 &h->q[h->intr_mode]);
8058 } else {
8059 sprintf(h->intrname[h->intr_mode],
8060 "%s-intx", h->devname);
8061 rc = request_irq(h->intr[h->intr_mode],
8062 intxhandler, IRQF_SHARED,
8063 h->intrname[h->intr_mode],
8064 &h->q[h->intr_mode]);
8065 }
8066 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
8067 }
8068 if (rc) {
8069 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8070 h->intr[h->intr_mode], h->devname);
8071 hpsa_free_irqs(h);
8072 return -ENODEV;
8073 }
8074 return 0;
8075 }
8076
8077 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8078 {
8079 int rc;
8080 hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8081
8082 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8083 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8084 if (rc) {
8085 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8086 return rc;
8087 }
8088
8089 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8090 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8091 if (rc) {
8092 dev_warn(&h->pdev->dev, "Board failed to become ready "
8093 "after soft reset.\n");
8094 return rc;
8095 }
8096
8097 return 0;
8098 }
8099
8100 static void hpsa_free_reply_queues(struct ctlr_info *h)
8101 {
8102 int i;
8103
8104 for (i = 0; i < h->nreply_queues; i++) {
8105 if (!h->reply_queue[i].head)
8106 continue;
8107 pci_free_consistent(h->pdev,
8108 h->reply_queue_size,
8109 h->reply_queue[i].head,
8110 h->reply_queue[i].busaddr);
8111 h->reply_queue[i].head = NULL;
8112 h->reply_queue[i].busaddr = 0;
8113 }
8114 h->reply_queue_size = 0;
8115 }
8116
8117 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8118 {
8119 hpsa_free_performant_mode(h); /* init_one 7 */
8120 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8121 hpsa_free_cmd_pool(h); /* init_one 5 */
8122 hpsa_free_irqs(h); /* init_one 4 */
8123 scsi_host_put(h->scsi_host); /* init_one 3 */
8124 h->scsi_host = NULL; /* init_one 3 */
8125 hpsa_free_pci_init(h); /* init_one 2_5 */
8126 free_percpu(h->lockup_detected); /* init_one 2 */
8127 h->lockup_detected = NULL; /* init_one 2 */
8128 if (h->resubmit_wq) {
8129 destroy_workqueue(h->resubmit_wq); /* init_one 1 */
8130 h->resubmit_wq = NULL;
8131 }
8132 if (h->rescan_ctlr_wq) {
8133 destroy_workqueue(h->rescan_ctlr_wq);
8134 h->rescan_ctlr_wq = NULL;
8135 }
8136 kfree(h); /* init_one 1 */
8137 }
8138
8139 /* Called when controller lockup detected. */
8140 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8141 {
8142 int i, refcount;
8143 struct CommandList *c;
8144 int failcount = 0;
8145
8146 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8147 for (i = 0; i < h->nr_cmds; i++) {
8148 c = h->cmd_pool + i;
8149 refcount = atomic_inc_return(&c->refcount);
8150 if (refcount > 1) {
8151 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8152 finish_cmd(c);
8153 atomic_dec(&h->commands_outstanding);
8154 failcount++;
8155 }
8156 cmd_free(h, c);
8157 }
8158 dev_warn(&h->pdev->dev,
8159 "failed %d commands in fail_all\n", failcount);
8160 }
8161
8162 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8163 {
8164 int cpu;
8165
8166 for_each_online_cpu(cpu) {
8167 u32 *lockup_detected;
8168 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8169 *lockup_detected = value;
8170 }
8171 wmb(); /* be sure the per-cpu variables are out to memory */
8172 }
8173
8174 static void controller_lockup_detected(struct ctlr_info *h)
8175 {
8176 unsigned long flags;
8177 u32 lockup_detected;
8178
8179 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8180 spin_lock_irqsave(&h->lock, flags);
8181 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8182 if (!lockup_detected) {
8183 /* no heartbeat, but controller gave us a zero. */
8184 dev_warn(&h->pdev->dev,
8185 "lockup detected after %d but scratchpad register is zero\n",
8186 h->heartbeat_sample_interval / HZ);
8187 lockup_detected = 0xffffffff;
8188 }
8189 set_lockup_detected_for_all_cpus(h, lockup_detected);
8190 spin_unlock_irqrestore(&h->lock, flags);
8191 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8192 lockup_detected, h->heartbeat_sample_interval / HZ);
8193 pci_disable_device(h->pdev);
8194 fail_all_outstanding_cmds(h);
8195 }
8196
8197 static int detect_controller_lockup(struct ctlr_info *h)
8198 {
8199 u64 now;
8200 u32 heartbeat;
8201 unsigned long flags;
8202
8203 now = get_jiffies_64();
8204 /* If we've received an interrupt recently, we're ok. */
8205 if (time_after64(h->last_intr_timestamp +
8206 (h->heartbeat_sample_interval), now))
8207 return false;
8208
8209 /*
8210 * If we've already checked the heartbeat recently, we're ok.
8211 * This could happen if someone sends us a signal. We
8212 * otherwise don't care about signals in this thread.
8213 */
8214 if (time_after64(h->last_heartbeat_timestamp +
8215 (h->heartbeat_sample_interval), now))
8216 return false;
8217
8218 /* If heartbeat has not changed since we last looked, we're not ok. */
8219 spin_lock_irqsave(&h->lock, flags);
8220 heartbeat = readl(&h->cfgtable->HeartBeat);
8221 spin_unlock_irqrestore(&h->lock, flags);
8222 if (h->last_heartbeat == heartbeat) {
8223 controller_lockup_detected(h);
8224 return true;
8225 }
8226
8227 /* We're ok. */
8228 h->last_heartbeat = heartbeat;
8229 h->last_heartbeat_timestamp = now;
8230 return false;
8231 }
8232
8233 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8234 {
8235 int i;
8236 char *event_type;
8237
8238 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8239 return;
8240
8241 /* Ask the controller to clear the events we're handling. */
8242 if ((h->transMethod & (CFGTBL_Trans_io_accel1
8243 | CFGTBL_Trans_io_accel2)) &&
8244 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8245 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8246
8247 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8248 event_type = "state change";
8249 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8250 event_type = "configuration change";
8251 /* Stop sending new RAID offload reqs via the IO accelerator */
8252 scsi_block_requests(h->scsi_host);
8253 for (i = 0; i < h->ndevices; i++)
8254 h->dev[i]->offload_enabled = 0;
8255 hpsa_drain_accel_commands(h);
8256 /* Set 'accelerator path config change' bit */
8257 dev_warn(&h->pdev->dev,
8258 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8259 h->events, event_type);
8260 writel(h->events, &(h->cfgtable->clear_event_notify));
8261 /* Set the "clear event notify field update" bit 6 */
8262 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8263 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8264 hpsa_wait_for_clear_event_notify_ack(h);
8265 scsi_unblock_requests(h->scsi_host);
8266 } else {
8267 /* Acknowledge controller notification events. */
8268 writel(h->events, &(h->cfgtable->clear_event_notify));
8269 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8270 hpsa_wait_for_clear_event_notify_ack(h);
8271 #if 0
8272 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8273 hpsa_wait_for_mode_change_ack(h);
8274 #endif
8275 }
8276 return;
8277 }
8278
8279 /* Check a register on the controller to see if there are configuration
8280 * changes (added/changed/removed logical drives, etc.) which mean that
8281 * we should rescan the controller for devices.
8282 * Also check flag for driver-initiated rescan.
8283 */
8284 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8285 {
8286 if (h->drv_req_rescan) {
8287 h->drv_req_rescan = 0;
8288 return 1;
8289 }
8290
8291 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8292 return 0;
8293
8294 h->events = readl(&(h->cfgtable->event_notify));
8295 return h->events & RESCAN_REQUIRED_EVENT_BITS;
8296 }
8297
8298 /*
8299 * Check if any of the offline devices have become ready
8300 */
8301 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8302 {
8303 unsigned long flags;
8304 struct offline_device_entry *d;
8305 struct list_head *this, *tmp;
8306
8307 spin_lock_irqsave(&h->offline_device_lock, flags);
8308 list_for_each_safe(this, tmp, &h->offline_device_list) {
8309 d = list_entry(this, struct offline_device_entry,
8310 offline_list);
8311 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8312 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8313 spin_lock_irqsave(&h->offline_device_lock, flags);
8314 list_del(&d->offline_list);
8315 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8316 return 1;
8317 }
8318 spin_lock_irqsave(&h->offline_device_lock, flags);
8319 }
8320 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8321 return 0;
8322 }
8323
8324 static int hpsa_luns_changed(struct ctlr_info *h)
8325 {
8326 int rc = 1; /* assume there are changes */
8327 struct ReportLUNdata *logdev = NULL;
8328
8329 /* if we can't find out if lun data has changed,
8330 * assume that it has.
8331 */
8332
8333 if (!h->lastlogicals)
8334 goto out;
8335
8336 logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8337 if (!logdev) {
8338 dev_warn(&h->pdev->dev,
8339 "Out of memory, can't track lun changes.\n");
8340 goto out;
8341 }
8342 if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8343 dev_warn(&h->pdev->dev,
8344 "report luns failed, can't track lun changes.\n");
8345 goto out;
8346 }
8347 if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8348 dev_info(&h->pdev->dev,
8349 "Lun changes detected.\n");
8350 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8351 goto out;
8352 } else
8353 rc = 0; /* no changes detected. */
8354 out:
8355 kfree(logdev);
8356 return rc;
8357 }
8358
8359 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8360 {
8361 unsigned long flags;
8362 struct ctlr_info *h = container_of(to_delayed_work(work),
8363 struct ctlr_info, rescan_ctlr_work);
8364
8365
8366 if (h->remove_in_progress)
8367 return;
8368
8369 if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8370 scsi_host_get(h->scsi_host);
8371 hpsa_ack_ctlr_events(h);
8372 hpsa_scan_start(h->scsi_host);
8373 scsi_host_put(h->scsi_host);
8374 } else if (h->discovery_polling) {
8375 hpsa_disable_rld_caching(h);
8376 if (hpsa_luns_changed(h)) {
8377 struct Scsi_Host *sh = NULL;
8378
8379 dev_info(&h->pdev->dev,
8380 "driver discovery polling rescan.\n");
8381 sh = scsi_host_get(h->scsi_host);
8382 if (sh != NULL) {
8383 hpsa_scan_start(sh);
8384 scsi_host_put(sh);
8385 }
8386 }
8387 }
8388 spin_lock_irqsave(&h->lock, flags);
8389 if (!h->remove_in_progress)
8390 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8391 h->heartbeat_sample_interval);
8392 spin_unlock_irqrestore(&h->lock, flags);
8393 }
8394
8395 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8396 {
8397 unsigned long flags;
8398 struct ctlr_info *h = container_of(to_delayed_work(work),
8399 struct ctlr_info, monitor_ctlr_work);
8400
8401 detect_controller_lockup(h);
8402 if (lockup_detected(h))
8403 return;
8404
8405 spin_lock_irqsave(&h->lock, flags);
8406 if (!h->remove_in_progress)
8407 schedule_delayed_work(&h->monitor_ctlr_work,
8408 h->heartbeat_sample_interval);
8409 spin_unlock_irqrestore(&h->lock, flags);
8410 }
8411
8412 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8413 char *name)
8414 {
8415 struct workqueue_struct *wq = NULL;
8416
8417 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8418 if (!wq)
8419 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8420
8421 return wq;
8422 }
8423
8424 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8425 {
8426 int dac, rc;
8427 struct ctlr_info *h;
8428 int try_soft_reset = 0;
8429 unsigned long flags;
8430 u32 board_id;
8431
8432 if (number_of_controllers == 0)
8433 printk(KERN_INFO DRIVER_NAME "\n");
8434
8435 rc = hpsa_lookup_board_id(pdev, &board_id);
8436 if (rc < 0) {
8437 dev_warn(&pdev->dev, "Board ID not found\n");
8438 return rc;
8439 }
8440
8441 rc = hpsa_init_reset_devices(pdev, board_id);
8442 if (rc) {
8443 if (rc != -ENOTSUPP)
8444 return rc;
8445 /* If the reset fails in a particular way (it has no way to do
8446 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8447 * a soft reset once we get the controller configured up to the
8448 * point that it can accept a command.
8449 */
8450 try_soft_reset = 1;
8451 rc = 0;
8452 }
8453
8454 reinit_after_soft_reset:
8455
8456 /* Command structures must be aligned on a 32-byte boundary because
8457 * the 5 lower bits of the address are used by the hardware. and by
8458 * the driver. See comments in hpsa.h for more info.
8459 */
8460 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8461 h = kzalloc(sizeof(*h), GFP_KERNEL);
8462 if (!h) {
8463 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8464 return -ENOMEM;
8465 }
8466
8467 h->pdev = pdev;
8468
8469 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8470 INIT_LIST_HEAD(&h->offline_device_list);
8471 spin_lock_init(&h->lock);
8472 spin_lock_init(&h->offline_device_lock);
8473 spin_lock_init(&h->scan_lock);
8474 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8475 atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8476
8477 /* Allocate and clear per-cpu variable lockup_detected */
8478 h->lockup_detected = alloc_percpu(u32);
8479 if (!h->lockup_detected) {
8480 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8481 rc = -ENOMEM;
8482 goto clean1; /* aer/h */
8483 }
8484 set_lockup_detected_for_all_cpus(h, 0);
8485
8486 rc = hpsa_pci_init(h);
8487 if (rc)
8488 goto clean2; /* lu, aer/h */
8489
8490 /* relies on h-> settings made by hpsa_pci_init, including
8491 * interrupt_mode h->intr */
8492 rc = hpsa_scsi_host_alloc(h);
8493 if (rc)
8494 goto clean2_5; /* pci, lu, aer/h */
8495
8496 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8497 h->ctlr = number_of_controllers;
8498 number_of_controllers++;
8499
8500 /* configure PCI DMA stuff */
8501 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8502 if (rc == 0) {
8503 dac = 1;
8504 } else {
8505 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8506 if (rc == 0) {
8507 dac = 0;
8508 } else {
8509 dev_err(&pdev->dev, "no suitable DMA available\n");
8510 goto clean3; /* shost, pci, lu, aer/h */
8511 }
8512 }
8513
8514 /* make sure the board interrupts are off */
8515 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8516
8517 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8518 if (rc)
8519 goto clean3; /* shost, pci, lu, aer/h */
8520 rc = hpsa_alloc_cmd_pool(h);
8521 if (rc)
8522 goto clean4; /* irq, shost, pci, lu, aer/h */
8523 rc = hpsa_alloc_sg_chain_blocks(h);
8524 if (rc)
8525 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */
8526 init_waitqueue_head(&h->scan_wait_queue);
8527 init_waitqueue_head(&h->abort_cmd_wait_queue);
8528 init_waitqueue_head(&h->event_sync_wait_queue);
8529 mutex_init(&h->reset_mutex);
8530 h->scan_finished = 1; /* no scan currently in progress */
8531
8532 pci_set_drvdata(pdev, h);
8533 h->ndevices = 0;
8534
8535 spin_lock_init(&h->devlock);
8536 rc = hpsa_put_ctlr_into_performant_mode(h);
8537 if (rc)
8538 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8539
8540 /* hook into SCSI subsystem */
8541 rc = hpsa_scsi_add_host(h);
8542 if (rc)
8543 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8544
8545 /* create the resubmit workqueue */
8546 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8547 if (!h->rescan_ctlr_wq) {
8548 rc = -ENOMEM;
8549 goto clean7;
8550 }
8551
8552 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8553 if (!h->resubmit_wq) {
8554 rc = -ENOMEM;
8555 goto clean7; /* aer/h */
8556 }
8557
8558 /*
8559 * At this point, the controller is ready to take commands.
8560 * Now, if reset_devices and the hard reset didn't work, try
8561 * the soft reset and see if that works.
8562 */
8563 if (try_soft_reset) {
8564
8565 /* This is kind of gross. We may or may not get a completion
8566 * from the soft reset command, and if we do, then the value
8567 * from the fifo may or may not be valid. So, we wait 10 secs
8568 * after the reset throwing away any completions we get during
8569 * that time. Unregister the interrupt handler and register
8570 * fake ones to scoop up any residual completions.
8571 */
8572 spin_lock_irqsave(&h->lock, flags);
8573 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8574 spin_unlock_irqrestore(&h->lock, flags);
8575 hpsa_free_irqs(h);
8576 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8577 hpsa_intx_discard_completions);
8578 if (rc) {
8579 dev_warn(&h->pdev->dev,
8580 "Failed to request_irq after soft reset.\n");
8581 /*
8582 * cannot goto clean7 or free_irqs will be called
8583 * again. Instead, do its work
8584 */
8585 hpsa_free_performant_mode(h); /* clean7 */
8586 hpsa_free_sg_chain_blocks(h); /* clean6 */
8587 hpsa_free_cmd_pool(h); /* clean5 */
8588 /*
8589 * skip hpsa_free_irqs(h) clean4 since that
8590 * was just called before request_irqs failed
8591 */
8592 goto clean3;
8593 }
8594
8595 rc = hpsa_kdump_soft_reset(h);
8596 if (rc)
8597 /* Neither hard nor soft reset worked, we're hosed. */
8598 goto clean7;
8599
8600 dev_info(&h->pdev->dev, "Board READY.\n");
8601 dev_info(&h->pdev->dev,
8602 "Waiting for stale completions to drain.\n");
8603 h->access.set_intr_mask(h, HPSA_INTR_ON);
8604 msleep(10000);
8605 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8606
8607 rc = controller_reset_failed(h->cfgtable);
8608 if (rc)
8609 dev_info(&h->pdev->dev,
8610 "Soft reset appears to have failed.\n");
8611
8612 /* since the controller's reset, we have to go back and re-init
8613 * everything. Easiest to just forget what we've done and do it
8614 * all over again.
8615 */
8616 hpsa_undo_allocations_after_kdump_soft_reset(h);
8617 try_soft_reset = 0;
8618 if (rc)
8619 /* don't goto clean, we already unallocated */
8620 return -ENODEV;
8621
8622 goto reinit_after_soft_reset;
8623 }
8624
8625 /* Enable Accelerated IO path at driver layer */
8626 h->acciopath_status = 1;
8627 /* Disable discovery polling.*/
8628 h->discovery_polling = 0;
8629
8630
8631 /* Turn the interrupts on so we can service requests */
8632 h->access.set_intr_mask(h, HPSA_INTR_ON);
8633
8634 hpsa_hba_inquiry(h);
8635
8636 h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8637 if (!h->lastlogicals)
8638 dev_info(&h->pdev->dev,
8639 "Can't track change to report lun data\n");
8640
8641 /* Monitor the controller for firmware lockups */
8642 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8643 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8644 schedule_delayed_work(&h->monitor_ctlr_work,
8645 h->heartbeat_sample_interval);
8646 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8647 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8648 h->heartbeat_sample_interval);
8649 return 0;
8650
8651 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8652 hpsa_free_performant_mode(h);
8653 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8654 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8655 hpsa_free_sg_chain_blocks(h);
8656 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8657 hpsa_free_cmd_pool(h);
8658 clean4: /* irq, shost, pci, lu, aer/h */
8659 hpsa_free_irqs(h);
8660 clean3: /* shost, pci, lu, aer/h */
8661 scsi_host_put(h->scsi_host);
8662 h->scsi_host = NULL;
8663 clean2_5: /* pci, lu, aer/h */
8664 hpsa_free_pci_init(h);
8665 clean2: /* lu, aer/h */
8666 if (h->lockup_detected) {
8667 free_percpu(h->lockup_detected);
8668 h->lockup_detected = NULL;
8669 }
8670 clean1: /* wq/aer/h */
8671 if (h->resubmit_wq) {
8672 destroy_workqueue(h->resubmit_wq);
8673 h->resubmit_wq = NULL;
8674 }
8675 if (h->rescan_ctlr_wq) {
8676 destroy_workqueue(h->rescan_ctlr_wq);
8677 h->rescan_ctlr_wq = NULL;
8678 }
8679 kfree(h);
8680 return rc;
8681 }
8682
8683 static void hpsa_flush_cache(struct ctlr_info *h)
8684 {
8685 char *flush_buf;
8686 struct CommandList *c;
8687 int rc;
8688
8689 if (unlikely(lockup_detected(h)))
8690 return;
8691 flush_buf = kzalloc(4, GFP_KERNEL);
8692 if (!flush_buf)
8693 return;
8694
8695 c = cmd_alloc(h);
8696
8697 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8698 RAID_CTLR_LUNID, TYPE_CMD)) {
8699 goto out;
8700 }
8701 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8702 PCI_DMA_TODEVICE, NO_TIMEOUT);
8703 if (rc)
8704 goto out;
8705 if (c->err_info->CommandStatus != 0)
8706 out:
8707 dev_warn(&h->pdev->dev,
8708 "error flushing cache on controller\n");
8709 cmd_free(h, c);
8710 kfree(flush_buf);
8711 }
8712
8713 /* Make controller gather fresh report lun data each time we
8714 * send down a report luns request
8715 */
8716 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8717 {
8718 u32 *options;
8719 struct CommandList *c;
8720 int rc;
8721
8722 /* Don't bother trying to set diag options if locked up */
8723 if (unlikely(h->lockup_detected))
8724 return;
8725
8726 options = kzalloc(sizeof(*options), GFP_KERNEL);
8727 if (!options) {
8728 dev_err(&h->pdev->dev,
8729 "Error: failed to disable rld caching, during alloc.\n");
8730 return;
8731 }
8732
8733 c = cmd_alloc(h);
8734
8735 /* first, get the current diag options settings */
8736 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8737 RAID_CTLR_LUNID, TYPE_CMD))
8738 goto errout;
8739
8740 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8741 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8742 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8743 goto errout;
8744
8745 /* Now, set the bit for disabling the RLD caching */
8746 *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8747
8748 if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8749 RAID_CTLR_LUNID, TYPE_CMD))
8750 goto errout;
8751
8752 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8753 PCI_DMA_TODEVICE, NO_TIMEOUT);
8754 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8755 goto errout;
8756
8757 /* Now verify that it got set: */
8758 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8759 RAID_CTLR_LUNID, TYPE_CMD))
8760 goto errout;
8761
8762 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8763 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8764 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8765 goto errout;
8766
8767 if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8768 goto out;
8769
8770 errout:
8771 dev_err(&h->pdev->dev,
8772 "Error: failed to disable report lun data caching.\n");
8773 out:
8774 cmd_free(h, c);
8775 kfree(options);
8776 }
8777
8778 static void hpsa_shutdown(struct pci_dev *pdev)
8779 {
8780 struct ctlr_info *h;
8781
8782 h = pci_get_drvdata(pdev);
8783 /* Turn board interrupts off and send the flush cache command
8784 * sendcmd will turn off interrupt, and send the flush...
8785 * To write all data in the battery backed cache to disks
8786 */
8787 hpsa_flush_cache(h);
8788 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8789 hpsa_free_irqs(h); /* init_one 4 */
8790 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
8791 }
8792
8793 static void hpsa_free_device_info(struct ctlr_info *h)
8794 {
8795 int i;
8796
8797 for (i = 0; i < h->ndevices; i++) {
8798 kfree(h->dev[i]);
8799 h->dev[i] = NULL;
8800 }
8801 }
8802
8803 static void hpsa_remove_one(struct pci_dev *pdev)
8804 {
8805 struct ctlr_info *h;
8806 unsigned long flags;
8807
8808 if (pci_get_drvdata(pdev) == NULL) {
8809 dev_err(&pdev->dev, "unable to remove device\n");
8810 return;
8811 }
8812 h = pci_get_drvdata(pdev);
8813
8814 /* Get rid of any controller monitoring work items */
8815 spin_lock_irqsave(&h->lock, flags);
8816 h->remove_in_progress = 1;
8817 spin_unlock_irqrestore(&h->lock, flags);
8818 cancel_delayed_work_sync(&h->monitor_ctlr_work);
8819 cancel_delayed_work_sync(&h->rescan_ctlr_work);
8820 destroy_workqueue(h->rescan_ctlr_wq);
8821 destroy_workqueue(h->resubmit_wq);
8822
8823 /*
8824 * Call before disabling interrupts.
8825 * scsi_remove_host can trigger I/O operations especially
8826 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8827 * operations which cannot complete and will hang the system.
8828 */
8829 if (h->scsi_host)
8830 scsi_remove_host(h->scsi_host); /* init_one 8 */
8831 /* includes hpsa_free_irqs - init_one 4 */
8832 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8833 hpsa_shutdown(pdev);
8834
8835 hpsa_free_device_info(h); /* scan */
8836
8837 kfree(h->hba_inquiry_data); /* init_one 10 */
8838 h->hba_inquiry_data = NULL; /* init_one 10 */
8839 hpsa_free_ioaccel2_sg_chain_blocks(h);
8840 hpsa_free_performant_mode(h); /* init_one 7 */
8841 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8842 hpsa_free_cmd_pool(h); /* init_one 5 */
8843 kfree(h->lastlogicals);
8844
8845 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8846
8847 scsi_host_put(h->scsi_host); /* init_one 3 */
8848 h->scsi_host = NULL; /* init_one 3 */
8849
8850 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8851 hpsa_free_pci_init(h); /* init_one 2.5 */
8852
8853 free_percpu(h->lockup_detected); /* init_one 2 */
8854 h->lockup_detected = NULL; /* init_one 2 */
8855 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
8856
8857 hpsa_delete_sas_host(h);
8858
8859 kfree(h); /* init_one 1 */
8860 }
8861
8862 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8863 __attribute__((unused)) pm_message_t state)
8864 {
8865 return -ENOSYS;
8866 }
8867
8868 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8869 {
8870 return -ENOSYS;
8871 }
8872
8873 static struct pci_driver hpsa_pci_driver = {
8874 .name = HPSA,
8875 .probe = hpsa_init_one,
8876 .remove = hpsa_remove_one,
8877 .id_table = hpsa_pci_device_id, /* id_table */
8878 .shutdown = hpsa_shutdown,
8879 .suspend = hpsa_suspend,
8880 .resume = hpsa_resume,
8881 };
8882
8883 /* Fill in bucket_map[], given nsgs (the max number of
8884 * scatter gather elements supported) and bucket[],
8885 * which is an array of 8 integers. The bucket[] array
8886 * contains 8 different DMA transfer sizes (in 16
8887 * byte increments) which the controller uses to fetch
8888 * commands. This function fills in bucket_map[], which
8889 * maps a given number of scatter gather elements to one of
8890 * the 8 DMA transfer sizes. The point of it is to allow the
8891 * controller to only do as much DMA as needed to fetch the
8892 * command, with the DMA transfer size encoded in the lower
8893 * bits of the command address.
8894 */
8895 static void calc_bucket_map(int bucket[], int num_buckets,
8896 int nsgs, int min_blocks, u32 *bucket_map)
8897 {
8898 int i, j, b, size;
8899
8900 /* Note, bucket_map must have nsgs+1 entries. */
8901 for (i = 0; i <= nsgs; i++) {
8902 /* Compute size of a command with i SG entries */
8903 size = i + min_blocks;
8904 b = num_buckets; /* Assume the biggest bucket */
8905 /* Find the bucket that is just big enough */
8906 for (j = 0; j < num_buckets; j++) {
8907 if (bucket[j] >= size) {
8908 b = j;
8909 break;
8910 }
8911 }
8912 /* for a command with i SG entries, use bucket b. */
8913 bucket_map[i] = b;
8914 }
8915 }
8916
8917 /*
8918 * return -ENODEV on err, 0 on success (or no action)
8919 * allocates numerous items that must be freed later
8920 */
8921 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8922 {
8923 int i;
8924 unsigned long register_value;
8925 unsigned long transMethod = CFGTBL_Trans_Performant |
8926 (trans_support & CFGTBL_Trans_use_short_tags) |
8927 CFGTBL_Trans_enable_directed_msix |
8928 (trans_support & (CFGTBL_Trans_io_accel1 |
8929 CFGTBL_Trans_io_accel2));
8930 struct access_method access = SA5_performant_access;
8931
8932 /* This is a bit complicated. There are 8 registers on
8933 * the controller which we write to to tell it 8 different
8934 * sizes of commands which there may be. It's a way of
8935 * reducing the DMA done to fetch each command. Encoded into
8936 * each command's tag are 3 bits which communicate to the controller
8937 * which of the eight sizes that command fits within. The size of
8938 * each command depends on how many scatter gather entries there are.
8939 * Each SG entry requires 16 bytes. The eight registers are programmed
8940 * with the number of 16-byte blocks a command of that size requires.
8941 * The smallest command possible requires 5 such 16 byte blocks.
8942 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8943 * blocks. Note, this only extends to the SG entries contained
8944 * within the command block, and does not extend to chained blocks
8945 * of SG elements. bft[] contains the eight values we write to
8946 * the registers. They are not evenly distributed, but have more
8947 * sizes for small commands, and fewer sizes for larger commands.
8948 */
8949 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8950 #define MIN_IOACCEL2_BFT_ENTRY 5
8951 #define HPSA_IOACCEL2_HEADER_SZ 4
8952 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8953 13, 14, 15, 16, 17, 18, 19,
8954 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8955 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8956 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8957 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8958 16 * MIN_IOACCEL2_BFT_ENTRY);
8959 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8960 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8961 /* 5 = 1 s/g entry or 4k
8962 * 6 = 2 s/g entry or 8k
8963 * 8 = 4 s/g entry or 16k
8964 * 10 = 6 s/g entry or 24k
8965 */
8966
8967 /* If the controller supports either ioaccel method then
8968 * we can also use the RAID stack submit path that does not
8969 * perform the superfluous readl() after each command submission.
8970 */
8971 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8972 access = SA5_performant_access_no_read;
8973
8974 /* Controller spec: zero out this buffer. */
8975 for (i = 0; i < h->nreply_queues; i++)
8976 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8977
8978 bft[7] = SG_ENTRIES_IN_CMD + 4;
8979 calc_bucket_map(bft, ARRAY_SIZE(bft),
8980 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8981 for (i = 0; i < 8; i++)
8982 writel(bft[i], &h->transtable->BlockFetch[i]);
8983
8984 /* size of controller ring buffer */
8985 writel(h->max_commands, &h->transtable->RepQSize);
8986 writel(h->nreply_queues, &h->transtable->RepQCount);
8987 writel(0, &h->transtable->RepQCtrAddrLow32);
8988 writel(0, &h->transtable->RepQCtrAddrHigh32);
8989
8990 for (i = 0; i < h->nreply_queues; i++) {
8991 writel(0, &h->transtable->RepQAddr[i].upper);
8992 writel(h->reply_queue[i].busaddr,
8993 &h->transtable->RepQAddr[i].lower);
8994 }
8995
8996 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8997 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
8998 /*
8999 * enable outbound interrupt coalescing in accelerator mode;
9000 */
9001 if (trans_support & CFGTBL_Trans_io_accel1) {
9002 access = SA5_ioaccel_mode1_access;
9003 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9004 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9005 } else {
9006 if (trans_support & CFGTBL_Trans_io_accel2) {
9007 access = SA5_ioaccel_mode2_access;
9008 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9009 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9010 }
9011 }
9012 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9013 if (hpsa_wait_for_mode_change_ack(h)) {
9014 dev_err(&h->pdev->dev,
9015 "performant mode problem - doorbell timeout\n");
9016 return -ENODEV;
9017 }
9018 register_value = readl(&(h->cfgtable->TransportActive));
9019 if (!(register_value & CFGTBL_Trans_Performant)) {
9020 dev_err(&h->pdev->dev,
9021 "performant mode problem - transport not active\n");
9022 return -ENODEV;
9023 }
9024 /* Change the access methods to the performant access methods */
9025 h->access = access;
9026 h->transMethod = transMethod;
9027
9028 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9029 (trans_support & CFGTBL_Trans_io_accel2)))
9030 return 0;
9031
9032 if (trans_support & CFGTBL_Trans_io_accel1) {
9033 /* Set up I/O accelerator mode */
9034 for (i = 0; i < h->nreply_queues; i++) {
9035 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9036 h->reply_queue[i].current_entry =
9037 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9038 }
9039 bft[7] = h->ioaccel_maxsg + 8;
9040 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9041 h->ioaccel1_blockFetchTable);
9042
9043 /* initialize all reply queue entries to unused */
9044 for (i = 0; i < h->nreply_queues; i++)
9045 memset(h->reply_queue[i].head,
9046 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9047 h->reply_queue_size);
9048
9049 /* set all the constant fields in the accelerator command
9050 * frames once at init time to save CPU cycles later.
9051 */
9052 for (i = 0; i < h->nr_cmds; i++) {
9053 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9054
9055 cp->function = IOACCEL1_FUNCTION_SCSIIO;
9056 cp->err_info = (u32) (h->errinfo_pool_dhandle +
9057 (i * sizeof(struct ErrorInfo)));
9058 cp->err_info_len = sizeof(struct ErrorInfo);
9059 cp->sgl_offset = IOACCEL1_SGLOFFSET;
9060 cp->host_context_flags =
9061 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9062 cp->timeout_sec = 0;
9063 cp->ReplyQueue = 0;
9064 cp->tag =
9065 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9066 cp->host_addr =
9067 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9068 (i * sizeof(struct io_accel1_cmd)));
9069 }
9070 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9071 u64 cfg_offset, cfg_base_addr_index;
9072 u32 bft2_offset, cfg_base_addr;
9073 int rc;
9074
9075 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9076 &cfg_base_addr_index, &cfg_offset);
9077 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9078 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9079 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9080 4, h->ioaccel2_blockFetchTable);
9081 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9082 BUILD_BUG_ON(offsetof(struct CfgTable,
9083 io_accel_request_size_offset) != 0xb8);
9084 h->ioaccel2_bft2_regs =
9085 remap_pci_mem(pci_resource_start(h->pdev,
9086 cfg_base_addr_index) +
9087 cfg_offset + bft2_offset,
9088 ARRAY_SIZE(bft2) *
9089 sizeof(*h->ioaccel2_bft2_regs));
9090 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9091 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9092 }
9093 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9094 if (hpsa_wait_for_mode_change_ack(h)) {
9095 dev_err(&h->pdev->dev,
9096 "performant mode problem - enabling ioaccel mode\n");
9097 return -ENODEV;
9098 }
9099 return 0;
9100 }
9101
9102 /* Free ioaccel1 mode command blocks and block fetch table */
9103 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9104 {
9105 if (h->ioaccel_cmd_pool) {
9106 pci_free_consistent(h->pdev,
9107 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9108 h->ioaccel_cmd_pool,
9109 h->ioaccel_cmd_pool_dhandle);
9110 h->ioaccel_cmd_pool = NULL;
9111 h->ioaccel_cmd_pool_dhandle = 0;
9112 }
9113 kfree(h->ioaccel1_blockFetchTable);
9114 h->ioaccel1_blockFetchTable = NULL;
9115 }
9116
9117 /* Allocate ioaccel1 mode command blocks and block fetch table */
9118 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9119 {
9120 h->ioaccel_maxsg =
9121 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9122 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9123 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9124
9125 /* Command structures must be aligned on a 128-byte boundary
9126 * because the 7 lower bits of the address are used by the
9127 * hardware.
9128 */
9129 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9130 IOACCEL1_COMMANDLIST_ALIGNMENT);
9131 h->ioaccel_cmd_pool =
9132 pci_alloc_consistent(h->pdev,
9133 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9134 &(h->ioaccel_cmd_pool_dhandle));
9135
9136 h->ioaccel1_blockFetchTable =
9137 kmalloc(((h->ioaccel_maxsg + 1) *
9138 sizeof(u32)), GFP_KERNEL);
9139
9140 if ((h->ioaccel_cmd_pool == NULL) ||
9141 (h->ioaccel1_blockFetchTable == NULL))
9142 goto clean_up;
9143
9144 memset(h->ioaccel_cmd_pool, 0,
9145 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9146 return 0;
9147
9148 clean_up:
9149 hpsa_free_ioaccel1_cmd_and_bft(h);
9150 return -ENOMEM;
9151 }
9152
9153 /* Free ioaccel2 mode command blocks and block fetch table */
9154 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9155 {
9156 hpsa_free_ioaccel2_sg_chain_blocks(h);
9157
9158 if (h->ioaccel2_cmd_pool) {
9159 pci_free_consistent(h->pdev,
9160 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9161 h->ioaccel2_cmd_pool,
9162 h->ioaccel2_cmd_pool_dhandle);
9163 h->ioaccel2_cmd_pool = NULL;
9164 h->ioaccel2_cmd_pool_dhandle = 0;
9165 }
9166 kfree(h->ioaccel2_blockFetchTable);
9167 h->ioaccel2_blockFetchTable = NULL;
9168 }
9169
9170 /* Allocate ioaccel2 mode command blocks and block fetch table */
9171 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9172 {
9173 int rc;
9174
9175 /* Allocate ioaccel2 mode command blocks and block fetch table */
9176
9177 h->ioaccel_maxsg =
9178 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9179 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9180 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9181
9182 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9183 IOACCEL2_COMMANDLIST_ALIGNMENT);
9184 h->ioaccel2_cmd_pool =
9185 pci_alloc_consistent(h->pdev,
9186 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9187 &(h->ioaccel2_cmd_pool_dhandle));
9188
9189 h->ioaccel2_blockFetchTable =
9190 kmalloc(((h->ioaccel_maxsg + 1) *
9191 sizeof(u32)), GFP_KERNEL);
9192
9193 if ((h->ioaccel2_cmd_pool == NULL) ||
9194 (h->ioaccel2_blockFetchTable == NULL)) {
9195 rc = -ENOMEM;
9196 goto clean_up;
9197 }
9198
9199 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9200 if (rc)
9201 goto clean_up;
9202
9203 memset(h->ioaccel2_cmd_pool, 0,
9204 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9205 return 0;
9206
9207 clean_up:
9208 hpsa_free_ioaccel2_cmd_and_bft(h);
9209 return rc;
9210 }
9211
9212 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9213 static void hpsa_free_performant_mode(struct ctlr_info *h)
9214 {
9215 kfree(h->blockFetchTable);
9216 h->blockFetchTable = NULL;
9217 hpsa_free_reply_queues(h);
9218 hpsa_free_ioaccel1_cmd_and_bft(h);
9219 hpsa_free_ioaccel2_cmd_and_bft(h);
9220 }
9221
9222 /* return -ENODEV on error, 0 on success (or no action)
9223 * allocates numerous items that must be freed later
9224 */
9225 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9226 {
9227 u32 trans_support;
9228 unsigned long transMethod = CFGTBL_Trans_Performant |
9229 CFGTBL_Trans_use_short_tags;
9230 int i, rc;
9231
9232 if (hpsa_simple_mode)
9233 return 0;
9234
9235 trans_support = readl(&(h->cfgtable->TransportSupport));
9236 if (!(trans_support & PERFORMANT_MODE))
9237 return 0;
9238
9239 /* Check for I/O accelerator mode support */
9240 if (trans_support & CFGTBL_Trans_io_accel1) {
9241 transMethod |= CFGTBL_Trans_io_accel1 |
9242 CFGTBL_Trans_enable_directed_msix;
9243 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9244 if (rc)
9245 return rc;
9246 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9247 transMethod |= CFGTBL_Trans_io_accel2 |
9248 CFGTBL_Trans_enable_directed_msix;
9249 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9250 if (rc)
9251 return rc;
9252 }
9253
9254 h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
9255 hpsa_get_max_perf_mode_cmds(h);
9256 /* Performant mode ring buffer and supporting data structures */
9257 h->reply_queue_size = h->max_commands * sizeof(u64);
9258
9259 for (i = 0; i < h->nreply_queues; i++) {
9260 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9261 h->reply_queue_size,
9262 &(h->reply_queue[i].busaddr));
9263 if (!h->reply_queue[i].head) {
9264 rc = -ENOMEM;
9265 goto clean1; /* rq, ioaccel */
9266 }
9267 h->reply_queue[i].size = h->max_commands;
9268 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
9269 h->reply_queue[i].current_entry = 0;
9270 }
9271
9272 /* Need a block fetch table for performant mode */
9273 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9274 sizeof(u32)), GFP_KERNEL);
9275 if (!h->blockFetchTable) {
9276 rc = -ENOMEM;
9277 goto clean1; /* rq, ioaccel */
9278 }
9279
9280 rc = hpsa_enter_performant_mode(h, trans_support);
9281 if (rc)
9282 goto clean2; /* bft, rq, ioaccel */
9283 return 0;
9284
9285 clean2: /* bft, rq, ioaccel */
9286 kfree(h->blockFetchTable);
9287 h->blockFetchTable = NULL;
9288 clean1: /* rq, ioaccel */
9289 hpsa_free_reply_queues(h);
9290 hpsa_free_ioaccel1_cmd_and_bft(h);
9291 hpsa_free_ioaccel2_cmd_and_bft(h);
9292 return rc;
9293 }
9294
9295 static int is_accelerated_cmd(struct CommandList *c)
9296 {
9297 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9298 }
9299
9300 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9301 {
9302 struct CommandList *c = NULL;
9303 int i, accel_cmds_out;
9304 int refcount;
9305
9306 do { /* wait for all outstanding ioaccel commands to drain out */
9307 accel_cmds_out = 0;
9308 for (i = 0; i < h->nr_cmds; i++) {
9309 c = h->cmd_pool + i;
9310 refcount = atomic_inc_return(&c->refcount);
9311 if (refcount > 1) /* Command is allocated */
9312 accel_cmds_out += is_accelerated_cmd(c);
9313 cmd_free(h, c);
9314 }
9315 if (accel_cmds_out <= 0)
9316 break;
9317 msleep(100);
9318 } while (1);
9319 }
9320
9321 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9322 struct hpsa_sas_port *hpsa_sas_port)
9323 {
9324 struct hpsa_sas_phy *hpsa_sas_phy;
9325 struct sas_phy *phy;
9326
9327 hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9328 if (!hpsa_sas_phy)
9329 return NULL;
9330
9331 phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9332 hpsa_sas_port->next_phy_index);
9333 if (!phy) {
9334 kfree(hpsa_sas_phy);
9335 return NULL;
9336 }
9337
9338 hpsa_sas_port->next_phy_index++;
9339 hpsa_sas_phy->phy = phy;
9340 hpsa_sas_phy->parent_port = hpsa_sas_port;
9341
9342 return hpsa_sas_phy;
9343 }
9344
9345 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9346 {
9347 struct sas_phy *phy = hpsa_sas_phy->phy;
9348
9349 sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9350 sas_phy_free(phy);
9351 if (hpsa_sas_phy->added_to_port)
9352 list_del(&hpsa_sas_phy->phy_list_entry);
9353 kfree(hpsa_sas_phy);
9354 }
9355
9356 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9357 {
9358 int rc;
9359 struct hpsa_sas_port *hpsa_sas_port;
9360 struct sas_phy *phy;
9361 struct sas_identify *identify;
9362
9363 hpsa_sas_port = hpsa_sas_phy->parent_port;
9364 phy = hpsa_sas_phy->phy;
9365
9366 identify = &phy->identify;
9367 memset(identify, 0, sizeof(*identify));
9368 identify->sas_address = hpsa_sas_port->sas_address;
9369 identify->device_type = SAS_END_DEVICE;
9370 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9371 identify->target_port_protocols = SAS_PROTOCOL_STP;
9372 phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9373 phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9374 phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9375 phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9376 phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9377
9378 rc = sas_phy_add(hpsa_sas_phy->phy);
9379 if (rc)
9380 return rc;
9381
9382 sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9383 list_add_tail(&hpsa_sas_phy->phy_list_entry,
9384 &hpsa_sas_port->phy_list_head);
9385 hpsa_sas_phy->added_to_port = true;
9386
9387 return 0;
9388 }
9389
9390 static int
9391 hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9392 struct sas_rphy *rphy)
9393 {
9394 struct sas_identify *identify;
9395
9396 identify = &rphy->identify;
9397 identify->sas_address = hpsa_sas_port->sas_address;
9398 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9399 identify->target_port_protocols = SAS_PROTOCOL_STP;
9400
9401 return sas_rphy_add(rphy);
9402 }
9403
9404 static struct hpsa_sas_port
9405 *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9406 u64 sas_address)
9407 {
9408 int rc;
9409 struct hpsa_sas_port *hpsa_sas_port;
9410 struct sas_port *port;
9411
9412 hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9413 if (!hpsa_sas_port)
9414 return NULL;
9415
9416 INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9417 hpsa_sas_port->parent_node = hpsa_sas_node;
9418
9419 port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9420 if (!port)
9421 goto free_hpsa_port;
9422
9423 rc = sas_port_add(port);
9424 if (rc)
9425 goto free_sas_port;
9426
9427 hpsa_sas_port->port = port;
9428 hpsa_sas_port->sas_address = sas_address;
9429 list_add_tail(&hpsa_sas_port->port_list_entry,
9430 &hpsa_sas_node->port_list_head);
9431
9432 return hpsa_sas_port;
9433
9434 free_sas_port:
9435 sas_port_free(port);
9436 free_hpsa_port:
9437 kfree(hpsa_sas_port);
9438
9439 return NULL;
9440 }
9441
9442 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9443 {
9444 struct hpsa_sas_phy *hpsa_sas_phy;
9445 struct hpsa_sas_phy *next;
9446
9447 list_for_each_entry_safe(hpsa_sas_phy, next,
9448 &hpsa_sas_port->phy_list_head, phy_list_entry)
9449 hpsa_free_sas_phy(hpsa_sas_phy);
9450
9451 sas_port_delete(hpsa_sas_port->port);
9452 list_del(&hpsa_sas_port->port_list_entry);
9453 kfree(hpsa_sas_port);
9454 }
9455
9456 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9457 {
9458 struct hpsa_sas_node *hpsa_sas_node;
9459
9460 hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9461 if (hpsa_sas_node) {
9462 hpsa_sas_node->parent_dev = parent_dev;
9463 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9464 }
9465
9466 return hpsa_sas_node;
9467 }
9468
9469 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9470 {
9471 struct hpsa_sas_port *hpsa_sas_port;
9472 struct hpsa_sas_port *next;
9473
9474 if (!hpsa_sas_node)
9475 return;
9476
9477 list_for_each_entry_safe(hpsa_sas_port, next,
9478 &hpsa_sas_node->port_list_head, port_list_entry)
9479 hpsa_free_sas_port(hpsa_sas_port);
9480
9481 kfree(hpsa_sas_node);
9482 }
9483
9484 static struct hpsa_scsi_dev_t
9485 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9486 struct sas_rphy *rphy)
9487 {
9488 int i;
9489 struct hpsa_scsi_dev_t *device;
9490
9491 for (i = 0; i < h->ndevices; i++) {
9492 device = h->dev[i];
9493 if (!device->sas_port)
9494 continue;
9495 if (device->sas_port->rphy == rphy)
9496 return device;
9497 }
9498
9499 return NULL;
9500 }
9501
9502 static int hpsa_add_sas_host(struct ctlr_info *h)
9503 {
9504 int rc;
9505 struct device *parent_dev;
9506 struct hpsa_sas_node *hpsa_sas_node;
9507 struct hpsa_sas_port *hpsa_sas_port;
9508 struct hpsa_sas_phy *hpsa_sas_phy;
9509
9510 parent_dev = &h->scsi_host->shost_gendev;
9511
9512 hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9513 if (!hpsa_sas_node)
9514 return -ENOMEM;
9515
9516 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9517 if (!hpsa_sas_port) {
9518 rc = -ENODEV;
9519 goto free_sas_node;
9520 }
9521
9522 hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9523 if (!hpsa_sas_phy) {
9524 rc = -ENODEV;
9525 goto free_sas_port;
9526 }
9527
9528 rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9529 if (rc)
9530 goto free_sas_phy;
9531
9532 h->sas_host = hpsa_sas_node;
9533
9534 return 0;
9535
9536 free_sas_phy:
9537 hpsa_free_sas_phy(hpsa_sas_phy);
9538 free_sas_port:
9539 hpsa_free_sas_port(hpsa_sas_port);
9540 free_sas_node:
9541 hpsa_free_sas_node(hpsa_sas_node);
9542
9543 return rc;
9544 }
9545
9546 static void hpsa_delete_sas_host(struct ctlr_info *h)
9547 {
9548 hpsa_free_sas_node(h->sas_host);
9549 }
9550
9551 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9552 struct hpsa_scsi_dev_t *device)
9553 {
9554 int rc;
9555 struct hpsa_sas_port *hpsa_sas_port;
9556 struct sas_rphy *rphy;
9557
9558 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9559 if (!hpsa_sas_port)
9560 return -ENOMEM;
9561
9562 rphy = sas_end_device_alloc(hpsa_sas_port->port);
9563 if (!rphy) {
9564 rc = -ENODEV;
9565 goto free_sas_port;
9566 }
9567
9568 hpsa_sas_port->rphy = rphy;
9569 device->sas_port = hpsa_sas_port;
9570
9571 rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9572 if (rc)
9573 goto free_sas_port;
9574
9575 return 0;
9576
9577 free_sas_port:
9578 hpsa_free_sas_port(hpsa_sas_port);
9579 device->sas_port = NULL;
9580
9581 return rc;
9582 }
9583
9584 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9585 {
9586 if (device->sas_port) {
9587 hpsa_free_sas_port(device->sas_port);
9588 device->sas_port = NULL;
9589 }
9590 }
9591
9592 static int
9593 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9594 {
9595 return 0;
9596 }
9597
9598 static int
9599 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9600 {
9601 return 0;
9602 }
9603
9604 static int
9605 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9606 {
9607 return -ENXIO;
9608 }
9609
9610 static int
9611 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9612 {
9613 return 0;
9614 }
9615
9616 static int
9617 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9618 {
9619 return 0;
9620 }
9621
9622 static int
9623 hpsa_sas_phy_setup(struct sas_phy *phy)
9624 {
9625 return 0;
9626 }
9627
9628 static void
9629 hpsa_sas_phy_release(struct sas_phy *phy)
9630 {
9631 }
9632
9633 static int
9634 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9635 {
9636 return -EINVAL;
9637 }
9638
9639 /* SMP = Serial Management Protocol */
9640 static int
9641 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9642 struct request *req)
9643 {
9644 return -EINVAL;
9645 }
9646
9647 static struct sas_function_template hpsa_sas_transport_functions = {
9648 .get_linkerrors = hpsa_sas_get_linkerrors,
9649 .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9650 .get_bay_identifier = hpsa_sas_get_bay_identifier,
9651 .phy_reset = hpsa_sas_phy_reset,
9652 .phy_enable = hpsa_sas_phy_enable,
9653 .phy_setup = hpsa_sas_phy_setup,
9654 .phy_release = hpsa_sas_phy_release,
9655 .set_phy_speed = hpsa_sas_phy_speed,
9656 .smp_handler = hpsa_sas_smp_handler,
9657 };
9658
9659 /*
9660 * This is it. Register the PCI driver information for the cards we control
9661 * the OS will call our registered routines when it finds one of our cards.
9662 */
9663 static int __init hpsa_init(void)
9664 {
9665 int rc;
9666
9667 hpsa_sas_transport_template =
9668 sas_attach_transport(&hpsa_sas_transport_functions);
9669 if (!hpsa_sas_transport_template)
9670 return -ENODEV;
9671
9672 rc = pci_register_driver(&hpsa_pci_driver);
9673
9674 if (rc)
9675 sas_release_transport(hpsa_sas_transport_template);
9676
9677 return rc;
9678 }
9679
9680 static void __exit hpsa_cleanup(void)
9681 {
9682 pci_unregister_driver(&hpsa_pci_driver);
9683 sas_release_transport(hpsa_sas_transport_template);
9684 }
9685
9686 static void __attribute__((unused)) verify_offsets(void)
9687 {
9688 #define VERIFY_OFFSET(member, offset) \
9689 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9690
9691 VERIFY_OFFSET(structure_size, 0);
9692 VERIFY_OFFSET(volume_blk_size, 4);
9693 VERIFY_OFFSET(volume_blk_cnt, 8);
9694 VERIFY_OFFSET(phys_blk_shift, 16);
9695 VERIFY_OFFSET(parity_rotation_shift, 17);
9696 VERIFY_OFFSET(strip_size, 18);
9697 VERIFY_OFFSET(disk_starting_blk, 20);
9698 VERIFY_OFFSET(disk_blk_cnt, 28);
9699 VERIFY_OFFSET(data_disks_per_row, 36);
9700 VERIFY_OFFSET(metadata_disks_per_row, 38);
9701 VERIFY_OFFSET(row_cnt, 40);
9702 VERIFY_OFFSET(layout_map_count, 42);
9703 VERIFY_OFFSET(flags, 44);
9704 VERIFY_OFFSET(dekindex, 46);
9705 /* VERIFY_OFFSET(reserved, 48 */
9706 VERIFY_OFFSET(data, 64);
9707
9708 #undef VERIFY_OFFSET
9709
9710 #define VERIFY_OFFSET(member, offset) \
9711 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9712
9713 VERIFY_OFFSET(IU_type, 0);
9714 VERIFY_OFFSET(direction, 1);
9715 VERIFY_OFFSET(reply_queue, 2);
9716 /* VERIFY_OFFSET(reserved1, 3); */
9717 VERIFY_OFFSET(scsi_nexus, 4);
9718 VERIFY_OFFSET(Tag, 8);
9719 VERIFY_OFFSET(cdb, 16);
9720 VERIFY_OFFSET(cciss_lun, 32);
9721 VERIFY_OFFSET(data_len, 40);
9722 VERIFY_OFFSET(cmd_priority_task_attr, 44);
9723 VERIFY_OFFSET(sg_count, 45);
9724 /* VERIFY_OFFSET(reserved3 */
9725 VERIFY_OFFSET(err_ptr, 48);
9726 VERIFY_OFFSET(err_len, 56);
9727 /* VERIFY_OFFSET(reserved4 */
9728 VERIFY_OFFSET(sg, 64);
9729
9730 #undef VERIFY_OFFSET
9731
9732 #define VERIFY_OFFSET(member, offset) \
9733 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9734
9735 VERIFY_OFFSET(dev_handle, 0x00);
9736 VERIFY_OFFSET(reserved1, 0x02);
9737 VERIFY_OFFSET(function, 0x03);
9738 VERIFY_OFFSET(reserved2, 0x04);
9739 VERIFY_OFFSET(err_info, 0x0C);
9740 VERIFY_OFFSET(reserved3, 0x10);
9741 VERIFY_OFFSET(err_info_len, 0x12);
9742 VERIFY_OFFSET(reserved4, 0x13);
9743 VERIFY_OFFSET(sgl_offset, 0x14);
9744 VERIFY_OFFSET(reserved5, 0x15);
9745 VERIFY_OFFSET(transfer_len, 0x1C);
9746 VERIFY_OFFSET(reserved6, 0x20);
9747 VERIFY_OFFSET(io_flags, 0x24);
9748 VERIFY_OFFSET(reserved7, 0x26);
9749 VERIFY_OFFSET(LUN, 0x34);
9750 VERIFY_OFFSET(control, 0x3C);
9751 VERIFY_OFFSET(CDB, 0x40);
9752 VERIFY_OFFSET(reserved8, 0x50);
9753 VERIFY_OFFSET(host_context_flags, 0x60);
9754 VERIFY_OFFSET(timeout_sec, 0x62);
9755 VERIFY_OFFSET(ReplyQueue, 0x64);
9756 VERIFY_OFFSET(reserved9, 0x65);
9757 VERIFY_OFFSET(tag, 0x68);
9758 VERIFY_OFFSET(host_addr, 0x70);
9759 VERIFY_OFFSET(CISS_LUN, 0x78);
9760 VERIFY_OFFSET(SG, 0x78 + 8);
9761 #undef VERIFY_OFFSET
9762 }
9763
9764 module_init(hpsa_init);
9765 module_exit(hpsa_cleanup);
This page took 0.40489 seconds and 5 git commands to generate.