hpsa: check for ctlr lockup after command allocation in main io path
[deliverable/linux.git] / drivers / scsi / hpsa.c
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17 *
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
19 *
20 */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
57
58 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
59 #define HPSA_DRIVER_VERSION "3.4.4-1"
60 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
61 #define HPSA "hpsa"
62
63 /* How long to wait (in milliseconds) for board to go into simple mode */
64 #define MAX_CONFIG_WAIT 30000
65 #define MAX_IOCTL_CONFIG_WAIT 1000
66
67 /*define how many times we will try a command because of bus resets */
68 #define MAX_CMD_RETRIES 3
69
70 /* Embedded module documentation macros - see modules.h */
71 MODULE_AUTHOR("Hewlett-Packard Company");
72 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
73 HPSA_DRIVER_VERSION);
74 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
75 MODULE_VERSION(HPSA_DRIVER_VERSION);
76 MODULE_LICENSE("GPL");
77
78 static int hpsa_allow_any;
79 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
80 MODULE_PARM_DESC(hpsa_allow_any,
81 "Allow hpsa driver to access unknown HP Smart Array hardware");
82 static int hpsa_simple_mode;
83 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
84 MODULE_PARM_DESC(hpsa_simple_mode,
85 "Use 'simple mode' rather than 'performant mode'");
86
87 /* define the PCI info for the cards we can control */
88 static const struct pci_device_id hpsa_pci_device_id[] = {
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
129 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
130 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
131 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
132 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
133 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
134 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
135 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
136 {0,}
137 };
138
139 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
140
141 /* board_id = Subsystem Device ID & Vendor ID
142 * product = Marketing Name for the board
143 * access = Address of the struct of function pointers
144 */
145 static struct board_type products[] = {
146 {0x3241103C, "Smart Array P212", &SA5_access},
147 {0x3243103C, "Smart Array P410", &SA5_access},
148 {0x3245103C, "Smart Array P410i", &SA5_access},
149 {0x3247103C, "Smart Array P411", &SA5_access},
150 {0x3249103C, "Smart Array P812", &SA5_access},
151 {0x324A103C, "Smart Array P712m", &SA5_access},
152 {0x324B103C, "Smart Array P711m", &SA5_access},
153 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
154 {0x3350103C, "Smart Array P222", &SA5_access},
155 {0x3351103C, "Smart Array P420", &SA5_access},
156 {0x3352103C, "Smart Array P421", &SA5_access},
157 {0x3353103C, "Smart Array P822", &SA5_access},
158 {0x3354103C, "Smart Array P420i", &SA5_access},
159 {0x3355103C, "Smart Array P220i", &SA5_access},
160 {0x3356103C, "Smart Array P721m", &SA5_access},
161 {0x1921103C, "Smart Array P830i", &SA5_access},
162 {0x1922103C, "Smart Array P430", &SA5_access},
163 {0x1923103C, "Smart Array P431", &SA5_access},
164 {0x1924103C, "Smart Array P830", &SA5_access},
165 {0x1926103C, "Smart Array P731m", &SA5_access},
166 {0x1928103C, "Smart Array P230i", &SA5_access},
167 {0x1929103C, "Smart Array P530", &SA5_access},
168 {0x21BD103C, "Smart Array", &SA5_access},
169 {0x21BE103C, "Smart Array", &SA5_access},
170 {0x21BF103C, "Smart Array", &SA5_access},
171 {0x21C0103C, "Smart Array", &SA5_access},
172 {0x21C1103C, "Smart Array", &SA5_access},
173 {0x21C2103C, "Smart Array", &SA5_access},
174 {0x21C3103C, "Smart Array", &SA5_access},
175 {0x21C4103C, "Smart Array", &SA5_access},
176 {0x21C5103C, "Smart Array", &SA5_access},
177 {0x21C6103C, "Smart Array", &SA5_access},
178 {0x21C7103C, "Smart Array", &SA5_access},
179 {0x21C8103C, "Smart Array", &SA5_access},
180 {0x21C9103C, "Smart Array", &SA5_access},
181 {0x21CA103C, "Smart Array", &SA5_access},
182 {0x21CB103C, "Smart Array", &SA5_access},
183 {0x21CC103C, "Smart Array", &SA5_access},
184 {0x21CD103C, "Smart Array", &SA5_access},
185 {0x21CE103C, "Smart Array", &SA5_access},
186 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
187 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
188 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
189 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
190 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
191 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
192 };
193
194 static int number_of_controllers;
195
196 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
197 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
198 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
199
200 #ifdef CONFIG_COMPAT
201 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
202 void __user *arg);
203 #endif
204
205 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
206 static struct CommandList *cmd_alloc(struct ctlr_info *h);
207 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
208 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
209 int cmd_type);
210 static void hpsa_free_cmd_pool(struct ctlr_info *h);
211 #define VPD_PAGE (1 << 8)
212
213 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
214 static void hpsa_scan_start(struct Scsi_Host *);
215 static int hpsa_scan_finished(struct Scsi_Host *sh,
216 unsigned long elapsed_time);
217 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
218
219 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
220 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
221 static int hpsa_slave_alloc(struct scsi_device *sdev);
222 static void hpsa_slave_destroy(struct scsi_device *sdev);
223
224 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
225 static int check_for_unit_attention(struct ctlr_info *h,
226 struct CommandList *c);
227 static void check_ioctl_unit_attention(struct ctlr_info *h,
228 struct CommandList *c);
229 /* performant mode helper functions */
230 static void calc_bucket_map(int *bucket, int num_buckets,
231 int nsgs, int min_blocks, u32 *bucket_map);
232 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
233 static inline u32 next_command(struct ctlr_info *h, u8 q);
234 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
235 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
236 u64 *cfg_offset);
237 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
238 unsigned long *memory_bar);
239 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
240 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
241 int wait_for_ready);
242 static inline void finish_cmd(struct CommandList *c);
243 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
244 #define BOARD_NOT_READY 0
245 #define BOARD_READY 1
246 static void hpsa_drain_accel_commands(struct ctlr_info *h);
247 static void hpsa_flush_cache(struct ctlr_info *h);
248 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
249 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
250 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
251 static void hpsa_command_resubmit_worker(struct work_struct *work);
252
253 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
254 {
255 unsigned long *priv = shost_priv(sdev->host);
256 return (struct ctlr_info *) *priv;
257 }
258
259 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
260 {
261 unsigned long *priv = shost_priv(sh);
262 return (struct ctlr_info *) *priv;
263 }
264
265 static int check_for_unit_attention(struct ctlr_info *h,
266 struct CommandList *c)
267 {
268 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
269 return 0;
270
271 switch (c->err_info->SenseInfo[12]) {
272 case STATE_CHANGED:
273 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
274 "detected, command retried\n", h->ctlr);
275 break;
276 case LUN_FAILED:
277 dev_warn(&h->pdev->dev,
278 HPSA "%d: LUN failure detected\n", h->ctlr);
279 break;
280 case REPORT_LUNS_CHANGED:
281 dev_warn(&h->pdev->dev,
282 HPSA "%d: report LUN data changed\n", h->ctlr);
283 /*
284 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
285 * target (array) devices.
286 */
287 break;
288 case POWER_OR_RESET:
289 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
290 "or device reset detected\n", h->ctlr);
291 break;
292 case UNIT_ATTENTION_CLEARED:
293 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
294 "cleared by another initiator\n", h->ctlr);
295 break;
296 default:
297 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
298 "unit attention detected\n", h->ctlr);
299 break;
300 }
301 return 1;
302 }
303
304 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
305 {
306 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
307 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
308 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
309 return 0;
310 dev_warn(&h->pdev->dev, HPSA "device busy");
311 return 1;
312 }
313
314 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
315 struct device_attribute *attr,
316 const char *buf, size_t count)
317 {
318 int status, len;
319 struct ctlr_info *h;
320 struct Scsi_Host *shost = class_to_shost(dev);
321 char tmpbuf[10];
322
323 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
324 return -EACCES;
325 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
326 strncpy(tmpbuf, buf, len);
327 tmpbuf[len] = '\0';
328 if (sscanf(tmpbuf, "%d", &status) != 1)
329 return -EINVAL;
330 h = shost_to_hba(shost);
331 h->acciopath_status = !!status;
332 dev_warn(&h->pdev->dev,
333 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
334 h->acciopath_status ? "enabled" : "disabled");
335 return count;
336 }
337
338 static ssize_t host_store_raid_offload_debug(struct device *dev,
339 struct device_attribute *attr,
340 const char *buf, size_t count)
341 {
342 int debug_level, len;
343 struct ctlr_info *h;
344 struct Scsi_Host *shost = class_to_shost(dev);
345 char tmpbuf[10];
346
347 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
348 return -EACCES;
349 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
350 strncpy(tmpbuf, buf, len);
351 tmpbuf[len] = '\0';
352 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
353 return -EINVAL;
354 if (debug_level < 0)
355 debug_level = 0;
356 h = shost_to_hba(shost);
357 h->raid_offload_debug = debug_level;
358 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
359 h->raid_offload_debug);
360 return count;
361 }
362
363 static ssize_t host_store_rescan(struct device *dev,
364 struct device_attribute *attr,
365 const char *buf, size_t count)
366 {
367 struct ctlr_info *h;
368 struct Scsi_Host *shost = class_to_shost(dev);
369 h = shost_to_hba(shost);
370 hpsa_scan_start(h->scsi_host);
371 return count;
372 }
373
374 static ssize_t host_show_firmware_revision(struct device *dev,
375 struct device_attribute *attr, char *buf)
376 {
377 struct ctlr_info *h;
378 struct Scsi_Host *shost = class_to_shost(dev);
379 unsigned char *fwrev;
380
381 h = shost_to_hba(shost);
382 if (!h->hba_inquiry_data)
383 return 0;
384 fwrev = &h->hba_inquiry_data[32];
385 return snprintf(buf, 20, "%c%c%c%c\n",
386 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
387 }
388
389 static ssize_t host_show_commands_outstanding(struct device *dev,
390 struct device_attribute *attr, char *buf)
391 {
392 struct Scsi_Host *shost = class_to_shost(dev);
393 struct ctlr_info *h = shost_to_hba(shost);
394
395 return snprintf(buf, 20, "%d\n",
396 atomic_read(&h->commands_outstanding));
397 }
398
399 static ssize_t host_show_transport_mode(struct device *dev,
400 struct device_attribute *attr, char *buf)
401 {
402 struct ctlr_info *h;
403 struct Scsi_Host *shost = class_to_shost(dev);
404
405 h = shost_to_hba(shost);
406 return snprintf(buf, 20, "%s\n",
407 h->transMethod & CFGTBL_Trans_Performant ?
408 "performant" : "simple");
409 }
410
411 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
412 struct device_attribute *attr, char *buf)
413 {
414 struct ctlr_info *h;
415 struct Scsi_Host *shost = class_to_shost(dev);
416
417 h = shost_to_hba(shost);
418 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
419 (h->acciopath_status == 1) ? "enabled" : "disabled");
420 }
421
422 /* List of controllers which cannot be hard reset on kexec with reset_devices */
423 static u32 unresettable_controller[] = {
424 0x324a103C, /* Smart Array P712m */
425 0x324b103C, /* SmartArray P711m */
426 0x3223103C, /* Smart Array P800 */
427 0x3234103C, /* Smart Array P400 */
428 0x3235103C, /* Smart Array P400i */
429 0x3211103C, /* Smart Array E200i */
430 0x3212103C, /* Smart Array E200 */
431 0x3213103C, /* Smart Array E200i */
432 0x3214103C, /* Smart Array E200i */
433 0x3215103C, /* Smart Array E200i */
434 0x3237103C, /* Smart Array E500 */
435 0x323D103C, /* Smart Array P700m */
436 0x40800E11, /* Smart Array 5i */
437 0x409C0E11, /* Smart Array 6400 */
438 0x409D0E11, /* Smart Array 6400 EM */
439 0x40700E11, /* Smart Array 5300 */
440 0x40820E11, /* Smart Array 532 */
441 0x40830E11, /* Smart Array 5312 */
442 0x409A0E11, /* Smart Array 641 */
443 0x409B0E11, /* Smart Array 642 */
444 0x40910E11, /* Smart Array 6i */
445 };
446
447 /* List of controllers which cannot even be soft reset */
448 static u32 soft_unresettable_controller[] = {
449 0x40800E11, /* Smart Array 5i */
450 0x40700E11, /* Smart Array 5300 */
451 0x40820E11, /* Smart Array 532 */
452 0x40830E11, /* Smart Array 5312 */
453 0x409A0E11, /* Smart Array 641 */
454 0x409B0E11, /* Smart Array 642 */
455 0x40910E11, /* Smart Array 6i */
456 /* Exclude 640x boards. These are two pci devices in one slot
457 * which share a battery backed cache module. One controls the
458 * cache, the other accesses the cache through the one that controls
459 * it. If we reset the one controlling the cache, the other will
460 * likely not be happy. Just forbid resetting this conjoined mess.
461 * The 640x isn't really supported by hpsa anyway.
462 */
463 0x409C0E11, /* Smart Array 6400 */
464 0x409D0E11, /* Smart Array 6400 EM */
465 };
466
467 static int ctlr_is_hard_resettable(u32 board_id)
468 {
469 int i;
470
471 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
472 if (unresettable_controller[i] == board_id)
473 return 0;
474 return 1;
475 }
476
477 static int ctlr_is_soft_resettable(u32 board_id)
478 {
479 int i;
480
481 for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
482 if (soft_unresettable_controller[i] == board_id)
483 return 0;
484 return 1;
485 }
486
487 static int ctlr_is_resettable(u32 board_id)
488 {
489 return ctlr_is_hard_resettable(board_id) ||
490 ctlr_is_soft_resettable(board_id);
491 }
492
493 static ssize_t host_show_resettable(struct device *dev,
494 struct device_attribute *attr, char *buf)
495 {
496 struct ctlr_info *h;
497 struct Scsi_Host *shost = class_to_shost(dev);
498
499 h = shost_to_hba(shost);
500 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
501 }
502
503 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
504 {
505 return (scsi3addr[3] & 0xC0) == 0x40;
506 }
507
508 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
509 "1(+0)ADM", "UNKNOWN"
510 };
511 #define HPSA_RAID_0 0
512 #define HPSA_RAID_4 1
513 #define HPSA_RAID_1 2 /* also used for RAID 10 */
514 #define HPSA_RAID_5 3 /* also used for RAID 50 */
515 #define HPSA_RAID_51 4
516 #define HPSA_RAID_6 5 /* also used for RAID 60 */
517 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
518 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
519
520 static ssize_t raid_level_show(struct device *dev,
521 struct device_attribute *attr, char *buf)
522 {
523 ssize_t l = 0;
524 unsigned char rlevel;
525 struct ctlr_info *h;
526 struct scsi_device *sdev;
527 struct hpsa_scsi_dev_t *hdev;
528 unsigned long flags;
529
530 sdev = to_scsi_device(dev);
531 h = sdev_to_hba(sdev);
532 spin_lock_irqsave(&h->lock, flags);
533 hdev = sdev->hostdata;
534 if (!hdev) {
535 spin_unlock_irqrestore(&h->lock, flags);
536 return -ENODEV;
537 }
538
539 /* Is this even a logical drive? */
540 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
541 spin_unlock_irqrestore(&h->lock, flags);
542 l = snprintf(buf, PAGE_SIZE, "N/A\n");
543 return l;
544 }
545
546 rlevel = hdev->raid_level;
547 spin_unlock_irqrestore(&h->lock, flags);
548 if (rlevel > RAID_UNKNOWN)
549 rlevel = RAID_UNKNOWN;
550 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
551 return l;
552 }
553
554 static ssize_t lunid_show(struct device *dev,
555 struct device_attribute *attr, char *buf)
556 {
557 struct ctlr_info *h;
558 struct scsi_device *sdev;
559 struct hpsa_scsi_dev_t *hdev;
560 unsigned long flags;
561 unsigned char lunid[8];
562
563 sdev = to_scsi_device(dev);
564 h = sdev_to_hba(sdev);
565 spin_lock_irqsave(&h->lock, flags);
566 hdev = sdev->hostdata;
567 if (!hdev) {
568 spin_unlock_irqrestore(&h->lock, flags);
569 return -ENODEV;
570 }
571 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
572 spin_unlock_irqrestore(&h->lock, flags);
573 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
574 lunid[0], lunid[1], lunid[2], lunid[3],
575 lunid[4], lunid[5], lunid[6], lunid[7]);
576 }
577
578 static ssize_t unique_id_show(struct device *dev,
579 struct device_attribute *attr, char *buf)
580 {
581 struct ctlr_info *h;
582 struct scsi_device *sdev;
583 struct hpsa_scsi_dev_t *hdev;
584 unsigned long flags;
585 unsigned char sn[16];
586
587 sdev = to_scsi_device(dev);
588 h = sdev_to_hba(sdev);
589 spin_lock_irqsave(&h->lock, flags);
590 hdev = sdev->hostdata;
591 if (!hdev) {
592 spin_unlock_irqrestore(&h->lock, flags);
593 return -ENODEV;
594 }
595 memcpy(sn, hdev->device_id, sizeof(sn));
596 spin_unlock_irqrestore(&h->lock, flags);
597 return snprintf(buf, 16 * 2 + 2,
598 "%02X%02X%02X%02X%02X%02X%02X%02X"
599 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
600 sn[0], sn[1], sn[2], sn[3],
601 sn[4], sn[5], sn[6], sn[7],
602 sn[8], sn[9], sn[10], sn[11],
603 sn[12], sn[13], sn[14], sn[15]);
604 }
605
606 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
607 struct device_attribute *attr, char *buf)
608 {
609 struct ctlr_info *h;
610 struct scsi_device *sdev;
611 struct hpsa_scsi_dev_t *hdev;
612 unsigned long flags;
613 int offload_enabled;
614
615 sdev = to_scsi_device(dev);
616 h = sdev_to_hba(sdev);
617 spin_lock_irqsave(&h->lock, flags);
618 hdev = sdev->hostdata;
619 if (!hdev) {
620 spin_unlock_irqrestore(&h->lock, flags);
621 return -ENODEV;
622 }
623 offload_enabled = hdev->offload_enabled;
624 spin_unlock_irqrestore(&h->lock, flags);
625 return snprintf(buf, 20, "%d\n", offload_enabled);
626 }
627
628 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
629 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
630 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
631 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
632 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
633 host_show_hp_ssd_smart_path_enabled, NULL);
634 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
635 host_show_hp_ssd_smart_path_status,
636 host_store_hp_ssd_smart_path_status);
637 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
638 host_store_raid_offload_debug);
639 static DEVICE_ATTR(firmware_revision, S_IRUGO,
640 host_show_firmware_revision, NULL);
641 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
642 host_show_commands_outstanding, NULL);
643 static DEVICE_ATTR(transport_mode, S_IRUGO,
644 host_show_transport_mode, NULL);
645 static DEVICE_ATTR(resettable, S_IRUGO,
646 host_show_resettable, NULL);
647
648 static struct device_attribute *hpsa_sdev_attrs[] = {
649 &dev_attr_raid_level,
650 &dev_attr_lunid,
651 &dev_attr_unique_id,
652 &dev_attr_hp_ssd_smart_path_enabled,
653 NULL,
654 };
655
656 static struct device_attribute *hpsa_shost_attrs[] = {
657 &dev_attr_rescan,
658 &dev_attr_firmware_revision,
659 &dev_attr_commands_outstanding,
660 &dev_attr_transport_mode,
661 &dev_attr_resettable,
662 &dev_attr_hp_ssd_smart_path_status,
663 &dev_attr_raid_offload_debug,
664 NULL,
665 };
666
667 static struct scsi_host_template hpsa_driver_template = {
668 .module = THIS_MODULE,
669 .name = HPSA,
670 .proc_name = HPSA,
671 .queuecommand = hpsa_scsi_queue_command,
672 .scan_start = hpsa_scan_start,
673 .scan_finished = hpsa_scan_finished,
674 .change_queue_depth = hpsa_change_queue_depth,
675 .this_id = -1,
676 .use_clustering = ENABLE_CLUSTERING,
677 .eh_abort_handler = hpsa_eh_abort_handler,
678 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
679 .ioctl = hpsa_ioctl,
680 .slave_alloc = hpsa_slave_alloc,
681 .slave_destroy = hpsa_slave_destroy,
682 #ifdef CONFIG_COMPAT
683 .compat_ioctl = hpsa_compat_ioctl,
684 #endif
685 .sdev_attrs = hpsa_sdev_attrs,
686 .shost_attrs = hpsa_shost_attrs,
687 .max_sectors = 8192,
688 .no_write_same = 1,
689 };
690
691 static inline u32 next_command(struct ctlr_info *h, u8 q)
692 {
693 u32 a;
694 struct reply_queue_buffer *rq = &h->reply_queue[q];
695
696 if (h->transMethod & CFGTBL_Trans_io_accel1)
697 return h->access.command_completed(h, q);
698
699 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
700 return h->access.command_completed(h, q);
701
702 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
703 a = rq->head[rq->current_entry];
704 rq->current_entry++;
705 atomic_dec(&h->commands_outstanding);
706 } else {
707 a = FIFO_EMPTY;
708 }
709 /* Check for wraparound */
710 if (rq->current_entry == h->max_commands) {
711 rq->current_entry = 0;
712 rq->wraparound ^= 1;
713 }
714 return a;
715 }
716
717 /*
718 * There are some special bits in the bus address of the
719 * command that we have to set for the controller to know
720 * how to process the command:
721 *
722 * Normal performant mode:
723 * bit 0: 1 means performant mode, 0 means simple mode.
724 * bits 1-3 = block fetch table entry
725 * bits 4-6 = command type (== 0)
726 *
727 * ioaccel1 mode:
728 * bit 0 = "performant mode" bit.
729 * bits 1-3 = block fetch table entry
730 * bits 4-6 = command type (== 110)
731 * (command type is needed because ioaccel1 mode
732 * commands are submitted through the same register as normal
733 * mode commands, so this is how the controller knows whether
734 * the command is normal mode or ioaccel1 mode.)
735 *
736 * ioaccel2 mode:
737 * bit 0 = "performant mode" bit.
738 * bits 1-4 = block fetch table entry (note extra bit)
739 * bits 4-6 = not needed, because ioaccel2 mode has
740 * a separate special register for submitting commands.
741 */
742
743 /* set_performant_mode: Modify the tag for cciss performant
744 * set bit 0 for pull model, bits 3-1 for block fetch
745 * register number
746 */
747 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
748 {
749 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
750 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
751 if (likely(h->msix_vector > 0))
752 c->Header.ReplyQueue =
753 raw_smp_processor_id() % h->nreply_queues;
754 }
755 }
756
757 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
758 struct CommandList *c)
759 {
760 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
761
762 /* Tell the controller to post the reply to the queue for this
763 * processor. This seems to give the best I/O throughput.
764 */
765 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
766 /* Set the bits in the address sent down to include:
767 * - performant mode bit (bit 0)
768 * - pull count (bits 1-3)
769 * - command type (bits 4-6)
770 */
771 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
772 IOACCEL1_BUSADDR_CMDTYPE;
773 }
774
775 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
776 struct CommandList *c)
777 {
778 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
779
780 /* Tell the controller to post the reply to the queue for this
781 * processor. This seems to give the best I/O throughput.
782 */
783 cp->reply_queue = smp_processor_id() % h->nreply_queues;
784 /* Set the bits in the address sent down to include:
785 * - performant mode bit not used in ioaccel mode 2
786 * - pull count (bits 0-3)
787 * - command type isn't needed for ioaccel2
788 */
789 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
790 }
791
792 static int is_firmware_flash_cmd(u8 *cdb)
793 {
794 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
795 }
796
797 /*
798 * During firmware flash, the heartbeat register may not update as frequently
799 * as it should. So we dial down lockup detection during firmware flash. and
800 * dial it back up when firmware flash completes.
801 */
802 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
803 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
804 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
805 struct CommandList *c)
806 {
807 if (!is_firmware_flash_cmd(c->Request.CDB))
808 return;
809 atomic_inc(&h->firmware_flash_in_progress);
810 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
811 }
812
813 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
814 struct CommandList *c)
815 {
816 if (is_firmware_flash_cmd(c->Request.CDB) &&
817 atomic_dec_and_test(&h->firmware_flash_in_progress))
818 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
819 }
820
821 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
822 struct CommandList *c)
823 {
824 switch (c->cmd_type) {
825 case CMD_IOACCEL1:
826 set_ioaccel1_performant_mode(h, c);
827 break;
828 case CMD_IOACCEL2:
829 set_ioaccel2_performant_mode(h, c);
830 break;
831 default:
832 set_performant_mode(h, c);
833 }
834 dial_down_lockup_detection_during_fw_flash(h, c);
835 atomic_inc(&h->commands_outstanding);
836 h->access.submit_command(h, c);
837 }
838
839 static inline int is_hba_lunid(unsigned char scsi3addr[])
840 {
841 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
842 }
843
844 static inline int is_scsi_rev_5(struct ctlr_info *h)
845 {
846 if (!h->hba_inquiry_data)
847 return 0;
848 if ((h->hba_inquiry_data[2] & 0x07) == 5)
849 return 1;
850 return 0;
851 }
852
853 static int hpsa_find_target_lun(struct ctlr_info *h,
854 unsigned char scsi3addr[], int bus, int *target, int *lun)
855 {
856 /* finds an unused bus, target, lun for a new physical device
857 * assumes h->devlock is held
858 */
859 int i, found = 0;
860 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
861
862 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
863
864 for (i = 0; i < h->ndevices; i++) {
865 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
866 __set_bit(h->dev[i]->target, lun_taken);
867 }
868
869 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
870 if (i < HPSA_MAX_DEVICES) {
871 /* *bus = 1; */
872 *target = i;
873 *lun = 0;
874 found = 1;
875 }
876 return !found;
877 }
878
879 /* Add an entry into h->dev[] array. */
880 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
881 struct hpsa_scsi_dev_t *device,
882 struct hpsa_scsi_dev_t *added[], int *nadded)
883 {
884 /* assumes h->devlock is held */
885 int n = h->ndevices;
886 int i;
887 unsigned char addr1[8], addr2[8];
888 struct hpsa_scsi_dev_t *sd;
889
890 if (n >= HPSA_MAX_DEVICES) {
891 dev_err(&h->pdev->dev, "too many devices, some will be "
892 "inaccessible.\n");
893 return -1;
894 }
895
896 /* physical devices do not have lun or target assigned until now. */
897 if (device->lun != -1)
898 /* Logical device, lun is already assigned. */
899 goto lun_assigned;
900
901 /* If this device a non-zero lun of a multi-lun device
902 * byte 4 of the 8-byte LUN addr will contain the logical
903 * unit no, zero otherwise.
904 */
905 if (device->scsi3addr[4] == 0) {
906 /* This is not a non-zero lun of a multi-lun device */
907 if (hpsa_find_target_lun(h, device->scsi3addr,
908 device->bus, &device->target, &device->lun) != 0)
909 return -1;
910 goto lun_assigned;
911 }
912
913 /* This is a non-zero lun of a multi-lun device.
914 * Search through our list and find the device which
915 * has the same 8 byte LUN address, excepting byte 4.
916 * Assign the same bus and target for this new LUN.
917 * Use the logical unit number from the firmware.
918 */
919 memcpy(addr1, device->scsi3addr, 8);
920 addr1[4] = 0;
921 for (i = 0; i < n; i++) {
922 sd = h->dev[i];
923 memcpy(addr2, sd->scsi3addr, 8);
924 addr2[4] = 0;
925 /* differ only in byte 4? */
926 if (memcmp(addr1, addr2, 8) == 0) {
927 device->bus = sd->bus;
928 device->target = sd->target;
929 device->lun = device->scsi3addr[4];
930 break;
931 }
932 }
933 if (device->lun == -1) {
934 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
935 " suspect firmware bug or unsupported hardware "
936 "configuration.\n");
937 return -1;
938 }
939
940 lun_assigned:
941
942 h->dev[n] = device;
943 h->ndevices++;
944 added[*nadded] = device;
945 (*nadded)++;
946
947 /* initially, (before registering with scsi layer) we don't
948 * know our hostno and we don't want to print anything first
949 * time anyway (the scsi layer's inquiries will show that info)
950 */
951 /* if (hostno != -1) */
952 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
953 scsi_device_type(device->devtype), hostno,
954 device->bus, device->target, device->lun);
955 return 0;
956 }
957
958 /* Update an entry in h->dev[] array. */
959 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
960 int entry, struct hpsa_scsi_dev_t *new_entry)
961 {
962 /* assumes h->devlock is held */
963 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
964
965 /* Raid level changed. */
966 h->dev[entry]->raid_level = new_entry->raid_level;
967
968 /* Raid offload parameters changed. Careful about the ordering. */
969 if (new_entry->offload_config && new_entry->offload_enabled) {
970 /*
971 * if drive is newly offload_enabled, we want to copy the
972 * raid map data first. If previously offload_enabled and
973 * offload_config were set, raid map data had better be
974 * the same as it was before. if raid map data is changed
975 * then it had better be the case that
976 * h->dev[entry]->offload_enabled is currently 0.
977 */
978 h->dev[entry]->raid_map = new_entry->raid_map;
979 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
980 wmb(); /* ensure raid map updated prior to ->offload_enabled */
981 }
982 h->dev[entry]->offload_config = new_entry->offload_config;
983 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
984 h->dev[entry]->offload_enabled = new_entry->offload_enabled;
985 h->dev[entry]->queue_depth = new_entry->queue_depth;
986
987 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
988 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
989 new_entry->target, new_entry->lun);
990 }
991
992 /* Replace an entry from h->dev[] array. */
993 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
994 int entry, struct hpsa_scsi_dev_t *new_entry,
995 struct hpsa_scsi_dev_t *added[], int *nadded,
996 struct hpsa_scsi_dev_t *removed[], int *nremoved)
997 {
998 /* assumes h->devlock is held */
999 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1000 removed[*nremoved] = h->dev[entry];
1001 (*nremoved)++;
1002
1003 /*
1004 * New physical devices won't have target/lun assigned yet
1005 * so we need to preserve the values in the slot we are replacing.
1006 */
1007 if (new_entry->target == -1) {
1008 new_entry->target = h->dev[entry]->target;
1009 new_entry->lun = h->dev[entry]->lun;
1010 }
1011
1012 h->dev[entry] = new_entry;
1013 added[*nadded] = new_entry;
1014 (*nadded)++;
1015 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
1016 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
1017 new_entry->target, new_entry->lun);
1018 }
1019
1020 /* Remove an entry from h->dev[] array. */
1021 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1022 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1023 {
1024 /* assumes h->devlock is held */
1025 int i;
1026 struct hpsa_scsi_dev_t *sd;
1027
1028 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1029
1030 sd = h->dev[entry];
1031 removed[*nremoved] = h->dev[entry];
1032 (*nremoved)++;
1033
1034 for (i = entry; i < h->ndevices-1; i++)
1035 h->dev[i] = h->dev[i+1];
1036 h->ndevices--;
1037 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
1038 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
1039 sd->lun);
1040 }
1041
1042 #define SCSI3ADDR_EQ(a, b) ( \
1043 (a)[7] == (b)[7] && \
1044 (a)[6] == (b)[6] && \
1045 (a)[5] == (b)[5] && \
1046 (a)[4] == (b)[4] && \
1047 (a)[3] == (b)[3] && \
1048 (a)[2] == (b)[2] && \
1049 (a)[1] == (b)[1] && \
1050 (a)[0] == (b)[0])
1051
1052 static void fixup_botched_add(struct ctlr_info *h,
1053 struct hpsa_scsi_dev_t *added)
1054 {
1055 /* called when scsi_add_device fails in order to re-adjust
1056 * h->dev[] to match the mid layer's view.
1057 */
1058 unsigned long flags;
1059 int i, j;
1060
1061 spin_lock_irqsave(&h->lock, flags);
1062 for (i = 0; i < h->ndevices; i++) {
1063 if (h->dev[i] == added) {
1064 for (j = i; j < h->ndevices-1; j++)
1065 h->dev[j] = h->dev[j+1];
1066 h->ndevices--;
1067 break;
1068 }
1069 }
1070 spin_unlock_irqrestore(&h->lock, flags);
1071 kfree(added);
1072 }
1073
1074 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1075 struct hpsa_scsi_dev_t *dev2)
1076 {
1077 /* we compare everything except lun and target as these
1078 * are not yet assigned. Compare parts likely
1079 * to differ first
1080 */
1081 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1082 sizeof(dev1->scsi3addr)) != 0)
1083 return 0;
1084 if (memcmp(dev1->device_id, dev2->device_id,
1085 sizeof(dev1->device_id)) != 0)
1086 return 0;
1087 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1088 return 0;
1089 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1090 return 0;
1091 if (dev1->devtype != dev2->devtype)
1092 return 0;
1093 if (dev1->bus != dev2->bus)
1094 return 0;
1095 return 1;
1096 }
1097
1098 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1099 struct hpsa_scsi_dev_t *dev2)
1100 {
1101 /* Device attributes that can change, but don't mean
1102 * that the device is a different device, nor that the OS
1103 * needs to be told anything about the change.
1104 */
1105 if (dev1->raid_level != dev2->raid_level)
1106 return 1;
1107 if (dev1->offload_config != dev2->offload_config)
1108 return 1;
1109 if (dev1->offload_enabled != dev2->offload_enabled)
1110 return 1;
1111 if (dev1->queue_depth != dev2->queue_depth)
1112 return 1;
1113 return 0;
1114 }
1115
1116 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1117 * and return needle location in *index. If scsi3addr matches, but not
1118 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1119 * location in *index.
1120 * In the case of a minor device attribute change, such as RAID level, just
1121 * return DEVICE_UPDATED, along with the updated device's location in index.
1122 * If needle not found, return DEVICE_NOT_FOUND.
1123 */
1124 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1125 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1126 int *index)
1127 {
1128 int i;
1129 #define DEVICE_NOT_FOUND 0
1130 #define DEVICE_CHANGED 1
1131 #define DEVICE_SAME 2
1132 #define DEVICE_UPDATED 3
1133 for (i = 0; i < haystack_size; i++) {
1134 if (haystack[i] == NULL) /* previously removed. */
1135 continue;
1136 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1137 *index = i;
1138 if (device_is_the_same(needle, haystack[i])) {
1139 if (device_updated(needle, haystack[i]))
1140 return DEVICE_UPDATED;
1141 return DEVICE_SAME;
1142 } else {
1143 /* Keep offline devices offline */
1144 if (needle->volume_offline)
1145 return DEVICE_NOT_FOUND;
1146 return DEVICE_CHANGED;
1147 }
1148 }
1149 }
1150 *index = -1;
1151 return DEVICE_NOT_FOUND;
1152 }
1153
1154 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1155 unsigned char scsi3addr[])
1156 {
1157 struct offline_device_entry *device;
1158 unsigned long flags;
1159
1160 /* Check to see if device is already on the list */
1161 spin_lock_irqsave(&h->offline_device_lock, flags);
1162 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1163 if (memcmp(device->scsi3addr, scsi3addr,
1164 sizeof(device->scsi3addr)) == 0) {
1165 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1166 return;
1167 }
1168 }
1169 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1170
1171 /* Device is not on the list, add it. */
1172 device = kmalloc(sizeof(*device), GFP_KERNEL);
1173 if (!device) {
1174 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1175 return;
1176 }
1177 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1178 spin_lock_irqsave(&h->offline_device_lock, flags);
1179 list_add_tail(&device->offline_list, &h->offline_device_list);
1180 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1181 }
1182
1183 /* Print a message explaining various offline volume states */
1184 static void hpsa_show_volume_status(struct ctlr_info *h,
1185 struct hpsa_scsi_dev_t *sd)
1186 {
1187 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1188 dev_info(&h->pdev->dev,
1189 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1190 h->scsi_host->host_no,
1191 sd->bus, sd->target, sd->lun);
1192 switch (sd->volume_offline) {
1193 case HPSA_LV_OK:
1194 break;
1195 case HPSA_LV_UNDERGOING_ERASE:
1196 dev_info(&h->pdev->dev,
1197 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1198 h->scsi_host->host_no,
1199 sd->bus, sd->target, sd->lun);
1200 break;
1201 case HPSA_LV_UNDERGOING_RPI:
1202 dev_info(&h->pdev->dev,
1203 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1204 h->scsi_host->host_no,
1205 sd->bus, sd->target, sd->lun);
1206 break;
1207 case HPSA_LV_PENDING_RPI:
1208 dev_info(&h->pdev->dev,
1209 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1210 h->scsi_host->host_no,
1211 sd->bus, sd->target, sd->lun);
1212 break;
1213 case HPSA_LV_ENCRYPTED_NO_KEY:
1214 dev_info(&h->pdev->dev,
1215 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1216 h->scsi_host->host_no,
1217 sd->bus, sd->target, sd->lun);
1218 break;
1219 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1220 dev_info(&h->pdev->dev,
1221 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1222 h->scsi_host->host_no,
1223 sd->bus, sd->target, sd->lun);
1224 break;
1225 case HPSA_LV_UNDERGOING_ENCRYPTION:
1226 dev_info(&h->pdev->dev,
1227 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1228 h->scsi_host->host_no,
1229 sd->bus, sd->target, sd->lun);
1230 break;
1231 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1232 dev_info(&h->pdev->dev,
1233 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1234 h->scsi_host->host_no,
1235 sd->bus, sd->target, sd->lun);
1236 break;
1237 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1238 dev_info(&h->pdev->dev,
1239 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1240 h->scsi_host->host_no,
1241 sd->bus, sd->target, sd->lun);
1242 break;
1243 case HPSA_LV_PENDING_ENCRYPTION:
1244 dev_info(&h->pdev->dev,
1245 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1246 h->scsi_host->host_no,
1247 sd->bus, sd->target, sd->lun);
1248 break;
1249 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1250 dev_info(&h->pdev->dev,
1251 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1252 h->scsi_host->host_no,
1253 sd->bus, sd->target, sd->lun);
1254 break;
1255 }
1256 }
1257
1258 /*
1259 * Figure the list of physical drive pointers for a logical drive with
1260 * raid offload configured.
1261 */
1262 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1263 struct hpsa_scsi_dev_t *dev[], int ndevices,
1264 struct hpsa_scsi_dev_t *logical_drive)
1265 {
1266 struct raid_map_data *map = &logical_drive->raid_map;
1267 struct raid_map_disk_data *dd = &map->data[0];
1268 int i, j;
1269 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1270 le16_to_cpu(map->metadata_disks_per_row);
1271 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1272 le16_to_cpu(map->layout_map_count) *
1273 total_disks_per_row;
1274 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1275 total_disks_per_row;
1276 int qdepth;
1277
1278 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1279 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1280
1281 qdepth = 0;
1282 for (i = 0; i < nraid_map_entries; i++) {
1283 logical_drive->phys_disk[i] = NULL;
1284 if (!logical_drive->offload_config)
1285 continue;
1286 for (j = 0; j < ndevices; j++) {
1287 if (dev[j]->devtype != TYPE_DISK)
1288 continue;
1289 if (is_logical_dev_addr_mode(dev[j]->scsi3addr))
1290 continue;
1291 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1292 continue;
1293
1294 logical_drive->phys_disk[i] = dev[j];
1295 if (i < nphys_disk)
1296 qdepth = min(h->nr_cmds, qdepth +
1297 logical_drive->phys_disk[i]->queue_depth);
1298 break;
1299 }
1300
1301 /*
1302 * This can happen if a physical drive is removed and
1303 * the logical drive is degraded. In that case, the RAID
1304 * map data will refer to a physical disk which isn't actually
1305 * present. And in that case offload_enabled should already
1306 * be 0, but we'll turn it off here just in case
1307 */
1308 if (!logical_drive->phys_disk[i]) {
1309 logical_drive->offload_enabled = 0;
1310 logical_drive->queue_depth = h->nr_cmds;
1311 }
1312 }
1313 if (nraid_map_entries)
1314 /*
1315 * This is correct for reads, too high for full stripe writes,
1316 * way too high for partial stripe writes
1317 */
1318 logical_drive->queue_depth = qdepth;
1319 else
1320 logical_drive->queue_depth = h->nr_cmds;
1321 }
1322
1323 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1324 struct hpsa_scsi_dev_t *dev[], int ndevices)
1325 {
1326 int i;
1327
1328 for (i = 0; i < ndevices; i++) {
1329 if (dev[i]->devtype != TYPE_DISK)
1330 continue;
1331 if (!is_logical_dev_addr_mode(dev[i]->scsi3addr))
1332 continue;
1333 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1334 }
1335 }
1336
1337 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1338 struct hpsa_scsi_dev_t *sd[], int nsds)
1339 {
1340 /* sd contains scsi3 addresses and devtypes, and inquiry
1341 * data. This function takes what's in sd to be the current
1342 * reality and updates h->dev[] to reflect that reality.
1343 */
1344 int i, entry, device_change, changes = 0;
1345 struct hpsa_scsi_dev_t *csd;
1346 unsigned long flags;
1347 struct hpsa_scsi_dev_t **added, **removed;
1348 int nadded, nremoved;
1349 struct Scsi_Host *sh = NULL;
1350
1351 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1352 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1353
1354 if (!added || !removed) {
1355 dev_warn(&h->pdev->dev, "out of memory in "
1356 "adjust_hpsa_scsi_table\n");
1357 goto free_and_out;
1358 }
1359
1360 spin_lock_irqsave(&h->devlock, flags);
1361
1362 /* find any devices in h->dev[] that are not in
1363 * sd[] and remove them from h->dev[], and for any
1364 * devices which have changed, remove the old device
1365 * info and add the new device info.
1366 * If minor device attributes change, just update
1367 * the existing device structure.
1368 */
1369 i = 0;
1370 nremoved = 0;
1371 nadded = 0;
1372 while (i < h->ndevices) {
1373 csd = h->dev[i];
1374 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1375 if (device_change == DEVICE_NOT_FOUND) {
1376 changes++;
1377 hpsa_scsi_remove_entry(h, hostno, i,
1378 removed, &nremoved);
1379 continue; /* remove ^^^, hence i not incremented */
1380 } else if (device_change == DEVICE_CHANGED) {
1381 changes++;
1382 hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1383 added, &nadded, removed, &nremoved);
1384 /* Set it to NULL to prevent it from being freed
1385 * at the bottom of hpsa_update_scsi_devices()
1386 */
1387 sd[entry] = NULL;
1388 } else if (device_change == DEVICE_UPDATED) {
1389 hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1390 }
1391 i++;
1392 }
1393
1394 /* Now, make sure every device listed in sd[] is also
1395 * listed in h->dev[], adding them if they aren't found
1396 */
1397
1398 for (i = 0; i < nsds; i++) {
1399 if (!sd[i]) /* if already added above. */
1400 continue;
1401
1402 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1403 * as the SCSI mid-layer does not handle such devices well.
1404 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1405 * at 160Hz, and prevents the system from coming up.
1406 */
1407 if (sd[i]->volume_offline) {
1408 hpsa_show_volume_status(h, sd[i]);
1409 dev_info(&h->pdev->dev, "c%db%dt%dl%d: temporarily offline\n",
1410 h->scsi_host->host_no,
1411 sd[i]->bus, sd[i]->target, sd[i]->lun);
1412 continue;
1413 }
1414
1415 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1416 h->ndevices, &entry);
1417 if (device_change == DEVICE_NOT_FOUND) {
1418 changes++;
1419 if (hpsa_scsi_add_entry(h, hostno, sd[i],
1420 added, &nadded) != 0)
1421 break;
1422 sd[i] = NULL; /* prevent from being freed later. */
1423 } else if (device_change == DEVICE_CHANGED) {
1424 /* should never happen... */
1425 changes++;
1426 dev_warn(&h->pdev->dev,
1427 "device unexpectedly changed.\n");
1428 /* but if it does happen, we just ignore that device */
1429 }
1430 }
1431 spin_unlock_irqrestore(&h->devlock, flags);
1432
1433 /* Monitor devices which are in one of several NOT READY states to be
1434 * brought online later. This must be done without holding h->devlock,
1435 * so don't touch h->dev[]
1436 */
1437 for (i = 0; i < nsds; i++) {
1438 if (!sd[i]) /* if already added above. */
1439 continue;
1440 if (sd[i]->volume_offline)
1441 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1442 }
1443
1444 /* Don't notify scsi mid layer of any changes the first time through
1445 * (or if there are no changes) scsi_scan_host will do it later the
1446 * first time through.
1447 */
1448 if (hostno == -1 || !changes)
1449 goto free_and_out;
1450
1451 sh = h->scsi_host;
1452 /* Notify scsi mid layer of any removed devices */
1453 for (i = 0; i < nremoved; i++) {
1454 struct scsi_device *sdev =
1455 scsi_device_lookup(sh, removed[i]->bus,
1456 removed[i]->target, removed[i]->lun);
1457 if (sdev != NULL) {
1458 scsi_remove_device(sdev);
1459 scsi_device_put(sdev);
1460 } else {
1461 /* We don't expect to get here.
1462 * future cmds to this device will get selection
1463 * timeout as if the device was gone.
1464 */
1465 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1466 " for removal.", hostno, removed[i]->bus,
1467 removed[i]->target, removed[i]->lun);
1468 }
1469 kfree(removed[i]);
1470 removed[i] = NULL;
1471 }
1472
1473 /* Notify scsi mid layer of any added devices */
1474 for (i = 0; i < nadded; i++) {
1475 if (scsi_add_device(sh, added[i]->bus,
1476 added[i]->target, added[i]->lun) == 0)
1477 continue;
1478 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1479 "device not added.\n", hostno, added[i]->bus,
1480 added[i]->target, added[i]->lun);
1481 /* now we have to remove it from h->dev,
1482 * since it didn't get added to scsi mid layer
1483 */
1484 fixup_botched_add(h, added[i]);
1485 }
1486
1487 free_and_out:
1488 kfree(added);
1489 kfree(removed);
1490 }
1491
1492 /*
1493 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1494 * Assume's h->devlock is held.
1495 */
1496 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1497 int bus, int target, int lun)
1498 {
1499 int i;
1500 struct hpsa_scsi_dev_t *sd;
1501
1502 for (i = 0; i < h->ndevices; i++) {
1503 sd = h->dev[i];
1504 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1505 return sd;
1506 }
1507 return NULL;
1508 }
1509
1510 /* link sdev->hostdata to our per-device structure. */
1511 static int hpsa_slave_alloc(struct scsi_device *sdev)
1512 {
1513 struct hpsa_scsi_dev_t *sd;
1514 unsigned long flags;
1515 struct ctlr_info *h;
1516
1517 h = sdev_to_hba(sdev);
1518 spin_lock_irqsave(&h->devlock, flags);
1519 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1520 sdev_id(sdev), sdev->lun);
1521 if (sd != NULL) {
1522 sdev->hostdata = sd;
1523 if (sd->queue_depth)
1524 scsi_change_queue_depth(sdev, sd->queue_depth);
1525 atomic_set(&sd->ioaccel_cmds_out, 0);
1526 }
1527 spin_unlock_irqrestore(&h->devlock, flags);
1528 return 0;
1529 }
1530
1531 static void hpsa_slave_destroy(struct scsi_device *sdev)
1532 {
1533 /* nothing to do. */
1534 }
1535
1536 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1537 {
1538 int i;
1539
1540 if (!h->cmd_sg_list)
1541 return;
1542 for (i = 0; i < h->nr_cmds; i++) {
1543 kfree(h->cmd_sg_list[i]);
1544 h->cmd_sg_list[i] = NULL;
1545 }
1546 kfree(h->cmd_sg_list);
1547 h->cmd_sg_list = NULL;
1548 }
1549
1550 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1551 {
1552 int i;
1553
1554 if (h->chainsize <= 0)
1555 return 0;
1556
1557 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1558 GFP_KERNEL);
1559 if (!h->cmd_sg_list) {
1560 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
1561 return -ENOMEM;
1562 }
1563 for (i = 0; i < h->nr_cmds; i++) {
1564 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1565 h->chainsize, GFP_KERNEL);
1566 if (!h->cmd_sg_list[i]) {
1567 dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
1568 goto clean;
1569 }
1570 }
1571 return 0;
1572
1573 clean:
1574 hpsa_free_sg_chain_blocks(h);
1575 return -ENOMEM;
1576 }
1577
1578 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1579 struct CommandList *c)
1580 {
1581 struct SGDescriptor *chain_sg, *chain_block;
1582 u64 temp64;
1583 u32 chain_len;
1584
1585 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1586 chain_block = h->cmd_sg_list[c->cmdindex];
1587 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
1588 chain_len = sizeof(*chain_sg) *
1589 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
1590 chain_sg->Len = cpu_to_le32(chain_len);
1591 temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1592 PCI_DMA_TODEVICE);
1593 if (dma_mapping_error(&h->pdev->dev, temp64)) {
1594 /* prevent subsequent unmapping */
1595 chain_sg->Addr = cpu_to_le64(0);
1596 return -1;
1597 }
1598 chain_sg->Addr = cpu_to_le64(temp64);
1599 return 0;
1600 }
1601
1602 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1603 struct CommandList *c)
1604 {
1605 struct SGDescriptor *chain_sg;
1606
1607 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
1608 return;
1609
1610 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1611 pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
1612 le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
1613 }
1614
1615
1616 /* Decode the various types of errors on ioaccel2 path.
1617 * Return 1 for any error that should generate a RAID path retry.
1618 * Return 0 for errors that don't require a RAID path retry.
1619 */
1620 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1621 struct CommandList *c,
1622 struct scsi_cmnd *cmd,
1623 struct io_accel2_cmd *c2)
1624 {
1625 int data_len;
1626 int retry = 0;
1627
1628 switch (c2->error_data.serv_response) {
1629 case IOACCEL2_SERV_RESPONSE_COMPLETE:
1630 switch (c2->error_data.status) {
1631 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
1632 break;
1633 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1634 dev_warn(&h->pdev->dev,
1635 "%s: task complete with check condition.\n",
1636 "HP SSD Smart Path");
1637 cmd->result |= SAM_STAT_CHECK_CONDITION;
1638 if (c2->error_data.data_present !=
1639 IOACCEL2_SENSE_DATA_PRESENT) {
1640 memset(cmd->sense_buffer, 0,
1641 SCSI_SENSE_BUFFERSIZE);
1642 break;
1643 }
1644 /* copy the sense data */
1645 data_len = c2->error_data.sense_data_len;
1646 if (data_len > SCSI_SENSE_BUFFERSIZE)
1647 data_len = SCSI_SENSE_BUFFERSIZE;
1648 if (data_len > sizeof(c2->error_data.sense_data_buff))
1649 data_len =
1650 sizeof(c2->error_data.sense_data_buff);
1651 memcpy(cmd->sense_buffer,
1652 c2->error_data.sense_data_buff, data_len);
1653 retry = 1;
1654 break;
1655 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1656 dev_warn(&h->pdev->dev,
1657 "%s: task complete with BUSY status.\n",
1658 "HP SSD Smart Path");
1659 retry = 1;
1660 break;
1661 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1662 dev_warn(&h->pdev->dev,
1663 "%s: task complete with reservation conflict.\n",
1664 "HP SSD Smart Path");
1665 retry = 1;
1666 break;
1667 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1668 /* Make scsi midlayer do unlimited retries */
1669 cmd->result = DID_IMM_RETRY << 16;
1670 break;
1671 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1672 dev_warn(&h->pdev->dev,
1673 "%s: task complete with aborted status.\n",
1674 "HP SSD Smart Path");
1675 retry = 1;
1676 break;
1677 default:
1678 dev_warn(&h->pdev->dev,
1679 "%s: task complete with unrecognized status: 0x%02x\n",
1680 "HP SSD Smart Path", c2->error_data.status);
1681 retry = 1;
1682 break;
1683 }
1684 break;
1685 case IOACCEL2_SERV_RESPONSE_FAILURE:
1686 /* don't expect to get here. */
1687 dev_warn(&h->pdev->dev,
1688 "unexpected delivery or target failure, status = 0x%02x\n",
1689 c2->error_data.status);
1690 retry = 1;
1691 break;
1692 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
1693 break;
1694 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
1695 break;
1696 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1697 dev_warn(&h->pdev->dev, "task management function rejected.\n");
1698 retry = 1;
1699 break;
1700 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
1701 dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
1702 break;
1703 default:
1704 dev_warn(&h->pdev->dev,
1705 "%s: Unrecognized server response: 0x%02x\n",
1706 "HP SSD Smart Path",
1707 c2->error_data.serv_response);
1708 retry = 1;
1709 break;
1710 }
1711
1712 return retry; /* retry on raid path? */
1713 }
1714
1715 static void process_ioaccel2_completion(struct ctlr_info *h,
1716 struct CommandList *c, struct scsi_cmnd *cmd,
1717 struct hpsa_scsi_dev_t *dev)
1718 {
1719 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
1720
1721 /* check for good status */
1722 if (likely(c2->error_data.serv_response == 0 &&
1723 c2->error_data.status == 0)) {
1724 cmd_free(h, c);
1725 cmd->scsi_done(cmd);
1726 return;
1727 }
1728
1729 /* Any RAID offload error results in retry which will use
1730 * the normal I/O path so the controller can handle whatever's
1731 * wrong.
1732 */
1733 if (is_logical_dev_addr_mode(dev->scsi3addr) &&
1734 c2->error_data.serv_response ==
1735 IOACCEL2_SERV_RESPONSE_FAILURE) {
1736 if (c2->error_data.status ==
1737 IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
1738 dev->offload_enabled = 0;
1739 goto retry_cmd;
1740 }
1741
1742 if (handle_ioaccel_mode2_error(h, c, cmd, c2))
1743 goto retry_cmd;
1744
1745 cmd_free(h, c);
1746 cmd->scsi_done(cmd);
1747 return;
1748
1749 retry_cmd:
1750 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
1751 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
1752 }
1753
1754 static void complete_scsi_command(struct CommandList *cp)
1755 {
1756 struct scsi_cmnd *cmd;
1757 struct ctlr_info *h;
1758 struct ErrorInfo *ei;
1759 struct hpsa_scsi_dev_t *dev;
1760
1761 unsigned char sense_key;
1762 unsigned char asc; /* additional sense code */
1763 unsigned char ascq; /* additional sense code qualifier */
1764 unsigned long sense_data_size;
1765
1766 ei = cp->err_info;
1767 cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1768 h = cp->h;
1769 dev = cmd->device->hostdata;
1770
1771 scsi_dma_unmap(cmd); /* undo the DMA mappings */
1772 if ((cp->cmd_type == CMD_SCSI) &&
1773 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
1774 hpsa_unmap_sg_chain_block(h, cp);
1775
1776 cmd->result = (DID_OK << 16); /* host byte */
1777 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1778
1779 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
1780 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
1781
1782 if (cp->cmd_type == CMD_IOACCEL2)
1783 return process_ioaccel2_completion(h, cp, cmd, dev);
1784
1785 cmd->result |= ei->ScsiStatus;
1786
1787 scsi_set_resid(cmd, ei->ResidualCnt);
1788 if (ei->CommandStatus == 0) {
1789 if (cp->cmd_type == CMD_IOACCEL1)
1790 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
1791 cmd_free(h, cp);
1792 cmd->scsi_done(cmd);
1793 return;
1794 }
1795
1796 /* copy the sense data */
1797 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1798 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1799 else
1800 sense_data_size = sizeof(ei->SenseInfo);
1801 if (ei->SenseLen < sense_data_size)
1802 sense_data_size = ei->SenseLen;
1803
1804 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1805
1806 /* For I/O accelerator commands, copy over some fields to the normal
1807 * CISS header used below for error handling.
1808 */
1809 if (cp->cmd_type == CMD_IOACCEL1) {
1810 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
1811 cp->Header.SGList = scsi_sg_count(cmd);
1812 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
1813 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
1814 IOACCEL1_IOFLAGS_CDBLEN_MASK;
1815 cp->Header.tag = c->tag;
1816 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
1817 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
1818
1819 /* Any RAID offload error results in retry which will use
1820 * the normal I/O path so the controller can handle whatever's
1821 * wrong.
1822 */
1823 if (is_logical_dev_addr_mode(dev->scsi3addr)) {
1824 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
1825 dev->offload_enabled = 0;
1826 INIT_WORK(&cp->work, hpsa_command_resubmit_worker);
1827 queue_work_on(raw_smp_processor_id(),
1828 h->resubmit_wq, &cp->work);
1829 return;
1830 }
1831 }
1832
1833 /* an error has occurred */
1834 switch (ei->CommandStatus) {
1835
1836 case CMD_TARGET_STATUS:
1837 if (ei->ScsiStatus) {
1838 /* Get sense key */
1839 sense_key = 0xf & ei->SenseInfo[2];
1840 /* Get additional sense code */
1841 asc = ei->SenseInfo[12];
1842 /* Get addition sense code qualifier */
1843 ascq = ei->SenseInfo[13];
1844 }
1845 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1846 if (sense_key == ABORTED_COMMAND) {
1847 cmd->result |= DID_SOFT_ERROR << 16;
1848 break;
1849 }
1850 break;
1851 }
1852 /* Problem was not a check condition
1853 * Pass it up to the upper layers...
1854 */
1855 if (ei->ScsiStatus) {
1856 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1857 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1858 "Returning result: 0x%x\n",
1859 cp, ei->ScsiStatus,
1860 sense_key, asc, ascq,
1861 cmd->result);
1862 } else { /* scsi status is zero??? How??? */
1863 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1864 "Returning no connection.\n", cp),
1865
1866 /* Ordinarily, this case should never happen,
1867 * but there is a bug in some released firmware
1868 * revisions that allows it to happen if, for
1869 * example, a 4100 backplane loses power and
1870 * the tape drive is in it. We assume that
1871 * it's a fatal error of some kind because we
1872 * can't show that it wasn't. We will make it
1873 * look like selection timeout since that is
1874 * the most common reason for this to occur,
1875 * and it's severe enough.
1876 */
1877
1878 cmd->result = DID_NO_CONNECT << 16;
1879 }
1880 break;
1881
1882 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1883 break;
1884 case CMD_DATA_OVERRUN:
1885 dev_warn(&h->pdev->dev, "cp %p has"
1886 " completed with data overrun "
1887 "reported\n", cp);
1888 break;
1889 case CMD_INVALID: {
1890 /* print_bytes(cp, sizeof(*cp), 1, 0);
1891 print_cmd(cp); */
1892 /* We get CMD_INVALID if you address a non-existent device
1893 * instead of a selection timeout (no response). You will
1894 * see this if you yank out a drive, then try to access it.
1895 * This is kind of a shame because it means that any other
1896 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1897 * missing target. */
1898 cmd->result = DID_NO_CONNECT << 16;
1899 }
1900 break;
1901 case CMD_PROTOCOL_ERR:
1902 cmd->result = DID_ERROR << 16;
1903 dev_warn(&h->pdev->dev, "cp %p has "
1904 "protocol error\n", cp);
1905 break;
1906 case CMD_HARDWARE_ERR:
1907 cmd->result = DID_ERROR << 16;
1908 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp);
1909 break;
1910 case CMD_CONNECTION_LOST:
1911 cmd->result = DID_ERROR << 16;
1912 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1913 break;
1914 case CMD_ABORTED:
1915 cmd->result = DID_ABORT << 16;
1916 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1917 cp, ei->ScsiStatus);
1918 break;
1919 case CMD_ABORT_FAILED:
1920 cmd->result = DID_ERROR << 16;
1921 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1922 break;
1923 case CMD_UNSOLICITED_ABORT:
1924 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1925 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1926 "abort\n", cp);
1927 break;
1928 case CMD_TIMEOUT:
1929 cmd->result = DID_TIME_OUT << 16;
1930 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1931 break;
1932 case CMD_UNABORTABLE:
1933 cmd->result = DID_ERROR << 16;
1934 dev_warn(&h->pdev->dev, "Command unabortable\n");
1935 break;
1936 case CMD_IOACCEL_DISABLED:
1937 /* This only handles the direct pass-through case since RAID
1938 * offload is handled above. Just attempt a retry.
1939 */
1940 cmd->result = DID_SOFT_ERROR << 16;
1941 dev_warn(&h->pdev->dev,
1942 "cp %p had HP SSD Smart Path error\n", cp);
1943 break;
1944 default:
1945 cmd->result = DID_ERROR << 16;
1946 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1947 cp, ei->CommandStatus);
1948 }
1949 cmd_free(h, cp);
1950 cmd->scsi_done(cmd);
1951 }
1952
1953 static void hpsa_pci_unmap(struct pci_dev *pdev,
1954 struct CommandList *c, int sg_used, int data_direction)
1955 {
1956 int i;
1957
1958 for (i = 0; i < sg_used; i++)
1959 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
1960 le32_to_cpu(c->SG[i].Len),
1961 data_direction);
1962 }
1963
1964 static int hpsa_map_one(struct pci_dev *pdev,
1965 struct CommandList *cp,
1966 unsigned char *buf,
1967 size_t buflen,
1968 int data_direction)
1969 {
1970 u64 addr64;
1971
1972 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1973 cp->Header.SGList = 0;
1974 cp->Header.SGTotal = cpu_to_le16(0);
1975 return 0;
1976 }
1977
1978 addr64 = pci_map_single(pdev, buf, buflen, data_direction);
1979 if (dma_mapping_error(&pdev->dev, addr64)) {
1980 /* Prevent subsequent unmap of something never mapped */
1981 cp->Header.SGList = 0;
1982 cp->Header.SGTotal = cpu_to_le16(0);
1983 return -1;
1984 }
1985 cp->SG[0].Addr = cpu_to_le64(addr64);
1986 cp->SG[0].Len = cpu_to_le32(buflen);
1987 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
1988 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
1989 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
1990 return 0;
1991 }
1992
1993 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1994 struct CommandList *c)
1995 {
1996 DECLARE_COMPLETION_ONSTACK(wait);
1997
1998 c->waiting = &wait;
1999 enqueue_cmd_and_start_io(h, c);
2000 wait_for_completion(&wait);
2001 }
2002
2003 static u32 lockup_detected(struct ctlr_info *h)
2004 {
2005 int cpu;
2006 u32 rc, *lockup_detected;
2007
2008 cpu = get_cpu();
2009 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2010 rc = *lockup_detected;
2011 put_cpu();
2012 return rc;
2013 }
2014
2015 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
2016 struct CommandList *c)
2017 {
2018 /* If controller lockup detected, fake a hardware error. */
2019 if (unlikely(lockup_detected(h)))
2020 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
2021 else
2022 hpsa_scsi_do_simple_cmd_core(h, c);
2023 }
2024
2025 #define MAX_DRIVER_CMD_RETRIES 25
2026 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2027 struct CommandList *c, int data_direction)
2028 {
2029 int backoff_time = 10, retry_count = 0;
2030
2031 do {
2032 memset(c->err_info, 0, sizeof(*c->err_info));
2033 hpsa_scsi_do_simple_cmd_core(h, c);
2034 retry_count++;
2035 if (retry_count > 3) {
2036 msleep(backoff_time);
2037 if (backoff_time < 1000)
2038 backoff_time *= 2;
2039 }
2040 } while ((check_for_unit_attention(h, c) ||
2041 check_for_busy(h, c)) &&
2042 retry_count <= MAX_DRIVER_CMD_RETRIES);
2043 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2044 }
2045
2046 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2047 struct CommandList *c)
2048 {
2049 const u8 *cdb = c->Request.CDB;
2050 const u8 *lun = c->Header.LUN.LunAddrBytes;
2051
2052 dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2053 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2054 txt, lun[0], lun[1], lun[2], lun[3],
2055 lun[4], lun[5], lun[6], lun[7],
2056 cdb[0], cdb[1], cdb[2], cdb[3],
2057 cdb[4], cdb[5], cdb[6], cdb[7],
2058 cdb[8], cdb[9], cdb[10], cdb[11],
2059 cdb[12], cdb[13], cdb[14], cdb[15]);
2060 }
2061
2062 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2063 struct CommandList *cp)
2064 {
2065 const struct ErrorInfo *ei = cp->err_info;
2066 struct device *d = &cp->h->pdev->dev;
2067 const u8 *sd = ei->SenseInfo;
2068
2069 switch (ei->CommandStatus) {
2070 case CMD_TARGET_STATUS:
2071 hpsa_print_cmd(h, "SCSI status", cp);
2072 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2073 dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
2074 sd[2] & 0x0f, sd[12], sd[13]);
2075 else
2076 dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus);
2077 if (ei->ScsiStatus == 0)
2078 dev_warn(d, "SCSI status is abnormally zero. "
2079 "(probably indicates selection timeout "
2080 "reported incorrectly due to a known "
2081 "firmware bug, circa July, 2001.)\n");
2082 break;
2083 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2084 break;
2085 case CMD_DATA_OVERRUN:
2086 hpsa_print_cmd(h, "overrun condition", cp);
2087 break;
2088 case CMD_INVALID: {
2089 /* controller unfortunately reports SCSI passthru's
2090 * to non-existent targets as invalid commands.
2091 */
2092 hpsa_print_cmd(h, "invalid command", cp);
2093 dev_warn(d, "probably means device no longer present\n");
2094 }
2095 break;
2096 case CMD_PROTOCOL_ERR:
2097 hpsa_print_cmd(h, "protocol error", cp);
2098 break;
2099 case CMD_HARDWARE_ERR:
2100 hpsa_print_cmd(h, "hardware error", cp);
2101 break;
2102 case CMD_CONNECTION_LOST:
2103 hpsa_print_cmd(h, "connection lost", cp);
2104 break;
2105 case CMD_ABORTED:
2106 hpsa_print_cmd(h, "aborted", cp);
2107 break;
2108 case CMD_ABORT_FAILED:
2109 hpsa_print_cmd(h, "abort failed", cp);
2110 break;
2111 case CMD_UNSOLICITED_ABORT:
2112 hpsa_print_cmd(h, "unsolicited abort", cp);
2113 break;
2114 case CMD_TIMEOUT:
2115 hpsa_print_cmd(h, "timed out", cp);
2116 break;
2117 case CMD_UNABORTABLE:
2118 hpsa_print_cmd(h, "unabortable", cp);
2119 break;
2120 default:
2121 hpsa_print_cmd(h, "unknown status", cp);
2122 dev_warn(d, "Unknown command status %x\n",
2123 ei->CommandStatus);
2124 }
2125 }
2126
2127 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2128 u16 page, unsigned char *buf,
2129 unsigned char bufsize)
2130 {
2131 int rc = IO_OK;
2132 struct CommandList *c;
2133 struct ErrorInfo *ei;
2134
2135 c = cmd_alloc(h);
2136
2137 if (c == NULL) {
2138 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2139 return -ENOMEM;
2140 }
2141
2142 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2143 page, scsi3addr, TYPE_CMD)) {
2144 rc = -1;
2145 goto out;
2146 }
2147 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2148 ei = c->err_info;
2149 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2150 hpsa_scsi_interpret_error(h, c);
2151 rc = -1;
2152 }
2153 out:
2154 cmd_free(h, c);
2155 return rc;
2156 }
2157
2158 static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
2159 unsigned char *scsi3addr, unsigned char page,
2160 struct bmic_controller_parameters *buf, size_t bufsize)
2161 {
2162 int rc = IO_OK;
2163 struct CommandList *c;
2164 struct ErrorInfo *ei;
2165
2166 c = cmd_alloc(h);
2167 if (c == NULL) { /* trouble... */
2168 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2169 return -ENOMEM;
2170 }
2171
2172 if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
2173 page, scsi3addr, TYPE_CMD)) {
2174 rc = -1;
2175 goto out;
2176 }
2177 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2178 ei = c->err_info;
2179 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2180 hpsa_scsi_interpret_error(h, c);
2181 rc = -1;
2182 }
2183 out:
2184 cmd_free(h, c);
2185 return rc;
2186 }
2187
2188 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2189 u8 reset_type)
2190 {
2191 int rc = IO_OK;
2192 struct CommandList *c;
2193 struct ErrorInfo *ei;
2194
2195 c = cmd_alloc(h);
2196
2197 if (c == NULL) { /* trouble... */
2198 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2199 return -ENOMEM;
2200 }
2201
2202 /* fill_cmd can't fail here, no data buffer to map. */
2203 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2204 scsi3addr, TYPE_MSG);
2205 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2206 hpsa_scsi_do_simple_cmd_core(h, c);
2207 /* no unmap needed here because no data xfer. */
2208
2209 ei = c->err_info;
2210 if (ei->CommandStatus != 0) {
2211 hpsa_scsi_interpret_error(h, c);
2212 rc = -1;
2213 }
2214 cmd_free(h, c);
2215 return rc;
2216 }
2217
2218 static void hpsa_get_raid_level(struct ctlr_info *h,
2219 unsigned char *scsi3addr, unsigned char *raid_level)
2220 {
2221 int rc;
2222 unsigned char *buf;
2223
2224 *raid_level = RAID_UNKNOWN;
2225 buf = kzalloc(64, GFP_KERNEL);
2226 if (!buf)
2227 return;
2228 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2229 if (rc == 0)
2230 *raid_level = buf[8];
2231 if (*raid_level > RAID_UNKNOWN)
2232 *raid_level = RAID_UNKNOWN;
2233 kfree(buf);
2234 return;
2235 }
2236
2237 #define HPSA_MAP_DEBUG
2238 #ifdef HPSA_MAP_DEBUG
2239 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2240 struct raid_map_data *map_buff)
2241 {
2242 struct raid_map_disk_data *dd = &map_buff->data[0];
2243 int map, row, col;
2244 u16 map_cnt, row_cnt, disks_per_row;
2245
2246 if (rc != 0)
2247 return;
2248
2249 /* Show details only if debugging has been activated. */
2250 if (h->raid_offload_debug < 2)
2251 return;
2252
2253 dev_info(&h->pdev->dev, "structure_size = %u\n",
2254 le32_to_cpu(map_buff->structure_size));
2255 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2256 le32_to_cpu(map_buff->volume_blk_size));
2257 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2258 le64_to_cpu(map_buff->volume_blk_cnt));
2259 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2260 map_buff->phys_blk_shift);
2261 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2262 map_buff->parity_rotation_shift);
2263 dev_info(&h->pdev->dev, "strip_size = %u\n",
2264 le16_to_cpu(map_buff->strip_size));
2265 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2266 le64_to_cpu(map_buff->disk_starting_blk));
2267 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2268 le64_to_cpu(map_buff->disk_blk_cnt));
2269 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2270 le16_to_cpu(map_buff->data_disks_per_row));
2271 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2272 le16_to_cpu(map_buff->metadata_disks_per_row));
2273 dev_info(&h->pdev->dev, "row_cnt = %u\n",
2274 le16_to_cpu(map_buff->row_cnt));
2275 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2276 le16_to_cpu(map_buff->layout_map_count));
2277 dev_info(&h->pdev->dev, "flags = 0x%x\n",
2278 le16_to_cpu(map_buff->flags));
2279 dev_info(&h->pdev->dev, "encrypytion = %s\n",
2280 le16_to_cpu(map_buff->flags) &
2281 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
2282 dev_info(&h->pdev->dev, "dekindex = %u\n",
2283 le16_to_cpu(map_buff->dekindex));
2284 map_cnt = le16_to_cpu(map_buff->layout_map_count);
2285 for (map = 0; map < map_cnt; map++) {
2286 dev_info(&h->pdev->dev, "Map%u:\n", map);
2287 row_cnt = le16_to_cpu(map_buff->row_cnt);
2288 for (row = 0; row < row_cnt; row++) {
2289 dev_info(&h->pdev->dev, " Row%u:\n", row);
2290 disks_per_row =
2291 le16_to_cpu(map_buff->data_disks_per_row);
2292 for (col = 0; col < disks_per_row; col++, dd++)
2293 dev_info(&h->pdev->dev,
2294 " D%02u: h=0x%04x xor=%u,%u\n",
2295 col, dd->ioaccel_handle,
2296 dd->xor_mult[0], dd->xor_mult[1]);
2297 disks_per_row =
2298 le16_to_cpu(map_buff->metadata_disks_per_row);
2299 for (col = 0; col < disks_per_row; col++, dd++)
2300 dev_info(&h->pdev->dev,
2301 " M%02u: h=0x%04x xor=%u,%u\n",
2302 col, dd->ioaccel_handle,
2303 dd->xor_mult[0], dd->xor_mult[1]);
2304 }
2305 }
2306 }
2307 #else
2308 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2309 __attribute__((unused)) int rc,
2310 __attribute__((unused)) struct raid_map_data *map_buff)
2311 {
2312 }
2313 #endif
2314
2315 static int hpsa_get_raid_map(struct ctlr_info *h,
2316 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2317 {
2318 int rc = 0;
2319 struct CommandList *c;
2320 struct ErrorInfo *ei;
2321
2322 c = cmd_alloc(h);
2323 if (c == NULL) {
2324 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2325 return -ENOMEM;
2326 }
2327 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2328 sizeof(this_device->raid_map), 0,
2329 scsi3addr, TYPE_CMD)) {
2330 dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
2331 cmd_free(h, c);
2332 return -ENOMEM;
2333 }
2334 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2335 ei = c->err_info;
2336 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2337 hpsa_scsi_interpret_error(h, c);
2338 cmd_free(h, c);
2339 return -1;
2340 }
2341 cmd_free(h, c);
2342
2343 /* @todo in the future, dynamically allocate RAID map memory */
2344 if (le32_to_cpu(this_device->raid_map.structure_size) >
2345 sizeof(this_device->raid_map)) {
2346 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2347 rc = -1;
2348 }
2349 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2350 return rc;
2351 }
2352
2353 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
2354 unsigned char scsi3addr[], u16 bmic_device_index,
2355 struct bmic_identify_physical_device *buf, size_t bufsize)
2356 {
2357 int rc = IO_OK;
2358 struct CommandList *c;
2359 struct ErrorInfo *ei;
2360
2361 c = cmd_alloc(h);
2362 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
2363 0, RAID_CTLR_LUNID, TYPE_CMD);
2364 if (rc)
2365 goto out;
2366
2367 c->Request.CDB[2] = bmic_device_index & 0xff;
2368 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
2369
2370 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2371 ei = c->err_info;
2372 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2373 hpsa_scsi_interpret_error(h, c);
2374 rc = -1;
2375 }
2376 out:
2377 cmd_free(h, c);
2378 return rc;
2379 }
2380
2381 static int hpsa_vpd_page_supported(struct ctlr_info *h,
2382 unsigned char scsi3addr[], u8 page)
2383 {
2384 int rc;
2385 int i;
2386 int pages;
2387 unsigned char *buf, bufsize;
2388
2389 buf = kzalloc(256, GFP_KERNEL);
2390 if (!buf)
2391 return 0;
2392
2393 /* Get the size of the page list first */
2394 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2395 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2396 buf, HPSA_VPD_HEADER_SZ);
2397 if (rc != 0)
2398 goto exit_unsupported;
2399 pages = buf[3];
2400 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
2401 bufsize = pages + HPSA_VPD_HEADER_SZ;
2402 else
2403 bufsize = 255;
2404
2405 /* Get the whole VPD page list */
2406 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2407 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2408 buf, bufsize);
2409 if (rc != 0)
2410 goto exit_unsupported;
2411
2412 pages = buf[3];
2413 for (i = 1; i <= pages; i++)
2414 if (buf[3 + i] == page)
2415 goto exit_supported;
2416 exit_unsupported:
2417 kfree(buf);
2418 return 0;
2419 exit_supported:
2420 kfree(buf);
2421 return 1;
2422 }
2423
2424 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
2425 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2426 {
2427 int rc;
2428 unsigned char *buf;
2429 u8 ioaccel_status;
2430
2431 this_device->offload_config = 0;
2432 this_device->offload_enabled = 0;
2433
2434 buf = kzalloc(64, GFP_KERNEL);
2435 if (!buf)
2436 return;
2437 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
2438 goto out;
2439 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2440 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2441 if (rc != 0)
2442 goto out;
2443
2444 #define IOACCEL_STATUS_BYTE 4
2445 #define OFFLOAD_CONFIGURED_BIT 0x01
2446 #define OFFLOAD_ENABLED_BIT 0x02
2447 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
2448 this_device->offload_config =
2449 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
2450 if (this_device->offload_config) {
2451 this_device->offload_enabled =
2452 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
2453 if (hpsa_get_raid_map(h, scsi3addr, this_device))
2454 this_device->offload_enabled = 0;
2455 }
2456 out:
2457 kfree(buf);
2458 return;
2459 }
2460
2461 /* Get the device id from inquiry page 0x83 */
2462 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
2463 unsigned char *device_id, int buflen)
2464 {
2465 int rc;
2466 unsigned char *buf;
2467
2468 if (buflen > 16)
2469 buflen = 16;
2470 buf = kzalloc(64, GFP_KERNEL);
2471 if (!buf)
2472 return -ENOMEM;
2473 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2474 if (rc == 0)
2475 memcpy(device_id, &buf[8], buflen);
2476 kfree(buf);
2477 return rc != 0;
2478 }
2479
2480 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2481 void *buf, int bufsize,
2482 int extended_response)
2483 {
2484 int rc = IO_OK;
2485 struct CommandList *c;
2486 unsigned char scsi3addr[8];
2487 struct ErrorInfo *ei;
2488
2489 c = cmd_alloc(h);
2490 if (c == NULL) { /* trouble... */
2491 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2492 return -1;
2493 }
2494 /* address the controller */
2495 memset(scsi3addr, 0, sizeof(scsi3addr));
2496 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
2497 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
2498 rc = -1;
2499 goto out;
2500 }
2501 if (extended_response)
2502 c->Request.CDB[1] = extended_response;
2503 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2504 ei = c->err_info;
2505 if (ei->CommandStatus != 0 &&
2506 ei->CommandStatus != CMD_DATA_UNDERRUN) {
2507 hpsa_scsi_interpret_error(h, c);
2508 rc = -1;
2509 } else {
2510 struct ReportLUNdata *rld = buf;
2511
2512 if (rld->extended_response_flag != extended_response) {
2513 dev_err(&h->pdev->dev,
2514 "report luns requested format %u, got %u\n",
2515 extended_response,
2516 rld->extended_response_flag);
2517 rc = -1;
2518 }
2519 }
2520 out:
2521 cmd_free(h, c);
2522 return rc;
2523 }
2524
2525 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2526 struct ReportExtendedLUNdata *buf, int bufsize)
2527 {
2528 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
2529 HPSA_REPORT_PHYS_EXTENDED);
2530 }
2531
2532 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
2533 struct ReportLUNdata *buf, int bufsize)
2534 {
2535 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
2536 }
2537
2538 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
2539 int bus, int target, int lun)
2540 {
2541 device->bus = bus;
2542 device->target = target;
2543 device->lun = lun;
2544 }
2545
2546 /* Use VPD inquiry to get details of volume status */
2547 static int hpsa_get_volume_status(struct ctlr_info *h,
2548 unsigned char scsi3addr[])
2549 {
2550 int rc;
2551 int status;
2552 int size;
2553 unsigned char *buf;
2554
2555 buf = kzalloc(64, GFP_KERNEL);
2556 if (!buf)
2557 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2558
2559 /* Does controller have VPD for logical volume status? */
2560 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
2561 goto exit_failed;
2562
2563 /* Get the size of the VPD return buffer */
2564 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2565 buf, HPSA_VPD_HEADER_SZ);
2566 if (rc != 0)
2567 goto exit_failed;
2568 size = buf[3];
2569
2570 /* Now get the whole VPD buffer */
2571 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2572 buf, size + HPSA_VPD_HEADER_SZ);
2573 if (rc != 0)
2574 goto exit_failed;
2575 status = buf[4]; /* status byte */
2576
2577 kfree(buf);
2578 return status;
2579 exit_failed:
2580 kfree(buf);
2581 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2582 }
2583
2584 /* Determine offline status of a volume.
2585 * Return either:
2586 * 0 (not offline)
2587 * 0xff (offline for unknown reasons)
2588 * # (integer code indicating one of several NOT READY states
2589 * describing why a volume is to be kept offline)
2590 */
2591 static int hpsa_volume_offline(struct ctlr_info *h,
2592 unsigned char scsi3addr[])
2593 {
2594 struct CommandList *c;
2595 unsigned char *sense, sense_key, asc, ascq;
2596 int ldstat = 0;
2597 u16 cmd_status;
2598 u8 scsi_status;
2599 #define ASC_LUN_NOT_READY 0x04
2600 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
2601 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
2602
2603 c = cmd_alloc(h);
2604 if (!c)
2605 return 0;
2606 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
2607 hpsa_scsi_do_simple_cmd_core(h, c);
2608 sense = c->err_info->SenseInfo;
2609 sense_key = sense[2];
2610 asc = sense[12];
2611 ascq = sense[13];
2612 cmd_status = c->err_info->CommandStatus;
2613 scsi_status = c->err_info->ScsiStatus;
2614 cmd_free(h, c);
2615 /* Is the volume 'not ready'? */
2616 if (cmd_status != CMD_TARGET_STATUS ||
2617 scsi_status != SAM_STAT_CHECK_CONDITION ||
2618 sense_key != NOT_READY ||
2619 asc != ASC_LUN_NOT_READY) {
2620 return 0;
2621 }
2622
2623 /* Determine the reason for not ready state */
2624 ldstat = hpsa_get_volume_status(h, scsi3addr);
2625
2626 /* Keep volume offline in certain cases: */
2627 switch (ldstat) {
2628 case HPSA_LV_UNDERGOING_ERASE:
2629 case HPSA_LV_UNDERGOING_RPI:
2630 case HPSA_LV_PENDING_RPI:
2631 case HPSA_LV_ENCRYPTED_NO_KEY:
2632 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
2633 case HPSA_LV_UNDERGOING_ENCRYPTION:
2634 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
2635 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
2636 return ldstat;
2637 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
2638 /* If VPD status page isn't available,
2639 * use ASC/ASCQ to determine state
2640 */
2641 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
2642 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
2643 return ldstat;
2644 break;
2645 default:
2646 break;
2647 }
2648 return 0;
2649 }
2650
2651 static int hpsa_update_device_info(struct ctlr_info *h,
2652 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
2653 unsigned char *is_OBDR_device)
2654 {
2655
2656 #define OBDR_SIG_OFFSET 43
2657 #define OBDR_TAPE_SIG "$DR-10"
2658 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
2659 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
2660
2661 unsigned char *inq_buff;
2662 unsigned char *obdr_sig;
2663
2664 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
2665 if (!inq_buff)
2666 goto bail_out;
2667
2668 /* Do an inquiry to the device to see what it is. */
2669 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
2670 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
2671 /* Inquiry failed (msg printed already) */
2672 dev_err(&h->pdev->dev,
2673 "hpsa_update_device_info: inquiry failed\n");
2674 goto bail_out;
2675 }
2676
2677 this_device->devtype = (inq_buff[0] & 0x1f);
2678 memcpy(this_device->scsi3addr, scsi3addr, 8);
2679 memcpy(this_device->vendor, &inq_buff[8],
2680 sizeof(this_device->vendor));
2681 memcpy(this_device->model, &inq_buff[16],
2682 sizeof(this_device->model));
2683 memset(this_device->device_id, 0,
2684 sizeof(this_device->device_id));
2685 hpsa_get_device_id(h, scsi3addr, this_device->device_id,
2686 sizeof(this_device->device_id));
2687
2688 if (this_device->devtype == TYPE_DISK &&
2689 is_logical_dev_addr_mode(scsi3addr)) {
2690 int volume_offline;
2691
2692 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
2693 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
2694 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
2695 volume_offline = hpsa_volume_offline(h, scsi3addr);
2696 if (volume_offline < 0 || volume_offline > 0xff)
2697 volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
2698 this_device->volume_offline = volume_offline & 0xff;
2699 } else {
2700 this_device->raid_level = RAID_UNKNOWN;
2701 this_device->offload_config = 0;
2702 this_device->offload_enabled = 0;
2703 this_device->volume_offline = 0;
2704 this_device->queue_depth = h->nr_cmds;
2705 }
2706
2707 if (is_OBDR_device) {
2708 /* See if this is a One-Button-Disaster-Recovery device
2709 * by looking for "$DR-10" at offset 43 in inquiry data.
2710 */
2711 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
2712 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
2713 strncmp(obdr_sig, OBDR_TAPE_SIG,
2714 OBDR_SIG_LEN) == 0);
2715 }
2716
2717 kfree(inq_buff);
2718 return 0;
2719
2720 bail_out:
2721 kfree(inq_buff);
2722 return 1;
2723 }
2724
2725 static unsigned char *ext_target_model[] = {
2726 "MSA2012",
2727 "MSA2024",
2728 "MSA2312",
2729 "MSA2324",
2730 "P2000 G3 SAS",
2731 "MSA 2040 SAS",
2732 NULL,
2733 };
2734
2735 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
2736 {
2737 int i;
2738
2739 for (i = 0; ext_target_model[i]; i++)
2740 if (strncmp(device->model, ext_target_model[i],
2741 strlen(ext_target_model[i])) == 0)
2742 return 1;
2743 return 0;
2744 }
2745
2746 /* Helper function to assign bus, target, lun mapping of devices.
2747 * Puts non-external target logical volumes on bus 0, external target logical
2748 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
2749 * Logical drive target and lun are assigned at this time, but
2750 * physical device lun and target assignment are deferred (assigned
2751 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
2752 */
2753 static void figure_bus_target_lun(struct ctlr_info *h,
2754 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
2755 {
2756 u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
2757
2758 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
2759 /* physical device, target and lun filled in later */
2760 if (is_hba_lunid(lunaddrbytes))
2761 hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
2762 else
2763 /* defer target, lun assignment for physical devices */
2764 hpsa_set_bus_target_lun(device, 2, -1, -1);
2765 return;
2766 }
2767 /* It's a logical device */
2768 if (is_ext_target(h, device)) {
2769 /* external target way, put logicals on bus 1
2770 * and match target/lun numbers box
2771 * reports, other smart array, bus 0, target 0, match lunid
2772 */
2773 hpsa_set_bus_target_lun(device,
2774 1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
2775 return;
2776 }
2777 hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
2778 }
2779
2780 /*
2781 * If there is no lun 0 on a target, linux won't find any devices.
2782 * For the external targets (arrays), we have to manually detect the enclosure
2783 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
2784 * it for some reason. *tmpdevice is the target we're adding,
2785 * this_device is a pointer into the current element of currentsd[]
2786 * that we're building up in update_scsi_devices(), below.
2787 * lunzerobits is a bitmap that tracks which targets already have a
2788 * lun 0 assigned.
2789 * Returns 1 if an enclosure was added, 0 if not.
2790 */
2791 static int add_ext_target_dev(struct ctlr_info *h,
2792 struct hpsa_scsi_dev_t *tmpdevice,
2793 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
2794 unsigned long lunzerobits[], int *n_ext_target_devs)
2795 {
2796 unsigned char scsi3addr[8];
2797
2798 if (test_bit(tmpdevice->target, lunzerobits))
2799 return 0; /* There is already a lun 0 on this target. */
2800
2801 if (!is_logical_dev_addr_mode(lunaddrbytes))
2802 return 0; /* It's the logical targets that may lack lun 0. */
2803
2804 if (!is_ext_target(h, tmpdevice))
2805 return 0; /* Only external target devices have this problem. */
2806
2807 if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
2808 return 0;
2809
2810 memset(scsi3addr, 0, 8);
2811 scsi3addr[3] = tmpdevice->target;
2812 if (is_hba_lunid(scsi3addr))
2813 return 0; /* Don't add the RAID controller here. */
2814
2815 if (is_scsi_rev_5(h))
2816 return 0; /* p1210m doesn't need to do this. */
2817
2818 if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
2819 dev_warn(&h->pdev->dev, "Maximum number of external "
2820 "target devices exceeded. Check your hardware "
2821 "configuration.");
2822 return 0;
2823 }
2824
2825 if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
2826 return 0;
2827 (*n_ext_target_devs)++;
2828 hpsa_set_bus_target_lun(this_device,
2829 tmpdevice->bus, tmpdevice->target, 0);
2830 set_bit(tmpdevice->target, lunzerobits);
2831 return 1;
2832 }
2833
2834 /*
2835 * Get address of physical disk used for an ioaccel2 mode command:
2836 * 1. Extract ioaccel2 handle from the command.
2837 * 2. Find a matching ioaccel2 handle from list of physical disks.
2838 * 3. Return:
2839 * 1 and set scsi3addr to address of matching physical
2840 * 0 if no matching physical disk was found.
2841 */
2842 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
2843 struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
2844 {
2845 struct ReportExtendedLUNdata *physicals = NULL;
2846 int responsesize = 24; /* size of physical extended response */
2847 int reportsize = sizeof(*physicals) + HPSA_MAX_PHYS_LUN * responsesize;
2848 u32 nphysicals = 0; /* number of reported physical devs */
2849 int found = 0; /* found match (1) or not (0) */
2850 u32 find; /* handle we need to match */
2851 int i;
2852 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
2853 struct hpsa_scsi_dev_t *d; /* device of request being aborted */
2854 struct io_accel2_cmd *c2a; /* ioaccel2 command to abort */
2855 __le32 it_nexus; /* 4 byte device handle for the ioaccel2 cmd */
2856 __le32 scsi_nexus; /* 4 byte device handle for the ioaccel2 cmd */
2857
2858 if (ioaccel2_cmd_to_abort->cmd_type != CMD_IOACCEL2)
2859 return 0; /* no match */
2860
2861 /* point to the ioaccel2 device handle */
2862 c2a = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
2863 if (c2a == NULL)
2864 return 0; /* no match */
2865
2866 scmd = (struct scsi_cmnd *) ioaccel2_cmd_to_abort->scsi_cmd;
2867 if (scmd == NULL)
2868 return 0; /* no match */
2869
2870 d = scmd->device->hostdata;
2871 if (d == NULL)
2872 return 0; /* no match */
2873
2874 it_nexus = cpu_to_le32(d->ioaccel_handle);
2875 scsi_nexus = c2a->scsi_nexus;
2876 find = le32_to_cpu(c2a->scsi_nexus);
2877
2878 if (h->raid_offload_debug > 0)
2879 dev_info(&h->pdev->dev,
2880 "%s: scsi_nexus:0x%08x device id: 0x%02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
2881 __func__, scsi_nexus,
2882 d->device_id[0], d->device_id[1], d->device_id[2],
2883 d->device_id[3], d->device_id[4], d->device_id[5],
2884 d->device_id[6], d->device_id[7], d->device_id[8],
2885 d->device_id[9], d->device_id[10], d->device_id[11],
2886 d->device_id[12], d->device_id[13], d->device_id[14],
2887 d->device_id[15]);
2888
2889 /* Get the list of physical devices */
2890 physicals = kzalloc(reportsize, GFP_KERNEL);
2891 if (physicals == NULL)
2892 return 0;
2893 if (hpsa_scsi_do_report_phys_luns(h, physicals, reportsize)) {
2894 dev_err(&h->pdev->dev,
2895 "Can't lookup %s device handle: report physical LUNs failed.\n",
2896 "HP SSD Smart Path");
2897 kfree(physicals);
2898 return 0;
2899 }
2900 nphysicals = be32_to_cpu(*((__be32 *)physicals->LUNListLength)) /
2901 responsesize;
2902
2903 /* find ioaccel2 handle in list of physicals: */
2904 for (i = 0; i < nphysicals; i++) {
2905 struct ext_report_lun_entry *entry = &physicals->LUN[i];
2906
2907 /* handle is in bytes 28-31 of each lun */
2908 if (entry->ioaccel_handle != find)
2909 continue; /* didn't match */
2910 found = 1;
2911 memcpy(scsi3addr, entry->lunid, 8);
2912 if (h->raid_offload_debug > 0)
2913 dev_info(&h->pdev->dev,
2914 "%s: Searched h=0x%08x, Found h=0x%08x, scsiaddr 0x%8phN\n",
2915 __func__, find,
2916 entry->ioaccel_handle, scsi3addr);
2917 break; /* found it */
2918 }
2919
2920 kfree(physicals);
2921 if (found)
2922 return 1;
2923 else
2924 return 0;
2925
2926 }
2927 /*
2928 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
2929 * logdev. The number of luns in physdev and logdev are returned in
2930 * *nphysicals and *nlogicals, respectively.
2931 * Returns 0 on success, -1 otherwise.
2932 */
2933 static int hpsa_gather_lun_info(struct ctlr_info *h,
2934 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
2935 struct ReportLUNdata *logdev, u32 *nlogicals)
2936 {
2937 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
2938 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
2939 return -1;
2940 }
2941 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
2942 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
2943 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
2944 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
2945 *nphysicals = HPSA_MAX_PHYS_LUN;
2946 }
2947 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
2948 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
2949 return -1;
2950 }
2951 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
2952 /* Reject Logicals in excess of our max capability. */
2953 if (*nlogicals > HPSA_MAX_LUN) {
2954 dev_warn(&h->pdev->dev,
2955 "maximum logical LUNs (%d) exceeded. "
2956 "%d LUNs ignored.\n", HPSA_MAX_LUN,
2957 *nlogicals - HPSA_MAX_LUN);
2958 *nlogicals = HPSA_MAX_LUN;
2959 }
2960 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
2961 dev_warn(&h->pdev->dev,
2962 "maximum logical + physical LUNs (%d) exceeded. "
2963 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2964 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
2965 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
2966 }
2967 return 0;
2968 }
2969
2970 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
2971 int i, int nphysicals, int nlogicals,
2972 struct ReportExtendedLUNdata *physdev_list,
2973 struct ReportLUNdata *logdev_list)
2974 {
2975 /* Helper function, figure out where the LUN ID info is coming from
2976 * given index i, lists of physical and logical devices, where in
2977 * the list the raid controller is supposed to appear (first or last)
2978 */
2979
2980 int logicals_start = nphysicals + (raid_ctlr_position == 0);
2981 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
2982
2983 if (i == raid_ctlr_position)
2984 return RAID_CTLR_LUNID;
2985
2986 if (i < logicals_start)
2987 return &physdev_list->LUN[i -
2988 (raid_ctlr_position == 0)].lunid[0];
2989
2990 if (i < last_device)
2991 return &logdev_list->LUN[i - nphysicals -
2992 (raid_ctlr_position == 0)][0];
2993 BUG();
2994 return NULL;
2995 }
2996
2997 static int hpsa_hba_mode_enabled(struct ctlr_info *h)
2998 {
2999 int rc;
3000 int hba_mode_enabled;
3001 struct bmic_controller_parameters *ctlr_params;
3002 ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
3003 GFP_KERNEL);
3004
3005 if (!ctlr_params)
3006 return -ENOMEM;
3007 rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
3008 sizeof(struct bmic_controller_parameters));
3009 if (rc) {
3010 kfree(ctlr_params);
3011 return rc;
3012 }
3013
3014 hba_mode_enabled =
3015 ((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
3016 kfree(ctlr_params);
3017 return hba_mode_enabled;
3018 }
3019
3020 /* get physical drive ioaccel handle and queue depth */
3021 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3022 struct hpsa_scsi_dev_t *dev,
3023 u8 *lunaddrbytes,
3024 struct bmic_identify_physical_device *id_phys)
3025 {
3026 int rc;
3027 struct ext_report_lun_entry *rle =
3028 (struct ext_report_lun_entry *) lunaddrbytes;
3029
3030 dev->ioaccel_handle = rle->ioaccel_handle;
3031 memset(id_phys, 0, sizeof(*id_phys));
3032 rc = hpsa_bmic_id_physical_device(h, lunaddrbytes,
3033 GET_BMIC_DRIVE_NUMBER(lunaddrbytes), id_phys,
3034 sizeof(*id_phys));
3035 if (!rc)
3036 /* Reserve space for FW operations */
3037 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3038 #define DRIVE_QUEUE_DEPTH 7
3039 dev->queue_depth =
3040 le16_to_cpu(id_phys->current_queue_depth_limit) -
3041 DRIVE_CMDS_RESERVED_FOR_FW;
3042 else
3043 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3044 atomic_set(&dev->ioaccel_cmds_out, 0);
3045 }
3046
3047 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
3048 {
3049 /* the idea here is we could get notified
3050 * that some devices have changed, so we do a report
3051 * physical luns and report logical luns cmd, and adjust
3052 * our list of devices accordingly.
3053 *
3054 * The scsi3addr's of devices won't change so long as the
3055 * adapter is not reset. That means we can rescan and
3056 * tell which devices we already know about, vs. new
3057 * devices, vs. disappearing devices.
3058 */
3059 struct ReportExtendedLUNdata *physdev_list = NULL;
3060 struct ReportLUNdata *logdev_list = NULL;
3061 struct bmic_identify_physical_device *id_phys = NULL;
3062 u32 nphysicals = 0;
3063 u32 nlogicals = 0;
3064 u32 ndev_allocated = 0;
3065 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3066 int ncurrent = 0;
3067 int i, n_ext_target_devs, ndevs_to_allocate;
3068 int raid_ctlr_position;
3069 int rescan_hba_mode;
3070 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3071
3072 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3073 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
3074 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3075 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3076 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3077
3078 if (!currentsd || !physdev_list || !logdev_list ||
3079 !tmpdevice || !id_phys) {
3080 dev_err(&h->pdev->dev, "out of memory\n");
3081 goto out;
3082 }
3083 memset(lunzerobits, 0, sizeof(lunzerobits));
3084
3085 rescan_hba_mode = hpsa_hba_mode_enabled(h);
3086 if (rescan_hba_mode < 0)
3087 goto out;
3088
3089 if (!h->hba_mode_enabled && rescan_hba_mode)
3090 dev_warn(&h->pdev->dev, "HBA mode enabled\n");
3091 else if (h->hba_mode_enabled && !rescan_hba_mode)
3092 dev_warn(&h->pdev->dev, "HBA mode disabled\n");
3093
3094 h->hba_mode_enabled = rescan_hba_mode;
3095
3096 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
3097 logdev_list, &nlogicals))
3098 goto out;
3099
3100 /* We might see up to the maximum number of logical and physical disks
3101 * plus external target devices, and a device for the local RAID
3102 * controller.
3103 */
3104 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3105
3106 /* Allocate the per device structures */
3107 for (i = 0; i < ndevs_to_allocate; i++) {
3108 if (i >= HPSA_MAX_DEVICES) {
3109 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3110 " %d devices ignored.\n", HPSA_MAX_DEVICES,
3111 ndevs_to_allocate - HPSA_MAX_DEVICES);
3112 break;
3113 }
3114
3115 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3116 if (!currentsd[i]) {
3117 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3118 __FILE__, __LINE__);
3119 goto out;
3120 }
3121 ndev_allocated++;
3122 }
3123
3124 if (is_scsi_rev_5(h))
3125 raid_ctlr_position = 0;
3126 else
3127 raid_ctlr_position = nphysicals + nlogicals;
3128
3129 /* adjust our table of devices */
3130 n_ext_target_devs = 0;
3131 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3132 u8 *lunaddrbytes, is_OBDR = 0;
3133
3134 /* Figure out where the LUN ID info is coming from */
3135 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3136 i, nphysicals, nlogicals, physdev_list, logdev_list);
3137 /* skip masked physical devices. */
3138 if (lunaddrbytes[3] & 0xC0 &&
3139 i < nphysicals + (raid_ctlr_position == 0))
3140 continue;
3141
3142 /* Get device type, vendor, model, device id */
3143 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3144 &is_OBDR))
3145 continue; /* skip it if we can't talk to it. */
3146 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3147 this_device = currentsd[ncurrent];
3148
3149 /*
3150 * For external target devices, we have to insert a LUN 0 which
3151 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3152 * is nonetheless an enclosure device there. We have to
3153 * present that otherwise linux won't find anything if
3154 * there is no lun 0.
3155 */
3156 if (add_ext_target_dev(h, tmpdevice, this_device,
3157 lunaddrbytes, lunzerobits,
3158 &n_ext_target_devs)) {
3159 ncurrent++;
3160 this_device = currentsd[ncurrent];
3161 }
3162
3163 *this_device = *tmpdevice;
3164
3165 switch (this_device->devtype) {
3166 case TYPE_ROM:
3167 /* We don't *really* support actual CD-ROM devices,
3168 * just "One Button Disaster Recovery" tape drive
3169 * which temporarily pretends to be a CD-ROM drive.
3170 * So we check that the device is really an OBDR tape
3171 * device by checking for "$DR-10" in bytes 43-48 of
3172 * the inquiry data.
3173 */
3174 if (is_OBDR)
3175 ncurrent++;
3176 break;
3177 case TYPE_DISK:
3178 if (h->hba_mode_enabled) {
3179 /* never use raid mapper in HBA mode */
3180 this_device->offload_enabled = 0;
3181 ncurrent++;
3182 break;
3183 } else if (h->acciopath_status) {
3184 if (i >= nphysicals) {
3185 ncurrent++;
3186 break;
3187 }
3188 } else {
3189 if (i < nphysicals)
3190 break;
3191 ncurrent++;
3192 break;
3193 }
3194 if (h->transMethod & CFGTBL_Trans_io_accel1 ||
3195 h->transMethod & CFGTBL_Trans_io_accel2) {
3196 hpsa_get_ioaccel_drive_info(h, this_device,
3197 lunaddrbytes, id_phys);
3198 atomic_set(&this_device->ioaccel_cmds_out, 0);
3199 ncurrent++;
3200 }
3201 break;
3202 case TYPE_TAPE:
3203 case TYPE_MEDIUM_CHANGER:
3204 ncurrent++;
3205 break;
3206 case TYPE_RAID:
3207 /* Only present the Smartarray HBA as a RAID controller.
3208 * If it's a RAID controller other than the HBA itself
3209 * (an external RAID controller, MSA500 or similar)
3210 * don't present it.
3211 */
3212 if (!is_hba_lunid(lunaddrbytes))
3213 break;
3214 ncurrent++;
3215 break;
3216 default:
3217 break;
3218 }
3219 if (ncurrent >= HPSA_MAX_DEVICES)
3220 break;
3221 }
3222 hpsa_update_log_drive_phys_drive_ptrs(h, currentsd, ncurrent);
3223 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3224 out:
3225 kfree(tmpdevice);
3226 for (i = 0; i < ndev_allocated; i++)
3227 kfree(currentsd[i]);
3228 kfree(currentsd);
3229 kfree(physdev_list);
3230 kfree(logdev_list);
3231 kfree(id_phys);
3232 }
3233
3234 /*
3235 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3236 * dma mapping and fills in the scatter gather entries of the
3237 * hpsa command, cp.
3238 */
3239 static int hpsa_scatter_gather(struct ctlr_info *h,
3240 struct CommandList *cp,
3241 struct scsi_cmnd *cmd)
3242 {
3243 unsigned int len;
3244 struct scatterlist *sg;
3245 u64 addr64;
3246 int use_sg, i, sg_index, chained;
3247 struct SGDescriptor *curr_sg;
3248
3249 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3250
3251 use_sg = scsi_dma_map(cmd);
3252 if (use_sg < 0)
3253 return use_sg;
3254
3255 if (!use_sg)
3256 goto sglist_finished;
3257
3258 curr_sg = cp->SG;
3259 chained = 0;
3260 sg_index = 0;
3261 scsi_for_each_sg(cmd, sg, use_sg, i) {
3262 if (i == h->max_cmd_sg_entries - 1 &&
3263 use_sg > h->max_cmd_sg_entries) {
3264 chained = 1;
3265 curr_sg = h->cmd_sg_list[cp->cmdindex];
3266 sg_index = 0;
3267 }
3268 addr64 = (u64) sg_dma_address(sg);
3269 len = sg_dma_len(sg);
3270 curr_sg->Addr = cpu_to_le64(addr64);
3271 curr_sg->Len = cpu_to_le32(len);
3272 curr_sg->Ext = cpu_to_le32(0);
3273 curr_sg++;
3274 }
3275 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3276
3277 if (use_sg + chained > h->maxSG)
3278 h->maxSG = use_sg + chained;
3279
3280 if (chained) {
3281 cp->Header.SGList = h->max_cmd_sg_entries;
3282 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3283 if (hpsa_map_sg_chain_block(h, cp)) {
3284 scsi_dma_unmap(cmd);
3285 return -1;
3286 }
3287 return 0;
3288 }
3289
3290 sglist_finished:
3291
3292 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
3293 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
3294 return 0;
3295 }
3296
3297 #define IO_ACCEL_INELIGIBLE (1)
3298 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3299 {
3300 int is_write = 0;
3301 u32 block;
3302 u32 block_cnt;
3303
3304 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
3305 switch (cdb[0]) {
3306 case WRITE_6:
3307 case WRITE_12:
3308 is_write = 1;
3309 case READ_6:
3310 case READ_12:
3311 if (*cdb_len == 6) {
3312 block = (((u32) cdb[2]) << 8) | cdb[3];
3313 block_cnt = cdb[4];
3314 } else {
3315 BUG_ON(*cdb_len != 12);
3316 block = (((u32) cdb[2]) << 24) |
3317 (((u32) cdb[3]) << 16) |
3318 (((u32) cdb[4]) << 8) |
3319 cdb[5];
3320 block_cnt =
3321 (((u32) cdb[6]) << 24) |
3322 (((u32) cdb[7]) << 16) |
3323 (((u32) cdb[8]) << 8) |
3324 cdb[9];
3325 }
3326 if (block_cnt > 0xffff)
3327 return IO_ACCEL_INELIGIBLE;
3328
3329 cdb[0] = is_write ? WRITE_10 : READ_10;
3330 cdb[1] = 0;
3331 cdb[2] = (u8) (block >> 24);
3332 cdb[3] = (u8) (block >> 16);
3333 cdb[4] = (u8) (block >> 8);
3334 cdb[5] = (u8) (block);
3335 cdb[6] = 0;
3336 cdb[7] = (u8) (block_cnt >> 8);
3337 cdb[8] = (u8) (block_cnt);
3338 cdb[9] = 0;
3339 *cdb_len = 10;
3340 break;
3341 }
3342 return 0;
3343 }
3344
3345 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3346 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3347 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3348 {
3349 struct scsi_cmnd *cmd = c->scsi_cmd;
3350 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
3351 unsigned int len;
3352 unsigned int total_len = 0;
3353 struct scatterlist *sg;
3354 u64 addr64;
3355 int use_sg, i;
3356 struct SGDescriptor *curr_sg;
3357 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
3358
3359 /* TODO: implement chaining support */
3360 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
3361 atomic_dec(&phys_disk->ioaccel_cmds_out);
3362 return IO_ACCEL_INELIGIBLE;
3363 }
3364
3365 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
3366
3367 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
3368 atomic_dec(&phys_disk->ioaccel_cmds_out);
3369 return IO_ACCEL_INELIGIBLE;
3370 }
3371
3372 c->cmd_type = CMD_IOACCEL1;
3373
3374 /* Adjust the DMA address to point to the accelerated command buffer */
3375 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
3376 (c->cmdindex * sizeof(*cp));
3377 BUG_ON(c->busaddr & 0x0000007F);
3378
3379 use_sg = scsi_dma_map(cmd);
3380 if (use_sg < 0) {
3381 atomic_dec(&phys_disk->ioaccel_cmds_out);
3382 return use_sg;
3383 }
3384
3385 if (use_sg) {
3386 curr_sg = cp->SG;
3387 scsi_for_each_sg(cmd, sg, use_sg, i) {
3388 addr64 = (u64) sg_dma_address(sg);
3389 len = sg_dma_len(sg);
3390 total_len += len;
3391 curr_sg->Addr = cpu_to_le64(addr64);
3392 curr_sg->Len = cpu_to_le32(len);
3393 curr_sg->Ext = cpu_to_le32(0);
3394 curr_sg++;
3395 }
3396 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3397
3398 switch (cmd->sc_data_direction) {
3399 case DMA_TO_DEVICE:
3400 control |= IOACCEL1_CONTROL_DATA_OUT;
3401 break;
3402 case DMA_FROM_DEVICE:
3403 control |= IOACCEL1_CONTROL_DATA_IN;
3404 break;
3405 case DMA_NONE:
3406 control |= IOACCEL1_CONTROL_NODATAXFER;
3407 break;
3408 default:
3409 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3410 cmd->sc_data_direction);
3411 BUG();
3412 break;
3413 }
3414 } else {
3415 control |= IOACCEL1_CONTROL_NODATAXFER;
3416 }
3417
3418 c->Header.SGList = use_sg;
3419 /* Fill out the command structure to submit */
3420 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
3421 cp->transfer_len = cpu_to_le32(total_len);
3422 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
3423 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
3424 cp->control = cpu_to_le32(control);
3425 memcpy(cp->CDB, cdb, cdb_len);
3426 memcpy(cp->CISS_LUN, scsi3addr, 8);
3427 /* Tag was already set at init time. */
3428 enqueue_cmd_and_start_io(h, c);
3429 return 0;
3430 }
3431
3432 /*
3433 * Queue a command directly to a device behind the controller using the
3434 * I/O accelerator path.
3435 */
3436 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
3437 struct CommandList *c)
3438 {
3439 struct scsi_cmnd *cmd = c->scsi_cmd;
3440 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3441
3442 c->phys_disk = dev;
3443
3444 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3445 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
3446 }
3447
3448 /*
3449 * Set encryption parameters for the ioaccel2 request
3450 */
3451 static void set_encrypt_ioaccel2(struct ctlr_info *h,
3452 struct CommandList *c, struct io_accel2_cmd *cp)
3453 {
3454 struct scsi_cmnd *cmd = c->scsi_cmd;
3455 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3456 struct raid_map_data *map = &dev->raid_map;
3457 u64 first_block;
3458
3459 /* Are we doing encryption on this device */
3460 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
3461 return;
3462 /* Set the data encryption key index. */
3463 cp->dekindex = map->dekindex;
3464
3465 /* Set the encryption enable flag, encoded into direction field. */
3466 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
3467
3468 /* Set encryption tweak values based on logical block address
3469 * If block size is 512, tweak value is LBA.
3470 * For other block sizes, tweak is (LBA * block size)/ 512)
3471 */
3472 switch (cmd->cmnd[0]) {
3473 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
3474 case WRITE_6:
3475 case READ_6:
3476 first_block = get_unaligned_be16(&cmd->cmnd[2]);
3477 break;
3478 case WRITE_10:
3479 case READ_10:
3480 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
3481 case WRITE_12:
3482 case READ_12:
3483 first_block = get_unaligned_be32(&cmd->cmnd[2]);
3484 break;
3485 case WRITE_16:
3486 case READ_16:
3487 first_block = get_unaligned_be64(&cmd->cmnd[2]);
3488 break;
3489 default:
3490 dev_err(&h->pdev->dev,
3491 "ERROR: %s: size (0x%x) not supported for encryption\n",
3492 __func__, cmd->cmnd[0]);
3493 BUG();
3494 break;
3495 }
3496
3497 if (le32_to_cpu(map->volume_blk_size) != 512)
3498 first_block = first_block *
3499 le32_to_cpu(map->volume_blk_size)/512;
3500
3501 cp->tweak_lower = cpu_to_le32(first_block);
3502 cp->tweak_upper = cpu_to_le32(first_block >> 32);
3503 }
3504
3505 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
3506 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3507 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3508 {
3509 struct scsi_cmnd *cmd = c->scsi_cmd;
3510 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
3511 struct ioaccel2_sg_element *curr_sg;
3512 int use_sg, i;
3513 struct scatterlist *sg;
3514 u64 addr64;
3515 u32 len;
3516 u32 total_len = 0;
3517
3518 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
3519 atomic_dec(&phys_disk->ioaccel_cmds_out);
3520 return IO_ACCEL_INELIGIBLE;
3521 }
3522
3523 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
3524 atomic_dec(&phys_disk->ioaccel_cmds_out);
3525 return IO_ACCEL_INELIGIBLE;
3526 }
3527
3528 c->cmd_type = CMD_IOACCEL2;
3529 /* Adjust the DMA address to point to the accelerated command buffer */
3530 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
3531 (c->cmdindex * sizeof(*cp));
3532 BUG_ON(c->busaddr & 0x0000007F);
3533
3534 memset(cp, 0, sizeof(*cp));
3535 cp->IU_type = IOACCEL2_IU_TYPE;
3536
3537 use_sg = scsi_dma_map(cmd);
3538 if (use_sg < 0) {
3539 atomic_dec(&phys_disk->ioaccel_cmds_out);
3540 return use_sg;
3541 }
3542
3543 if (use_sg) {
3544 BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
3545 curr_sg = cp->sg;
3546 scsi_for_each_sg(cmd, sg, use_sg, i) {
3547 addr64 = (u64) sg_dma_address(sg);
3548 len = sg_dma_len(sg);
3549 total_len += len;
3550 curr_sg->address = cpu_to_le64(addr64);
3551 curr_sg->length = cpu_to_le32(len);
3552 curr_sg->reserved[0] = 0;
3553 curr_sg->reserved[1] = 0;
3554 curr_sg->reserved[2] = 0;
3555 curr_sg->chain_indicator = 0;
3556 curr_sg++;
3557 }
3558
3559 switch (cmd->sc_data_direction) {
3560 case DMA_TO_DEVICE:
3561 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3562 cp->direction |= IOACCEL2_DIR_DATA_OUT;
3563 break;
3564 case DMA_FROM_DEVICE:
3565 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3566 cp->direction |= IOACCEL2_DIR_DATA_IN;
3567 break;
3568 case DMA_NONE:
3569 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3570 cp->direction |= IOACCEL2_DIR_NO_DATA;
3571 break;
3572 default:
3573 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3574 cmd->sc_data_direction);
3575 BUG();
3576 break;
3577 }
3578 } else {
3579 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3580 cp->direction |= IOACCEL2_DIR_NO_DATA;
3581 }
3582
3583 /* Set encryption parameters, if necessary */
3584 set_encrypt_ioaccel2(h, c, cp);
3585
3586 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
3587 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
3588 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
3589
3590 /* fill in sg elements */
3591 cp->sg_count = (u8) use_sg;
3592
3593 cp->data_len = cpu_to_le32(total_len);
3594 cp->err_ptr = cpu_to_le64(c->busaddr +
3595 offsetof(struct io_accel2_cmd, error_data));
3596 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
3597
3598 enqueue_cmd_and_start_io(h, c);
3599 return 0;
3600 }
3601
3602 /*
3603 * Queue a command to the correct I/O accelerator path.
3604 */
3605 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
3606 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3607 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3608 {
3609 /* Try to honor the device's queue depth */
3610 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
3611 phys_disk->queue_depth) {
3612 atomic_dec(&phys_disk->ioaccel_cmds_out);
3613 return IO_ACCEL_INELIGIBLE;
3614 }
3615 if (h->transMethod & CFGTBL_Trans_io_accel1)
3616 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
3617 cdb, cdb_len, scsi3addr,
3618 phys_disk);
3619 else
3620 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
3621 cdb, cdb_len, scsi3addr,
3622 phys_disk);
3623 }
3624
3625 static void raid_map_helper(struct raid_map_data *map,
3626 int offload_to_mirror, u32 *map_index, u32 *current_group)
3627 {
3628 if (offload_to_mirror == 0) {
3629 /* use physical disk in the first mirrored group. */
3630 *map_index %= le16_to_cpu(map->data_disks_per_row);
3631 return;
3632 }
3633 do {
3634 /* determine mirror group that *map_index indicates */
3635 *current_group = *map_index /
3636 le16_to_cpu(map->data_disks_per_row);
3637 if (offload_to_mirror == *current_group)
3638 continue;
3639 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
3640 /* select map index from next group */
3641 *map_index += le16_to_cpu(map->data_disks_per_row);
3642 (*current_group)++;
3643 } else {
3644 /* select map index from first group */
3645 *map_index %= le16_to_cpu(map->data_disks_per_row);
3646 *current_group = 0;
3647 }
3648 } while (offload_to_mirror != *current_group);
3649 }
3650
3651 /*
3652 * Attempt to perform offload RAID mapping for a logical volume I/O.
3653 */
3654 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
3655 struct CommandList *c)
3656 {
3657 struct scsi_cmnd *cmd = c->scsi_cmd;
3658 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3659 struct raid_map_data *map = &dev->raid_map;
3660 struct raid_map_disk_data *dd = &map->data[0];
3661 int is_write = 0;
3662 u32 map_index;
3663 u64 first_block, last_block;
3664 u32 block_cnt;
3665 u32 blocks_per_row;
3666 u64 first_row, last_row;
3667 u32 first_row_offset, last_row_offset;
3668 u32 first_column, last_column;
3669 u64 r0_first_row, r0_last_row;
3670 u32 r5or6_blocks_per_row;
3671 u64 r5or6_first_row, r5or6_last_row;
3672 u32 r5or6_first_row_offset, r5or6_last_row_offset;
3673 u32 r5or6_first_column, r5or6_last_column;
3674 u32 total_disks_per_row;
3675 u32 stripesize;
3676 u32 first_group, last_group, current_group;
3677 u32 map_row;
3678 u32 disk_handle;
3679 u64 disk_block;
3680 u32 disk_block_cnt;
3681 u8 cdb[16];
3682 u8 cdb_len;
3683 u16 strip_size;
3684 #if BITS_PER_LONG == 32
3685 u64 tmpdiv;
3686 #endif
3687 int offload_to_mirror;
3688
3689 /* check for valid opcode, get LBA and block count */
3690 switch (cmd->cmnd[0]) {
3691 case WRITE_6:
3692 is_write = 1;
3693 case READ_6:
3694 first_block =
3695 (((u64) cmd->cmnd[2]) << 8) |
3696 cmd->cmnd[3];
3697 block_cnt = cmd->cmnd[4];
3698 if (block_cnt == 0)
3699 block_cnt = 256;
3700 break;
3701 case WRITE_10:
3702 is_write = 1;
3703 case READ_10:
3704 first_block =
3705 (((u64) cmd->cmnd[2]) << 24) |
3706 (((u64) cmd->cmnd[3]) << 16) |
3707 (((u64) cmd->cmnd[4]) << 8) |
3708 cmd->cmnd[5];
3709 block_cnt =
3710 (((u32) cmd->cmnd[7]) << 8) |
3711 cmd->cmnd[8];
3712 break;
3713 case WRITE_12:
3714 is_write = 1;
3715 case READ_12:
3716 first_block =
3717 (((u64) cmd->cmnd[2]) << 24) |
3718 (((u64) cmd->cmnd[3]) << 16) |
3719 (((u64) cmd->cmnd[4]) << 8) |
3720 cmd->cmnd[5];
3721 block_cnt =
3722 (((u32) cmd->cmnd[6]) << 24) |
3723 (((u32) cmd->cmnd[7]) << 16) |
3724 (((u32) cmd->cmnd[8]) << 8) |
3725 cmd->cmnd[9];
3726 break;
3727 case WRITE_16:
3728 is_write = 1;
3729 case READ_16:
3730 first_block =
3731 (((u64) cmd->cmnd[2]) << 56) |
3732 (((u64) cmd->cmnd[3]) << 48) |
3733 (((u64) cmd->cmnd[4]) << 40) |
3734 (((u64) cmd->cmnd[5]) << 32) |
3735 (((u64) cmd->cmnd[6]) << 24) |
3736 (((u64) cmd->cmnd[7]) << 16) |
3737 (((u64) cmd->cmnd[8]) << 8) |
3738 cmd->cmnd[9];
3739 block_cnt =
3740 (((u32) cmd->cmnd[10]) << 24) |
3741 (((u32) cmd->cmnd[11]) << 16) |
3742 (((u32) cmd->cmnd[12]) << 8) |
3743 cmd->cmnd[13];
3744 break;
3745 default:
3746 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
3747 }
3748 last_block = first_block + block_cnt - 1;
3749
3750 /* check for write to non-RAID-0 */
3751 if (is_write && dev->raid_level != 0)
3752 return IO_ACCEL_INELIGIBLE;
3753
3754 /* check for invalid block or wraparound */
3755 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
3756 last_block < first_block)
3757 return IO_ACCEL_INELIGIBLE;
3758
3759 /* calculate stripe information for the request */
3760 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
3761 le16_to_cpu(map->strip_size);
3762 strip_size = le16_to_cpu(map->strip_size);
3763 #if BITS_PER_LONG == 32
3764 tmpdiv = first_block;
3765 (void) do_div(tmpdiv, blocks_per_row);
3766 first_row = tmpdiv;
3767 tmpdiv = last_block;
3768 (void) do_div(tmpdiv, blocks_per_row);
3769 last_row = tmpdiv;
3770 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3771 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3772 tmpdiv = first_row_offset;
3773 (void) do_div(tmpdiv, strip_size);
3774 first_column = tmpdiv;
3775 tmpdiv = last_row_offset;
3776 (void) do_div(tmpdiv, strip_size);
3777 last_column = tmpdiv;
3778 #else
3779 first_row = first_block / blocks_per_row;
3780 last_row = last_block / blocks_per_row;
3781 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3782 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3783 first_column = first_row_offset / strip_size;
3784 last_column = last_row_offset / strip_size;
3785 #endif
3786
3787 /* if this isn't a single row/column then give to the controller */
3788 if ((first_row != last_row) || (first_column != last_column))
3789 return IO_ACCEL_INELIGIBLE;
3790
3791 /* proceeding with driver mapping */
3792 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
3793 le16_to_cpu(map->metadata_disks_per_row);
3794 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3795 le16_to_cpu(map->row_cnt);
3796 map_index = (map_row * total_disks_per_row) + first_column;
3797
3798 switch (dev->raid_level) {
3799 case HPSA_RAID_0:
3800 break; /* nothing special to do */
3801 case HPSA_RAID_1:
3802 /* Handles load balance across RAID 1 members.
3803 * (2-drive R1 and R10 with even # of drives.)
3804 * Appropriate for SSDs, not optimal for HDDs
3805 */
3806 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
3807 if (dev->offload_to_mirror)
3808 map_index += le16_to_cpu(map->data_disks_per_row);
3809 dev->offload_to_mirror = !dev->offload_to_mirror;
3810 break;
3811 case HPSA_RAID_ADM:
3812 /* Handles N-way mirrors (R1-ADM)
3813 * and R10 with # of drives divisible by 3.)
3814 */
3815 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
3816
3817 offload_to_mirror = dev->offload_to_mirror;
3818 raid_map_helper(map, offload_to_mirror,
3819 &map_index, &current_group);
3820 /* set mirror group to use next time */
3821 offload_to_mirror =
3822 (offload_to_mirror >=
3823 le16_to_cpu(map->layout_map_count) - 1)
3824 ? 0 : offload_to_mirror + 1;
3825 dev->offload_to_mirror = offload_to_mirror;
3826 /* Avoid direct use of dev->offload_to_mirror within this
3827 * function since multiple threads might simultaneously
3828 * increment it beyond the range of dev->layout_map_count -1.
3829 */
3830 break;
3831 case HPSA_RAID_5:
3832 case HPSA_RAID_6:
3833 if (le16_to_cpu(map->layout_map_count) <= 1)
3834 break;
3835
3836 /* Verify first and last block are in same RAID group */
3837 r5or6_blocks_per_row =
3838 le16_to_cpu(map->strip_size) *
3839 le16_to_cpu(map->data_disks_per_row);
3840 BUG_ON(r5or6_blocks_per_row == 0);
3841 stripesize = r5or6_blocks_per_row *
3842 le16_to_cpu(map->layout_map_count);
3843 #if BITS_PER_LONG == 32
3844 tmpdiv = first_block;
3845 first_group = do_div(tmpdiv, stripesize);
3846 tmpdiv = first_group;
3847 (void) do_div(tmpdiv, r5or6_blocks_per_row);
3848 first_group = tmpdiv;
3849 tmpdiv = last_block;
3850 last_group = do_div(tmpdiv, stripesize);
3851 tmpdiv = last_group;
3852 (void) do_div(tmpdiv, r5or6_blocks_per_row);
3853 last_group = tmpdiv;
3854 #else
3855 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
3856 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
3857 #endif
3858 if (first_group != last_group)
3859 return IO_ACCEL_INELIGIBLE;
3860
3861 /* Verify request is in a single row of RAID 5/6 */
3862 #if BITS_PER_LONG == 32
3863 tmpdiv = first_block;
3864 (void) do_div(tmpdiv, stripesize);
3865 first_row = r5or6_first_row = r0_first_row = tmpdiv;
3866 tmpdiv = last_block;
3867 (void) do_div(tmpdiv, stripesize);
3868 r5or6_last_row = r0_last_row = tmpdiv;
3869 #else
3870 first_row = r5or6_first_row = r0_first_row =
3871 first_block / stripesize;
3872 r5or6_last_row = r0_last_row = last_block / stripesize;
3873 #endif
3874 if (r5or6_first_row != r5or6_last_row)
3875 return IO_ACCEL_INELIGIBLE;
3876
3877
3878 /* Verify request is in a single column */
3879 #if BITS_PER_LONG == 32
3880 tmpdiv = first_block;
3881 first_row_offset = do_div(tmpdiv, stripesize);
3882 tmpdiv = first_row_offset;
3883 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
3884 r5or6_first_row_offset = first_row_offset;
3885 tmpdiv = last_block;
3886 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
3887 tmpdiv = r5or6_last_row_offset;
3888 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
3889 tmpdiv = r5or6_first_row_offset;
3890 (void) do_div(tmpdiv, map->strip_size);
3891 first_column = r5or6_first_column = tmpdiv;
3892 tmpdiv = r5or6_last_row_offset;
3893 (void) do_div(tmpdiv, map->strip_size);
3894 r5or6_last_column = tmpdiv;
3895 #else
3896 first_row_offset = r5or6_first_row_offset =
3897 (u32)((first_block % stripesize) %
3898 r5or6_blocks_per_row);
3899
3900 r5or6_last_row_offset =
3901 (u32)((last_block % stripesize) %
3902 r5or6_blocks_per_row);
3903
3904 first_column = r5or6_first_column =
3905 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
3906 r5or6_last_column =
3907 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
3908 #endif
3909 if (r5or6_first_column != r5or6_last_column)
3910 return IO_ACCEL_INELIGIBLE;
3911
3912 /* Request is eligible */
3913 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3914 le16_to_cpu(map->row_cnt);
3915
3916 map_index = (first_group *
3917 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
3918 (map_row * total_disks_per_row) + first_column;
3919 break;
3920 default:
3921 return IO_ACCEL_INELIGIBLE;
3922 }
3923
3924 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
3925 return IO_ACCEL_INELIGIBLE;
3926
3927 c->phys_disk = dev->phys_disk[map_index];
3928
3929 disk_handle = dd[map_index].ioaccel_handle;
3930 disk_block = le64_to_cpu(map->disk_starting_blk) +
3931 first_row * le16_to_cpu(map->strip_size) +
3932 (first_row_offset - first_column *
3933 le16_to_cpu(map->strip_size));
3934 disk_block_cnt = block_cnt;
3935
3936 /* handle differing logical/physical block sizes */
3937 if (map->phys_blk_shift) {
3938 disk_block <<= map->phys_blk_shift;
3939 disk_block_cnt <<= map->phys_blk_shift;
3940 }
3941 BUG_ON(disk_block_cnt > 0xffff);
3942
3943 /* build the new CDB for the physical disk I/O */
3944 if (disk_block > 0xffffffff) {
3945 cdb[0] = is_write ? WRITE_16 : READ_16;
3946 cdb[1] = 0;
3947 cdb[2] = (u8) (disk_block >> 56);
3948 cdb[3] = (u8) (disk_block >> 48);
3949 cdb[4] = (u8) (disk_block >> 40);
3950 cdb[5] = (u8) (disk_block >> 32);
3951 cdb[6] = (u8) (disk_block >> 24);
3952 cdb[7] = (u8) (disk_block >> 16);
3953 cdb[8] = (u8) (disk_block >> 8);
3954 cdb[9] = (u8) (disk_block);
3955 cdb[10] = (u8) (disk_block_cnt >> 24);
3956 cdb[11] = (u8) (disk_block_cnt >> 16);
3957 cdb[12] = (u8) (disk_block_cnt >> 8);
3958 cdb[13] = (u8) (disk_block_cnt);
3959 cdb[14] = 0;
3960 cdb[15] = 0;
3961 cdb_len = 16;
3962 } else {
3963 cdb[0] = is_write ? WRITE_10 : READ_10;
3964 cdb[1] = 0;
3965 cdb[2] = (u8) (disk_block >> 24);
3966 cdb[3] = (u8) (disk_block >> 16);
3967 cdb[4] = (u8) (disk_block >> 8);
3968 cdb[5] = (u8) (disk_block);
3969 cdb[6] = 0;
3970 cdb[7] = (u8) (disk_block_cnt >> 8);
3971 cdb[8] = (u8) (disk_block_cnt);
3972 cdb[9] = 0;
3973 cdb_len = 10;
3974 }
3975 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
3976 dev->scsi3addr,
3977 dev->phys_disk[map_index]);
3978 }
3979
3980 /* Submit commands down the "normal" RAID stack path */
3981 static int hpsa_ciss_submit(struct ctlr_info *h,
3982 struct CommandList *c, struct scsi_cmnd *cmd,
3983 unsigned char scsi3addr[])
3984 {
3985 cmd->host_scribble = (unsigned char *) c;
3986 c->cmd_type = CMD_SCSI;
3987 c->scsi_cmd = cmd;
3988 c->Header.ReplyQueue = 0; /* unused in simple mode */
3989 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
3990 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
3991
3992 /* Fill in the request block... */
3993
3994 c->Request.Timeout = 0;
3995 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
3996 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
3997 c->Request.CDBLen = cmd->cmd_len;
3998 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
3999 switch (cmd->sc_data_direction) {
4000 case DMA_TO_DEVICE:
4001 c->Request.type_attr_dir =
4002 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4003 break;
4004 case DMA_FROM_DEVICE:
4005 c->Request.type_attr_dir =
4006 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4007 break;
4008 case DMA_NONE:
4009 c->Request.type_attr_dir =
4010 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4011 break;
4012 case DMA_BIDIRECTIONAL:
4013 /* This can happen if a buggy application does a scsi passthru
4014 * and sets both inlen and outlen to non-zero. ( see
4015 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4016 */
4017
4018 c->Request.type_attr_dir =
4019 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4020 /* This is technically wrong, and hpsa controllers should
4021 * reject it with CMD_INVALID, which is the most correct
4022 * response, but non-fibre backends appear to let it
4023 * slide by, and give the same results as if this field
4024 * were set correctly. Either way is acceptable for
4025 * our purposes here.
4026 */
4027
4028 break;
4029
4030 default:
4031 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4032 cmd->sc_data_direction);
4033 BUG();
4034 break;
4035 }
4036
4037 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4038 cmd_free(h, c);
4039 return SCSI_MLQUEUE_HOST_BUSY;
4040 }
4041 enqueue_cmd_and_start_io(h, c);
4042 /* the cmd'll come back via intr handler in complete_scsi_command() */
4043 return 0;
4044 }
4045
4046 static void hpsa_command_resubmit_worker(struct work_struct *work)
4047 {
4048 struct scsi_cmnd *cmd;
4049 struct hpsa_scsi_dev_t *dev;
4050 struct CommandList *c =
4051 container_of(work, struct CommandList, work);
4052
4053 cmd = c->scsi_cmd;
4054 dev = cmd->device->hostdata;
4055 if (!dev) {
4056 cmd->result = DID_NO_CONNECT << 16;
4057 cmd->scsi_done(cmd);
4058 return;
4059 }
4060 if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
4061 /*
4062 * If we get here, it means dma mapping failed. Try
4063 * again via scsi mid layer, which will then get
4064 * SCSI_MLQUEUE_HOST_BUSY.
4065 */
4066 cmd->result = DID_IMM_RETRY << 16;
4067 cmd->scsi_done(cmd);
4068 }
4069 }
4070
4071 /* Running in struct Scsi_Host->host_lock less mode */
4072 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
4073 {
4074 struct ctlr_info *h;
4075 struct hpsa_scsi_dev_t *dev;
4076 unsigned char scsi3addr[8];
4077 struct CommandList *c;
4078 int rc = 0;
4079
4080 /* Get the ptr to our adapter structure out of cmd->host. */
4081 h = sdev_to_hba(cmd->device);
4082 dev = cmd->device->hostdata;
4083 if (!dev) {
4084 cmd->result = DID_NO_CONNECT << 16;
4085 cmd->scsi_done(cmd);
4086 return 0;
4087 }
4088 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
4089
4090 if (unlikely(lockup_detected(h))) {
4091 cmd->result = DID_ERROR << 16;
4092 cmd->scsi_done(cmd);
4093 return 0;
4094 }
4095 c = cmd_alloc(h);
4096 if (c == NULL) { /* trouble... */
4097 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
4098 return SCSI_MLQUEUE_HOST_BUSY;
4099 }
4100 if (unlikely(lockup_detected(h))) {
4101 cmd->result = DID_ERROR << 16;
4102 cmd_free(h, c);
4103 cmd->scsi_done(cmd);
4104 return 0;
4105 }
4106
4107 /*
4108 * Call alternate submit routine for I/O accelerated commands.
4109 * Retries always go down the normal I/O path.
4110 */
4111 if (likely(cmd->retries == 0 &&
4112 cmd->request->cmd_type == REQ_TYPE_FS &&
4113 h->acciopath_status)) {
4114
4115 cmd->host_scribble = (unsigned char *) c;
4116 c->cmd_type = CMD_SCSI;
4117 c->scsi_cmd = cmd;
4118
4119 if (dev->offload_enabled) {
4120 rc = hpsa_scsi_ioaccel_raid_map(h, c);
4121 if (rc == 0)
4122 return 0; /* Sent on ioaccel path */
4123 if (rc < 0) { /* scsi_dma_map failed. */
4124 cmd_free(h, c);
4125 return SCSI_MLQUEUE_HOST_BUSY;
4126 }
4127 } else if (dev->ioaccel_handle) {
4128 rc = hpsa_scsi_ioaccel_direct_map(h, c);
4129 if (rc == 0)
4130 return 0; /* Sent on direct map path */
4131 if (rc < 0) { /* scsi_dma_map failed. */
4132 cmd_free(h, c);
4133 return SCSI_MLQUEUE_HOST_BUSY;
4134 }
4135 }
4136 }
4137 return hpsa_ciss_submit(h, c, cmd, scsi3addr);
4138 }
4139
4140 static int do_not_scan_if_controller_locked_up(struct ctlr_info *h)
4141 {
4142 unsigned long flags;
4143
4144 /*
4145 * Don't let rescans be initiated on a controller known
4146 * to be locked up. If the controller locks up *during*
4147 * a rescan, that thread is probably hosed, but at least
4148 * we can prevent new rescan threads from piling up on a
4149 * locked up controller.
4150 */
4151 if (unlikely(lockup_detected(h))) {
4152 spin_lock_irqsave(&h->scan_lock, flags);
4153 h->scan_finished = 1;
4154 wake_up_all(&h->scan_wait_queue);
4155 spin_unlock_irqrestore(&h->scan_lock, flags);
4156 return 1;
4157 }
4158 return 0;
4159 }
4160
4161 static void hpsa_scan_start(struct Scsi_Host *sh)
4162 {
4163 struct ctlr_info *h = shost_to_hba(sh);
4164 unsigned long flags;
4165
4166 if (do_not_scan_if_controller_locked_up(h))
4167 return;
4168
4169 /* wait until any scan already in progress is finished. */
4170 while (1) {
4171 spin_lock_irqsave(&h->scan_lock, flags);
4172 if (h->scan_finished)
4173 break;
4174 spin_unlock_irqrestore(&h->scan_lock, flags);
4175 wait_event(h->scan_wait_queue, h->scan_finished);
4176 /* Note: We don't need to worry about a race between this
4177 * thread and driver unload because the midlayer will
4178 * have incremented the reference count, so unload won't
4179 * happen if we're in here.
4180 */
4181 }
4182 h->scan_finished = 0; /* mark scan as in progress */
4183 spin_unlock_irqrestore(&h->scan_lock, flags);
4184
4185 if (do_not_scan_if_controller_locked_up(h))
4186 return;
4187
4188 hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4189
4190 spin_lock_irqsave(&h->scan_lock, flags);
4191 h->scan_finished = 1; /* mark scan as finished. */
4192 wake_up_all(&h->scan_wait_queue);
4193 spin_unlock_irqrestore(&h->scan_lock, flags);
4194 }
4195
4196 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
4197 {
4198 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
4199
4200 if (!logical_drive)
4201 return -ENODEV;
4202
4203 if (qdepth < 1)
4204 qdepth = 1;
4205 else if (qdepth > logical_drive->queue_depth)
4206 qdepth = logical_drive->queue_depth;
4207
4208 return scsi_change_queue_depth(sdev, qdepth);
4209 }
4210
4211 static int hpsa_scan_finished(struct Scsi_Host *sh,
4212 unsigned long elapsed_time)
4213 {
4214 struct ctlr_info *h = shost_to_hba(sh);
4215 unsigned long flags;
4216 int finished;
4217
4218 spin_lock_irqsave(&h->scan_lock, flags);
4219 finished = h->scan_finished;
4220 spin_unlock_irqrestore(&h->scan_lock, flags);
4221 return finished;
4222 }
4223
4224 static void hpsa_unregister_scsi(struct ctlr_info *h)
4225 {
4226 /* we are being forcibly unloaded, and may not refuse. */
4227 scsi_remove_host(h->scsi_host);
4228 scsi_host_put(h->scsi_host);
4229 h->scsi_host = NULL;
4230 }
4231
4232 static int hpsa_register_scsi(struct ctlr_info *h)
4233 {
4234 struct Scsi_Host *sh;
4235 int error;
4236
4237 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4238 if (sh == NULL)
4239 goto fail;
4240
4241 sh->io_port = 0;
4242 sh->n_io_port = 0;
4243 sh->this_id = -1;
4244 sh->max_channel = 3;
4245 sh->max_cmd_len = MAX_COMMAND_SIZE;
4246 sh->max_lun = HPSA_MAX_LUN;
4247 sh->max_id = HPSA_MAX_LUN;
4248 sh->can_queue = h->nr_cmds -
4249 HPSA_CMDS_RESERVED_FOR_ABORTS -
4250 HPSA_CMDS_RESERVED_FOR_DRIVER -
4251 HPSA_MAX_CONCURRENT_PASSTHRUS;
4252 sh->cmd_per_lun = sh->can_queue;
4253 sh->sg_tablesize = h->maxsgentries;
4254 h->scsi_host = sh;
4255 sh->hostdata[0] = (unsigned long) h;
4256 sh->irq = h->intr[h->intr_mode];
4257 sh->unique_id = sh->irq;
4258 error = scsi_add_host(sh, &h->pdev->dev);
4259 if (error)
4260 goto fail_host_put;
4261 scsi_scan_host(sh);
4262 return 0;
4263
4264 fail_host_put:
4265 dev_err(&h->pdev->dev, "%s: scsi_add_host"
4266 " failed for controller %d\n", __func__, h->ctlr);
4267 scsi_host_put(sh);
4268 return error;
4269 fail:
4270 dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
4271 " failed for controller %d\n", __func__, h->ctlr);
4272 return -ENOMEM;
4273 }
4274
4275 static int wait_for_device_to_become_ready(struct ctlr_info *h,
4276 unsigned char lunaddr[])
4277 {
4278 int rc;
4279 int count = 0;
4280 int waittime = 1; /* seconds */
4281 struct CommandList *c;
4282
4283 c = cmd_alloc(h);
4284 if (!c) {
4285 dev_warn(&h->pdev->dev, "out of memory in "
4286 "wait_for_device_to_become_ready.\n");
4287 return IO_ERROR;
4288 }
4289
4290 /* Send test unit ready until device ready, or give up. */
4291 while (count < HPSA_TUR_RETRY_LIMIT) {
4292
4293 /* Wait for a bit. do this first, because if we send
4294 * the TUR right away, the reset will just abort it.
4295 */
4296 msleep(1000 * waittime);
4297 count++;
4298 rc = 0; /* Device ready. */
4299
4300 /* Increase wait time with each try, up to a point. */
4301 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
4302 waittime = waittime * 2;
4303
4304 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4305 (void) fill_cmd(c, TEST_UNIT_READY, h,
4306 NULL, 0, 0, lunaddr, TYPE_CMD);
4307 hpsa_scsi_do_simple_cmd_core(h, c);
4308 /* no unmap needed here because no data xfer. */
4309
4310 if (c->err_info->CommandStatus == CMD_SUCCESS)
4311 break;
4312
4313 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
4314 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
4315 (c->err_info->SenseInfo[2] == NO_SENSE ||
4316 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
4317 break;
4318
4319 dev_warn(&h->pdev->dev, "waiting %d secs "
4320 "for device to become ready.\n", waittime);
4321 rc = 1; /* device not ready. */
4322 }
4323
4324 if (rc)
4325 dev_warn(&h->pdev->dev, "giving up on device.\n");
4326 else
4327 dev_warn(&h->pdev->dev, "device is ready.\n");
4328
4329 cmd_free(h, c);
4330 return rc;
4331 }
4332
4333 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
4334 * complaining. Doing a host- or bus-reset can't do anything good here.
4335 */
4336 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
4337 {
4338 int rc;
4339 struct ctlr_info *h;
4340 struct hpsa_scsi_dev_t *dev;
4341
4342 /* find the controller to which the command to be aborted was sent */
4343 h = sdev_to_hba(scsicmd->device);
4344 if (h == NULL) /* paranoia */
4345 return FAILED;
4346 dev = scsicmd->device->hostdata;
4347 if (!dev) {
4348 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
4349 "device lookup failed.\n");
4350 return FAILED;
4351 }
4352 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
4353 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4354 /* send a reset to the SCSI LUN which the command was sent to */
4355 rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN);
4356 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
4357 return SUCCESS;
4358
4359 dev_warn(&h->pdev->dev, "resetting device failed.\n");
4360 return FAILED;
4361 }
4362
4363 static void swizzle_abort_tag(u8 *tag)
4364 {
4365 u8 original_tag[8];
4366
4367 memcpy(original_tag, tag, 8);
4368 tag[0] = original_tag[3];
4369 tag[1] = original_tag[2];
4370 tag[2] = original_tag[1];
4371 tag[3] = original_tag[0];
4372 tag[4] = original_tag[7];
4373 tag[5] = original_tag[6];
4374 tag[6] = original_tag[5];
4375 tag[7] = original_tag[4];
4376 }
4377
4378 static void hpsa_get_tag(struct ctlr_info *h,
4379 struct CommandList *c, __le32 *taglower, __le32 *tagupper)
4380 {
4381 u64 tag;
4382 if (c->cmd_type == CMD_IOACCEL1) {
4383 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
4384 &h->ioaccel_cmd_pool[c->cmdindex];
4385 tag = le64_to_cpu(cm1->tag);
4386 *tagupper = cpu_to_le32(tag >> 32);
4387 *taglower = cpu_to_le32(tag);
4388 return;
4389 }
4390 if (c->cmd_type == CMD_IOACCEL2) {
4391 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
4392 &h->ioaccel2_cmd_pool[c->cmdindex];
4393 /* upper tag not used in ioaccel2 mode */
4394 memset(tagupper, 0, sizeof(*tagupper));
4395 *taglower = cm2->Tag;
4396 return;
4397 }
4398 tag = le64_to_cpu(c->Header.tag);
4399 *tagupper = cpu_to_le32(tag >> 32);
4400 *taglower = cpu_to_le32(tag);
4401 }
4402
4403 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
4404 struct CommandList *abort, int swizzle)
4405 {
4406 int rc = IO_OK;
4407 struct CommandList *c;
4408 struct ErrorInfo *ei;
4409 __le32 tagupper, taglower;
4410
4411 c = cmd_alloc(h);
4412 if (c == NULL) { /* trouble... */
4413 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
4414 return -ENOMEM;
4415 }
4416
4417 /* fill_cmd can't fail here, no buffer to map */
4418 (void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
4419 0, 0, scsi3addr, TYPE_MSG);
4420 if (swizzle)
4421 swizzle_abort_tag(&c->Request.CDB[4]);
4422 hpsa_scsi_do_simple_cmd_core(h, c);
4423 hpsa_get_tag(h, abort, &taglower, &tagupper);
4424 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
4425 __func__, tagupper, taglower);
4426 /* no unmap needed here because no data xfer. */
4427
4428 ei = c->err_info;
4429 switch (ei->CommandStatus) {
4430 case CMD_SUCCESS:
4431 break;
4432 case CMD_UNABORTABLE: /* Very common, don't make noise. */
4433 rc = -1;
4434 break;
4435 default:
4436 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4437 __func__, tagupper, taglower);
4438 hpsa_scsi_interpret_error(h, c);
4439 rc = -1;
4440 break;
4441 }
4442 cmd_free(h, c);
4443 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
4444 __func__, tagupper, taglower);
4445 return rc;
4446 }
4447
4448 /* ioaccel2 path firmware cannot handle abort task requests.
4449 * Change abort requests to physical target reset, and send to the
4450 * address of the physical disk used for the ioaccel 2 command.
4451 * Return 0 on success (IO_OK)
4452 * -1 on failure
4453 */
4454
4455 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
4456 unsigned char *scsi3addr, struct CommandList *abort)
4457 {
4458 int rc = IO_OK;
4459 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
4460 struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
4461 unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
4462 unsigned char *psa = &phys_scsi3addr[0];
4463
4464 /* Get a pointer to the hpsa logical device. */
4465 scmd = (struct scsi_cmnd *) abort->scsi_cmd;
4466 dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
4467 if (dev == NULL) {
4468 dev_warn(&h->pdev->dev,
4469 "Cannot abort: no device pointer for command.\n");
4470 return -1; /* not abortable */
4471 }
4472
4473 if (h->raid_offload_debug > 0)
4474 dev_info(&h->pdev->dev,
4475 "Reset as abort: Abort requested on C%d:B%d:T%d:L%d scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4476 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
4477 scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
4478 scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
4479
4480 if (!dev->offload_enabled) {
4481 dev_warn(&h->pdev->dev,
4482 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
4483 return -1; /* not abortable */
4484 }
4485
4486 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
4487 if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
4488 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
4489 return -1; /* not abortable */
4490 }
4491
4492 /* send the reset */
4493 if (h->raid_offload_debug > 0)
4494 dev_info(&h->pdev->dev,
4495 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4496 psa[0], psa[1], psa[2], psa[3],
4497 psa[4], psa[5], psa[6], psa[7]);
4498 rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET);
4499 if (rc != 0) {
4500 dev_warn(&h->pdev->dev,
4501 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4502 psa[0], psa[1], psa[2], psa[3],
4503 psa[4], psa[5], psa[6], psa[7]);
4504 return rc; /* failed to reset */
4505 }
4506
4507 /* wait for device to recover */
4508 if (wait_for_device_to_become_ready(h, psa) != 0) {
4509 dev_warn(&h->pdev->dev,
4510 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4511 psa[0], psa[1], psa[2], psa[3],
4512 psa[4], psa[5], psa[6], psa[7]);
4513 return -1; /* failed to recover */
4514 }
4515
4516 /* device recovered */
4517 dev_info(&h->pdev->dev,
4518 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4519 psa[0], psa[1], psa[2], psa[3],
4520 psa[4], psa[5], psa[6], psa[7]);
4521
4522 return rc; /* success */
4523 }
4524
4525 /* Some Smart Arrays need the abort tag swizzled, and some don't. It's hard to
4526 * tell which kind we're dealing with, so we send the abort both ways. There
4527 * shouldn't be any collisions between swizzled and unswizzled tags due to the
4528 * way we construct our tags but we check anyway in case the assumptions which
4529 * make this true someday become false.
4530 */
4531 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
4532 unsigned char *scsi3addr, struct CommandList *abort)
4533 {
4534 /* ioccelerator mode 2 commands should be aborted via the
4535 * accelerated path, since RAID path is unaware of these commands,
4536 * but underlying firmware can't handle abort TMF.
4537 * Change abort to physical device reset.
4538 */
4539 if (abort->cmd_type == CMD_IOACCEL2)
4540 return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort);
4541
4542 return hpsa_send_abort(h, scsi3addr, abort, 0) &&
4543 hpsa_send_abort(h, scsi3addr, abort, 1);
4544 }
4545
4546 /* Send an abort for the specified command.
4547 * If the device and controller support it,
4548 * send a task abort request.
4549 */
4550 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
4551 {
4552
4553 int i, rc;
4554 struct ctlr_info *h;
4555 struct hpsa_scsi_dev_t *dev;
4556 struct CommandList *abort; /* pointer to command to be aborted */
4557 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
4558 char msg[256]; /* For debug messaging. */
4559 int ml = 0;
4560 __le32 tagupper, taglower;
4561 int refcount;
4562
4563 /* Find the controller of the command to be aborted */
4564 h = sdev_to_hba(sc->device);
4565 if (WARN(h == NULL,
4566 "ABORT REQUEST FAILED, Controller lookup failed.\n"))
4567 return FAILED;
4568
4569 /* Check that controller supports some kind of task abort */
4570 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
4571 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
4572 return FAILED;
4573
4574 memset(msg, 0, sizeof(msg));
4575 ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%llu ",
4576 h->scsi_host->host_no, sc->device->channel,
4577 sc->device->id, sc->device->lun);
4578
4579 /* Find the device of the command to be aborted */
4580 dev = sc->device->hostdata;
4581 if (!dev) {
4582 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
4583 msg);
4584 return FAILED;
4585 }
4586
4587 /* Get SCSI command to be aborted */
4588 abort = (struct CommandList *) sc->host_scribble;
4589 if (abort == NULL) {
4590 /* This can happen if the command already completed. */
4591 return SUCCESS;
4592 }
4593 refcount = atomic_inc_return(&abort->refcount);
4594 if (refcount == 1) { /* Command is done already. */
4595 cmd_free(h, abort);
4596 return SUCCESS;
4597 }
4598 hpsa_get_tag(h, abort, &taglower, &tagupper);
4599 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
4600 as = (struct scsi_cmnd *) abort->scsi_cmd;
4601 if (as != NULL)
4602 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
4603 as->cmnd[0], as->serial_number);
4604 dev_dbg(&h->pdev->dev, "%s\n", msg);
4605 dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
4606 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4607 /*
4608 * Command is in flight, or possibly already completed
4609 * by the firmware (but not to the scsi mid layer) but we can't
4610 * distinguish which. Send the abort down.
4611 */
4612 rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
4613 if (rc != 0) {
4614 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
4615 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
4616 h->scsi_host->host_no,
4617 dev->bus, dev->target, dev->lun);
4618 cmd_free(h, abort);
4619 return FAILED;
4620 }
4621 dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
4622
4623 /* If the abort(s) above completed and actually aborted the
4624 * command, then the command to be aborted should already be
4625 * completed. If not, wait around a bit more to see if they
4626 * manage to complete normally.
4627 */
4628 #define ABORT_COMPLETE_WAIT_SECS 30
4629 for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
4630 refcount = atomic_read(&abort->refcount);
4631 if (refcount < 2) {
4632 cmd_free(h, abort);
4633 return SUCCESS;
4634 } else {
4635 msleep(100);
4636 }
4637 }
4638 dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
4639 msg, ABORT_COMPLETE_WAIT_SECS);
4640 cmd_free(h, abort);
4641 return FAILED;
4642 }
4643
4644 /*
4645 * For operations that cannot sleep, a command block is allocated at init,
4646 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
4647 * which ones are free or in use. Lock must be held when calling this.
4648 * cmd_free() is the complement.
4649 */
4650
4651 static struct CommandList *cmd_alloc(struct ctlr_info *h)
4652 {
4653 struct CommandList *c;
4654 int i;
4655 union u64bit temp64;
4656 dma_addr_t cmd_dma_handle, err_dma_handle;
4657 int refcount;
4658 unsigned long offset;
4659
4660 /*
4661 * There is some *extremely* small but non-zero chance that that
4662 * multiple threads could get in here, and one thread could
4663 * be scanning through the list of bits looking for a free
4664 * one, but the free ones are always behind him, and other
4665 * threads sneak in behind him and eat them before he can
4666 * get to them, so that while there is always a free one, a
4667 * very unlucky thread might be starved anyway, never able to
4668 * beat the other threads. In reality, this happens so
4669 * infrequently as to be indistinguishable from never.
4670 */
4671
4672 offset = h->last_allocation; /* benignly racy */
4673 for (;;) {
4674 i = find_next_zero_bit(h->cmd_pool_bits, h->nr_cmds, offset);
4675 if (unlikely(i == h->nr_cmds)) {
4676 offset = 0;
4677 continue;
4678 }
4679 c = h->cmd_pool + i;
4680 refcount = atomic_inc_return(&c->refcount);
4681 if (unlikely(refcount > 1)) {
4682 cmd_free(h, c); /* already in use */
4683 offset = (i + 1) % h->nr_cmds;
4684 continue;
4685 }
4686 set_bit(i & (BITS_PER_LONG - 1),
4687 h->cmd_pool_bits + (i / BITS_PER_LONG));
4688 break; /* it's ours now. */
4689 }
4690 h->last_allocation = i; /* benignly racy */
4691
4692 /* Zero out all of commandlist except the last field, refcount */
4693 memset(c, 0, offsetof(struct CommandList, refcount));
4694 c->Header.tag = cpu_to_le64((u64) (i << DIRECT_LOOKUP_SHIFT));
4695 cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(*c);
4696 c->err_info = h->errinfo_pool + i;
4697 memset(c->err_info, 0, sizeof(*c->err_info));
4698 err_dma_handle = h->errinfo_pool_dhandle
4699 + i * sizeof(*c->err_info);
4700
4701 c->cmdindex = i;
4702
4703 c->busaddr = (u32) cmd_dma_handle;
4704 temp64.val = (u64) err_dma_handle;
4705 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
4706 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
4707
4708 c->h = h;
4709 return c;
4710 }
4711
4712 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
4713 {
4714 if (atomic_dec_and_test(&c->refcount)) {
4715 int i;
4716
4717 i = c - h->cmd_pool;
4718 clear_bit(i & (BITS_PER_LONG - 1),
4719 h->cmd_pool_bits + (i / BITS_PER_LONG));
4720 }
4721 }
4722
4723 #ifdef CONFIG_COMPAT
4724
4725 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
4726 void __user *arg)
4727 {
4728 IOCTL32_Command_struct __user *arg32 =
4729 (IOCTL32_Command_struct __user *) arg;
4730 IOCTL_Command_struct arg64;
4731 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
4732 int err;
4733 u32 cp;
4734
4735 memset(&arg64, 0, sizeof(arg64));
4736 err = 0;
4737 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4738 sizeof(arg64.LUN_info));
4739 err |= copy_from_user(&arg64.Request, &arg32->Request,
4740 sizeof(arg64.Request));
4741 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4742 sizeof(arg64.error_info));
4743 err |= get_user(arg64.buf_size, &arg32->buf_size);
4744 err |= get_user(cp, &arg32->buf);
4745 arg64.buf = compat_ptr(cp);
4746 err |= copy_to_user(p, &arg64, sizeof(arg64));
4747
4748 if (err)
4749 return -EFAULT;
4750
4751 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
4752 if (err)
4753 return err;
4754 err |= copy_in_user(&arg32->error_info, &p->error_info,
4755 sizeof(arg32->error_info));
4756 if (err)
4757 return -EFAULT;
4758 return err;
4759 }
4760
4761 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
4762 int cmd, void __user *arg)
4763 {
4764 BIG_IOCTL32_Command_struct __user *arg32 =
4765 (BIG_IOCTL32_Command_struct __user *) arg;
4766 BIG_IOCTL_Command_struct arg64;
4767 BIG_IOCTL_Command_struct __user *p =
4768 compat_alloc_user_space(sizeof(arg64));
4769 int err;
4770 u32 cp;
4771
4772 memset(&arg64, 0, sizeof(arg64));
4773 err = 0;
4774 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4775 sizeof(arg64.LUN_info));
4776 err |= copy_from_user(&arg64.Request, &arg32->Request,
4777 sizeof(arg64.Request));
4778 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4779 sizeof(arg64.error_info));
4780 err |= get_user(arg64.buf_size, &arg32->buf_size);
4781 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
4782 err |= get_user(cp, &arg32->buf);
4783 arg64.buf = compat_ptr(cp);
4784 err |= copy_to_user(p, &arg64, sizeof(arg64));
4785
4786 if (err)
4787 return -EFAULT;
4788
4789 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
4790 if (err)
4791 return err;
4792 err |= copy_in_user(&arg32->error_info, &p->error_info,
4793 sizeof(arg32->error_info));
4794 if (err)
4795 return -EFAULT;
4796 return err;
4797 }
4798
4799 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
4800 {
4801 switch (cmd) {
4802 case CCISS_GETPCIINFO:
4803 case CCISS_GETINTINFO:
4804 case CCISS_SETINTINFO:
4805 case CCISS_GETNODENAME:
4806 case CCISS_SETNODENAME:
4807 case CCISS_GETHEARTBEAT:
4808 case CCISS_GETBUSTYPES:
4809 case CCISS_GETFIRMVER:
4810 case CCISS_GETDRIVVER:
4811 case CCISS_REVALIDVOLS:
4812 case CCISS_DEREGDISK:
4813 case CCISS_REGNEWDISK:
4814 case CCISS_REGNEWD:
4815 case CCISS_RESCANDISK:
4816 case CCISS_GETLUNINFO:
4817 return hpsa_ioctl(dev, cmd, arg);
4818
4819 case CCISS_PASSTHRU32:
4820 return hpsa_ioctl32_passthru(dev, cmd, arg);
4821 case CCISS_BIG_PASSTHRU32:
4822 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
4823
4824 default:
4825 return -ENOIOCTLCMD;
4826 }
4827 }
4828 #endif
4829
4830 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
4831 {
4832 struct hpsa_pci_info pciinfo;
4833
4834 if (!argp)
4835 return -EINVAL;
4836 pciinfo.domain = pci_domain_nr(h->pdev->bus);
4837 pciinfo.bus = h->pdev->bus->number;
4838 pciinfo.dev_fn = h->pdev->devfn;
4839 pciinfo.board_id = h->board_id;
4840 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
4841 return -EFAULT;
4842 return 0;
4843 }
4844
4845 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
4846 {
4847 DriverVer_type DriverVer;
4848 unsigned char vmaj, vmin, vsubmin;
4849 int rc;
4850
4851 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
4852 &vmaj, &vmin, &vsubmin);
4853 if (rc != 3) {
4854 dev_info(&h->pdev->dev, "driver version string '%s' "
4855 "unrecognized.", HPSA_DRIVER_VERSION);
4856 vmaj = 0;
4857 vmin = 0;
4858 vsubmin = 0;
4859 }
4860 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
4861 if (!argp)
4862 return -EINVAL;
4863 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
4864 return -EFAULT;
4865 return 0;
4866 }
4867
4868 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4869 {
4870 IOCTL_Command_struct iocommand;
4871 struct CommandList *c;
4872 char *buff = NULL;
4873 u64 temp64;
4874 int rc = 0;
4875
4876 if (!argp)
4877 return -EINVAL;
4878 if (!capable(CAP_SYS_RAWIO))
4879 return -EPERM;
4880 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
4881 return -EFAULT;
4882 if ((iocommand.buf_size < 1) &&
4883 (iocommand.Request.Type.Direction != XFER_NONE)) {
4884 return -EINVAL;
4885 }
4886 if (iocommand.buf_size > 0) {
4887 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
4888 if (buff == NULL)
4889 return -EFAULT;
4890 if (iocommand.Request.Type.Direction & XFER_WRITE) {
4891 /* Copy the data into the buffer we created */
4892 if (copy_from_user(buff, iocommand.buf,
4893 iocommand.buf_size)) {
4894 rc = -EFAULT;
4895 goto out_kfree;
4896 }
4897 } else {
4898 memset(buff, 0, iocommand.buf_size);
4899 }
4900 }
4901 c = cmd_alloc(h);
4902 if (c == NULL) {
4903 rc = -ENOMEM;
4904 goto out_kfree;
4905 }
4906 /* Fill in the command type */
4907 c->cmd_type = CMD_IOCTL_PEND;
4908 /* Fill in Command Header */
4909 c->Header.ReplyQueue = 0; /* unused in simple mode */
4910 if (iocommand.buf_size > 0) { /* buffer to fill */
4911 c->Header.SGList = 1;
4912 c->Header.SGTotal = cpu_to_le16(1);
4913 } else { /* no buffers to fill */
4914 c->Header.SGList = 0;
4915 c->Header.SGTotal = cpu_to_le16(0);
4916 }
4917 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
4918
4919 /* Fill in Request block */
4920 memcpy(&c->Request, &iocommand.Request,
4921 sizeof(c->Request));
4922
4923 /* Fill in the scatter gather information */
4924 if (iocommand.buf_size > 0) {
4925 temp64 = pci_map_single(h->pdev, buff,
4926 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
4927 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
4928 c->SG[0].Addr = cpu_to_le64(0);
4929 c->SG[0].Len = cpu_to_le32(0);
4930 rc = -ENOMEM;
4931 goto out;
4932 }
4933 c->SG[0].Addr = cpu_to_le64(temp64);
4934 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
4935 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
4936 }
4937 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
4938 if (iocommand.buf_size > 0)
4939 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
4940 check_ioctl_unit_attention(h, c);
4941
4942 /* Copy the error information out */
4943 memcpy(&iocommand.error_info, c->err_info,
4944 sizeof(iocommand.error_info));
4945 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
4946 rc = -EFAULT;
4947 goto out;
4948 }
4949 if ((iocommand.Request.Type.Direction & XFER_READ) &&
4950 iocommand.buf_size > 0) {
4951 /* Copy the data out of the buffer we created */
4952 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
4953 rc = -EFAULT;
4954 goto out;
4955 }
4956 }
4957 out:
4958 cmd_free(h, c);
4959 out_kfree:
4960 kfree(buff);
4961 return rc;
4962 }
4963
4964 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4965 {
4966 BIG_IOCTL_Command_struct *ioc;
4967 struct CommandList *c;
4968 unsigned char **buff = NULL;
4969 int *buff_size = NULL;
4970 u64 temp64;
4971 BYTE sg_used = 0;
4972 int status = 0;
4973 u32 left;
4974 u32 sz;
4975 BYTE __user *data_ptr;
4976
4977 if (!argp)
4978 return -EINVAL;
4979 if (!capable(CAP_SYS_RAWIO))
4980 return -EPERM;
4981 ioc = (BIG_IOCTL_Command_struct *)
4982 kmalloc(sizeof(*ioc), GFP_KERNEL);
4983 if (!ioc) {
4984 status = -ENOMEM;
4985 goto cleanup1;
4986 }
4987 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
4988 status = -EFAULT;
4989 goto cleanup1;
4990 }
4991 if ((ioc->buf_size < 1) &&
4992 (ioc->Request.Type.Direction != XFER_NONE)) {
4993 status = -EINVAL;
4994 goto cleanup1;
4995 }
4996 /* Check kmalloc limits using all SGs */
4997 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
4998 status = -EINVAL;
4999 goto cleanup1;
5000 }
5001 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
5002 status = -EINVAL;
5003 goto cleanup1;
5004 }
5005 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
5006 if (!buff) {
5007 status = -ENOMEM;
5008 goto cleanup1;
5009 }
5010 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
5011 if (!buff_size) {
5012 status = -ENOMEM;
5013 goto cleanup1;
5014 }
5015 left = ioc->buf_size;
5016 data_ptr = ioc->buf;
5017 while (left) {
5018 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
5019 buff_size[sg_used] = sz;
5020 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
5021 if (buff[sg_used] == NULL) {
5022 status = -ENOMEM;
5023 goto cleanup1;
5024 }
5025 if (ioc->Request.Type.Direction & XFER_WRITE) {
5026 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
5027 status = -EFAULT;
5028 goto cleanup1;
5029 }
5030 } else
5031 memset(buff[sg_used], 0, sz);
5032 left -= sz;
5033 data_ptr += sz;
5034 sg_used++;
5035 }
5036 c = cmd_alloc(h);
5037 if (c == NULL) {
5038 status = -ENOMEM;
5039 goto cleanup1;
5040 }
5041 c->cmd_type = CMD_IOCTL_PEND;
5042 c->Header.ReplyQueue = 0;
5043 c->Header.SGList = (u8) sg_used;
5044 c->Header.SGTotal = cpu_to_le16(sg_used);
5045 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
5046 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
5047 if (ioc->buf_size > 0) {
5048 int i;
5049 for (i = 0; i < sg_used; i++) {
5050 temp64 = pci_map_single(h->pdev, buff[i],
5051 buff_size[i], PCI_DMA_BIDIRECTIONAL);
5052 if (dma_mapping_error(&h->pdev->dev,
5053 (dma_addr_t) temp64)) {
5054 c->SG[i].Addr = cpu_to_le64(0);
5055 c->SG[i].Len = cpu_to_le32(0);
5056 hpsa_pci_unmap(h->pdev, c, i,
5057 PCI_DMA_BIDIRECTIONAL);
5058 status = -ENOMEM;
5059 goto cleanup0;
5060 }
5061 c->SG[i].Addr = cpu_to_le64(temp64);
5062 c->SG[i].Len = cpu_to_le32(buff_size[i]);
5063 c->SG[i].Ext = cpu_to_le32(0);
5064 }
5065 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
5066 }
5067 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
5068 if (sg_used)
5069 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
5070 check_ioctl_unit_attention(h, c);
5071 /* Copy the error information out */
5072 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
5073 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
5074 status = -EFAULT;
5075 goto cleanup0;
5076 }
5077 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
5078 int i;
5079
5080 /* Copy the data out of the buffer we created */
5081 BYTE __user *ptr = ioc->buf;
5082 for (i = 0; i < sg_used; i++) {
5083 if (copy_to_user(ptr, buff[i], buff_size[i])) {
5084 status = -EFAULT;
5085 goto cleanup0;
5086 }
5087 ptr += buff_size[i];
5088 }
5089 }
5090 status = 0;
5091 cleanup0:
5092 cmd_free(h, c);
5093 cleanup1:
5094 if (buff) {
5095 int i;
5096
5097 for (i = 0; i < sg_used; i++)
5098 kfree(buff[i]);
5099 kfree(buff);
5100 }
5101 kfree(buff_size);
5102 kfree(ioc);
5103 return status;
5104 }
5105
5106 static void check_ioctl_unit_attention(struct ctlr_info *h,
5107 struct CommandList *c)
5108 {
5109 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5110 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
5111 (void) check_for_unit_attention(h, c);
5112 }
5113
5114 /*
5115 * ioctl
5116 */
5117 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5118 {
5119 struct ctlr_info *h;
5120 void __user *argp = (void __user *)arg;
5121 int rc;
5122
5123 h = sdev_to_hba(dev);
5124
5125 switch (cmd) {
5126 case CCISS_DEREGDISK:
5127 case CCISS_REGNEWDISK:
5128 case CCISS_REGNEWD:
5129 hpsa_scan_start(h->scsi_host);
5130 return 0;
5131 case CCISS_GETPCIINFO:
5132 return hpsa_getpciinfo_ioctl(h, argp);
5133 case CCISS_GETDRIVVER:
5134 return hpsa_getdrivver_ioctl(h, argp);
5135 case CCISS_PASSTHRU:
5136 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
5137 return -EAGAIN;
5138 rc = hpsa_passthru_ioctl(h, argp);
5139 atomic_inc(&h->passthru_cmds_avail);
5140 return rc;
5141 case CCISS_BIG_PASSTHRU:
5142 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
5143 return -EAGAIN;
5144 rc = hpsa_big_passthru_ioctl(h, argp);
5145 atomic_inc(&h->passthru_cmds_avail);
5146 return rc;
5147 default:
5148 return -ENOTTY;
5149 }
5150 }
5151
5152 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
5153 u8 reset_type)
5154 {
5155 struct CommandList *c;
5156
5157 c = cmd_alloc(h);
5158 if (!c)
5159 return -ENOMEM;
5160 /* fill_cmd can't fail here, no data buffer to map */
5161 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
5162 RAID_CTLR_LUNID, TYPE_MSG);
5163 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
5164 c->waiting = NULL;
5165 enqueue_cmd_and_start_io(h, c);
5166 /* Don't wait for completion, the reset won't complete. Don't free
5167 * the command either. This is the last command we will send before
5168 * re-initializing everything, so it doesn't matter and won't leak.
5169 */
5170 return 0;
5171 }
5172
5173 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
5174 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
5175 int cmd_type)
5176 {
5177 int pci_dir = XFER_NONE;
5178 struct CommandList *a; /* for commands to be aborted */
5179
5180 c->cmd_type = CMD_IOCTL_PEND;
5181 c->Header.ReplyQueue = 0;
5182 if (buff != NULL && size > 0) {
5183 c->Header.SGList = 1;
5184 c->Header.SGTotal = cpu_to_le16(1);
5185 } else {
5186 c->Header.SGList = 0;
5187 c->Header.SGTotal = cpu_to_le16(0);
5188 }
5189 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
5190
5191 if (cmd_type == TYPE_CMD) {
5192 switch (cmd) {
5193 case HPSA_INQUIRY:
5194 /* are we trying to read a vital product page */
5195 if (page_code & VPD_PAGE) {
5196 c->Request.CDB[1] = 0x01;
5197 c->Request.CDB[2] = (page_code & 0xff);
5198 }
5199 c->Request.CDBLen = 6;
5200 c->Request.type_attr_dir =
5201 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5202 c->Request.Timeout = 0;
5203 c->Request.CDB[0] = HPSA_INQUIRY;
5204 c->Request.CDB[4] = size & 0xFF;
5205 break;
5206 case HPSA_REPORT_LOG:
5207 case HPSA_REPORT_PHYS:
5208 /* Talking to controller so It's a physical command
5209 mode = 00 target = 0. Nothing to write.
5210 */
5211 c->Request.CDBLen = 12;
5212 c->Request.type_attr_dir =
5213 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5214 c->Request.Timeout = 0;
5215 c->Request.CDB[0] = cmd;
5216 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5217 c->Request.CDB[7] = (size >> 16) & 0xFF;
5218 c->Request.CDB[8] = (size >> 8) & 0xFF;
5219 c->Request.CDB[9] = size & 0xFF;
5220 break;
5221 case HPSA_CACHE_FLUSH:
5222 c->Request.CDBLen = 12;
5223 c->Request.type_attr_dir =
5224 TYPE_ATTR_DIR(cmd_type,
5225 ATTR_SIMPLE, XFER_WRITE);
5226 c->Request.Timeout = 0;
5227 c->Request.CDB[0] = BMIC_WRITE;
5228 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
5229 c->Request.CDB[7] = (size >> 8) & 0xFF;
5230 c->Request.CDB[8] = size & 0xFF;
5231 break;
5232 case TEST_UNIT_READY:
5233 c->Request.CDBLen = 6;
5234 c->Request.type_attr_dir =
5235 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5236 c->Request.Timeout = 0;
5237 break;
5238 case HPSA_GET_RAID_MAP:
5239 c->Request.CDBLen = 12;
5240 c->Request.type_attr_dir =
5241 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5242 c->Request.Timeout = 0;
5243 c->Request.CDB[0] = HPSA_CISS_READ;
5244 c->Request.CDB[1] = cmd;
5245 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5246 c->Request.CDB[7] = (size >> 16) & 0xFF;
5247 c->Request.CDB[8] = (size >> 8) & 0xFF;
5248 c->Request.CDB[9] = size & 0xFF;
5249 break;
5250 case BMIC_SENSE_CONTROLLER_PARAMETERS:
5251 c->Request.CDBLen = 10;
5252 c->Request.type_attr_dir =
5253 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5254 c->Request.Timeout = 0;
5255 c->Request.CDB[0] = BMIC_READ;
5256 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
5257 c->Request.CDB[7] = (size >> 16) & 0xFF;
5258 c->Request.CDB[8] = (size >> 8) & 0xFF;
5259 break;
5260 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
5261 c->Request.CDBLen = 10;
5262 c->Request.type_attr_dir =
5263 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5264 c->Request.Timeout = 0;
5265 c->Request.CDB[0] = BMIC_READ;
5266 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
5267 c->Request.CDB[7] = (size >> 16) & 0xFF;
5268 c->Request.CDB[8] = (size >> 8) & 0XFF;
5269 break;
5270 default:
5271 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
5272 BUG();
5273 return -1;
5274 }
5275 } else if (cmd_type == TYPE_MSG) {
5276 switch (cmd) {
5277
5278 case HPSA_DEVICE_RESET_MSG:
5279 c->Request.CDBLen = 16;
5280 c->Request.type_attr_dir =
5281 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5282 c->Request.Timeout = 0; /* Don't time out */
5283 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
5284 c->Request.CDB[0] = cmd;
5285 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
5286 /* If bytes 4-7 are zero, it means reset the */
5287 /* LunID device */
5288 c->Request.CDB[4] = 0x00;
5289 c->Request.CDB[5] = 0x00;
5290 c->Request.CDB[6] = 0x00;
5291 c->Request.CDB[7] = 0x00;
5292 break;
5293 case HPSA_ABORT_MSG:
5294 a = buff; /* point to command to be aborted */
5295 dev_dbg(&h->pdev->dev,
5296 "Abort Tag:0x%016llx request Tag:0x%016llx",
5297 a->Header.tag, c->Header.tag);
5298 c->Request.CDBLen = 16;
5299 c->Request.type_attr_dir =
5300 TYPE_ATTR_DIR(cmd_type,
5301 ATTR_SIMPLE, XFER_WRITE);
5302 c->Request.Timeout = 0; /* Don't time out */
5303 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
5304 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
5305 c->Request.CDB[2] = 0x00; /* reserved */
5306 c->Request.CDB[3] = 0x00; /* reserved */
5307 /* Tag to abort goes in CDB[4]-CDB[11] */
5308 memcpy(&c->Request.CDB[4], &a->Header.tag,
5309 sizeof(a->Header.tag));
5310 c->Request.CDB[12] = 0x00; /* reserved */
5311 c->Request.CDB[13] = 0x00; /* reserved */
5312 c->Request.CDB[14] = 0x00; /* reserved */
5313 c->Request.CDB[15] = 0x00; /* reserved */
5314 break;
5315 default:
5316 dev_warn(&h->pdev->dev, "unknown message type %d\n",
5317 cmd);
5318 BUG();
5319 }
5320 } else {
5321 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
5322 BUG();
5323 }
5324
5325 switch (GET_DIR(c->Request.type_attr_dir)) {
5326 case XFER_READ:
5327 pci_dir = PCI_DMA_FROMDEVICE;
5328 break;
5329 case XFER_WRITE:
5330 pci_dir = PCI_DMA_TODEVICE;
5331 break;
5332 case XFER_NONE:
5333 pci_dir = PCI_DMA_NONE;
5334 break;
5335 default:
5336 pci_dir = PCI_DMA_BIDIRECTIONAL;
5337 }
5338 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
5339 return -1;
5340 return 0;
5341 }
5342
5343 /*
5344 * Map (physical) PCI mem into (virtual) kernel space
5345 */
5346 static void __iomem *remap_pci_mem(ulong base, ulong size)
5347 {
5348 ulong page_base = ((ulong) base) & PAGE_MASK;
5349 ulong page_offs = ((ulong) base) - page_base;
5350 void __iomem *page_remapped = ioremap_nocache(page_base,
5351 page_offs + size);
5352
5353 return page_remapped ? (page_remapped + page_offs) : NULL;
5354 }
5355
5356 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
5357 {
5358 return h->access.command_completed(h, q);
5359 }
5360
5361 static inline bool interrupt_pending(struct ctlr_info *h)
5362 {
5363 return h->access.intr_pending(h);
5364 }
5365
5366 static inline long interrupt_not_for_us(struct ctlr_info *h)
5367 {
5368 return (h->access.intr_pending(h) == 0) ||
5369 (h->interrupts_enabled == 0);
5370 }
5371
5372 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
5373 u32 raw_tag)
5374 {
5375 if (unlikely(tag_index >= h->nr_cmds)) {
5376 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
5377 return 1;
5378 }
5379 return 0;
5380 }
5381
5382 static inline void finish_cmd(struct CommandList *c)
5383 {
5384 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
5385 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
5386 || c->cmd_type == CMD_IOACCEL2))
5387 complete_scsi_command(c);
5388 else if (c->cmd_type == CMD_IOCTL_PEND)
5389 complete(c->waiting);
5390 }
5391
5392
5393 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
5394 {
5395 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
5396 #define HPSA_SIMPLE_ERROR_BITS 0x03
5397 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
5398 return tag & ~HPSA_SIMPLE_ERROR_BITS;
5399 return tag & ~HPSA_PERF_ERROR_BITS;
5400 }
5401
5402 /* process completion of an indexed ("direct lookup") command */
5403 static inline void process_indexed_cmd(struct ctlr_info *h,
5404 u32 raw_tag)
5405 {
5406 u32 tag_index;
5407 struct CommandList *c;
5408
5409 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
5410 if (!bad_tag(h, tag_index, raw_tag)) {
5411 c = h->cmd_pool + tag_index;
5412 finish_cmd(c);
5413 }
5414 }
5415
5416 /* Some controllers, like p400, will give us one interrupt
5417 * after a soft reset, even if we turned interrupts off.
5418 * Only need to check for this in the hpsa_xxx_discard_completions
5419 * functions.
5420 */
5421 static int ignore_bogus_interrupt(struct ctlr_info *h)
5422 {
5423 if (likely(!reset_devices))
5424 return 0;
5425
5426 if (likely(h->interrupts_enabled))
5427 return 0;
5428
5429 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
5430 "(known firmware bug.) Ignoring.\n");
5431
5432 return 1;
5433 }
5434
5435 /*
5436 * Convert &h->q[x] (passed to interrupt handlers) back to h.
5437 * Relies on (h-q[x] == x) being true for x such that
5438 * 0 <= x < MAX_REPLY_QUEUES.
5439 */
5440 static struct ctlr_info *queue_to_hba(u8 *queue)
5441 {
5442 return container_of((queue - *queue), struct ctlr_info, q[0]);
5443 }
5444
5445 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
5446 {
5447 struct ctlr_info *h = queue_to_hba(queue);
5448 u8 q = *(u8 *) queue;
5449 u32 raw_tag;
5450
5451 if (ignore_bogus_interrupt(h))
5452 return IRQ_NONE;
5453
5454 if (interrupt_not_for_us(h))
5455 return IRQ_NONE;
5456 h->last_intr_timestamp = get_jiffies_64();
5457 while (interrupt_pending(h)) {
5458 raw_tag = get_next_completion(h, q);
5459 while (raw_tag != FIFO_EMPTY)
5460 raw_tag = next_command(h, q);
5461 }
5462 return IRQ_HANDLED;
5463 }
5464
5465 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
5466 {
5467 struct ctlr_info *h = queue_to_hba(queue);
5468 u32 raw_tag;
5469 u8 q = *(u8 *) queue;
5470
5471 if (ignore_bogus_interrupt(h))
5472 return IRQ_NONE;
5473
5474 h->last_intr_timestamp = get_jiffies_64();
5475 raw_tag = get_next_completion(h, q);
5476 while (raw_tag != FIFO_EMPTY)
5477 raw_tag = next_command(h, q);
5478 return IRQ_HANDLED;
5479 }
5480
5481 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
5482 {
5483 struct ctlr_info *h = queue_to_hba((u8 *) queue);
5484 u32 raw_tag;
5485 u8 q = *(u8 *) queue;
5486
5487 if (interrupt_not_for_us(h))
5488 return IRQ_NONE;
5489 h->last_intr_timestamp = get_jiffies_64();
5490 while (interrupt_pending(h)) {
5491 raw_tag = get_next_completion(h, q);
5492 while (raw_tag != FIFO_EMPTY) {
5493 process_indexed_cmd(h, raw_tag);
5494 raw_tag = next_command(h, q);
5495 }
5496 }
5497 return IRQ_HANDLED;
5498 }
5499
5500 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
5501 {
5502 struct ctlr_info *h = queue_to_hba(queue);
5503 u32 raw_tag;
5504 u8 q = *(u8 *) queue;
5505
5506 h->last_intr_timestamp = get_jiffies_64();
5507 raw_tag = get_next_completion(h, q);
5508 while (raw_tag != FIFO_EMPTY) {
5509 process_indexed_cmd(h, raw_tag);
5510 raw_tag = next_command(h, q);
5511 }
5512 return IRQ_HANDLED;
5513 }
5514
5515 /* Send a message CDB to the firmware. Careful, this only works
5516 * in simple mode, not performant mode due to the tag lookup.
5517 * We only ever use this immediately after a controller reset.
5518 */
5519 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
5520 unsigned char type)
5521 {
5522 struct Command {
5523 struct CommandListHeader CommandHeader;
5524 struct RequestBlock Request;
5525 struct ErrDescriptor ErrorDescriptor;
5526 };
5527 struct Command *cmd;
5528 static const size_t cmd_sz = sizeof(*cmd) +
5529 sizeof(cmd->ErrorDescriptor);
5530 dma_addr_t paddr64;
5531 __le32 paddr32;
5532 u32 tag;
5533 void __iomem *vaddr;
5534 int i, err;
5535
5536 vaddr = pci_ioremap_bar(pdev, 0);
5537 if (vaddr == NULL)
5538 return -ENOMEM;
5539
5540 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
5541 * CCISS commands, so they must be allocated from the lower 4GiB of
5542 * memory.
5543 */
5544 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
5545 if (err) {
5546 iounmap(vaddr);
5547 return err;
5548 }
5549
5550 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
5551 if (cmd == NULL) {
5552 iounmap(vaddr);
5553 return -ENOMEM;
5554 }
5555
5556 /* This must fit, because of the 32-bit consistent DMA mask. Also,
5557 * although there's no guarantee, we assume that the address is at
5558 * least 4-byte aligned (most likely, it's page-aligned).
5559 */
5560 paddr32 = cpu_to_le32(paddr64);
5561
5562 cmd->CommandHeader.ReplyQueue = 0;
5563 cmd->CommandHeader.SGList = 0;
5564 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
5565 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
5566 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
5567
5568 cmd->Request.CDBLen = 16;
5569 cmd->Request.type_attr_dir =
5570 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
5571 cmd->Request.Timeout = 0; /* Don't time out */
5572 cmd->Request.CDB[0] = opcode;
5573 cmd->Request.CDB[1] = type;
5574 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
5575 cmd->ErrorDescriptor.Addr =
5576 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
5577 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
5578
5579 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
5580
5581 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
5582 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
5583 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
5584 break;
5585 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
5586 }
5587
5588 iounmap(vaddr);
5589
5590 /* we leak the DMA buffer here ... no choice since the controller could
5591 * still complete the command.
5592 */
5593 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
5594 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
5595 opcode, type);
5596 return -ETIMEDOUT;
5597 }
5598
5599 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
5600
5601 if (tag & HPSA_ERROR_BIT) {
5602 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
5603 opcode, type);
5604 return -EIO;
5605 }
5606
5607 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
5608 opcode, type);
5609 return 0;
5610 }
5611
5612 #define hpsa_noop(p) hpsa_message(p, 3, 0)
5613
5614 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
5615 void __iomem *vaddr, u32 use_doorbell)
5616 {
5617
5618 if (use_doorbell) {
5619 /* For everything after the P600, the PCI power state method
5620 * of resetting the controller doesn't work, so we have this
5621 * other way using the doorbell register.
5622 */
5623 dev_info(&pdev->dev, "using doorbell to reset controller\n");
5624 writel(use_doorbell, vaddr + SA5_DOORBELL);
5625
5626 /* PMC hardware guys tell us we need a 10 second delay after
5627 * doorbell reset and before any attempt to talk to the board
5628 * at all to ensure that this actually works and doesn't fall
5629 * over in some weird corner cases.
5630 */
5631 msleep(10000);
5632 } else { /* Try to do it the PCI power state way */
5633
5634 /* Quoting from the Open CISS Specification: "The Power
5635 * Management Control/Status Register (CSR) controls the power
5636 * state of the device. The normal operating state is D0,
5637 * CSR=00h. The software off state is D3, CSR=03h. To reset
5638 * the controller, place the interface device in D3 then to D0,
5639 * this causes a secondary PCI reset which will reset the
5640 * controller." */
5641
5642 int rc = 0;
5643
5644 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
5645
5646 /* enter the D3hot power management state */
5647 rc = pci_set_power_state(pdev, PCI_D3hot);
5648 if (rc)
5649 return rc;
5650
5651 msleep(500);
5652
5653 /* enter the D0 power management state */
5654 rc = pci_set_power_state(pdev, PCI_D0);
5655 if (rc)
5656 return rc;
5657
5658 /*
5659 * The P600 requires a small delay when changing states.
5660 * Otherwise we may think the board did not reset and we bail.
5661 * This for kdump only and is particular to the P600.
5662 */
5663 msleep(500);
5664 }
5665 return 0;
5666 }
5667
5668 static void init_driver_version(char *driver_version, int len)
5669 {
5670 memset(driver_version, 0, len);
5671 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
5672 }
5673
5674 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
5675 {
5676 char *driver_version;
5677 int i, size = sizeof(cfgtable->driver_version);
5678
5679 driver_version = kmalloc(size, GFP_KERNEL);
5680 if (!driver_version)
5681 return -ENOMEM;
5682
5683 init_driver_version(driver_version, size);
5684 for (i = 0; i < size; i++)
5685 writeb(driver_version[i], &cfgtable->driver_version[i]);
5686 kfree(driver_version);
5687 return 0;
5688 }
5689
5690 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
5691 unsigned char *driver_ver)
5692 {
5693 int i;
5694
5695 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
5696 driver_ver[i] = readb(&cfgtable->driver_version[i]);
5697 }
5698
5699 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
5700 {
5701
5702 char *driver_ver, *old_driver_ver;
5703 int rc, size = sizeof(cfgtable->driver_version);
5704
5705 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
5706 if (!old_driver_ver)
5707 return -ENOMEM;
5708 driver_ver = old_driver_ver + size;
5709
5710 /* After a reset, the 32 bytes of "driver version" in the cfgtable
5711 * should have been changed, otherwise we know the reset failed.
5712 */
5713 init_driver_version(old_driver_ver, size);
5714 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
5715 rc = !memcmp(driver_ver, old_driver_ver, size);
5716 kfree(old_driver_ver);
5717 return rc;
5718 }
5719 /* This does a hard reset of the controller using PCI power management
5720 * states or the using the doorbell register.
5721 */
5722 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
5723 {
5724 u64 cfg_offset;
5725 u32 cfg_base_addr;
5726 u64 cfg_base_addr_index;
5727 void __iomem *vaddr;
5728 unsigned long paddr;
5729 u32 misc_fw_support;
5730 int rc;
5731 struct CfgTable __iomem *cfgtable;
5732 u32 use_doorbell;
5733 u32 board_id;
5734 u16 command_register;
5735
5736 /* For controllers as old as the P600, this is very nearly
5737 * the same thing as
5738 *
5739 * pci_save_state(pci_dev);
5740 * pci_set_power_state(pci_dev, PCI_D3hot);
5741 * pci_set_power_state(pci_dev, PCI_D0);
5742 * pci_restore_state(pci_dev);
5743 *
5744 * For controllers newer than the P600, the pci power state
5745 * method of resetting doesn't work so we have another way
5746 * using the doorbell register.
5747 */
5748
5749 rc = hpsa_lookup_board_id(pdev, &board_id);
5750 if (rc < 0) {
5751 dev_warn(&pdev->dev, "Board ID not found\n");
5752 return rc;
5753 }
5754 if (!ctlr_is_resettable(board_id)) {
5755 dev_warn(&pdev->dev, "Controller not resettable\n");
5756 return -ENODEV;
5757 }
5758
5759 /* if controller is soft- but not hard resettable... */
5760 if (!ctlr_is_hard_resettable(board_id))
5761 return -ENOTSUPP; /* try soft reset later. */
5762
5763 /* Save the PCI command register */
5764 pci_read_config_word(pdev, 4, &command_register);
5765 pci_save_state(pdev);
5766
5767 /* find the first memory BAR, so we can find the cfg table */
5768 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
5769 if (rc)
5770 return rc;
5771 vaddr = remap_pci_mem(paddr, 0x250);
5772 if (!vaddr)
5773 return -ENOMEM;
5774
5775 /* find cfgtable in order to check if reset via doorbell is supported */
5776 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
5777 &cfg_base_addr_index, &cfg_offset);
5778 if (rc)
5779 goto unmap_vaddr;
5780 cfgtable = remap_pci_mem(pci_resource_start(pdev,
5781 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
5782 if (!cfgtable) {
5783 rc = -ENOMEM;
5784 goto unmap_vaddr;
5785 }
5786 rc = write_driver_ver_to_cfgtable(cfgtable);
5787 if (rc)
5788 goto unmap_cfgtable;
5789
5790 /* If reset via doorbell register is supported, use that.
5791 * There are two such methods. Favor the newest method.
5792 */
5793 misc_fw_support = readl(&cfgtable->misc_fw_support);
5794 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
5795 if (use_doorbell) {
5796 use_doorbell = DOORBELL_CTLR_RESET2;
5797 } else {
5798 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
5799 if (use_doorbell) {
5800 dev_warn(&pdev->dev,
5801 "Soft reset not supported. Firmware update is required.\n");
5802 rc = -ENOTSUPP; /* try soft reset */
5803 goto unmap_cfgtable;
5804 }
5805 }
5806
5807 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
5808 if (rc)
5809 goto unmap_cfgtable;
5810
5811 pci_restore_state(pdev);
5812 pci_write_config_word(pdev, 4, command_register);
5813
5814 /* Some devices (notably the HP Smart Array 5i Controller)
5815 need a little pause here */
5816 msleep(HPSA_POST_RESET_PAUSE_MSECS);
5817
5818 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
5819 if (rc) {
5820 dev_warn(&pdev->dev,
5821 "Failed waiting for board to become ready after hard reset\n");
5822 goto unmap_cfgtable;
5823 }
5824
5825 rc = controller_reset_failed(vaddr);
5826 if (rc < 0)
5827 goto unmap_cfgtable;
5828 if (rc) {
5829 dev_warn(&pdev->dev, "Unable to successfully reset "
5830 "controller. Will try soft reset.\n");
5831 rc = -ENOTSUPP;
5832 } else {
5833 dev_info(&pdev->dev, "board ready after hard reset.\n");
5834 }
5835
5836 unmap_cfgtable:
5837 iounmap(cfgtable);
5838
5839 unmap_vaddr:
5840 iounmap(vaddr);
5841 return rc;
5842 }
5843
5844 /*
5845 * We cannot read the structure directly, for portability we must use
5846 * the io functions.
5847 * This is for debug only.
5848 */
5849 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
5850 {
5851 #ifdef HPSA_DEBUG
5852 int i;
5853 char temp_name[17];
5854
5855 dev_info(dev, "Controller Configuration information\n");
5856 dev_info(dev, "------------------------------------\n");
5857 for (i = 0; i < 4; i++)
5858 temp_name[i] = readb(&(tb->Signature[i]));
5859 temp_name[4] = '\0';
5860 dev_info(dev, " Signature = %s\n", temp_name);
5861 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
5862 dev_info(dev, " Transport methods supported = 0x%x\n",
5863 readl(&(tb->TransportSupport)));
5864 dev_info(dev, " Transport methods active = 0x%x\n",
5865 readl(&(tb->TransportActive)));
5866 dev_info(dev, " Requested transport Method = 0x%x\n",
5867 readl(&(tb->HostWrite.TransportRequest)));
5868 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
5869 readl(&(tb->HostWrite.CoalIntDelay)));
5870 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
5871 readl(&(tb->HostWrite.CoalIntCount)));
5872 dev_info(dev, " Max outstanding commands = %d\n",
5873 readl(&(tb->CmdsOutMax)));
5874 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
5875 for (i = 0; i < 16; i++)
5876 temp_name[i] = readb(&(tb->ServerName[i]));
5877 temp_name[16] = '\0';
5878 dev_info(dev, " Server Name = %s\n", temp_name);
5879 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
5880 readl(&(tb->HeartBeat)));
5881 #endif /* HPSA_DEBUG */
5882 }
5883
5884 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
5885 {
5886 int i, offset, mem_type, bar_type;
5887
5888 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
5889 return 0;
5890 offset = 0;
5891 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
5892 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
5893 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
5894 offset += 4;
5895 else {
5896 mem_type = pci_resource_flags(pdev, i) &
5897 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
5898 switch (mem_type) {
5899 case PCI_BASE_ADDRESS_MEM_TYPE_32:
5900 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
5901 offset += 4; /* 32 bit */
5902 break;
5903 case PCI_BASE_ADDRESS_MEM_TYPE_64:
5904 offset += 8;
5905 break;
5906 default: /* reserved in PCI 2.2 */
5907 dev_warn(&pdev->dev,
5908 "base address is invalid\n");
5909 return -1;
5910 break;
5911 }
5912 }
5913 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
5914 return i + 1;
5915 }
5916 return -1;
5917 }
5918
5919 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
5920 * controllers that are capable. If not, we use legacy INTx mode.
5921 */
5922
5923 static void hpsa_interrupt_mode(struct ctlr_info *h)
5924 {
5925 #ifdef CONFIG_PCI_MSI
5926 int err, i;
5927 struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
5928
5929 for (i = 0; i < MAX_REPLY_QUEUES; i++) {
5930 hpsa_msix_entries[i].vector = 0;
5931 hpsa_msix_entries[i].entry = i;
5932 }
5933
5934 /* Some boards advertise MSI but don't really support it */
5935 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
5936 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
5937 goto default_int_mode;
5938 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
5939 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
5940 h->msix_vector = MAX_REPLY_QUEUES;
5941 if (h->msix_vector > num_online_cpus())
5942 h->msix_vector = num_online_cpus();
5943 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
5944 1, h->msix_vector);
5945 if (err < 0) {
5946 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
5947 h->msix_vector = 0;
5948 goto single_msi_mode;
5949 } else if (err < h->msix_vector) {
5950 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
5951 "available\n", err);
5952 }
5953 h->msix_vector = err;
5954 for (i = 0; i < h->msix_vector; i++)
5955 h->intr[i] = hpsa_msix_entries[i].vector;
5956 return;
5957 }
5958 single_msi_mode:
5959 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
5960 dev_info(&h->pdev->dev, "MSI capable controller\n");
5961 if (!pci_enable_msi(h->pdev))
5962 h->msi_vector = 1;
5963 else
5964 dev_warn(&h->pdev->dev, "MSI init failed\n");
5965 }
5966 default_int_mode:
5967 #endif /* CONFIG_PCI_MSI */
5968 /* if we get here we're going to use the default interrupt mode */
5969 h->intr[h->intr_mode] = h->pdev->irq;
5970 }
5971
5972 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
5973 {
5974 int i;
5975 u32 subsystem_vendor_id, subsystem_device_id;
5976
5977 subsystem_vendor_id = pdev->subsystem_vendor;
5978 subsystem_device_id = pdev->subsystem_device;
5979 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
5980 subsystem_vendor_id;
5981
5982 for (i = 0; i < ARRAY_SIZE(products); i++)
5983 if (*board_id == products[i].board_id)
5984 return i;
5985
5986 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
5987 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
5988 !hpsa_allow_any) {
5989 dev_warn(&pdev->dev, "unrecognized board ID: "
5990 "0x%08x, ignoring.\n", *board_id);
5991 return -ENODEV;
5992 }
5993 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
5994 }
5995
5996 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
5997 unsigned long *memory_bar)
5998 {
5999 int i;
6000
6001 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6002 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6003 /* addressing mode bits already removed */
6004 *memory_bar = pci_resource_start(pdev, i);
6005 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6006 *memory_bar);
6007 return 0;
6008 }
6009 dev_warn(&pdev->dev, "no memory BAR found\n");
6010 return -ENODEV;
6011 }
6012
6013 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
6014 int wait_for_ready)
6015 {
6016 int i, iterations;
6017 u32 scratchpad;
6018 if (wait_for_ready)
6019 iterations = HPSA_BOARD_READY_ITERATIONS;
6020 else
6021 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
6022
6023 for (i = 0; i < iterations; i++) {
6024 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
6025 if (wait_for_ready) {
6026 if (scratchpad == HPSA_FIRMWARE_READY)
6027 return 0;
6028 } else {
6029 if (scratchpad != HPSA_FIRMWARE_READY)
6030 return 0;
6031 }
6032 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
6033 }
6034 dev_warn(&pdev->dev, "board not ready, timed out.\n");
6035 return -ENODEV;
6036 }
6037
6038 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
6039 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
6040 u64 *cfg_offset)
6041 {
6042 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
6043 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
6044 *cfg_base_addr &= (u32) 0x0000ffff;
6045 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
6046 if (*cfg_base_addr_index == -1) {
6047 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
6048 return -ENODEV;
6049 }
6050 return 0;
6051 }
6052
6053 static int hpsa_find_cfgtables(struct ctlr_info *h)
6054 {
6055 u64 cfg_offset;
6056 u32 cfg_base_addr;
6057 u64 cfg_base_addr_index;
6058 u32 trans_offset;
6059 int rc;
6060
6061 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
6062 &cfg_base_addr_index, &cfg_offset);
6063 if (rc)
6064 return rc;
6065 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
6066 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
6067 if (!h->cfgtable) {
6068 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
6069 return -ENOMEM;
6070 }
6071 rc = write_driver_ver_to_cfgtable(h->cfgtable);
6072 if (rc)
6073 return rc;
6074 /* Find performant mode table. */
6075 trans_offset = readl(&h->cfgtable->TransMethodOffset);
6076 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
6077 cfg_base_addr_index)+cfg_offset+trans_offset,
6078 sizeof(*h->transtable));
6079 if (!h->transtable)
6080 return -ENOMEM;
6081 return 0;
6082 }
6083
6084 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
6085 {
6086 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
6087
6088 /* Limit commands in memory limited kdump scenario. */
6089 if (reset_devices && h->max_commands > 32)
6090 h->max_commands = 32;
6091
6092 if (h->max_commands < 16) {
6093 dev_warn(&h->pdev->dev, "Controller reports "
6094 "max supported commands of %d, an obvious lie. "
6095 "Using 16. Ensure that firmware is up to date.\n",
6096 h->max_commands);
6097 h->max_commands = 16;
6098 }
6099 }
6100
6101 /* If the controller reports that the total max sg entries is greater than 512,
6102 * then we know that chained SG blocks work. (Original smart arrays did not
6103 * support chained SG blocks and would return zero for max sg entries.)
6104 */
6105 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
6106 {
6107 return h->maxsgentries > 512;
6108 }
6109
6110 /* Interrogate the hardware for some limits:
6111 * max commands, max SG elements without chaining, and with chaining,
6112 * SG chain block size, etc.
6113 */
6114 static void hpsa_find_board_params(struct ctlr_info *h)
6115 {
6116 hpsa_get_max_perf_mode_cmds(h);
6117 h->nr_cmds = h->max_commands;
6118 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
6119 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
6120 if (hpsa_supports_chained_sg_blocks(h)) {
6121 /* Limit in-command s/g elements to 32 save dma'able memory. */
6122 h->max_cmd_sg_entries = 32;
6123 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
6124 h->maxsgentries--; /* save one for chain pointer */
6125 } else {
6126 /*
6127 * Original smart arrays supported at most 31 s/g entries
6128 * embedded inline in the command (trying to use more
6129 * would lock up the controller)
6130 */
6131 h->max_cmd_sg_entries = 31;
6132 h->maxsgentries = 31; /* default to traditional values */
6133 h->chainsize = 0;
6134 }
6135
6136 /* Find out what task management functions are supported and cache */
6137 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
6138 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
6139 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
6140 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6141 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
6142 }
6143
6144 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
6145 {
6146 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
6147 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
6148 return false;
6149 }
6150 return true;
6151 }
6152
6153 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
6154 {
6155 u32 driver_support;
6156
6157 driver_support = readl(&(h->cfgtable->driver_support));
6158 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
6159 #ifdef CONFIG_X86
6160 driver_support |= ENABLE_SCSI_PREFETCH;
6161 #endif
6162 driver_support |= ENABLE_UNIT_ATTN;
6163 writel(driver_support, &(h->cfgtable->driver_support));
6164 }
6165
6166 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
6167 * in a prefetch beyond physical memory.
6168 */
6169 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
6170 {
6171 u32 dma_prefetch;
6172
6173 if (h->board_id != 0x3225103C)
6174 return;
6175 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
6176 dma_prefetch |= 0x8000;
6177 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
6178 }
6179
6180 static void hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
6181 {
6182 int i;
6183 u32 doorbell_value;
6184 unsigned long flags;
6185 /* wait until the clear_event_notify bit 6 is cleared by controller. */
6186 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6187 spin_lock_irqsave(&h->lock, flags);
6188 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6189 spin_unlock_irqrestore(&h->lock, flags);
6190 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
6191 break;
6192 /* delay and try again */
6193 msleep(20);
6194 }
6195 }
6196
6197 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
6198 {
6199 int i;
6200 u32 doorbell_value;
6201 unsigned long flags;
6202
6203 /* under certain very rare conditions, this can take awhile.
6204 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
6205 * as we enter this code.)
6206 */
6207 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6208 spin_lock_irqsave(&h->lock, flags);
6209 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6210 spin_unlock_irqrestore(&h->lock, flags);
6211 if (!(doorbell_value & CFGTBL_ChangeReq))
6212 break;
6213 /* delay and try again */
6214 usleep_range(10000, 20000);
6215 }
6216 }
6217
6218 static int hpsa_enter_simple_mode(struct ctlr_info *h)
6219 {
6220 u32 trans_support;
6221
6222 trans_support = readl(&(h->cfgtable->TransportSupport));
6223 if (!(trans_support & SIMPLE_MODE))
6224 return -ENOTSUPP;
6225
6226 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
6227
6228 /* Update the field, and then ring the doorbell */
6229 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
6230 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6231 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6232 hpsa_wait_for_mode_change_ack(h);
6233 print_cfg_table(&h->pdev->dev, h->cfgtable);
6234 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
6235 goto error;
6236 h->transMethod = CFGTBL_Trans_Simple;
6237 return 0;
6238 error:
6239 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
6240 return -ENODEV;
6241 }
6242
6243 static int hpsa_pci_init(struct ctlr_info *h)
6244 {
6245 int prod_index, err;
6246
6247 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
6248 if (prod_index < 0)
6249 return prod_index;
6250 h->product_name = products[prod_index].product_name;
6251 h->access = *(products[prod_index].access);
6252
6253 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
6254 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
6255
6256 err = pci_enable_device(h->pdev);
6257 if (err) {
6258 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
6259 return err;
6260 }
6261
6262 err = pci_request_regions(h->pdev, HPSA);
6263 if (err) {
6264 dev_err(&h->pdev->dev,
6265 "cannot obtain PCI resources, aborting\n");
6266 return err;
6267 }
6268
6269 pci_set_master(h->pdev);
6270
6271 hpsa_interrupt_mode(h);
6272 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
6273 if (err)
6274 goto err_out_free_res;
6275 h->vaddr = remap_pci_mem(h->paddr, 0x250);
6276 if (!h->vaddr) {
6277 err = -ENOMEM;
6278 goto err_out_free_res;
6279 }
6280 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
6281 if (err)
6282 goto err_out_free_res;
6283 err = hpsa_find_cfgtables(h);
6284 if (err)
6285 goto err_out_free_res;
6286 hpsa_find_board_params(h);
6287
6288 if (!hpsa_CISS_signature_present(h)) {
6289 err = -ENODEV;
6290 goto err_out_free_res;
6291 }
6292 hpsa_set_driver_support_bits(h);
6293 hpsa_p600_dma_prefetch_quirk(h);
6294 err = hpsa_enter_simple_mode(h);
6295 if (err)
6296 goto err_out_free_res;
6297 return 0;
6298
6299 err_out_free_res:
6300 if (h->transtable)
6301 iounmap(h->transtable);
6302 if (h->cfgtable)
6303 iounmap(h->cfgtable);
6304 if (h->vaddr)
6305 iounmap(h->vaddr);
6306 pci_disable_device(h->pdev);
6307 pci_release_regions(h->pdev);
6308 return err;
6309 }
6310
6311 static void hpsa_hba_inquiry(struct ctlr_info *h)
6312 {
6313 int rc;
6314
6315 #define HBA_INQUIRY_BYTE_COUNT 64
6316 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
6317 if (!h->hba_inquiry_data)
6318 return;
6319 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
6320 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
6321 if (rc != 0) {
6322 kfree(h->hba_inquiry_data);
6323 h->hba_inquiry_data = NULL;
6324 }
6325 }
6326
6327 static int hpsa_init_reset_devices(struct pci_dev *pdev)
6328 {
6329 int rc, i;
6330 void __iomem *vaddr;
6331
6332 if (!reset_devices)
6333 return 0;
6334
6335 /* kdump kernel is loading, we don't know in which state is
6336 * the pci interface. The dev->enable_cnt is equal zero
6337 * so we call enable+disable, wait a while and switch it on.
6338 */
6339 rc = pci_enable_device(pdev);
6340 if (rc) {
6341 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
6342 return -ENODEV;
6343 }
6344 pci_disable_device(pdev);
6345 msleep(260); /* a randomly chosen number */
6346 rc = pci_enable_device(pdev);
6347 if (rc) {
6348 dev_warn(&pdev->dev, "failed to enable device.\n");
6349 return -ENODEV;
6350 }
6351
6352 pci_set_master(pdev);
6353
6354 vaddr = pci_ioremap_bar(pdev, 0);
6355 if (vaddr == NULL) {
6356 rc = -ENOMEM;
6357 goto out_disable;
6358 }
6359 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
6360 iounmap(vaddr);
6361
6362 /* Reset the controller with a PCI power-cycle or via doorbell */
6363 rc = hpsa_kdump_hard_reset_controller(pdev);
6364
6365 /* -ENOTSUPP here means we cannot reset the controller
6366 * but it's already (and still) up and running in
6367 * "performant mode". Or, it might be 640x, which can't reset
6368 * due to concerns about shared bbwc between 6402/6404 pair.
6369 */
6370 if (rc)
6371 goto out_disable;
6372
6373 /* Now try to get the controller to respond to a no-op */
6374 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
6375 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
6376 if (hpsa_noop(pdev) == 0)
6377 break;
6378 else
6379 dev_warn(&pdev->dev, "no-op failed%s\n",
6380 (i < 11 ? "; re-trying" : ""));
6381 }
6382
6383 out_disable:
6384
6385 pci_disable_device(pdev);
6386 return rc;
6387 }
6388
6389 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
6390 {
6391 h->cmd_pool_bits = kzalloc(
6392 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
6393 sizeof(unsigned long), GFP_KERNEL);
6394 h->cmd_pool = pci_alloc_consistent(h->pdev,
6395 h->nr_cmds * sizeof(*h->cmd_pool),
6396 &(h->cmd_pool_dhandle));
6397 h->errinfo_pool = pci_alloc_consistent(h->pdev,
6398 h->nr_cmds * sizeof(*h->errinfo_pool),
6399 &(h->errinfo_pool_dhandle));
6400 if ((h->cmd_pool_bits == NULL)
6401 || (h->cmd_pool == NULL)
6402 || (h->errinfo_pool == NULL)) {
6403 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
6404 goto clean_up;
6405 }
6406 return 0;
6407 clean_up:
6408 hpsa_free_cmd_pool(h);
6409 return -ENOMEM;
6410 }
6411
6412 static void hpsa_free_cmd_pool(struct ctlr_info *h)
6413 {
6414 kfree(h->cmd_pool_bits);
6415 if (h->cmd_pool)
6416 pci_free_consistent(h->pdev,
6417 h->nr_cmds * sizeof(struct CommandList),
6418 h->cmd_pool, h->cmd_pool_dhandle);
6419 if (h->ioaccel2_cmd_pool)
6420 pci_free_consistent(h->pdev,
6421 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
6422 h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
6423 if (h->errinfo_pool)
6424 pci_free_consistent(h->pdev,
6425 h->nr_cmds * sizeof(struct ErrorInfo),
6426 h->errinfo_pool,
6427 h->errinfo_pool_dhandle);
6428 if (h->ioaccel_cmd_pool)
6429 pci_free_consistent(h->pdev,
6430 h->nr_cmds * sizeof(struct io_accel1_cmd),
6431 h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
6432 }
6433
6434 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
6435 {
6436 int i, cpu;
6437
6438 cpu = cpumask_first(cpu_online_mask);
6439 for (i = 0; i < h->msix_vector; i++) {
6440 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
6441 cpu = cpumask_next(cpu, cpu_online_mask);
6442 }
6443 }
6444
6445 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
6446 static void hpsa_free_irqs(struct ctlr_info *h)
6447 {
6448 int i;
6449
6450 if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
6451 /* Single reply queue, only one irq to free */
6452 i = h->intr_mode;
6453 irq_set_affinity_hint(h->intr[i], NULL);
6454 free_irq(h->intr[i], &h->q[i]);
6455 return;
6456 }
6457
6458 for (i = 0; i < h->msix_vector; i++) {
6459 irq_set_affinity_hint(h->intr[i], NULL);
6460 free_irq(h->intr[i], &h->q[i]);
6461 }
6462 for (; i < MAX_REPLY_QUEUES; i++)
6463 h->q[i] = 0;
6464 }
6465
6466 /* returns 0 on success; cleans up and returns -Enn on error */
6467 static int hpsa_request_irqs(struct ctlr_info *h,
6468 irqreturn_t (*msixhandler)(int, void *),
6469 irqreturn_t (*intxhandler)(int, void *))
6470 {
6471 int rc, i;
6472
6473 /*
6474 * initialize h->q[x] = x so that interrupt handlers know which
6475 * queue to process.
6476 */
6477 for (i = 0; i < MAX_REPLY_QUEUES; i++)
6478 h->q[i] = (u8) i;
6479
6480 if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
6481 /* If performant mode and MSI-X, use multiple reply queues */
6482 for (i = 0; i < h->msix_vector; i++) {
6483 rc = request_irq(h->intr[i], msixhandler,
6484 0, h->devname,
6485 &h->q[i]);
6486 if (rc) {
6487 int j;
6488
6489 dev_err(&h->pdev->dev,
6490 "failed to get irq %d for %s\n",
6491 h->intr[i], h->devname);
6492 for (j = 0; j < i; j++) {
6493 free_irq(h->intr[j], &h->q[j]);
6494 h->q[j] = 0;
6495 }
6496 for (; j < MAX_REPLY_QUEUES; j++)
6497 h->q[j] = 0;
6498 return rc;
6499 }
6500 }
6501 hpsa_irq_affinity_hints(h);
6502 } else {
6503 /* Use single reply pool */
6504 if (h->msix_vector > 0 || h->msi_vector) {
6505 rc = request_irq(h->intr[h->intr_mode],
6506 msixhandler, 0, h->devname,
6507 &h->q[h->intr_mode]);
6508 } else {
6509 rc = request_irq(h->intr[h->intr_mode],
6510 intxhandler, IRQF_SHARED, h->devname,
6511 &h->q[h->intr_mode]);
6512 }
6513 }
6514 if (rc) {
6515 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
6516 h->intr[h->intr_mode], h->devname);
6517 return -ENODEV;
6518 }
6519 return 0;
6520 }
6521
6522 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
6523 {
6524 if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
6525 HPSA_RESET_TYPE_CONTROLLER)) {
6526 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
6527 return -EIO;
6528 }
6529
6530 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
6531 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
6532 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
6533 return -1;
6534 }
6535
6536 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
6537 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
6538 dev_warn(&h->pdev->dev, "Board failed to become ready "
6539 "after soft reset.\n");
6540 return -1;
6541 }
6542
6543 return 0;
6544 }
6545
6546 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
6547 {
6548 hpsa_free_irqs(h);
6549 #ifdef CONFIG_PCI_MSI
6550 if (h->msix_vector) {
6551 if (h->pdev->msix_enabled)
6552 pci_disable_msix(h->pdev);
6553 } else if (h->msi_vector) {
6554 if (h->pdev->msi_enabled)
6555 pci_disable_msi(h->pdev);
6556 }
6557 #endif /* CONFIG_PCI_MSI */
6558 }
6559
6560 static void hpsa_free_reply_queues(struct ctlr_info *h)
6561 {
6562 int i;
6563
6564 for (i = 0; i < h->nreply_queues; i++) {
6565 if (!h->reply_queue[i].head)
6566 continue;
6567 pci_free_consistent(h->pdev, h->reply_queue_size,
6568 h->reply_queue[i].head, h->reply_queue[i].busaddr);
6569 h->reply_queue[i].head = NULL;
6570 h->reply_queue[i].busaddr = 0;
6571 }
6572 }
6573
6574 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
6575 {
6576 hpsa_free_irqs_and_disable_msix(h);
6577 hpsa_free_sg_chain_blocks(h);
6578 hpsa_free_cmd_pool(h);
6579 kfree(h->ioaccel1_blockFetchTable);
6580 kfree(h->blockFetchTable);
6581 hpsa_free_reply_queues(h);
6582 if (h->vaddr)
6583 iounmap(h->vaddr);
6584 if (h->transtable)
6585 iounmap(h->transtable);
6586 if (h->cfgtable)
6587 iounmap(h->cfgtable);
6588 pci_disable_device(h->pdev);
6589 pci_release_regions(h->pdev);
6590 kfree(h);
6591 }
6592
6593 /* Called when controller lockup detected. */
6594 static void fail_all_outstanding_cmds(struct ctlr_info *h)
6595 {
6596 int i, refcount;
6597 struct CommandList *c;
6598
6599 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
6600 for (i = 0; i < h->nr_cmds; i++) {
6601 c = h->cmd_pool + i;
6602 refcount = atomic_inc_return(&c->refcount);
6603 if (refcount > 1) {
6604 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
6605 finish_cmd(c);
6606 }
6607 cmd_free(h, c);
6608 }
6609 }
6610
6611 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
6612 {
6613 int i, cpu;
6614
6615 cpu = cpumask_first(cpu_online_mask);
6616 for (i = 0; i < num_online_cpus(); i++) {
6617 u32 *lockup_detected;
6618 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
6619 *lockup_detected = value;
6620 cpu = cpumask_next(cpu, cpu_online_mask);
6621 }
6622 wmb(); /* be sure the per-cpu variables are out to memory */
6623 }
6624
6625 static void controller_lockup_detected(struct ctlr_info *h)
6626 {
6627 unsigned long flags;
6628 u32 lockup_detected;
6629
6630 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6631 spin_lock_irqsave(&h->lock, flags);
6632 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
6633 if (!lockup_detected) {
6634 /* no heartbeat, but controller gave us a zero. */
6635 dev_warn(&h->pdev->dev,
6636 "lockup detected but scratchpad register is zero\n");
6637 lockup_detected = 0xffffffff;
6638 }
6639 set_lockup_detected_for_all_cpus(h, lockup_detected);
6640 spin_unlock_irqrestore(&h->lock, flags);
6641 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
6642 lockup_detected);
6643 pci_disable_device(h->pdev);
6644 fail_all_outstanding_cmds(h);
6645 }
6646
6647 static void detect_controller_lockup(struct ctlr_info *h)
6648 {
6649 u64 now;
6650 u32 heartbeat;
6651 unsigned long flags;
6652
6653 now = get_jiffies_64();
6654 /* If we've received an interrupt recently, we're ok. */
6655 if (time_after64(h->last_intr_timestamp +
6656 (h->heartbeat_sample_interval), now))
6657 return;
6658
6659 /*
6660 * If we've already checked the heartbeat recently, we're ok.
6661 * This could happen if someone sends us a signal. We
6662 * otherwise don't care about signals in this thread.
6663 */
6664 if (time_after64(h->last_heartbeat_timestamp +
6665 (h->heartbeat_sample_interval), now))
6666 return;
6667
6668 /* If heartbeat has not changed since we last looked, we're not ok. */
6669 spin_lock_irqsave(&h->lock, flags);
6670 heartbeat = readl(&h->cfgtable->HeartBeat);
6671 spin_unlock_irqrestore(&h->lock, flags);
6672 if (h->last_heartbeat == heartbeat) {
6673 controller_lockup_detected(h);
6674 return;
6675 }
6676
6677 /* We're ok. */
6678 h->last_heartbeat = heartbeat;
6679 h->last_heartbeat_timestamp = now;
6680 }
6681
6682 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
6683 {
6684 int i;
6685 char *event_type;
6686
6687 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
6688 return;
6689
6690 /* Ask the controller to clear the events we're handling. */
6691 if ((h->transMethod & (CFGTBL_Trans_io_accel1
6692 | CFGTBL_Trans_io_accel2)) &&
6693 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
6694 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
6695
6696 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
6697 event_type = "state change";
6698 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
6699 event_type = "configuration change";
6700 /* Stop sending new RAID offload reqs via the IO accelerator */
6701 scsi_block_requests(h->scsi_host);
6702 for (i = 0; i < h->ndevices; i++)
6703 h->dev[i]->offload_enabled = 0;
6704 hpsa_drain_accel_commands(h);
6705 /* Set 'accelerator path config change' bit */
6706 dev_warn(&h->pdev->dev,
6707 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
6708 h->events, event_type);
6709 writel(h->events, &(h->cfgtable->clear_event_notify));
6710 /* Set the "clear event notify field update" bit 6 */
6711 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6712 /* Wait until ctlr clears 'clear event notify field', bit 6 */
6713 hpsa_wait_for_clear_event_notify_ack(h);
6714 scsi_unblock_requests(h->scsi_host);
6715 } else {
6716 /* Acknowledge controller notification events. */
6717 writel(h->events, &(h->cfgtable->clear_event_notify));
6718 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6719 hpsa_wait_for_clear_event_notify_ack(h);
6720 #if 0
6721 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6722 hpsa_wait_for_mode_change_ack(h);
6723 #endif
6724 }
6725 return;
6726 }
6727
6728 /* Check a register on the controller to see if there are configuration
6729 * changes (added/changed/removed logical drives, etc.) which mean that
6730 * we should rescan the controller for devices.
6731 * Also check flag for driver-initiated rescan.
6732 */
6733 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
6734 {
6735 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
6736 return 0;
6737
6738 h->events = readl(&(h->cfgtable->event_notify));
6739 return h->events & RESCAN_REQUIRED_EVENT_BITS;
6740 }
6741
6742 /*
6743 * Check if any of the offline devices have become ready
6744 */
6745 static int hpsa_offline_devices_ready(struct ctlr_info *h)
6746 {
6747 unsigned long flags;
6748 struct offline_device_entry *d;
6749 struct list_head *this, *tmp;
6750
6751 spin_lock_irqsave(&h->offline_device_lock, flags);
6752 list_for_each_safe(this, tmp, &h->offline_device_list) {
6753 d = list_entry(this, struct offline_device_entry,
6754 offline_list);
6755 spin_unlock_irqrestore(&h->offline_device_lock, flags);
6756 if (!hpsa_volume_offline(h, d->scsi3addr)) {
6757 spin_lock_irqsave(&h->offline_device_lock, flags);
6758 list_del(&d->offline_list);
6759 spin_unlock_irqrestore(&h->offline_device_lock, flags);
6760 return 1;
6761 }
6762 spin_lock_irqsave(&h->offline_device_lock, flags);
6763 }
6764 spin_unlock_irqrestore(&h->offline_device_lock, flags);
6765 return 0;
6766 }
6767
6768
6769 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
6770 {
6771 unsigned long flags;
6772 struct ctlr_info *h = container_of(to_delayed_work(work),
6773 struct ctlr_info, monitor_ctlr_work);
6774 detect_controller_lockup(h);
6775 if (lockup_detected(h))
6776 return;
6777
6778 if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
6779 scsi_host_get(h->scsi_host);
6780 hpsa_ack_ctlr_events(h);
6781 hpsa_scan_start(h->scsi_host);
6782 scsi_host_put(h->scsi_host);
6783 }
6784
6785 spin_lock_irqsave(&h->lock, flags);
6786 if (h->remove_in_progress) {
6787 spin_unlock_irqrestore(&h->lock, flags);
6788 return;
6789 }
6790 schedule_delayed_work(&h->monitor_ctlr_work,
6791 h->heartbeat_sample_interval);
6792 spin_unlock_irqrestore(&h->lock, flags);
6793 }
6794
6795 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6796 {
6797 int dac, rc;
6798 struct ctlr_info *h;
6799 int try_soft_reset = 0;
6800 unsigned long flags;
6801
6802 if (number_of_controllers == 0)
6803 printk(KERN_INFO DRIVER_NAME "\n");
6804
6805 rc = hpsa_init_reset_devices(pdev);
6806 if (rc) {
6807 if (rc != -ENOTSUPP)
6808 return rc;
6809 /* If the reset fails in a particular way (it has no way to do
6810 * a proper hard reset, so returns -ENOTSUPP) we can try to do
6811 * a soft reset once we get the controller configured up to the
6812 * point that it can accept a command.
6813 */
6814 try_soft_reset = 1;
6815 rc = 0;
6816 }
6817
6818 reinit_after_soft_reset:
6819
6820 /* Command structures must be aligned on a 32-byte boundary because
6821 * the 5 lower bits of the address are used by the hardware. and by
6822 * the driver. See comments in hpsa.h for more info.
6823 */
6824 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
6825 h = kzalloc(sizeof(*h), GFP_KERNEL);
6826 if (!h)
6827 return -ENOMEM;
6828
6829 h->pdev = pdev;
6830 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
6831 INIT_LIST_HEAD(&h->offline_device_list);
6832 spin_lock_init(&h->lock);
6833 spin_lock_init(&h->offline_device_lock);
6834 spin_lock_init(&h->scan_lock);
6835 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
6836
6837 h->resubmit_wq = alloc_workqueue("hpsa", WQ_MEM_RECLAIM, 0);
6838 if (!h->resubmit_wq) {
6839 dev_err(&h->pdev->dev, "Failed to allocate work queue\n");
6840 rc = -ENOMEM;
6841 goto clean1;
6842 }
6843 /* Allocate and clear per-cpu variable lockup_detected */
6844 h->lockup_detected = alloc_percpu(u32);
6845 if (!h->lockup_detected) {
6846 rc = -ENOMEM;
6847 goto clean1;
6848 }
6849 set_lockup_detected_for_all_cpus(h, 0);
6850
6851 rc = hpsa_pci_init(h);
6852 if (rc != 0)
6853 goto clean1;
6854
6855 sprintf(h->devname, HPSA "%d", number_of_controllers);
6856 h->ctlr = number_of_controllers;
6857 number_of_controllers++;
6858
6859 /* configure PCI DMA stuff */
6860 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
6861 if (rc == 0) {
6862 dac = 1;
6863 } else {
6864 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6865 if (rc == 0) {
6866 dac = 0;
6867 } else {
6868 dev_err(&pdev->dev, "no suitable DMA available\n");
6869 goto clean1;
6870 }
6871 }
6872
6873 /* make sure the board interrupts are off */
6874 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6875
6876 if (hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
6877 goto clean2;
6878 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
6879 h->devname, pdev->device,
6880 h->intr[h->intr_mode], dac ? "" : " not");
6881 rc = hpsa_allocate_cmd_pool(h);
6882 if (rc)
6883 goto clean2_and_free_irqs;
6884 if (hpsa_allocate_sg_chain_blocks(h))
6885 goto clean4;
6886 init_waitqueue_head(&h->scan_wait_queue);
6887 h->scan_finished = 1; /* no scan currently in progress */
6888
6889 pci_set_drvdata(pdev, h);
6890 h->ndevices = 0;
6891 h->hba_mode_enabled = 0;
6892 h->scsi_host = NULL;
6893 spin_lock_init(&h->devlock);
6894 hpsa_put_ctlr_into_performant_mode(h);
6895
6896 /* At this point, the controller is ready to take commands.
6897 * Now, if reset_devices and the hard reset didn't work, try
6898 * the soft reset and see if that works.
6899 */
6900 if (try_soft_reset) {
6901
6902 /* This is kind of gross. We may or may not get a completion
6903 * from the soft reset command, and if we do, then the value
6904 * from the fifo may or may not be valid. So, we wait 10 secs
6905 * after the reset throwing away any completions we get during
6906 * that time. Unregister the interrupt handler and register
6907 * fake ones to scoop up any residual completions.
6908 */
6909 spin_lock_irqsave(&h->lock, flags);
6910 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6911 spin_unlock_irqrestore(&h->lock, flags);
6912 hpsa_free_irqs(h);
6913 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
6914 hpsa_intx_discard_completions);
6915 if (rc) {
6916 dev_warn(&h->pdev->dev,
6917 "Failed to request_irq after soft reset.\n");
6918 goto clean4;
6919 }
6920
6921 rc = hpsa_kdump_soft_reset(h);
6922 if (rc)
6923 /* Neither hard nor soft reset worked, we're hosed. */
6924 goto clean4;
6925
6926 dev_info(&h->pdev->dev, "Board READY.\n");
6927 dev_info(&h->pdev->dev,
6928 "Waiting for stale completions to drain.\n");
6929 h->access.set_intr_mask(h, HPSA_INTR_ON);
6930 msleep(10000);
6931 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6932
6933 rc = controller_reset_failed(h->cfgtable);
6934 if (rc)
6935 dev_info(&h->pdev->dev,
6936 "Soft reset appears to have failed.\n");
6937
6938 /* since the controller's reset, we have to go back and re-init
6939 * everything. Easiest to just forget what we've done and do it
6940 * all over again.
6941 */
6942 hpsa_undo_allocations_after_kdump_soft_reset(h);
6943 try_soft_reset = 0;
6944 if (rc)
6945 /* don't go to clean4, we already unallocated */
6946 return -ENODEV;
6947
6948 goto reinit_after_soft_reset;
6949 }
6950
6951 /* Enable Accelerated IO path at driver layer */
6952 h->acciopath_status = 1;
6953
6954
6955 /* Turn the interrupts on so we can service requests */
6956 h->access.set_intr_mask(h, HPSA_INTR_ON);
6957
6958 hpsa_hba_inquiry(h);
6959 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
6960
6961 /* Monitor the controller for firmware lockups */
6962 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
6963 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
6964 schedule_delayed_work(&h->monitor_ctlr_work,
6965 h->heartbeat_sample_interval);
6966 return 0;
6967
6968 clean4:
6969 hpsa_free_sg_chain_blocks(h);
6970 hpsa_free_cmd_pool(h);
6971 clean2_and_free_irqs:
6972 hpsa_free_irqs(h);
6973 clean2:
6974 clean1:
6975 if (h->resubmit_wq)
6976 destroy_workqueue(h->resubmit_wq);
6977 if (h->lockup_detected)
6978 free_percpu(h->lockup_detected);
6979 kfree(h);
6980 return rc;
6981 }
6982
6983 static void hpsa_flush_cache(struct ctlr_info *h)
6984 {
6985 char *flush_buf;
6986 struct CommandList *c;
6987
6988 /* Don't bother trying to flush the cache if locked up */
6989 if (unlikely(lockup_detected(h)))
6990 return;
6991 flush_buf = kzalloc(4, GFP_KERNEL);
6992 if (!flush_buf)
6993 return;
6994
6995 c = cmd_alloc(h);
6996 if (!c) {
6997 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
6998 goto out_of_memory;
6999 }
7000 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
7001 RAID_CTLR_LUNID, TYPE_CMD)) {
7002 goto out;
7003 }
7004 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
7005 if (c->err_info->CommandStatus != 0)
7006 out:
7007 dev_warn(&h->pdev->dev,
7008 "error flushing cache on controller\n");
7009 cmd_free(h, c);
7010 out_of_memory:
7011 kfree(flush_buf);
7012 }
7013
7014 static void hpsa_shutdown(struct pci_dev *pdev)
7015 {
7016 struct ctlr_info *h;
7017
7018 h = pci_get_drvdata(pdev);
7019 /* Turn board interrupts off and send the flush cache command
7020 * sendcmd will turn off interrupt, and send the flush...
7021 * To write all data in the battery backed cache to disks
7022 */
7023 hpsa_flush_cache(h);
7024 h->access.set_intr_mask(h, HPSA_INTR_OFF);
7025 hpsa_free_irqs_and_disable_msix(h);
7026 }
7027
7028 static void hpsa_free_device_info(struct ctlr_info *h)
7029 {
7030 int i;
7031
7032 for (i = 0; i < h->ndevices; i++)
7033 kfree(h->dev[i]);
7034 }
7035
7036 static void hpsa_remove_one(struct pci_dev *pdev)
7037 {
7038 struct ctlr_info *h;
7039 unsigned long flags;
7040
7041 if (pci_get_drvdata(pdev) == NULL) {
7042 dev_err(&pdev->dev, "unable to remove device\n");
7043 return;
7044 }
7045 h = pci_get_drvdata(pdev);
7046
7047 /* Get rid of any controller monitoring work items */
7048 spin_lock_irqsave(&h->lock, flags);
7049 h->remove_in_progress = 1;
7050 cancel_delayed_work(&h->monitor_ctlr_work);
7051 spin_unlock_irqrestore(&h->lock, flags);
7052 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
7053 hpsa_shutdown(pdev);
7054 destroy_workqueue(h->resubmit_wq);
7055 iounmap(h->vaddr);
7056 iounmap(h->transtable);
7057 iounmap(h->cfgtable);
7058 hpsa_free_device_info(h);
7059 hpsa_free_sg_chain_blocks(h);
7060 pci_free_consistent(h->pdev,
7061 h->nr_cmds * sizeof(struct CommandList),
7062 h->cmd_pool, h->cmd_pool_dhandle);
7063 pci_free_consistent(h->pdev,
7064 h->nr_cmds * sizeof(struct ErrorInfo),
7065 h->errinfo_pool, h->errinfo_pool_dhandle);
7066 hpsa_free_reply_queues(h);
7067 kfree(h->cmd_pool_bits);
7068 kfree(h->blockFetchTable);
7069 kfree(h->ioaccel1_blockFetchTable);
7070 kfree(h->ioaccel2_blockFetchTable);
7071 kfree(h->hba_inquiry_data);
7072 pci_disable_device(pdev);
7073 pci_release_regions(pdev);
7074 free_percpu(h->lockup_detected);
7075 kfree(h);
7076 }
7077
7078 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
7079 __attribute__((unused)) pm_message_t state)
7080 {
7081 return -ENOSYS;
7082 }
7083
7084 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
7085 {
7086 return -ENOSYS;
7087 }
7088
7089 static struct pci_driver hpsa_pci_driver = {
7090 .name = HPSA,
7091 .probe = hpsa_init_one,
7092 .remove = hpsa_remove_one,
7093 .id_table = hpsa_pci_device_id, /* id_table */
7094 .shutdown = hpsa_shutdown,
7095 .suspend = hpsa_suspend,
7096 .resume = hpsa_resume,
7097 };
7098
7099 /* Fill in bucket_map[], given nsgs (the max number of
7100 * scatter gather elements supported) and bucket[],
7101 * which is an array of 8 integers. The bucket[] array
7102 * contains 8 different DMA transfer sizes (in 16
7103 * byte increments) which the controller uses to fetch
7104 * commands. This function fills in bucket_map[], which
7105 * maps a given number of scatter gather elements to one of
7106 * the 8 DMA transfer sizes. The point of it is to allow the
7107 * controller to only do as much DMA as needed to fetch the
7108 * command, with the DMA transfer size encoded in the lower
7109 * bits of the command address.
7110 */
7111 static void calc_bucket_map(int bucket[], int num_buckets,
7112 int nsgs, int min_blocks, u32 *bucket_map)
7113 {
7114 int i, j, b, size;
7115
7116 /* Note, bucket_map must have nsgs+1 entries. */
7117 for (i = 0; i <= nsgs; i++) {
7118 /* Compute size of a command with i SG entries */
7119 size = i + min_blocks;
7120 b = num_buckets; /* Assume the biggest bucket */
7121 /* Find the bucket that is just big enough */
7122 for (j = 0; j < num_buckets; j++) {
7123 if (bucket[j] >= size) {
7124 b = j;
7125 break;
7126 }
7127 }
7128 /* for a command with i SG entries, use bucket b. */
7129 bucket_map[i] = b;
7130 }
7131 }
7132
7133 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
7134 {
7135 int i;
7136 unsigned long register_value;
7137 unsigned long transMethod = CFGTBL_Trans_Performant |
7138 (trans_support & CFGTBL_Trans_use_short_tags) |
7139 CFGTBL_Trans_enable_directed_msix |
7140 (trans_support & (CFGTBL_Trans_io_accel1 |
7141 CFGTBL_Trans_io_accel2));
7142 struct access_method access = SA5_performant_access;
7143
7144 /* This is a bit complicated. There are 8 registers on
7145 * the controller which we write to to tell it 8 different
7146 * sizes of commands which there may be. It's a way of
7147 * reducing the DMA done to fetch each command. Encoded into
7148 * each command's tag are 3 bits which communicate to the controller
7149 * which of the eight sizes that command fits within. The size of
7150 * each command depends on how many scatter gather entries there are.
7151 * Each SG entry requires 16 bytes. The eight registers are programmed
7152 * with the number of 16-byte blocks a command of that size requires.
7153 * The smallest command possible requires 5 such 16 byte blocks.
7154 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
7155 * blocks. Note, this only extends to the SG entries contained
7156 * within the command block, and does not extend to chained blocks
7157 * of SG elements. bft[] contains the eight values we write to
7158 * the registers. They are not evenly distributed, but have more
7159 * sizes for small commands, and fewer sizes for larger commands.
7160 */
7161 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
7162 #define MIN_IOACCEL2_BFT_ENTRY 5
7163 #define HPSA_IOACCEL2_HEADER_SZ 4
7164 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
7165 13, 14, 15, 16, 17, 18, 19,
7166 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
7167 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
7168 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
7169 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
7170 16 * MIN_IOACCEL2_BFT_ENTRY);
7171 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
7172 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
7173 /* 5 = 1 s/g entry or 4k
7174 * 6 = 2 s/g entry or 8k
7175 * 8 = 4 s/g entry or 16k
7176 * 10 = 6 s/g entry or 24k
7177 */
7178
7179 /* If the controller supports either ioaccel method then
7180 * we can also use the RAID stack submit path that does not
7181 * perform the superfluous readl() after each command submission.
7182 */
7183 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
7184 access = SA5_performant_access_no_read;
7185
7186 /* Controller spec: zero out this buffer. */
7187 for (i = 0; i < h->nreply_queues; i++)
7188 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
7189
7190 bft[7] = SG_ENTRIES_IN_CMD + 4;
7191 calc_bucket_map(bft, ARRAY_SIZE(bft),
7192 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
7193 for (i = 0; i < 8; i++)
7194 writel(bft[i], &h->transtable->BlockFetch[i]);
7195
7196 /* size of controller ring buffer */
7197 writel(h->max_commands, &h->transtable->RepQSize);
7198 writel(h->nreply_queues, &h->transtable->RepQCount);
7199 writel(0, &h->transtable->RepQCtrAddrLow32);
7200 writel(0, &h->transtable->RepQCtrAddrHigh32);
7201
7202 for (i = 0; i < h->nreply_queues; i++) {
7203 writel(0, &h->transtable->RepQAddr[i].upper);
7204 writel(h->reply_queue[i].busaddr,
7205 &h->transtable->RepQAddr[i].lower);
7206 }
7207
7208 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7209 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
7210 /*
7211 * enable outbound interrupt coalescing in accelerator mode;
7212 */
7213 if (trans_support & CFGTBL_Trans_io_accel1) {
7214 access = SA5_ioaccel_mode1_access;
7215 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7216 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7217 } else {
7218 if (trans_support & CFGTBL_Trans_io_accel2) {
7219 access = SA5_ioaccel_mode2_access;
7220 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7221 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7222 }
7223 }
7224 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7225 hpsa_wait_for_mode_change_ack(h);
7226 register_value = readl(&(h->cfgtable->TransportActive));
7227 if (!(register_value & CFGTBL_Trans_Performant)) {
7228 dev_err(&h->pdev->dev,
7229 "performant mode problem - transport not active\n");
7230 return;
7231 }
7232 /* Change the access methods to the performant access methods */
7233 h->access = access;
7234 h->transMethod = transMethod;
7235
7236 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
7237 (trans_support & CFGTBL_Trans_io_accel2)))
7238 return;
7239
7240 if (trans_support & CFGTBL_Trans_io_accel1) {
7241 /* Set up I/O accelerator mode */
7242 for (i = 0; i < h->nreply_queues; i++) {
7243 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
7244 h->reply_queue[i].current_entry =
7245 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
7246 }
7247 bft[7] = h->ioaccel_maxsg + 8;
7248 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
7249 h->ioaccel1_blockFetchTable);
7250
7251 /* initialize all reply queue entries to unused */
7252 for (i = 0; i < h->nreply_queues; i++)
7253 memset(h->reply_queue[i].head,
7254 (u8) IOACCEL_MODE1_REPLY_UNUSED,
7255 h->reply_queue_size);
7256
7257 /* set all the constant fields in the accelerator command
7258 * frames once at init time to save CPU cycles later.
7259 */
7260 for (i = 0; i < h->nr_cmds; i++) {
7261 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
7262
7263 cp->function = IOACCEL1_FUNCTION_SCSIIO;
7264 cp->err_info = (u32) (h->errinfo_pool_dhandle +
7265 (i * sizeof(struct ErrorInfo)));
7266 cp->err_info_len = sizeof(struct ErrorInfo);
7267 cp->sgl_offset = IOACCEL1_SGLOFFSET;
7268 cp->host_context_flags =
7269 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
7270 cp->timeout_sec = 0;
7271 cp->ReplyQueue = 0;
7272 cp->tag =
7273 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
7274 cp->host_addr =
7275 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
7276 (i * sizeof(struct io_accel1_cmd)));
7277 }
7278 } else if (trans_support & CFGTBL_Trans_io_accel2) {
7279 u64 cfg_offset, cfg_base_addr_index;
7280 u32 bft2_offset, cfg_base_addr;
7281 int rc;
7282
7283 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7284 &cfg_base_addr_index, &cfg_offset);
7285 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
7286 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
7287 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
7288 4, h->ioaccel2_blockFetchTable);
7289 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
7290 BUILD_BUG_ON(offsetof(struct CfgTable,
7291 io_accel_request_size_offset) != 0xb8);
7292 h->ioaccel2_bft2_regs =
7293 remap_pci_mem(pci_resource_start(h->pdev,
7294 cfg_base_addr_index) +
7295 cfg_offset + bft2_offset,
7296 ARRAY_SIZE(bft2) *
7297 sizeof(*h->ioaccel2_bft2_regs));
7298 for (i = 0; i < ARRAY_SIZE(bft2); i++)
7299 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
7300 }
7301 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7302 hpsa_wait_for_mode_change_ack(h);
7303 }
7304
7305 static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h)
7306 {
7307 h->ioaccel_maxsg =
7308 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7309 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
7310 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
7311
7312 /* Command structures must be aligned on a 128-byte boundary
7313 * because the 7 lower bits of the address are used by the
7314 * hardware.
7315 */
7316 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
7317 IOACCEL1_COMMANDLIST_ALIGNMENT);
7318 h->ioaccel_cmd_pool =
7319 pci_alloc_consistent(h->pdev,
7320 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7321 &(h->ioaccel_cmd_pool_dhandle));
7322
7323 h->ioaccel1_blockFetchTable =
7324 kmalloc(((h->ioaccel_maxsg + 1) *
7325 sizeof(u32)), GFP_KERNEL);
7326
7327 if ((h->ioaccel_cmd_pool == NULL) ||
7328 (h->ioaccel1_blockFetchTable == NULL))
7329 goto clean_up;
7330
7331 memset(h->ioaccel_cmd_pool, 0,
7332 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
7333 return 0;
7334
7335 clean_up:
7336 if (h->ioaccel_cmd_pool)
7337 pci_free_consistent(h->pdev,
7338 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7339 h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
7340 kfree(h->ioaccel1_blockFetchTable);
7341 return 1;
7342 }
7343
7344 static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h)
7345 {
7346 /* Allocate ioaccel2 mode command blocks and block fetch table */
7347
7348 h->ioaccel_maxsg =
7349 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7350 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
7351 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
7352
7353 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
7354 IOACCEL2_COMMANDLIST_ALIGNMENT);
7355 h->ioaccel2_cmd_pool =
7356 pci_alloc_consistent(h->pdev,
7357 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7358 &(h->ioaccel2_cmd_pool_dhandle));
7359
7360 h->ioaccel2_blockFetchTable =
7361 kmalloc(((h->ioaccel_maxsg + 1) *
7362 sizeof(u32)), GFP_KERNEL);
7363
7364 if ((h->ioaccel2_cmd_pool == NULL) ||
7365 (h->ioaccel2_blockFetchTable == NULL))
7366 goto clean_up;
7367
7368 memset(h->ioaccel2_cmd_pool, 0,
7369 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
7370 return 0;
7371
7372 clean_up:
7373 if (h->ioaccel2_cmd_pool)
7374 pci_free_consistent(h->pdev,
7375 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7376 h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
7377 kfree(h->ioaccel2_blockFetchTable);
7378 return 1;
7379 }
7380
7381 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
7382 {
7383 u32 trans_support;
7384 unsigned long transMethod = CFGTBL_Trans_Performant |
7385 CFGTBL_Trans_use_short_tags;
7386 int i;
7387
7388 if (hpsa_simple_mode)
7389 return;
7390
7391 trans_support = readl(&(h->cfgtable->TransportSupport));
7392 if (!(trans_support & PERFORMANT_MODE))
7393 return;
7394
7395 /* Check for I/O accelerator mode support */
7396 if (trans_support & CFGTBL_Trans_io_accel1) {
7397 transMethod |= CFGTBL_Trans_io_accel1 |
7398 CFGTBL_Trans_enable_directed_msix;
7399 if (hpsa_alloc_ioaccel_cmd_and_bft(h))
7400 goto clean_up;
7401 } else {
7402 if (trans_support & CFGTBL_Trans_io_accel2) {
7403 transMethod |= CFGTBL_Trans_io_accel2 |
7404 CFGTBL_Trans_enable_directed_msix;
7405 if (ioaccel2_alloc_cmds_and_bft(h))
7406 goto clean_up;
7407 }
7408 }
7409
7410 h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
7411 hpsa_get_max_perf_mode_cmds(h);
7412 /* Performant mode ring buffer and supporting data structures */
7413 h->reply_queue_size = h->max_commands * sizeof(u64);
7414
7415 for (i = 0; i < h->nreply_queues; i++) {
7416 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
7417 h->reply_queue_size,
7418 &(h->reply_queue[i].busaddr));
7419 if (!h->reply_queue[i].head)
7420 goto clean_up;
7421 h->reply_queue[i].size = h->max_commands;
7422 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
7423 h->reply_queue[i].current_entry = 0;
7424 }
7425
7426 /* Need a block fetch table for performant mode */
7427 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
7428 sizeof(u32)), GFP_KERNEL);
7429 if (!h->blockFetchTable)
7430 goto clean_up;
7431
7432 hpsa_enter_performant_mode(h, trans_support);
7433 return;
7434
7435 clean_up:
7436 hpsa_free_reply_queues(h);
7437 kfree(h->blockFetchTable);
7438 }
7439
7440 static int is_accelerated_cmd(struct CommandList *c)
7441 {
7442 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
7443 }
7444
7445 static void hpsa_drain_accel_commands(struct ctlr_info *h)
7446 {
7447 struct CommandList *c = NULL;
7448 int i, accel_cmds_out;
7449 int refcount;
7450
7451 do { /* wait for all outstanding ioaccel commands to drain out */
7452 accel_cmds_out = 0;
7453 for (i = 0; i < h->nr_cmds; i++) {
7454 c = h->cmd_pool + i;
7455 refcount = atomic_inc_return(&c->refcount);
7456 if (refcount > 1) /* Command is allocated */
7457 accel_cmds_out += is_accelerated_cmd(c);
7458 cmd_free(h, c);
7459 }
7460 if (accel_cmds_out <= 0)
7461 break;
7462 msleep(100);
7463 } while (1);
7464 }
7465
7466 /*
7467 * This is it. Register the PCI driver information for the cards we control
7468 * the OS will call our registered routines when it finds one of our cards.
7469 */
7470 static int __init hpsa_init(void)
7471 {
7472 return pci_register_driver(&hpsa_pci_driver);
7473 }
7474
7475 static void __exit hpsa_cleanup(void)
7476 {
7477 pci_unregister_driver(&hpsa_pci_driver);
7478 }
7479
7480 static void __attribute__((unused)) verify_offsets(void)
7481 {
7482 #define VERIFY_OFFSET(member, offset) \
7483 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
7484
7485 VERIFY_OFFSET(structure_size, 0);
7486 VERIFY_OFFSET(volume_blk_size, 4);
7487 VERIFY_OFFSET(volume_blk_cnt, 8);
7488 VERIFY_OFFSET(phys_blk_shift, 16);
7489 VERIFY_OFFSET(parity_rotation_shift, 17);
7490 VERIFY_OFFSET(strip_size, 18);
7491 VERIFY_OFFSET(disk_starting_blk, 20);
7492 VERIFY_OFFSET(disk_blk_cnt, 28);
7493 VERIFY_OFFSET(data_disks_per_row, 36);
7494 VERIFY_OFFSET(metadata_disks_per_row, 38);
7495 VERIFY_OFFSET(row_cnt, 40);
7496 VERIFY_OFFSET(layout_map_count, 42);
7497 VERIFY_OFFSET(flags, 44);
7498 VERIFY_OFFSET(dekindex, 46);
7499 /* VERIFY_OFFSET(reserved, 48 */
7500 VERIFY_OFFSET(data, 64);
7501
7502 #undef VERIFY_OFFSET
7503
7504 #define VERIFY_OFFSET(member, offset) \
7505 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
7506
7507 VERIFY_OFFSET(IU_type, 0);
7508 VERIFY_OFFSET(direction, 1);
7509 VERIFY_OFFSET(reply_queue, 2);
7510 /* VERIFY_OFFSET(reserved1, 3); */
7511 VERIFY_OFFSET(scsi_nexus, 4);
7512 VERIFY_OFFSET(Tag, 8);
7513 VERIFY_OFFSET(cdb, 16);
7514 VERIFY_OFFSET(cciss_lun, 32);
7515 VERIFY_OFFSET(data_len, 40);
7516 VERIFY_OFFSET(cmd_priority_task_attr, 44);
7517 VERIFY_OFFSET(sg_count, 45);
7518 /* VERIFY_OFFSET(reserved3 */
7519 VERIFY_OFFSET(err_ptr, 48);
7520 VERIFY_OFFSET(err_len, 56);
7521 /* VERIFY_OFFSET(reserved4 */
7522 VERIFY_OFFSET(sg, 64);
7523
7524 #undef VERIFY_OFFSET
7525
7526 #define VERIFY_OFFSET(member, offset) \
7527 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
7528
7529 VERIFY_OFFSET(dev_handle, 0x00);
7530 VERIFY_OFFSET(reserved1, 0x02);
7531 VERIFY_OFFSET(function, 0x03);
7532 VERIFY_OFFSET(reserved2, 0x04);
7533 VERIFY_OFFSET(err_info, 0x0C);
7534 VERIFY_OFFSET(reserved3, 0x10);
7535 VERIFY_OFFSET(err_info_len, 0x12);
7536 VERIFY_OFFSET(reserved4, 0x13);
7537 VERIFY_OFFSET(sgl_offset, 0x14);
7538 VERIFY_OFFSET(reserved5, 0x15);
7539 VERIFY_OFFSET(transfer_len, 0x1C);
7540 VERIFY_OFFSET(reserved6, 0x20);
7541 VERIFY_OFFSET(io_flags, 0x24);
7542 VERIFY_OFFSET(reserved7, 0x26);
7543 VERIFY_OFFSET(LUN, 0x34);
7544 VERIFY_OFFSET(control, 0x3C);
7545 VERIFY_OFFSET(CDB, 0x40);
7546 VERIFY_OFFSET(reserved8, 0x50);
7547 VERIFY_OFFSET(host_context_flags, 0x60);
7548 VERIFY_OFFSET(timeout_sec, 0x62);
7549 VERIFY_OFFSET(ReplyQueue, 0x64);
7550 VERIFY_OFFSET(reserved9, 0x65);
7551 VERIFY_OFFSET(tag, 0x68);
7552 VERIFY_OFFSET(host_addr, 0x70);
7553 VERIFY_OFFSET(CISS_LUN, 0x78);
7554 VERIFY_OFFSET(SG, 0x78 + 8);
7555 #undef VERIFY_OFFSET
7556 }
7557
7558 module_init(hpsa_init);
7559 module_exit(hpsa_cleanup);
This page took 0.311433 seconds and 6 git commands to generate.