Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / scsi / hpsa.c
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17 *
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
19 *
20 */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
57
58 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
59 #define HPSA_DRIVER_VERSION "3.4.4-1"
60 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
61 #define HPSA "hpsa"
62
63 /* How long to wait for CISS doorbell communication */
64 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
65 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
66 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
67 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
68 #define MAX_IOCTL_CONFIG_WAIT 1000
69
70 /*define how many times we will try a command because of bus resets */
71 #define MAX_CMD_RETRIES 3
72
73 /* Embedded module documentation macros - see modules.h */
74 MODULE_AUTHOR("Hewlett-Packard Company");
75 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
76 HPSA_DRIVER_VERSION);
77 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
78 MODULE_VERSION(HPSA_DRIVER_VERSION);
79 MODULE_LICENSE("GPL");
80
81 static int hpsa_allow_any;
82 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
83 MODULE_PARM_DESC(hpsa_allow_any,
84 "Allow hpsa driver to access unknown HP Smart Array hardware");
85 static int hpsa_simple_mode;
86 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_simple_mode,
88 "Use 'simple mode' rather than 'performant mode'");
89
90 /* define the PCI info for the cards we can control */
91 static const struct pci_device_id hpsa_pci_device_id[] = {
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
132 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
133 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
134 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
135 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
136 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
137 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
138 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
139 {0,}
140 };
141
142 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
143
144 /* board_id = Subsystem Device ID & Vendor ID
145 * product = Marketing Name for the board
146 * access = Address of the struct of function pointers
147 */
148 static struct board_type products[] = {
149 {0x3241103C, "Smart Array P212", &SA5_access},
150 {0x3243103C, "Smart Array P410", &SA5_access},
151 {0x3245103C, "Smart Array P410i", &SA5_access},
152 {0x3247103C, "Smart Array P411", &SA5_access},
153 {0x3249103C, "Smart Array P812", &SA5_access},
154 {0x324A103C, "Smart Array P712m", &SA5_access},
155 {0x324B103C, "Smart Array P711m", &SA5_access},
156 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
157 {0x3350103C, "Smart Array P222", &SA5_access},
158 {0x3351103C, "Smart Array P420", &SA5_access},
159 {0x3352103C, "Smart Array P421", &SA5_access},
160 {0x3353103C, "Smart Array P822", &SA5_access},
161 {0x3354103C, "Smart Array P420i", &SA5_access},
162 {0x3355103C, "Smart Array P220i", &SA5_access},
163 {0x3356103C, "Smart Array P721m", &SA5_access},
164 {0x1921103C, "Smart Array P830i", &SA5_access},
165 {0x1922103C, "Smart Array P430", &SA5_access},
166 {0x1923103C, "Smart Array P431", &SA5_access},
167 {0x1924103C, "Smart Array P830", &SA5_access},
168 {0x1926103C, "Smart Array P731m", &SA5_access},
169 {0x1928103C, "Smart Array P230i", &SA5_access},
170 {0x1929103C, "Smart Array P530", &SA5_access},
171 {0x21BD103C, "Smart Array P244br", &SA5_access},
172 {0x21BE103C, "Smart Array P741m", &SA5_access},
173 {0x21BF103C, "Smart HBA H240ar", &SA5_access},
174 {0x21C0103C, "Smart Array P440ar", &SA5_access},
175 {0x21C1103C, "Smart Array P840ar", &SA5_access},
176 {0x21C2103C, "Smart Array P440", &SA5_access},
177 {0x21C3103C, "Smart Array P441", &SA5_access},
178 {0x21C4103C, "Smart Array", &SA5_access},
179 {0x21C5103C, "Smart Array P841", &SA5_access},
180 {0x21C6103C, "Smart HBA H244br", &SA5_access},
181 {0x21C7103C, "Smart HBA H240", &SA5_access},
182 {0x21C8103C, "Smart HBA H241", &SA5_access},
183 {0x21C9103C, "Smart Array", &SA5_access},
184 {0x21CA103C, "Smart Array P246br", &SA5_access},
185 {0x21CB103C, "Smart Array P840", &SA5_access},
186 {0x21CC103C, "Smart Array", &SA5_access},
187 {0x21CD103C, "Smart Array", &SA5_access},
188 {0x21CE103C, "Smart HBA", &SA5_access},
189 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
190 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
191 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
192 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
193 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
194 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
195 };
196
197 static int number_of_controllers;
198
199 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
200 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
201 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
202
203 #ifdef CONFIG_COMPAT
204 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
205 void __user *arg);
206 #endif
207
208 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
209 static struct CommandList *cmd_alloc(struct ctlr_info *h);
210 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
211 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
212 int cmd_type);
213 static void hpsa_free_cmd_pool(struct ctlr_info *h);
214 #define VPD_PAGE (1 << 8)
215
216 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
217 static void hpsa_scan_start(struct Scsi_Host *);
218 static int hpsa_scan_finished(struct Scsi_Host *sh,
219 unsigned long elapsed_time);
220 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
221
222 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
223 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
224 static int hpsa_slave_alloc(struct scsi_device *sdev);
225 static void hpsa_slave_destroy(struct scsi_device *sdev);
226
227 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
228 static int check_for_unit_attention(struct ctlr_info *h,
229 struct CommandList *c);
230 static void check_ioctl_unit_attention(struct ctlr_info *h,
231 struct CommandList *c);
232 /* performant mode helper functions */
233 static void calc_bucket_map(int *bucket, int num_buckets,
234 int nsgs, int min_blocks, u32 *bucket_map);
235 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
236 static inline u32 next_command(struct ctlr_info *h, u8 q);
237 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
238 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
239 u64 *cfg_offset);
240 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
241 unsigned long *memory_bar);
242 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
243 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
244 int wait_for_ready);
245 static inline void finish_cmd(struct CommandList *c);
246 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
247 #define BOARD_NOT_READY 0
248 #define BOARD_READY 1
249 static void hpsa_drain_accel_commands(struct ctlr_info *h);
250 static void hpsa_flush_cache(struct ctlr_info *h);
251 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
252 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
253 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
254 static void hpsa_command_resubmit_worker(struct work_struct *work);
255
256 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
257 {
258 unsigned long *priv = shost_priv(sdev->host);
259 return (struct ctlr_info *) *priv;
260 }
261
262 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
263 {
264 unsigned long *priv = shost_priv(sh);
265 return (struct ctlr_info *) *priv;
266 }
267
268 static int check_for_unit_attention(struct ctlr_info *h,
269 struct CommandList *c)
270 {
271 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
272 return 0;
273
274 switch (c->err_info->SenseInfo[12]) {
275 case STATE_CHANGED:
276 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
277 "detected, command retried\n", h->ctlr);
278 break;
279 case LUN_FAILED:
280 dev_warn(&h->pdev->dev,
281 HPSA "%d: LUN failure detected\n", h->ctlr);
282 break;
283 case REPORT_LUNS_CHANGED:
284 dev_warn(&h->pdev->dev,
285 HPSA "%d: report LUN data changed\n", h->ctlr);
286 /*
287 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
288 * target (array) devices.
289 */
290 break;
291 case POWER_OR_RESET:
292 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
293 "or device reset detected\n", h->ctlr);
294 break;
295 case UNIT_ATTENTION_CLEARED:
296 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
297 "cleared by another initiator\n", h->ctlr);
298 break;
299 default:
300 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
301 "unit attention detected\n", h->ctlr);
302 break;
303 }
304 return 1;
305 }
306
307 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
308 {
309 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
310 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
311 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
312 return 0;
313 dev_warn(&h->pdev->dev, HPSA "device busy");
314 return 1;
315 }
316
317 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
318 struct device_attribute *attr,
319 const char *buf, size_t count)
320 {
321 int status, len;
322 struct ctlr_info *h;
323 struct Scsi_Host *shost = class_to_shost(dev);
324 char tmpbuf[10];
325
326 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
327 return -EACCES;
328 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
329 strncpy(tmpbuf, buf, len);
330 tmpbuf[len] = '\0';
331 if (sscanf(tmpbuf, "%d", &status) != 1)
332 return -EINVAL;
333 h = shost_to_hba(shost);
334 h->acciopath_status = !!status;
335 dev_warn(&h->pdev->dev,
336 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
337 h->acciopath_status ? "enabled" : "disabled");
338 return count;
339 }
340
341 static ssize_t host_store_raid_offload_debug(struct device *dev,
342 struct device_attribute *attr,
343 const char *buf, size_t count)
344 {
345 int debug_level, len;
346 struct ctlr_info *h;
347 struct Scsi_Host *shost = class_to_shost(dev);
348 char tmpbuf[10];
349
350 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
351 return -EACCES;
352 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
353 strncpy(tmpbuf, buf, len);
354 tmpbuf[len] = '\0';
355 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
356 return -EINVAL;
357 if (debug_level < 0)
358 debug_level = 0;
359 h = shost_to_hba(shost);
360 h->raid_offload_debug = debug_level;
361 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
362 h->raid_offload_debug);
363 return count;
364 }
365
366 static ssize_t host_store_rescan(struct device *dev,
367 struct device_attribute *attr,
368 const char *buf, size_t count)
369 {
370 struct ctlr_info *h;
371 struct Scsi_Host *shost = class_to_shost(dev);
372 h = shost_to_hba(shost);
373 hpsa_scan_start(h->scsi_host);
374 return count;
375 }
376
377 static ssize_t host_show_firmware_revision(struct device *dev,
378 struct device_attribute *attr, char *buf)
379 {
380 struct ctlr_info *h;
381 struct Scsi_Host *shost = class_to_shost(dev);
382 unsigned char *fwrev;
383
384 h = shost_to_hba(shost);
385 if (!h->hba_inquiry_data)
386 return 0;
387 fwrev = &h->hba_inquiry_data[32];
388 return snprintf(buf, 20, "%c%c%c%c\n",
389 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
390 }
391
392 static ssize_t host_show_commands_outstanding(struct device *dev,
393 struct device_attribute *attr, char *buf)
394 {
395 struct Scsi_Host *shost = class_to_shost(dev);
396 struct ctlr_info *h = shost_to_hba(shost);
397
398 return snprintf(buf, 20, "%d\n",
399 atomic_read(&h->commands_outstanding));
400 }
401
402 static ssize_t host_show_transport_mode(struct device *dev,
403 struct device_attribute *attr, char *buf)
404 {
405 struct ctlr_info *h;
406 struct Scsi_Host *shost = class_to_shost(dev);
407
408 h = shost_to_hba(shost);
409 return snprintf(buf, 20, "%s\n",
410 h->transMethod & CFGTBL_Trans_Performant ?
411 "performant" : "simple");
412 }
413
414 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
415 struct device_attribute *attr, char *buf)
416 {
417 struct ctlr_info *h;
418 struct Scsi_Host *shost = class_to_shost(dev);
419
420 h = shost_to_hba(shost);
421 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
422 (h->acciopath_status == 1) ? "enabled" : "disabled");
423 }
424
425 /* List of controllers which cannot be hard reset on kexec with reset_devices */
426 static u32 unresettable_controller[] = {
427 0x324a103C, /* Smart Array P712m */
428 0x324b103C, /* SmartArray P711m */
429 0x3223103C, /* Smart Array P800 */
430 0x3234103C, /* Smart Array P400 */
431 0x3235103C, /* Smart Array P400i */
432 0x3211103C, /* Smart Array E200i */
433 0x3212103C, /* Smart Array E200 */
434 0x3213103C, /* Smart Array E200i */
435 0x3214103C, /* Smart Array E200i */
436 0x3215103C, /* Smart Array E200i */
437 0x3237103C, /* Smart Array E500 */
438 0x323D103C, /* Smart Array P700m */
439 0x40800E11, /* Smart Array 5i */
440 0x409C0E11, /* Smart Array 6400 */
441 0x409D0E11, /* Smart Array 6400 EM */
442 0x40700E11, /* Smart Array 5300 */
443 0x40820E11, /* Smart Array 532 */
444 0x40830E11, /* Smart Array 5312 */
445 0x409A0E11, /* Smart Array 641 */
446 0x409B0E11, /* Smart Array 642 */
447 0x40910E11, /* Smart Array 6i */
448 };
449
450 /* List of controllers which cannot even be soft reset */
451 static u32 soft_unresettable_controller[] = {
452 0x40800E11, /* Smart Array 5i */
453 0x40700E11, /* Smart Array 5300 */
454 0x40820E11, /* Smart Array 532 */
455 0x40830E11, /* Smart Array 5312 */
456 0x409A0E11, /* Smart Array 641 */
457 0x409B0E11, /* Smart Array 642 */
458 0x40910E11, /* Smart Array 6i */
459 /* Exclude 640x boards. These are two pci devices in one slot
460 * which share a battery backed cache module. One controls the
461 * cache, the other accesses the cache through the one that controls
462 * it. If we reset the one controlling the cache, the other will
463 * likely not be happy. Just forbid resetting this conjoined mess.
464 * The 640x isn't really supported by hpsa anyway.
465 */
466 0x409C0E11, /* Smart Array 6400 */
467 0x409D0E11, /* Smart Array 6400 EM */
468 };
469
470 static int ctlr_is_hard_resettable(u32 board_id)
471 {
472 int i;
473
474 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
475 if (unresettable_controller[i] == board_id)
476 return 0;
477 return 1;
478 }
479
480 static int ctlr_is_soft_resettable(u32 board_id)
481 {
482 int i;
483
484 for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
485 if (soft_unresettable_controller[i] == board_id)
486 return 0;
487 return 1;
488 }
489
490 static int ctlr_is_resettable(u32 board_id)
491 {
492 return ctlr_is_hard_resettable(board_id) ||
493 ctlr_is_soft_resettable(board_id);
494 }
495
496 static ssize_t host_show_resettable(struct device *dev,
497 struct device_attribute *attr, char *buf)
498 {
499 struct ctlr_info *h;
500 struct Scsi_Host *shost = class_to_shost(dev);
501
502 h = shost_to_hba(shost);
503 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
504 }
505
506 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
507 {
508 return (scsi3addr[3] & 0xC0) == 0x40;
509 }
510
511 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
512 "1(+0)ADM", "UNKNOWN"
513 };
514 #define HPSA_RAID_0 0
515 #define HPSA_RAID_4 1
516 #define HPSA_RAID_1 2 /* also used for RAID 10 */
517 #define HPSA_RAID_5 3 /* also used for RAID 50 */
518 #define HPSA_RAID_51 4
519 #define HPSA_RAID_6 5 /* also used for RAID 60 */
520 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
521 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
522
523 static ssize_t raid_level_show(struct device *dev,
524 struct device_attribute *attr, char *buf)
525 {
526 ssize_t l = 0;
527 unsigned char rlevel;
528 struct ctlr_info *h;
529 struct scsi_device *sdev;
530 struct hpsa_scsi_dev_t *hdev;
531 unsigned long flags;
532
533 sdev = to_scsi_device(dev);
534 h = sdev_to_hba(sdev);
535 spin_lock_irqsave(&h->lock, flags);
536 hdev = sdev->hostdata;
537 if (!hdev) {
538 spin_unlock_irqrestore(&h->lock, flags);
539 return -ENODEV;
540 }
541
542 /* Is this even a logical drive? */
543 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
544 spin_unlock_irqrestore(&h->lock, flags);
545 l = snprintf(buf, PAGE_SIZE, "N/A\n");
546 return l;
547 }
548
549 rlevel = hdev->raid_level;
550 spin_unlock_irqrestore(&h->lock, flags);
551 if (rlevel > RAID_UNKNOWN)
552 rlevel = RAID_UNKNOWN;
553 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
554 return l;
555 }
556
557 static ssize_t lunid_show(struct device *dev,
558 struct device_attribute *attr, char *buf)
559 {
560 struct ctlr_info *h;
561 struct scsi_device *sdev;
562 struct hpsa_scsi_dev_t *hdev;
563 unsigned long flags;
564 unsigned char lunid[8];
565
566 sdev = to_scsi_device(dev);
567 h = sdev_to_hba(sdev);
568 spin_lock_irqsave(&h->lock, flags);
569 hdev = sdev->hostdata;
570 if (!hdev) {
571 spin_unlock_irqrestore(&h->lock, flags);
572 return -ENODEV;
573 }
574 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
575 spin_unlock_irqrestore(&h->lock, flags);
576 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
577 lunid[0], lunid[1], lunid[2], lunid[3],
578 lunid[4], lunid[5], lunid[6], lunid[7]);
579 }
580
581 static ssize_t unique_id_show(struct device *dev,
582 struct device_attribute *attr, char *buf)
583 {
584 struct ctlr_info *h;
585 struct scsi_device *sdev;
586 struct hpsa_scsi_dev_t *hdev;
587 unsigned long flags;
588 unsigned char sn[16];
589
590 sdev = to_scsi_device(dev);
591 h = sdev_to_hba(sdev);
592 spin_lock_irqsave(&h->lock, flags);
593 hdev = sdev->hostdata;
594 if (!hdev) {
595 spin_unlock_irqrestore(&h->lock, flags);
596 return -ENODEV;
597 }
598 memcpy(sn, hdev->device_id, sizeof(sn));
599 spin_unlock_irqrestore(&h->lock, flags);
600 return snprintf(buf, 16 * 2 + 2,
601 "%02X%02X%02X%02X%02X%02X%02X%02X"
602 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
603 sn[0], sn[1], sn[2], sn[3],
604 sn[4], sn[5], sn[6], sn[7],
605 sn[8], sn[9], sn[10], sn[11],
606 sn[12], sn[13], sn[14], sn[15]);
607 }
608
609 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
610 struct device_attribute *attr, char *buf)
611 {
612 struct ctlr_info *h;
613 struct scsi_device *sdev;
614 struct hpsa_scsi_dev_t *hdev;
615 unsigned long flags;
616 int offload_enabled;
617
618 sdev = to_scsi_device(dev);
619 h = sdev_to_hba(sdev);
620 spin_lock_irqsave(&h->lock, flags);
621 hdev = sdev->hostdata;
622 if (!hdev) {
623 spin_unlock_irqrestore(&h->lock, flags);
624 return -ENODEV;
625 }
626 offload_enabled = hdev->offload_enabled;
627 spin_unlock_irqrestore(&h->lock, flags);
628 return snprintf(buf, 20, "%d\n", offload_enabled);
629 }
630
631 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
632 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
633 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
634 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
635 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
636 host_show_hp_ssd_smart_path_enabled, NULL);
637 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
638 host_show_hp_ssd_smart_path_status,
639 host_store_hp_ssd_smart_path_status);
640 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
641 host_store_raid_offload_debug);
642 static DEVICE_ATTR(firmware_revision, S_IRUGO,
643 host_show_firmware_revision, NULL);
644 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
645 host_show_commands_outstanding, NULL);
646 static DEVICE_ATTR(transport_mode, S_IRUGO,
647 host_show_transport_mode, NULL);
648 static DEVICE_ATTR(resettable, S_IRUGO,
649 host_show_resettable, NULL);
650
651 static struct device_attribute *hpsa_sdev_attrs[] = {
652 &dev_attr_raid_level,
653 &dev_attr_lunid,
654 &dev_attr_unique_id,
655 &dev_attr_hp_ssd_smart_path_enabled,
656 NULL,
657 };
658
659 static struct device_attribute *hpsa_shost_attrs[] = {
660 &dev_attr_rescan,
661 &dev_attr_firmware_revision,
662 &dev_attr_commands_outstanding,
663 &dev_attr_transport_mode,
664 &dev_attr_resettable,
665 &dev_attr_hp_ssd_smart_path_status,
666 &dev_attr_raid_offload_debug,
667 NULL,
668 };
669
670 static struct scsi_host_template hpsa_driver_template = {
671 .module = THIS_MODULE,
672 .name = HPSA,
673 .proc_name = HPSA,
674 .queuecommand = hpsa_scsi_queue_command,
675 .scan_start = hpsa_scan_start,
676 .scan_finished = hpsa_scan_finished,
677 .change_queue_depth = hpsa_change_queue_depth,
678 .this_id = -1,
679 .use_clustering = ENABLE_CLUSTERING,
680 .eh_abort_handler = hpsa_eh_abort_handler,
681 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
682 .ioctl = hpsa_ioctl,
683 .slave_alloc = hpsa_slave_alloc,
684 .slave_destroy = hpsa_slave_destroy,
685 #ifdef CONFIG_COMPAT
686 .compat_ioctl = hpsa_compat_ioctl,
687 #endif
688 .sdev_attrs = hpsa_sdev_attrs,
689 .shost_attrs = hpsa_shost_attrs,
690 .max_sectors = 8192,
691 .no_write_same = 1,
692 };
693
694 static inline u32 next_command(struct ctlr_info *h, u8 q)
695 {
696 u32 a;
697 struct reply_queue_buffer *rq = &h->reply_queue[q];
698
699 if (h->transMethod & CFGTBL_Trans_io_accel1)
700 return h->access.command_completed(h, q);
701
702 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
703 return h->access.command_completed(h, q);
704
705 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
706 a = rq->head[rq->current_entry];
707 rq->current_entry++;
708 atomic_dec(&h->commands_outstanding);
709 } else {
710 a = FIFO_EMPTY;
711 }
712 /* Check for wraparound */
713 if (rq->current_entry == h->max_commands) {
714 rq->current_entry = 0;
715 rq->wraparound ^= 1;
716 }
717 return a;
718 }
719
720 /*
721 * There are some special bits in the bus address of the
722 * command that we have to set for the controller to know
723 * how to process the command:
724 *
725 * Normal performant mode:
726 * bit 0: 1 means performant mode, 0 means simple mode.
727 * bits 1-3 = block fetch table entry
728 * bits 4-6 = command type (== 0)
729 *
730 * ioaccel1 mode:
731 * bit 0 = "performant mode" bit.
732 * bits 1-3 = block fetch table entry
733 * bits 4-6 = command type (== 110)
734 * (command type is needed because ioaccel1 mode
735 * commands are submitted through the same register as normal
736 * mode commands, so this is how the controller knows whether
737 * the command is normal mode or ioaccel1 mode.)
738 *
739 * ioaccel2 mode:
740 * bit 0 = "performant mode" bit.
741 * bits 1-4 = block fetch table entry (note extra bit)
742 * bits 4-6 = not needed, because ioaccel2 mode has
743 * a separate special register for submitting commands.
744 */
745
746 /* set_performant_mode: Modify the tag for cciss performant
747 * set bit 0 for pull model, bits 3-1 for block fetch
748 * register number
749 */
750 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
751 {
752 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
753 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
754 if (likely(h->msix_vector > 0))
755 c->Header.ReplyQueue =
756 raw_smp_processor_id() % h->nreply_queues;
757 }
758 }
759
760 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
761 struct CommandList *c)
762 {
763 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
764
765 /* Tell the controller to post the reply to the queue for this
766 * processor. This seems to give the best I/O throughput.
767 */
768 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
769 /* Set the bits in the address sent down to include:
770 * - performant mode bit (bit 0)
771 * - pull count (bits 1-3)
772 * - command type (bits 4-6)
773 */
774 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
775 IOACCEL1_BUSADDR_CMDTYPE;
776 }
777
778 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
779 struct CommandList *c)
780 {
781 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
782
783 /* Tell the controller to post the reply to the queue for this
784 * processor. This seems to give the best I/O throughput.
785 */
786 cp->reply_queue = smp_processor_id() % h->nreply_queues;
787 /* Set the bits in the address sent down to include:
788 * - performant mode bit not used in ioaccel mode 2
789 * - pull count (bits 0-3)
790 * - command type isn't needed for ioaccel2
791 */
792 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
793 }
794
795 static int is_firmware_flash_cmd(u8 *cdb)
796 {
797 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
798 }
799
800 /*
801 * During firmware flash, the heartbeat register may not update as frequently
802 * as it should. So we dial down lockup detection during firmware flash. and
803 * dial it back up when firmware flash completes.
804 */
805 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
806 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
807 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
808 struct CommandList *c)
809 {
810 if (!is_firmware_flash_cmd(c->Request.CDB))
811 return;
812 atomic_inc(&h->firmware_flash_in_progress);
813 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
814 }
815
816 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
817 struct CommandList *c)
818 {
819 if (is_firmware_flash_cmd(c->Request.CDB) &&
820 atomic_dec_and_test(&h->firmware_flash_in_progress))
821 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
822 }
823
824 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
825 struct CommandList *c)
826 {
827 dial_down_lockup_detection_during_fw_flash(h, c);
828 atomic_inc(&h->commands_outstanding);
829 switch (c->cmd_type) {
830 case CMD_IOACCEL1:
831 set_ioaccel1_performant_mode(h, c);
832 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
833 break;
834 case CMD_IOACCEL2:
835 set_ioaccel2_performant_mode(h, c);
836 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
837 break;
838 default:
839 set_performant_mode(h, c);
840 h->access.submit_command(h, c);
841 }
842 }
843
844 static inline int is_hba_lunid(unsigned char scsi3addr[])
845 {
846 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
847 }
848
849 static inline int is_scsi_rev_5(struct ctlr_info *h)
850 {
851 if (!h->hba_inquiry_data)
852 return 0;
853 if ((h->hba_inquiry_data[2] & 0x07) == 5)
854 return 1;
855 return 0;
856 }
857
858 static int hpsa_find_target_lun(struct ctlr_info *h,
859 unsigned char scsi3addr[], int bus, int *target, int *lun)
860 {
861 /* finds an unused bus, target, lun for a new physical device
862 * assumes h->devlock is held
863 */
864 int i, found = 0;
865 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
866
867 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
868
869 for (i = 0; i < h->ndevices; i++) {
870 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
871 __set_bit(h->dev[i]->target, lun_taken);
872 }
873
874 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
875 if (i < HPSA_MAX_DEVICES) {
876 /* *bus = 1; */
877 *target = i;
878 *lun = 0;
879 found = 1;
880 }
881 return !found;
882 }
883
884 /* Add an entry into h->dev[] array. */
885 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
886 struct hpsa_scsi_dev_t *device,
887 struct hpsa_scsi_dev_t *added[], int *nadded)
888 {
889 /* assumes h->devlock is held */
890 int n = h->ndevices;
891 int i;
892 unsigned char addr1[8], addr2[8];
893 struct hpsa_scsi_dev_t *sd;
894
895 if (n >= HPSA_MAX_DEVICES) {
896 dev_err(&h->pdev->dev, "too many devices, some will be "
897 "inaccessible.\n");
898 return -1;
899 }
900
901 /* physical devices do not have lun or target assigned until now. */
902 if (device->lun != -1)
903 /* Logical device, lun is already assigned. */
904 goto lun_assigned;
905
906 /* If this device a non-zero lun of a multi-lun device
907 * byte 4 of the 8-byte LUN addr will contain the logical
908 * unit no, zero otherwise.
909 */
910 if (device->scsi3addr[4] == 0) {
911 /* This is not a non-zero lun of a multi-lun device */
912 if (hpsa_find_target_lun(h, device->scsi3addr,
913 device->bus, &device->target, &device->lun) != 0)
914 return -1;
915 goto lun_assigned;
916 }
917
918 /* This is a non-zero lun of a multi-lun device.
919 * Search through our list and find the device which
920 * has the same 8 byte LUN address, excepting byte 4.
921 * Assign the same bus and target for this new LUN.
922 * Use the logical unit number from the firmware.
923 */
924 memcpy(addr1, device->scsi3addr, 8);
925 addr1[4] = 0;
926 for (i = 0; i < n; i++) {
927 sd = h->dev[i];
928 memcpy(addr2, sd->scsi3addr, 8);
929 addr2[4] = 0;
930 /* differ only in byte 4? */
931 if (memcmp(addr1, addr2, 8) == 0) {
932 device->bus = sd->bus;
933 device->target = sd->target;
934 device->lun = device->scsi3addr[4];
935 break;
936 }
937 }
938 if (device->lun == -1) {
939 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
940 " suspect firmware bug or unsupported hardware "
941 "configuration.\n");
942 return -1;
943 }
944
945 lun_assigned:
946
947 h->dev[n] = device;
948 h->ndevices++;
949 added[*nadded] = device;
950 (*nadded)++;
951
952 /* initially, (before registering with scsi layer) we don't
953 * know our hostno and we don't want to print anything first
954 * time anyway (the scsi layer's inquiries will show that info)
955 */
956 /* if (hostno != -1) */
957 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
958 scsi_device_type(device->devtype), hostno,
959 device->bus, device->target, device->lun);
960 return 0;
961 }
962
963 /* Update an entry in h->dev[] array. */
964 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
965 int entry, struct hpsa_scsi_dev_t *new_entry)
966 {
967 /* assumes h->devlock is held */
968 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
969
970 /* Raid level changed. */
971 h->dev[entry]->raid_level = new_entry->raid_level;
972
973 /* Raid offload parameters changed. Careful about the ordering. */
974 if (new_entry->offload_config && new_entry->offload_enabled) {
975 /*
976 * if drive is newly offload_enabled, we want to copy the
977 * raid map data first. If previously offload_enabled and
978 * offload_config were set, raid map data had better be
979 * the same as it was before. if raid map data is changed
980 * then it had better be the case that
981 * h->dev[entry]->offload_enabled is currently 0.
982 */
983 h->dev[entry]->raid_map = new_entry->raid_map;
984 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
985 wmb(); /* ensure raid map updated prior to ->offload_enabled */
986 }
987 h->dev[entry]->offload_config = new_entry->offload_config;
988 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
989 h->dev[entry]->offload_enabled = new_entry->offload_enabled;
990 h->dev[entry]->queue_depth = new_entry->queue_depth;
991
992 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
993 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
994 new_entry->target, new_entry->lun);
995 }
996
997 /* Replace an entry from h->dev[] array. */
998 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
999 int entry, struct hpsa_scsi_dev_t *new_entry,
1000 struct hpsa_scsi_dev_t *added[], int *nadded,
1001 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1002 {
1003 /* assumes h->devlock is held */
1004 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1005 removed[*nremoved] = h->dev[entry];
1006 (*nremoved)++;
1007
1008 /*
1009 * New physical devices won't have target/lun assigned yet
1010 * so we need to preserve the values in the slot we are replacing.
1011 */
1012 if (new_entry->target == -1) {
1013 new_entry->target = h->dev[entry]->target;
1014 new_entry->lun = h->dev[entry]->lun;
1015 }
1016
1017 h->dev[entry] = new_entry;
1018 added[*nadded] = new_entry;
1019 (*nadded)++;
1020 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
1021 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
1022 new_entry->target, new_entry->lun);
1023 }
1024
1025 /* Remove an entry from h->dev[] array. */
1026 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1027 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1028 {
1029 /* assumes h->devlock is held */
1030 int i;
1031 struct hpsa_scsi_dev_t *sd;
1032
1033 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1034
1035 sd = h->dev[entry];
1036 removed[*nremoved] = h->dev[entry];
1037 (*nremoved)++;
1038
1039 for (i = entry; i < h->ndevices-1; i++)
1040 h->dev[i] = h->dev[i+1];
1041 h->ndevices--;
1042 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
1043 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
1044 sd->lun);
1045 }
1046
1047 #define SCSI3ADDR_EQ(a, b) ( \
1048 (a)[7] == (b)[7] && \
1049 (a)[6] == (b)[6] && \
1050 (a)[5] == (b)[5] && \
1051 (a)[4] == (b)[4] && \
1052 (a)[3] == (b)[3] && \
1053 (a)[2] == (b)[2] && \
1054 (a)[1] == (b)[1] && \
1055 (a)[0] == (b)[0])
1056
1057 static void fixup_botched_add(struct ctlr_info *h,
1058 struct hpsa_scsi_dev_t *added)
1059 {
1060 /* called when scsi_add_device fails in order to re-adjust
1061 * h->dev[] to match the mid layer's view.
1062 */
1063 unsigned long flags;
1064 int i, j;
1065
1066 spin_lock_irqsave(&h->lock, flags);
1067 for (i = 0; i < h->ndevices; i++) {
1068 if (h->dev[i] == added) {
1069 for (j = i; j < h->ndevices-1; j++)
1070 h->dev[j] = h->dev[j+1];
1071 h->ndevices--;
1072 break;
1073 }
1074 }
1075 spin_unlock_irqrestore(&h->lock, flags);
1076 kfree(added);
1077 }
1078
1079 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1080 struct hpsa_scsi_dev_t *dev2)
1081 {
1082 /* we compare everything except lun and target as these
1083 * are not yet assigned. Compare parts likely
1084 * to differ first
1085 */
1086 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1087 sizeof(dev1->scsi3addr)) != 0)
1088 return 0;
1089 if (memcmp(dev1->device_id, dev2->device_id,
1090 sizeof(dev1->device_id)) != 0)
1091 return 0;
1092 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1093 return 0;
1094 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1095 return 0;
1096 if (dev1->devtype != dev2->devtype)
1097 return 0;
1098 if (dev1->bus != dev2->bus)
1099 return 0;
1100 return 1;
1101 }
1102
1103 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1104 struct hpsa_scsi_dev_t *dev2)
1105 {
1106 /* Device attributes that can change, but don't mean
1107 * that the device is a different device, nor that the OS
1108 * needs to be told anything about the change.
1109 */
1110 if (dev1->raid_level != dev2->raid_level)
1111 return 1;
1112 if (dev1->offload_config != dev2->offload_config)
1113 return 1;
1114 if (dev1->offload_enabled != dev2->offload_enabled)
1115 return 1;
1116 if (dev1->queue_depth != dev2->queue_depth)
1117 return 1;
1118 return 0;
1119 }
1120
1121 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1122 * and return needle location in *index. If scsi3addr matches, but not
1123 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1124 * location in *index.
1125 * In the case of a minor device attribute change, such as RAID level, just
1126 * return DEVICE_UPDATED, along with the updated device's location in index.
1127 * If needle not found, return DEVICE_NOT_FOUND.
1128 */
1129 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1130 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1131 int *index)
1132 {
1133 int i;
1134 #define DEVICE_NOT_FOUND 0
1135 #define DEVICE_CHANGED 1
1136 #define DEVICE_SAME 2
1137 #define DEVICE_UPDATED 3
1138 for (i = 0; i < haystack_size; i++) {
1139 if (haystack[i] == NULL) /* previously removed. */
1140 continue;
1141 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1142 *index = i;
1143 if (device_is_the_same(needle, haystack[i])) {
1144 if (device_updated(needle, haystack[i]))
1145 return DEVICE_UPDATED;
1146 return DEVICE_SAME;
1147 } else {
1148 /* Keep offline devices offline */
1149 if (needle->volume_offline)
1150 return DEVICE_NOT_FOUND;
1151 return DEVICE_CHANGED;
1152 }
1153 }
1154 }
1155 *index = -1;
1156 return DEVICE_NOT_FOUND;
1157 }
1158
1159 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1160 unsigned char scsi3addr[])
1161 {
1162 struct offline_device_entry *device;
1163 unsigned long flags;
1164
1165 /* Check to see if device is already on the list */
1166 spin_lock_irqsave(&h->offline_device_lock, flags);
1167 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1168 if (memcmp(device->scsi3addr, scsi3addr,
1169 sizeof(device->scsi3addr)) == 0) {
1170 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1171 return;
1172 }
1173 }
1174 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1175
1176 /* Device is not on the list, add it. */
1177 device = kmalloc(sizeof(*device), GFP_KERNEL);
1178 if (!device) {
1179 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1180 return;
1181 }
1182 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1183 spin_lock_irqsave(&h->offline_device_lock, flags);
1184 list_add_tail(&device->offline_list, &h->offline_device_list);
1185 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1186 }
1187
1188 /* Print a message explaining various offline volume states */
1189 static void hpsa_show_volume_status(struct ctlr_info *h,
1190 struct hpsa_scsi_dev_t *sd)
1191 {
1192 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1193 dev_info(&h->pdev->dev,
1194 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1195 h->scsi_host->host_no,
1196 sd->bus, sd->target, sd->lun);
1197 switch (sd->volume_offline) {
1198 case HPSA_LV_OK:
1199 break;
1200 case HPSA_LV_UNDERGOING_ERASE:
1201 dev_info(&h->pdev->dev,
1202 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1203 h->scsi_host->host_no,
1204 sd->bus, sd->target, sd->lun);
1205 break;
1206 case HPSA_LV_UNDERGOING_RPI:
1207 dev_info(&h->pdev->dev,
1208 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1209 h->scsi_host->host_no,
1210 sd->bus, sd->target, sd->lun);
1211 break;
1212 case HPSA_LV_PENDING_RPI:
1213 dev_info(&h->pdev->dev,
1214 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1215 h->scsi_host->host_no,
1216 sd->bus, sd->target, sd->lun);
1217 break;
1218 case HPSA_LV_ENCRYPTED_NO_KEY:
1219 dev_info(&h->pdev->dev,
1220 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1221 h->scsi_host->host_no,
1222 sd->bus, sd->target, sd->lun);
1223 break;
1224 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1225 dev_info(&h->pdev->dev,
1226 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1227 h->scsi_host->host_no,
1228 sd->bus, sd->target, sd->lun);
1229 break;
1230 case HPSA_LV_UNDERGOING_ENCRYPTION:
1231 dev_info(&h->pdev->dev,
1232 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1233 h->scsi_host->host_no,
1234 sd->bus, sd->target, sd->lun);
1235 break;
1236 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1237 dev_info(&h->pdev->dev,
1238 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1239 h->scsi_host->host_no,
1240 sd->bus, sd->target, sd->lun);
1241 break;
1242 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1243 dev_info(&h->pdev->dev,
1244 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1245 h->scsi_host->host_no,
1246 sd->bus, sd->target, sd->lun);
1247 break;
1248 case HPSA_LV_PENDING_ENCRYPTION:
1249 dev_info(&h->pdev->dev,
1250 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1251 h->scsi_host->host_no,
1252 sd->bus, sd->target, sd->lun);
1253 break;
1254 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1255 dev_info(&h->pdev->dev,
1256 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1257 h->scsi_host->host_no,
1258 sd->bus, sd->target, sd->lun);
1259 break;
1260 }
1261 }
1262
1263 /*
1264 * Figure the list of physical drive pointers for a logical drive with
1265 * raid offload configured.
1266 */
1267 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1268 struct hpsa_scsi_dev_t *dev[], int ndevices,
1269 struct hpsa_scsi_dev_t *logical_drive)
1270 {
1271 struct raid_map_data *map = &logical_drive->raid_map;
1272 struct raid_map_disk_data *dd = &map->data[0];
1273 int i, j;
1274 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1275 le16_to_cpu(map->metadata_disks_per_row);
1276 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1277 le16_to_cpu(map->layout_map_count) *
1278 total_disks_per_row;
1279 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1280 total_disks_per_row;
1281 int qdepth;
1282
1283 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1284 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1285
1286 qdepth = 0;
1287 for (i = 0; i < nraid_map_entries; i++) {
1288 logical_drive->phys_disk[i] = NULL;
1289 if (!logical_drive->offload_config)
1290 continue;
1291 for (j = 0; j < ndevices; j++) {
1292 if (dev[j]->devtype != TYPE_DISK)
1293 continue;
1294 if (is_logical_dev_addr_mode(dev[j]->scsi3addr))
1295 continue;
1296 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1297 continue;
1298
1299 logical_drive->phys_disk[i] = dev[j];
1300 if (i < nphys_disk)
1301 qdepth = min(h->nr_cmds, qdepth +
1302 logical_drive->phys_disk[i]->queue_depth);
1303 break;
1304 }
1305
1306 /*
1307 * This can happen if a physical drive is removed and
1308 * the logical drive is degraded. In that case, the RAID
1309 * map data will refer to a physical disk which isn't actually
1310 * present. And in that case offload_enabled should already
1311 * be 0, but we'll turn it off here just in case
1312 */
1313 if (!logical_drive->phys_disk[i]) {
1314 logical_drive->offload_enabled = 0;
1315 logical_drive->queue_depth = h->nr_cmds;
1316 }
1317 }
1318 if (nraid_map_entries)
1319 /*
1320 * This is correct for reads, too high for full stripe writes,
1321 * way too high for partial stripe writes
1322 */
1323 logical_drive->queue_depth = qdepth;
1324 else
1325 logical_drive->queue_depth = h->nr_cmds;
1326 }
1327
1328 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1329 struct hpsa_scsi_dev_t *dev[], int ndevices)
1330 {
1331 int i;
1332
1333 for (i = 0; i < ndevices; i++) {
1334 if (dev[i]->devtype != TYPE_DISK)
1335 continue;
1336 if (!is_logical_dev_addr_mode(dev[i]->scsi3addr))
1337 continue;
1338 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1339 }
1340 }
1341
1342 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1343 struct hpsa_scsi_dev_t *sd[], int nsds)
1344 {
1345 /* sd contains scsi3 addresses and devtypes, and inquiry
1346 * data. This function takes what's in sd to be the current
1347 * reality and updates h->dev[] to reflect that reality.
1348 */
1349 int i, entry, device_change, changes = 0;
1350 struct hpsa_scsi_dev_t *csd;
1351 unsigned long flags;
1352 struct hpsa_scsi_dev_t **added, **removed;
1353 int nadded, nremoved;
1354 struct Scsi_Host *sh = NULL;
1355
1356 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1357 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1358
1359 if (!added || !removed) {
1360 dev_warn(&h->pdev->dev, "out of memory in "
1361 "adjust_hpsa_scsi_table\n");
1362 goto free_and_out;
1363 }
1364
1365 spin_lock_irqsave(&h->devlock, flags);
1366
1367 /* find any devices in h->dev[] that are not in
1368 * sd[] and remove them from h->dev[], and for any
1369 * devices which have changed, remove the old device
1370 * info and add the new device info.
1371 * If minor device attributes change, just update
1372 * the existing device structure.
1373 */
1374 i = 0;
1375 nremoved = 0;
1376 nadded = 0;
1377 while (i < h->ndevices) {
1378 csd = h->dev[i];
1379 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1380 if (device_change == DEVICE_NOT_FOUND) {
1381 changes++;
1382 hpsa_scsi_remove_entry(h, hostno, i,
1383 removed, &nremoved);
1384 continue; /* remove ^^^, hence i not incremented */
1385 } else if (device_change == DEVICE_CHANGED) {
1386 changes++;
1387 hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1388 added, &nadded, removed, &nremoved);
1389 /* Set it to NULL to prevent it from being freed
1390 * at the bottom of hpsa_update_scsi_devices()
1391 */
1392 sd[entry] = NULL;
1393 } else if (device_change == DEVICE_UPDATED) {
1394 hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1395 }
1396 i++;
1397 }
1398
1399 /* Now, make sure every device listed in sd[] is also
1400 * listed in h->dev[], adding them if they aren't found
1401 */
1402
1403 for (i = 0; i < nsds; i++) {
1404 if (!sd[i]) /* if already added above. */
1405 continue;
1406
1407 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1408 * as the SCSI mid-layer does not handle such devices well.
1409 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1410 * at 160Hz, and prevents the system from coming up.
1411 */
1412 if (sd[i]->volume_offline) {
1413 hpsa_show_volume_status(h, sd[i]);
1414 dev_info(&h->pdev->dev, "c%db%dt%dl%d: temporarily offline\n",
1415 h->scsi_host->host_no,
1416 sd[i]->bus, sd[i]->target, sd[i]->lun);
1417 continue;
1418 }
1419
1420 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1421 h->ndevices, &entry);
1422 if (device_change == DEVICE_NOT_FOUND) {
1423 changes++;
1424 if (hpsa_scsi_add_entry(h, hostno, sd[i],
1425 added, &nadded) != 0)
1426 break;
1427 sd[i] = NULL; /* prevent from being freed later. */
1428 } else if (device_change == DEVICE_CHANGED) {
1429 /* should never happen... */
1430 changes++;
1431 dev_warn(&h->pdev->dev,
1432 "device unexpectedly changed.\n");
1433 /* but if it does happen, we just ignore that device */
1434 }
1435 }
1436 spin_unlock_irqrestore(&h->devlock, flags);
1437
1438 /* Monitor devices which are in one of several NOT READY states to be
1439 * brought online later. This must be done without holding h->devlock,
1440 * so don't touch h->dev[]
1441 */
1442 for (i = 0; i < nsds; i++) {
1443 if (!sd[i]) /* if already added above. */
1444 continue;
1445 if (sd[i]->volume_offline)
1446 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1447 }
1448
1449 /* Don't notify scsi mid layer of any changes the first time through
1450 * (or if there are no changes) scsi_scan_host will do it later the
1451 * first time through.
1452 */
1453 if (hostno == -1 || !changes)
1454 goto free_and_out;
1455
1456 sh = h->scsi_host;
1457 /* Notify scsi mid layer of any removed devices */
1458 for (i = 0; i < nremoved; i++) {
1459 struct scsi_device *sdev =
1460 scsi_device_lookup(sh, removed[i]->bus,
1461 removed[i]->target, removed[i]->lun);
1462 if (sdev != NULL) {
1463 scsi_remove_device(sdev);
1464 scsi_device_put(sdev);
1465 } else {
1466 /* We don't expect to get here.
1467 * future cmds to this device will get selection
1468 * timeout as if the device was gone.
1469 */
1470 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1471 " for removal.", hostno, removed[i]->bus,
1472 removed[i]->target, removed[i]->lun);
1473 }
1474 kfree(removed[i]);
1475 removed[i] = NULL;
1476 }
1477
1478 /* Notify scsi mid layer of any added devices */
1479 for (i = 0; i < nadded; i++) {
1480 if (scsi_add_device(sh, added[i]->bus,
1481 added[i]->target, added[i]->lun) == 0)
1482 continue;
1483 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1484 "device not added.\n", hostno, added[i]->bus,
1485 added[i]->target, added[i]->lun);
1486 /* now we have to remove it from h->dev,
1487 * since it didn't get added to scsi mid layer
1488 */
1489 fixup_botched_add(h, added[i]);
1490 }
1491
1492 free_and_out:
1493 kfree(added);
1494 kfree(removed);
1495 }
1496
1497 /*
1498 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1499 * Assume's h->devlock is held.
1500 */
1501 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1502 int bus, int target, int lun)
1503 {
1504 int i;
1505 struct hpsa_scsi_dev_t *sd;
1506
1507 for (i = 0; i < h->ndevices; i++) {
1508 sd = h->dev[i];
1509 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1510 return sd;
1511 }
1512 return NULL;
1513 }
1514
1515 /* link sdev->hostdata to our per-device structure. */
1516 static int hpsa_slave_alloc(struct scsi_device *sdev)
1517 {
1518 struct hpsa_scsi_dev_t *sd;
1519 unsigned long flags;
1520 struct ctlr_info *h;
1521
1522 h = sdev_to_hba(sdev);
1523 spin_lock_irqsave(&h->devlock, flags);
1524 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1525 sdev_id(sdev), sdev->lun);
1526 if (sd != NULL) {
1527 sdev->hostdata = sd;
1528 if (sd->queue_depth)
1529 scsi_change_queue_depth(sdev, sd->queue_depth);
1530 atomic_set(&sd->ioaccel_cmds_out, 0);
1531 }
1532 spin_unlock_irqrestore(&h->devlock, flags);
1533 return 0;
1534 }
1535
1536 static void hpsa_slave_destroy(struct scsi_device *sdev)
1537 {
1538 /* nothing to do. */
1539 }
1540
1541 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1542 {
1543 int i;
1544
1545 if (!h->cmd_sg_list)
1546 return;
1547 for (i = 0; i < h->nr_cmds; i++) {
1548 kfree(h->cmd_sg_list[i]);
1549 h->cmd_sg_list[i] = NULL;
1550 }
1551 kfree(h->cmd_sg_list);
1552 h->cmd_sg_list = NULL;
1553 }
1554
1555 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1556 {
1557 int i;
1558
1559 if (h->chainsize <= 0)
1560 return 0;
1561
1562 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1563 GFP_KERNEL);
1564 if (!h->cmd_sg_list) {
1565 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
1566 return -ENOMEM;
1567 }
1568 for (i = 0; i < h->nr_cmds; i++) {
1569 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1570 h->chainsize, GFP_KERNEL);
1571 if (!h->cmd_sg_list[i]) {
1572 dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
1573 goto clean;
1574 }
1575 }
1576 return 0;
1577
1578 clean:
1579 hpsa_free_sg_chain_blocks(h);
1580 return -ENOMEM;
1581 }
1582
1583 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1584 struct CommandList *c)
1585 {
1586 struct SGDescriptor *chain_sg, *chain_block;
1587 u64 temp64;
1588 u32 chain_len;
1589
1590 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1591 chain_block = h->cmd_sg_list[c->cmdindex];
1592 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
1593 chain_len = sizeof(*chain_sg) *
1594 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
1595 chain_sg->Len = cpu_to_le32(chain_len);
1596 temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1597 PCI_DMA_TODEVICE);
1598 if (dma_mapping_error(&h->pdev->dev, temp64)) {
1599 /* prevent subsequent unmapping */
1600 chain_sg->Addr = cpu_to_le64(0);
1601 return -1;
1602 }
1603 chain_sg->Addr = cpu_to_le64(temp64);
1604 return 0;
1605 }
1606
1607 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1608 struct CommandList *c)
1609 {
1610 struct SGDescriptor *chain_sg;
1611
1612 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
1613 return;
1614
1615 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1616 pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
1617 le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
1618 }
1619
1620
1621 /* Decode the various types of errors on ioaccel2 path.
1622 * Return 1 for any error that should generate a RAID path retry.
1623 * Return 0 for errors that don't require a RAID path retry.
1624 */
1625 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1626 struct CommandList *c,
1627 struct scsi_cmnd *cmd,
1628 struct io_accel2_cmd *c2)
1629 {
1630 int data_len;
1631 int retry = 0;
1632
1633 switch (c2->error_data.serv_response) {
1634 case IOACCEL2_SERV_RESPONSE_COMPLETE:
1635 switch (c2->error_data.status) {
1636 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
1637 break;
1638 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1639 dev_warn(&h->pdev->dev,
1640 "%s: task complete with check condition.\n",
1641 "HP SSD Smart Path");
1642 cmd->result |= SAM_STAT_CHECK_CONDITION;
1643 if (c2->error_data.data_present !=
1644 IOACCEL2_SENSE_DATA_PRESENT) {
1645 memset(cmd->sense_buffer, 0,
1646 SCSI_SENSE_BUFFERSIZE);
1647 break;
1648 }
1649 /* copy the sense data */
1650 data_len = c2->error_data.sense_data_len;
1651 if (data_len > SCSI_SENSE_BUFFERSIZE)
1652 data_len = SCSI_SENSE_BUFFERSIZE;
1653 if (data_len > sizeof(c2->error_data.sense_data_buff))
1654 data_len =
1655 sizeof(c2->error_data.sense_data_buff);
1656 memcpy(cmd->sense_buffer,
1657 c2->error_data.sense_data_buff, data_len);
1658 retry = 1;
1659 break;
1660 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1661 dev_warn(&h->pdev->dev,
1662 "%s: task complete with BUSY status.\n",
1663 "HP SSD Smart Path");
1664 retry = 1;
1665 break;
1666 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1667 dev_warn(&h->pdev->dev,
1668 "%s: task complete with reservation conflict.\n",
1669 "HP SSD Smart Path");
1670 retry = 1;
1671 break;
1672 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1673 /* Make scsi midlayer do unlimited retries */
1674 cmd->result = DID_IMM_RETRY << 16;
1675 break;
1676 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1677 dev_warn(&h->pdev->dev,
1678 "%s: task complete with aborted status.\n",
1679 "HP SSD Smart Path");
1680 retry = 1;
1681 break;
1682 default:
1683 dev_warn(&h->pdev->dev,
1684 "%s: task complete with unrecognized status: 0x%02x\n",
1685 "HP SSD Smart Path", c2->error_data.status);
1686 retry = 1;
1687 break;
1688 }
1689 break;
1690 case IOACCEL2_SERV_RESPONSE_FAILURE:
1691 /* don't expect to get here. */
1692 dev_warn(&h->pdev->dev,
1693 "unexpected delivery or target failure, status = 0x%02x\n",
1694 c2->error_data.status);
1695 retry = 1;
1696 break;
1697 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
1698 break;
1699 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
1700 break;
1701 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1702 dev_warn(&h->pdev->dev, "task management function rejected.\n");
1703 retry = 1;
1704 break;
1705 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
1706 dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
1707 break;
1708 default:
1709 dev_warn(&h->pdev->dev,
1710 "%s: Unrecognized server response: 0x%02x\n",
1711 "HP SSD Smart Path",
1712 c2->error_data.serv_response);
1713 retry = 1;
1714 break;
1715 }
1716
1717 return retry; /* retry on raid path? */
1718 }
1719
1720 static void process_ioaccel2_completion(struct ctlr_info *h,
1721 struct CommandList *c, struct scsi_cmnd *cmd,
1722 struct hpsa_scsi_dev_t *dev)
1723 {
1724 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
1725
1726 /* check for good status */
1727 if (likely(c2->error_data.serv_response == 0 &&
1728 c2->error_data.status == 0)) {
1729 cmd_free(h, c);
1730 cmd->scsi_done(cmd);
1731 return;
1732 }
1733
1734 /* Any RAID offload error results in retry which will use
1735 * the normal I/O path so the controller can handle whatever's
1736 * wrong.
1737 */
1738 if (is_logical_dev_addr_mode(dev->scsi3addr) &&
1739 c2->error_data.serv_response ==
1740 IOACCEL2_SERV_RESPONSE_FAILURE) {
1741 if (c2->error_data.status ==
1742 IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
1743 dev->offload_enabled = 0;
1744 goto retry_cmd;
1745 }
1746
1747 if (handle_ioaccel_mode2_error(h, c, cmd, c2))
1748 goto retry_cmd;
1749
1750 cmd_free(h, c);
1751 cmd->scsi_done(cmd);
1752 return;
1753
1754 retry_cmd:
1755 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
1756 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
1757 }
1758
1759 static void complete_scsi_command(struct CommandList *cp)
1760 {
1761 struct scsi_cmnd *cmd;
1762 struct ctlr_info *h;
1763 struct ErrorInfo *ei;
1764 struct hpsa_scsi_dev_t *dev;
1765
1766 unsigned char sense_key;
1767 unsigned char asc; /* additional sense code */
1768 unsigned char ascq; /* additional sense code qualifier */
1769 unsigned long sense_data_size;
1770
1771 ei = cp->err_info;
1772 cmd = cp->scsi_cmd;
1773 h = cp->h;
1774 dev = cmd->device->hostdata;
1775
1776 scsi_dma_unmap(cmd); /* undo the DMA mappings */
1777 if ((cp->cmd_type == CMD_SCSI) &&
1778 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
1779 hpsa_unmap_sg_chain_block(h, cp);
1780
1781 cmd->result = (DID_OK << 16); /* host byte */
1782 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1783
1784 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
1785 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
1786
1787 if (cp->cmd_type == CMD_IOACCEL2)
1788 return process_ioaccel2_completion(h, cp, cmd, dev);
1789
1790 cmd->result |= ei->ScsiStatus;
1791
1792 scsi_set_resid(cmd, ei->ResidualCnt);
1793 if (ei->CommandStatus == 0) {
1794 if (cp->cmd_type == CMD_IOACCEL1)
1795 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
1796 cmd_free(h, cp);
1797 cmd->scsi_done(cmd);
1798 return;
1799 }
1800
1801 /* copy the sense data */
1802 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1803 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1804 else
1805 sense_data_size = sizeof(ei->SenseInfo);
1806 if (ei->SenseLen < sense_data_size)
1807 sense_data_size = ei->SenseLen;
1808
1809 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1810
1811 /* For I/O accelerator commands, copy over some fields to the normal
1812 * CISS header used below for error handling.
1813 */
1814 if (cp->cmd_type == CMD_IOACCEL1) {
1815 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
1816 cp->Header.SGList = scsi_sg_count(cmd);
1817 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
1818 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
1819 IOACCEL1_IOFLAGS_CDBLEN_MASK;
1820 cp->Header.tag = c->tag;
1821 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
1822 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
1823
1824 /* Any RAID offload error results in retry which will use
1825 * the normal I/O path so the controller can handle whatever's
1826 * wrong.
1827 */
1828 if (is_logical_dev_addr_mode(dev->scsi3addr)) {
1829 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
1830 dev->offload_enabled = 0;
1831 INIT_WORK(&cp->work, hpsa_command_resubmit_worker);
1832 queue_work_on(raw_smp_processor_id(),
1833 h->resubmit_wq, &cp->work);
1834 return;
1835 }
1836 }
1837
1838 /* an error has occurred */
1839 switch (ei->CommandStatus) {
1840
1841 case CMD_TARGET_STATUS:
1842 if (ei->ScsiStatus) {
1843 /* Get sense key */
1844 sense_key = 0xf & ei->SenseInfo[2];
1845 /* Get additional sense code */
1846 asc = ei->SenseInfo[12];
1847 /* Get addition sense code qualifier */
1848 ascq = ei->SenseInfo[13];
1849 }
1850 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1851 if (sense_key == ABORTED_COMMAND) {
1852 cmd->result |= DID_SOFT_ERROR << 16;
1853 break;
1854 }
1855 break;
1856 }
1857 /* Problem was not a check condition
1858 * Pass it up to the upper layers...
1859 */
1860 if (ei->ScsiStatus) {
1861 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1862 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1863 "Returning result: 0x%x\n",
1864 cp, ei->ScsiStatus,
1865 sense_key, asc, ascq,
1866 cmd->result);
1867 } else { /* scsi status is zero??? How??? */
1868 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1869 "Returning no connection.\n", cp),
1870
1871 /* Ordinarily, this case should never happen,
1872 * but there is a bug in some released firmware
1873 * revisions that allows it to happen if, for
1874 * example, a 4100 backplane loses power and
1875 * the tape drive is in it. We assume that
1876 * it's a fatal error of some kind because we
1877 * can't show that it wasn't. We will make it
1878 * look like selection timeout since that is
1879 * the most common reason for this to occur,
1880 * and it's severe enough.
1881 */
1882
1883 cmd->result = DID_NO_CONNECT << 16;
1884 }
1885 break;
1886
1887 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1888 break;
1889 case CMD_DATA_OVERRUN:
1890 dev_warn(&h->pdev->dev,
1891 "CDB %16phN data overrun\n", cp->Request.CDB);
1892 break;
1893 case CMD_INVALID: {
1894 /* print_bytes(cp, sizeof(*cp), 1, 0);
1895 print_cmd(cp); */
1896 /* We get CMD_INVALID if you address a non-existent device
1897 * instead of a selection timeout (no response). You will
1898 * see this if you yank out a drive, then try to access it.
1899 * This is kind of a shame because it means that any other
1900 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1901 * missing target. */
1902 cmd->result = DID_NO_CONNECT << 16;
1903 }
1904 break;
1905 case CMD_PROTOCOL_ERR:
1906 cmd->result = DID_ERROR << 16;
1907 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
1908 cp->Request.CDB);
1909 break;
1910 case CMD_HARDWARE_ERR:
1911 cmd->result = DID_ERROR << 16;
1912 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
1913 cp->Request.CDB);
1914 break;
1915 case CMD_CONNECTION_LOST:
1916 cmd->result = DID_ERROR << 16;
1917 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
1918 cp->Request.CDB);
1919 break;
1920 case CMD_ABORTED:
1921 cmd->result = DID_ABORT << 16;
1922 dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
1923 cp->Request.CDB, ei->ScsiStatus);
1924 break;
1925 case CMD_ABORT_FAILED:
1926 cmd->result = DID_ERROR << 16;
1927 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
1928 cp->Request.CDB);
1929 break;
1930 case CMD_UNSOLICITED_ABORT:
1931 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1932 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
1933 cp->Request.CDB);
1934 break;
1935 case CMD_TIMEOUT:
1936 cmd->result = DID_TIME_OUT << 16;
1937 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
1938 cp->Request.CDB);
1939 break;
1940 case CMD_UNABORTABLE:
1941 cmd->result = DID_ERROR << 16;
1942 dev_warn(&h->pdev->dev, "Command unabortable\n");
1943 break;
1944 case CMD_IOACCEL_DISABLED:
1945 /* This only handles the direct pass-through case since RAID
1946 * offload is handled above. Just attempt a retry.
1947 */
1948 cmd->result = DID_SOFT_ERROR << 16;
1949 dev_warn(&h->pdev->dev,
1950 "cp %p had HP SSD Smart Path error\n", cp);
1951 break;
1952 default:
1953 cmd->result = DID_ERROR << 16;
1954 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1955 cp, ei->CommandStatus);
1956 }
1957 cmd_free(h, cp);
1958 cmd->scsi_done(cmd);
1959 }
1960
1961 static void hpsa_pci_unmap(struct pci_dev *pdev,
1962 struct CommandList *c, int sg_used, int data_direction)
1963 {
1964 int i;
1965
1966 for (i = 0; i < sg_used; i++)
1967 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
1968 le32_to_cpu(c->SG[i].Len),
1969 data_direction);
1970 }
1971
1972 static int hpsa_map_one(struct pci_dev *pdev,
1973 struct CommandList *cp,
1974 unsigned char *buf,
1975 size_t buflen,
1976 int data_direction)
1977 {
1978 u64 addr64;
1979
1980 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1981 cp->Header.SGList = 0;
1982 cp->Header.SGTotal = cpu_to_le16(0);
1983 return 0;
1984 }
1985
1986 addr64 = pci_map_single(pdev, buf, buflen, data_direction);
1987 if (dma_mapping_error(&pdev->dev, addr64)) {
1988 /* Prevent subsequent unmap of something never mapped */
1989 cp->Header.SGList = 0;
1990 cp->Header.SGTotal = cpu_to_le16(0);
1991 return -1;
1992 }
1993 cp->SG[0].Addr = cpu_to_le64(addr64);
1994 cp->SG[0].Len = cpu_to_le32(buflen);
1995 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
1996 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
1997 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
1998 return 0;
1999 }
2000
2001 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2002 struct CommandList *c)
2003 {
2004 DECLARE_COMPLETION_ONSTACK(wait);
2005
2006 c->waiting = &wait;
2007 enqueue_cmd_and_start_io(h, c);
2008 wait_for_completion(&wait);
2009 }
2010
2011 static u32 lockup_detected(struct ctlr_info *h)
2012 {
2013 int cpu;
2014 u32 rc, *lockup_detected;
2015
2016 cpu = get_cpu();
2017 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2018 rc = *lockup_detected;
2019 put_cpu();
2020 return rc;
2021 }
2022
2023 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
2024 struct CommandList *c)
2025 {
2026 /* If controller lockup detected, fake a hardware error. */
2027 if (unlikely(lockup_detected(h)))
2028 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
2029 else
2030 hpsa_scsi_do_simple_cmd_core(h, c);
2031 }
2032
2033 #define MAX_DRIVER_CMD_RETRIES 25
2034 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2035 struct CommandList *c, int data_direction)
2036 {
2037 int backoff_time = 10, retry_count = 0;
2038
2039 do {
2040 memset(c->err_info, 0, sizeof(*c->err_info));
2041 hpsa_scsi_do_simple_cmd_core(h, c);
2042 retry_count++;
2043 if (retry_count > 3) {
2044 msleep(backoff_time);
2045 if (backoff_time < 1000)
2046 backoff_time *= 2;
2047 }
2048 } while ((check_for_unit_attention(h, c) ||
2049 check_for_busy(h, c)) &&
2050 retry_count <= MAX_DRIVER_CMD_RETRIES);
2051 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2052 }
2053
2054 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2055 struct CommandList *c)
2056 {
2057 const u8 *cdb = c->Request.CDB;
2058 const u8 *lun = c->Header.LUN.LunAddrBytes;
2059
2060 dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2061 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2062 txt, lun[0], lun[1], lun[2], lun[3],
2063 lun[4], lun[5], lun[6], lun[7],
2064 cdb[0], cdb[1], cdb[2], cdb[3],
2065 cdb[4], cdb[5], cdb[6], cdb[7],
2066 cdb[8], cdb[9], cdb[10], cdb[11],
2067 cdb[12], cdb[13], cdb[14], cdb[15]);
2068 }
2069
2070 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2071 struct CommandList *cp)
2072 {
2073 const struct ErrorInfo *ei = cp->err_info;
2074 struct device *d = &cp->h->pdev->dev;
2075 const u8 *sd = ei->SenseInfo;
2076
2077 switch (ei->CommandStatus) {
2078 case CMD_TARGET_STATUS:
2079 hpsa_print_cmd(h, "SCSI status", cp);
2080 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2081 dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
2082 sd[2] & 0x0f, sd[12], sd[13]);
2083 else
2084 dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus);
2085 if (ei->ScsiStatus == 0)
2086 dev_warn(d, "SCSI status is abnormally zero. "
2087 "(probably indicates selection timeout "
2088 "reported incorrectly due to a known "
2089 "firmware bug, circa July, 2001.)\n");
2090 break;
2091 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2092 break;
2093 case CMD_DATA_OVERRUN:
2094 hpsa_print_cmd(h, "overrun condition", cp);
2095 break;
2096 case CMD_INVALID: {
2097 /* controller unfortunately reports SCSI passthru's
2098 * to non-existent targets as invalid commands.
2099 */
2100 hpsa_print_cmd(h, "invalid command", cp);
2101 dev_warn(d, "probably means device no longer present\n");
2102 }
2103 break;
2104 case CMD_PROTOCOL_ERR:
2105 hpsa_print_cmd(h, "protocol error", cp);
2106 break;
2107 case CMD_HARDWARE_ERR:
2108 hpsa_print_cmd(h, "hardware error", cp);
2109 break;
2110 case CMD_CONNECTION_LOST:
2111 hpsa_print_cmd(h, "connection lost", cp);
2112 break;
2113 case CMD_ABORTED:
2114 hpsa_print_cmd(h, "aborted", cp);
2115 break;
2116 case CMD_ABORT_FAILED:
2117 hpsa_print_cmd(h, "abort failed", cp);
2118 break;
2119 case CMD_UNSOLICITED_ABORT:
2120 hpsa_print_cmd(h, "unsolicited abort", cp);
2121 break;
2122 case CMD_TIMEOUT:
2123 hpsa_print_cmd(h, "timed out", cp);
2124 break;
2125 case CMD_UNABORTABLE:
2126 hpsa_print_cmd(h, "unabortable", cp);
2127 break;
2128 default:
2129 hpsa_print_cmd(h, "unknown status", cp);
2130 dev_warn(d, "Unknown command status %x\n",
2131 ei->CommandStatus);
2132 }
2133 }
2134
2135 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2136 u16 page, unsigned char *buf,
2137 unsigned char bufsize)
2138 {
2139 int rc = IO_OK;
2140 struct CommandList *c;
2141 struct ErrorInfo *ei;
2142
2143 c = cmd_alloc(h);
2144
2145 if (c == NULL) {
2146 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2147 return -ENOMEM;
2148 }
2149
2150 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2151 page, scsi3addr, TYPE_CMD)) {
2152 rc = -1;
2153 goto out;
2154 }
2155 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2156 ei = c->err_info;
2157 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2158 hpsa_scsi_interpret_error(h, c);
2159 rc = -1;
2160 }
2161 out:
2162 cmd_free(h, c);
2163 return rc;
2164 }
2165
2166 static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
2167 unsigned char *scsi3addr, unsigned char page,
2168 struct bmic_controller_parameters *buf, size_t bufsize)
2169 {
2170 int rc = IO_OK;
2171 struct CommandList *c;
2172 struct ErrorInfo *ei;
2173
2174 c = cmd_alloc(h);
2175 if (c == NULL) { /* trouble... */
2176 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2177 return -ENOMEM;
2178 }
2179
2180 if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
2181 page, scsi3addr, TYPE_CMD)) {
2182 rc = -1;
2183 goto out;
2184 }
2185 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2186 ei = c->err_info;
2187 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2188 hpsa_scsi_interpret_error(h, c);
2189 rc = -1;
2190 }
2191 out:
2192 cmd_free(h, c);
2193 return rc;
2194 }
2195
2196 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2197 u8 reset_type)
2198 {
2199 int rc = IO_OK;
2200 struct CommandList *c;
2201 struct ErrorInfo *ei;
2202
2203 c = cmd_alloc(h);
2204
2205 if (c == NULL) { /* trouble... */
2206 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2207 return -ENOMEM;
2208 }
2209
2210 /* fill_cmd can't fail here, no data buffer to map. */
2211 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2212 scsi3addr, TYPE_MSG);
2213 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2214 hpsa_scsi_do_simple_cmd_core(h, c);
2215 /* no unmap needed here because no data xfer. */
2216
2217 ei = c->err_info;
2218 if (ei->CommandStatus != 0) {
2219 hpsa_scsi_interpret_error(h, c);
2220 rc = -1;
2221 }
2222 cmd_free(h, c);
2223 return rc;
2224 }
2225
2226 static void hpsa_get_raid_level(struct ctlr_info *h,
2227 unsigned char *scsi3addr, unsigned char *raid_level)
2228 {
2229 int rc;
2230 unsigned char *buf;
2231
2232 *raid_level = RAID_UNKNOWN;
2233 buf = kzalloc(64, GFP_KERNEL);
2234 if (!buf)
2235 return;
2236 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2237 if (rc == 0)
2238 *raid_level = buf[8];
2239 if (*raid_level > RAID_UNKNOWN)
2240 *raid_level = RAID_UNKNOWN;
2241 kfree(buf);
2242 return;
2243 }
2244
2245 #define HPSA_MAP_DEBUG
2246 #ifdef HPSA_MAP_DEBUG
2247 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2248 struct raid_map_data *map_buff)
2249 {
2250 struct raid_map_disk_data *dd = &map_buff->data[0];
2251 int map, row, col;
2252 u16 map_cnt, row_cnt, disks_per_row;
2253
2254 if (rc != 0)
2255 return;
2256
2257 /* Show details only if debugging has been activated. */
2258 if (h->raid_offload_debug < 2)
2259 return;
2260
2261 dev_info(&h->pdev->dev, "structure_size = %u\n",
2262 le32_to_cpu(map_buff->structure_size));
2263 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2264 le32_to_cpu(map_buff->volume_blk_size));
2265 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2266 le64_to_cpu(map_buff->volume_blk_cnt));
2267 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2268 map_buff->phys_blk_shift);
2269 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2270 map_buff->parity_rotation_shift);
2271 dev_info(&h->pdev->dev, "strip_size = %u\n",
2272 le16_to_cpu(map_buff->strip_size));
2273 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2274 le64_to_cpu(map_buff->disk_starting_blk));
2275 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2276 le64_to_cpu(map_buff->disk_blk_cnt));
2277 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2278 le16_to_cpu(map_buff->data_disks_per_row));
2279 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2280 le16_to_cpu(map_buff->metadata_disks_per_row));
2281 dev_info(&h->pdev->dev, "row_cnt = %u\n",
2282 le16_to_cpu(map_buff->row_cnt));
2283 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2284 le16_to_cpu(map_buff->layout_map_count));
2285 dev_info(&h->pdev->dev, "flags = 0x%x\n",
2286 le16_to_cpu(map_buff->flags));
2287 dev_info(&h->pdev->dev, "encrypytion = %s\n",
2288 le16_to_cpu(map_buff->flags) &
2289 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
2290 dev_info(&h->pdev->dev, "dekindex = %u\n",
2291 le16_to_cpu(map_buff->dekindex));
2292 map_cnt = le16_to_cpu(map_buff->layout_map_count);
2293 for (map = 0; map < map_cnt; map++) {
2294 dev_info(&h->pdev->dev, "Map%u:\n", map);
2295 row_cnt = le16_to_cpu(map_buff->row_cnt);
2296 for (row = 0; row < row_cnt; row++) {
2297 dev_info(&h->pdev->dev, " Row%u:\n", row);
2298 disks_per_row =
2299 le16_to_cpu(map_buff->data_disks_per_row);
2300 for (col = 0; col < disks_per_row; col++, dd++)
2301 dev_info(&h->pdev->dev,
2302 " D%02u: h=0x%04x xor=%u,%u\n",
2303 col, dd->ioaccel_handle,
2304 dd->xor_mult[0], dd->xor_mult[1]);
2305 disks_per_row =
2306 le16_to_cpu(map_buff->metadata_disks_per_row);
2307 for (col = 0; col < disks_per_row; col++, dd++)
2308 dev_info(&h->pdev->dev,
2309 " M%02u: h=0x%04x xor=%u,%u\n",
2310 col, dd->ioaccel_handle,
2311 dd->xor_mult[0], dd->xor_mult[1]);
2312 }
2313 }
2314 }
2315 #else
2316 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2317 __attribute__((unused)) int rc,
2318 __attribute__((unused)) struct raid_map_data *map_buff)
2319 {
2320 }
2321 #endif
2322
2323 static int hpsa_get_raid_map(struct ctlr_info *h,
2324 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2325 {
2326 int rc = 0;
2327 struct CommandList *c;
2328 struct ErrorInfo *ei;
2329
2330 c = cmd_alloc(h);
2331 if (c == NULL) {
2332 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2333 return -ENOMEM;
2334 }
2335 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2336 sizeof(this_device->raid_map), 0,
2337 scsi3addr, TYPE_CMD)) {
2338 dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
2339 cmd_free(h, c);
2340 return -ENOMEM;
2341 }
2342 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2343 ei = c->err_info;
2344 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2345 hpsa_scsi_interpret_error(h, c);
2346 cmd_free(h, c);
2347 return -1;
2348 }
2349 cmd_free(h, c);
2350
2351 /* @todo in the future, dynamically allocate RAID map memory */
2352 if (le32_to_cpu(this_device->raid_map.structure_size) >
2353 sizeof(this_device->raid_map)) {
2354 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2355 rc = -1;
2356 }
2357 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2358 return rc;
2359 }
2360
2361 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
2362 unsigned char scsi3addr[], u16 bmic_device_index,
2363 struct bmic_identify_physical_device *buf, size_t bufsize)
2364 {
2365 int rc = IO_OK;
2366 struct CommandList *c;
2367 struct ErrorInfo *ei;
2368
2369 c = cmd_alloc(h);
2370 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
2371 0, RAID_CTLR_LUNID, TYPE_CMD);
2372 if (rc)
2373 goto out;
2374
2375 c->Request.CDB[2] = bmic_device_index & 0xff;
2376 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
2377
2378 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2379 ei = c->err_info;
2380 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2381 hpsa_scsi_interpret_error(h, c);
2382 rc = -1;
2383 }
2384 out:
2385 cmd_free(h, c);
2386 return rc;
2387 }
2388
2389 static int hpsa_vpd_page_supported(struct ctlr_info *h,
2390 unsigned char scsi3addr[], u8 page)
2391 {
2392 int rc;
2393 int i;
2394 int pages;
2395 unsigned char *buf, bufsize;
2396
2397 buf = kzalloc(256, GFP_KERNEL);
2398 if (!buf)
2399 return 0;
2400
2401 /* Get the size of the page list first */
2402 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2403 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2404 buf, HPSA_VPD_HEADER_SZ);
2405 if (rc != 0)
2406 goto exit_unsupported;
2407 pages = buf[3];
2408 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
2409 bufsize = pages + HPSA_VPD_HEADER_SZ;
2410 else
2411 bufsize = 255;
2412
2413 /* Get the whole VPD page list */
2414 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2415 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2416 buf, bufsize);
2417 if (rc != 0)
2418 goto exit_unsupported;
2419
2420 pages = buf[3];
2421 for (i = 1; i <= pages; i++)
2422 if (buf[3 + i] == page)
2423 goto exit_supported;
2424 exit_unsupported:
2425 kfree(buf);
2426 return 0;
2427 exit_supported:
2428 kfree(buf);
2429 return 1;
2430 }
2431
2432 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
2433 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2434 {
2435 int rc;
2436 unsigned char *buf;
2437 u8 ioaccel_status;
2438
2439 this_device->offload_config = 0;
2440 this_device->offload_enabled = 0;
2441
2442 buf = kzalloc(64, GFP_KERNEL);
2443 if (!buf)
2444 return;
2445 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
2446 goto out;
2447 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2448 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2449 if (rc != 0)
2450 goto out;
2451
2452 #define IOACCEL_STATUS_BYTE 4
2453 #define OFFLOAD_CONFIGURED_BIT 0x01
2454 #define OFFLOAD_ENABLED_BIT 0x02
2455 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
2456 this_device->offload_config =
2457 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
2458 if (this_device->offload_config) {
2459 this_device->offload_enabled =
2460 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
2461 if (hpsa_get_raid_map(h, scsi3addr, this_device))
2462 this_device->offload_enabled = 0;
2463 }
2464 out:
2465 kfree(buf);
2466 return;
2467 }
2468
2469 /* Get the device id from inquiry page 0x83 */
2470 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
2471 unsigned char *device_id, int buflen)
2472 {
2473 int rc;
2474 unsigned char *buf;
2475
2476 if (buflen > 16)
2477 buflen = 16;
2478 buf = kzalloc(64, GFP_KERNEL);
2479 if (!buf)
2480 return -ENOMEM;
2481 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2482 if (rc == 0)
2483 memcpy(device_id, &buf[8], buflen);
2484 kfree(buf);
2485 return rc != 0;
2486 }
2487
2488 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2489 void *buf, int bufsize,
2490 int extended_response)
2491 {
2492 int rc = IO_OK;
2493 struct CommandList *c;
2494 unsigned char scsi3addr[8];
2495 struct ErrorInfo *ei;
2496
2497 c = cmd_alloc(h);
2498 if (c == NULL) { /* trouble... */
2499 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2500 return -1;
2501 }
2502 /* address the controller */
2503 memset(scsi3addr, 0, sizeof(scsi3addr));
2504 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
2505 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
2506 rc = -1;
2507 goto out;
2508 }
2509 if (extended_response)
2510 c->Request.CDB[1] = extended_response;
2511 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2512 ei = c->err_info;
2513 if (ei->CommandStatus != 0 &&
2514 ei->CommandStatus != CMD_DATA_UNDERRUN) {
2515 hpsa_scsi_interpret_error(h, c);
2516 rc = -1;
2517 } else {
2518 struct ReportLUNdata *rld = buf;
2519
2520 if (rld->extended_response_flag != extended_response) {
2521 dev_err(&h->pdev->dev,
2522 "report luns requested format %u, got %u\n",
2523 extended_response,
2524 rld->extended_response_flag);
2525 rc = -1;
2526 }
2527 }
2528 out:
2529 cmd_free(h, c);
2530 return rc;
2531 }
2532
2533 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2534 struct ReportExtendedLUNdata *buf, int bufsize)
2535 {
2536 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
2537 HPSA_REPORT_PHYS_EXTENDED);
2538 }
2539
2540 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
2541 struct ReportLUNdata *buf, int bufsize)
2542 {
2543 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
2544 }
2545
2546 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
2547 int bus, int target, int lun)
2548 {
2549 device->bus = bus;
2550 device->target = target;
2551 device->lun = lun;
2552 }
2553
2554 /* Use VPD inquiry to get details of volume status */
2555 static int hpsa_get_volume_status(struct ctlr_info *h,
2556 unsigned char scsi3addr[])
2557 {
2558 int rc;
2559 int status;
2560 int size;
2561 unsigned char *buf;
2562
2563 buf = kzalloc(64, GFP_KERNEL);
2564 if (!buf)
2565 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2566
2567 /* Does controller have VPD for logical volume status? */
2568 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
2569 goto exit_failed;
2570
2571 /* Get the size of the VPD return buffer */
2572 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2573 buf, HPSA_VPD_HEADER_SZ);
2574 if (rc != 0)
2575 goto exit_failed;
2576 size = buf[3];
2577
2578 /* Now get the whole VPD buffer */
2579 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2580 buf, size + HPSA_VPD_HEADER_SZ);
2581 if (rc != 0)
2582 goto exit_failed;
2583 status = buf[4]; /* status byte */
2584
2585 kfree(buf);
2586 return status;
2587 exit_failed:
2588 kfree(buf);
2589 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2590 }
2591
2592 /* Determine offline status of a volume.
2593 * Return either:
2594 * 0 (not offline)
2595 * 0xff (offline for unknown reasons)
2596 * # (integer code indicating one of several NOT READY states
2597 * describing why a volume is to be kept offline)
2598 */
2599 static int hpsa_volume_offline(struct ctlr_info *h,
2600 unsigned char scsi3addr[])
2601 {
2602 struct CommandList *c;
2603 unsigned char *sense, sense_key, asc, ascq;
2604 int ldstat = 0;
2605 u16 cmd_status;
2606 u8 scsi_status;
2607 #define ASC_LUN_NOT_READY 0x04
2608 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
2609 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
2610
2611 c = cmd_alloc(h);
2612 if (!c)
2613 return 0;
2614 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
2615 hpsa_scsi_do_simple_cmd_core(h, c);
2616 sense = c->err_info->SenseInfo;
2617 sense_key = sense[2];
2618 asc = sense[12];
2619 ascq = sense[13];
2620 cmd_status = c->err_info->CommandStatus;
2621 scsi_status = c->err_info->ScsiStatus;
2622 cmd_free(h, c);
2623 /* Is the volume 'not ready'? */
2624 if (cmd_status != CMD_TARGET_STATUS ||
2625 scsi_status != SAM_STAT_CHECK_CONDITION ||
2626 sense_key != NOT_READY ||
2627 asc != ASC_LUN_NOT_READY) {
2628 return 0;
2629 }
2630
2631 /* Determine the reason for not ready state */
2632 ldstat = hpsa_get_volume_status(h, scsi3addr);
2633
2634 /* Keep volume offline in certain cases: */
2635 switch (ldstat) {
2636 case HPSA_LV_UNDERGOING_ERASE:
2637 case HPSA_LV_UNDERGOING_RPI:
2638 case HPSA_LV_PENDING_RPI:
2639 case HPSA_LV_ENCRYPTED_NO_KEY:
2640 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
2641 case HPSA_LV_UNDERGOING_ENCRYPTION:
2642 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
2643 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
2644 return ldstat;
2645 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
2646 /* If VPD status page isn't available,
2647 * use ASC/ASCQ to determine state
2648 */
2649 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
2650 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
2651 return ldstat;
2652 break;
2653 default:
2654 break;
2655 }
2656 return 0;
2657 }
2658
2659 static int hpsa_update_device_info(struct ctlr_info *h,
2660 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
2661 unsigned char *is_OBDR_device)
2662 {
2663
2664 #define OBDR_SIG_OFFSET 43
2665 #define OBDR_TAPE_SIG "$DR-10"
2666 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
2667 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
2668
2669 unsigned char *inq_buff;
2670 unsigned char *obdr_sig;
2671
2672 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
2673 if (!inq_buff)
2674 goto bail_out;
2675
2676 /* Do an inquiry to the device to see what it is. */
2677 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
2678 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
2679 /* Inquiry failed (msg printed already) */
2680 dev_err(&h->pdev->dev,
2681 "hpsa_update_device_info: inquiry failed\n");
2682 goto bail_out;
2683 }
2684
2685 this_device->devtype = (inq_buff[0] & 0x1f);
2686 memcpy(this_device->scsi3addr, scsi3addr, 8);
2687 memcpy(this_device->vendor, &inq_buff[8],
2688 sizeof(this_device->vendor));
2689 memcpy(this_device->model, &inq_buff[16],
2690 sizeof(this_device->model));
2691 memset(this_device->device_id, 0,
2692 sizeof(this_device->device_id));
2693 hpsa_get_device_id(h, scsi3addr, this_device->device_id,
2694 sizeof(this_device->device_id));
2695
2696 if (this_device->devtype == TYPE_DISK &&
2697 is_logical_dev_addr_mode(scsi3addr)) {
2698 int volume_offline;
2699
2700 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
2701 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
2702 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
2703 volume_offline = hpsa_volume_offline(h, scsi3addr);
2704 if (volume_offline < 0 || volume_offline > 0xff)
2705 volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
2706 this_device->volume_offline = volume_offline & 0xff;
2707 } else {
2708 this_device->raid_level = RAID_UNKNOWN;
2709 this_device->offload_config = 0;
2710 this_device->offload_enabled = 0;
2711 this_device->volume_offline = 0;
2712 this_device->queue_depth = h->nr_cmds;
2713 }
2714
2715 if (is_OBDR_device) {
2716 /* See if this is a One-Button-Disaster-Recovery device
2717 * by looking for "$DR-10" at offset 43 in inquiry data.
2718 */
2719 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
2720 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
2721 strncmp(obdr_sig, OBDR_TAPE_SIG,
2722 OBDR_SIG_LEN) == 0);
2723 }
2724
2725 kfree(inq_buff);
2726 return 0;
2727
2728 bail_out:
2729 kfree(inq_buff);
2730 return 1;
2731 }
2732
2733 static unsigned char *ext_target_model[] = {
2734 "MSA2012",
2735 "MSA2024",
2736 "MSA2312",
2737 "MSA2324",
2738 "P2000 G3 SAS",
2739 "MSA 2040 SAS",
2740 NULL,
2741 };
2742
2743 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
2744 {
2745 int i;
2746
2747 for (i = 0; ext_target_model[i]; i++)
2748 if (strncmp(device->model, ext_target_model[i],
2749 strlen(ext_target_model[i])) == 0)
2750 return 1;
2751 return 0;
2752 }
2753
2754 /* Helper function to assign bus, target, lun mapping of devices.
2755 * Puts non-external target logical volumes on bus 0, external target logical
2756 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
2757 * Logical drive target and lun are assigned at this time, but
2758 * physical device lun and target assignment are deferred (assigned
2759 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
2760 */
2761 static void figure_bus_target_lun(struct ctlr_info *h,
2762 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
2763 {
2764 u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
2765
2766 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
2767 /* physical device, target and lun filled in later */
2768 if (is_hba_lunid(lunaddrbytes))
2769 hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
2770 else
2771 /* defer target, lun assignment for physical devices */
2772 hpsa_set_bus_target_lun(device, 2, -1, -1);
2773 return;
2774 }
2775 /* It's a logical device */
2776 if (is_ext_target(h, device)) {
2777 /* external target way, put logicals on bus 1
2778 * and match target/lun numbers box
2779 * reports, other smart array, bus 0, target 0, match lunid
2780 */
2781 hpsa_set_bus_target_lun(device,
2782 1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
2783 return;
2784 }
2785 hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
2786 }
2787
2788 /*
2789 * If there is no lun 0 on a target, linux won't find any devices.
2790 * For the external targets (arrays), we have to manually detect the enclosure
2791 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
2792 * it for some reason. *tmpdevice is the target we're adding,
2793 * this_device is a pointer into the current element of currentsd[]
2794 * that we're building up in update_scsi_devices(), below.
2795 * lunzerobits is a bitmap that tracks which targets already have a
2796 * lun 0 assigned.
2797 * Returns 1 if an enclosure was added, 0 if not.
2798 */
2799 static int add_ext_target_dev(struct ctlr_info *h,
2800 struct hpsa_scsi_dev_t *tmpdevice,
2801 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
2802 unsigned long lunzerobits[], int *n_ext_target_devs)
2803 {
2804 unsigned char scsi3addr[8];
2805
2806 if (test_bit(tmpdevice->target, lunzerobits))
2807 return 0; /* There is already a lun 0 on this target. */
2808
2809 if (!is_logical_dev_addr_mode(lunaddrbytes))
2810 return 0; /* It's the logical targets that may lack lun 0. */
2811
2812 if (!is_ext_target(h, tmpdevice))
2813 return 0; /* Only external target devices have this problem. */
2814
2815 if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
2816 return 0;
2817
2818 memset(scsi3addr, 0, 8);
2819 scsi3addr[3] = tmpdevice->target;
2820 if (is_hba_lunid(scsi3addr))
2821 return 0; /* Don't add the RAID controller here. */
2822
2823 if (is_scsi_rev_5(h))
2824 return 0; /* p1210m doesn't need to do this. */
2825
2826 if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
2827 dev_warn(&h->pdev->dev, "Maximum number of external "
2828 "target devices exceeded. Check your hardware "
2829 "configuration.");
2830 return 0;
2831 }
2832
2833 if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
2834 return 0;
2835 (*n_ext_target_devs)++;
2836 hpsa_set_bus_target_lun(this_device,
2837 tmpdevice->bus, tmpdevice->target, 0);
2838 set_bit(tmpdevice->target, lunzerobits);
2839 return 1;
2840 }
2841
2842 /*
2843 * Get address of physical disk used for an ioaccel2 mode command:
2844 * 1. Extract ioaccel2 handle from the command.
2845 * 2. Find a matching ioaccel2 handle from list of physical disks.
2846 * 3. Return:
2847 * 1 and set scsi3addr to address of matching physical
2848 * 0 if no matching physical disk was found.
2849 */
2850 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
2851 struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
2852 {
2853 struct ReportExtendedLUNdata *physicals = NULL;
2854 int responsesize = 24; /* size of physical extended response */
2855 int reportsize = sizeof(*physicals) + HPSA_MAX_PHYS_LUN * responsesize;
2856 u32 nphysicals = 0; /* number of reported physical devs */
2857 int found = 0; /* found match (1) or not (0) */
2858 u32 find; /* handle we need to match */
2859 int i;
2860 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
2861 struct hpsa_scsi_dev_t *d; /* device of request being aborted */
2862 struct io_accel2_cmd *c2a; /* ioaccel2 command to abort */
2863 __le32 it_nexus; /* 4 byte device handle for the ioaccel2 cmd */
2864 __le32 scsi_nexus; /* 4 byte device handle for the ioaccel2 cmd */
2865
2866 if (ioaccel2_cmd_to_abort->cmd_type != CMD_IOACCEL2)
2867 return 0; /* no match */
2868
2869 /* point to the ioaccel2 device handle */
2870 c2a = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
2871 if (c2a == NULL)
2872 return 0; /* no match */
2873
2874 scmd = (struct scsi_cmnd *) ioaccel2_cmd_to_abort->scsi_cmd;
2875 if (scmd == NULL)
2876 return 0; /* no match */
2877
2878 d = scmd->device->hostdata;
2879 if (d == NULL)
2880 return 0; /* no match */
2881
2882 it_nexus = cpu_to_le32(d->ioaccel_handle);
2883 scsi_nexus = c2a->scsi_nexus;
2884 find = le32_to_cpu(c2a->scsi_nexus);
2885
2886 if (h->raid_offload_debug > 0)
2887 dev_info(&h->pdev->dev,
2888 "%s: scsi_nexus:0x%08x device id: 0x%02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
2889 __func__, scsi_nexus,
2890 d->device_id[0], d->device_id[1], d->device_id[2],
2891 d->device_id[3], d->device_id[4], d->device_id[5],
2892 d->device_id[6], d->device_id[7], d->device_id[8],
2893 d->device_id[9], d->device_id[10], d->device_id[11],
2894 d->device_id[12], d->device_id[13], d->device_id[14],
2895 d->device_id[15]);
2896
2897 /* Get the list of physical devices */
2898 physicals = kzalloc(reportsize, GFP_KERNEL);
2899 if (physicals == NULL)
2900 return 0;
2901 if (hpsa_scsi_do_report_phys_luns(h, physicals, reportsize)) {
2902 dev_err(&h->pdev->dev,
2903 "Can't lookup %s device handle: report physical LUNs failed.\n",
2904 "HP SSD Smart Path");
2905 kfree(physicals);
2906 return 0;
2907 }
2908 nphysicals = be32_to_cpu(*((__be32 *)physicals->LUNListLength)) /
2909 responsesize;
2910
2911 /* find ioaccel2 handle in list of physicals: */
2912 for (i = 0; i < nphysicals; i++) {
2913 struct ext_report_lun_entry *entry = &physicals->LUN[i];
2914
2915 /* handle is in bytes 28-31 of each lun */
2916 if (entry->ioaccel_handle != find)
2917 continue; /* didn't match */
2918 found = 1;
2919 memcpy(scsi3addr, entry->lunid, 8);
2920 if (h->raid_offload_debug > 0)
2921 dev_info(&h->pdev->dev,
2922 "%s: Searched h=0x%08x, Found h=0x%08x, scsiaddr 0x%8phN\n",
2923 __func__, find,
2924 entry->ioaccel_handle, scsi3addr);
2925 break; /* found it */
2926 }
2927
2928 kfree(physicals);
2929 if (found)
2930 return 1;
2931 else
2932 return 0;
2933
2934 }
2935 /*
2936 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
2937 * logdev. The number of luns in physdev and logdev are returned in
2938 * *nphysicals and *nlogicals, respectively.
2939 * Returns 0 on success, -1 otherwise.
2940 */
2941 static int hpsa_gather_lun_info(struct ctlr_info *h,
2942 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
2943 struct ReportLUNdata *logdev, u32 *nlogicals)
2944 {
2945 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
2946 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
2947 return -1;
2948 }
2949 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
2950 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
2951 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
2952 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
2953 *nphysicals = HPSA_MAX_PHYS_LUN;
2954 }
2955 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
2956 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
2957 return -1;
2958 }
2959 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
2960 /* Reject Logicals in excess of our max capability. */
2961 if (*nlogicals > HPSA_MAX_LUN) {
2962 dev_warn(&h->pdev->dev,
2963 "maximum logical LUNs (%d) exceeded. "
2964 "%d LUNs ignored.\n", HPSA_MAX_LUN,
2965 *nlogicals - HPSA_MAX_LUN);
2966 *nlogicals = HPSA_MAX_LUN;
2967 }
2968 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
2969 dev_warn(&h->pdev->dev,
2970 "maximum logical + physical LUNs (%d) exceeded. "
2971 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2972 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
2973 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
2974 }
2975 return 0;
2976 }
2977
2978 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
2979 int i, int nphysicals, int nlogicals,
2980 struct ReportExtendedLUNdata *physdev_list,
2981 struct ReportLUNdata *logdev_list)
2982 {
2983 /* Helper function, figure out where the LUN ID info is coming from
2984 * given index i, lists of physical and logical devices, where in
2985 * the list the raid controller is supposed to appear (first or last)
2986 */
2987
2988 int logicals_start = nphysicals + (raid_ctlr_position == 0);
2989 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
2990
2991 if (i == raid_ctlr_position)
2992 return RAID_CTLR_LUNID;
2993
2994 if (i < logicals_start)
2995 return &physdev_list->LUN[i -
2996 (raid_ctlr_position == 0)].lunid[0];
2997
2998 if (i < last_device)
2999 return &logdev_list->LUN[i - nphysicals -
3000 (raid_ctlr_position == 0)][0];
3001 BUG();
3002 return NULL;
3003 }
3004
3005 static int hpsa_hba_mode_enabled(struct ctlr_info *h)
3006 {
3007 int rc;
3008 int hba_mode_enabled;
3009 struct bmic_controller_parameters *ctlr_params;
3010 ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
3011 GFP_KERNEL);
3012
3013 if (!ctlr_params)
3014 return -ENOMEM;
3015 rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
3016 sizeof(struct bmic_controller_parameters));
3017 if (rc) {
3018 kfree(ctlr_params);
3019 return rc;
3020 }
3021
3022 hba_mode_enabled =
3023 ((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
3024 kfree(ctlr_params);
3025 return hba_mode_enabled;
3026 }
3027
3028 /* get physical drive ioaccel handle and queue depth */
3029 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3030 struct hpsa_scsi_dev_t *dev,
3031 u8 *lunaddrbytes,
3032 struct bmic_identify_physical_device *id_phys)
3033 {
3034 int rc;
3035 struct ext_report_lun_entry *rle =
3036 (struct ext_report_lun_entry *) lunaddrbytes;
3037
3038 dev->ioaccel_handle = rle->ioaccel_handle;
3039 memset(id_phys, 0, sizeof(*id_phys));
3040 rc = hpsa_bmic_id_physical_device(h, lunaddrbytes,
3041 GET_BMIC_DRIVE_NUMBER(lunaddrbytes), id_phys,
3042 sizeof(*id_phys));
3043 if (!rc)
3044 /* Reserve space for FW operations */
3045 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3046 #define DRIVE_QUEUE_DEPTH 7
3047 dev->queue_depth =
3048 le16_to_cpu(id_phys->current_queue_depth_limit) -
3049 DRIVE_CMDS_RESERVED_FOR_FW;
3050 else
3051 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3052 atomic_set(&dev->ioaccel_cmds_out, 0);
3053 }
3054
3055 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
3056 {
3057 /* the idea here is we could get notified
3058 * that some devices have changed, so we do a report
3059 * physical luns and report logical luns cmd, and adjust
3060 * our list of devices accordingly.
3061 *
3062 * The scsi3addr's of devices won't change so long as the
3063 * adapter is not reset. That means we can rescan and
3064 * tell which devices we already know about, vs. new
3065 * devices, vs. disappearing devices.
3066 */
3067 struct ReportExtendedLUNdata *physdev_list = NULL;
3068 struct ReportLUNdata *logdev_list = NULL;
3069 struct bmic_identify_physical_device *id_phys = NULL;
3070 u32 nphysicals = 0;
3071 u32 nlogicals = 0;
3072 u32 ndev_allocated = 0;
3073 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3074 int ncurrent = 0;
3075 int i, n_ext_target_devs, ndevs_to_allocate;
3076 int raid_ctlr_position;
3077 int rescan_hba_mode;
3078 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3079
3080 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3081 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
3082 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3083 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3084 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3085
3086 if (!currentsd || !physdev_list || !logdev_list ||
3087 !tmpdevice || !id_phys) {
3088 dev_err(&h->pdev->dev, "out of memory\n");
3089 goto out;
3090 }
3091 memset(lunzerobits, 0, sizeof(lunzerobits));
3092
3093 rescan_hba_mode = hpsa_hba_mode_enabled(h);
3094 if (rescan_hba_mode < 0)
3095 goto out;
3096
3097 if (!h->hba_mode_enabled && rescan_hba_mode)
3098 dev_warn(&h->pdev->dev, "HBA mode enabled\n");
3099 else if (h->hba_mode_enabled && !rescan_hba_mode)
3100 dev_warn(&h->pdev->dev, "HBA mode disabled\n");
3101
3102 h->hba_mode_enabled = rescan_hba_mode;
3103
3104 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
3105 logdev_list, &nlogicals))
3106 goto out;
3107
3108 /* We might see up to the maximum number of logical and physical disks
3109 * plus external target devices, and a device for the local RAID
3110 * controller.
3111 */
3112 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3113
3114 /* Allocate the per device structures */
3115 for (i = 0; i < ndevs_to_allocate; i++) {
3116 if (i >= HPSA_MAX_DEVICES) {
3117 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3118 " %d devices ignored.\n", HPSA_MAX_DEVICES,
3119 ndevs_to_allocate - HPSA_MAX_DEVICES);
3120 break;
3121 }
3122
3123 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3124 if (!currentsd[i]) {
3125 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3126 __FILE__, __LINE__);
3127 goto out;
3128 }
3129 ndev_allocated++;
3130 }
3131
3132 if (is_scsi_rev_5(h))
3133 raid_ctlr_position = 0;
3134 else
3135 raid_ctlr_position = nphysicals + nlogicals;
3136
3137 /* adjust our table of devices */
3138 n_ext_target_devs = 0;
3139 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3140 u8 *lunaddrbytes, is_OBDR = 0;
3141
3142 /* Figure out where the LUN ID info is coming from */
3143 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3144 i, nphysicals, nlogicals, physdev_list, logdev_list);
3145 /* skip masked physical devices. */
3146 if (lunaddrbytes[3] & 0xC0 &&
3147 i < nphysicals + (raid_ctlr_position == 0))
3148 continue;
3149
3150 /* Get device type, vendor, model, device id */
3151 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3152 &is_OBDR))
3153 continue; /* skip it if we can't talk to it. */
3154 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3155 this_device = currentsd[ncurrent];
3156
3157 /*
3158 * For external target devices, we have to insert a LUN 0 which
3159 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3160 * is nonetheless an enclosure device there. We have to
3161 * present that otherwise linux won't find anything if
3162 * there is no lun 0.
3163 */
3164 if (add_ext_target_dev(h, tmpdevice, this_device,
3165 lunaddrbytes, lunzerobits,
3166 &n_ext_target_devs)) {
3167 ncurrent++;
3168 this_device = currentsd[ncurrent];
3169 }
3170
3171 *this_device = *tmpdevice;
3172
3173 switch (this_device->devtype) {
3174 case TYPE_ROM:
3175 /* We don't *really* support actual CD-ROM devices,
3176 * just "One Button Disaster Recovery" tape drive
3177 * which temporarily pretends to be a CD-ROM drive.
3178 * So we check that the device is really an OBDR tape
3179 * device by checking for "$DR-10" in bytes 43-48 of
3180 * the inquiry data.
3181 */
3182 if (is_OBDR)
3183 ncurrent++;
3184 break;
3185 case TYPE_DISK:
3186 if (h->hba_mode_enabled) {
3187 /* never use raid mapper in HBA mode */
3188 this_device->offload_enabled = 0;
3189 ncurrent++;
3190 break;
3191 } else if (h->acciopath_status) {
3192 if (i >= nphysicals) {
3193 ncurrent++;
3194 break;
3195 }
3196 } else {
3197 if (i < nphysicals)
3198 break;
3199 ncurrent++;
3200 break;
3201 }
3202 if (h->transMethod & CFGTBL_Trans_io_accel1 ||
3203 h->transMethod & CFGTBL_Trans_io_accel2) {
3204 hpsa_get_ioaccel_drive_info(h, this_device,
3205 lunaddrbytes, id_phys);
3206 atomic_set(&this_device->ioaccel_cmds_out, 0);
3207 ncurrent++;
3208 }
3209 break;
3210 case TYPE_TAPE:
3211 case TYPE_MEDIUM_CHANGER:
3212 ncurrent++;
3213 break;
3214 case TYPE_RAID:
3215 /* Only present the Smartarray HBA as a RAID controller.
3216 * If it's a RAID controller other than the HBA itself
3217 * (an external RAID controller, MSA500 or similar)
3218 * don't present it.
3219 */
3220 if (!is_hba_lunid(lunaddrbytes))
3221 break;
3222 ncurrent++;
3223 break;
3224 default:
3225 break;
3226 }
3227 if (ncurrent >= HPSA_MAX_DEVICES)
3228 break;
3229 }
3230 hpsa_update_log_drive_phys_drive_ptrs(h, currentsd, ncurrent);
3231 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3232 out:
3233 kfree(tmpdevice);
3234 for (i = 0; i < ndev_allocated; i++)
3235 kfree(currentsd[i]);
3236 kfree(currentsd);
3237 kfree(physdev_list);
3238 kfree(logdev_list);
3239 kfree(id_phys);
3240 }
3241
3242 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
3243 struct scatterlist *sg)
3244 {
3245 u64 addr64 = (u64) sg_dma_address(sg);
3246 unsigned int len = sg_dma_len(sg);
3247
3248 desc->Addr = cpu_to_le64(addr64);
3249 desc->Len = cpu_to_le32(len);
3250 desc->Ext = 0;
3251 }
3252
3253 /*
3254 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3255 * dma mapping and fills in the scatter gather entries of the
3256 * hpsa command, cp.
3257 */
3258 static int hpsa_scatter_gather(struct ctlr_info *h,
3259 struct CommandList *cp,
3260 struct scsi_cmnd *cmd)
3261 {
3262 struct scatterlist *sg;
3263 int use_sg, i, sg_index, chained;
3264 struct SGDescriptor *curr_sg;
3265
3266 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3267
3268 use_sg = scsi_dma_map(cmd);
3269 if (use_sg < 0)
3270 return use_sg;
3271
3272 if (!use_sg)
3273 goto sglist_finished;
3274
3275 curr_sg = cp->SG;
3276 chained = 0;
3277 sg_index = 0;
3278 scsi_for_each_sg(cmd, sg, use_sg, i) {
3279 if (i == h->max_cmd_sg_entries - 1 &&
3280 use_sg > h->max_cmd_sg_entries) {
3281 chained = 1;
3282 curr_sg = h->cmd_sg_list[cp->cmdindex];
3283 sg_index = 0;
3284 }
3285 hpsa_set_sg_descriptor(curr_sg, sg);
3286 curr_sg++;
3287 }
3288
3289 /* Back the pointer up to the last entry and mark it as "last". */
3290 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3291
3292 if (use_sg + chained > h->maxSG)
3293 h->maxSG = use_sg + chained;
3294
3295 if (chained) {
3296 cp->Header.SGList = h->max_cmd_sg_entries;
3297 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3298 if (hpsa_map_sg_chain_block(h, cp)) {
3299 scsi_dma_unmap(cmd);
3300 return -1;
3301 }
3302 return 0;
3303 }
3304
3305 sglist_finished:
3306
3307 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
3308 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
3309 return 0;
3310 }
3311
3312 #define IO_ACCEL_INELIGIBLE (1)
3313 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3314 {
3315 int is_write = 0;
3316 u32 block;
3317 u32 block_cnt;
3318
3319 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
3320 switch (cdb[0]) {
3321 case WRITE_6:
3322 case WRITE_12:
3323 is_write = 1;
3324 case READ_6:
3325 case READ_12:
3326 if (*cdb_len == 6) {
3327 block = (((u32) cdb[2]) << 8) | cdb[3];
3328 block_cnt = cdb[4];
3329 } else {
3330 BUG_ON(*cdb_len != 12);
3331 block = (((u32) cdb[2]) << 24) |
3332 (((u32) cdb[3]) << 16) |
3333 (((u32) cdb[4]) << 8) |
3334 cdb[5];
3335 block_cnt =
3336 (((u32) cdb[6]) << 24) |
3337 (((u32) cdb[7]) << 16) |
3338 (((u32) cdb[8]) << 8) |
3339 cdb[9];
3340 }
3341 if (block_cnt > 0xffff)
3342 return IO_ACCEL_INELIGIBLE;
3343
3344 cdb[0] = is_write ? WRITE_10 : READ_10;
3345 cdb[1] = 0;
3346 cdb[2] = (u8) (block >> 24);
3347 cdb[3] = (u8) (block >> 16);
3348 cdb[4] = (u8) (block >> 8);
3349 cdb[5] = (u8) (block);
3350 cdb[6] = 0;
3351 cdb[7] = (u8) (block_cnt >> 8);
3352 cdb[8] = (u8) (block_cnt);
3353 cdb[9] = 0;
3354 *cdb_len = 10;
3355 break;
3356 }
3357 return 0;
3358 }
3359
3360 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3361 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3362 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3363 {
3364 struct scsi_cmnd *cmd = c->scsi_cmd;
3365 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
3366 unsigned int len;
3367 unsigned int total_len = 0;
3368 struct scatterlist *sg;
3369 u64 addr64;
3370 int use_sg, i;
3371 struct SGDescriptor *curr_sg;
3372 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
3373
3374 /* TODO: implement chaining support */
3375 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
3376 atomic_dec(&phys_disk->ioaccel_cmds_out);
3377 return IO_ACCEL_INELIGIBLE;
3378 }
3379
3380 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
3381
3382 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
3383 atomic_dec(&phys_disk->ioaccel_cmds_out);
3384 return IO_ACCEL_INELIGIBLE;
3385 }
3386
3387 c->cmd_type = CMD_IOACCEL1;
3388
3389 /* Adjust the DMA address to point to the accelerated command buffer */
3390 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
3391 (c->cmdindex * sizeof(*cp));
3392 BUG_ON(c->busaddr & 0x0000007F);
3393
3394 use_sg = scsi_dma_map(cmd);
3395 if (use_sg < 0) {
3396 atomic_dec(&phys_disk->ioaccel_cmds_out);
3397 return use_sg;
3398 }
3399
3400 if (use_sg) {
3401 curr_sg = cp->SG;
3402 scsi_for_each_sg(cmd, sg, use_sg, i) {
3403 addr64 = (u64) sg_dma_address(sg);
3404 len = sg_dma_len(sg);
3405 total_len += len;
3406 curr_sg->Addr = cpu_to_le64(addr64);
3407 curr_sg->Len = cpu_to_le32(len);
3408 curr_sg->Ext = cpu_to_le32(0);
3409 curr_sg++;
3410 }
3411 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3412
3413 switch (cmd->sc_data_direction) {
3414 case DMA_TO_DEVICE:
3415 control |= IOACCEL1_CONTROL_DATA_OUT;
3416 break;
3417 case DMA_FROM_DEVICE:
3418 control |= IOACCEL1_CONTROL_DATA_IN;
3419 break;
3420 case DMA_NONE:
3421 control |= IOACCEL1_CONTROL_NODATAXFER;
3422 break;
3423 default:
3424 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3425 cmd->sc_data_direction);
3426 BUG();
3427 break;
3428 }
3429 } else {
3430 control |= IOACCEL1_CONTROL_NODATAXFER;
3431 }
3432
3433 c->Header.SGList = use_sg;
3434 /* Fill out the command structure to submit */
3435 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
3436 cp->transfer_len = cpu_to_le32(total_len);
3437 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
3438 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
3439 cp->control = cpu_to_le32(control);
3440 memcpy(cp->CDB, cdb, cdb_len);
3441 memcpy(cp->CISS_LUN, scsi3addr, 8);
3442 /* Tag was already set at init time. */
3443 enqueue_cmd_and_start_io(h, c);
3444 return 0;
3445 }
3446
3447 /*
3448 * Queue a command directly to a device behind the controller using the
3449 * I/O accelerator path.
3450 */
3451 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
3452 struct CommandList *c)
3453 {
3454 struct scsi_cmnd *cmd = c->scsi_cmd;
3455 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3456
3457 c->phys_disk = dev;
3458
3459 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3460 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
3461 }
3462
3463 /*
3464 * Set encryption parameters for the ioaccel2 request
3465 */
3466 static void set_encrypt_ioaccel2(struct ctlr_info *h,
3467 struct CommandList *c, struct io_accel2_cmd *cp)
3468 {
3469 struct scsi_cmnd *cmd = c->scsi_cmd;
3470 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3471 struct raid_map_data *map = &dev->raid_map;
3472 u64 first_block;
3473
3474 /* Are we doing encryption on this device */
3475 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
3476 return;
3477 /* Set the data encryption key index. */
3478 cp->dekindex = map->dekindex;
3479
3480 /* Set the encryption enable flag, encoded into direction field. */
3481 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
3482
3483 /* Set encryption tweak values based on logical block address
3484 * If block size is 512, tweak value is LBA.
3485 * For other block sizes, tweak is (LBA * block size)/ 512)
3486 */
3487 switch (cmd->cmnd[0]) {
3488 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
3489 case WRITE_6:
3490 case READ_6:
3491 first_block = get_unaligned_be16(&cmd->cmnd[2]);
3492 break;
3493 case WRITE_10:
3494 case READ_10:
3495 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
3496 case WRITE_12:
3497 case READ_12:
3498 first_block = get_unaligned_be32(&cmd->cmnd[2]);
3499 break;
3500 case WRITE_16:
3501 case READ_16:
3502 first_block = get_unaligned_be64(&cmd->cmnd[2]);
3503 break;
3504 default:
3505 dev_err(&h->pdev->dev,
3506 "ERROR: %s: size (0x%x) not supported for encryption\n",
3507 __func__, cmd->cmnd[0]);
3508 BUG();
3509 break;
3510 }
3511
3512 if (le32_to_cpu(map->volume_blk_size) != 512)
3513 first_block = first_block *
3514 le32_to_cpu(map->volume_blk_size)/512;
3515
3516 cp->tweak_lower = cpu_to_le32(first_block);
3517 cp->tweak_upper = cpu_to_le32(first_block >> 32);
3518 }
3519
3520 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
3521 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3522 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3523 {
3524 struct scsi_cmnd *cmd = c->scsi_cmd;
3525 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
3526 struct ioaccel2_sg_element *curr_sg;
3527 int use_sg, i;
3528 struct scatterlist *sg;
3529 u64 addr64;
3530 u32 len;
3531 u32 total_len = 0;
3532
3533 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
3534 atomic_dec(&phys_disk->ioaccel_cmds_out);
3535 return IO_ACCEL_INELIGIBLE;
3536 }
3537
3538 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
3539 atomic_dec(&phys_disk->ioaccel_cmds_out);
3540 return IO_ACCEL_INELIGIBLE;
3541 }
3542
3543 c->cmd_type = CMD_IOACCEL2;
3544 /* Adjust the DMA address to point to the accelerated command buffer */
3545 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
3546 (c->cmdindex * sizeof(*cp));
3547 BUG_ON(c->busaddr & 0x0000007F);
3548
3549 memset(cp, 0, sizeof(*cp));
3550 cp->IU_type = IOACCEL2_IU_TYPE;
3551
3552 use_sg = scsi_dma_map(cmd);
3553 if (use_sg < 0) {
3554 atomic_dec(&phys_disk->ioaccel_cmds_out);
3555 return use_sg;
3556 }
3557
3558 if (use_sg) {
3559 BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
3560 curr_sg = cp->sg;
3561 scsi_for_each_sg(cmd, sg, use_sg, i) {
3562 addr64 = (u64) sg_dma_address(sg);
3563 len = sg_dma_len(sg);
3564 total_len += len;
3565 curr_sg->address = cpu_to_le64(addr64);
3566 curr_sg->length = cpu_to_le32(len);
3567 curr_sg->reserved[0] = 0;
3568 curr_sg->reserved[1] = 0;
3569 curr_sg->reserved[2] = 0;
3570 curr_sg->chain_indicator = 0;
3571 curr_sg++;
3572 }
3573
3574 switch (cmd->sc_data_direction) {
3575 case DMA_TO_DEVICE:
3576 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3577 cp->direction |= IOACCEL2_DIR_DATA_OUT;
3578 break;
3579 case DMA_FROM_DEVICE:
3580 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3581 cp->direction |= IOACCEL2_DIR_DATA_IN;
3582 break;
3583 case DMA_NONE:
3584 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3585 cp->direction |= IOACCEL2_DIR_NO_DATA;
3586 break;
3587 default:
3588 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3589 cmd->sc_data_direction);
3590 BUG();
3591 break;
3592 }
3593 } else {
3594 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3595 cp->direction |= IOACCEL2_DIR_NO_DATA;
3596 }
3597
3598 /* Set encryption parameters, if necessary */
3599 set_encrypt_ioaccel2(h, c, cp);
3600
3601 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
3602 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
3603 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
3604
3605 /* fill in sg elements */
3606 cp->sg_count = (u8) use_sg;
3607
3608 cp->data_len = cpu_to_le32(total_len);
3609 cp->err_ptr = cpu_to_le64(c->busaddr +
3610 offsetof(struct io_accel2_cmd, error_data));
3611 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
3612
3613 enqueue_cmd_and_start_io(h, c);
3614 return 0;
3615 }
3616
3617 /*
3618 * Queue a command to the correct I/O accelerator path.
3619 */
3620 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
3621 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3622 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3623 {
3624 /* Try to honor the device's queue depth */
3625 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
3626 phys_disk->queue_depth) {
3627 atomic_dec(&phys_disk->ioaccel_cmds_out);
3628 return IO_ACCEL_INELIGIBLE;
3629 }
3630 if (h->transMethod & CFGTBL_Trans_io_accel1)
3631 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
3632 cdb, cdb_len, scsi3addr,
3633 phys_disk);
3634 else
3635 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
3636 cdb, cdb_len, scsi3addr,
3637 phys_disk);
3638 }
3639
3640 static void raid_map_helper(struct raid_map_data *map,
3641 int offload_to_mirror, u32 *map_index, u32 *current_group)
3642 {
3643 if (offload_to_mirror == 0) {
3644 /* use physical disk in the first mirrored group. */
3645 *map_index %= le16_to_cpu(map->data_disks_per_row);
3646 return;
3647 }
3648 do {
3649 /* determine mirror group that *map_index indicates */
3650 *current_group = *map_index /
3651 le16_to_cpu(map->data_disks_per_row);
3652 if (offload_to_mirror == *current_group)
3653 continue;
3654 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
3655 /* select map index from next group */
3656 *map_index += le16_to_cpu(map->data_disks_per_row);
3657 (*current_group)++;
3658 } else {
3659 /* select map index from first group */
3660 *map_index %= le16_to_cpu(map->data_disks_per_row);
3661 *current_group = 0;
3662 }
3663 } while (offload_to_mirror != *current_group);
3664 }
3665
3666 /*
3667 * Attempt to perform offload RAID mapping for a logical volume I/O.
3668 */
3669 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
3670 struct CommandList *c)
3671 {
3672 struct scsi_cmnd *cmd = c->scsi_cmd;
3673 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3674 struct raid_map_data *map = &dev->raid_map;
3675 struct raid_map_disk_data *dd = &map->data[0];
3676 int is_write = 0;
3677 u32 map_index;
3678 u64 first_block, last_block;
3679 u32 block_cnt;
3680 u32 blocks_per_row;
3681 u64 first_row, last_row;
3682 u32 first_row_offset, last_row_offset;
3683 u32 first_column, last_column;
3684 u64 r0_first_row, r0_last_row;
3685 u32 r5or6_blocks_per_row;
3686 u64 r5or6_first_row, r5or6_last_row;
3687 u32 r5or6_first_row_offset, r5or6_last_row_offset;
3688 u32 r5or6_first_column, r5or6_last_column;
3689 u32 total_disks_per_row;
3690 u32 stripesize;
3691 u32 first_group, last_group, current_group;
3692 u32 map_row;
3693 u32 disk_handle;
3694 u64 disk_block;
3695 u32 disk_block_cnt;
3696 u8 cdb[16];
3697 u8 cdb_len;
3698 u16 strip_size;
3699 #if BITS_PER_LONG == 32
3700 u64 tmpdiv;
3701 #endif
3702 int offload_to_mirror;
3703
3704 /* check for valid opcode, get LBA and block count */
3705 switch (cmd->cmnd[0]) {
3706 case WRITE_6:
3707 is_write = 1;
3708 case READ_6:
3709 first_block =
3710 (((u64) cmd->cmnd[2]) << 8) |
3711 cmd->cmnd[3];
3712 block_cnt = cmd->cmnd[4];
3713 if (block_cnt == 0)
3714 block_cnt = 256;
3715 break;
3716 case WRITE_10:
3717 is_write = 1;
3718 case READ_10:
3719 first_block =
3720 (((u64) cmd->cmnd[2]) << 24) |
3721 (((u64) cmd->cmnd[3]) << 16) |
3722 (((u64) cmd->cmnd[4]) << 8) |
3723 cmd->cmnd[5];
3724 block_cnt =
3725 (((u32) cmd->cmnd[7]) << 8) |
3726 cmd->cmnd[8];
3727 break;
3728 case WRITE_12:
3729 is_write = 1;
3730 case READ_12:
3731 first_block =
3732 (((u64) cmd->cmnd[2]) << 24) |
3733 (((u64) cmd->cmnd[3]) << 16) |
3734 (((u64) cmd->cmnd[4]) << 8) |
3735 cmd->cmnd[5];
3736 block_cnt =
3737 (((u32) cmd->cmnd[6]) << 24) |
3738 (((u32) cmd->cmnd[7]) << 16) |
3739 (((u32) cmd->cmnd[8]) << 8) |
3740 cmd->cmnd[9];
3741 break;
3742 case WRITE_16:
3743 is_write = 1;
3744 case READ_16:
3745 first_block =
3746 (((u64) cmd->cmnd[2]) << 56) |
3747 (((u64) cmd->cmnd[3]) << 48) |
3748 (((u64) cmd->cmnd[4]) << 40) |
3749 (((u64) cmd->cmnd[5]) << 32) |
3750 (((u64) cmd->cmnd[6]) << 24) |
3751 (((u64) cmd->cmnd[7]) << 16) |
3752 (((u64) cmd->cmnd[8]) << 8) |
3753 cmd->cmnd[9];
3754 block_cnt =
3755 (((u32) cmd->cmnd[10]) << 24) |
3756 (((u32) cmd->cmnd[11]) << 16) |
3757 (((u32) cmd->cmnd[12]) << 8) |
3758 cmd->cmnd[13];
3759 break;
3760 default:
3761 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
3762 }
3763 last_block = first_block + block_cnt - 1;
3764
3765 /* check for write to non-RAID-0 */
3766 if (is_write && dev->raid_level != 0)
3767 return IO_ACCEL_INELIGIBLE;
3768
3769 /* check for invalid block or wraparound */
3770 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
3771 last_block < first_block)
3772 return IO_ACCEL_INELIGIBLE;
3773
3774 /* calculate stripe information for the request */
3775 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
3776 le16_to_cpu(map->strip_size);
3777 strip_size = le16_to_cpu(map->strip_size);
3778 #if BITS_PER_LONG == 32
3779 tmpdiv = first_block;
3780 (void) do_div(tmpdiv, blocks_per_row);
3781 first_row = tmpdiv;
3782 tmpdiv = last_block;
3783 (void) do_div(tmpdiv, blocks_per_row);
3784 last_row = tmpdiv;
3785 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3786 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3787 tmpdiv = first_row_offset;
3788 (void) do_div(tmpdiv, strip_size);
3789 first_column = tmpdiv;
3790 tmpdiv = last_row_offset;
3791 (void) do_div(tmpdiv, strip_size);
3792 last_column = tmpdiv;
3793 #else
3794 first_row = first_block / blocks_per_row;
3795 last_row = last_block / blocks_per_row;
3796 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3797 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3798 first_column = first_row_offset / strip_size;
3799 last_column = last_row_offset / strip_size;
3800 #endif
3801
3802 /* if this isn't a single row/column then give to the controller */
3803 if ((first_row != last_row) || (first_column != last_column))
3804 return IO_ACCEL_INELIGIBLE;
3805
3806 /* proceeding with driver mapping */
3807 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
3808 le16_to_cpu(map->metadata_disks_per_row);
3809 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3810 le16_to_cpu(map->row_cnt);
3811 map_index = (map_row * total_disks_per_row) + first_column;
3812
3813 switch (dev->raid_level) {
3814 case HPSA_RAID_0:
3815 break; /* nothing special to do */
3816 case HPSA_RAID_1:
3817 /* Handles load balance across RAID 1 members.
3818 * (2-drive R1 and R10 with even # of drives.)
3819 * Appropriate for SSDs, not optimal for HDDs
3820 */
3821 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
3822 if (dev->offload_to_mirror)
3823 map_index += le16_to_cpu(map->data_disks_per_row);
3824 dev->offload_to_mirror = !dev->offload_to_mirror;
3825 break;
3826 case HPSA_RAID_ADM:
3827 /* Handles N-way mirrors (R1-ADM)
3828 * and R10 with # of drives divisible by 3.)
3829 */
3830 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
3831
3832 offload_to_mirror = dev->offload_to_mirror;
3833 raid_map_helper(map, offload_to_mirror,
3834 &map_index, &current_group);
3835 /* set mirror group to use next time */
3836 offload_to_mirror =
3837 (offload_to_mirror >=
3838 le16_to_cpu(map->layout_map_count) - 1)
3839 ? 0 : offload_to_mirror + 1;
3840 dev->offload_to_mirror = offload_to_mirror;
3841 /* Avoid direct use of dev->offload_to_mirror within this
3842 * function since multiple threads might simultaneously
3843 * increment it beyond the range of dev->layout_map_count -1.
3844 */
3845 break;
3846 case HPSA_RAID_5:
3847 case HPSA_RAID_6:
3848 if (le16_to_cpu(map->layout_map_count) <= 1)
3849 break;
3850
3851 /* Verify first and last block are in same RAID group */
3852 r5or6_blocks_per_row =
3853 le16_to_cpu(map->strip_size) *
3854 le16_to_cpu(map->data_disks_per_row);
3855 BUG_ON(r5or6_blocks_per_row == 0);
3856 stripesize = r5or6_blocks_per_row *
3857 le16_to_cpu(map->layout_map_count);
3858 #if BITS_PER_LONG == 32
3859 tmpdiv = first_block;
3860 first_group = do_div(tmpdiv, stripesize);
3861 tmpdiv = first_group;
3862 (void) do_div(tmpdiv, r5or6_blocks_per_row);
3863 first_group = tmpdiv;
3864 tmpdiv = last_block;
3865 last_group = do_div(tmpdiv, stripesize);
3866 tmpdiv = last_group;
3867 (void) do_div(tmpdiv, r5or6_blocks_per_row);
3868 last_group = tmpdiv;
3869 #else
3870 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
3871 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
3872 #endif
3873 if (first_group != last_group)
3874 return IO_ACCEL_INELIGIBLE;
3875
3876 /* Verify request is in a single row of RAID 5/6 */
3877 #if BITS_PER_LONG == 32
3878 tmpdiv = first_block;
3879 (void) do_div(tmpdiv, stripesize);
3880 first_row = r5or6_first_row = r0_first_row = tmpdiv;
3881 tmpdiv = last_block;
3882 (void) do_div(tmpdiv, stripesize);
3883 r5or6_last_row = r0_last_row = tmpdiv;
3884 #else
3885 first_row = r5or6_first_row = r0_first_row =
3886 first_block / stripesize;
3887 r5or6_last_row = r0_last_row = last_block / stripesize;
3888 #endif
3889 if (r5or6_first_row != r5or6_last_row)
3890 return IO_ACCEL_INELIGIBLE;
3891
3892
3893 /* Verify request is in a single column */
3894 #if BITS_PER_LONG == 32
3895 tmpdiv = first_block;
3896 first_row_offset = do_div(tmpdiv, stripesize);
3897 tmpdiv = first_row_offset;
3898 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
3899 r5or6_first_row_offset = first_row_offset;
3900 tmpdiv = last_block;
3901 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
3902 tmpdiv = r5or6_last_row_offset;
3903 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
3904 tmpdiv = r5or6_first_row_offset;
3905 (void) do_div(tmpdiv, map->strip_size);
3906 first_column = r5or6_first_column = tmpdiv;
3907 tmpdiv = r5or6_last_row_offset;
3908 (void) do_div(tmpdiv, map->strip_size);
3909 r5or6_last_column = tmpdiv;
3910 #else
3911 first_row_offset = r5or6_first_row_offset =
3912 (u32)((first_block % stripesize) %
3913 r5or6_blocks_per_row);
3914
3915 r5or6_last_row_offset =
3916 (u32)((last_block % stripesize) %
3917 r5or6_blocks_per_row);
3918
3919 first_column = r5or6_first_column =
3920 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
3921 r5or6_last_column =
3922 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
3923 #endif
3924 if (r5or6_first_column != r5or6_last_column)
3925 return IO_ACCEL_INELIGIBLE;
3926
3927 /* Request is eligible */
3928 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3929 le16_to_cpu(map->row_cnt);
3930
3931 map_index = (first_group *
3932 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
3933 (map_row * total_disks_per_row) + first_column;
3934 break;
3935 default:
3936 return IO_ACCEL_INELIGIBLE;
3937 }
3938
3939 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
3940 return IO_ACCEL_INELIGIBLE;
3941
3942 c->phys_disk = dev->phys_disk[map_index];
3943
3944 disk_handle = dd[map_index].ioaccel_handle;
3945 disk_block = le64_to_cpu(map->disk_starting_blk) +
3946 first_row * le16_to_cpu(map->strip_size) +
3947 (first_row_offset - first_column *
3948 le16_to_cpu(map->strip_size));
3949 disk_block_cnt = block_cnt;
3950
3951 /* handle differing logical/physical block sizes */
3952 if (map->phys_blk_shift) {
3953 disk_block <<= map->phys_blk_shift;
3954 disk_block_cnt <<= map->phys_blk_shift;
3955 }
3956 BUG_ON(disk_block_cnt > 0xffff);
3957
3958 /* build the new CDB for the physical disk I/O */
3959 if (disk_block > 0xffffffff) {
3960 cdb[0] = is_write ? WRITE_16 : READ_16;
3961 cdb[1] = 0;
3962 cdb[2] = (u8) (disk_block >> 56);
3963 cdb[3] = (u8) (disk_block >> 48);
3964 cdb[4] = (u8) (disk_block >> 40);
3965 cdb[5] = (u8) (disk_block >> 32);
3966 cdb[6] = (u8) (disk_block >> 24);
3967 cdb[7] = (u8) (disk_block >> 16);
3968 cdb[8] = (u8) (disk_block >> 8);
3969 cdb[9] = (u8) (disk_block);
3970 cdb[10] = (u8) (disk_block_cnt >> 24);
3971 cdb[11] = (u8) (disk_block_cnt >> 16);
3972 cdb[12] = (u8) (disk_block_cnt >> 8);
3973 cdb[13] = (u8) (disk_block_cnt);
3974 cdb[14] = 0;
3975 cdb[15] = 0;
3976 cdb_len = 16;
3977 } else {
3978 cdb[0] = is_write ? WRITE_10 : READ_10;
3979 cdb[1] = 0;
3980 cdb[2] = (u8) (disk_block >> 24);
3981 cdb[3] = (u8) (disk_block >> 16);
3982 cdb[4] = (u8) (disk_block >> 8);
3983 cdb[5] = (u8) (disk_block);
3984 cdb[6] = 0;
3985 cdb[7] = (u8) (disk_block_cnt >> 8);
3986 cdb[8] = (u8) (disk_block_cnt);
3987 cdb[9] = 0;
3988 cdb_len = 10;
3989 }
3990 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
3991 dev->scsi3addr,
3992 dev->phys_disk[map_index]);
3993 }
3994
3995 /* Submit commands down the "normal" RAID stack path */
3996 static int hpsa_ciss_submit(struct ctlr_info *h,
3997 struct CommandList *c, struct scsi_cmnd *cmd,
3998 unsigned char scsi3addr[])
3999 {
4000 cmd->host_scribble = (unsigned char *) c;
4001 c->cmd_type = CMD_SCSI;
4002 c->scsi_cmd = cmd;
4003 c->Header.ReplyQueue = 0; /* unused in simple mode */
4004 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4005 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4006
4007 /* Fill in the request block... */
4008
4009 c->Request.Timeout = 0;
4010 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
4011 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4012 c->Request.CDBLen = cmd->cmd_len;
4013 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4014 switch (cmd->sc_data_direction) {
4015 case DMA_TO_DEVICE:
4016 c->Request.type_attr_dir =
4017 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4018 break;
4019 case DMA_FROM_DEVICE:
4020 c->Request.type_attr_dir =
4021 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4022 break;
4023 case DMA_NONE:
4024 c->Request.type_attr_dir =
4025 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4026 break;
4027 case DMA_BIDIRECTIONAL:
4028 /* This can happen if a buggy application does a scsi passthru
4029 * and sets both inlen and outlen to non-zero. ( see
4030 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4031 */
4032
4033 c->Request.type_attr_dir =
4034 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4035 /* This is technically wrong, and hpsa controllers should
4036 * reject it with CMD_INVALID, which is the most correct
4037 * response, but non-fibre backends appear to let it
4038 * slide by, and give the same results as if this field
4039 * were set correctly. Either way is acceptable for
4040 * our purposes here.
4041 */
4042
4043 break;
4044
4045 default:
4046 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4047 cmd->sc_data_direction);
4048 BUG();
4049 break;
4050 }
4051
4052 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4053 cmd_free(h, c);
4054 return SCSI_MLQUEUE_HOST_BUSY;
4055 }
4056 enqueue_cmd_and_start_io(h, c);
4057 /* the cmd'll come back via intr handler in complete_scsi_command() */
4058 return 0;
4059 }
4060
4061 static void hpsa_command_resubmit_worker(struct work_struct *work)
4062 {
4063 struct scsi_cmnd *cmd;
4064 struct hpsa_scsi_dev_t *dev;
4065 struct CommandList *c =
4066 container_of(work, struct CommandList, work);
4067
4068 cmd = c->scsi_cmd;
4069 dev = cmd->device->hostdata;
4070 if (!dev) {
4071 cmd->result = DID_NO_CONNECT << 16;
4072 cmd->scsi_done(cmd);
4073 return;
4074 }
4075 if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
4076 /*
4077 * If we get here, it means dma mapping failed. Try
4078 * again via scsi mid layer, which will then get
4079 * SCSI_MLQUEUE_HOST_BUSY.
4080 */
4081 cmd->result = DID_IMM_RETRY << 16;
4082 cmd->scsi_done(cmd);
4083 }
4084 }
4085
4086 /* Running in struct Scsi_Host->host_lock less mode */
4087 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
4088 {
4089 struct ctlr_info *h;
4090 struct hpsa_scsi_dev_t *dev;
4091 unsigned char scsi3addr[8];
4092 struct CommandList *c;
4093 int rc = 0;
4094
4095 /* Get the ptr to our adapter structure out of cmd->host. */
4096 h = sdev_to_hba(cmd->device);
4097 dev = cmd->device->hostdata;
4098 if (!dev) {
4099 cmd->result = DID_NO_CONNECT << 16;
4100 cmd->scsi_done(cmd);
4101 return 0;
4102 }
4103 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
4104
4105 if (unlikely(lockup_detected(h))) {
4106 cmd->result = DID_ERROR << 16;
4107 cmd->scsi_done(cmd);
4108 return 0;
4109 }
4110 c = cmd_alloc(h);
4111 if (c == NULL) { /* trouble... */
4112 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
4113 return SCSI_MLQUEUE_HOST_BUSY;
4114 }
4115 if (unlikely(lockup_detected(h))) {
4116 cmd->result = DID_ERROR << 16;
4117 cmd_free(h, c);
4118 cmd->scsi_done(cmd);
4119 return 0;
4120 }
4121
4122 /*
4123 * Call alternate submit routine for I/O accelerated commands.
4124 * Retries always go down the normal I/O path.
4125 */
4126 if (likely(cmd->retries == 0 &&
4127 cmd->request->cmd_type == REQ_TYPE_FS &&
4128 h->acciopath_status)) {
4129
4130 cmd->host_scribble = (unsigned char *) c;
4131 c->cmd_type = CMD_SCSI;
4132 c->scsi_cmd = cmd;
4133
4134 if (dev->offload_enabled) {
4135 rc = hpsa_scsi_ioaccel_raid_map(h, c);
4136 if (rc == 0)
4137 return 0; /* Sent on ioaccel path */
4138 if (rc < 0) { /* scsi_dma_map failed. */
4139 cmd_free(h, c);
4140 return SCSI_MLQUEUE_HOST_BUSY;
4141 }
4142 } else if (dev->ioaccel_handle) {
4143 rc = hpsa_scsi_ioaccel_direct_map(h, c);
4144 if (rc == 0)
4145 return 0; /* Sent on direct map path */
4146 if (rc < 0) { /* scsi_dma_map failed. */
4147 cmd_free(h, c);
4148 return SCSI_MLQUEUE_HOST_BUSY;
4149 }
4150 }
4151 }
4152 return hpsa_ciss_submit(h, c, cmd, scsi3addr);
4153 }
4154
4155 static void hpsa_scan_complete(struct ctlr_info *h)
4156 {
4157 unsigned long flags;
4158
4159 spin_lock_irqsave(&h->scan_lock, flags);
4160 h->scan_finished = 1;
4161 wake_up_all(&h->scan_wait_queue);
4162 spin_unlock_irqrestore(&h->scan_lock, flags);
4163 }
4164
4165 static void hpsa_scan_start(struct Scsi_Host *sh)
4166 {
4167 struct ctlr_info *h = shost_to_hba(sh);
4168 unsigned long flags;
4169
4170 /*
4171 * Don't let rescans be initiated on a controller known to be locked
4172 * up. If the controller locks up *during* a rescan, that thread is
4173 * probably hosed, but at least we can prevent new rescan threads from
4174 * piling up on a locked up controller.
4175 */
4176 if (unlikely(lockup_detected(h)))
4177 return hpsa_scan_complete(h);
4178
4179 /* wait until any scan already in progress is finished. */
4180 while (1) {
4181 spin_lock_irqsave(&h->scan_lock, flags);
4182 if (h->scan_finished)
4183 break;
4184 spin_unlock_irqrestore(&h->scan_lock, flags);
4185 wait_event(h->scan_wait_queue, h->scan_finished);
4186 /* Note: We don't need to worry about a race between this
4187 * thread and driver unload because the midlayer will
4188 * have incremented the reference count, so unload won't
4189 * happen if we're in here.
4190 */
4191 }
4192 h->scan_finished = 0; /* mark scan as in progress */
4193 spin_unlock_irqrestore(&h->scan_lock, flags);
4194
4195 if (unlikely(lockup_detected(h)))
4196 return hpsa_scan_complete(h);
4197
4198 hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4199
4200 hpsa_scan_complete(h);
4201 }
4202
4203 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
4204 {
4205 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
4206
4207 if (!logical_drive)
4208 return -ENODEV;
4209
4210 if (qdepth < 1)
4211 qdepth = 1;
4212 else if (qdepth > logical_drive->queue_depth)
4213 qdepth = logical_drive->queue_depth;
4214
4215 return scsi_change_queue_depth(sdev, qdepth);
4216 }
4217
4218 static int hpsa_scan_finished(struct Scsi_Host *sh,
4219 unsigned long elapsed_time)
4220 {
4221 struct ctlr_info *h = shost_to_hba(sh);
4222 unsigned long flags;
4223 int finished;
4224
4225 spin_lock_irqsave(&h->scan_lock, flags);
4226 finished = h->scan_finished;
4227 spin_unlock_irqrestore(&h->scan_lock, flags);
4228 return finished;
4229 }
4230
4231 static void hpsa_unregister_scsi(struct ctlr_info *h)
4232 {
4233 /* we are being forcibly unloaded, and may not refuse. */
4234 scsi_remove_host(h->scsi_host);
4235 scsi_host_put(h->scsi_host);
4236 h->scsi_host = NULL;
4237 }
4238
4239 static int hpsa_register_scsi(struct ctlr_info *h)
4240 {
4241 struct Scsi_Host *sh;
4242 int error;
4243
4244 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4245 if (sh == NULL)
4246 goto fail;
4247
4248 sh->io_port = 0;
4249 sh->n_io_port = 0;
4250 sh->this_id = -1;
4251 sh->max_channel = 3;
4252 sh->max_cmd_len = MAX_COMMAND_SIZE;
4253 sh->max_lun = HPSA_MAX_LUN;
4254 sh->max_id = HPSA_MAX_LUN;
4255 sh->can_queue = h->nr_cmds -
4256 HPSA_CMDS_RESERVED_FOR_ABORTS -
4257 HPSA_CMDS_RESERVED_FOR_DRIVER -
4258 HPSA_MAX_CONCURRENT_PASSTHRUS;
4259 sh->cmd_per_lun = sh->can_queue;
4260 sh->sg_tablesize = h->maxsgentries;
4261 h->scsi_host = sh;
4262 sh->hostdata[0] = (unsigned long) h;
4263 sh->irq = h->intr[h->intr_mode];
4264 sh->unique_id = sh->irq;
4265 error = scsi_add_host(sh, &h->pdev->dev);
4266 if (error)
4267 goto fail_host_put;
4268 scsi_scan_host(sh);
4269 return 0;
4270
4271 fail_host_put:
4272 dev_err(&h->pdev->dev, "%s: scsi_add_host"
4273 " failed for controller %d\n", __func__, h->ctlr);
4274 scsi_host_put(sh);
4275 return error;
4276 fail:
4277 dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
4278 " failed for controller %d\n", __func__, h->ctlr);
4279 return -ENOMEM;
4280 }
4281
4282 static int wait_for_device_to_become_ready(struct ctlr_info *h,
4283 unsigned char lunaddr[])
4284 {
4285 int rc;
4286 int count = 0;
4287 int waittime = 1; /* seconds */
4288 struct CommandList *c;
4289
4290 c = cmd_alloc(h);
4291 if (!c) {
4292 dev_warn(&h->pdev->dev, "out of memory in "
4293 "wait_for_device_to_become_ready.\n");
4294 return IO_ERROR;
4295 }
4296
4297 /* Send test unit ready until device ready, or give up. */
4298 while (count < HPSA_TUR_RETRY_LIMIT) {
4299
4300 /* Wait for a bit. do this first, because if we send
4301 * the TUR right away, the reset will just abort it.
4302 */
4303 msleep(1000 * waittime);
4304 count++;
4305 rc = 0; /* Device ready. */
4306
4307 /* Increase wait time with each try, up to a point. */
4308 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
4309 waittime = waittime * 2;
4310
4311 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4312 (void) fill_cmd(c, TEST_UNIT_READY, h,
4313 NULL, 0, 0, lunaddr, TYPE_CMD);
4314 hpsa_scsi_do_simple_cmd_core(h, c);
4315 /* no unmap needed here because no data xfer. */
4316
4317 if (c->err_info->CommandStatus == CMD_SUCCESS)
4318 break;
4319
4320 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
4321 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
4322 (c->err_info->SenseInfo[2] == NO_SENSE ||
4323 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
4324 break;
4325
4326 dev_warn(&h->pdev->dev, "waiting %d secs "
4327 "for device to become ready.\n", waittime);
4328 rc = 1; /* device not ready. */
4329 }
4330
4331 if (rc)
4332 dev_warn(&h->pdev->dev, "giving up on device.\n");
4333 else
4334 dev_warn(&h->pdev->dev, "device is ready.\n");
4335
4336 cmd_free(h, c);
4337 return rc;
4338 }
4339
4340 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
4341 * complaining. Doing a host- or bus-reset can't do anything good here.
4342 */
4343 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
4344 {
4345 int rc;
4346 struct ctlr_info *h;
4347 struct hpsa_scsi_dev_t *dev;
4348
4349 /* find the controller to which the command to be aborted was sent */
4350 h = sdev_to_hba(scsicmd->device);
4351 if (h == NULL) /* paranoia */
4352 return FAILED;
4353
4354 if (lockup_detected(h))
4355 return FAILED;
4356
4357 dev = scsicmd->device->hostdata;
4358 if (!dev) {
4359 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
4360 "device lookup failed.\n");
4361 return FAILED;
4362 }
4363 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
4364 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4365 /* send a reset to the SCSI LUN which the command was sent to */
4366 rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN);
4367 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
4368 return SUCCESS;
4369
4370 dev_warn(&h->pdev->dev, "resetting device failed.\n");
4371 return FAILED;
4372 }
4373
4374 static void swizzle_abort_tag(u8 *tag)
4375 {
4376 u8 original_tag[8];
4377
4378 memcpy(original_tag, tag, 8);
4379 tag[0] = original_tag[3];
4380 tag[1] = original_tag[2];
4381 tag[2] = original_tag[1];
4382 tag[3] = original_tag[0];
4383 tag[4] = original_tag[7];
4384 tag[5] = original_tag[6];
4385 tag[6] = original_tag[5];
4386 tag[7] = original_tag[4];
4387 }
4388
4389 static void hpsa_get_tag(struct ctlr_info *h,
4390 struct CommandList *c, __le32 *taglower, __le32 *tagupper)
4391 {
4392 u64 tag;
4393 if (c->cmd_type == CMD_IOACCEL1) {
4394 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
4395 &h->ioaccel_cmd_pool[c->cmdindex];
4396 tag = le64_to_cpu(cm1->tag);
4397 *tagupper = cpu_to_le32(tag >> 32);
4398 *taglower = cpu_to_le32(tag);
4399 return;
4400 }
4401 if (c->cmd_type == CMD_IOACCEL2) {
4402 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
4403 &h->ioaccel2_cmd_pool[c->cmdindex];
4404 /* upper tag not used in ioaccel2 mode */
4405 memset(tagupper, 0, sizeof(*tagupper));
4406 *taglower = cm2->Tag;
4407 return;
4408 }
4409 tag = le64_to_cpu(c->Header.tag);
4410 *tagupper = cpu_to_le32(tag >> 32);
4411 *taglower = cpu_to_le32(tag);
4412 }
4413
4414 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
4415 struct CommandList *abort, int swizzle)
4416 {
4417 int rc = IO_OK;
4418 struct CommandList *c;
4419 struct ErrorInfo *ei;
4420 __le32 tagupper, taglower;
4421
4422 c = cmd_alloc(h);
4423 if (c == NULL) { /* trouble... */
4424 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
4425 return -ENOMEM;
4426 }
4427
4428 /* fill_cmd can't fail here, no buffer to map */
4429 (void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
4430 0, 0, scsi3addr, TYPE_MSG);
4431 if (swizzle)
4432 swizzle_abort_tag(&c->Request.CDB[4]);
4433 hpsa_scsi_do_simple_cmd_core(h, c);
4434 hpsa_get_tag(h, abort, &taglower, &tagupper);
4435 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
4436 __func__, tagupper, taglower);
4437 /* no unmap needed here because no data xfer. */
4438
4439 ei = c->err_info;
4440 switch (ei->CommandStatus) {
4441 case CMD_SUCCESS:
4442 break;
4443 case CMD_UNABORTABLE: /* Very common, don't make noise. */
4444 rc = -1;
4445 break;
4446 default:
4447 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4448 __func__, tagupper, taglower);
4449 hpsa_scsi_interpret_error(h, c);
4450 rc = -1;
4451 break;
4452 }
4453 cmd_free(h, c);
4454 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
4455 __func__, tagupper, taglower);
4456 return rc;
4457 }
4458
4459 /* ioaccel2 path firmware cannot handle abort task requests.
4460 * Change abort requests to physical target reset, and send to the
4461 * address of the physical disk used for the ioaccel 2 command.
4462 * Return 0 on success (IO_OK)
4463 * -1 on failure
4464 */
4465
4466 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
4467 unsigned char *scsi3addr, struct CommandList *abort)
4468 {
4469 int rc = IO_OK;
4470 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
4471 struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
4472 unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
4473 unsigned char *psa = &phys_scsi3addr[0];
4474
4475 /* Get a pointer to the hpsa logical device. */
4476 scmd = abort->scsi_cmd;
4477 dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
4478 if (dev == NULL) {
4479 dev_warn(&h->pdev->dev,
4480 "Cannot abort: no device pointer for command.\n");
4481 return -1; /* not abortable */
4482 }
4483
4484 if (h->raid_offload_debug > 0)
4485 dev_info(&h->pdev->dev,
4486 "Reset as abort: Abort requested on C%d:B%d:T%d:L%d scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4487 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
4488 scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
4489 scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
4490
4491 if (!dev->offload_enabled) {
4492 dev_warn(&h->pdev->dev,
4493 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
4494 return -1; /* not abortable */
4495 }
4496
4497 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
4498 if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
4499 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
4500 return -1; /* not abortable */
4501 }
4502
4503 /* send the reset */
4504 if (h->raid_offload_debug > 0)
4505 dev_info(&h->pdev->dev,
4506 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4507 psa[0], psa[1], psa[2], psa[3],
4508 psa[4], psa[5], psa[6], psa[7]);
4509 rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET);
4510 if (rc != 0) {
4511 dev_warn(&h->pdev->dev,
4512 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4513 psa[0], psa[1], psa[2], psa[3],
4514 psa[4], psa[5], psa[6], psa[7]);
4515 return rc; /* failed to reset */
4516 }
4517
4518 /* wait for device to recover */
4519 if (wait_for_device_to_become_ready(h, psa) != 0) {
4520 dev_warn(&h->pdev->dev,
4521 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4522 psa[0], psa[1], psa[2], psa[3],
4523 psa[4], psa[5], psa[6], psa[7]);
4524 return -1; /* failed to recover */
4525 }
4526
4527 /* device recovered */
4528 dev_info(&h->pdev->dev,
4529 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4530 psa[0], psa[1], psa[2], psa[3],
4531 psa[4], psa[5], psa[6], psa[7]);
4532
4533 return rc; /* success */
4534 }
4535
4536 /* Some Smart Arrays need the abort tag swizzled, and some don't. It's hard to
4537 * tell which kind we're dealing with, so we send the abort both ways. There
4538 * shouldn't be any collisions between swizzled and unswizzled tags due to the
4539 * way we construct our tags but we check anyway in case the assumptions which
4540 * make this true someday become false.
4541 */
4542 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
4543 unsigned char *scsi3addr, struct CommandList *abort)
4544 {
4545 /* ioccelerator mode 2 commands should be aborted via the
4546 * accelerated path, since RAID path is unaware of these commands,
4547 * but underlying firmware can't handle abort TMF.
4548 * Change abort to physical device reset.
4549 */
4550 if (abort->cmd_type == CMD_IOACCEL2)
4551 return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort);
4552
4553 return hpsa_send_abort(h, scsi3addr, abort, 0) &&
4554 hpsa_send_abort(h, scsi3addr, abort, 1);
4555 }
4556
4557 /* Send an abort for the specified command.
4558 * If the device and controller support it,
4559 * send a task abort request.
4560 */
4561 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
4562 {
4563
4564 int i, rc;
4565 struct ctlr_info *h;
4566 struct hpsa_scsi_dev_t *dev;
4567 struct CommandList *abort; /* pointer to command to be aborted */
4568 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
4569 char msg[256]; /* For debug messaging. */
4570 int ml = 0;
4571 __le32 tagupper, taglower;
4572 int refcount;
4573
4574 /* Find the controller of the command to be aborted */
4575 h = sdev_to_hba(sc->device);
4576 if (WARN(h == NULL,
4577 "ABORT REQUEST FAILED, Controller lookup failed.\n"))
4578 return FAILED;
4579
4580 if (lockup_detected(h))
4581 return FAILED;
4582
4583 /* Check that controller supports some kind of task abort */
4584 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
4585 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
4586 return FAILED;
4587
4588 memset(msg, 0, sizeof(msg));
4589 ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%llu ",
4590 h->scsi_host->host_no, sc->device->channel,
4591 sc->device->id, sc->device->lun);
4592
4593 /* Find the device of the command to be aborted */
4594 dev = sc->device->hostdata;
4595 if (!dev) {
4596 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
4597 msg);
4598 return FAILED;
4599 }
4600
4601 /* Get SCSI command to be aborted */
4602 abort = (struct CommandList *) sc->host_scribble;
4603 if (abort == NULL) {
4604 /* This can happen if the command already completed. */
4605 return SUCCESS;
4606 }
4607 refcount = atomic_inc_return(&abort->refcount);
4608 if (refcount == 1) { /* Command is done already. */
4609 cmd_free(h, abort);
4610 return SUCCESS;
4611 }
4612 hpsa_get_tag(h, abort, &taglower, &tagupper);
4613 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
4614 as = abort->scsi_cmd;
4615 if (as != NULL)
4616 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
4617 as->cmnd[0], as->serial_number);
4618 dev_dbg(&h->pdev->dev, "%s\n", msg);
4619 dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
4620 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4621 /*
4622 * Command is in flight, or possibly already completed
4623 * by the firmware (but not to the scsi mid layer) but we can't
4624 * distinguish which. Send the abort down.
4625 */
4626 rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
4627 if (rc != 0) {
4628 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
4629 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
4630 h->scsi_host->host_no,
4631 dev->bus, dev->target, dev->lun);
4632 cmd_free(h, abort);
4633 return FAILED;
4634 }
4635 dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
4636
4637 /* If the abort(s) above completed and actually aborted the
4638 * command, then the command to be aborted should already be
4639 * completed. If not, wait around a bit more to see if they
4640 * manage to complete normally.
4641 */
4642 #define ABORT_COMPLETE_WAIT_SECS 30
4643 for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
4644 refcount = atomic_read(&abort->refcount);
4645 if (refcount < 2) {
4646 cmd_free(h, abort);
4647 return SUCCESS;
4648 } else {
4649 msleep(100);
4650 }
4651 }
4652 dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
4653 msg, ABORT_COMPLETE_WAIT_SECS);
4654 cmd_free(h, abort);
4655 return FAILED;
4656 }
4657
4658 /*
4659 * For operations that cannot sleep, a command block is allocated at init,
4660 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
4661 * which ones are free or in use. Lock must be held when calling this.
4662 * cmd_free() is the complement.
4663 */
4664
4665 static struct CommandList *cmd_alloc(struct ctlr_info *h)
4666 {
4667 struct CommandList *c;
4668 int i;
4669 union u64bit temp64;
4670 dma_addr_t cmd_dma_handle, err_dma_handle;
4671 int refcount;
4672 unsigned long offset;
4673
4674 /*
4675 * There is some *extremely* small but non-zero chance that that
4676 * multiple threads could get in here, and one thread could
4677 * be scanning through the list of bits looking for a free
4678 * one, but the free ones are always behind him, and other
4679 * threads sneak in behind him and eat them before he can
4680 * get to them, so that while there is always a free one, a
4681 * very unlucky thread might be starved anyway, never able to
4682 * beat the other threads. In reality, this happens so
4683 * infrequently as to be indistinguishable from never.
4684 */
4685
4686 offset = h->last_allocation; /* benignly racy */
4687 for (;;) {
4688 i = find_next_zero_bit(h->cmd_pool_bits, h->nr_cmds, offset);
4689 if (unlikely(i == h->nr_cmds)) {
4690 offset = 0;
4691 continue;
4692 }
4693 c = h->cmd_pool + i;
4694 refcount = atomic_inc_return(&c->refcount);
4695 if (unlikely(refcount > 1)) {
4696 cmd_free(h, c); /* already in use */
4697 offset = (i + 1) % h->nr_cmds;
4698 continue;
4699 }
4700 set_bit(i & (BITS_PER_LONG - 1),
4701 h->cmd_pool_bits + (i / BITS_PER_LONG));
4702 break; /* it's ours now. */
4703 }
4704 h->last_allocation = i; /* benignly racy */
4705
4706 /* Zero out all of commandlist except the last field, refcount */
4707 memset(c, 0, offsetof(struct CommandList, refcount));
4708 c->Header.tag = cpu_to_le64((u64) (i << DIRECT_LOOKUP_SHIFT));
4709 cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(*c);
4710 c->err_info = h->errinfo_pool + i;
4711 memset(c->err_info, 0, sizeof(*c->err_info));
4712 err_dma_handle = h->errinfo_pool_dhandle
4713 + i * sizeof(*c->err_info);
4714
4715 c->cmdindex = i;
4716
4717 c->busaddr = (u32) cmd_dma_handle;
4718 temp64.val = (u64) err_dma_handle;
4719 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
4720 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
4721
4722 c->h = h;
4723 return c;
4724 }
4725
4726 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
4727 {
4728 if (atomic_dec_and_test(&c->refcount)) {
4729 int i;
4730
4731 i = c - h->cmd_pool;
4732 clear_bit(i & (BITS_PER_LONG - 1),
4733 h->cmd_pool_bits + (i / BITS_PER_LONG));
4734 }
4735 }
4736
4737 #ifdef CONFIG_COMPAT
4738
4739 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
4740 void __user *arg)
4741 {
4742 IOCTL32_Command_struct __user *arg32 =
4743 (IOCTL32_Command_struct __user *) arg;
4744 IOCTL_Command_struct arg64;
4745 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
4746 int err;
4747 u32 cp;
4748
4749 memset(&arg64, 0, sizeof(arg64));
4750 err = 0;
4751 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4752 sizeof(arg64.LUN_info));
4753 err |= copy_from_user(&arg64.Request, &arg32->Request,
4754 sizeof(arg64.Request));
4755 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4756 sizeof(arg64.error_info));
4757 err |= get_user(arg64.buf_size, &arg32->buf_size);
4758 err |= get_user(cp, &arg32->buf);
4759 arg64.buf = compat_ptr(cp);
4760 err |= copy_to_user(p, &arg64, sizeof(arg64));
4761
4762 if (err)
4763 return -EFAULT;
4764
4765 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
4766 if (err)
4767 return err;
4768 err |= copy_in_user(&arg32->error_info, &p->error_info,
4769 sizeof(arg32->error_info));
4770 if (err)
4771 return -EFAULT;
4772 return err;
4773 }
4774
4775 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
4776 int cmd, void __user *arg)
4777 {
4778 BIG_IOCTL32_Command_struct __user *arg32 =
4779 (BIG_IOCTL32_Command_struct __user *) arg;
4780 BIG_IOCTL_Command_struct arg64;
4781 BIG_IOCTL_Command_struct __user *p =
4782 compat_alloc_user_space(sizeof(arg64));
4783 int err;
4784 u32 cp;
4785
4786 memset(&arg64, 0, sizeof(arg64));
4787 err = 0;
4788 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4789 sizeof(arg64.LUN_info));
4790 err |= copy_from_user(&arg64.Request, &arg32->Request,
4791 sizeof(arg64.Request));
4792 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4793 sizeof(arg64.error_info));
4794 err |= get_user(arg64.buf_size, &arg32->buf_size);
4795 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
4796 err |= get_user(cp, &arg32->buf);
4797 arg64.buf = compat_ptr(cp);
4798 err |= copy_to_user(p, &arg64, sizeof(arg64));
4799
4800 if (err)
4801 return -EFAULT;
4802
4803 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
4804 if (err)
4805 return err;
4806 err |= copy_in_user(&arg32->error_info, &p->error_info,
4807 sizeof(arg32->error_info));
4808 if (err)
4809 return -EFAULT;
4810 return err;
4811 }
4812
4813 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
4814 {
4815 switch (cmd) {
4816 case CCISS_GETPCIINFO:
4817 case CCISS_GETINTINFO:
4818 case CCISS_SETINTINFO:
4819 case CCISS_GETNODENAME:
4820 case CCISS_SETNODENAME:
4821 case CCISS_GETHEARTBEAT:
4822 case CCISS_GETBUSTYPES:
4823 case CCISS_GETFIRMVER:
4824 case CCISS_GETDRIVVER:
4825 case CCISS_REVALIDVOLS:
4826 case CCISS_DEREGDISK:
4827 case CCISS_REGNEWDISK:
4828 case CCISS_REGNEWD:
4829 case CCISS_RESCANDISK:
4830 case CCISS_GETLUNINFO:
4831 return hpsa_ioctl(dev, cmd, arg);
4832
4833 case CCISS_PASSTHRU32:
4834 return hpsa_ioctl32_passthru(dev, cmd, arg);
4835 case CCISS_BIG_PASSTHRU32:
4836 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
4837
4838 default:
4839 return -ENOIOCTLCMD;
4840 }
4841 }
4842 #endif
4843
4844 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
4845 {
4846 struct hpsa_pci_info pciinfo;
4847
4848 if (!argp)
4849 return -EINVAL;
4850 pciinfo.domain = pci_domain_nr(h->pdev->bus);
4851 pciinfo.bus = h->pdev->bus->number;
4852 pciinfo.dev_fn = h->pdev->devfn;
4853 pciinfo.board_id = h->board_id;
4854 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
4855 return -EFAULT;
4856 return 0;
4857 }
4858
4859 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
4860 {
4861 DriverVer_type DriverVer;
4862 unsigned char vmaj, vmin, vsubmin;
4863 int rc;
4864
4865 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
4866 &vmaj, &vmin, &vsubmin);
4867 if (rc != 3) {
4868 dev_info(&h->pdev->dev, "driver version string '%s' "
4869 "unrecognized.", HPSA_DRIVER_VERSION);
4870 vmaj = 0;
4871 vmin = 0;
4872 vsubmin = 0;
4873 }
4874 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
4875 if (!argp)
4876 return -EINVAL;
4877 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
4878 return -EFAULT;
4879 return 0;
4880 }
4881
4882 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4883 {
4884 IOCTL_Command_struct iocommand;
4885 struct CommandList *c;
4886 char *buff = NULL;
4887 u64 temp64;
4888 int rc = 0;
4889
4890 if (!argp)
4891 return -EINVAL;
4892 if (!capable(CAP_SYS_RAWIO))
4893 return -EPERM;
4894 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
4895 return -EFAULT;
4896 if ((iocommand.buf_size < 1) &&
4897 (iocommand.Request.Type.Direction != XFER_NONE)) {
4898 return -EINVAL;
4899 }
4900 if (iocommand.buf_size > 0) {
4901 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
4902 if (buff == NULL)
4903 return -EFAULT;
4904 if (iocommand.Request.Type.Direction & XFER_WRITE) {
4905 /* Copy the data into the buffer we created */
4906 if (copy_from_user(buff, iocommand.buf,
4907 iocommand.buf_size)) {
4908 rc = -EFAULT;
4909 goto out_kfree;
4910 }
4911 } else {
4912 memset(buff, 0, iocommand.buf_size);
4913 }
4914 }
4915 c = cmd_alloc(h);
4916 if (c == NULL) {
4917 rc = -ENOMEM;
4918 goto out_kfree;
4919 }
4920 /* Fill in the command type */
4921 c->cmd_type = CMD_IOCTL_PEND;
4922 /* Fill in Command Header */
4923 c->Header.ReplyQueue = 0; /* unused in simple mode */
4924 if (iocommand.buf_size > 0) { /* buffer to fill */
4925 c->Header.SGList = 1;
4926 c->Header.SGTotal = cpu_to_le16(1);
4927 } else { /* no buffers to fill */
4928 c->Header.SGList = 0;
4929 c->Header.SGTotal = cpu_to_le16(0);
4930 }
4931 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
4932
4933 /* Fill in Request block */
4934 memcpy(&c->Request, &iocommand.Request,
4935 sizeof(c->Request));
4936
4937 /* Fill in the scatter gather information */
4938 if (iocommand.buf_size > 0) {
4939 temp64 = pci_map_single(h->pdev, buff,
4940 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
4941 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
4942 c->SG[0].Addr = cpu_to_le64(0);
4943 c->SG[0].Len = cpu_to_le32(0);
4944 rc = -ENOMEM;
4945 goto out;
4946 }
4947 c->SG[0].Addr = cpu_to_le64(temp64);
4948 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
4949 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
4950 }
4951 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
4952 if (iocommand.buf_size > 0)
4953 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
4954 check_ioctl_unit_attention(h, c);
4955
4956 /* Copy the error information out */
4957 memcpy(&iocommand.error_info, c->err_info,
4958 sizeof(iocommand.error_info));
4959 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
4960 rc = -EFAULT;
4961 goto out;
4962 }
4963 if ((iocommand.Request.Type.Direction & XFER_READ) &&
4964 iocommand.buf_size > 0) {
4965 /* Copy the data out of the buffer we created */
4966 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
4967 rc = -EFAULT;
4968 goto out;
4969 }
4970 }
4971 out:
4972 cmd_free(h, c);
4973 out_kfree:
4974 kfree(buff);
4975 return rc;
4976 }
4977
4978 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4979 {
4980 BIG_IOCTL_Command_struct *ioc;
4981 struct CommandList *c;
4982 unsigned char **buff = NULL;
4983 int *buff_size = NULL;
4984 u64 temp64;
4985 BYTE sg_used = 0;
4986 int status = 0;
4987 u32 left;
4988 u32 sz;
4989 BYTE __user *data_ptr;
4990
4991 if (!argp)
4992 return -EINVAL;
4993 if (!capable(CAP_SYS_RAWIO))
4994 return -EPERM;
4995 ioc = (BIG_IOCTL_Command_struct *)
4996 kmalloc(sizeof(*ioc), GFP_KERNEL);
4997 if (!ioc) {
4998 status = -ENOMEM;
4999 goto cleanup1;
5000 }
5001 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
5002 status = -EFAULT;
5003 goto cleanup1;
5004 }
5005 if ((ioc->buf_size < 1) &&
5006 (ioc->Request.Type.Direction != XFER_NONE)) {
5007 status = -EINVAL;
5008 goto cleanup1;
5009 }
5010 /* Check kmalloc limits using all SGs */
5011 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
5012 status = -EINVAL;
5013 goto cleanup1;
5014 }
5015 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
5016 status = -EINVAL;
5017 goto cleanup1;
5018 }
5019 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
5020 if (!buff) {
5021 status = -ENOMEM;
5022 goto cleanup1;
5023 }
5024 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
5025 if (!buff_size) {
5026 status = -ENOMEM;
5027 goto cleanup1;
5028 }
5029 left = ioc->buf_size;
5030 data_ptr = ioc->buf;
5031 while (left) {
5032 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
5033 buff_size[sg_used] = sz;
5034 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
5035 if (buff[sg_used] == NULL) {
5036 status = -ENOMEM;
5037 goto cleanup1;
5038 }
5039 if (ioc->Request.Type.Direction & XFER_WRITE) {
5040 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
5041 status = -EFAULT;
5042 goto cleanup1;
5043 }
5044 } else
5045 memset(buff[sg_used], 0, sz);
5046 left -= sz;
5047 data_ptr += sz;
5048 sg_used++;
5049 }
5050 c = cmd_alloc(h);
5051 if (c == NULL) {
5052 status = -ENOMEM;
5053 goto cleanup1;
5054 }
5055 c->cmd_type = CMD_IOCTL_PEND;
5056 c->Header.ReplyQueue = 0;
5057 c->Header.SGList = (u8) sg_used;
5058 c->Header.SGTotal = cpu_to_le16(sg_used);
5059 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
5060 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
5061 if (ioc->buf_size > 0) {
5062 int i;
5063 for (i = 0; i < sg_used; i++) {
5064 temp64 = pci_map_single(h->pdev, buff[i],
5065 buff_size[i], PCI_DMA_BIDIRECTIONAL);
5066 if (dma_mapping_error(&h->pdev->dev,
5067 (dma_addr_t) temp64)) {
5068 c->SG[i].Addr = cpu_to_le64(0);
5069 c->SG[i].Len = cpu_to_le32(0);
5070 hpsa_pci_unmap(h->pdev, c, i,
5071 PCI_DMA_BIDIRECTIONAL);
5072 status = -ENOMEM;
5073 goto cleanup0;
5074 }
5075 c->SG[i].Addr = cpu_to_le64(temp64);
5076 c->SG[i].Len = cpu_to_le32(buff_size[i]);
5077 c->SG[i].Ext = cpu_to_le32(0);
5078 }
5079 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
5080 }
5081 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
5082 if (sg_used)
5083 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
5084 check_ioctl_unit_attention(h, c);
5085 /* Copy the error information out */
5086 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
5087 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
5088 status = -EFAULT;
5089 goto cleanup0;
5090 }
5091 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
5092 int i;
5093
5094 /* Copy the data out of the buffer we created */
5095 BYTE __user *ptr = ioc->buf;
5096 for (i = 0; i < sg_used; i++) {
5097 if (copy_to_user(ptr, buff[i], buff_size[i])) {
5098 status = -EFAULT;
5099 goto cleanup0;
5100 }
5101 ptr += buff_size[i];
5102 }
5103 }
5104 status = 0;
5105 cleanup0:
5106 cmd_free(h, c);
5107 cleanup1:
5108 if (buff) {
5109 int i;
5110
5111 for (i = 0; i < sg_used; i++)
5112 kfree(buff[i]);
5113 kfree(buff);
5114 }
5115 kfree(buff_size);
5116 kfree(ioc);
5117 return status;
5118 }
5119
5120 static void check_ioctl_unit_attention(struct ctlr_info *h,
5121 struct CommandList *c)
5122 {
5123 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5124 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
5125 (void) check_for_unit_attention(h, c);
5126 }
5127
5128 /*
5129 * ioctl
5130 */
5131 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5132 {
5133 struct ctlr_info *h;
5134 void __user *argp = (void __user *)arg;
5135 int rc;
5136
5137 h = sdev_to_hba(dev);
5138
5139 switch (cmd) {
5140 case CCISS_DEREGDISK:
5141 case CCISS_REGNEWDISK:
5142 case CCISS_REGNEWD:
5143 hpsa_scan_start(h->scsi_host);
5144 return 0;
5145 case CCISS_GETPCIINFO:
5146 return hpsa_getpciinfo_ioctl(h, argp);
5147 case CCISS_GETDRIVVER:
5148 return hpsa_getdrivver_ioctl(h, argp);
5149 case CCISS_PASSTHRU:
5150 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
5151 return -EAGAIN;
5152 rc = hpsa_passthru_ioctl(h, argp);
5153 atomic_inc(&h->passthru_cmds_avail);
5154 return rc;
5155 case CCISS_BIG_PASSTHRU:
5156 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
5157 return -EAGAIN;
5158 rc = hpsa_big_passthru_ioctl(h, argp);
5159 atomic_inc(&h->passthru_cmds_avail);
5160 return rc;
5161 default:
5162 return -ENOTTY;
5163 }
5164 }
5165
5166 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
5167 u8 reset_type)
5168 {
5169 struct CommandList *c;
5170
5171 c = cmd_alloc(h);
5172 if (!c)
5173 return -ENOMEM;
5174 /* fill_cmd can't fail here, no data buffer to map */
5175 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
5176 RAID_CTLR_LUNID, TYPE_MSG);
5177 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
5178 c->waiting = NULL;
5179 enqueue_cmd_and_start_io(h, c);
5180 /* Don't wait for completion, the reset won't complete. Don't free
5181 * the command either. This is the last command we will send before
5182 * re-initializing everything, so it doesn't matter and won't leak.
5183 */
5184 return 0;
5185 }
5186
5187 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
5188 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
5189 int cmd_type)
5190 {
5191 int pci_dir = XFER_NONE;
5192 struct CommandList *a; /* for commands to be aborted */
5193
5194 c->cmd_type = CMD_IOCTL_PEND;
5195 c->Header.ReplyQueue = 0;
5196 if (buff != NULL && size > 0) {
5197 c->Header.SGList = 1;
5198 c->Header.SGTotal = cpu_to_le16(1);
5199 } else {
5200 c->Header.SGList = 0;
5201 c->Header.SGTotal = cpu_to_le16(0);
5202 }
5203 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
5204
5205 if (cmd_type == TYPE_CMD) {
5206 switch (cmd) {
5207 case HPSA_INQUIRY:
5208 /* are we trying to read a vital product page */
5209 if (page_code & VPD_PAGE) {
5210 c->Request.CDB[1] = 0x01;
5211 c->Request.CDB[2] = (page_code & 0xff);
5212 }
5213 c->Request.CDBLen = 6;
5214 c->Request.type_attr_dir =
5215 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5216 c->Request.Timeout = 0;
5217 c->Request.CDB[0] = HPSA_INQUIRY;
5218 c->Request.CDB[4] = size & 0xFF;
5219 break;
5220 case HPSA_REPORT_LOG:
5221 case HPSA_REPORT_PHYS:
5222 /* Talking to controller so It's a physical command
5223 mode = 00 target = 0. Nothing to write.
5224 */
5225 c->Request.CDBLen = 12;
5226 c->Request.type_attr_dir =
5227 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5228 c->Request.Timeout = 0;
5229 c->Request.CDB[0] = cmd;
5230 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5231 c->Request.CDB[7] = (size >> 16) & 0xFF;
5232 c->Request.CDB[8] = (size >> 8) & 0xFF;
5233 c->Request.CDB[9] = size & 0xFF;
5234 break;
5235 case HPSA_CACHE_FLUSH:
5236 c->Request.CDBLen = 12;
5237 c->Request.type_attr_dir =
5238 TYPE_ATTR_DIR(cmd_type,
5239 ATTR_SIMPLE, XFER_WRITE);
5240 c->Request.Timeout = 0;
5241 c->Request.CDB[0] = BMIC_WRITE;
5242 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
5243 c->Request.CDB[7] = (size >> 8) & 0xFF;
5244 c->Request.CDB[8] = size & 0xFF;
5245 break;
5246 case TEST_UNIT_READY:
5247 c->Request.CDBLen = 6;
5248 c->Request.type_attr_dir =
5249 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5250 c->Request.Timeout = 0;
5251 break;
5252 case HPSA_GET_RAID_MAP:
5253 c->Request.CDBLen = 12;
5254 c->Request.type_attr_dir =
5255 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5256 c->Request.Timeout = 0;
5257 c->Request.CDB[0] = HPSA_CISS_READ;
5258 c->Request.CDB[1] = cmd;
5259 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5260 c->Request.CDB[7] = (size >> 16) & 0xFF;
5261 c->Request.CDB[8] = (size >> 8) & 0xFF;
5262 c->Request.CDB[9] = size & 0xFF;
5263 break;
5264 case BMIC_SENSE_CONTROLLER_PARAMETERS:
5265 c->Request.CDBLen = 10;
5266 c->Request.type_attr_dir =
5267 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5268 c->Request.Timeout = 0;
5269 c->Request.CDB[0] = BMIC_READ;
5270 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
5271 c->Request.CDB[7] = (size >> 16) & 0xFF;
5272 c->Request.CDB[8] = (size >> 8) & 0xFF;
5273 break;
5274 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
5275 c->Request.CDBLen = 10;
5276 c->Request.type_attr_dir =
5277 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5278 c->Request.Timeout = 0;
5279 c->Request.CDB[0] = BMIC_READ;
5280 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
5281 c->Request.CDB[7] = (size >> 16) & 0xFF;
5282 c->Request.CDB[8] = (size >> 8) & 0XFF;
5283 break;
5284 default:
5285 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
5286 BUG();
5287 return -1;
5288 }
5289 } else if (cmd_type == TYPE_MSG) {
5290 switch (cmd) {
5291
5292 case HPSA_DEVICE_RESET_MSG:
5293 c->Request.CDBLen = 16;
5294 c->Request.type_attr_dir =
5295 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5296 c->Request.Timeout = 0; /* Don't time out */
5297 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
5298 c->Request.CDB[0] = cmd;
5299 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
5300 /* If bytes 4-7 are zero, it means reset the */
5301 /* LunID device */
5302 c->Request.CDB[4] = 0x00;
5303 c->Request.CDB[5] = 0x00;
5304 c->Request.CDB[6] = 0x00;
5305 c->Request.CDB[7] = 0x00;
5306 break;
5307 case HPSA_ABORT_MSG:
5308 a = buff; /* point to command to be aborted */
5309 dev_dbg(&h->pdev->dev,
5310 "Abort Tag:0x%016llx request Tag:0x%016llx",
5311 a->Header.tag, c->Header.tag);
5312 c->Request.CDBLen = 16;
5313 c->Request.type_attr_dir =
5314 TYPE_ATTR_DIR(cmd_type,
5315 ATTR_SIMPLE, XFER_WRITE);
5316 c->Request.Timeout = 0; /* Don't time out */
5317 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
5318 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
5319 c->Request.CDB[2] = 0x00; /* reserved */
5320 c->Request.CDB[3] = 0x00; /* reserved */
5321 /* Tag to abort goes in CDB[4]-CDB[11] */
5322 memcpy(&c->Request.CDB[4], &a->Header.tag,
5323 sizeof(a->Header.tag));
5324 c->Request.CDB[12] = 0x00; /* reserved */
5325 c->Request.CDB[13] = 0x00; /* reserved */
5326 c->Request.CDB[14] = 0x00; /* reserved */
5327 c->Request.CDB[15] = 0x00; /* reserved */
5328 break;
5329 default:
5330 dev_warn(&h->pdev->dev, "unknown message type %d\n",
5331 cmd);
5332 BUG();
5333 }
5334 } else {
5335 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
5336 BUG();
5337 }
5338
5339 switch (GET_DIR(c->Request.type_attr_dir)) {
5340 case XFER_READ:
5341 pci_dir = PCI_DMA_FROMDEVICE;
5342 break;
5343 case XFER_WRITE:
5344 pci_dir = PCI_DMA_TODEVICE;
5345 break;
5346 case XFER_NONE:
5347 pci_dir = PCI_DMA_NONE;
5348 break;
5349 default:
5350 pci_dir = PCI_DMA_BIDIRECTIONAL;
5351 }
5352 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
5353 return -1;
5354 return 0;
5355 }
5356
5357 /*
5358 * Map (physical) PCI mem into (virtual) kernel space
5359 */
5360 static void __iomem *remap_pci_mem(ulong base, ulong size)
5361 {
5362 ulong page_base = ((ulong) base) & PAGE_MASK;
5363 ulong page_offs = ((ulong) base) - page_base;
5364 void __iomem *page_remapped = ioremap_nocache(page_base,
5365 page_offs + size);
5366
5367 return page_remapped ? (page_remapped + page_offs) : NULL;
5368 }
5369
5370 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
5371 {
5372 return h->access.command_completed(h, q);
5373 }
5374
5375 static inline bool interrupt_pending(struct ctlr_info *h)
5376 {
5377 return h->access.intr_pending(h);
5378 }
5379
5380 static inline long interrupt_not_for_us(struct ctlr_info *h)
5381 {
5382 return (h->access.intr_pending(h) == 0) ||
5383 (h->interrupts_enabled == 0);
5384 }
5385
5386 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
5387 u32 raw_tag)
5388 {
5389 if (unlikely(tag_index >= h->nr_cmds)) {
5390 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
5391 return 1;
5392 }
5393 return 0;
5394 }
5395
5396 static inline void finish_cmd(struct CommandList *c)
5397 {
5398 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
5399 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
5400 || c->cmd_type == CMD_IOACCEL2))
5401 complete_scsi_command(c);
5402 else if (c->cmd_type == CMD_IOCTL_PEND)
5403 complete(c->waiting);
5404 }
5405
5406
5407 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
5408 {
5409 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
5410 #define HPSA_SIMPLE_ERROR_BITS 0x03
5411 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
5412 return tag & ~HPSA_SIMPLE_ERROR_BITS;
5413 return tag & ~HPSA_PERF_ERROR_BITS;
5414 }
5415
5416 /* process completion of an indexed ("direct lookup") command */
5417 static inline void process_indexed_cmd(struct ctlr_info *h,
5418 u32 raw_tag)
5419 {
5420 u32 tag_index;
5421 struct CommandList *c;
5422
5423 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
5424 if (!bad_tag(h, tag_index, raw_tag)) {
5425 c = h->cmd_pool + tag_index;
5426 finish_cmd(c);
5427 }
5428 }
5429
5430 /* Some controllers, like p400, will give us one interrupt
5431 * after a soft reset, even if we turned interrupts off.
5432 * Only need to check for this in the hpsa_xxx_discard_completions
5433 * functions.
5434 */
5435 static int ignore_bogus_interrupt(struct ctlr_info *h)
5436 {
5437 if (likely(!reset_devices))
5438 return 0;
5439
5440 if (likely(h->interrupts_enabled))
5441 return 0;
5442
5443 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
5444 "(known firmware bug.) Ignoring.\n");
5445
5446 return 1;
5447 }
5448
5449 /*
5450 * Convert &h->q[x] (passed to interrupt handlers) back to h.
5451 * Relies on (h-q[x] == x) being true for x such that
5452 * 0 <= x < MAX_REPLY_QUEUES.
5453 */
5454 static struct ctlr_info *queue_to_hba(u8 *queue)
5455 {
5456 return container_of((queue - *queue), struct ctlr_info, q[0]);
5457 }
5458
5459 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
5460 {
5461 struct ctlr_info *h = queue_to_hba(queue);
5462 u8 q = *(u8 *) queue;
5463 u32 raw_tag;
5464
5465 if (ignore_bogus_interrupt(h))
5466 return IRQ_NONE;
5467
5468 if (interrupt_not_for_us(h))
5469 return IRQ_NONE;
5470 h->last_intr_timestamp = get_jiffies_64();
5471 while (interrupt_pending(h)) {
5472 raw_tag = get_next_completion(h, q);
5473 while (raw_tag != FIFO_EMPTY)
5474 raw_tag = next_command(h, q);
5475 }
5476 return IRQ_HANDLED;
5477 }
5478
5479 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
5480 {
5481 struct ctlr_info *h = queue_to_hba(queue);
5482 u32 raw_tag;
5483 u8 q = *(u8 *) queue;
5484
5485 if (ignore_bogus_interrupt(h))
5486 return IRQ_NONE;
5487
5488 h->last_intr_timestamp = get_jiffies_64();
5489 raw_tag = get_next_completion(h, q);
5490 while (raw_tag != FIFO_EMPTY)
5491 raw_tag = next_command(h, q);
5492 return IRQ_HANDLED;
5493 }
5494
5495 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
5496 {
5497 struct ctlr_info *h = queue_to_hba((u8 *) queue);
5498 u32 raw_tag;
5499 u8 q = *(u8 *) queue;
5500
5501 if (interrupt_not_for_us(h))
5502 return IRQ_NONE;
5503 h->last_intr_timestamp = get_jiffies_64();
5504 while (interrupt_pending(h)) {
5505 raw_tag = get_next_completion(h, q);
5506 while (raw_tag != FIFO_EMPTY) {
5507 process_indexed_cmd(h, raw_tag);
5508 raw_tag = next_command(h, q);
5509 }
5510 }
5511 return IRQ_HANDLED;
5512 }
5513
5514 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
5515 {
5516 struct ctlr_info *h = queue_to_hba(queue);
5517 u32 raw_tag;
5518 u8 q = *(u8 *) queue;
5519
5520 h->last_intr_timestamp = get_jiffies_64();
5521 raw_tag = get_next_completion(h, q);
5522 while (raw_tag != FIFO_EMPTY) {
5523 process_indexed_cmd(h, raw_tag);
5524 raw_tag = next_command(h, q);
5525 }
5526 return IRQ_HANDLED;
5527 }
5528
5529 /* Send a message CDB to the firmware. Careful, this only works
5530 * in simple mode, not performant mode due to the tag lookup.
5531 * We only ever use this immediately after a controller reset.
5532 */
5533 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
5534 unsigned char type)
5535 {
5536 struct Command {
5537 struct CommandListHeader CommandHeader;
5538 struct RequestBlock Request;
5539 struct ErrDescriptor ErrorDescriptor;
5540 };
5541 struct Command *cmd;
5542 static const size_t cmd_sz = sizeof(*cmd) +
5543 sizeof(cmd->ErrorDescriptor);
5544 dma_addr_t paddr64;
5545 __le32 paddr32;
5546 u32 tag;
5547 void __iomem *vaddr;
5548 int i, err;
5549
5550 vaddr = pci_ioremap_bar(pdev, 0);
5551 if (vaddr == NULL)
5552 return -ENOMEM;
5553
5554 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
5555 * CCISS commands, so they must be allocated from the lower 4GiB of
5556 * memory.
5557 */
5558 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
5559 if (err) {
5560 iounmap(vaddr);
5561 return err;
5562 }
5563
5564 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
5565 if (cmd == NULL) {
5566 iounmap(vaddr);
5567 return -ENOMEM;
5568 }
5569
5570 /* This must fit, because of the 32-bit consistent DMA mask. Also,
5571 * although there's no guarantee, we assume that the address is at
5572 * least 4-byte aligned (most likely, it's page-aligned).
5573 */
5574 paddr32 = cpu_to_le32(paddr64);
5575
5576 cmd->CommandHeader.ReplyQueue = 0;
5577 cmd->CommandHeader.SGList = 0;
5578 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
5579 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
5580 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
5581
5582 cmd->Request.CDBLen = 16;
5583 cmd->Request.type_attr_dir =
5584 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
5585 cmd->Request.Timeout = 0; /* Don't time out */
5586 cmd->Request.CDB[0] = opcode;
5587 cmd->Request.CDB[1] = type;
5588 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
5589 cmd->ErrorDescriptor.Addr =
5590 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
5591 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
5592
5593 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
5594
5595 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
5596 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
5597 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
5598 break;
5599 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
5600 }
5601
5602 iounmap(vaddr);
5603
5604 /* we leak the DMA buffer here ... no choice since the controller could
5605 * still complete the command.
5606 */
5607 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
5608 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
5609 opcode, type);
5610 return -ETIMEDOUT;
5611 }
5612
5613 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
5614
5615 if (tag & HPSA_ERROR_BIT) {
5616 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
5617 opcode, type);
5618 return -EIO;
5619 }
5620
5621 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
5622 opcode, type);
5623 return 0;
5624 }
5625
5626 #define hpsa_noop(p) hpsa_message(p, 3, 0)
5627
5628 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
5629 void __iomem *vaddr, u32 use_doorbell)
5630 {
5631
5632 if (use_doorbell) {
5633 /* For everything after the P600, the PCI power state method
5634 * of resetting the controller doesn't work, so we have this
5635 * other way using the doorbell register.
5636 */
5637 dev_info(&pdev->dev, "using doorbell to reset controller\n");
5638 writel(use_doorbell, vaddr + SA5_DOORBELL);
5639
5640 /* PMC hardware guys tell us we need a 10 second delay after
5641 * doorbell reset and before any attempt to talk to the board
5642 * at all to ensure that this actually works and doesn't fall
5643 * over in some weird corner cases.
5644 */
5645 msleep(10000);
5646 } else { /* Try to do it the PCI power state way */
5647
5648 /* Quoting from the Open CISS Specification: "The Power
5649 * Management Control/Status Register (CSR) controls the power
5650 * state of the device. The normal operating state is D0,
5651 * CSR=00h. The software off state is D3, CSR=03h. To reset
5652 * the controller, place the interface device in D3 then to D0,
5653 * this causes a secondary PCI reset which will reset the
5654 * controller." */
5655
5656 int rc = 0;
5657
5658 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
5659
5660 /* enter the D3hot power management state */
5661 rc = pci_set_power_state(pdev, PCI_D3hot);
5662 if (rc)
5663 return rc;
5664
5665 msleep(500);
5666
5667 /* enter the D0 power management state */
5668 rc = pci_set_power_state(pdev, PCI_D0);
5669 if (rc)
5670 return rc;
5671
5672 /*
5673 * The P600 requires a small delay when changing states.
5674 * Otherwise we may think the board did not reset and we bail.
5675 * This for kdump only and is particular to the P600.
5676 */
5677 msleep(500);
5678 }
5679 return 0;
5680 }
5681
5682 static void init_driver_version(char *driver_version, int len)
5683 {
5684 memset(driver_version, 0, len);
5685 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
5686 }
5687
5688 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
5689 {
5690 char *driver_version;
5691 int i, size = sizeof(cfgtable->driver_version);
5692
5693 driver_version = kmalloc(size, GFP_KERNEL);
5694 if (!driver_version)
5695 return -ENOMEM;
5696
5697 init_driver_version(driver_version, size);
5698 for (i = 0; i < size; i++)
5699 writeb(driver_version[i], &cfgtable->driver_version[i]);
5700 kfree(driver_version);
5701 return 0;
5702 }
5703
5704 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
5705 unsigned char *driver_ver)
5706 {
5707 int i;
5708
5709 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
5710 driver_ver[i] = readb(&cfgtable->driver_version[i]);
5711 }
5712
5713 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
5714 {
5715
5716 char *driver_ver, *old_driver_ver;
5717 int rc, size = sizeof(cfgtable->driver_version);
5718
5719 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
5720 if (!old_driver_ver)
5721 return -ENOMEM;
5722 driver_ver = old_driver_ver + size;
5723
5724 /* After a reset, the 32 bytes of "driver version" in the cfgtable
5725 * should have been changed, otherwise we know the reset failed.
5726 */
5727 init_driver_version(old_driver_ver, size);
5728 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
5729 rc = !memcmp(driver_ver, old_driver_ver, size);
5730 kfree(old_driver_ver);
5731 return rc;
5732 }
5733 /* This does a hard reset of the controller using PCI power management
5734 * states or the using the doorbell register.
5735 */
5736 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
5737 {
5738 u64 cfg_offset;
5739 u32 cfg_base_addr;
5740 u64 cfg_base_addr_index;
5741 void __iomem *vaddr;
5742 unsigned long paddr;
5743 u32 misc_fw_support;
5744 int rc;
5745 struct CfgTable __iomem *cfgtable;
5746 u32 use_doorbell;
5747 u32 board_id;
5748 u16 command_register;
5749
5750 /* For controllers as old as the P600, this is very nearly
5751 * the same thing as
5752 *
5753 * pci_save_state(pci_dev);
5754 * pci_set_power_state(pci_dev, PCI_D3hot);
5755 * pci_set_power_state(pci_dev, PCI_D0);
5756 * pci_restore_state(pci_dev);
5757 *
5758 * For controllers newer than the P600, the pci power state
5759 * method of resetting doesn't work so we have another way
5760 * using the doorbell register.
5761 */
5762
5763 rc = hpsa_lookup_board_id(pdev, &board_id);
5764 if (rc < 0) {
5765 dev_warn(&pdev->dev, "Board ID not found\n");
5766 return rc;
5767 }
5768 if (!ctlr_is_resettable(board_id)) {
5769 dev_warn(&pdev->dev, "Controller not resettable\n");
5770 return -ENODEV;
5771 }
5772
5773 /* if controller is soft- but not hard resettable... */
5774 if (!ctlr_is_hard_resettable(board_id))
5775 return -ENOTSUPP; /* try soft reset later. */
5776
5777 /* Save the PCI command register */
5778 pci_read_config_word(pdev, 4, &command_register);
5779 pci_save_state(pdev);
5780
5781 /* find the first memory BAR, so we can find the cfg table */
5782 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
5783 if (rc)
5784 return rc;
5785 vaddr = remap_pci_mem(paddr, 0x250);
5786 if (!vaddr)
5787 return -ENOMEM;
5788
5789 /* find cfgtable in order to check if reset via doorbell is supported */
5790 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
5791 &cfg_base_addr_index, &cfg_offset);
5792 if (rc)
5793 goto unmap_vaddr;
5794 cfgtable = remap_pci_mem(pci_resource_start(pdev,
5795 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
5796 if (!cfgtable) {
5797 rc = -ENOMEM;
5798 goto unmap_vaddr;
5799 }
5800 rc = write_driver_ver_to_cfgtable(cfgtable);
5801 if (rc)
5802 goto unmap_cfgtable;
5803
5804 /* If reset via doorbell register is supported, use that.
5805 * There are two such methods. Favor the newest method.
5806 */
5807 misc_fw_support = readl(&cfgtable->misc_fw_support);
5808 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
5809 if (use_doorbell) {
5810 use_doorbell = DOORBELL_CTLR_RESET2;
5811 } else {
5812 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
5813 if (use_doorbell) {
5814 dev_warn(&pdev->dev,
5815 "Soft reset not supported. Firmware update is required.\n");
5816 rc = -ENOTSUPP; /* try soft reset */
5817 goto unmap_cfgtable;
5818 }
5819 }
5820
5821 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
5822 if (rc)
5823 goto unmap_cfgtable;
5824
5825 pci_restore_state(pdev);
5826 pci_write_config_word(pdev, 4, command_register);
5827
5828 /* Some devices (notably the HP Smart Array 5i Controller)
5829 need a little pause here */
5830 msleep(HPSA_POST_RESET_PAUSE_MSECS);
5831
5832 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
5833 if (rc) {
5834 dev_warn(&pdev->dev,
5835 "Failed waiting for board to become ready after hard reset\n");
5836 goto unmap_cfgtable;
5837 }
5838
5839 rc = controller_reset_failed(vaddr);
5840 if (rc < 0)
5841 goto unmap_cfgtable;
5842 if (rc) {
5843 dev_warn(&pdev->dev, "Unable to successfully reset "
5844 "controller. Will try soft reset.\n");
5845 rc = -ENOTSUPP;
5846 } else {
5847 dev_info(&pdev->dev, "board ready after hard reset.\n");
5848 }
5849
5850 unmap_cfgtable:
5851 iounmap(cfgtable);
5852
5853 unmap_vaddr:
5854 iounmap(vaddr);
5855 return rc;
5856 }
5857
5858 /*
5859 * We cannot read the structure directly, for portability we must use
5860 * the io functions.
5861 * This is for debug only.
5862 */
5863 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
5864 {
5865 #ifdef HPSA_DEBUG
5866 int i;
5867 char temp_name[17];
5868
5869 dev_info(dev, "Controller Configuration information\n");
5870 dev_info(dev, "------------------------------------\n");
5871 for (i = 0; i < 4; i++)
5872 temp_name[i] = readb(&(tb->Signature[i]));
5873 temp_name[4] = '\0';
5874 dev_info(dev, " Signature = %s\n", temp_name);
5875 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
5876 dev_info(dev, " Transport methods supported = 0x%x\n",
5877 readl(&(tb->TransportSupport)));
5878 dev_info(dev, " Transport methods active = 0x%x\n",
5879 readl(&(tb->TransportActive)));
5880 dev_info(dev, " Requested transport Method = 0x%x\n",
5881 readl(&(tb->HostWrite.TransportRequest)));
5882 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
5883 readl(&(tb->HostWrite.CoalIntDelay)));
5884 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
5885 readl(&(tb->HostWrite.CoalIntCount)));
5886 dev_info(dev, " Max outstanding commands = %d\n",
5887 readl(&(tb->CmdsOutMax)));
5888 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
5889 for (i = 0; i < 16; i++)
5890 temp_name[i] = readb(&(tb->ServerName[i]));
5891 temp_name[16] = '\0';
5892 dev_info(dev, " Server Name = %s\n", temp_name);
5893 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
5894 readl(&(tb->HeartBeat)));
5895 #endif /* HPSA_DEBUG */
5896 }
5897
5898 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
5899 {
5900 int i, offset, mem_type, bar_type;
5901
5902 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
5903 return 0;
5904 offset = 0;
5905 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
5906 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
5907 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
5908 offset += 4;
5909 else {
5910 mem_type = pci_resource_flags(pdev, i) &
5911 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
5912 switch (mem_type) {
5913 case PCI_BASE_ADDRESS_MEM_TYPE_32:
5914 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
5915 offset += 4; /* 32 bit */
5916 break;
5917 case PCI_BASE_ADDRESS_MEM_TYPE_64:
5918 offset += 8;
5919 break;
5920 default: /* reserved in PCI 2.2 */
5921 dev_warn(&pdev->dev,
5922 "base address is invalid\n");
5923 return -1;
5924 break;
5925 }
5926 }
5927 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
5928 return i + 1;
5929 }
5930 return -1;
5931 }
5932
5933 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
5934 * controllers that are capable. If not, we use legacy INTx mode.
5935 */
5936
5937 static void hpsa_interrupt_mode(struct ctlr_info *h)
5938 {
5939 #ifdef CONFIG_PCI_MSI
5940 int err, i;
5941 struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
5942
5943 for (i = 0; i < MAX_REPLY_QUEUES; i++) {
5944 hpsa_msix_entries[i].vector = 0;
5945 hpsa_msix_entries[i].entry = i;
5946 }
5947
5948 /* Some boards advertise MSI but don't really support it */
5949 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
5950 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
5951 goto default_int_mode;
5952 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
5953 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
5954 h->msix_vector = MAX_REPLY_QUEUES;
5955 if (h->msix_vector > num_online_cpus())
5956 h->msix_vector = num_online_cpus();
5957 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
5958 1, h->msix_vector);
5959 if (err < 0) {
5960 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
5961 h->msix_vector = 0;
5962 goto single_msi_mode;
5963 } else if (err < h->msix_vector) {
5964 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
5965 "available\n", err);
5966 }
5967 h->msix_vector = err;
5968 for (i = 0; i < h->msix_vector; i++)
5969 h->intr[i] = hpsa_msix_entries[i].vector;
5970 return;
5971 }
5972 single_msi_mode:
5973 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
5974 dev_info(&h->pdev->dev, "MSI capable controller\n");
5975 if (!pci_enable_msi(h->pdev))
5976 h->msi_vector = 1;
5977 else
5978 dev_warn(&h->pdev->dev, "MSI init failed\n");
5979 }
5980 default_int_mode:
5981 #endif /* CONFIG_PCI_MSI */
5982 /* if we get here we're going to use the default interrupt mode */
5983 h->intr[h->intr_mode] = h->pdev->irq;
5984 }
5985
5986 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
5987 {
5988 int i;
5989 u32 subsystem_vendor_id, subsystem_device_id;
5990
5991 subsystem_vendor_id = pdev->subsystem_vendor;
5992 subsystem_device_id = pdev->subsystem_device;
5993 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
5994 subsystem_vendor_id;
5995
5996 for (i = 0; i < ARRAY_SIZE(products); i++)
5997 if (*board_id == products[i].board_id)
5998 return i;
5999
6000 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
6001 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
6002 !hpsa_allow_any) {
6003 dev_warn(&pdev->dev, "unrecognized board ID: "
6004 "0x%08x, ignoring.\n", *board_id);
6005 return -ENODEV;
6006 }
6007 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
6008 }
6009
6010 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
6011 unsigned long *memory_bar)
6012 {
6013 int i;
6014
6015 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6016 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6017 /* addressing mode bits already removed */
6018 *memory_bar = pci_resource_start(pdev, i);
6019 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6020 *memory_bar);
6021 return 0;
6022 }
6023 dev_warn(&pdev->dev, "no memory BAR found\n");
6024 return -ENODEV;
6025 }
6026
6027 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
6028 int wait_for_ready)
6029 {
6030 int i, iterations;
6031 u32 scratchpad;
6032 if (wait_for_ready)
6033 iterations = HPSA_BOARD_READY_ITERATIONS;
6034 else
6035 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
6036
6037 for (i = 0; i < iterations; i++) {
6038 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
6039 if (wait_for_ready) {
6040 if (scratchpad == HPSA_FIRMWARE_READY)
6041 return 0;
6042 } else {
6043 if (scratchpad != HPSA_FIRMWARE_READY)
6044 return 0;
6045 }
6046 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
6047 }
6048 dev_warn(&pdev->dev, "board not ready, timed out.\n");
6049 return -ENODEV;
6050 }
6051
6052 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
6053 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
6054 u64 *cfg_offset)
6055 {
6056 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
6057 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
6058 *cfg_base_addr &= (u32) 0x0000ffff;
6059 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
6060 if (*cfg_base_addr_index == -1) {
6061 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
6062 return -ENODEV;
6063 }
6064 return 0;
6065 }
6066
6067 static int hpsa_find_cfgtables(struct ctlr_info *h)
6068 {
6069 u64 cfg_offset;
6070 u32 cfg_base_addr;
6071 u64 cfg_base_addr_index;
6072 u32 trans_offset;
6073 int rc;
6074
6075 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
6076 &cfg_base_addr_index, &cfg_offset);
6077 if (rc)
6078 return rc;
6079 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
6080 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
6081 if (!h->cfgtable) {
6082 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
6083 return -ENOMEM;
6084 }
6085 rc = write_driver_ver_to_cfgtable(h->cfgtable);
6086 if (rc)
6087 return rc;
6088 /* Find performant mode table. */
6089 trans_offset = readl(&h->cfgtable->TransMethodOffset);
6090 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
6091 cfg_base_addr_index)+cfg_offset+trans_offset,
6092 sizeof(*h->transtable));
6093 if (!h->transtable)
6094 return -ENOMEM;
6095 return 0;
6096 }
6097
6098 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
6099 {
6100 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
6101
6102 /* Limit commands in memory limited kdump scenario. */
6103 if (reset_devices && h->max_commands > 32)
6104 h->max_commands = 32;
6105
6106 if (h->max_commands < 16) {
6107 dev_warn(&h->pdev->dev, "Controller reports "
6108 "max supported commands of %d, an obvious lie. "
6109 "Using 16. Ensure that firmware is up to date.\n",
6110 h->max_commands);
6111 h->max_commands = 16;
6112 }
6113 }
6114
6115 /* If the controller reports that the total max sg entries is greater than 512,
6116 * then we know that chained SG blocks work. (Original smart arrays did not
6117 * support chained SG blocks and would return zero for max sg entries.)
6118 */
6119 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
6120 {
6121 return h->maxsgentries > 512;
6122 }
6123
6124 /* Interrogate the hardware for some limits:
6125 * max commands, max SG elements without chaining, and with chaining,
6126 * SG chain block size, etc.
6127 */
6128 static void hpsa_find_board_params(struct ctlr_info *h)
6129 {
6130 hpsa_get_max_perf_mode_cmds(h);
6131 h->nr_cmds = h->max_commands;
6132 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
6133 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
6134 if (hpsa_supports_chained_sg_blocks(h)) {
6135 /* Limit in-command s/g elements to 32 save dma'able memory. */
6136 h->max_cmd_sg_entries = 32;
6137 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
6138 h->maxsgentries--; /* save one for chain pointer */
6139 } else {
6140 /*
6141 * Original smart arrays supported at most 31 s/g entries
6142 * embedded inline in the command (trying to use more
6143 * would lock up the controller)
6144 */
6145 h->max_cmd_sg_entries = 31;
6146 h->maxsgentries = 31; /* default to traditional values */
6147 h->chainsize = 0;
6148 }
6149
6150 /* Find out what task management functions are supported and cache */
6151 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
6152 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
6153 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
6154 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6155 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
6156 }
6157
6158 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
6159 {
6160 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
6161 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
6162 return false;
6163 }
6164 return true;
6165 }
6166
6167 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
6168 {
6169 u32 driver_support;
6170
6171 driver_support = readl(&(h->cfgtable->driver_support));
6172 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
6173 #ifdef CONFIG_X86
6174 driver_support |= ENABLE_SCSI_PREFETCH;
6175 #endif
6176 driver_support |= ENABLE_UNIT_ATTN;
6177 writel(driver_support, &(h->cfgtable->driver_support));
6178 }
6179
6180 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
6181 * in a prefetch beyond physical memory.
6182 */
6183 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
6184 {
6185 u32 dma_prefetch;
6186
6187 if (h->board_id != 0x3225103C)
6188 return;
6189 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
6190 dma_prefetch |= 0x8000;
6191 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
6192 }
6193
6194 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
6195 {
6196 int i;
6197 u32 doorbell_value;
6198 unsigned long flags;
6199 /* wait until the clear_event_notify bit 6 is cleared by controller. */
6200 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
6201 spin_lock_irqsave(&h->lock, flags);
6202 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6203 spin_unlock_irqrestore(&h->lock, flags);
6204 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
6205 goto done;
6206 /* delay and try again */
6207 msleep(CLEAR_EVENT_WAIT_INTERVAL);
6208 }
6209 return -ENODEV;
6210 done:
6211 return 0;
6212 }
6213
6214 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
6215 {
6216 int i;
6217 u32 doorbell_value;
6218 unsigned long flags;
6219
6220 /* under certain very rare conditions, this can take awhile.
6221 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
6222 * as we enter this code.)
6223 */
6224 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
6225 spin_lock_irqsave(&h->lock, flags);
6226 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6227 spin_unlock_irqrestore(&h->lock, flags);
6228 if (!(doorbell_value & CFGTBL_ChangeReq))
6229 goto done;
6230 /* delay and try again */
6231 msleep(MODE_CHANGE_WAIT_INTERVAL);
6232 }
6233 return -ENODEV;
6234 done:
6235 return 0;
6236 }
6237
6238 /* return -ENODEV or other reason on error, 0 on success */
6239 static int hpsa_enter_simple_mode(struct ctlr_info *h)
6240 {
6241 u32 trans_support;
6242
6243 trans_support = readl(&(h->cfgtable->TransportSupport));
6244 if (!(trans_support & SIMPLE_MODE))
6245 return -ENOTSUPP;
6246
6247 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
6248
6249 /* Update the field, and then ring the doorbell */
6250 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
6251 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6252 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6253 if (hpsa_wait_for_mode_change_ack(h))
6254 goto error;
6255 print_cfg_table(&h->pdev->dev, h->cfgtable);
6256 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
6257 goto error;
6258 h->transMethod = CFGTBL_Trans_Simple;
6259 return 0;
6260 error:
6261 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
6262 return -ENODEV;
6263 }
6264
6265 static int hpsa_pci_init(struct ctlr_info *h)
6266 {
6267 int prod_index, err;
6268
6269 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
6270 if (prod_index < 0)
6271 return prod_index;
6272 h->product_name = products[prod_index].product_name;
6273 h->access = *(products[prod_index].access);
6274
6275 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
6276 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
6277
6278 err = pci_enable_device(h->pdev);
6279 if (err) {
6280 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
6281 return err;
6282 }
6283
6284 err = pci_request_regions(h->pdev, HPSA);
6285 if (err) {
6286 dev_err(&h->pdev->dev,
6287 "cannot obtain PCI resources, aborting\n");
6288 return err;
6289 }
6290
6291 pci_set_master(h->pdev);
6292
6293 hpsa_interrupt_mode(h);
6294 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
6295 if (err)
6296 goto err_out_free_res;
6297 h->vaddr = remap_pci_mem(h->paddr, 0x250);
6298 if (!h->vaddr) {
6299 err = -ENOMEM;
6300 goto err_out_free_res;
6301 }
6302 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
6303 if (err)
6304 goto err_out_free_res;
6305 err = hpsa_find_cfgtables(h);
6306 if (err)
6307 goto err_out_free_res;
6308 hpsa_find_board_params(h);
6309
6310 if (!hpsa_CISS_signature_present(h)) {
6311 err = -ENODEV;
6312 goto err_out_free_res;
6313 }
6314 hpsa_set_driver_support_bits(h);
6315 hpsa_p600_dma_prefetch_quirk(h);
6316 err = hpsa_enter_simple_mode(h);
6317 if (err)
6318 goto err_out_free_res;
6319 return 0;
6320
6321 err_out_free_res:
6322 if (h->transtable)
6323 iounmap(h->transtable);
6324 if (h->cfgtable)
6325 iounmap(h->cfgtable);
6326 if (h->vaddr)
6327 iounmap(h->vaddr);
6328 pci_disable_device(h->pdev);
6329 pci_release_regions(h->pdev);
6330 return err;
6331 }
6332
6333 static void hpsa_hba_inquiry(struct ctlr_info *h)
6334 {
6335 int rc;
6336
6337 #define HBA_INQUIRY_BYTE_COUNT 64
6338 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
6339 if (!h->hba_inquiry_data)
6340 return;
6341 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
6342 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
6343 if (rc != 0) {
6344 kfree(h->hba_inquiry_data);
6345 h->hba_inquiry_data = NULL;
6346 }
6347 }
6348
6349 static int hpsa_init_reset_devices(struct pci_dev *pdev)
6350 {
6351 int rc, i;
6352 void __iomem *vaddr;
6353
6354 if (!reset_devices)
6355 return 0;
6356
6357 /* kdump kernel is loading, we don't know in which state is
6358 * the pci interface. The dev->enable_cnt is equal zero
6359 * so we call enable+disable, wait a while and switch it on.
6360 */
6361 rc = pci_enable_device(pdev);
6362 if (rc) {
6363 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
6364 return -ENODEV;
6365 }
6366 pci_disable_device(pdev);
6367 msleep(260); /* a randomly chosen number */
6368 rc = pci_enable_device(pdev);
6369 if (rc) {
6370 dev_warn(&pdev->dev, "failed to enable device.\n");
6371 return -ENODEV;
6372 }
6373
6374 pci_set_master(pdev);
6375
6376 vaddr = pci_ioremap_bar(pdev, 0);
6377 if (vaddr == NULL) {
6378 rc = -ENOMEM;
6379 goto out_disable;
6380 }
6381 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
6382 iounmap(vaddr);
6383
6384 /* Reset the controller with a PCI power-cycle or via doorbell */
6385 rc = hpsa_kdump_hard_reset_controller(pdev);
6386
6387 /* -ENOTSUPP here means we cannot reset the controller
6388 * but it's already (and still) up and running in
6389 * "performant mode". Or, it might be 640x, which can't reset
6390 * due to concerns about shared bbwc between 6402/6404 pair.
6391 */
6392 if (rc)
6393 goto out_disable;
6394
6395 /* Now try to get the controller to respond to a no-op */
6396 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
6397 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
6398 if (hpsa_noop(pdev) == 0)
6399 break;
6400 else
6401 dev_warn(&pdev->dev, "no-op failed%s\n",
6402 (i < 11 ? "; re-trying" : ""));
6403 }
6404
6405 out_disable:
6406
6407 pci_disable_device(pdev);
6408 return rc;
6409 }
6410
6411 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
6412 {
6413 h->cmd_pool_bits = kzalloc(
6414 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
6415 sizeof(unsigned long), GFP_KERNEL);
6416 h->cmd_pool = pci_alloc_consistent(h->pdev,
6417 h->nr_cmds * sizeof(*h->cmd_pool),
6418 &(h->cmd_pool_dhandle));
6419 h->errinfo_pool = pci_alloc_consistent(h->pdev,
6420 h->nr_cmds * sizeof(*h->errinfo_pool),
6421 &(h->errinfo_pool_dhandle));
6422 if ((h->cmd_pool_bits == NULL)
6423 || (h->cmd_pool == NULL)
6424 || (h->errinfo_pool == NULL)) {
6425 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
6426 goto clean_up;
6427 }
6428 return 0;
6429 clean_up:
6430 hpsa_free_cmd_pool(h);
6431 return -ENOMEM;
6432 }
6433
6434 static void hpsa_free_cmd_pool(struct ctlr_info *h)
6435 {
6436 kfree(h->cmd_pool_bits);
6437 if (h->cmd_pool)
6438 pci_free_consistent(h->pdev,
6439 h->nr_cmds * sizeof(struct CommandList),
6440 h->cmd_pool, h->cmd_pool_dhandle);
6441 if (h->ioaccel2_cmd_pool)
6442 pci_free_consistent(h->pdev,
6443 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
6444 h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
6445 if (h->errinfo_pool)
6446 pci_free_consistent(h->pdev,
6447 h->nr_cmds * sizeof(struct ErrorInfo),
6448 h->errinfo_pool,
6449 h->errinfo_pool_dhandle);
6450 if (h->ioaccel_cmd_pool)
6451 pci_free_consistent(h->pdev,
6452 h->nr_cmds * sizeof(struct io_accel1_cmd),
6453 h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
6454 }
6455
6456 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
6457 {
6458 int i, cpu;
6459
6460 cpu = cpumask_first(cpu_online_mask);
6461 for (i = 0; i < h->msix_vector; i++) {
6462 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
6463 cpu = cpumask_next(cpu, cpu_online_mask);
6464 }
6465 }
6466
6467 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
6468 static void hpsa_free_irqs(struct ctlr_info *h)
6469 {
6470 int i;
6471
6472 if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
6473 /* Single reply queue, only one irq to free */
6474 i = h->intr_mode;
6475 irq_set_affinity_hint(h->intr[i], NULL);
6476 free_irq(h->intr[i], &h->q[i]);
6477 return;
6478 }
6479
6480 for (i = 0; i < h->msix_vector; i++) {
6481 irq_set_affinity_hint(h->intr[i], NULL);
6482 free_irq(h->intr[i], &h->q[i]);
6483 }
6484 for (; i < MAX_REPLY_QUEUES; i++)
6485 h->q[i] = 0;
6486 }
6487
6488 /* returns 0 on success; cleans up and returns -Enn on error */
6489 static int hpsa_request_irqs(struct ctlr_info *h,
6490 irqreturn_t (*msixhandler)(int, void *),
6491 irqreturn_t (*intxhandler)(int, void *))
6492 {
6493 int rc, i;
6494
6495 /*
6496 * initialize h->q[x] = x so that interrupt handlers know which
6497 * queue to process.
6498 */
6499 for (i = 0; i < MAX_REPLY_QUEUES; i++)
6500 h->q[i] = (u8) i;
6501
6502 if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
6503 /* If performant mode and MSI-X, use multiple reply queues */
6504 for (i = 0; i < h->msix_vector; i++) {
6505 rc = request_irq(h->intr[i], msixhandler,
6506 0, h->devname,
6507 &h->q[i]);
6508 if (rc) {
6509 int j;
6510
6511 dev_err(&h->pdev->dev,
6512 "failed to get irq %d for %s\n",
6513 h->intr[i], h->devname);
6514 for (j = 0; j < i; j++) {
6515 free_irq(h->intr[j], &h->q[j]);
6516 h->q[j] = 0;
6517 }
6518 for (; j < MAX_REPLY_QUEUES; j++)
6519 h->q[j] = 0;
6520 return rc;
6521 }
6522 }
6523 hpsa_irq_affinity_hints(h);
6524 } else {
6525 /* Use single reply pool */
6526 if (h->msix_vector > 0 || h->msi_vector) {
6527 rc = request_irq(h->intr[h->intr_mode],
6528 msixhandler, 0, h->devname,
6529 &h->q[h->intr_mode]);
6530 } else {
6531 rc = request_irq(h->intr[h->intr_mode],
6532 intxhandler, IRQF_SHARED, h->devname,
6533 &h->q[h->intr_mode]);
6534 }
6535 }
6536 if (rc) {
6537 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
6538 h->intr[h->intr_mode], h->devname);
6539 return -ENODEV;
6540 }
6541 return 0;
6542 }
6543
6544 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
6545 {
6546 if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
6547 HPSA_RESET_TYPE_CONTROLLER)) {
6548 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
6549 return -EIO;
6550 }
6551
6552 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
6553 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
6554 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
6555 return -1;
6556 }
6557
6558 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
6559 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
6560 dev_warn(&h->pdev->dev, "Board failed to become ready "
6561 "after soft reset.\n");
6562 return -1;
6563 }
6564
6565 return 0;
6566 }
6567
6568 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
6569 {
6570 hpsa_free_irqs(h);
6571 #ifdef CONFIG_PCI_MSI
6572 if (h->msix_vector) {
6573 if (h->pdev->msix_enabled)
6574 pci_disable_msix(h->pdev);
6575 } else if (h->msi_vector) {
6576 if (h->pdev->msi_enabled)
6577 pci_disable_msi(h->pdev);
6578 }
6579 #endif /* CONFIG_PCI_MSI */
6580 }
6581
6582 static void hpsa_free_reply_queues(struct ctlr_info *h)
6583 {
6584 int i;
6585
6586 for (i = 0; i < h->nreply_queues; i++) {
6587 if (!h->reply_queue[i].head)
6588 continue;
6589 pci_free_consistent(h->pdev, h->reply_queue_size,
6590 h->reply_queue[i].head, h->reply_queue[i].busaddr);
6591 h->reply_queue[i].head = NULL;
6592 h->reply_queue[i].busaddr = 0;
6593 }
6594 }
6595
6596 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
6597 {
6598 hpsa_free_irqs_and_disable_msix(h);
6599 hpsa_free_sg_chain_blocks(h);
6600 hpsa_free_cmd_pool(h);
6601 kfree(h->ioaccel1_blockFetchTable);
6602 kfree(h->blockFetchTable);
6603 hpsa_free_reply_queues(h);
6604 if (h->vaddr)
6605 iounmap(h->vaddr);
6606 if (h->transtable)
6607 iounmap(h->transtable);
6608 if (h->cfgtable)
6609 iounmap(h->cfgtable);
6610 pci_disable_device(h->pdev);
6611 pci_release_regions(h->pdev);
6612 kfree(h);
6613 }
6614
6615 /* Called when controller lockup detected. */
6616 static void fail_all_outstanding_cmds(struct ctlr_info *h)
6617 {
6618 int i, refcount;
6619 struct CommandList *c;
6620
6621 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
6622 for (i = 0; i < h->nr_cmds; i++) {
6623 c = h->cmd_pool + i;
6624 refcount = atomic_inc_return(&c->refcount);
6625 if (refcount > 1) {
6626 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
6627 finish_cmd(c);
6628 }
6629 cmd_free(h, c);
6630 }
6631 }
6632
6633 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
6634 {
6635 int i, cpu;
6636
6637 cpu = cpumask_first(cpu_online_mask);
6638 for (i = 0; i < num_online_cpus(); i++) {
6639 u32 *lockup_detected;
6640 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
6641 *lockup_detected = value;
6642 cpu = cpumask_next(cpu, cpu_online_mask);
6643 }
6644 wmb(); /* be sure the per-cpu variables are out to memory */
6645 }
6646
6647 static void controller_lockup_detected(struct ctlr_info *h)
6648 {
6649 unsigned long flags;
6650 u32 lockup_detected;
6651
6652 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6653 spin_lock_irqsave(&h->lock, flags);
6654 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
6655 if (!lockup_detected) {
6656 /* no heartbeat, but controller gave us a zero. */
6657 dev_warn(&h->pdev->dev,
6658 "lockup detected but scratchpad register is zero\n");
6659 lockup_detected = 0xffffffff;
6660 }
6661 set_lockup_detected_for_all_cpus(h, lockup_detected);
6662 spin_unlock_irqrestore(&h->lock, flags);
6663 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
6664 lockup_detected);
6665 pci_disable_device(h->pdev);
6666 fail_all_outstanding_cmds(h);
6667 }
6668
6669 static void detect_controller_lockup(struct ctlr_info *h)
6670 {
6671 u64 now;
6672 u32 heartbeat;
6673 unsigned long flags;
6674
6675 now = get_jiffies_64();
6676 /* If we've received an interrupt recently, we're ok. */
6677 if (time_after64(h->last_intr_timestamp +
6678 (h->heartbeat_sample_interval), now))
6679 return;
6680
6681 /*
6682 * If we've already checked the heartbeat recently, we're ok.
6683 * This could happen if someone sends us a signal. We
6684 * otherwise don't care about signals in this thread.
6685 */
6686 if (time_after64(h->last_heartbeat_timestamp +
6687 (h->heartbeat_sample_interval), now))
6688 return;
6689
6690 /* If heartbeat has not changed since we last looked, we're not ok. */
6691 spin_lock_irqsave(&h->lock, flags);
6692 heartbeat = readl(&h->cfgtable->HeartBeat);
6693 spin_unlock_irqrestore(&h->lock, flags);
6694 if (h->last_heartbeat == heartbeat) {
6695 controller_lockup_detected(h);
6696 return;
6697 }
6698
6699 /* We're ok. */
6700 h->last_heartbeat = heartbeat;
6701 h->last_heartbeat_timestamp = now;
6702 }
6703
6704 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
6705 {
6706 int i;
6707 char *event_type;
6708
6709 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
6710 return;
6711
6712 /* Ask the controller to clear the events we're handling. */
6713 if ((h->transMethod & (CFGTBL_Trans_io_accel1
6714 | CFGTBL_Trans_io_accel2)) &&
6715 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
6716 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
6717
6718 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
6719 event_type = "state change";
6720 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
6721 event_type = "configuration change";
6722 /* Stop sending new RAID offload reqs via the IO accelerator */
6723 scsi_block_requests(h->scsi_host);
6724 for (i = 0; i < h->ndevices; i++)
6725 h->dev[i]->offload_enabled = 0;
6726 hpsa_drain_accel_commands(h);
6727 /* Set 'accelerator path config change' bit */
6728 dev_warn(&h->pdev->dev,
6729 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
6730 h->events, event_type);
6731 writel(h->events, &(h->cfgtable->clear_event_notify));
6732 /* Set the "clear event notify field update" bit 6 */
6733 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6734 /* Wait until ctlr clears 'clear event notify field', bit 6 */
6735 hpsa_wait_for_clear_event_notify_ack(h);
6736 scsi_unblock_requests(h->scsi_host);
6737 } else {
6738 /* Acknowledge controller notification events. */
6739 writel(h->events, &(h->cfgtable->clear_event_notify));
6740 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6741 hpsa_wait_for_clear_event_notify_ack(h);
6742 #if 0
6743 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6744 hpsa_wait_for_mode_change_ack(h);
6745 #endif
6746 }
6747 return;
6748 }
6749
6750 /* Check a register on the controller to see if there are configuration
6751 * changes (added/changed/removed logical drives, etc.) which mean that
6752 * we should rescan the controller for devices.
6753 * Also check flag for driver-initiated rescan.
6754 */
6755 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
6756 {
6757 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
6758 return 0;
6759
6760 h->events = readl(&(h->cfgtable->event_notify));
6761 return h->events & RESCAN_REQUIRED_EVENT_BITS;
6762 }
6763
6764 /*
6765 * Check if any of the offline devices have become ready
6766 */
6767 static int hpsa_offline_devices_ready(struct ctlr_info *h)
6768 {
6769 unsigned long flags;
6770 struct offline_device_entry *d;
6771 struct list_head *this, *tmp;
6772
6773 spin_lock_irqsave(&h->offline_device_lock, flags);
6774 list_for_each_safe(this, tmp, &h->offline_device_list) {
6775 d = list_entry(this, struct offline_device_entry,
6776 offline_list);
6777 spin_unlock_irqrestore(&h->offline_device_lock, flags);
6778 if (!hpsa_volume_offline(h, d->scsi3addr)) {
6779 spin_lock_irqsave(&h->offline_device_lock, flags);
6780 list_del(&d->offline_list);
6781 spin_unlock_irqrestore(&h->offline_device_lock, flags);
6782 return 1;
6783 }
6784 spin_lock_irqsave(&h->offline_device_lock, flags);
6785 }
6786 spin_unlock_irqrestore(&h->offline_device_lock, flags);
6787 return 0;
6788 }
6789
6790 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
6791 {
6792 unsigned long flags;
6793 struct ctlr_info *h = container_of(to_delayed_work(work),
6794 struct ctlr_info, rescan_ctlr_work);
6795
6796
6797 if (h->remove_in_progress)
6798 return;
6799
6800 if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
6801 scsi_host_get(h->scsi_host);
6802 hpsa_ack_ctlr_events(h);
6803 hpsa_scan_start(h->scsi_host);
6804 scsi_host_put(h->scsi_host);
6805 }
6806 spin_lock_irqsave(&h->lock, flags);
6807 if (!h->remove_in_progress)
6808 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
6809 h->heartbeat_sample_interval);
6810 spin_unlock_irqrestore(&h->lock, flags);
6811 }
6812
6813 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
6814 {
6815 unsigned long flags;
6816 struct ctlr_info *h = container_of(to_delayed_work(work),
6817 struct ctlr_info, monitor_ctlr_work);
6818
6819 detect_controller_lockup(h);
6820 if (lockup_detected(h))
6821 return;
6822
6823 spin_lock_irqsave(&h->lock, flags);
6824 if (!h->remove_in_progress)
6825 schedule_delayed_work(&h->monitor_ctlr_work,
6826 h->heartbeat_sample_interval);
6827 spin_unlock_irqrestore(&h->lock, flags);
6828 }
6829
6830 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
6831 char *name)
6832 {
6833 struct workqueue_struct *wq = NULL;
6834 char wq_name[20];
6835
6836 snprintf(wq_name, sizeof(wq_name), "%s_%d_hpsa", name, h->ctlr);
6837 wq = alloc_ordered_workqueue(wq_name, 0);
6838 if (!wq)
6839 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
6840
6841 return wq;
6842 }
6843
6844 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6845 {
6846 int dac, rc;
6847 struct ctlr_info *h;
6848 int try_soft_reset = 0;
6849 unsigned long flags;
6850
6851 if (number_of_controllers == 0)
6852 printk(KERN_INFO DRIVER_NAME "\n");
6853
6854 rc = hpsa_init_reset_devices(pdev);
6855 if (rc) {
6856 if (rc != -ENOTSUPP)
6857 return rc;
6858 /* If the reset fails in a particular way (it has no way to do
6859 * a proper hard reset, so returns -ENOTSUPP) we can try to do
6860 * a soft reset once we get the controller configured up to the
6861 * point that it can accept a command.
6862 */
6863 try_soft_reset = 1;
6864 rc = 0;
6865 }
6866
6867 reinit_after_soft_reset:
6868
6869 /* Command structures must be aligned on a 32-byte boundary because
6870 * the 5 lower bits of the address are used by the hardware. and by
6871 * the driver. See comments in hpsa.h for more info.
6872 */
6873 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
6874 h = kzalloc(sizeof(*h), GFP_KERNEL);
6875 if (!h)
6876 return -ENOMEM;
6877
6878 h->pdev = pdev;
6879 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
6880 INIT_LIST_HEAD(&h->offline_device_list);
6881 spin_lock_init(&h->lock);
6882 spin_lock_init(&h->offline_device_lock);
6883 spin_lock_init(&h->scan_lock);
6884 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
6885
6886 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
6887 if (!h->rescan_ctlr_wq) {
6888 rc = -ENOMEM;
6889 goto clean1;
6890 }
6891
6892 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
6893 if (!h->resubmit_wq) {
6894 rc = -ENOMEM;
6895 goto clean1;
6896 }
6897
6898 /* Allocate and clear per-cpu variable lockup_detected */
6899 h->lockup_detected = alloc_percpu(u32);
6900 if (!h->lockup_detected) {
6901 rc = -ENOMEM;
6902 goto clean1;
6903 }
6904 set_lockup_detected_for_all_cpus(h, 0);
6905
6906 rc = hpsa_pci_init(h);
6907 if (rc != 0)
6908 goto clean1;
6909
6910 sprintf(h->devname, HPSA "%d", number_of_controllers);
6911 h->ctlr = number_of_controllers;
6912 number_of_controllers++;
6913
6914 /* configure PCI DMA stuff */
6915 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
6916 if (rc == 0) {
6917 dac = 1;
6918 } else {
6919 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6920 if (rc == 0) {
6921 dac = 0;
6922 } else {
6923 dev_err(&pdev->dev, "no suitable DMA available\n");
6924 goto clean1;
6925 }
6926 }
6927
6928 /* make sure the board interrupts are off */
6929 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6930
6931 if (hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
6932 goto clean2;
6933 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
6934 h->devname, pdev->device,
6935 h->intr[h->intr_mode], dac ? "" : " not");
6936 rc = hpsa_allocate_cmd_pool(h);
6937 if (rc)
6938 goto clean2_and_free_irqs;
6939 if (hpsa_allocate_sg_chain_blocks(h))
6940 goto clean4;
6941 init_waitqueue_head(&h->scan_wait_queue);
6942 h->scan_finished = 1; /* no scan currently in progress */
6943
6944 pci_set_drvdata(pdev, h);
6945 h->ndevices = 0;
6946 h->hba_mode_enabled = 0;
6947 h->scsi_host = NULL;
6948 spin_lock_init(&h->devlock);
6949 hpsa_put_ctlr_into_performant_mode(h);
6950
6951 /* At this point, the controller is ready to take commands.
6952 * Now, if reset_devices and the hard reset didn't work, try
6953 * the soft reset and see if that works.
6954 */
6955 if (try_soft_reset) {
6956
6957 /* This is kind of gross. We may or may not get a completion
6958 * from the soft reset command, and if we do, then the value
6959 * from the fifo may or may not be valid. So, we wait 10 secs
6960 * after the reset throwing away any completions we get during
6961 * that time. Unregister the interrupt handler and register
6962 * fake ones to scoop up any residual completions.
6963 */
6964 spin_lock_irqsave(&h->lock, flags);
6965 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6966 spin_unlock_irqrestore(&h->lock, flags);
6967 hpsa_free_irqs(h);
6968 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
6969 hpsa_intx_discard_completions);
6970 if (rc) {
6971 dev_warn(&h->pdev->dev,
6972 "Failed to request_irq after soft reset.\n");
6973 goto clean4;
6974 }
6975
6976 rc = hpsa_kdump_soft_reset(h);
6977 if (rc)
6978 /* Neither hard nor soft reset worked, we're hosed. */
6979 goto clean4;
6980
6981 dev_info(&h->pdev->dev, "Board READY.\n");
6982 dev_info(&h->pdev->dev,
6983 "Waiting for stale completions to drain.\n");
6984 h->access.set_intr_mask(h, HPSA_INTR_ON);
6985 msleep(10000);
6986 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6987
6988 rc = controller_reset_failed(h->cfgtable);
6989 if (rc)
6990 dev_info(&h->pdev->dev,
6991 "Soft reset appears to have failed.\n");
6992
6993 /* since the controller's reset, we have to go back and re-init
6994 * everything. Easiest to just forget what we've done and do it
6995 * all over again.
6996 */
6997 hpsa_undo_allocations_after_kdump_soft_reset(h);
6998 try_soft_reset = 0;
6999 if (rc)
7000 /* don't go to clean4, we already unallocated */
7001 return -ENODEV;
7002
7003 goto reinit_after_soft_reset;
7004 }
7005
7006 /* Enable Accelerated IO path at driver layer */
7007 h->acciopath_status = 1;
7008
7009
7010 /* Turn the interrupts on so we can service requests */
7011 h->access.set_intr_mask(h, HPSA_INTR_ON);
7012
7013 hpsa_hba_inquiry(h);
7014 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
7015
7016 /* Monitor the controller for firmware lockups */
7017 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
7018 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
7019 schedule_delayed_work(&h->monitor_ctlr_work,
7020 h->heartbeat_sample_interval);
7021 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
7022 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
7023 h->heartbeat_sample_interval);
7024 return 0;
7025
7026 clean4:
7027 hpsa_free_sg_chain_blocks(h);
7028 hpsa_free_cmd_pool(h);
7029 clean2_and_free_irqs:
7030 hpsa_free_irqs(h);
7031 clean2:
7032 clean1:
7033 if (h->resubmit_wq)
7034 destroy_workqueue(h->resubmit_wq);
7035 if (h->rescan_ctlr_wq)
7036 destroy_workqueue(h->rescan_ctlr_wq);
7037 if (h->lockup_detected)
7038 free_percpu(h->lockup_detected);
7039 kfree(h);
7040 return rc;
7041 }
7042
7043 static void hpsa_flush_cache(struct ctlr_info *h)
7044 {
7045 char *flush_buf;
7046 struct CommandList *c;
7047
7048 /* Don't bother trying to flush the cache if locked up */
7049 if (unlikely(lockup_detected(h)))
7050 return;
7051 flush_buf = kzalloc(4, GFP_KERNEL);
7052 if (!flush_buf)
7053 return;
7054
7055 c = cmd_alloc(h);
7056 if (!c) {
7057 dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
7058 goto out_of_memory;
7059 }
7060 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
7061 RAID_CTLR_LUNID, TYPE_CMD)) {
7062 goto out;
7063 }
7064 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
7065 if (c->err_info->CommandStatus != 0)
7066 out:
7067 dev_warn(&h->pdev->dev,
7068 "error flushing cache on controller\n");
7069 cmd_free(h, c);
7070 out_of_memory:
7071 kfree(flush_buf);
7072 }
7073
7074 static void hpsa_shutdown(struct pci_dev *pdev)
7075 {
7076 struct ctlr_info *h;
7077
7078 h = pci_get_drvdata(pdev);
7079 /* Turn board interrupts off and send the flush cache command
7080 * sendcmd will turn off interrupt, and send the flush...
7081 * To write all data in the battery backed cache to disks
7082 */
7083 hpsa_flush_cache(h);
7084 h->access.set_intr_mask(h, HPSA_INTR_OFF);
7085 hpsa_free_irqs_and_disable_msix(h);
7086 }
7087
7088 static void hpsa_free_device_info(struct ctlr_info *h)
7089 {
7090 int i;
7091
7092 for (i = 0; i < h->ndevices; i++)
7093 kfree(h->dev[i]);
7094 }
7095
7096 static void hpsa_remove_one(struct pci_dev *pdev)
7097 {
7098 struct ctlr_info *h;
7099 unsigned long flags;
7100
7101 if (pci_get_drvdata(pdev) == NULL) {
7102 dev_err(&pdev->dev, "unable to remove device\n");
7103 return;
7104 }
7105 h = pci_get_drvdata(pdev);
7106
7107 /* Get rid of any controller monitoring work items */
7108 spin_lock_irqsave(&h->lock, flags);
7109 h->remove_in_progress = 1;
7110 spin_unlock_irqrestore(&h->lock, flags);
7111 cancel_delayed_work_sync(&h->monitor_ctlr_work);
7112 cancel_delayed_work_sync(&h->rescan_ctlr_work);
7113 destroy_workqueue(h->rescan_ctlr_wq);
7114 destroy_workqueue(h->resubmit_wq);
7115 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
7116 hpsa_shutdown(pdev);
7117 iounmap(h->vaddr);
7118 iounmap(h->transtable);
7119 iounmap(h->cfgtable);
7120 hpsa_free_device_info(h);
7121 hpsa_free_sg_chain_blocks(h);
7122 pci_free_consistent(h->pdev,
7123 h->nr_cmds * sizeof(struct CommandList),
7124 h->cmd_pool, h->cmd_pool_dhandle);
7125 pci_free_consistent(h->pdev,
7126 h->nr_cmds * sizeof(struct ErrorInfo),
7127 h->errinfo_pool, h->errinfo_pool_dhandle);
7128 hpsa_free_reply_queues(h);
7129 kfree(h->cmd_pool_bits);
7130 kfree(h->blockFetchTable);
7131 kfree(h->ioaccel1_blockFetchTable);
7132 kfree(h->ioaccel2_blockFetchTable);
7133 kfree(h->hba_inquiry_data);
7134 pci_disable_device(pdev);
7135 pci_release_regions(pdev);
7136 free_percpu(h->lockup_detected);
7137 kfree(h);
7138 }
7139
7140 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
7141 __attribute__((unused)) pm_message_t state)
7142 {
7143 return -ENOSYS;
7144 }
7145
7146 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
7147 {
7148 return -ENOSYS;
7149 }
7150
7151 static struct pci_driver hpsa_pci_driver = {
7152 .name = HPSA,
7153 .probe = hpsa_init_one,
7154 .remove = hpsa_remove_one,
7155 .id_table = hpsa_pci_device_id, /* id_table */
7156 .shutdown = hpsa_shutdown,
7157 .suspend = hpsa_suspend,
7158 .resume = hpsa_resume,
7159 };
7160
7161 /* Fill in bucket_map[], given nsgs (the max number of
7162 * scatter gather elements supported) and bucket[],
7163 * which is an array of 8 integers. The bucket[] array
7164 * contains 8 different DMA transfer sizes (in 16
7165 * byte increments) which the controller uses to fetch
7166 * commands. This function fills in bucket_map[], which
7167 * maps a given number of scatter gather elements to one of
7168 * the 8 DMA transfer sizes. The point of it is to allow the
7169 * controller to only do as much DMA as needed to fetch the
7170 * command, with the DMA transfer size encoded in the lower
7171 * bits of the command address.
7172 */
7173 static void calc_bucket_map(int bucket[], int num_buckets,
7174 int nsgs, int min_blocks, u32 *bucket_map)
7175 {
7176 int i, j, b, size;
7177
7178 /* Note, bucket_map must have nsgs+1 entries. */
7179 for (i = 0; i <= nsgs; i++) {
7180 /* Compute size of a command with i SG entries */
7181 size = i + min_blocks;
7182 b = num_buckets; /* Assume the biggest bucket */
7183 /* Find the bucket that is just big enough */
7184 for (j = 0; j < num_buckets; j++) {
7185 if (bucket[j] >= size) {
7186 b = j;
7187 break;
7188 }
7189 }
7190 /* for a command with i SG entries, use bucket b. */
7191 bucket_map[i] = b;
7192 }
7193 }
7194
7195 /* return -ENODEV or other reason on error, 0 on success */
7196 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
7197 {
7198 int i;
7199 unsigned long register_value;
7200 unsigned long transMethod = CFGTBL_Trans_Performant |
7201 (trans_support & CFGTBL_Trans_use_short_tags) |
7202 CFGTBL_Trans_enable_directed_msix |
7203 (trans_support & (CFGTBL_Trans_io_accel1 |
7204 CFGTBL_Trans_io_accel2));
7205 struct access_method access = SA5_performant_access;
7206
7207 /* This is a bit complicated. There are 8 registers on
7208 * the controller which we write to to tell it 8 different
7209 * sizes of commands which there may be. It's a way of
7210 * reducing the DMA done to fetch each command. Encoded into
7211 * each command's tag are 3 bits which communicate to the controller
7212 * which of the eight sizes that command fits within. The size of
7213 * each command depends on how many scatter gather entries there are.
7214 * Each SG entry requires 16 bytes. The eight registers are programmed
7215 * with the number of 16-byte blocks a command of that size requires.
7216 * The smallest command possible requires 5 such 16 byte blocks.
7217 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
7218 * blocks. Note, this only extends to the SG entries contained
7219 * within the command block, and does not extend to chained blocks
7220 * of SG elements. bft[] contains the eight values we write to
7221 * the registers. They are not evenly distributed, but have more
7222 * sizes for small commands, and fewer sizes for larger commands.
7223 */
7224 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
7225 #define MIN_IOACCEL2_BFT_ENTRY 5
7226 #define HPSA_IOACCEL2_HEADER_SZ 4
7227 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
7228 13, 14, 15, 16, 17, 18, 19,
7229 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
7230 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
7231 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
7232 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
7233 16 * MIN_IOACCEL2_BFT_ENTRY);
7234 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
7235 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
7236 /* 5 = 1 s/g entry or 4k
7237 * 6 = 2 s/g entry or 8k
7238 * 8 = 4 s/g entry or 16k
7239 * 10 = 6 s/g entry or 24k
7240 */
7241
7242 /* If the controller supports either ioaccel method then
7243 * we can also use the RAID stack submit path that does not
7244 * perform the superfluous readl() after each command submission.
7245 */
7246 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
7247 access = SA5_performant_access_no_read;
7248
7249 /* Controller spec: zero out this buffer. */
7250 for (i = 0; i < h->nreply_queues; i++)
7251 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
7252
7253 bft[7] = SG_ENTRIES_IN_CMD + 4;
7254 calc_bucket_map(bft, ARRAY_SIZE(bft),
7255 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
7256 for (i = 0; i < 8; i++)
7257 writel(bft[i], &h->transtable->BlockFetch[i]);
7258
7259 /* size of controller ring buffer */
7260 writel(h->max_commands, &h->transtable->RepQSize);
7261 writel(h->nreply_queues, &h->transtable->RepQCount);
7262 writel(0, &h->transtable->RepQCtrAddrLow32);
7263 writel(0, &h->transtable->RepQCtrAddrHigh32);
7264
7265 for (i = 0; i < h->nreply_queues; i++) {
7266 writel(0, &h->transtable->RepQAddr[i].upper);
7267 writel(h->reply_queue[i].busaddr,
7268 &h->transtable->RepQAddr[i].lower);
7269 }
7270
7271 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7272 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
7273 /*
7274 * enable outbound interrupt coalescing in accelerator mode;
7275 */
7276 if (trans_support & CFGTBL_Trans_io_accel1) {
7277 access = SA5_ioaccel_mode1_access;
7278 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7279 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7280 } else {
7281 if (trans_support & CFGTBL_Trans_io_accel2) {
7282 access = SA5_ioaccel_mode2_access;
7283 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7284 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7285 }
7286 }
7287 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7288 if (hpsa_wait_for_mode_change_ack(h)) {
7289 dev_err(&h->pdev->dev,
7290 "performant mode problem - doorbell timeout\n");
7291 return -ENODEV;
7292 }
7293 register_value = readl(&(h->cfgtable->TransportActive));
7294 if (!(register_value & CFGTBL_Trans_Performant)) {
7295 dev_err(&h->pdev->dev,
7296 "performant mode problem - transport not active\n");
7297 return -ENODEV;
7298 }
7299 /* Change the access methods to the performant access methods */
7300 h->access = access;
7301 h->transMethod = transMethod;
7302
7303 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
7304 (trans_support & CFGTBL_Trans_io_accel2)))
7305 return 0;
7306
7307 if (trans_support & CFGTBL_Trans_io_accel1) {
7308 /* Set up I/O accelerator mode */
7309 for (i = 0; i < h->nreply_queues; i++) {
7310 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
7311 h->reply_queue[i].current_entry =
7312 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
7313 }
7314 bft[7] = h->ioaccel_maxsg + 8;
7315 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
7316 h->ioaccel1_blockFetchTable);
7317
7318 /* initialize all reply queue entries to unused */
7319 for (i = 0; i < h->nreply_queues; i++)
7320 memset(h->reply_queue[i].head,
7321 (u8) IOACCEL_MODE1_REPLY_UNUSED,
7322 h->reply_queue_size);
7323
7324 /* set all the constant fields in the accelerator command
7325 * frames once at init time to save CPU cycles later.
7326 */
7327 for (i = 0; i < h->nr_cmds; i++) {
7328 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
7329
7330 cp->function = IOACCEL1_FUNCTION_SCSIIO;
7331 cp->err_info = (u32) (h->errinfo_pool_dhandle +
7332 (i * sizeof(struct ErrorInfo)));
7333 cp->err_info_len = sizeof(struct ErrorInfo);
7334 cp->sgl_offset = IOACCEL1_SGLOFFSET;
7335 cp->host_context_flags =
7336 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
7337 cp->timeout_sec = 0;
7338 cp->ReplyQueue = 0;
7339 cp->tag =
7340 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
7341 cp->host_addr =
7342 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
7343 (i * sizeof(struct io_accel1_cmd)));
7344 }
7345 } else if (trans_support & CFGTBL_Trans_io_accel2) {
7346 u64 cfg_offset, cfg_base_addr_index;
7347 u32 bft2_offset, cfg_base_addr;
7348 int rc;
7349
7350 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7351 &cfg_base_addr_index, &cfg_offset);
7352 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
7353 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
7354 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
7355 4, h->ioaccel2_blockFetchTable);
7356 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
7357 BUILD_BUG_ON(offsetof(struct CfgTable,
7358 io_accel_request_size_offset) != 0xb8);
7359 h->ioaccel2_bft2_regs =
7360 remap_pci_mem(pci_resource_start(h->pdev,
7361 cfg_base_addr_index) +
7362 cfg_offset + bft2_offset,
7363 ARRAY_SIZE(bft2) *
7364 sizeof(*h->ioaccel2_bft2_regs));
7365 for (i = 0; i < ARRAY_SIZE(bft2); i++)
7366 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
7367 }
7368 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7369 if (hpsa_wait_for_mode_change_ack(h)) {
7370 dev_err(&h->pdev->dev,
7371 "performant mode problem - enabling ioaccel mode\n");
7372 return -ENODEV;
7373 }
7374 return 0;
7375 }
7376
7377 static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h)
7378 {
7379 h->ioaccel_maxsg =
7380 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7381 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
7382 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
7383
7384 /* Command structures must be aligned on a 128-byte boundary
7385 * because the 7 lower bits of the address are used by the
7386 * hardware.
7387 */
7388 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
7389 IOACCEL1_COMMANDLIST_ALIGNMENT);
7390 h->ioaccel_cmd_pool =
7391 pci_alloc_consistent(h->pdev,
7392 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7393 &(h->ioaccel_cmd_pool_dhandle));
7394
7395 h->ioaccel1_blockFetchTable =
7396 kmalloc(((h->ioaccel_maxsg + 1) *
7397 sizeof(u32)), GFP_KERNEL);
7398
7399 if ((h->ioaccel_cmd_pool == NULL) ||
7400 (h->ioaccel1_blockFetchTable == NULL))
7401 goto clean_up;
7402
7403 memset(h->ioaccel_cmd_pool, 0,
7404 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
7405 return 0;
7406
7407 clean_up:
7408 if (h->ioaccel_cmd_pool)
7409 pci_free_consistent(h->pdev,
7410 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7411 h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
7412 kfree(h->ioaccel1_blockFetchTable);
7413 return 1;
7414 }
7415
7416 static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h)
7417 {
7418 /* Allocate ioaccel2 mode command blocks and block fetch table */
7419
7420 h->ioaccel_maxsg =
7421 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7422 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
7423 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
7424
7425 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
7426 IOACCEL2_COMMANDLIST_ALIGNMENT);
7427 h->ioaccel2_cmd_pool =
7428 pci_alloc_consistent(h->pdev,
7429 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7430 &(h->ioaccel2_cmd_pool_dhandle));
7431
7432 h->ioaccel2_blockFetchTable =
7433 kmalloc(((h->ioaccel_maxsg + 1) *
7434 sizeof(u32)), GFP_KERNEL);
7435
7436 if ((h->ioaccel2_cmd_pool == NULL) ||
7437 (h->ioaccel2_blockFetchTable == NULL))
7438 goto clean_up;
7439
7440 memset(h->ioaccel2_cmd_pool, 0,
7441 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
7442 return 0;
7443
7444 clean_up:
7445 if (h->ioaccel2_cmd_pool)
7446 pci_free_consistent(h->pdev,
7447 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7448 h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
7449 kfree(h->ioaccel2_blockFetchTable);
7450 return 1;
7451 }
7452
7453 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
7454 {
7455 u32 trans_support;
7456 unsigned long transMethod = CFGTBL_Trans_Performant |
7457 CFGTBL_Trans_use_short_tags;
7458 int i;
7459
7460 if (hpsa_simple_mode)
7461 return;
7462
7463 trans_support = readl(&(h->cfgtable->TransportSupport));
7464 if (!(trans_support & PERFORMANT_MODE))
7465 return;
7466
7467 /* Check for I/O accelerator mode support */
7468 if (trans_support & CFGTBL_Trans_io_accel1) {
7469 transMethod |= CFGTBL_Trans_io_accel1 |
7470 CFGTBL_Trans_enable_directed_msix;
7471 if (hpsa_alloc_ioaccel_cmd_and_bft(h))
7472 goto clean_up;
7473 } else {
7474 if (trans_support & CFGTBL_Trans_io_accel2) {
7475 transMethod |= CFGTBL_Trans_io_accel2 |
7476 CFGTBL_Trans_enable_directed_msix;
7477 if (ioaccel2_alloc_cmds_and_bft(h))
7478 goto clean_up;
7479 }
7480 }
7481
7482 h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
7483 hpsa_get_max_perf_mode_cmds(h);
7484 /* Performant mode ring buffer and supporting data structures */
7485 h->reply_queue_size = h->max_commands * sizeof(u64);
7486
7487 for (i = 0; i < h->nreply_queues; i++) {
7488 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
7489 h->reply_queue_size,
7490 &(h->reply_queue[i].busaddr));
7491 if (!h->reply_queue[i].head)
7492 goto clean_up;
7493 h->reply_queue[i].size = h->max_commands;
7494 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
7495 h->reply_queue[i].current_entry = 0;
7496 }
7497
7498 /* Need a block fetch table for performant mode */
7499 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
7500 sizeof(u32)), GFP_KERNEL);
7501 if (!h->blockFetchTable)
7502 goto clean_up;
7503
7504 hpsa_enter_performant_mode(h, trans_support);
7505 return;
7506
7507 clean_up:
7508 hpsa_free_reply_queues(h);
7509 kfree(h->blockFetchTable);
7510 }
7511
7512 static int is_accelerated_cmd(struct CommandList *c)
7513 {
7514 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
7515 }
7516
7517 static void hpsa_drain_accel_commands(struct ctlr_info *h)
7518 {
7519 struct CommandList *c = NULL;
7520 int i, accel_cmds_out;
7521 int refcount;
7522
7523 do { /* wait for all outstanding ioaccel commands to drain out */
7524 accel_cmds_out = 0;
7525 for (i = 0; i < h->nr_cmds; i++) {
7526 c = h->cmd_pool + i;
7527 refcount = atomic_inc_return(&c->refcount);
7528 if (refcount > 1) /* Command is allocated */
7529 accel_cmds_out += is_accelerated_cmd(c);
7530 cmd_free(h, c);
7531 }
7532 if (accel_cmds_out <= 0)
7533 break;
7534 msleep(100);
7535 } while (1);
7536 }
7537
7538 /*
7539 * This is it. Register the PCI driver information for the cards we control
7540 * the OS will call our registered routines when it finds one of our cards.
7541 */
7542 static int __init hpsa_init(void)
7543 {
7544 return pci_register_driver(&hpsa_pci_driver);
7545 }
7546
7547 static void __exit hpsa_cleanup(void)
7548 {
7549 pci_unregister_driver(&hpsa_pci_driver);
7550 }
7551
7552 static void __attribute__((unused)) verify_offsets(void)
7553 {
7554 #define VERIFY_OFFSET(member, offset) \
7555 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
7556
7557 VERIFY_OFFSET(structure_size, 0);
7558 VERIFY_OFFSET(volume_blk_size, 4);
7559 VERIFY_OFFSET(volume_blk_cnt, 8);
7560 VERIFY_OFFSET(phys_blk_shift, 16);
7561 VERIFY_OFFSET(parity_rotation_shift, 17);
7562 VERIFY_OFFSET(strip_size, 18);
7563 VERIFY_OFFSET(disk_starting_blk, 20);
7564 VERIFY_OFFSET(disk_blk_cnt, 28);
7565 VERIFY_OFFSET(data_disks_per_row, 36);
7566 VERIFY_OFFSET(metadata_disks_per_row, 38);
7567 VERIFY_OFFSET(row_cnt, 40);
7568 VERIFY_OFFSET(layout_map_count, 42);
7569 VERIFY_OFFSET(flags, 44);
7570 VERIFY_OFFSET(dekindex, 46);
7571 /* VERIFY_OFFSET(reserved, 48 */
7572 VERIFY_OFFSET(data, 64);
7573
7574 #undef VERIFY_OFFSET
7575
7576 #define VERIFY_OFFSET(member, offset) \
7577 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
7578
7579 VERIFY_OFFSET(IU_type, 0);
7580 VERIFY_OFFSET(direction, 1);
7581 VERIFY_OFFSET(reply_queue, 2);
7582 /* VERIFY_OFFSET(reserved1, 3); */
7583 VERIFY_OFFSET(scsi_nexus, 4);
7584 VERIFY_OFFSET(Tag, 8);
7585 VERIFY_OFFSET(cdb, 16);
7586 VERIFY_OFFSET(cciss_lun, 32);
7587 VERIFY_OFFSET(data_len, 40);
7588 VERIFY_OFFSET(cmd_priority_task_attr, 44);
7589 VERIFY_OFFSET(sg_count, 45);
7590 /* VERIFY_OFFSET(reserved3 */
7591 VERIFY_OFFSET(err_ptr, 48);
7592 VERIFY_OFFSET(err_len, 56);
7593 /* VERIFY_OFFSET(reserved4 */
7594 VERIFY_OFFSET(sg, 64);
7595
7596 #undef VERIFY_OFFSET
7597
7598 #define VERIFY_OFFSET(member, offset) \
7599 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
7600
7601 VERIFY_OFFSET(dev_handle, 0x00);
7602 VERIFY_OFFSET(reserved1, 0x02);
7603 VERIFY_OFFSET(function, 0x03);
7604 VERIFY_OFFSET(reserved2, 0x04);
7605 VERIFY_OFFSET(err_info, 0x0C);
7606 VERIFY_OFFSET(reserved3, 0x10);
7607 VERIFY_OFFSET(err_info_len, 0x12);
7608 VERIFY_OFFSET(reserved4, 0x13);
7609 VERIFY_OFFSET(sgl_offset, 0x14);
7610 VERIFY_OFFSET(reserved5, 0x15);
7611 VERIFY_OFFSET(transfer_len, 0x1C);
7612 VERIFY_OFFSET(reserved6, 0x20);
7613 VERIFY_OFFSET(io_flags, 0x24);
7614 VERIFY_OFFSET(reserved7, 0x26);
7615 VERIFY_OFFSET(LUN, 0x34);
7616 VERIFY_OFFSET(control, 0x3C);
7617 VERIFY_OFFSET(CDB, 0x40);
7618 VERIFY_OFFSET(reserved8, 0x50);
7619 VERIFY_OFFSET(host_context_flags, 0x60);
7620 VERIFY_OFFSET(timeout_sec, 0x62);
7621 VERIFY_OFFSET(ReplyQueue, 0x64);
7622 VERIFY_OFFSET(reserved9, 0x65);
7623 VERIFY_OFFSET(tag, 0x68);
7624 VERIFY_OFFSET(host_addr, 0x70);
7625 VERIFY_OFFSET(CISS_LUN, 0x78);
7626 VERIFY_OFFSET(SG, 0x78 + 8);
7627 #undef VERIFY_OFFSET
7628 }
7629
7630 module_init(hpsa_init);
7631 module_exit(hpsa_cleanup);
This page took 0.189263 seconds and 6 git commands to generate.