[PATCH] libata: rework legacy handling to remove much of the cruft
[deliverable/linux.git] / drivers / scsi / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include "scsi_priv.h"
54 #include <scsi/scsi_cmnd.h>
55 #include <scsi/scsi_host.h>
56 #include <linux/libata.h>
57 #include <asm/io.h>
58 #include <asm/semaphore.h>
59 #include <asm/byteorder.h>
60
61 #include "libata.h"
62
63 /* debounce timing parameters in msecs { interval, duration, timeout } */
64 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
65 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
66 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
67
68 static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
71 static void ata_dev_xfermask(struct ata_device *dev);
72
73 static unsigned int ata_unique_id = 1;
74 static struct workqueue_struct *ata_wq;
75
76 struct workqueue_struct *ata_aux_wq;
77
78 int atapi_enabled = 1;
79 module_param(atapi_enabled, int, 0444);
80 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
81
82 int atapi_dmadir = 0;
83 module_param(atapi_dmadir, int, 0444);
84 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
85
86 int libata_fua = 0;
87 module_param_named(fua, libata_fua, int, 0444);
88 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
89
90 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
91 module_param(ata_probe_timeout, int, 0444);
92 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
93
94 MODULE_AUTHOR("Jeff Garzik");
95 MODULE_DESCRIPTION("Library module for ATA devices");
96 MODULE_LICENSE("GPL");
97 MODULE_VERSION(DRV_VERSION);
98
99
100 /**
101 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
102 * @tf: Taskfile to convert
103 * @fis: Buffer into which data will output
104 * @pmp: Port multiplier port
105 *
106 * Converts a standard ATA taskfile to a Serial ATA
107 * FIS structure (Register - Host to Device).
108 *
109 * LOCKING:
110 * Inherited from caller.
111 */
112
113 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
114 {
115 fis[0] = 0x27; /* Register - Host to Device FIS */
116 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
117 bit 7 indicates Command FIS */
118 fis[2] = tf->command;
119 fis[3] = tf->feature;
120
121 fis[4] = tf->lbal;
122 fis[5] = tf->lbam;
123 fis[6] = tf->lbah;
124 fis[7] = tf->device;
125
126 fis[8] = tf->hob_lbal;
127 fis[9] = tf->hob_lbam;
128 fis[10] = tf->hob_lbah;
129 fis[11] = tf->hob_feature;
130
131 fis[12] = tf->nsect;
132 fis[13] = tf->hob_nsect;
133 fis[14] = 0;
134 fis[15] = tf->ctl;
135
136 fis[16] = 0;
137 fis[17] = 0;
138 fis[18] = 0;
139 fis[19] = 0;
140 }
141
142 /**
143 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
144 * @fis: Buffer from which data will be input
145 * @tf: Taskfile to output
146 *
147 * Converts a serial ATA FIS structure to a standard ATA taskfile.
148 *
149 * LOCKING:
150 * Inherited from caller.
151 */
152
153 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
154 {
155 tf->command = fis[2]; /* status */
156 tf->feature = fis[3]; /* error */
157
158 tf->lbal = fis[4];
159 tf->lbam = fis[5];
160 tf->lbah = fis[6];
161 tf->device = fis[7];
162
163 tf->hob_lbal = fis[8];
164 tf->hob_lbam = fis[9];
165 tf->hob_lbah = fis[10];
166
167 tf->nsect = fis[12];
168 tf->hob_nsect = fis[13];
169 }
170
171 static const u8 ata_rw_cmds[] = {
172 /* pio multi */
173 ATA_CMD_READ_MULTI,
174 ATA_CMD_WRITE_MULTI,
175 ATA_CMD_READ_MULTI_EXT,
176 ATA_CMD_WRITE_MULTI_EXT,
177 0,
178 0,
179 0,
180 ATA_CMD_WRITE_MULTI_FUA_EXT,
181 /* pio */
182 ATA_CMD_PIO_READ,
183 ATA_CMD_PIO_WRITE,
184 ATA_CMD_PIO_READ_EXT,
185 ATA_CMD_PIO_WRITE_EXT,
186 0,
187 0,
188 0,
189 0,
190 /* dma */
191 ATA_CMD_READ,
192 ATA_CMD_WRITE,
193 ATA_CMD_READ_EXT,
194 ATA_CMD_WRITE_EXT,
195 0,
196 0,
197 0,
198 ATA_CMD_WRITE_FUA_EXT
199 };
200
201 /**
202 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
203 * @qc: command to examine and configure
204 *
205 * Examine the device configuration and tf->flags to calculate
206 * the proper read/write commands and protocol to use.
207 *
208 * LOCKING:
209 * caller.
210 */
211 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
212 {
213 struct ata_taskfile *tf = &qc->tf;
214 struct ata_device *dev = qc->dev;
215 u8 cmd;
216
217 int index, fua, lba48, write;
218
219 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
220 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
221 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
222
223 if (dev->flags & ATA_DFLAG_PIO) {
224 tf->protocol = ATA_PROT_PIO;
225 index = dev->multi_count ? 0 : 8;
226 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
227 /* Unable to use DMA due to host limitation */
228 tf->protocol = ATA_PROT_PIO;
229 index = dev->multi_count ? 0 : 8;
230 } else {
231 tf->protocol = ATA_PROT_DMA;
232 index = 16;
233 }
234
235 cmd = ata_rw_cmds[index + fua + lba48 + write];
236 if (cmd) {
237 tf->command = cmd;
238 return 0;
239 }
240 return -1;
241 }
242
243 /**
244 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
245 * @pio_mask: pio_mask
246 * @mwdma_mask: mwdma_mask
247 * @udma_mask: udma_mask
248 *
249 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
250 * unsigned int xfer_mask.
251 *
252 * LOCKING:
253 * None.
254 *
255 * RETURNS:
256 * Packed xfer_mask.
257 */
258 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
259 unsigned int mwdma_mask,
260 unsigned int udma_mask)
261 {
262 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
263 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
264 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
265 }
266
267 /**
268 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
269 * @xfer_mask: xfer_mask to unpack
270 * @pio_mask: resulting pio_mask
271 * @mwdma_mask: resulting mwdma_mask
272 * @udma_mask: resulting udma_mask
273 *
274 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
275 * Any NULL distination masks will be ignored.
276 */
277 static void ata_unpack_xfermask(unsigned int xfer_mask,
278 unsigned int *pio_mask,
279 unsigned int *mwdma_mask,
280 unsigned int *udma_mask)
281 {
282 if (pio_mask)
283 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
284 if (mwdma_mask)
285 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
286 if (udma_mask)
287 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
288 }
289
290 static const struct ata_xfer_ent {
291 int shift, bits;
292 u8 base;
293 } ata_xfer_tbl[] = {
294 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
295 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
296 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
297 { -1, },
298 };
299
300 /**
301 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
302 * @xfer_mask: xfer_mask of interest
303 *
304 * Return matching XFER_* value for @xfer_mask. Only the highest
305 * bit of @xfer_mask is considered.
306 *
307 * LOCKING:
308 * None.
309 *
310 * RETURNS:
311 * Matching XFER_* value, 0 if no match found.
312 */
313 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
314 {
315 int highbit = fls(xfer_mask) - 1;
316 const struct ata_xfer_ent *ent;
317
318 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
319 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
320 return ent->base + highbit - ent->shift;
321 return 0;
322 }
323
324 /**
325 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
326 * @xfer_mode: XFER_* of interest
327 *
328 * Return matching xfer_mask for @xfer_mode.
329 *
330 * LOCKING:
331 * None.
332 *
333 * RETURNS:
334 * Matching xfer_mask, 0 if no match found.
335 */
336 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
337 {
338 const struct ata_xfer_ent *ent;
339
340 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
341 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
342 return 1 << (ent->shift + xfer_mode - ent->base);
343 return 0;
344 }
345
346 /**
347 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
348 * @xfer_mode: XFER_* of interest
349 *
350 * Return matching xfer_shift for @xfer_mode.
351 *
352 * LOCKING:
353 * None.
354 *
355 * RETURNS:
356 * Matching xfer_shift, -1 if no match found.
357 */
358 static int ata_xfer_mode2shift(unsigned int xfer_mode)
359 {
360 const struct ata_xfer_ent *ent;
361
362 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
363 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
364 return ent->shift;
365 return -1;
366 }
367
368 /**
369 * ata_mode_string - convert xfer_mask to string
370 * @xfer_mask: mask of bits supported; only highest bit counts.
371 *
372 * Determine string which represents the highest speed
373 * (highest bit in @modemask).
374 *
375 * LOCKING:
376 * None.
377 *
378 * RETURNS:
379 * Constant C string representing highest speed listed in
380 * @mode_mask, or the constant C string "<n/a>".
381 */
382 static const char *ata_mode_string(unsigned int xfer_mask)
383 {
384 static const char * const xfer_mode_str[] = {
385 "PIO0",
386 "PIO1",
387 "PIO2",
388 "PIO3",
389 "PIO4",
390 "MWDMA0",
391 "MWDMA1",
392 "MWDMA2",
393 "UDMA/16",
394 "UDMA/25",
395 "UDMA/33",
396 "UDMA/44",
397 "UDMA/66",
398 "UDMA/100",
399 "UDMA/133",
400 "UDMA7",
401 };
402 int highbit;
403
404 highbit = fls(xfer_mask) - 1;
405 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
406 return xfer_mode_str[highbit];
407 return "<n/a>";
408 }
409
410 static const char *sata_spd_string(unsigned int spd)
411 {
412 static const char * const spd_str[] = {
413 "1.5 Gbps",
414 "3.0 Gbps",
415 };
416
417 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
418 return "<unknown>";
419 return spd_str[spd - 1];
420 }
421
422 void ata_dev_disable(struct ata_device *dev)
423 {
424 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
425 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
426 dev->class++;
427 }
428 }
429
430 /**
431 * ata_pio_devchk - PATA device presence detection
432 * @ap: ATA channel to examine
433 * @device: Device to examine (starting at zero)
434 *
435 * This technique was originally described in
436 * Hale Landis's ATADRVR (www.ata-atapi.com), and
437 * later found its way into the ATA/ATAPI spec.
438 *
439 * Write a pattern to the ATA shadow registers,
440 * and if a device is present, it will respond by
441 * correctly storing and echoing back the
442 * ATA shadow register contents.
443 *
444 * LOCKING:
445 * caller.
446 */
447
448 static unsigned int ata_pio_devchk(struct ata_port *ap,
449 unsigned int device)
450 {
451 struct ata_ioports *ioaddr = &ap->ioaddr;
452 u8 nsect, lbal;
453
454 ap->ops->dev_select(ap, device);
455
456 outb(0x55, ioaddr->nsect_addr);
457 outb(0xaa, ioaddr->lbal_addr);
458
459 outb(0xaa, ioaddr->nsect_addr);
460 outb(0x55, ioaddr->lbal_addr);
461
462 outb(0x55, ioaddr->nsect_addr);
463 outb(0xaa, ioaddr->lbal_addr);
464
465 nsect = inb(ioaddr->nsect_addr);
466 lbal = inb(ioaddr->lbal_addr);
467
468 if ((nsect == 0x55) && (lbal == 0xaa))
469 return 1; /* we found a device */
470
471 return 0; /* nothing found */
472 }
473
474 /**
475 * ata_mmio_devchk - PATA device presence detection
476 * @ap: ATA channel to examine
477 * @device: Device to examine (starting at zero)
478 *
479 * This technique was originally described in
480 * Hale Landis's ATADRVR (www.ata-atapi.com), and
481 * later found its way into the ATA/ATAPI spec.
482 *
483 * Write a pattern to the ATA shadow registers,
484 * and if a device is present, it will respond by
485 * correctly storing and echoing back the
486 * ATA shadow register contents.
487 *
488 * LOCKING:
489 * caller.
490 */
491
492 static unsigned int ata_mmio_devchk(struct ata_port *ap,
493 unsigned int device)
494 {
495 struct ata_ioports *ioaddr = &ap->ioaddr;
496 u8 nsect, lbal;
497
498 ap->ops->dev_select(ap, device);
499
500 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
502
503 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
505
506 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
507 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
508
509 nsect = readb((void __iomem *) ioaddr->nsect_addr);
510 lbal = readb((void __iomem *) ioaddr->lbal_addr);
511
512 if ((nsect == 0x55) && (lbal == 0xaa))
513 return 1; /* we found a device */
514
515 return 0; /* nothing found */
516 }
517
518 /**
519 * ata_devchk - PATA device presence detection
520 * @ap: ATA channel to examine
521 * @device: Device to examine (starting at zero)
522 *
523 * Dispatch ATA device presence detection, depending
524 * on whether we are using PIO or MMIO to talk to the
525 * ATA shadow registers.
526 *
527 * LOCKING:
528 * caller.
529 */
530
531 static unsigned int ata_devchk(struct ata_port *ap,
532 unsigned int device)
533 {
534 if (ap->flags & ATA_FLAG_MMIO)
535 return ata_mmio_devchk(ap, device);
536 return ata_pio_devchk(ap, device);
537 }
538
539 /**
540 * ata_dev_classify - determine device type based on ATA-spec signature
541 * @tf: ATA taskfile register set for device to be identified
542 *
543 * Determine from taskfile register contents whether a device is
544 * ATA or ATAPI, as per "Signature and persistence" section
545 * of ATA/PI spec (volume 1, sect 5.14).
546 *
547 * LOCKING:
548 * None.
549 *
550 * RETURNS:
551 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
552 * the event of failure.
553 */
554
555 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
556 {
557 /* Apple's open source Darwin code hints that some devices only
558 * put a proper signature into the LBA mid/high registers,
559 * So, we only check those. It's sufficient for uniqueness.
560 */
561
562 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
563 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
564 DPRINTK("found ATA device by sig\n");
565 return ATA_DEV_ATA;
566 }
567
568 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
569 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
570 DPRINTK("found ATAPI device by sig\n");
571 return ATA_DEV_ATAPI;
572 }
573
574 DPRINTK("unknown device\n");
575 return ATA_DEV_UNKNOWN;
576 }
577
578 /**
579 * ata_dev_try_classify - Parse returned ATA device signature
580 * @ap: ATA channel to examine
581 * @device: Device to examine (starting at zero)
582 * @r_err: Value of error register on completion
583 *
584 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
585 * an ATA/ATAPI-defined set of values is placed in the ATA
586 * shadow registers, indicating the results of device detection
587 * and diagnostics.
588 *
589 * Select the ATA device, and read the values from the ATA shadow
590 * registers. Then parse according to the Error register value,
591 * and the spec-defined values examined by ata_dev_classify().
592 *
593 * LOCKING:
594 * caller.
595 *
596 * RETURNS:
597 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
598 */
599
600 static unsigned int
601 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
602 {
603 struct ata_taskfile tf;
604 unsigned int class;
605 u8 err;
606
607 ap->ops->dev_select(ap, device);
608
609 memset(&tf, 0, sizeof(tf));
610
611 ap->ops->tf_read(ap, &tf);
612 err = tf.feature;
613 if (r_err)
614 *r_err = err;
615
616 /* see if device passed diags */
617 if (err == 1)
618 /* do nothing */ ;
619 else if ((device == 0) && (err == 0x81))
620 /* do nothing */ ;
621 else
622 return ATA_DEV_NONE;
623
624 /* determine if device is ATA or ATAPI */
625 class = ata_dev_classify(&tf);
626
627 if (class == ATA_DEV_UNKNOWN)
628 return ATA_DEV_NONE;
629 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
630 return ATA_DEV_NONE;
631 return class;
632 }
633
634 /**
635 * ata_id_string - Convert IDENTIFY DEVICE page into string
636 * @id: IDENTIFY DEVICE results we will examine
637 * @s: string into which data is output
638 * @ofs: offset into identify device page
639 * @len: length of string to return. must be an even number.
640 *
641 * The strings in the IDENTIFY DEVICE page are broken up into
642 * 16-bit chunks. Run through the string, and output each
643 * 8-bit chunk linearly, regardless of platform.
644 *
645 * LOCKING:
646 * caller.
647 */
648
649 void ata_id_string(const u16 *id, unsigned char *s,
650 unsigned int ofs, unsigned int len)
651 {
652 unsigned int c;
653
654 while (len > 0) {
655 c = id[ofs] >> 8;
656 *s = c;
657 s++;
658
659 c = id[ofs] & 0xff;
660 *s = c;
661 s++;
662
663 ofs++;
664 len -= 2;
665 }
666 }
667
668 /**
669 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
670 * @id: IDENTIFY DEVICE results we will examine
671 * @s: string into which data is output
672 * @ofs: offset into identify device page
673 * @len: length of string to return. must be an odd number.
674 *
675 * This function is identical to ata_id_string except that it
676 * trims trailing spaces and terminates the resulting string with
677 * null. @len must be actual maximum length (even number) + 1.
678 *
679 * LOCKING:
680 * caller.
681 */
682 void ata_id_c_string(const u16 *id, unsigned char *s,
683 unsigned int ofs, unsigned int len)
684 {
685 unsigned char *p;
686
687 WARN_ON(!(len & 1));
688
689 ata_id_string(id, s, ofs, len - 1);
690
691 p = s + strnlen(s, len - 1);
692 while (p > s && p[-1] == ' ')
693 p--;
694 *p = '\0';
695 }
696
697 static u64 ata_id_n_sectors(const u16 *id)
698 {
699 if (ata_id_has_lba(id)) {
700 if (ata_id_has_lba48(id))
701 return ata_id_u64(id, 100);
702 else
703 return ata_id_u32(id, 60);
704 } else {
705 if (ata_id_current_chs_valid(id))
706 return ata_id_u32(id, 57);
707 else
708 return id[1] * id[3] * id[6];
709 }
710 }
711
712 /**
713 * ata_noop_dev_select - Select device 0/1 on ATA bus
714 * @ap: ATA channel to manipulate
715 * @device: ATA device (numbered from zero) to select
716 *
717 * This function performs no actual function.
718 *
719 * May be used as the dev_select() entry in ata_port_operations.
720 *
721 * LOCKING:
722 * caller.
723 */
724 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
725 {
726 }
727
728
729 /**
730 * ata_std_dev_select - Select device 0/1 on ATA bus
731 * @ap: ATA channel to manipulate
732 * @device: ATA device (numbered from zero) to select
733 *
734 * Use the method defined in the ATA specification to
735 * make either device 0, or device 1, active on the
736 * ATA channel. Works with both PIO and MMIO.
737 *
738 * May be used as the dev_select() entry in ata_port_operations.
739 *
740 * LOCKING:
741 * caller.
742 */
743
744 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
745 {
746 u8 tmp;
747
748 if (device == 0)
749 tmp = ATA_DEVICE_OBS;
750 else
751 tmp = ATA_DEVICE_OBS | ATA_DEV1;
752
753 if (ap->flags & ATA_FLAG_MMIO) {
754 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
755 } else {
756 outb(tmp, ap->ioaddr.device_addr);
757 }
758 ata_pause(ap); /* needed; also flushes, for mmio */
759 }
760
761 /**
762 * ata_dev_select - Select device 0/1 on ATA bus
763 * @ap: ATA channel to manipulate
764 * @device: ATA device (numbered from zero) to select
765 * @wait: non-zero to wait for Status register BSY bit to clear
766 * @can_sleep: non-zero if context allows sleeping
767 *
768 * Use the method defined in the ATA specification to
769 * make either device 0, or device 1, active on the
770 * ATA channel.
771 *
772 * This is a high-level version of ata_std_dev_select(),
773 * which additionally provides the services of inserting
774 * the proper pauses and status polling, where needed.
775 *
776 * LOCKING:
777 * caller.
778 */
779
780 void ata_dev_select(struct ata_port *ap, unsigned int device,
781 unsigned int wait, unsigned int can_sleep)
782 {
783 if (ata_msg_probe(ap))
784 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
785 "device %u, wait %u\n", ap->id, device, wait);
786
787 if (wait)
788 ata_wait_idle(ap);
789
790 ap->ops->dev_select(ap, device);
791
792 if (wait) {
793 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
794 msleep(150);
795 ata_wait_idle(ap);
796 }
797 }
798
799 /**
800 * ata_dump_id - IDENTIFY DEVICE info debugging output
801 * @id: IDENTIFY DEVICE page to dump
802 *
803 * Dump selected 16-bit words from the given IDENTIFY DEVICE
804 * page.
805 *
806 * LOCKING:
807 * caller.
808 */
809
810 static inline void ata_dump_id(const u16 *id)
811 {
812 DPRINTK("49==0x%04x "
813 "53==0x%04x "
814 "63==0x%04x "
815 "64==0x%04x "
816 "75==0x%04x \n",
817 id[49],
818 id[53],
819 id[63],
820 id[64],
821 id[75]);
822 DPRINTK("80==0x%04x "
823 "81==0x%04x "
824 "82==0x%04x "
825 "83==0x%04x "
826 "84==0x%04x \n",
827 id[80],
828 id[81],
829 id[82],
830 id[83],
831 id[84]);
832 DPRINTK("88==0x%04x "
833 "93==0x%04x\n",
834 id[88],
835 id[93]);
836 }
837
838 /**
839 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
840 * @id: IDENTIFY data to compute xfer mask from
841 *
842 * Compute the xfermask for this device. This is not as trivial
843 * as it seems if we must consider early devices correctly.
844 *
845 * FIXME: pre IDE drive timing (do we care ?).
846 *
847 * LOCKING:
848 * None.
849 *
850 * RETURNS:
851 * Computed xfermask
852 */
853 static unsigned int ata_id_xfermask(const u16 *id)
854 {
855 unsigned int pio_mask, mwdma_mask, udma_mask;
856
857 /* Usual case. Word 53 indicates word 64 is valid */
858 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
859 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
860 pio_mask <<= 3;
861 pio_mask |= 0x7;
862 } else {
863 /* If word 64 isn't valid then Word 51 high byte holds
864 * the PIO timing number for the maximum. Turn it into
865 * a mask.
866 */
867 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
868
869 /* But wait.. there's more. Design your standards by
870 * committee and you too can get a free iordy field to
871 * process. However its the speeds not the modes that
872 * are supported... Note drivers using the timing API
873 * will get this right anyway
874 */
875 }
876
877 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
878
879 udma_mask = 0;
880 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
881 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
882
883 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
884 }
885
886 /**
887 * ata_port_queue_task - Queue port_task
888 * @ap: The ata_port to queue port_task for
889 * @fn: workqueue function to be scheduled
890 * @data: data value to pass to workqueue function
891 * @delay: delay time for workqueue function
892 *
893 * Schedule @fn(@data) for execution after @delay jiffies using
894 * port_task. There is one port_task per port and it's the
895 * user(low level driver)'s responsibility to make sure that only
896 * one task is active at any given time.
897 *
898 * libata core layer takes care of synchronization between
899 * port_task and EH. ata_port_queue_task() may be ignored for EH
900 * synchronization.
901 *
902 * LOCKING:
903 * Inherited from caller.
904 */
905 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
906 unsigned long delay)
907 {
908 int rc;
909
910 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
911 return;
912
913 PREPARE_WORK(&ap->port_task, fn, data);
914
915 if (!delay)
916 rc = queue_work(ata_wq, &ap->port_task);
917 else
918 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
919
920 /* rc == 0 means that another user is using port task */
921 WARN_ON(rc == 0);
922 }
923
924 /**
925 * ata_port_flush_task - Flush port_task
926 * @ap: The ata_port to flush port_task for
927 *
928 * After this function completes, port_task is guranteed not to
929 * be running or scheduled.
930 *
931 * LOCKING:
932 * Kernel thread context (may sleep)
933 */
934 void ata_port_flush_task(struct ata_port *ap)
935 {
936 unsigned long flags;
937
938 DPRINTK("ENTER\n");
939
940 spin_lock_irqsave(ap->lock, flags);
941 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
942 spin_unlock_irqrestore(ap->lock, flags);
943
944 DPRINTK("flush #1\n");
945 flush_workqueue(ata_wq);
946
947 /*
948 * At this point, if a task is running, it's guaranteed to see
949 * the FLUSH flag; thus, it will never queue pio tasks again.
950 * Cancel and flush.
951 */
952 if (!cancel_delayed_work(&ap->port_task)) {
953 if (ata_msg_ctl(ap))
954 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
955 __FUNCTION__);
956 flush_workqueue(ata_wq);
957 }
958
959 spin_lock_irqsave(ap->lock, flags);
960 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
961 spin_unlock_irqrestore(ap->lock, flags);
962
963 if (ata_msg_ctl(ap))
964 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
965 }
966
967 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
968 {
969 struct completion *waiting = qc->private_data;
970
971 complete(waiting);
972 }
973
974 /**
975 * ata_exec_internal - execute libata internal command
976 * @dev: Device to which the command is sent
977 * @tf: Taskfile registers for the command and the result
978 * @cdb: CDB for packet command
979 * @dma_dir: Data tranfer direction of the command
980 * @buf: Data buffer of the command
981 * @buflen: Length of data buffer
982 *
983 * Executes libata internal command with timeout. @tf contains
984 * command on entry and result on return. Timeout and error
985 * conditions are reported via return value. No recovery action
986 * is taken after a command times out. It's caller's duty to
987 * clean up after timeout.
988 *
989 * LOCKING:
990 * None. Should be called with kernel context, might sleep.
991 *
992 * RETURNS:
993 * Zero on success, AC_ERR_* mask on failure
994 */
995 unsigned ata_exec_internal(struct ata_device *dev,
996 struct ata_taskfile *tf, const u8 *cdb,
997 int dma_dir, void *buf, unsigned int buflen)
998 {
999 struct ata_port *ap = dev->ap;
1000 u8 command = tf->command;
1001 struct ata_queued_cmd *qc;
1002 unsigned int tag, preempted_tag;
1003 u32 preempted_sactive, preempted_qc_active;
1004 DECLARE_COMPLETION_ONSTACK(wait);
1005 unsigned long flags;
1006 unsigned int err_mask;
1007 int rc;
1008
1009 spin_lock_irqsave(ap->lock, flags);
1010
1011 /* no internal command while frozen */
1012 if (ap->pflags & ATA_PFLAG_FROZEN) {
1013 spin_unlock_irqrestore(ap->lock, flags);
1014 return AC_ERR_SYSTEM;
1015 }
1016
1017 /* initialize internal qc */
1018
1019 /* XXX: Tag 0 is used for drivers with legacy EH as some
1020 * drivers choke if any other tag is given. This breaks
1021 * ata_tag_internal() test for those drivers. Don't use new
1022 * EH stuff without converting to it.
1023 */
1024 if (ap->ops->error_handler)
1025 tag = ATA_TAG_INTERNAL;
1026 else
1027 tag = 0;
1028
1029 if (test_and_set_bit(tag, &ap->qc_allocated))
1030 BUG();
1031 qc = __ata_qc_from_tag(ap, tag);
1032
1033 qc->tag = tag;
1034 qc->scsicmd = NULL;
1035 qc->ap = ap;
1036 qc->dev = dev;
1037 ata_qc_reinit(qc);
1038
1039 preempted_tag = ap->active_tag;
1040 preempted_sactive = ap->sactive;
1041 preempted_qc_active = ap->qc_active;
1042 ap->active_tag = ATA_TAG_POISON;
1043 ap->sactive = 0;
1044 ap->qc_active = 0;
1045
1046 /* prepare & issue qc */
1047 qc->tf = *tf;
1048 if (cdb)
1049 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1050 qc->flags |= ATA_QCFLAG_RESULT_TF;
1051 qc->dma_dir = dma_dir;
1052 if (dma_dir != DMA_NONE) {
1053 ata_sg_init_one(qc, buf, buflen);
1054 qc->nsect = buflen / ATA_SECT_SIZE;
1055 }
1056
1057 qc->private_data = &wait;
1058 qc->complete_fn = ata_qc_complete_internal;
1059
1060 ata_qc_issue(qc);
1061
1062 spin_unlock_irqrestore(ap->lock, flags);
1063
1064 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1065
1066 ata_port_flush_task(ap);
1067
1068 if (!rc) {
1069 spin_lock_irqsave(ap->lock, flags);
1070
1071 /* We're racing with irq here. If we lose, the
1072 * following test prevents us from completing the qc
1073 * twice. If we win, the port is frozen and will be
1074 * cleaned up by ->post_internal_cmd().
1075 */
1076 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1077 qc->err_mask |= AC_ERR_TIMEOUT;
1078
1079 if (ap->ops->error_handler)
1080 ata_port_freeze(ap);
1081 else
1082 ata_qc_complete(qc);
1083
1084 if (ata_msg_warn(ap))
1085 ata_dev_printk(dev, KERN_WARNING,
1086 "qc timeout (cmd 0x%x)\n", command);
1087 }
1088
1089 spin_unlock_irqrestore(ap->lock, flags);
1090 }
1091
1092 /* do post_internal_cmd */
1093 if (ap->ops->post_internal_cmd)
1094 ap->ops->post_internal_cmd(qc);
1095
1096 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1097 if (ata_msg_warn(ap))
1098 ata_dev_printk(dev, KERN_WARNING,
1099 "zero err_mask for failed "
1100 "internal command, assuming AC_ERR_OTHER\n");
1101 qc->err_mask |= AC_ERR_OTHER;
1102 }
1103
1104 /* finish up */
1105 spin_lock_irqsave(ap->lock, flags);
1106
1107 *tf = qc->result_tf;
1108 err_mask = qc->err_mask;
1109
1110 ata_qc_free(qc);
1111 ap->active_tag = preempted_tag;
1112 ap->sactive = preempted_sactive;
1113 ap->qc_active = preempted_qc_active;
1114
1115 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1116 * Until those drivers are fixed, we detect the condition
1117 * here, fail the command with AC_ERR_SYSTEM and reenable the
1118 * port.
1119 *
1120 * Note that this doesn't change any behavior as internal
1121 * command failure results in disabling the device in the
1122 * higher layer for LLDDs without new reset/EH callbacks.
1123 *
1124 * Kill the following code as soon as those drivers are fixed.
1125 */
1126 if (ap->flags & ATA_FLAG_DISABLED) {
1127 err_mask |= AC_ERR_SYSTEM;
1128 ata_port_probe(ap);
1129 }
1130
1131 spin_unlock_irqrestore(ap->lock, flags);
1132
1133 return err_mask;
1134 }
1135
1136 /**
1137 * ata_do_simple_cmd - execute simple internal command
1138 * @dev: Device to which the command is sent
1139 * @cmd: Opcode to execute
1140 *
1141 * Execute a 'simple' command, that only consists of the opcode
1142 * 'cmd' itself, without filling any other registers
1143 *
1144 * LOCKING:
1145 * Kernel thread context (may sleep).
1146 *
1147 * RETURNS:
1148 * Zero on success, AC_ERR_* mask on failure
1149 */
1150 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1151 {
1152 struct ata_taskfile tf;
1153
1154 ata_tf_init(dev, &tf);
1155
1156 tf.command = cmd;
1157 tf.flags |= ATA_TFLAG_DEVICE;
1158 tf.protocol = ATA_PROT_NODATA;
1159
1160 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1161 }
1162
1163 /**
1164 * ata_pio_need_iordy - check if iordy needed
1165 * @adev: ATA device
1166 *
1167 * Check if the current speed of the device requires IORDY. Used
1168 * by various controllers for chip configuration.
1169 */
1170
1171 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1172 {
1173 int pio;
1174 int speed = adev->pio_mode - XFER_PIO_0;
1175
1176 if (speed < 2)
1177 return 0;
1178 if (speed > 2)
1179 return 1;
1180
1181 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1182
1183 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1184 pio = adev->id[ATA_ID_EIDE_PIO];
1185 /* Is the speed faster than the drive allows non IORDY ? */
1186 if (pio) {
1187 /* This is cycle times not frequency - watch the logic! */
1188 if (pio > 240) /* PIO2 is 240nS per cycle */
1189 return 1;
1190 return 0;
1191 }
1192 }
1193 return 0;
1194 }
1195
1196 /**
1197 * ata_dev_read_id - Read ID data from the specified device
1198 * @dev: target device
1199 * @p_class: pointer to class of the target device (may be changed)
1200 * @post_reset: is this read ID post-reset?
1201 * @id: buffer to read IDENTIFY data into
1202 *
1203 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1204 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1205 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1206 * for pre-ATA4 drives.
1207 *
1208 * LOCKING:
1209 * Kernel thread context (may sleep)
1210 *
1211 * RETURNS:
1212 * 0 on success, -errno otherwise.
1213 */
1214 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1215 int post_reset, u16 *id)
1216 {
1217 struct ata_port *ap = dev->ap;
1218 unsigned int class = *p_class;
1219 struct ata_taskfile tf;
1220 unsigned int err_mask = 0;
1221 const char *reason;
1222 int rc;
1223
1224 if (ata_msg_ctl(ap))
1225 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1226 __FUNCTION__, ap->id, dev->devno);
1227
1228 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1229
1230 retry:
1231 ata_tf_init(dev, &tf);
1232
1233 switch (class) {
1234 case ATA_DEV_ATA:
1235 tf.command = ATA_CMD_ID_ATA;
1236 break;
1237 case ATA_DEV_ATAPI:
1238 tf.command = ATA_CMD_ID_ATAPI;
1239 break;
1240 default:
1241 rc = -ENODEV;
1242 reason = "unsupported class";
1243 goto err_out;
1244 }
1245
1246 tf.protocol = ATA_PROT_PIO;
1247
1248 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1249 id, sizeof(id[0]) * ATA_ID_WORDS);
1250 if (err_mask) {
1251 rc = -EIO;
1252 reason = "I/O error";
1253 goto err_out;
1254 }
1255
1256 swap_buf_le16(id, ATA_ID_WORDS);
1257
1258 /* sanity check */
1259 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1260 rc = -EINVAL;
1261 reason = "device reports illegal type";
1262 goto err_out;
1263 }
1264
1265 if (post_reset && class == ATA_DEV_ATA) {
1266 /*
1267 * The exact sequence expected by certain pre-ATA4 drives is:
1268 * SRST RESET
1269 * IDENTIFY
1270 * INITIALIZE DEVICE PARAMETERS
1271 * anything else..
1272 * Some drives were very specific about that exact sequence.
1273 */
1274 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1275 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1276 if (err_mask) {
1277 rc = -EIO;
1278 reason = "INIT_DEV_PARAMS failed";
1279 goto err_out;
1280 }
1281
1282 /* current CHS translation info (id[53-58]) might be
1283 * changed. reread the identify device info.
1284 */
1285 post_reset = 0;
1286 goto retry;
1287 }
1288 }
1289
1290 *p_class = class;
1291
1292 return 0;
1293
1294 err_out:
1295 if (ata_msg_warn(ap))
1296 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1297 "(%s, err_mask=0x%x)\n", reason, err_mask);
1298 return rc;
1299 }
1300
1301 static inline u8 ata_dev_knobble(struct ata_device *dev)
1302 {
1303 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1304 }
1305
1306 static void ata_dev_config_ncq(struct ata_device *dev,
1307 char *desc, size_t desc_sz)
1308 {
1309 struct ata_port *ap = dev->ap;
1310 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1311
1312 if (!ata_id_has_ncq(dev->id)) {
1313 desc[0] = '\0';
1314 return;
1315 }
1316
1317 if (ap->flags & ATA_FLAG_NCQ) {
1318 hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
1319 dev->flags |= ATA_DFLAG_NCQ;
1320 }
1321
1322 if (hdepth >= ddepth)
1323 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1324 else
1325 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1326 }
1327
1328 static void ata_set_port_max_cmd_len(struct ata_port *ap)
1329 {
1330 int i;
1331
1332 if (ap->host) {
1333 ap->host->max_cmd_len = 0;
1334 for (i = 0; i < ATA_MAX_DEVICES; i++)
1335 ap->host->max_cmd_len = max_t(unsigned int,
1336 ap->host->max_cmd_len,
1337 ap->device[i].cdb_len);
1338 }
1339 }
1340
1341 /**
1342 * ata_dev_configure - Configure the specified ATA/ATAPI device
1343 * @dev: Target device to configure
1344 * @print_info: Enable device info printout
1345 *
1346 * Configure @dev according to @dev->id. Generic and low-level
1347 * driver specific fixups are also applied.
1348 *
1349 * LOCKING:
1350 * Kernel thread context (may sleep)
1351 *
1352 * RETURNS:
1353 * 0 on success, -errno otherwise
1354 */
1355 int ata_dev_configure(struct ata_device *dev, int print_info)
1356 {
1357 struct ata_port *ap = dev->ap;
1358 const u16 *id = dev->id;
1359 unsigned int xfer_mask;
1360 int rc;
1361
1362 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1363 ata_dev_printk(dev, KERN_INFO,
1364 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1365 __FUNCTION__, ap->id, dev->devno);
1366 return 0;
1367 }
1368
1369 if (ata_msg_probe(ap))
1370 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1371 __FUNCTION__, ap->id, dev->devno);
1372
1373 /* print device capabilities */
1374 if (ata_msg_probe(ap))
1375 ata_dev_printk(dev, KERN_DEBUG,
1376 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1377 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1378 __FUNCTION__,
1379 id[49], id[82], id[83], id[84],
1380 id[85], id[86], id[87], id[88]);
1381
1382 /* initialize to-be-configured parameters */
1383 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1384 dev->max_sectors = 0;
1385 dev->cdb_len = 0;
1386 dev->n_sectors = 0;
1387 dev->cylinders = 0;
1388 dev->heads = 0;
1389 dev->sectors = 0;
1390
1391 /*
1392 * common ATA, ATAPI feature tests
1393 */
1394
1395 /* find max transfer mode; for printk only */
1396 xfer_mask = ata_id_xfermask(id);
1397
1398 if (ata_msg_probe(ap))
1399 ata_dump_id(id);
1400
1401 /* ATA-specific feature tests */
1402 if (dev->class == ATA_DEV_ATA) {
1403 dev->n_sectors = ata_id_n_sectors(id);
1404
1405 if (ata_id_has_lba(id)) {
1406 const char *lba_desc;
1407 char ncq_desc[20];
1408
1409 lba_desc = "LBA";
1410 dev->flags |= ATA_DFLAG_LBA;
1411 if (ata_id_has_lba48(id)) {
1412 dev->flags |= ATA_DFLAG_LBA48;
1413 lba_desc = "LBA48";
1414 }
1415
1416 /* config NCQ */
1417 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1418
1419 /* print device info to dmesg */
1420 if (ata_msg_drv(ap) && print_info)
1421 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1422 "max %s, %Lu sectors: %s %s\n",
1423 ata_id_major_version(id),
1424 ata_mode_string(xfer_mask),
1425 (unsigned long long)dev->n_sectors,
1426 lba_desc, ncq_desc);
1427 } else {
1428 /* CHS */
1429
1430 /* Default translation */
1431 dev->cylinders = id[1];
1432 dev->heads = id[3];
1433 dev->sectors = id[6];
1434
1435 if (ata_id_current_chs_valid(id)) {
1436 /* Current CHS translation is valid. */
1437 dev->cylinders = id[54];
1438 dev->heads = id[55];
1439 dev->sectors = id[56];
1440 }
1441
1442 /* print device info to dmesg */
1443 if (ata_msg_drv(ap) && print_info)
1444 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1445 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1446 ata_id_major_version(id),
1447 ata_mode_string(xfer_mask),
1448 (unsigned long long)dev->n_sectors,
1449 dev->cylinders, dev->heads,
1450 dev->sectors);
1451 }
1452
1453 if (dev->id[59] & 0x100) {
1454 dev->multi_count = dev->id[59] & 0xff;
1455 if (ata_msg_drv(ap) && print_info)
1456 ata_dev_printk(dev, KERN_INFO,
1457 "ata%u: dev %u multi count %u\n",
1458 ap->id, dev->devno, dev->multi_count);
1459 }
1460
1461 dev->cdb_len = 16;
1462 }
1463
1464 /* ATAPI-specific feature tests */
1465 else if (dev->class == ATA_DEV_ATAPI) {
1466 char *cdb_intr_string = "";
1467
1468 rc = atapi_cdb_len(id);
1469 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1470 if (ata_msg_warn(ap))
1471 ata_dev_printk(dev, KERN_WARNING,
1472 "unsupported CDB len\n");
1473 rc = -EINVAL;
1474 goto err_out_nosup;
1475 }
1476 dev->cdb_len = (unsigned int) rc;
1477
1478 if (ata_id_cdb_intr(dev->id)) {
1479 dev->flags |= ATA_DFLAG_CDB_INTR;
1480 cdb_intr_string = ", CDB intr";
1481 }
1482
1483 /* print device info to dmesg */
1484 if (ata_msg_drv(ap) && print_info)
1485 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1486 ata_mode_string(xfer_mask),
1487 cdb_intr_string);
1488 }
1489
1490 ata_set_port_max_cmd_len(ap);
1491
1492 /* limit bridge transfers to udma5, 200 sectors */
1493 if (ata_dev_knobble(dev)) {
1494 if (ata_msg_drv(ap) && print_info)
1495 ata_dev_printk(dev, KERN_INFO,
1496 "applying bridge limits\n");
1497 dev->udma_mask &= ATA_UDMA5;
1498 dev->max_sectors = ATA_MAX_SECTORS;
1499 }
1500
1501 if (ap->ops->dev_config)
1502 ap->ops->dev_config(ap, dev);
1503
1504 if (ata_msg_probe(ap))
1505 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1506 __FUNCTION__, ata_chk_status(ap));
1507 return 0;
1508
1509 err_out_nosup:
1510 if (ata_msg_probe(ap))
1511 ata_dev_printk(dev, KERN_DEBUG,
1512 "%s: EXIT, err\n", __FUNCTION__);
1513 return rc;
1514 }
1515
1516 /**
1517 * ata_bus_probe - Reset and probe ATA bus
1518 * @ap: Bus to probe
1519 *
1520 * Master ATA bus probing function. Initiates a hardware-dependent
1521 * bus reset, then attempts to identify any devices found on
1522 * the bus.
1523 *
1524 * LOCKING:
1525 * PCI/etc. bus probe sem.
1526 *
1527 * RETURNS:
1528 * Zero on success, negative errno otherwise.
1529 */
1530
1531 int ata_bus_probe(struct ata_port *ap)
1532 {
1533 unsigned int classes[ATA_MAX_DEVICES];
1534 int tries[ATA_MAX_DEVICES];
1535 int i, rc, down_xfermask;
1536 struct ata_device *dev;
1537
1538 ata_port_probe(ap);
1539
1540 for (i = 0; i < ATA_MAX_DEVICES; i++)
1541 tries[i] = ATA_PROBE_MAX_TRIES;
1542
1543 retry:
1544 down_xfermask = 0;
1545
1546 /* reset and determine device classes */
1547 ap->ops->phy_reset(ap);
1548
1549 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1550 dev = &ap->device[i];
1551
1552 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1553 dev->class != ATA_DEV_UNKNOWN)
1554 classes[dev->devno] = dev->class;
1555 else
1556 classes[dev->devno] = ATA_DEV_NONE;
1557
1558 dev->class = ATA_DEV_UNKNOWN;
1559 }
1560
1561 ata_port_probe(ap);
1562
1563 /* after the reset the device state is PIO 0 and the controller
1564 state is undefined. Record the mode */
1565
1566 for (i = 0; i < ATA_MAX_DEVICES; i++)
1567 ap->device[i].pio_mode = XFER_PIO_0;
1568
1569 /* read IDENTIFY page and configure devices */
1570 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1571 dev = &ap->device[i];
1572
1573 if (tries[i])
1574 dev->class = classes[i];
1575
1576 if (!ata_dev_enabled(dev))
1577 continue;
1578
1579 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
1580 if (rc)
1581 goto fail;
1582
1583 rc = ata_dev_configure(dev, 1);
1584 if (rc)
1585 goto fail;
1586 }
1587
1588 /* configure transfer mode */
1589 rc = ata_set_mode(ap, &dev);
1590 if (rc) {
1591 down_xfermask = 1;
1592 goto fail;
1593 }
1594
1595 for (i = 0; i < ATA_MAX_DEVICES; i++)
1596 if (ata_dev_enabled(&ap->device[i]))
1597 return 0;
1598
1599 /* no device present, disable port */
1600 ata_port_disable(ap);
1601 ap->ops->port_disable(ap);
1602 return -ENODEV;
1603
1604 fail:
1605 switch (rc) {
1606 case -EINVAL:
1607 case -ENODEV:
1608 tries[dev->devno] = 0;
1609 break;
1610 case -EIO:
1611 sata_down_spd_limit(ap);
1612 /* fall through */
1613 default:
1614 tries[dev->devno]--;
1615 if (down_xfermask &&
1616 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1617 tries[dev->devno] = 0;
1618 }
1619
1620 if (!tries[dev->devno]) {
1621 ata_down_xfermask_limit(dev, 1);
1622 ata_dev_disable(dev);
1623 }
1624
1625 goto retry;
1626 }
1627
1628 /**
1629 * ata_port_probe - Mark port as enabled
1630 * @ap: Port for which we indicate enablement
1631 *
1632 * Modify @ap data structure such that the system
1633 * thinks that the entire port is enabled.
1634 *
1635 * LOCKING: host_set lock, or some other form of
1636 * serialization.
1637 */
1638
1639 void ata_port_probe(struct ata_port *ap)
1640 {
1641 ap->flags &= ~ATA_FLAG_DISABLED;
1642 }
1643
1644 /**
1645 * sata_print_link_status - Print SATA link status
1646 * @ap: SATA port to printk link status about
1647 *
1648 * This function prints link speed and status of a SATA link.
1649 *
1650 * LOCKING:
1651 * None.
1652 */
1653 static void sata_print_link_status(struct ata_port *ap)
1654 {
1655 u32 sstatus, scontrol, tmp;
1656
1657 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1658 return;
1659 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1660
1661 if (ata_port_online(ap)) {
1662 tmp = (sstatus >> 4) & 0xf;
1663 ata_port_printk(ap, KERN_INFO,
1664 "SATA link up %s (SStatus %X SControl %X)\n",
1665 sata_spd_string(tmp), sstatus, scontrol);
1666 } else {
1667 ata_port_printk(ap, KERN_INFO,
1668 "SATA link down (SStatus %X SControl %X)\n",
1669 sstatus, scontrol);
1670 }
1671 }
1672
1673 /**
1674 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1675 * @ap: SATA port associated with target SATA PHY.
1676 *
1677 * This function issues commands to standard SATA Sxxx
1678 * PHY registers, to wake up the phy (and device), and
1679 * clear any reset condition.
1680 *
1681 * LOCKING:
1682 * PCI/etc. bus probe sem.
1683 *
1684 */
1685 void __sata_phy_reset(struct ata_port *ap)
1686 {
1687 u32 sstatus;
1688 unsigned long timeout = jiffies + (HZ * 5);
1689
1690 if (ap->flags & ATA_FLAG_SATA_RESET) {
1691 /* issue phy wake/reset */
1692 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1693 /* Couldn't find anything in SATA I/II specs, but
1694 * AHCI-1.1 10.4.2 says at least 1 ms. */
1695 mdelay(1);
1696 }
1697 /* phy wake/clear reset */
1698 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1699
1700 /* wait for phy to become ready, if necessary */
1701 do {
1702 msleep(200);
1703 sata_scr_read(ap, SCR_STATUS, &sstatus);
1704 if ((sstatus & 0xf) != 1)
1705 break;
1706 } while (time_before(jiffies, timeout));
1707
1708 /* print link status */
1709 sata_print_link_status(ap);
1710
1711 /* TODO: phy layer with polling, timeouts, etc. */
1712 if (!ata_port_offline(ap))
1713 ata_port_probe(ap);
1714 else
1715 ata_port_disable(ap);
1716
1717 if (ap->flags & ATA_FLAG_DISABLED)
1718 return;
1719
1720 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1721 ata_port_disable(ap);
1722 return;
1723 }
1724
1725 ap->cbl = ATA_CBL_SATA;
1726 }
1727
1728 /**
1729 * sata_phy_reset - Reset SATA bus.
1730 * @ap: SATA port associated with target SATA PHY.
1731 *
1732 * This function resets the SATA bus, and then probes
1733 * the bus for devices.
1734 *
1735 * LOCKING:
1736 * PCI/etc. bus probe sem.
1737 *
1738 */
1739 void sata_phy_reset(struct ata_port *ap)
1740 {
1741 __sata_phy_reset(ap);
1742 if (ap->flags & ATA_FLAG_DISABLED)
1743 return;
1744 ata_bus_reset(ap);
1745 }
1746
1747 /**
1748 * ata_dev_pair - return other device on cable
1749 * @adev: device
1750 *
1751 * Obtain the other device on the same cable, or if none is
1752 * present NULL is returned
1753 */
1754
1755 struct ata_device *ata_dev_pair(struct ata_device *adev)
1756 {
1757 struct ata_port *ap = adev->ap;
1758 struct ata_device *pair = &ap->device[1 - adev->devno];
1759 if (!ata_dev_enabled(pair))
1760 return NULL;
1761 return pair;
1762 }
1763
1764 /**
1765 * ata_port_disable - Disable port.
1766 * @ap: Port to be disabled.
1767 *
1768 * Modify @ap data structure such that the system
1769 * thinks that the entire port is disabled, and should
1770 * never attempt to probe or communicate with devices
1771 * on this port.
1772 *
1773 * LOCKING: host_set lock, or some other form of
1774 * serialization.
1775 */
1776
1777 void ata_port_disable(struct ata_port *ap)
1778 {
1779 ap->device[0].class = ATA_DEV_NONE;
1780 ap->device[1].class = ATA_DEV_NONE;
1781 ap->flags |= ATA_FLAG_DISABLED;
1782 }
1783
1784 /**
1785 * sata_down_spd_limit - adjust SATA spd limit downward
1786 * @ap: Port to adjust SATA spd limit for
1787 *
1788 * Adjust SATA spd limit of @ap downward. Note that this
1789 * function only adjusts the limit. The change must be applied
1790 * using sata_set_spd().
1791 *
1792 * LOCKING:
1793 * Inherited from caller.
1794 *
1795 * RETURNS:
1796 * 0 on success, negative errno on failure
1797 */
1798 int sata_down_spd_limit(struct ata_port *ap)
1799 {
1800 u32 sstatus, spd, mask;
1801 int rc, highbit;
1802
1803 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1804 if (rc)
1805 return rc;
1806
1807 mask = ap->sata_spd_limit;
1808 if (mask <= 1)
1809 return -EINVAL;
1810 highbit = fls(mask) - 1;
1811 mask &= ~(1 << highbit);
1812
1813 spd = (sstatus >> 4) & 0xf;
1814 if (spd <= 1)
1815 return -EINVAL;
1816 spd--;
1817 mask &= (1 << spd) - 1;
1818 if (!mask)
1819 return -EINVAL;
1820
1821 ap->sata_spd_limit = mask;
1822
1823 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1824 sata_spd_string(fls(mask)));
1825
1826 return 0;
1827 }
1828
1829 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1830 {
1831 u32 spd, limit;
1832
1833 if (ap->sata_spd_limit == UINT_MAX)
1834 limit = 0;
1835 else
1836 limit = fls(ap->sata_spd_limit);
1837
1838 spd = (*scontrol >> 4) & 0xf;
1839 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1840
1841 return spd != limit;
1842 }
1843
1844 /**
1845 * sata_set_spd_needed - is SATA spd configuration needed
1846 * @ap: Port in question
1847 *
1848 * Test whether the spd limit in SControl matches
1849 * @ap->sata_spd_limit. This function is used to determine
1850 * whether hardreset is necessary to apply SATA spd
1851 * configuration.
1852 *
1853 * LOCKING:
1854 * Inherited from caller.
1855 *
1856 * RETURNS:
1857 * 1 if SATA spd configuration is needed, 0 otherwise.
1858 */
1859 int sata_set_spd_needed(struct ata_port *ap)
1860 {
1861 u32 scontrol;
1862
1863 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1864 return 0;
1865
1866 return __sata_set_spd_needed(ap, &scontrol);
1867 }
1868
1869 /**
1870 * sata_set_spd - set SATA spd according to spd limit
1871 * @ap: Port to set SATA spd for
1872 *
1873 * Set SATA spd of @ap according to sata_spd_limit.
1874 *
1875 * LOCKING:
1876 * Inherited from caller.
1877 *
1878 * RETURNS:
1879 * 0 if spd doesn't need to be changed, 1 if spd has been
1880 * changed. Negative errno if SCR registers are inaccessible.
1881 */
1882 int sata_set_spd(struct ata_port *ap)
1883 {
1884 u32 scontrol;
1885 int rc;
1886
1887 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1888 return rc;
1889
1890 if (!__sata_set_spd_needed(ap, &scontrol))
1891 return 0;
1892
1893 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1894 return rc;
1895
1896 return 1;
1897 }
1898
1899 /*
1900 * This mode timing computation functionality is ported over from
1901 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1902 */
1903 /*
1904 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1905 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1906 * for PIO 5, which is a nonstandard extension and UDMA6, which
1907 * is currently supported only by Maxtor drives.
1908 */
1909
1910 static const struct ata_timing ata_timing[] = {
1911
1912 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1913 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1914 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1915 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1916
1917 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1918 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1919 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1920
1921 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1922
1923 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1924 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1925 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1926
1927 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1928 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1929 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1930
1931 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1932 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1933 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1934
1935 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1936 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1937 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1938
1939 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1940
1941 { 0xFF }
1942 };
1943
1944 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1945 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1946
1947 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1948 {
1949 q->setup = EZ(t->setup * 1000, T);
1950 q->act8b = EZ(t->act8b * 1000, T);
1951 q->rec8b = EZ(t->rec8b * 1000, T);
1952 q->cyc8b = EZ(t->cyc8b * 1000, T);
1953 q->active = EZ(t->active * 1000, T);
1954 q->recover = EZ(t->recover * 1000, T);
1955 q->cycle = EZ(t->cycle * 1000, T);
1956 q->udma = EZ(t->udma * 1000, UT);
1957 }
1958
1959 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1960 struct ata_timing *m, unsigned int what)
1961 {
1962 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1963 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1964 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1965 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1966 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1967 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1968 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1969 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1970 }
1971
1972 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1973 {
1974 const struct ata_timing *t;
1975
1976 for (t = ata_timing; t->mode != speed; t++)
1977 if (t->mode == 0xFF)
1978 return NULL;
1979 return t;
1980 }
1981
1982 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1983 struct ata_timing *t, int T, int UT)
1984 {
1985 const struct ata_timing *s;
1986 struct ata_timing p;
1987
1988 /*
1989 * Find the mode.
1990 */
1991
1992 if (!(s = ata_timing_find_mode(speed)))
1993 return -EINVAL;
1994
1995 memcpy(t, s, sizeof(*s));
1996
1997 /*
1998 * If the drive is an EIDE drive, it can tell us it needs extended
1999 * PIO/MW_DMA cycle timing.
2000 */
2001
2002 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2003 memset(&p, 0, sizeof(p));
2004 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2005 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2006 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2007 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2008 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2009 }
2010 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2011 }
2012
2013 /*
2014 * Convert the timing to bus clock counts.
2015 */
2016
2017 ata_timing_quantize(t, t, T, UT);
2018
2019 /*
2020 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2021 * S.M.A.R.T * and some other commands. We have to ensure that the
2022 * DMA cycle timing is slower/equal than the fastest PIO timing.
2023 */
2024
2025 if (speed > XFER_PIO_4) {
2026 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2027 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2028 }
2029
2030 /*
2031 * Lengthen active & recovery time so that cycle time is correct.
2032 */
2033
2034 if (t->act8b + t->rec8b < t->cyc8b) {
2035 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2036 t->rec8b = t->cyc8b - t->act8b;
2037 }
2038
2039 if (t->active + t->recover < t->cycle) {
2040 t->active += (t->cycle - (t->active + t->recover)) / 2;
2041 t->recover = t->cycle - t->active;
2042 }
2043
2044 return 0;
2045 }
2046
2047 /**
2048 * ata_down_xfermask_limit - adjust dev xfer masks downward
2049 * @dev: Device to adjust xfer masks
2050 * @force_pio0: Force PIO0
2051 *
2052 * Adjust xfer masks of @dev downward. Note that this function
2053 * does not apply the change. Invoking ata_set_mode() afterwards
2054 * will apply the limit.
2055 *
2056 * LOCKING:
2057 * Inherited from caller.
2058 *
2059 * RETURNS:
2060 * 0 on success, negative errno on failure
2061 */
2062 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2063 {
2064 unsigned long xfer_mask;
2065 int highbit;
2066
2067 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2068 dev->udma_mask);
2069
2070 if (!xfer_mask)
2071 goto fail;
2072 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2073 if (xfer_mask & ATA_MASK_UDMA)
2074 xfer_mask &= ~ATA_MASK_MWDMA;
2075
2076 highbit = fls(xfer_mask) - 1;
2077 xfer_mask &= ~(1 << highbit);
2078 if (force_pio0)
2079 xfer_mask &= 1 << ATA_SHIFT_PIO;
2080 if (!xfer_mask)
2081 goto fail;
2082
2083 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2084 &dev->udma_mask);
2085
2086 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2087 ata_mode_string(xfer_mask));
2088
2089 return 0;
2090
2091 fail:
2092 return -EINVAL;
2093 }
2094
2095 static int ata_dev_set_mode(struct ata_device *dev)
2096 {
2097 unsigned int err_mask;
2098 int rc;
2099
2100 dev->flags &= ~ATA_DFLAG_PIO;
2101 if (dev->xfer_shift == ATA_SHIFT_PIO)
2102 dev->flags |= ATA_DFLAG_PIO;
2103
2104 err_mask = ata_dev_set_xfermode(dev);
2105 if (err_mask) {
2106 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2107 "(err_mask=0x%x)\n", err_mask);
2108 return -EIO;
2109 }
2110
2111 rc = ata_dev_revalidate(dev, 0);
2112 if (rc)
2113 return rc;
2114
2115 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2116 dev->xfer_shift, (int)dev->xfer_mode);
2117
2118 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2119 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2120 return 0;
2121 }
2122
2123 /**
2124 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2125 * @ap: port on which timings will be programmed
2126 * @r_failed_dev: out paramter for failed device
2127 *
2128 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2129 * ata_set_mode() fails, pointer to the failing device is
2130 * returned in @r_failed_dev.
2131 *
2132 * LOCKING:
2133 * PCI/etc. bus probe sem.
2134 *
2135 * RETURNS:
2136 * 0 on success, negative errno otherwise
2137 */
2138 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2139 {
2140 struct ata_device *dev;
2141 int i, rc = 0, used_dma = 0, found = 0;
2142
2143 /* has private set_mode? */
2144 if (ap->ops->set_mode) {
2145 /* FIXME: make ->set_mode handle no device case and
2146 * return error code and failing device on failure.
2147 */
2148 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2149 if (ata_dev_ready(&ap->device[i])) {
2150 ap->ops->set_mode(ap);
2151 break;
2152 }
2153 }
2154 return 0;
2155 }
2156
2157 /* step 1: calculate xfer_mask */
2158 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2159 unsigned int pio_mask, dma_mask;
2160
2161 dev = &ap->device[i];
2162
2163 if (!ata_dev_enabled(dev))
2164 continue;
2165
2166 ata_dev_xfermask(dev);
2167
2168 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2169 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2170 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2171 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2172
2173 found = 1;
2174 if (dev->dma_mode)
2175 used_dma = 1;
2176 }
2177 if (!found)
2178 goto out;
2179
2180 /* step 2: always set host PIO timings */
2181 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2182 dev = &ap->device[i];
2183 if (!ata_dev_enabled(dev))
2184 continue;
2185
2186 if (!dev->pio_mode) {
2187 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2188 rc = -EINVAL;
2189 goto out;
2190 }
2191
2192 dev->xfer_mode = dev->pio_mode;
2193 dev->xfer_shift = ATA_SHIFT_PIO;
2194 if (ap->ops->set_piomode)
2195 ap->ops->set_piomode(ap, dev);
2196 }
2197
2198 /* step 3: set host DMA timings */
2199 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2200 dev = &ap->device[i];
2201
2202 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2203 continue;
2204
2205 dev->xfer_mode = dev->dma_mode;
2206 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2207 if (ap->ops->set_dmamode)
2208 ap->ops->set_dmamode(ap, dev);
2209 }
2210
2211 /* step 4: update devices' xfer mode */
2212 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2213 dev = &ap->device[i];
2214
2215 /* don't udpate suspended devices' xfer mode */
2216 if (!ata_dev_ready(dev))
2217 continue;
2218
2219 rc = ata_dev_set_mode(dev);
2220 if (rc)
2221 goto out;
2222 }
2223
2224 /* Record simplex status. If we selected DMA then the other
2225 * host channels are not permitted to do so.
2226 */
2227 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2228 ap->host_set->simplex_claimed = 1;
2229
2230 /* step5: chip specific finalisation */
2231 if (ap->ops->post_set_mode)
2232 ap->ops->post_set_mode(ap);
2233
2234 out:
2235 if (rc)
2236 *r_failed_dev = dev;
2237 return rc;
2238 }
2239
2240 /**
2241 * ata_tf_to_host - issue ATA taskfile to host controller
2242 * @ap: port to which command is being issued
2243 * @tf: ATA taskfile register set
2244 *
2245 * Issues ATA taskfile register set to ATA host controller,
2246 * with proper synchronization with interrupt handler and
2247 * other threads.
2248 *
2249 * LOCKING:
2250 * spin_lock_irqsave(host_set lock)
2251 */
2252
2253 static inline void ata_tf_to_host(struct ata_port *ap,
2254 const struct ata_taskfile *tf)
2255 {
2256 ap->ops->tf_load(ap, tf);
2257 ap->ops->exec_command(ap, tf);
2258 }
2259
2260 /**
2261 * ata_busy_sleep - sleep until BSY clears, or timeout
2262 * @ap: port containing status register to be polled
2263 * @tmout_pat: impatience timeout
2264 * @tmout: overall timeout
2265 *
2266 * Sleep until ATA Status register bit BSY clears,
2267 * or a timeout occurs.
2268 *
2269 * LOCKING: None.
2270 */
2271
2272 unsigned int ata_busy_sleep (struct ata_port *ap,
2273 unsigned long tmout_pat, unsigned long tmout)
2274 {
2275 unsigned long timer_start, timeout;
2276 u8 status;
2277
2278 status = ata_busy_wait(ap, ATA_BUSY, 300);
2279 timer_start = jiffies;
2280 timeout = timer_start + tmout_pat;
2281 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2282 msleep(50);
2283 status = ata_busy_wait(ap, ATA_BUSY, 3);
2284 }
2285
2286 if (status & ATA_BUSY)
2287 ata_port_printk(ap, KERN_WARNING,
2288 "port is slow to respond, please be patient\n");
2289
2290 timeout = timer_start + tmout;
2291 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2292 msleep(50);
2293 status = ata_chk_status(ap);
2294 }
2295
2296 if (status & ATA_BUSY) {
2297 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2298 "(%lu secs)\n", tmout / HZ);
2299 return 1;
2300 }
2301
2302 return 0;
2303 }
2304
2305 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2306 {
2307 struct ata_ioports *ioaddr = &ap->ioaddr;
2308 unsigned int dev0 = devmask & (1 << 0);
2309 unsigned int dev1 = devmask & (1 << 1);
2310 unsigned long timeout;
2311
2312 /* if device 0 was found in ata_devchk, wait for its
2313 * BSY bit to clear
2314 */
2315 if (dev0)
2316 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2317
2318 /* if device 1 was found in ata_devchk, wait for
2319 * register access, then wait for BSY to clear
2320 */
2321 timeout = jiffies + ATA_TMOUT_BOOT;
2322 while (dev1) {
2323 u8 nsect, lbal;
2324
2325 ap->ops->dev_select(ap, 1);
2326 if (ap->flags & ATA_FLAG_MMIO) {
2327 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2328 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2329 } else {
2330 nsect = inb(ioaddr->nsect_addr);
2331 lbal = inb(ioaddr->lbal_addr);
2332 }
2333 if ((nsect == 1) && (lbal == 1))
2334 break;
2335 if (time_after(jiffies, timeout)) {
2336 dev1 = 0;
2337 break;
2338 }
2339 msleep(50); /* give drive a breather */
2340 }
2341 if (dev1)
2342 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2343
2344 /* is all this really necessary? */
2345 ap->ops->dev_select(ap, 0);
2346 if (dev1)
2347 ap->ops->dev_select(ap, 1);
2348 if (dev0)
2349 ap->ops->dev_select(ap, 0);
2350 }
2351
2352 static unsigned int ata_bus_softreset(struct ata_port *ap,
2353 unsigned int devmask)
2354 {
2355 struct ata_ioports *ioaddr = &ap->ioaddr;
2356
2357 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2358
2359 /* software reset. causes dev0 to be selected */
2360 if (ap->flags & ATA_FLAG_MMIO) {
2361 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2362 udelay(20); /* FIXME: flush */
2363 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2364 udelay(20); /* FIXME: flush */
2365 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2366 } else {
2367 outb(ap->ctl, ioaddr->ctl_addr);
2368 udelay(10);
2369 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2370 udelay(10);
2371 outb(ap->ctl, ioaddr->ctl_addr);
2372 }
2373
2374 /* spec mandates ">= 2ms" before checking status.
2375 * We wait 150ms, because that was the magic delay used for
2376 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2377 * between when the ATA command register is written, and then
2378 * status is checked. Because waiting for "a while" before
2379 * checking status is fine, post SRST, we perform this magic
2380 * delay here as well.
2381 *
2382 * Old drivers/ide uses the 2mS rule and then waits for ready
2383 */
2384 msleep(150);
2385
2386 /* Before we perform post reset processing we want to see if
2387 * the bus shows 0xFF because the odd clown forgets the D7
2388 * pulldown resistor.
2389 */
2390 if (ata_check_status(ap) == 0xFF) {
2391 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
2392 return AC_ERR_OTHER;
2393 }
2394
2395 ata_bus_post_reset(ap, devmask);
2396
2397 return 0;
2398 }
2399
2400 /**
2401 * ata_bus_reset - reset host port and associated ATA channel
2402 * @ap: port to reset
2403 *
2404 * This is typically the first time we actually start issuing
2405 * commands to the ATA channel. We wait for BSY to clear, then
2406 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2407 * result. Determine what devices, if any, are on the channel
2408 * by looking at the device 0/1 error register. Look at the signature
2409 * stored in each device's taskfile registers, to determine if
2410 * the device is ATA or ATAPI.
2411 *
2412 * LOCKING:
2413 * PCI/etc. bus probe sem.
2414 * Obtains host_set lock.
2415 *
2416 * SIDE EFFECTS:
2417 * Sets ATA_FLAG_DISABLED if bus reset fails.
2418 */
2419
2420 void ata_bus_reset(struct ata_port *ap)
2421 {
2422 struct ata_ioports *ioaddr = &ap->ioaddr;
2423 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2424 u8 err;
2425 unsigned int dev0, dev1 = 0, devmask = 0;
2426
2427 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2428
2429 /* determine if device 0/1 are present */
2430 if (ap->flags & ATA_FLAG_SATA_RESET)
2431 dev0 = 1;
2432 else {
2433 dev0 = ata_devchk(ap, 0);
2434 if (slave_possible)
2435 dev1 = ata_devchk(ap, 1);
2436 }
2437
2438 if (dev0)
2439 devmask |= (1 << 0);
2440 if (dev1)
2441 devmask |= (1 << 1);
2442
2443 /* select device 0 again */
2444 ap->ops->dev_select(ap, 0);
2445
2446 /* issue bus reset */
2447 if (ap->flags & ATA_FLAG_SRST)
2448 if (ata_bus_softreset(ap, devmask))
2449 goto err_out;
2450
2451 /*
2452 * determine by signature whether we have ATA or ATAPI devices
2453 */
2454 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2455 if ((slave_possible) && (err != 0x81))
2456 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2457
2458 /* re-enable interrupts */
2459 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2460 ata_irq_on(ap);
2461
2462 /* is double-select really necessary? */
2463 if (ap->device[1].class != ATA_DEV_NONE)
2464 ap->ops->dev_select(ap, 1);
2465 if (ap->device[0].class != ATA_DEV_NONE)
2466 ap->ops->dev_select(ap, 0);
2467
2468 /* if no devices were detected, disable this port */
2469 if ((ap->device[0].class == ATA_DEV_NONE) &&
2470 (ap->device[1].class == ATA_DEV_NONE))
2471 goto err_out;
2472
2473 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2474 /* set up device control for ATA_FLAG_SATA_RESET */
2475 if (ap->flags & ATA_FLAG_MMIO)
2476 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2477 else
2478 outb(ap->ctl, ioaddr->ctl_addr);
2479 }
2480
2481 DPRINTK("EXIT\n");
2482 return;
2483
2484 err_out:
2485 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2486 ap->ops->port_disable(ap);
2487
2488 DPRINTK("EXIT\n");
2489 }
2490
2491 /**
2492 * sata_phy_debounce - debounce SATA phy status
2493 * @ap: ATA port to debounce SATA phy status for
2494 * @params: timing parameters { interval, duratinon, timeout } in msec
2495 *
2496 * Make sure SStatus of @ap reaches stable state, determined by
2497 * holding the same value where DET is not 1 for @duration polled
2498 * every @interval, before @timeout. Timeout constraints the
2499 * beginning of the stable state. Because, after hot unplugging,
2500 * DET gets stuck at 1 on some controllers, this functions waits
2501 * until timeout then returns 0 if DET is stable at 1.
2502 *
2503 * LOCKING:
2504 * Kernel thread context (may sleep)
2505 *
2506 * RETURNS:
2507 * 0 on success, -errno on failure.
2508 */
2509 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2510 {
2511 unsigned long interval_msec = params[0];
2512 unsigned long duration = params[1] * HZ / 1000;
2513 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2514 unsigned long last_jiffies;
2515 u32 last, cur;
2516 int rc;
2517
2518 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2519 return rc;
2520 cur &= 0xf;
2521
2522 last = cur;
2523 last_jiffies = jiffies;
2524
2525 while (1) {
2526 msleep(interval_msec);
2527 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2528 return rc;
2529 cur &= 0xf;
2530
2531 /* DET stable? */
2532 if (cur == last) {
2533 if (cur == 1 && time_before(jiffies, timeout))
2534 continue;
2535 if (time_after(jiffies, last_jiffies + duration))
2536 return 0;
2537 continue;
2538 }
2539
2540 /* unstable, start over */
2541 last = cur;
2542 last_jiffies = jiffies;
2543
2544 /* check timeout */
2545 if (time_after(jiffies, timeout))
2546 return -EBUSY;
2547 }
2548 }
2549
2550 /**
2551 * sata_phy_resume - resume SATA phy
2552 * @ap: ATA port to resume SATA phy for
2553 * @params: timing parameters { interval, duratinon, timeout } in msec
2554 *
2555 * Resume SATA phy of @ap and debounce it.
2556 *
2557 * LOCKING:
2558 * Kernel thread context (may sleep)
2559 *
2560 * RETURNS:
2561 * 0 on success, -errno on failure.
2562 */
2563 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2564 {
2565 u32 scontrol;
2566 int rc;
2567
2568 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2569 return rc;
2570
2571 scontrol = (scontrol & 0x0f0) | 0x300;
2572
2573 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2574 return rc;
2575
2576 /* Some PHYs react badly if SStatus is pounded immediately
2577 * after resuming. Delay 200ms before debouncing.
2578 */
2579 msleep(200);
2580
2581 return sata_phy_debounce(ap, params);
2582 }
2583
2584 static void ata_wait_spinup(struct ata_port *ap)
2585 {
2586 struct ata_eh_context *ehc = &ap->eh_context;
2587 unsigned long end, secs;
2588 int rc;
2589
2590 /* first, debounce phy if SATA */
2591 if (ap->cbl == ATA_CBL_SATA) {
2592 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2593
2594 /* if debounced successfully and offline, no need to wait */
2595 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2596 return;
2597 }
2598
2599 /* okay, let's give the drive time to spin up */
2600 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2601 secs = ((end - jiffies) + HZ - 1) / HZ;
2602
2603 if (time_after(jiffies, end))
2604 return;
2605
2606 if (secs > 5)
2607 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2608 "(%lu secs)\n", secs);
2609
2610 schedule_timeout_uninterruptible(end - jiffies);
2611 }
2612
2613 /**
2614 * ata_std_prereset - prepare for reset
2615 * @ap: ATA port to be reset
2616 *
2617 * @ap is about to be reset. Initialize it.
2618 *
2619 * LOCKING:
2620 * Kernel thread context (may sleep)
2621 *
2622 * RETURNS:
2623 * 0 on success, -errno otherwise.
2624 */
2625 int ata_std_prereset(struct ata_port *ap)
2626 {
2627 struct ata_eh_context *ehc = &ap->eh_context;
2628 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2629 int rc;
2630
2631 /* handle link resume & hotplug spinup */
2632 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2633 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2634 ehc->i.action |= ATA_EH_HARDRESET;
2635
2636 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2637 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2638 ata_wait_spinup(ap);
2639
2640 /* if we're about to do hardreset, nothing more to do */
2641 if (ehc->i.action & ATA_EH_HARDRESET)
2642 return 0;
2643
2644 /* if SATA, resume phy */
2645 if (ap->cbl == ATA_CBL_SATA) {
2646 rc = sata_phy_resume(ap, timing);
2647 if (rc && rc != -EOPNOTSUPP) {
2648 /* phy resume failed */
2649 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2650 "link for reset (errno=%d)\n", rc);
2651 return rc;
2652 }
2653 }
2654
2655 /* Wait for !BSY if the controller can wait for the first D2H
2656 * Reg FIS and we don't know that no device is attached.
2657 */
2658 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2659 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2660
2661 return 0;
2662 }
2663
2664 /**
2665 * ata_std_softreset - reset host port via ATA SRST
2666 * @ap: port to reset
2667 * @classes: resulting classes of attached devices
2668 *
2669 * Reset host port using ATA SRST.
2670 *
2671 * LOCKING:
2672 * Kernel thread context (may sleep)
2673 *
2674 * RETURNS:
2675 * 0 on success, -errno otherwise.
2676 */
2677 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2678 {
2679 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2680 unsigned int devmask = 0, err_mask;
2681 u8 err;
2682
2683 DPRINTK("ENTER\n");
2684
2685 if (ata_port_offline(ap)) {
2686 classes[0] = ATA_DEV_NONE;
2687 goto out;
2688 }
2689
2690 /* determine if device 0/1 are present */
2691 if (ata_devchk(ap, 0))
2692 devmask |= (1 << 0);
2693 if (slave_possible && ata_devchk(ap, 1))
2694 devmask |= (1 << 1);
2695
2696 /* select device 0 again */
2697 ap->ops->dev_select(ap, 0);
2698
2699 /* issue bus reset */
2700 DPRINTK("about to softreset, devmask=%x\n", devmask);
2701 err_mask = ata_bus_softreset(ap, devmask);
2702 if (err_mask) {
2703 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2704 err_mask);
2705 return -EIO;
2706 }
2707
2708 /* determine by signature whether we have ATA or ATAPI devices */
2709 classes[0] = ata_dev_try_classify(ap, 0, &err);
2710 if (slave_possible && err != 0x81)
2711 classes[1] = ata_dev_try_classify(ap, 1, &err);
2712
2713 out:
2714 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2715 return 0;
2716 }
2717
2718 /**
2719 * sata_std_hardreset - reset host port via SATA phy reset
2720 * @ap: port to reset
2721 * @class: resulting class of attached device
2722 *
2723 * SATA phy-reset host port using DET bits of SControl register.
2724 *
2725 * LOCKING:
2726 * Kernel thread context (may sleep)
2727 *
2728 * RETURNS:
2729 * 0 on success, -errno otherwise.
2730 */
2731 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2732 {
2733 struct ata_eh_context *ehc = &ap->eh_context;
2734 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2735 u32 scontrol;
2736 int rc;
2737
2738 DPRINTK("ENTER\n");
2739
2740 if (sata_set_spd_needed(ap)) {
2741 /* SATA spec says nothing about how to reconfigure
2742 * spd. To be on the safe side, turn off phy during
2743 * reconfiguration. This works for at least ICH7 AHCI
2744 * and Sil3124.
2745 */
2746 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2747 return rc;
2748
2749 scontrol = (scontrol & 0x0f0) | 0x302;
2750
2751 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2752 return rc;
2753
2754 sata_set_spd(ap);
2755 }
2756
2757 /* issue phy wake/reset */
2758 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2759 return rc;
2760
2761 scontrol = (scontrol & 0x0f0) | 0x301;
2762
2763 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2764 return rc;
2765
2766 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2767 * 10.4.2 says at least 1 ms.
2768 */
2769 msleep(1);
2770
2771 /* bring phy back */
2772 sata_phy_resume(ap, timing);
2773
2774 /* TODO: phy layer with polling, timeouts, etc. */
2775 if (ata_port_offline(ap)) {
2776 *class = ATA_DEV_NONE;
2777 DPRINTK("EXIT, link offline\n");
2778 return 0;
2779 }
2780
2781 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2782 ata_port_printk(ap, KERN_ERR,
2783 "COMRESET failed (device not ready)\n");
2784 return -EIO;
2785 }
2786
2787 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2788
2789 *class = ata_dev_try_classify(ap, 0, NULL);
2790
2791 DPRINTK("EXIT, class=%u\n", *class);
2792 return 0;
2793 }
2794
2795 /**
2796 * ata_std_postreset - standard postreset callback
2797 * @ap: the target ata_port
2798 * @classes: classes of attached devices
2799 *
2800 * This function is invoked after a successful reset. Note that
2801 * the device might have been reset more than once using
2802 * different reset methods before postreset is invoked.
2803 *
2804 * LOCKING:
2805 * Kernel thread context (may sleep)
2806 */
2807 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2808 {
2809 u32 serror;
2810
2811 DPRINTK("ENTER\n");
2812
2813 /* print link status */
2814 sata_print_link_status(ap);
2815
2816 /* clear SError */
2817 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2818 sata_scr_write(ap, SCR_ERROR, serror);
2819
2820 /* re-enable interrupts */
2821 if (!ap->ops->error_handler) {
2822 /* FIXME: hack. create a hook instead */
2823 if (ap->ioaddr.ctl_addr)
2824 ata_irq_on(ap);
2825 }
2826
2827 /* is double-select really necessary? */
2828 if (classes[0] != ATA_DEV_NONE)
2829 ap->ops->dev_select(ap, 1);
2830 if (classes[1] != ATA_DEV_NONE)
2831 ap->ops->dev_select(ap, 0);
2832
2833 /* bail out if no device is present */
2834 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2835 DPRINTK("EXIT, no device\n");
2836 return;
2837 }
2838
2839 /* set up device control */
2840 if (ap->ioaddr.ctl_addr) {
2841 if (ap->flags & ATA_FLAG_MMIO)
2842 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2843 else
2844 outb(ap->ctl, ap->ioaddr.ctl_addr);
2845 }
2846
2847 DPRINTK("EXIT\n");
2848 }
2849
2850 /**
2851 * ata_dev_same_device - Determine whether new ID matches configured device
2852 * @dev: device to compare against
2853 * @new_class: class of the new device
2854 * @new_id: IDENTIFY page of the new device
2855 *
2856 * Compare @new_class and @new_id against @dev and determine
2857 * whether @dev is the device indicated by @new_class and
2858 * @new_id.
2859 *
2860 * LOCKING:
2861 * None.
2862 *
2863 * RETURNS:
2864 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2865 */
2866 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2867 const u16 *new_id)
2868 {
2869 const u16 *old_id = dev->id;
2870 unsigned char model[2][41], serial[2][21];
2871 u64 new_n_sectors;
2872
2873 if (dev->class != new_class) {
2874 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2875 dev->class, new_class);
2876 return 0;
2877 }
2878
2879 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2880 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2881 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2882 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2883 new_n_sectors = ata_id_n_sectors(new_id);
2884
2885 if (strcmp(model[0], model[1])) {
2886 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2887 "'%s' != '%s'\n", model[0], model[1]);
2888 return 0;
2889 }
2890
2891 if (strcmp(serial[0], serial[1])) {
2892 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2893 "'%s' != '%s'\n", serial[0], serial[1]);
2894 return 0;
2895 }
2896
2897 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2898 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2899 "%llu != %llu\n",
2900 (unsigned long long)dev->n_sectors,
2901 (unsigned long long)new_n_sectors);
2902 return 0;
2903 }
2904
2905 return 1;
2906 }
2907
2908 /**
2909 * ata_dev_revalidate - Revalidate ATA device
2910 * @dev: device to revalidate
2911 * @post_reset: is this revalidation after reset?
2912 *
2913 * Re-read IDENTIFY page and make sure @dev is still attached to
2914 * the port.
2915 *
2916 * LOCKING:
2917 * Kernel thread context (may sleep)
2918 *
2919 * RETURNS:
2920 * 0 on success, negative errno otherwise
2921 */
2922 int ata_dev_revalidate(struct ata_device *dev, int post_reset)
2923 {
2924 unsigned int class = dev->class;
2925 u16 *id = (void *)dev->ap->sector_buf;
2926 int rc;
2927
2928 if (!ata_dev_enabled(dev)) {
2929 rc = -ENODEV;
2930 goto fail;
2931 }
2932
2933 /* read ID data */
2934 rc = ata_dev_read_id(dev, &class, post_reset, id);
2935 if (rc)
2936 goto fail;
2937
2938 /* is the device still there? */
2939 if (!ata_dev_same_device(dev, class, id)) {
2940 rc = -ENODEV;
2941 goto fail;
2942 }
2943
2944 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
2945
2946 /* configure device according to the new ID */
2947 rc = ata_dev_configure(dev, 0);
2948 if (rc == 0)
2949 return 0;
2950
2951 fail:
2952 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
2953 return rc;
2954 }
2955
2956 static const char * const ata_dma_blacklist [] = {
2957 "WDC AC11000H", NULL,
2958 "WDC AC22100H", NULL,
2959 "WDC AC32500H", NULL,
2960 "WDC AC33100H", NULL,
2961 "WDC AC31600H", NULL,
2962 "WDC AC32100H", "24.09P07",
2963 "WDC AC23200L", "21.10N21",
2964 "Compaq CRD-8241B", NULL,
2965 "CRD-8400B", NULL,
2966 "CRD-8480B", NULL,
2967 "CRD-8482B", NULL,
2968 "CRD-84", NULL,
2969 "SanDisk SDP3B", NULL,
2970 "SanDisk SDP3B-64", NULL,
2971 "SANYO CD-ROM CRD", NULL,
2972 "HITACHI CDR-8", NULL,
2973 "HITACHI CDR-8335", NULL,
2974 "HITACHI CDR-8435", NULL,
2975 "Toshiba CD-ROM XM-6202B", NULL,
2976 "TOSHIBA CD-ROM XM-1702BC", NULL,
2977 "CD-532E-A", NULL,
2978 "E-IDE CD-ROM CR-840", NULL,
2979 "CD-ROM Drive/F5A", NULL,
2980 "WPI CDD-820", NULL,
2981 "SAMSUNG CD-ROM SC-148C", NULL,
2982 "SAMSUNG CD-ROM SC", NULL,
2983 "SanDisk SDP3B-64", NULL,
2984 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2985 "_NEC DV5800A", NULL,
2986 "SAMSUNG CD-ROM SN-124", "N001"
2987 };
2988
2989 static int ata_strim(char *s, size_t len)
2990 {
2991 len = strnlen(s, len);
2992
2993 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2994 while ((len > 0) && (s[len - 1] == ' ')) {
2995 len--;
2996 s[len] = 0;
2997 }
2998 return len;
2999 }
3000
3001 static int ata_dma_blacklisted(const struct ata_device *dev)
3002 {
3003 unsigned char model_num[40];
3004 unsigned char model_rev[16];
3005 unsigned int nlen, rlen;
3006 int i;
3007
3008 /* We don't support polling DMA.
3009 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3010 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3011 */
3012 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3013 (dev->flags & ATA_DFLAG_CDB_INTR))
3014 return 1;
3015
3016 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3017 sizeof(model_num));
3018 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3019 sizeof(model_rev));
3020 nlen = ata_strim(model_num, sizeof(model_num));
3021 rlen = ata_strim(model_rev, sizeof(model_rev));
3022
3023 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
3024 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
3025 if (ata_dma_blacklist[i+1] == NULL)
3026 return 1;
3027 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
3028 return 1;
3029 }
3030 }
3031 return 0;
3032 }
3033
3034 /**
3035 * ata_dev_xfermask - Compute supported xfermask of the given device
3036 * @dev: Device to compute xfermask for
3037 *
3038 * Compute supported xfermask of @dev and store it in
3039 * dev->*_mask. This function is responsible for applying all
3040 * known limits including host controller limits, device
3041 * blacklist, etc...
3042 *
3043 * LOCKING:
3044 * None.
3045 */
3046 static void ata_dev_xfermask(struct ata_device *dev)
3047 {
3048 struct ata_port *ap = dev->ap;
3049 struct ata_host_set *hs = ap->host_set;
3050 unsigned long xfer_mask;
3051
3052 /* controller modes available */
3053 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3054 ap->mwdma_mask, ap->udma_mask);
3055
3056 /* Apply cable rule here. Don't apply it early because when
3057 * we handle hot plug the cable type can itself change.
3058 */
3059 if (ap->cbl == ATA_CBL_PATA40)
3060 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3061
3062 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3063 dev->mwdma_mask, dev->udma_mask);
3064 xfer_mask &= ata_id_xfermask(dev->id);
3065
3066 if (ata_dma_blacklisted(dev)) {
3067 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3068 ata_dev_printk(dev, KERN_WARNING,
3069 "device is on DMA blacklist, disabling DMA\n");
3070 }
3071
3072 if ((hs->flags & ATA_HOST_SIMPLEX) && hs->simplex_claimed) {
3073 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3074 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3075 "other device, disabling DMA\n");
3076 }
3077
3078 if (ap->ops->mode_filter)
3079 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3080
3081 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3082 &dev->mwdma_mask, &dev->udma_mask);
3083 }
3084
3085 /**
3086 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3087 * @dev: Device to which command will be sent
3088 *
3089 * Issue SET FEATURES - XFER MODE command to device @dev
3090 * on port @ap.
3091 *
3092 * LOCKING:
3093 * PCI/etc. bus probe sem.
3094 *
3095 * RETURNS:
3096 * 0 on success, AC_ERR_* mask otherwise.
3097 */
3098
3099 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3100 {
3101 struct ata_taskfile tf;
3102 unsigned int err_mask;
3103
3104 /* set up set-features taskfile */
3105 DPRINTK("set features - xfer mode\n");
3106
3107 ata_tf_init(dev, &tf);
3108 tf.command = ATA_CMD_SET_FEATURES;
3109 tf.feature = SETFEATURES_XFER;
3110 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3111 tf.protocol = ATA_PROT_NODATA;
3112 tf.nsect = dev->xfer_mode;
3113
3114 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3115
3116 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3117 return err_mask;
3118 }
3119
3120 /**
3121 * ata_dev_init_params - Issue INIT DEV PARAMS command
3122 * @dev: Device to which command will be sent
3123 * @heads: Number of heads (taskfile parameter)
3124 * @sectors: Number of sectors (taskfile parameter)
3125 *
3126 * LOCKING:
3127 * Kernel thread context (may sleep)
3128 *
3129 * RETURNS:
3130 * 0 on success, AC_ERR_* mask otherwise.
3131 */
3132 static unsigned int ata_dev_init_params(struct ata_device *dev,
3133 u16 heads, u16 sectors)
3134 {
3135 struct ata_taskfile tf;
3136 unsigned int err_mask;
3137
3138 /* Number of sectors per track 1-255. Number of heads 1-16 */
3139 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3140 return AC_ERR_INVALID;
3141
3142 /* set up init dev params taskfile */
3143 DPRINTK("init dev params \n");
3144
3145 ata_tf_init(dev, &tf);
3146 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3147 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3148 tf.protocol = ATA_PROT_NODATA;
3149 tf.nsect = sectors;
3150 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3151
3152 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3153
3154 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3155 return err_mask;
3156 }
3157
3158 /**
3159 * ata_sg_clean - Unmap DMA memory associated with command
3160 * @qc: Command containing DMA memory to be released
3161 *
3162 * Unmap all mapped DMA memory associated with this command.
3163 *
3164 * LOCKING:
3165 * spin_lock_irqsave(host_set lock)
3166 */
3167
3168 static void ata_sg_clean(struct ata_queued_cmd *qc)
3169 {
3170 struct ata_port *ap = qc->ap;
3171 struct scatterlist *sg = qc->__sg;
3172 int dir = qc->dma_dir;
3173 void *pad_buf = NULL;
3174
3175 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3176 WARN_ON(sg == NULL);
3177
3178 if (qc->flags & ATA_QCFLAG_SINGLE)
3179 WARN_ON(qc->n_elem > 1);
3180
3181 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3182
3183 /* if we padded the buffer out to 32-bit bound, and data
3184 * xfer direction is from-device, we must copy from the
3185 * pad buffer back into the supplied buffer
3186 */
3187 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3188 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3189
3190 if (qc->flags & ATA_QCFLAG_SG) {
3191 if (qc->n_elem)
3192 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3193 /* restore last sg */
3194 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3195 if (pad_buf) {
3196 struct scatterlist *psg = &qc->pad_sgent;
3197 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3198 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3199 kunmap_atomic(addr, KM_IRQ0);
3200 }
3201 } else {
3202 if (qc->n_elem)
3203 dma_unmap_single(ap->dev,
3204 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3205 dir);
3206 /* restore sg */
3207 sg->length += qc->pad_len;
3208 if (pad_buf)
3209 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3210 pad_buf, qc->pad_len);
3211 }
3212
3213 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3214 qc->__sg = NULL;
3215 }
3216
3217 /**
3218 * ata_fill_sg - Fill PCI IDE PRD table
3219 * @qc: Metadata associated with taskfile to be transferred
3220 *
3221 * Fill PCI IDE PRD (scatter-gather) table with segments
3222 * associated with the current disk command.
3223 *
3224 * LOCKING:
3225 * spin_lock_irqsave(host_set lock)
3226 *
3227 */
3228 static void ata_fill_sg(struct ata_queued_cmd *qc)
3229 {
3230 struct ata_port *ap = qc->ap;
3231 struct scatterlist *sg;
3232 unsigned int idx;
3233
3234 WARN_ON(qc->__sg == NULL);
3235 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3236
3237 idx = 0;
3238 ata_for_each_sg(sg, qc) {
3239 u32 addr, offset;
3240 u32 sg_len, len;
3241
3242 /* determine if physical DMA addr spans 64K boundary.
3243 * Note h/w doesn't support 64-bit, so we unconditionally
3244 * truncate dma_addr_t to u32.
3245 */
3246 addr = (u32) sg_dma_address(sg);
3247 sg_len = sg_dma_len(sg);
3248
3249 while (sg_len) {
3250 offset = addr & 0xffff;
3251 len = sg_len;
3252 if ((offset + sg_len) > 0x10000)
3253 len = 0x10000 - offset;
3254
3255 ap->prd[idx].addr = cpu_to_le32(addr);
3256 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3257 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3258
3259 idx++;
3260 sg_len -= len;
3261 addr += len;
3262 }
3263 }
3264
3265 if (idx)
3266 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3267 }
3268 /**
3269 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3270 * @qc: Metadata associated with taskfile to check
3271 *
3272 * Allow low-level driver to filter ATA PACKET commands, returning
3273 * a status indicating whether or not it is OK to use DMA for the
3274 * supplied PACKET command.
3275 *
3276 * LOCKING:
3277 * spin_lock_irqsave(host_set lock)
3278 *
3279 * RETURNS: 0 when ATAPI DMA can be used
3280 * nonzero otherwise
3281 */
3282 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3283 {
3284 struct ata_port *ap = qc->ap;
3285 int rc = 0; /* Assume ATAPI DMA is OK by default */
3286
3287 if (ap->ops->check_atapi_dma)
3288 rc = ap->ops->check_atapi_dma(qc);
3289
3290 return rc;
3291 }
3292 /**
3293 * ata_qc_prep - Prepare taskfile for submission
3294 * @qc: Metadata associated with taskfile to be prepared
3295 *
3296 * Prepare ATA taskfile for submission.
3297 *
3298 * LOCKING:
3299 * spin_lock_irqsave(host_set lock)
3300 */
3301 void ata_qc_prep(struct ata_queued_cmd *qc)
3302 {
3303 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3304 return;
3305
3306 ata_fill_sg(qc);
3307 }
3308
3309 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3310
3311 /**
3312 * ata_sg_init_one - Associate command with memory buffer
3313 * @qc: Command to be associated
3314 * @buf: Memory buffer
3315 * @buflen: Length of memory buffer, in bytes.
3316 *
3317 * Initialize the data-related elements of queued_cmd @qc
3318 * to point to a single memory buffer, @buf of byte length @buflen.
3319 *
3320 * LOCKING:
3321 * spin_lock_irqsave(host_set lock)
3322 */
3323
3324 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3325 {
3326 struct scatterlist *sg;
3327
3328 qc->flags |= ATA_QCFLAG_SINGLE;
3329
3330 memset(&qc->sgent, 0, sizeof(qc->sgent));
3331 qc->__sg = &qc->sgent;
3332 qc->n_elem = 1;
3333 qc->orig_n_elem = 1;
3334 qc->buf_virt = buf;
3335 qc->nbytes = buflen;
3336
3337 sg = qc->__sg;
3338 sg_init_one(sg, buf, buflen);
3339 }
3340
3341 /**
3342 * ata_sg_init - Associate command with scatter-gather table.
3343 * @qc: Command to be associated
3344 * @sg: Scatter-gather table.
3345 * @n_elem: Number of elements in s/g table.
3346 *
3347 * Initialize the data-related elements of queued_cmd @qc
3348 * to point to a scatter-gather table @sg, containing @n_elem
3349 * elements.
3350 *
3351 * LOCKING:
3352 * spin_lock_irqsave(host_set lock)
3353 */
3354
3355 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3356 unsigned int n_elem)
3357 {
3358 qc->flags |= ATA_QCFLAG_SG;
3359 qc->__sg = sg;
3360 qc->n_elem = n_elem;
3361 qc->orig_n_elem = n_elem;
3362 }
3363
3364 /**
3365 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3366 * @qc: Command with memory buffer to be mapped.
3367 *
3368 * DMA-map the memory buffer associated with queued_cmd @qc.
3369 *
3370 * LOCKING:
3371 * spin_lock_irqsave(host_set lock)
3372 *
3373 * RETURNS:
3374 * Zero on success, negative on error.
3375 */
3376
3377 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3378 {
3379 struct ata_port *ap = qc->ap;
3380 int dir = qc->dma_dir;
3381 struct scatterlist *sg = qc->__sg;
3382 dma_addr_t dma_address;
3383 int trim_sg = 0;
3384
3385 /* we must lengthen transfers to end on a 32-bit boundary */
3386 qc->pad_len = sg->length & 3;
3387 if (qc->pad_len) {
3388 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3389 struct scatterlist *psg = &qc->pad_sgent;
3390
3391 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3392
3393 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3394
3395 if (qc->tf.flags & ATA_TFLAG_WRITE)
3396 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3397 qc->pad_len);
3398
3399 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3400 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3401 /* trim sg */
3402 sg->length -= qc->pad_len;
3403 if (sg->length == 0)
3404 trim_sg = 1;
3405
3406 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3407 sg->length, qc->pad_len);
3408 }
3409
3410 if (trim_sg) {
3411 qc->n_elem--;
3412 goto skip_map;
3413 }
3414
3415 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3416 sg->length, dir);
3417 if (dma_mapping_error(dma_address)) {
3418 /* restore sg */
3419 sg->length += qc->pad_len;
3420 return -1;
3421 }
3422
3423 sg_dma_address(sg) = dma_address;
3424 sg_dma_len(sg) = sg->length;
3425
3426 skip_map:
3427 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3428 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3429
3430 return 0;
3431 }
3432
3433 /**
3434 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3435 * @qc: Command with scatter-gather table to be mapped.
3436 *
3437 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3438 *
3439 * LOCKING:
3440 * spin_lock_irqsave(host_set lock)
3441 *
3442 * RETURNS:
3443 * Zero on success, negative on error.
3444 *
3445 */
3446
3447 static int ata_sg_setup(struct ata_queued_cmd *qc)
3448 {
3449 struct ata_port *ap = qc->ap;
3450 struct scatterlist *sg = qc->__sg;
3451 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3452 int n_elem, pre_n_elem, dir, trim_sg = 0;
3453
3454 VPRINTK("ENTER, ata%u\n", ap->id);
3455 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3456
3457 /* we must lengthen transfers to end on a 32-bit boundary */
3458 qc->pad_len = lsg->length & 3;
3459 if (qc->pad_len) {
3460 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3461 struct scatterlist *psg = &qc->pad_sgent;
3462 unsigned int offset;
3463
3464 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3465
3466 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3467
3468 /*
3469 * psg->page/offset are used to copy to-be-written
3470 * data in this function or read data in ata_sg_clean.
3471 */
3472 offset = lsg->offset + lsg->length - qc->pad_len;
3473 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3474 psg->offset = offset_in_page(offset);
3475
3476 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3477 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3478 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3479 kunmap_atomic(addr, KM_IRQ0);
3480 }
3481
3482 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3483 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3484 /* trim last sg */
3485 lsg->length -= qc->pad_len;
3486 if (lsg->length == 0)
3487 trim_sg = 1;
3488
3489 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3490 qc->n_elem - 1, lsg->length, qc->pad_len);
3491 }
3492
3493 pre_n_elem = qc->n_elem;
3494 if (trim_sg && pre_n_elem)
3495 pre_n_elem--;
3496
3497 if (!pre_n_elem) {
3498 n_elem = 0;
3499 goto skip_map;
3500 }
3501
3502 dir = qc->dma_dir;
3503 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3504 if (n_elem < 1) {
3505 /* restore last sg */
3506 lsg->length += qc->pad_len;
3507 return -1;
3508 }
3509
3510 DPRINTK("%d sg elements mapped\n", n_elem);
3511
3512 skip_map:
3513 qc->n_elem = n_elem;
3514
3515 return 0;
3516 }
3517
3518 /**
3519 * swap_buf_le16 - swap halves of 16-bit words in place
3520 * @buf: Buffer to swap
3521 * @buf_words: Number of 16-bit words in buffer.
3522 *
3523 * Swap halves of 16-bit words if needed to convert from
3524 * little-endian byte order to native cpu byte order, or
3525 * vice-versa.
3526 *
3527 * LOCKING:
3528 * Inherited from caller.
3529 */
3530 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3531 {
3532 #ifdef __BIG_ENDIAN
3533 unsigned int i;
3534
3535 for (i = 0; i < buf_words; i++)
3536 buf[i] = le16_to_cpu(buf[i]);
3537 #endif /* __BIG_ENDIAN */
3538 }
3539
3540 /**
3541 * ata_mmio_data_xfer - Transfer data by MMIO
3542 * @adev: device for this I/O
3543 * @buf: data buffer
3544 * @buflen: buffer length
3545 * @write_data: read/write
3546 *
3547 * Transfer data from/to the device data register by MMIO.
3548 *
3549 * LOCKING:
3550 * Inherited from caller.
3551 */
3552
3553 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3554 unsigned int buflen, int write_data)
3555 {
3556 struct ata_port *ap = adev->ap;
3557 unsigned int i;
3558 unsigned int words = buflen >> 1;
3559 u16 *buf16 = (u16 *) buf;
3560 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3561
3562 /* Transfer multiple of 2 bytes */
3563 if (write_data) {
3564 for (i = 0; i < words; i++)
3565 writew(le16_to_cpu(buf16[i]), mmio);
3566 } else {
3567 for (i = 0; i < words; i++)
3568 buf16[i] = cpu_to_le16(readw(mmio));
3569 }
3570
3571 /* Transfer trailing 1 byte, if any. */
3572 if (unlikely(buflen & 0x01)) {
3573 u16 align_buf[1] = { 0 };
3574 unsigned char *trailing_buf = buf + buflen - 1;
3575
3576 if (write_data) {
3577 memcpy(align_buf, trailing_buf, 1);
3578 writew(le16_to_cpu(align_buf[0]), mmio);
3579 } else {
3580 align_buf[0] = cpu_to_le16(readw(mmio));
3581 memcpy(trailing_buf, align_buf, 1);
3582 }
3583 }
3584 }
3585
3586 /**
3587 * ata_pio_data_xfer - Transfer data by PIO
3588 * @adev: device to target
3589 * @buf: data buffer
3590 * @buflen: buffer length
3591 * @write_data: read/write
3592 *
3593 * Transfer data from/to the device data register by PIO.
3594 *
3595 * LOCKING:
3596 * Inherited from caller.
3597 */
3598
3599 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3600 unsigned int buflen, int write_data)
3601 {
3602 struct ata_port *ap = adev->ap;
3603 unsigned int words = buflen >> 1;
3604
3605 /* Transfer multiple of 2 bytes */
3606 if (write_data)
3607 outsw(ap->ioaddr.data_addr, buf, words);
3608 else
3609 insw(ap->ioaddr.data_addr, buf, words);
3610
3611 /* Transfer trailing 1 byte, if any. */
3612 if (unlikely(buflen & 0x01)) {
3613 u16 align_buf[1] = { 0 };
3614 unsigned char *trailing_buf = buf + buflen - 1;
3615
3616 if (write_data) {
3617 memcpy(align_buf, trailing_buf, 1);
3618 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3619 } else {
3620 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3621 memcpy(trailing_buf, align_buf, 1);
3622 }
3623 }
3624 }
3625
3626 /**
3627 * ata_pio_data_xfer_noirq - Transfer data by PIO
3628 * @adev: device to target
3629 * @buf: data buffer
3630 * @buflen: buffer length
3631 * @write_data: read/write
3632 *
3633 * Transfer data from/to the device data register by PIO. Do the
3634 * transfer with interrupts disabled.
3635 *
3636 * LOCKING:
3637 * Inherited from caller.
3638 */
3639
3640 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3641 unsigned int buflen, int write_data)
3642 {
3643 unsigned long flags;
3644 local_irq_save(flags);
3645 ata_pio_data_xfer(adev, buf, buflen, write_data);
3646 local_irq_restore(flags);
3647 }
3648
3649
3650 /**
3651 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3652 * @qc: Command on going
3653 *
3654 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3655 *
3656 * LOCKING:
3657 * Inherited from caller.
3658 */
3659
3660 static void ata_pio_sector(struct ata_queued_cmd *qc)
3661 {
3662 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3663 struct scatterlist *sg = qc->__sg;
3664 struct ata_port *ap = qc->ap;
3665 struct page *page;
3666 unsigned int offset;
3667 unsigned char *buf;
3668
3669 if (qc->cursect == (qc->nsect - 1))
3670 ap->hsm_task_state = HSM_ST_LAST;
3671
3672 page = sg[qc->cursg].page;
3673 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3674
3675 /* get the current page and offset */
3676 page = nth_page(page, (offset >> PAGE_SHIFT));
3677 offset %= PAGE_SIZE;
3678
3679 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3680
3681 if (PageHighMem(page)) {
3682 unsigned long flags;
3683
3684 /* FIXME: use a bounce buffer */
3685 local_irq_save(flags);
3686 buf = kmap_atomic(page, KM_IRQ0);
3687
3688 /* do the actual data transfer */
3689 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3690
3691 kunmap_atomic(buf, KM_IRQ0);
3692 local_irq_restore(flags);
3693 } else {
3694 buf = page_address(page);
3695 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3696 }
3697
3698 qc->cursect++;
3699 qc->cursg_ofs++;
3700
3701 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3702 qc->cursg++;
3703 qc->cursg_ofs = 0;
3704 }
3705 }
3706
3707 /**
3708 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3709 * @qc: Command on going
3710 *
3711 * Transfer one or many ATA_SECT_SIZE of data from/to the
3712 * ATA device for the DRQ request.
3713 *
3714 * LOCKING:
3715 * Inherited from caller.
3716 */
3717
3718 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3719 {
3720 if (is_multi_taskfile(&qc->tf)) {
3721 /* READ/WRITE MULTIPLE */
3722 unsigned int nsect;
3723
3724 WARN_ON(qc->dev->multi_count == 0);
3725
3726 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3727 while (nsect--)
3728 ata_pio_sector(qc);
3729 } else
3730 ata_pio_sector(qc);
3731 }
3732
3733 /**
3734 * atapi_send_cdb - Write CDB bytes to hardware
3735 * @ap: Port to which ATAPI device is attached.
3736 * @qc: Taskfile currently active
3737 *
3738 * When device has indicated its readiness to accept
3739 * a CDB, this function is called. Send the CDB.
3740 *
3741 * LOCKING:
3742 * caller.
3743 */
3744
3745 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3746 {
3747 /* send SCSI cdb */
3748 DPRINTK("send cdb\n");
3749 WARN_ON(qc->dev->cdb_len < 12);
3750
3751 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
3752 ata_altstatus(ap); /* flush */
3753
3754 switch (qc->tf.protocol) {
3755 case ATA_PROT_ATAPI:
3756 ap->hsm_task_state = HSM_ST;
3757 break;
3758 case ATA_PROT_ATAPI_NODATA:
3759 ap->hsm_task_state = HSM_ST_LAST;
3760 break;
3761 case ATA_PROT_ATAPI_DMA:
3762 ap->hsm_task_state = HSM_ST_LAST;
3763 /* initiate bmdma */
3764 ap->ops->bmdma_start(qc);
3765 break;
3766 }
3767 }
3768
3769 /**
3770 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3771 * @qc: Command on going
3772 * @bytes: number of bytes
3773 *
3774 * Transfer Transfer data from/to the ATAPI device.
3775 *
3776 * LOCKING:
3777 * Inherited from caller.
3778 *
3779 */
3780
3781 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3782 {
3783 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3784 struct scatterlist *sg = qc->__sg;
3785 struct ata_port *ap = qc->ap;
3786 struct page *page;
3787 unsigned char *buf;
3788 unsigned int offset, count;
3789
3790 if (qc->curbytes + bytes >= qc->nbytes)
3791 ap->hsm_task_state = HSM_ST_LAST;
3792
3793 next_sg:
3794 if (unlikely(qc->cursg >= qc->n_elem)) {
3795 /*
3796 * The end of qc->sg is reached and the device expects
3797 * more data to transfer. In order not to overrun qc->sg
3798 * and fulfill length specified in the byte count register,
3799 * - for read case, discard trailing data from the device
3800 * - for write case, padding zero data to the device
3801 */
3802 u16 pad_buf[1] = { 0 };
3803 unsigned int words = bytes >> 1;
3804 unsigned int i;
3805
3806 if (words) /* warning if bytes > 1 */
3807 ata_dev_printk(qc->dev, KERN_WARNING,
3808 "%u bytes trailing data\n", bytes);
3809
3810 for (i = 0; i < words; i++)
3811 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
3812
3813 ap->hsm_task_state = HSM_ST_LAST;
3814 return;
3815 }
3816
3817 sg = &qc->__sg[qc->cursg];
3818
3819 page = sg->page;
3820 offset = sg->offset + qc->cursg_ofs;
3821
3822 /* get the current page and offset */
3823 page = nth_page(page, (offset >> PAGE_SHIFT));
3824 offset %= PAGE_SIZE;
3825
3826 /* don't overrun current sg */
3827 count = min(sg->length - qc->cursg_ofs, bytes);
3828
3829 /* don't cross page boundaries */
3830 count = min(count, (unsigned int)PAGE_SIZE - offset);
3831
3832 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3833
3834 if (PageHighMem(page)) {
3835 unsigned long flags;
3836
3837 /* FIXME: use bounce buffer */
3838 local_irq_save(flags);
3839 buf = kmap_atomic(page, KM_IRQ0);
3840
3841 /* do the actual data transfer */
3842 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3843
3844 kunmap_atomic(buf, KM_IRQ0);
3845 local_irq_restore(flags);
3846 } else {
3847 buf = page_address(page);
3848 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3849 }
3850
3851 bytes -= count;
3852 qc->curbytes += count;
3853 qc->cursg_ofs += count;
3854
3855 if (qc->cursg_ofs == sg->length) {
3856 qc->cursg++;
3857 qc->cursg_ofs = 0;
3858 }
3859
3860 if (bytes)
3861 goto next_sg;
3862 }
3863
3864 /**
3865 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3866 * @qc: Command on going
3867 *
3868 * Transfer Transfer data from/to the ATAPI device.
3869 *
3870 * LOCKING:
3871 * Inherited from caller.
3872 */
3873
3874 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3875 {
3876 struct ata_port *ap = qc->ap;
3877 struct ata_device *dev = qc->dev;
3878 unsigned int ireason, bc_lo, bc_hi, bytes;
3879 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3880
3881 /* Abuse qc->result_tf for temp storage of intermediate TF
3882 * here to save some kernel stack usage.
3883 * For normal completion, qc->result_tf is not relevant. For
3884 * error, qc->result_tf is later overwritten by ata_qc_complete().
3885 * So, the correctness of qc->result_tf is not affected.
3886 */
3887 ap->ops->tf_read(ap, &qc->result_tf);
3888 ireason = qc->result_tf.nsect;
3889 bc_lo = qc->result_tf.lbam;
3890 bc_hi = qc->result_tf.lbah;
3891 bytes = (bc_hi << 8) | bc_lo;
3892
3893 /* shall be cleared to zero, indicating xfer of data */
3894 if (ireason & (1 << 0))
3895 goto err_out;
3896
3897 /* make sure transfer direction matches expected */
3898 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3899 if (do_write != i_write)
3900 goto err_out;
3901
3902 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3903
3904 __atapi_pio_bytes(qc, bytes);
3905
3906 return;
3907
3908 err_out:
3909 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
3910 qc->err_mask |= AC_ERR_HSM;
3911 ap->hsm_task_state = HSM_ST_ERR;
3912 }
3913
3914 /**
3915 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3916 * @ap: the target ata_port
3917 * @qc: qc on going
3918 *
3919 * RETURNS:
3920 * 1 if ok in workqueue, 0 otherwise.
3921 */
3922
3923 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
3924 {
3925 if (qc->tf.flags & ATA_TFLAG_POLLING)
3926 return 1;
3927
3928 if (ap->hsm_task_state == HSM_ST_FIRST) {
3929 if (qc->tf.protocol == ATA_PROT_PIO &&
3930 (qc->tf.flags & ATA_TFLAG_WRITE))
3931 return 1;
3932
3933 if (is_atapi_taskfile(&qc->tf) &&
3934 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3935 return 1;
3936 }
3937
3938 return 0;
3939 }
3940
3941 /**
3942 * ata_hsm_qc_complete - finish a qc running on standard HSM
3943 * @qc: Command to complete
3944 * @in_wq: 1 if called from workqueue, 0 otherwise
3945 *
3946 * Finish @qc which is running on standard HSM.
3947 *
3948 * LOCKING:
3949 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
3950 * Otherwise, none on entry and grabs host lock.
3951 */
3952 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
3953 {
3954 struct ata_port *ap = qc->ap;
3955 unsigned long flags;
3956
3957 if (ap->ops->error_handler) {
3958 if (in_wq) {
3959 spin_lock_irqsave(ap->lock, flags);
3960
3961 /* EH might have kicked in while host_set lock
3962 * is released.
3963 */
3964 qc = ata_qc_from_tag(ap, qc->tag);
3965 if (qc) {
3966 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
3967 ata_irq_on(ap);
3968 ata_qc_complete(qc);
3969 } else
3970 ata_port_freeze(ap);
3971 }
3972
3973 spin_unlock_irqrestore(ap->lock, flags);
3974 } else {
3975 if (likely(!(qc->err_mask & AC_ERR_HSM)))
3976 ata_qc_complete(qc);
3977 else
3978 ata_port_freeze(ap);
3979 }
3980 } else {
3981 if (in_wq) {
3982 spin_lock_irqsave(ap->lock, flags);
3983 ata_irq_on(ap);
3984 ata_qc_complete(qc);
3985 spin_unlock_irqrestore(ap->lock, flags);
3986 } else
3987 ata_qc_complete(qc);
3988 }
3989
3990 ata_altstatus(ap); /* flush */
3991 }
3992
3993 /**
3994 * ata_hsm_move - move the HSM to the next state.
3995 * @ap: the target ata_port
3996 * @qc: qc on going
3997 * @status: current device status
3998 * @in_wq: 1 if called from workqueue, 0 otherwise
3999 *
4000 * RETURNS:
4001 * 1 when poll next status needed, 0 otherwise.
4002 */
4003 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4004 u8 status, int in_wq)
4005 {
4006 unsigned long flags = 0;
4007 int poll_next;
4008
4009 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4010
4011 /* Make sure ata_qc_issue_prot() does not throw things
4012 * like DMA polling into the workqueue. Notice that
4013 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4014 */
4015 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4016
4017 fsm_start:
4018 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4019 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4020
4021 switch (ap->hsm_task_state) {
4022 case HSM_ST_FIRST:
4023 /* Send first data block or PACKET CDB */
4024
4025 /* If polling, we will stay in the work queue after
4026 * sending the data. Otherwise, interrupt handler
4027 * takes over after sending the data.
4028 */
4029 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4030
4031 /* check device status */
4032 if (unlikely((status & ATA_DRQ) == 0)) {
4033 /* handle BSY=0, DRQ=0 as error */
4034 if (likely(status & (ATA_ERR | ATA_DF)))
4035 /* device stops HSM for abort/error */
4036 qc->err_mask |= AC_ERR_DEV;
4037 else
4038 /* HSM violation. Let EH handle this */
4039 qc->err_mask |= AC_ERR_HSM;
4040
4041 ap->hsm_task_state = HSM_ST_ERR;
4042 goto fsm_start;
4043 }
4044
4045 /* Device should not ask for data transfer (DRQ=1)
4046 * when it finds something wrong.
4047 * We ignore DRQ here and stop the HSM by
4048 * changing hsm_task_state to HSM_ST_ERR and
4049 * let the EH abort the command or reset the device.
4050 */
4051 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4052 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4053 ap->id, status);
4054 qc->err_mask |= AC_ERR_HSM;
4055 ap->hsm_task_state = HSM_ST_ERR;
4056 goto fsm_start;
4057 }
4058
4059 /* Send the CDB (atapi) or the first data block (ata pio out).
4060 * During the state transition, interrupt handler shouldn't
4061 * be invoked before the data transfer is complete and
4062 * hsm_task_state is changed. Hence, the following locking.
4063 */
4064 if (in_wq)
4065 spin_lock_irqsave(ap->lock, flags);
4066
4067 if (qc->tf.protocol == ATA_PROT_PIO) {
4068 /* PIO data out protocol.
4069 * send first data block.
4070 */
4071
4072 /* ata_pio_sectors() might change the state
4073 * to HSM_ST_LAST. so, the state is changed here
4074 * before ata_pio_sectors().
4075 */
4076 ap->hsm_task_state = HSM_ST;
4077 ata_pio_sectors(qc);
4078 ata_altstatus(ap); /* flush */
4079 } else
4080 /* send CDB */
4081 atapi_send_cdb(ap, qc);
4082
4083 if (in_wq)
4084 spin_unlock_irqrestore(ap->lock, flags);
4085
4086 /* if polling, ata_pio_task() handles the rest.
4087 * otherwise, interrupt handler takes over from here.
4088 */
4089 break;
4090
4091 case HSM_ST:
4092 /* complete command or read/write the data register */
4093 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4094 /* ATAPI PIO protocol */
4095 if ((status & ATA_DRQ) == 0) {
4096 /* No more data to transfer or device error.
4097 * Device error will be tagged in HSM_ST_LAST.
4098 */
4099 ap->hsm_task_state = HSM_ST_LAST;
4100 goto fsm_start;
4101 }
4102
4103 /* Device should not ask for data transfer (DRQ=1)
4104 * when it finds something wrong.
4105 * We ignore DRQ here and stop the HSM by
4106 * changing hsm_task_state to HSM_ST_ERR and
4107 * let the EH abort the command or reset the device.
4108 */
4109 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4110 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4111 ap->id, status);
4112 qc->err_mask |= AC_ERR_HSM;
4113 ap->hsm_task_state = HSM_ST_ERR;
4114 goto fsm_start;
4115 }
4116
4117 atapi_pio_bytes(qc);
4118
4119 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4120 /* bad ireason reported by device */
4121 goto fsm_start;
4122
4123 } else {
4124 /* ATA PIO protocol */
4125 if (unlikely((status & ATA_DRQ) == 0)) {
4126 /* handle BSY=0, DRQ=0 as error */
4127 if (likely(status & (ATA_ERR | ATA_DF)))
4128 /* device stops HSM for abort/error */
4129 qc->err_mask |= AC_ERR_DEV;
4130 else
4131 /* HSM violation. Let EH handle this */
4132 qc->err_mask |= AC_ERR_HSM;
4133
4134 ap->hsm_task_state = HSM_ST_ERR;
4135 goto fsm_start;
4136 }
4137
4138 /* For PIO reads, some devices may ask for
4139 * data transfer (DRQ=1) alone with ERR=1.
4140 * We respect DRQ here and transfer one
4141 * block of junk data before changing the
4142 * hsm_task_state to HSM_ST_ERR.
4143 *
4144 * For PIO writes, ERR=1 DRQ=1 doesn't make
4145 * sense since the data block has been
4146 * transferred to the device.
4147 */
4148 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4149 /* data might be corrputed */
4150 qc->err_mask |= AC_ERR_DEV;
4151
4152 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4153 ata_pio_sectors(qc);
4154 ata_altstatus(ap);
4155 status = ata_wait_idle(ap);
4156 }
4157
4158 if (status & (ATA_BUSY | ATA_DRQ))
4159 qc->err_mask |= AC_ERR_HSM;
4160
4161 /* ata_pio_sectors() might change the
4162 * state to HSM_ST_LAST. so, the state
4163 * is changed after ata_pio_sectors().
4164 */
4165 ap->hsm_task_state = HSM_ST_ERR;
4166 goto fsm_start;
4167 }
4168
4169 ata_pio_sectors(qc);
4170
4171 if (ap->hsm_task_state == HSM_ST_LAST &&
4172 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4173 /* all data read */
4174 ata_altstatus(ap);
4175 status = ata_wait_idle(ap);
4176 goto fsm_start;
4177 }
4178 }
4179
4180 ata_altstatus(ap); /* flush */
4181 poll_next = 1;
4182 break;
4183
4184 case HSM_ST_LAST:
4185 if (unlikely(!ata_ok(status))) {
4186 qc->err_mask |= __ac_err_mask(status);
4187 ap->hsm_task_state = HSM_ST_ERR;
4188 goto fsm_start;
4189 }
4190
4191 /* no more data to transfer */
4192 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4193 ap->id, qc->dev->devno, status);
4194
4195 WARN_ON(qc->err_mask);
4196
4197 ap->hsm_task_state = HSM_ST_IDLE;
4198
4199 /* complete taskfile transaction */
4200 ata_hsm_qc_complete(qc, in_wq);
4201
4202 poll_next = 0;
4203 break;
4204
4205 case HSM_ST_ERR:
4206 /* make sure qc->err_mask is available to
4207 * know what's wrong and recover
4208 */
4209 WARN_ON(qc->err_mask == 0);
4210
4211 ap->hsm_task_state = HSM_ST_IDLE;
4212
4213 /* complete taskfile transaction */
4214 ata_hsm_qc_complete(qc, in_wq);
4215
4216 poll_next = 0;
4217 break;
4218 default:
4219 poll_next = 0;
4220 BUG();
4221 }
4222
4223 return poll_next;
4224 }
4225
4226 static void ata_pio_task(void *_data)
4227 {
4228 struct ata_queued_cmd *qc = _data;
4229 struct ata_port *ap = qc->ap;
4230 u8 status;
4231 int poll_next;
4232
4233 fsm_start:
4234 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4235
4236 /*
4237 * This is purely heuristic. This is a fast path.
4238 * Sometimes when we enter, BSY will be cleared in
4239 * a chk-status or two. If not, the drive is probably seeking
4240 * or something. Snooze for a couple msecs, then
4241 * chk-status again. If still busy, queue delayed work.
4242 */
4243 status = ata_busy_wait(ap, ATA_BUSY, 5);
4244 if (status & ATA_BUSY) {
4245 msleep(2);
4246 status = ata_busy_wait(ap, ATA_BUSY, 10);
4247 if (status & ATA_BUSY) {
4248 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4249 return;
4250 }
4251 }
4252
4253 /* move the HSM */
4254 poll_next = ata_hsm_move(ap, qc, status, 1);
4255
4256 /* another command or interrupt handler
4257 * may be running at this point.
4258 */
4259 if (poll_next)
4260 goto fsm_start;
4261 }
4262
4263 /**
4264 * ata_qc_new - Request an available ATA command, for queueing
4265 * @ap: Port associated with device @dev
4266 * @dev: Device from whom we request an available command structure
4267 *
4268 * LOCKING:
4269 * None.
4270 */
4271
4272 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4273 {
4274 struct ata_queued_cmd *qc = NULL;
4275 unsigned int i;
4276
4277 /* no command while frozen */
4278 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4279 return NULL;
4280
4281 /* the last tag is reserved for internal command. */
4282 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4283 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4284 qc = __ata_qc_from_tag(ap, i);
4285 break;
4286 }
4287
4288 if (qc)
4289 qc->tag = i;
4290
4291 return qc;
4292 }
4293
4294 /**
4295 * ata_qc_new_init - Request an available ATA command, and initialize it
4296 * @dev: Device from whom we request an available command structure
4297 *
4298 * LOCKING:
4299 * None.
4300 */
4301
4302 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4303 {
4304 struct ata_port *ap = dev->ap;
4305 struct ata_queued_cmd *qc;
4306
4307 qc = ata_qc_new(ap);
4308 if (qc) {
4309 qc->scsicmd = NULL;
4310 qc->ap = ap;
4311 qc->dev = dev;
4312
4313 ata_qc_reinit(qc);
4314 }
4315
4316 return qc;
4317 }
4318
4319 /**
4320 * ata_qc_free - free unused ata_queued_cmd
4321 * @qc: Command to complete
4322 *
4323 * Designed to free unused ata_queued_cmd object
4324 * in case something prevents using it.
4325 *
4326 * LOCKING:
4327 * spin_lock_irqsave(host_set lock)
4328 */
4329 void ata_qc_free(struct ata_queued_cmd *qc)
4330 {
4331 struct ata_port *ap = qc->ap;
4332 unsigned int tag;
4333
4334 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4335
4336 qc->flags = 0;
4337 tag = qc->tag;
4338 if (likely(ata_tag_valid(tag))) {
4339 qc->tag = ATA_TAG_POISON;
4340 clear_bit(tag, &ap->qc_allocated);
4341 }
4342 }
4343
4344 void __ata_qc_complete(struct ata_queued_cmd *qc)
4345 {
4346 struct ata_port *ap = qc->ap;
4347
4348 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4349 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4350
4351 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4352 ata_sg_clean(qc);
4353
4354 /* command should be marked inactive atomically with qc completion */
4355 if (qc->tf.protocol == ATA_PROT_NCQ)
4356 ap->sactive &= ~(1 << qc->tag);
4357 else
4358 ap->active_tag = ATA_TAG_POISON;
4359
4360 /* atapi: mark qc as inactive to prevent the interrupt handler
4361 * from completing the command twice later, before the error handler
4362 * is called. (when rc != 0 and atapi request sense is needed)
4363 */
4364 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4365 ap->qc_active &= ~(1 << qc->tag);
4366
4367 /* call completion callback */
4368 qc->complete_fn(qc);
4369 }
4370
4371 /**
4372 * ata_qc_complete - Complete an active ATA command
4373 * @qc: Command to complete
4374 * @err_mask: ATA Status register contents
4375 *
4376 * Indicate to the mid and upper layers that an ATA
4377 * command has completed, with either an ok or not-ok status.
4378 *
4379 * LOCKING:
4380 * spin_lock_irqsave(host_set lock)
4381 */
4382 void ata_qc_complete(struct ata_queued_cmd *qc)
4383 {
4384 struct ata_port *ap = qc->ap;
4385
4386 /* XXX: New EH and old EH use different mechanisms to
4387 * synchronize EH with regular execution path.
4388 *
4389 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4390 * Normal execution path is responsible for not accessing a
4391 * failed qc. libata core enforces the rule by returning NULL
4392 * from ata_qc_from_tag() for failed qcs.
4393 *
4394 * Old EH depends on ata_qc_complete() nullifying completion
4395 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4396 * not synchronize with interrupt handler. Only PIO task is
4397 * taken care of.
4398 */
4399 if (ap->ops->error_handler) {
4400 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4401
4402 if (unlikely(qc->err_mask))
4403 qc->flags |= ATA_QCFLAG_FAILED;
4404
4405 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4406 if (!ata_tag_internal(qc->tag)) {
4407 /* always fill result TF for failed qc */
4408 ap->ops->tf_read(ap, &qc->result_tf);
4409 ata_qc_schedule_eh(qc);
4410 return;
4411 }
4412 }
4413
4414 /* read result TF if requested */
4415 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4416 ap->ops->tf_read(ap, &qc->result_tf);
4417
4418 __ata_qc_complete(qc);
4419 } else {
4420 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4421 return;
4422
4423 /* read result TF if failed or requested */
4424 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4425 ap->ops->tf_read(ap, &qc->result_tf);
4426
4427 __ata_qc_complete(qc);
4428 }
4429 }
4430
4431 /**
4432 * ata_qc_complete_multiple - Complete multiple qcs successfully
4433 * @ap: port in question
4434 * @qc_active: new qc_active mask
4435 * @finish_qc: LLDD callback invoked before completing a qc
4436 *
4437 * Complete in-flight commands. This functions is meant to be
4438 * called from low-level driver's interrupt routine to complete
4439 * requests normally. ap->qc_active and @qc_active is compared
4440 * and commands are completed accordingly.
4441 *
4442 * LOCKING:
4443 * spin_lock_irqsave(host_set lock)
4444 *
4445 * RETURNS:
4446 * Number of completed commands on success, -errno otherwise.
4447 */
4448 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4449 void (*finish_qc)(struct ata_queued_cmd *))
4450 {
4451 int nr_done = 0;
4452 u32 done_mask;
4453 int i;
4454
4455 done_mask = ap->qc_active ^ qc_active;
4456
4457 if (unlikely(done_mask & qc_active)) {
4458 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4459 "(%08x->%08x)\n", ap->qc_active, qc_active);
4460 return -EINVAL;
4461 }
4462
4463 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4464 struct ata_queued_cmd *qc;
4465
4466 if (!(done_mask & (1 << i)))
4467 continue;
4468
4469 if ((qc = ata_qc_from_tag(ap, i))) {
4470 if (finish_qc)
4471 finish_qc(qc);
4472 ata_qc_complete(qc);
4473 nr_done++;
4474 }
4475 }
4476
4477 return nr_done;
4478 }
4479
4480 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4481 {
4482 struct ata_port *ap = qc->ap;
4483
4484 switch (qc->tf.protocol) {
4485 case ATA_PROT_NCQ:
4486 case ATA_PROT_DMA:
4487 case ATA_PROT_ATAPI_DMA:
4488 return 1;
4489
4490 case ATA_PROT_ATAPI:
4491 case ATA_PROT_PIO:
4492 if (ap->flags & ATA_FLAG_PIO_DMA)
4493 return 1;
4494
4495 /* fall through */
4496
4497 default:
4498 return 0;
4499 }
4500
4501 /* never reached */
4502 }
4503
4504 /**
4505 * ata_qc_issue - issue taskfile to device
4506 * @qc: command to issue to device
4507 *
4508 * Prepare an ATA command to submission to device.
4509 * This includes mapping the data into a DMA-able
4510 * area, filling in the S/G table, and finally
4511 * writing the taskfile to hardware, starting the command.
4512 *
4513 * LOCKING:
4514 * spin_lock_irqsave(host_set lock)
4515 */
4516 void ata_qc_issue(struct ata_queued_cmd *qc)
4517 {
4518 struct ata_port *ap = qc->ap;
4519
4520 /* Make sure only one non-NCQ command is outstanding. The
4521 * check is skipped for old EH because it reuses active qc to
4522 * request ATAPI sense.
4523 */
4524 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4525
4526 if (qc->tf.protocol == ATA_PROT_NCQ) {
4527 WARN_ON(ap->sactive & (1 << qc->tag));
4528 ap->sactive |= 1 << qc->tag;
4529 } else {
4530 WARN_ON(ap->sactive);
4531 ap->active_tag = qc->tag;
4532 }
4533
4534 qc->flags |= ATA_QCFLAG_ACTIVE;
4535 ap->qc_active |= 1 << qc->tag;
4536
4537 if (ata_should_dma_map(qc)) {
4538 if (qc->flags & ATA_QCFLAG_SG) {
4539 if (ata_sg_setup(qc))
4540 goto sg_err;
4541 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4542 if (ata_sg_setup_one(qc))
4543 goto sg_err;
4544 }
4545 } else {
4546 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4547 }
4548
4549 ap->ops->qc_prep(qc);
4550
4551 qc->err_mask |= ap->ops->qc_issue(qc);
4552 if (unlikely(qc->err_mask))
4553 goto err;
4554 return;
4555
4556 sg_err:
4557 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4558 qc->err_mask |= AC_ERR_SYSTEM;
4559 err:
4560 ata_qc_complete(qc);
4561 }
4562
4563 /**
4564 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4565 * @qc: command to issue to device
4566 *
4567 * Using various libata functions and hooks, this function
4568 * starts an ATA command. ATA commands are grouped into
4569 * classes called "protocols", and issuing each type of protocol
4570 * is slightly different.
4571 *
4572 * May be used as the qc_issue() entry in ata_port_operations.
4573 *
4574 * LOCKING:
4575 * spin_lock_irqsave(host_set lock)
4576 *
4577 * RETURNS:
4578 * Zero on success, AC_ERR_* mask on failure
4579 */
4580
4581 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4582 {
4583 struct ata_port *ap = qc->ap;
4584
4585 /* Use polling pio if the LLD doesn't handle
4586 * interrupt driven pio and atapi CDB interrupt.
4587 */
4588 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4589 switch (qc->tf.protocol) {
4590 case ATA_PROT_PIO:
4591 case ATA_PROT_ATAPI:
4592 case ATA_PROT_ATAPI_NODATA:
4593 qc->tf.flags |= ATA_TFLAG_POLLING;
4594 break;
4595 case ATA_PROT_ATAPI_DMA:
4596 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4597 /* see ata_dma_blacklisted() */
4598 BUG();
4599 break;
4600 default:
4601 break;
4602 }
4603 }
4604
4605 /* select the device */
4606 ata_dev_select(ap, qc->dev->devno, 1, 0);
4607
4608 /* start the command */
4609 switch (qc->tf.protocol) {
4610 case ATA_PROT_NODATA:
4611 if (qc->tf.flags & ATA_TFLAG_POLLING)
4612 ata_qc_set_polling(qc);
4613
4614 ata_tf_to_host(ap, &qc->tf);
4615 ap->hsm_task_state = HSM_ST_LAST;
4616
4617 if (qc->tf.flags & ATA_TFLAG_POLLING)
4618 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4619
4620 break;
4621
4622 case ATA_PROT_DMA:
4623 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4624
4625 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4626 ap->ops->bmdma_setup(qc); /* set up bmdma */
4627 ap->ops->bmdma_start(qc); /* initiate bmdma */
4628 ap->hsm_task_state = HSM_ST_LAST;
4629 break;
4630
4631 case ATA_PROT_PIO:
4632 if (qc->tf.flags & ATA_TFLAG_POLLING)
4633 ata_qc_set_polling(qc);
4634
4635 ata_tf_to_host(ap, &qc->tf);
4636
4637 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4638 /* PIO data out protocol */
4639 ap->hsm_task_state = HSM_ST_FIRST;
4640 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4641
4642 /* always send first data block using
4643 * the ata_pio_task() codepath.
4644 */
4645 } else {
4646 /* PIO data in protocol */
4647 ap->hsm_task_state = HSM_ST;
4648
4649 if (qc->tf.flags & ATA_TFLAG_POLLING)
4650 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4651
4652 /* if polling, ata_pio_task() handles the rest.
4653 * otherwise, interrupt handler takes over from here.
4654 */
4655 }
4656
4657 break;
4658
4659 case ATA_PROT_ATAPI:
4660 case ATA_PROT_ATAPI_NODATA:
4661 if (qc->tf.flags & ATA_TFLAG_POLLING)
4662 ata_qc_set_polling(qc);
4663
4664 ata_tf_to_host(ap, &qc->tf);
4665
4666 ap->hsm_task_state = HSM_ST_FIRST;
4667
4668 /* send cdb by polling if no cdb interrupt */
4669 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4670 (qc->tf.flags & ATA_TFLAG_POLLING))
4671 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4672 break;
4673
4674 case ATA_PROT_ATAPI_DMA:
4675 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4676
4677 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4678 ap->ops->bmdma_setup(qc); /* set up bmdma */
4679 ap->hsm_task_state = HSM_ST_FIRST;
4680
4681 /* send cdb by polling if no cdb interrupt */
4682 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4683 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4684 break;
4685
4686 default:
4687 WARN_ON(1);
4688 return AC_ERR_SYSTEM;
4689 }
4690
4691 return 0;
4692 }
4693
4694 /**
4695 * ata_host_intr - Handle host interrupt for given (port, task)
4696 * @ap: Port on which interrupt arrived (possibly...)
4697 * @qc: Taskfile currently active in engine
4698 *
4699 * Handle host interrupt for given queued command. Currently,
4700 * only DMA interrupts are handled. All other commands are
4701 * handled via polling with interrupts disabled (nIEN bit).
4702 *
4703 * LOCKING:
4704 * spin_lock_irqsave(host_set lock)
4705 *
4706 * RETURNS:
4707 * One if interrupt was handled, zero if not (shared irq).
4708 */
4709
4710 inline unsigned int ata_host_intr (struct ata_port *ap,
4711 struct ata_queued_cmd *qc)
4712 {
4713 u8 status, host_stat = 0;
4714
4715 VPRINTK("ata%u: protocol %d task_state %d\n",
4716 ap->id, qc->tf.protocol, ap->hsm_task_state);
4717
4718 /* Check whether we are expecting interrupt in this state */
4719 switch (ap->hsm_task_state) {
4720 case HSM_ST_FIRST:
4721 /* Some pre-ATAPI-4 devices assert INTRQ
4722 * at this state when ready to receive CDB.
4723 */
4724
4725 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4726 * The flag was turned on only for atapi devices.
4727 * No need to check is_atapi_taskfile(&qc->tf) again.
4728 */
4729 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4730 goto idle_irq;
4731 break;
4732 case HSM_ST_LAST:
4733 if (qc->tf.protocol == ATA_PROT_DMA ||
4734 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4735 /* check status of DMA engine */
4736 host_stat = ap->ops->bmdma_status(ap);
4737 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4738
4739 /* if it's not our irq... */
4740 if (!(host_stat & ATA_DMA_INTR))
4741 goto idle_irq;
4742
4743 /* before we do anything else, clear DMA-Start bit */
4744 ap->ops->bmdma_stop(qc);
4745
4746 if (unlikely(host_stat & ATA_DMA_ERR)) {
4747 /* error when transfering data to/from memory */
4748 qc->err_mask |= AC_ERR_HOST_BUS;
4749 ap->hsm_task_state = HSM_ST_ERR;
4750 }
4751 }
4752 break;
4753 case HSM_ST:
4754 break;
4755 default:
4756 goto idle_irq;
4757 }
4758
4759 /* check altstatus */
4760 status = ata_altstatus(ap);
4761 if (status & ATA_BUSY)
4762 goto idle_irq;
4763
4764 /* check main status, clearing INTRQ */
4765 status = ata_chk_status(ap);
4766 if (unlikely(status & ATA_BUSY))
4767 goto idle_irq;
4768
4769 /* ack bmdma irq events */
4770 ap->ops->irq_clear(ap);
4771
4772 ata_hsm_move(ap, qc, status, 0);
4773 return 1; /* irq handled */
4774
4775 idle_irq:
4776 ap->stats.idle_irq++;
4777
4778 #ifdef ATA_IRQ_TRAP
4779 if ((ap->stats.idle_irq % 1000) == 0) {
4780 ata_irq_ack(ap, 0); /* debug trap */
4781 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
4782 return 1;
4783 }
4784 #endif
4785 return 0; /* irq not handled */
4786 }
4787
4788 /**
4789 * ata_interrupt - Default ATA host interrupt handler
4790 * @irq: irq line (unused)
4791 * @dev_instance: pointer to our ata_host_set information structure
4792 * @regs: unused
4793 *
4794 * Default interrupt handler for PCI IDE devices. Calls
4795 * ata_host_intr() for each port that is not disabled.
4796 *
4797 * LOCKING:
4798 * Obtains host_set lock during operation.
4799 *
4800 * RETURNS:
4801 * IRQ_NONE or IRQ_HANDLED.
4802 */
4803
4804 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4805 {
4806 struct ata_host_set *host_set = dev_instance;
4807 unsigned int i;
4808 unsigned int handled = 0;
4809 unsigned long flags;
4810
4811 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4812 spin_lock_irqsave(&host_set->lock, flags);
4813
4814 for (i = 0; i < host_set->n_ports; i++) {
4815 struct ata_port *ap;
4816
4817 ap = host_set->ports[i];
4818 if (ap &&
4819 !(ap->flags & ATA_FLAG_DISABLED)) {
4820 struct ata_queued_cmd *qc;
4821
4822 qc = ata_qc_from_tag(ap, ap->active_tag);
4823 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
4824 (qc->flags & ATA_QCFLAG_ACTIVE))
4825 handled |= ata_host_intr(ap, qc);
4826 }
4827 }
4828
4829 spin_unlock_irqrestore(&host_set->lock, flags);
4830
4831 return IRQ_RETVAL(handled);
4832 }
4833
4834 /**
4835 * sata_scr_valid - test whether SCRs are accessible
4836 * @ap: ATA port to test SCR accessibility for
4837 *
4838 * Test whether SCRs are accessible for @ap.
4839 *
4840 * LOCKING:
4841 * None.
4842 *
4843 * RETURNS:
4844 * 1 if SCRs are accessible, 0 otherwise.
4845 */
4846 int sata_scr_valid(struct ata_port *ap)
4847 {
4848 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4849 }
4850
4851 /**
4852 * sata_scr_read - read SCR register of the specified port
4853 * @ap: ATA port to read SCR for
4854 * @reg: SCR to read
4855 * @val: Place to store read value
4856 *
4857 * Read SCR register @reg of @ap into *@val. This function is
4858 * guaranteed to succeed if the cable type of the port is SATA
4859 * and the port implements ->scr_read.
4860 *
4861 * LOCKING:
4862 * None.
4863 *
4864 * RETURNS:
4865 * 0 on success, negative errno on failure.
4866 */
4867 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4868 {
4869 if (sata_scr_valid(ap)) {
4870 *val = ap->ops->scr_read(ap, reg);
4871 return 0;
4872 }
4873 return -EOPNOTSUPP;
4874 }
4875
4876 /**
4877 * sata_scr_write - write SCR register of the specified port
4878 * @ap: ATA port to write SCR for
4879 * @reg: SCR to write
4880 * @val: value to write
4881 *
4882 * Write @val to SCR register @reg of @ap. This function is
4883 * guaranteed to succeed if the cable type of the port is SATA
4884 * and the port implements ->scr_read.
4885 *
4886 * LOCKING:
4887 * None.
4888 *
4889 * RETURNS:
4890 * 0 on success, negative errno on failure.
4891 */
4892 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4893 {
4894 if (sata_scr_valid(ap)) {
4895 ap->ops->scr_write(ap, reg, val);
4896 return 0;
4897 }
4898 return -EOPNOTSUPP;
4899 }
4900
4901 /**
4902 * sata_scr_write_flush - write SCR register of the specified port and flush
4903 * @ap: ATA port to write SCR for
4904 * @reg: SCR to write
4905 * @val: value to write
4906 *
4907 * This function is identical to sata_scr_write() except that this
4908 * function performs flush after writing to the register.
4909 *
4910 * LOCKING:
4911 * None.
4912 *
4913 * RETURNS:
4914 * 0 on success, negative errno on failure.
4915 */
4916 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4917 {
4918 if (sata_scr_valid(ap)) {
4919 ap->ops->scr_write(ap, reg, val);
4920 ap->ops->scr_read(ap, reg);
4921 return 0;
4922 }
4923 return -EOPNOTSUPP;
4924 }
4925
4926 /**
4927 * ata_port_online - test whether the given port is online
4928 * @ap: ATA port to test
4929 *
4930 * Test whether @ap is online. Note that this function returns 0
4931 * if online status of @ap cannot be obtained, so
4932 * ata_port_online(ap) != !ata_port_offline(ap).
4933 *
4934 * LOCKING:
4935 * None.
4936 *
4937 * RETURNS:
4938 * 1 if the port online status is available and online.
4939 */
4940 int ata_port_online(struct ata_port *ap)
4941 {
4942 u32 sstatus;
4943
4944 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4945 return 1;
4946 return 0;
4947 }
4948
4949 /**
4950 * ata_port_offline - test whether the given port is offline
4951 * @ap: ATA port to test
4952 *
4953 * Test whether @ap is offline. Note that this function returns
4954 * 0 if offline status of @ap cannot be obtained, so
4955 * ata_port_online(ap) != !ata_port_offline(ap).
4956 *
4957 * LOCKING:
4958 * None.
4959 *
4960 * RETURNS:
4961 * 1 if the port offline status is available and offline.
4962 */
4963 int ata_port_offline(struct ata_port *ap)
4964 {
4965 u32 sstatus;
4966
4967 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4968 return 1;
4969 return 0;
4970 }
4971
4972 int ata_flush_cache(struct ata_device *dev)
4973 {
4974 unsigned int err_mask;
4975 u8 cmd;
4976
4977 if (!ata_try_flush_cache(dev))
4978 return 0;
4979
4980 if (ata_id_has_flush_ext(dev->id))
4981 cmd = ATA_CMD_FLUSH_EXT;
4982 else
4983 cmd = ATA_CMD_FLUSH;
4984
4985 err_mask = ata_do_simple_cmd(dev, cmd);
4986 if (err_mask) {
4987 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
4988 return -EIO;
4989 }
4990
4991 return 0;
4992 }
4993
4994 static int ata_host_set_request_pm(struct ata_host_set *host_set,
4995 pm_message_t mesg, unsigned int action,
4996 unsigned int ehi_flags, int wait)
4997 {
4998 unsigned long flags;
4999 int i, rc;
5000
5001 for (i = 0; i < host_set->n_ports; i++) {
5002 struct ata_port *ap = host_set->ports[i];
5003
5004 /* Previous resume operation might still be in
5005 * progress. Wait for PM_PENDING to clear.
5006 */
5007 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5008 ata_port_wait_eh(ap);
5009 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5010 }
5011
5012 /* request PM ops to EH */
5013 spin_lock_irqsave(ap->lock, flags);
5014
5015 ap->pm_mesg = mesg;
5016 if (wait) {
5017 rc = 0;
5018 ap->pm_result = &rc;
5019 }
5020
5021 ap->pflags |= ATA_PFLAG_PM_PENDING;
5022 ap->eh_info.action |= action;
5023 ap->eh_info.flags |= ehi_flags;
5024
5025 ata_port_schedule_eh(ap);
5026
5027 spin_unlock_irqrestore(ap->lock, flags);
5028
5029 /* wait and check result */
5030 if (wait) {
5031 ata_port_wait_eh(ap);
5032 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5033 if (rc)
5034 return rc;
5035 }
5036 }
5037
5038 return 0;
5039 }
5040
5041 /**
5042 * ata_host_set_suspend - suspend host_set
5043 * @host_set: host_set to suspend
5044 * @mesg: PM message
5045 *
5046 * Suspend @host_set. Actual operation is performed by EH. This
5047 * function requests EH to perform PM operations and waits for EH
5048 * to finish.
5049 *
5050 * LOCKING:
5051 * Kernel thread context (may sleep).
5052 *
5053 * RETURNS:
5054 * 0 on success, -errno on failure.
5055 */
5056 int ata_host_set_suspend(struct ata_host_set *host_set, pm_message_t mesg)
5057 {
5058 int i, j, rc;
5059
5060 rc = ata_host_set_request_pm(host_set, mesg, 0, ATA_EHI_QUIET, 1);
5061 if (rc)
5062 goto fail;
5063
5064 /* EH is quiescent now. Fail if we have any ready device.
5065 * This happens if hotplug occurs between completion of device
5066 * suspension and here.
5067 */
5068 for (i = 0; i < host_set->n_ports; i++) {
5069 struct ata_port *ap = host_set->ports[i];
5070
5071 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5072 struct ata_device *dev = &ap->device[j];
5073
5074 if (ata_dev_ready(dev)) {
5075 ata_port_printk(ap, KERN_WARNING,
5076 "suspend failed, device %d "
5077 "still active\n", dev->devno);
5078 rc = -EBUSY;
5079 goto fail;
5080 }
5081 }
5082 }
5083
5084 host_set->dev->power.power_state = mesg;
5085 return 0;
5086
5087 fail:
5088 ata_host_set_resume(host_set);
5089 return rc;
5090 }
5091
5092 /**
5093 * ata_host_set_resume - resume host_set
5094 * @host_set: host_set to resume
5095 *
5096 * Resume @host_set. Actual operation is performed by EH. This
5097 * function requests EH to perform PM operations and returns.
5098 * Note that all resume operations are performed parallely.
5099 *
5100 * LOCKING:
5101 * Kernel thread context (may sleep).
5102 */
5103 void ata_host_set_resume(struct ata_host_set *host_set)
5104 {
5105 ata_host_set_request_pm(host_set, PMSG_ON, ATA_EH_SOFTRESET,
5106 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5107 host_set->dev->power.power_state = PMSG_ON;
5108 }
5109
5110 /**
5111 * ata_port_start - Set port up for dma.
5112 * @ap: Port to initialize
5113 *
5114 * Called just after data structures for each port are
5115 * initialized. Allocates space for PRD table.
5116 *
5117 * May be used as the port_start() entry in ata_port_operations.
5118 *
5119 * LOCKING:
5120 * Inherited from caller.
5121 */
5122
5123 int ata_port_start (struct ata_port *ap)
5124 {
5125 struct device *dev = ap->dev;
5126 int rc;
5127
5128 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5129 if (!ap->prd)
5130 return -ENOMEM;
5131
5132 rc = ata_pad_alloc(ap, dev);
5133 if (rc) {
5134 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5135 return rc;
5136 }
5137
5138 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5139
5140 return 0;
5141 }
5142
5143
5144 /**
5145 * ata_port_stop - Undo ata_port_start()
5146 * @ap: Port to shut down
5147 *
5148 * Frees the PRD table.
5149 *
5150 * May be used as the port_stop() entry in ata_port_operations.
5151 *
5152 * LOCKING:
5153 * Inherited from caller.
5154 */
5155
5156 void ata_port_stop (struct ata_port *ap)
5157 {
5158 struct device *dev = ap->dev;
5159
5160 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5161 ata_pad_free(ap, dev);
5162 }
5163
5164 void ata_host_stop (struct ata_host_set *host_set)
5165 {
5166 if (host_set->mmio_base)
5167 iounmap(host_set->mmio_base);
5168 }
5169
5170 /**
5171 * ata_dev_init - Initialize an ata_device structure
5172 * @dev: Device structure to initialize
5173 *
5174 * Initialize @dev in preparation for probing.
5175 *
5176 * LOCKING:
5177 * Inherited from caller.
5178 */
5179 void ata_dev_init(struct ata_device *dev)
5180 {
5181 struct ata_port *ap = dev->ap;
5182 unsigned long flags;
5183
5184 /* SATA spd limit is bound to the first device */
5185 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5186
5187 /* High bits of dev->flags are used to record warm plug
5188 * requests which occur asynchronously. Synchronize using
5189 * host_set lock.
5190 */
5191 spin_lock_irqsave(ap->lock, flags);
5192 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5193 spin_unlock_irqrestore(ap->lock, flags);
5194
5195 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5196 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5197 dev->pio_mask = UINT_MAX;
5198 dev->mwdma_mask = UINT_MAX;
5199 dev->udma_mask = UINT_MAX;
5200 }
5201
5202 /**
5203 * ata_port_init - Initialize an ata_port structure
5204 * @ap: Structure to initialize
5205 * @host_set: Collection of hosts to which @ap belongs
5206 * @ent: Probe information provided by low-level driver
5207 * @port_no: Port number associated with this ata_port
5208 *
5209 * Initialize a new ata_port structure.
5210 *
5211 * LOCKING:
5212 * Inherited from caller.
5213 */
5214 void ata_port_init(struct ata_port *ap, struct ata_host_set *host_set,
5215 const struct ata_probe_ent *ent, unsigned int port_no)
5216 {
5217 unsigned int i;
5218
5219 ap->lock = &host_set->lock;
5220 ap->flags = ATA_FLAG_DISABLED;
5221 ap->id = ata_unique_id++;
5222 ap->ctl = ATA_DEVCTL_OBS;
5223 ap->host_set = host_set;
5224 ap->dev = ent->dev;
5225 ap->port_no = port_no;
5226 ap->hard_port_no = port_no;
5227 if (ent->legacy_mode)
5228 ap->hard_port_no += ent->hard_port_no;
5229 ap->pio_mask = ent->pio_mask;
5230 ap->mwdma_mask = ent->mwdma_mask;
5231 ap->udma_mask = ent->udma_mask;
5232 ap->flags |= ent->host_flags;
5233 ap->ops = ent->port_ops;
5234 ap->hw_sata_spd_limit = UINT_MAX;
5235 ap->active_tag = ATA_TAG_POISON;
5236 ap->last_ctl = 0xFF;
5237
5238 #if defined(ATA_VERBOSE_DEBUG)
5239 /* turn on all debugging levels */
5240 ap->msg_enable = 0x00FF;
5241 #elif defined(ATA_DEBUG)
5242 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5243 #else
5244 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5245 #endif
5246
5247 INIT_WORK(&ap->port_task, NULL, NULL);
5248 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
5249 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
5250 INIT_LIST_HEAD(&ap->eh_done_q);
5251 init_waitqueue_head(&ap->eh_wait_q);
5252
5253 /* set cable type */
5254 ap->cbl = ATA_CBL_NONE;
5255 if (ap->flags & ATA_FLAG_SATA)
5256 ap->cbl = ATA_CBL_SATA;
5257
5258 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5259 struct ata_device *dev = &ap->device[i];
5260 dev->ap = ap;
5261 dev->devno = i;
5262 ata_dev_init(dev);
5263 }
5264
5265 #ifdef ATA_IRQ_TRAP
5266 ap->stats.unhandled_irq = 1;
5267 ap->stats.idle_irq = 1;
5268 #endif
5269
5270 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5271 }
5272
5273 /**
5274 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5275 * @ap: ATA port to initialize SCSI host for
5276 * @shost: SCSI host associated with @ap
5277 *
5278 * Initialize SCSI host @shost associated with ATA port @ap.
5279 *
5280 * LOCKING:
5281 * Inherited from caller.
5282 */
5283 static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
5284 {
5285 ap->host = shost;
5286
5287 shost->unique_id = ap->id;
5288 shost->max_id = 16;
5289 shost->max_lun = 1;
5290 shost->max_channel = 1;
5291 shost->max_cmd_len = 12;
5292 }
5293
5294 /**
5295 * ata_port_add - Attach low-level ATA driver to system
5296 * @ent: Information provided by low-level driver
5297 * @host_set: Collections of ports to which we add
5298 * @port_no: Port number associated with this host
5299 *
5300 * Attach low-level ATA driver to system.
5301 *
5302 * LOCKING:
5303 * PCI/etc. bus probe sem.
5304 *
5305 * RETURNS:
5306 * New ata_port on success, for NULL on error.
5307 */
5308 static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
5309 struct ata_host_set *host_set,
5310 unsigned int port_no)
5311 {
5312 struct Scsi_Host *shost;
5313 struct ata_port *ap;
5314 int rc;
5315
5316 DPRINTK("ENTER\n");
5317
5318 if (!ent->port_ops->error_handler &&
5319 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5320 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5321 port_no);
5322 return NULL;
5323 }
5324
5325 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5326 if (!shost)
5327 return NULL;
5328
5329 shost->transportt = &ata_scsi_transport_template;
5330
5331 ap = ata_shost_to_port(shost);
5332
5333 ata_port_init(ap, host_set, ent, port_no);
5334 ata_port_init_shost(ap, shost);
5335
5336 rc = ap->ops->port_start(ap);
5337 if (rc)
5338 goto err_out;
5339
5340 return ap;
5341
5342 err_out:
5343 scsi_host_put(shost);
5344 return NULL;
5345 }
5346
5347 /**
5348 * ata_sas_host_init - Initialize a host_set struct
5349 * @host_set: host_set to initialize
5350 * @dev: device host_set is attached to
5351 * @flags: host_set flags
5352 * @ops: port_ops
5353 *
5354 * LOCKING:
5355 * PCI/etc. bus probe sem.
5356 *
5357 */
5358
5359 void ata_host_set_init(struct ata_host_set *host_set,
5360 struct device *dev, unsigned long flags,
5361 const struct ata_port_operations *ops)
5362 {
5363 spin_lock_init(&host_set->lock);
5364 host_set->dev = dev;
5365 host_set->flags = flags;
5366 host_set->ops = ops;
5367 }
5368
5369 /**
5370 * ata_device_add - Register hardware device with ATA and SCSI layers
5371 * @ent: Probe information describing hardware device to be registered
5372 *
5373 * This function processes the information provided in the probe
5374 * information struct @ent, allocates the necessary ATA and SCSI
5375 * host information structures, initializes them, and registers
5376 * everything with requisite kernel subsystems.
5377 *
5378 * This function requests irqs, probes the ATA bus, and probes
5379 * the SCSI bus.
5380 *
5381 * LOCKING:
5382 * PCI/etc. bus probe sem.
5383 *
5384 * RETURNS:
5385 * Number of ports registered. Zero on error (no ports registered).
5386 */
5387 int ata_device_add(const struct ata_probe_ent *ent)
5388 {
5389 unsigned int i;
5390 struct device *dev = ent->dev;
5391 struct ata_host_set *host_set;
5392 int rc;
5393
5394 DPRINTK("ENTER\n");
5395 /* alloc a container for our list of ATA ports (buses) */
5396 host_set = kzalloc(sizeof(struct ata_host_set) +
5397 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5398 if (!host_set)
5399 return 0;
5400
5401 ata_host_set_init(host_set, dev, ent->host_set_flags, ent->port_ops);
5402 host_set->n_ports = ent->n_ports;
5403 host_set->irq = ent->irq;
5404 host_set->irq2 = ent->irq2;
5405 host_set->mmio_base = ent->mmio_base;
5406 host_set->private_data = ent->private_data;
5407
5408 /* register each port bound to this device */
5409 for (i = 0; i < host_set->n_ports; i++) {
5410 struct ata_port *ap;
5411 unsigned long xfer_mode_mask;
5412 int irq_line = ent->irq;
5413
5414 ap = ata_port_add(ent, host_set, i);
5415 if (!ap)
5416 goto err_out;
5417
5418 /* Report the secondary IRQ for second channel legacy */
5419 if (i == 1 && ent->irq2)
5420 irq_line = ent->irq2;
5421
5422 host_set->ports[i] = ap;
5423 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5424 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5425 (ap->pio_mask << ATA_SHIFT_PIO);
5426
5427 /* print per-port info to dmesg */
5428 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5429 "ctl 0x%lX bmdma 0x%lX irq %d\n",
5430 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5431 ata_mode_string(xfer_mode_mask),
5432 ap->ioaddr.cmd_addr,
5433 ap->ioaddr.ctl_addr,
5434 ap->ioaddr.bmdma_addr,
5435 irq_line);
5436
5437 ata_chk_status(ap);
5438 host_set->ops->irq_clear(ap);
5439 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
5440 }
5441
5442 /* obtain irq, that may be shared between channels */
5443 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5444 DRV_NAME, host_set);
5445 if (rc) {
5446 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5447 ent->irq, rc);
5448 goto err_out;
5449 }
5450
5451 /* do we have a second IRQ for the other channel, eg legacy mode */
5452 if (ent->irq2) {
5453 /* We will get weird core code crashes later if this is true
5454 so trap it now */
5455 BUG_ON(ent->irq == ent->irq2);
5456
5457 rc = request_irq(ent->irq2, ent->port_ops->irq_handler, ent->irq_flags,
5458 DRV_NAME, host_set);
5459 if (rc) {
5460 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5461 ent->irq2, rc);
5462 goto err_out_free_irq;
5463 }
5464 }
5465
5466 /* perform each probe synchronously */
5467 DPRINTK("probe begin\n");
5468 for (i = 0; i < host_set->n_ports; i++) {
5469 struct ata_port *ap = host_set->ports[i];
5470 u32 scontrol;
5471 int rc;
5472
5473 /* init sata_spd_limit to the current value */
5474 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5475 int spd = (scontrol >> 4) & 0xf;
5476 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5477 }
5478 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5479
5480 rc = scsi_add_host(ap->host, dev);
5481 if (rc) {
5482 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5483 /* FIXME: do something useful here */
5484 /* FIXME: handle unconditional calls to
5485 * scsi_scan_host and ata_host_remove, below,
5486 * at the very least
5487 */
5488 }
5489
5490 if (ap->ops->error_handler) {
5491 struct ata_eh_info *ehi = &ap->eh_info;
5492 unsigned long flags;
5493
5494 ata_port_probe(ap);
5495
5496 /* kick EH for boot probing */
5497 spin_lock_irqsave(ap->lock, flags);
5498
5499 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5500 ehi->action |= ATA_EH_SOFTRESET;
5501 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5502
5503 ap->pflags |= ATA_PFLAG_LOADING;
5504 ata_port_schedule_eh(ap);
5505
5506 spin_unlock_irqrestore(ap->lock, flags);
5507
5508 /* wait for EH to finish */
5509 ata_port_wait_eh(ap);
5510 } else {
5511 DPRINTK("ata%u: bus probe begin\n", ap->id);
5512 rc = ata_bus_probe(ap);
5513 DPRINTK("ata%u: bus probe end\n", ap->id);
5514
5515 if (rc) {
5516 /* FIXME: do something useful here?
5517 * Current libata behavior will
5518 * tear down everything when
5519 * the module is removed
5520 * or the h/w is unplugged.
5521 */
5522 }
5523 }
5524 }
5525
5526 /* probes are done, now scan each port's disk(s) */
5527 DPRINTK("host probe begin\n");
5528 for (i = 0; i < host_set->n_ports; i++) {
5529 struct ata_port *ap = host_set->ports[i];
5530
5531 ata_scsi_scan_host(ap);
5532 }
5533
5534 dev_set_drvdata(dev, host_set);
5535
5536 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5537 return ent->n_ports; /* success */
5538
5539 err_out_free_irq:
5540 free_irq(ent->irq, host_set);
5541 err_out:
5542 for (i = 0; i < host_set->n_ports; i++) {
5543 struct ata_port *ap = host_set->ports[i];
5544 if (ap) {
5545 ap->ops->port_stop(ap);
5546 scsi_host_put(ap->host);
5547 }
5548 }
5549
5550 kfree(host_set);
5551 VPRINTK("EXIT, returning 0\n");
5552 return 0;
5553 }
5554
5555 /**
5556 * ata_port_detach - Detach ATA port in prepration of device removal
5557 * @ap: ATA port to be detached
5558 *
5559 * Detach all ATA devices and the associated SCSI devices of @ap;
5560 * then, remove the associated SCSI host. @ap is guaranteed to
5561 * be quiescent on return from this function.
5562 *
5563 * LOCKING:
5564 * Kernel thread context (may sleep).
5565 */
5566 void ata_port_detach(struct ata_port *ap)
5567 {
5568 unsigned long flags;
5569 int i;
5570
5571 if (!ap->ops->error_handler)
5572 goto skip_eh;
5573
5574 /* tell EH we're leaving & flush EH */
5575 spin_lock_irqsave(ap->lock, flags);
5576 ap->pflags |= ATA_PFLAG_UNLOADING;
5577 spin_unlock_irqrestore(ap->lock, flags);
5578
5579 ata_port_wait_eh(ap);
5580
5581 /* EH is now guaranteed to see UNLOADING, so no new device
5582 * will be attached. Disable all existing devices.
5583 */
5584 spin_lock_irqsave(ap->lock, flags);
5585
5586 for (i = 0; i < ATA_MAX_DEVICES; i++)
5587 ata_dev_disable(&ap->device[i]);
5588
5589 spin_unlock_irqrestore(ap->lock, flags);
5590
5591 /* Final freeze & EH. All in-flight commands are aborted. EH
5592 * will be skipped and retrials will be terminated with bad
5593 * target.
5594 */
5595 spin_lock_irqsave(ap->lock, flags);
5596 ata_port_freeze(ap); /* won't be thawed */
5597 spin_unlock_irqrestore(ap->lock, flags);
5598
5599 ata_port_wait_eh(ap);
5600
5601 /* Flush hotplug task. The sequence is similar to
5602 * ata_port_flush_task().
5603 */
5604 flush_workqueue(ata_aux_wq);
5605 cancel_delayed_work(&ap->hotplug_task);
5606 flush_workqueue(ata_aux_wq);
5607
5608 skip_eh:
5609 /* remove the associated SCSI host */
5610 scsi_remove_host(ap->host);
5611 }
5612
5613 /**
5614 * ata_host_set_remove - PCI layer callback for device removal
5615 * @host_set: ATA host set that was removed
5616 *
5617 * Unregister all objects associated with this host set. Free those
5618 * objects.
5619 *
5620 * LOCKING:
5621 * Inherited from calling layer (may sleep).
5622 */
5623
5624 void ata_host_set_remove(struct ata_host_set *host_set)
5625 {
5626 unsigned int i;
5627
5628 for (i = 0; i < host_set->n_ports; i++)
5629 ata_port_detach(host_set->ports[i]);
5630
5631 free_irq(host_set->irq, host_set);
5632 if (host_set->irq2)
5633 free_irq(host_set->irq2, host_set);
5634
5635 for (i = 0; i < host_set->n_ports; i++) {
5636 struct ata_port *ap = host_set->ports[i];
5637
5638 ata_scsi_release(ap->host);
5639
5640 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5641 struct ata_ioports *ioaddr = &ap->ioaddr;
5642
5643 /* FIXME: Add -ac IDE pci mods to remove these special cases */
5644 if (ioaddr->cmd_addr == ATA_PRIMARY_CMD)
5645 release_region(ATA_PRIMARY_CMD, 8);
5646 else if (ioaddr->cmd_addr == ATA_SECONDARY_CMD)
5647 release_region(ATA_SECONDARY_CMD, 8);
5648 }
5649
5650 scsi_host_put(ap->host);
5651 }
5652
5653 if (host_set->ops->host_stop)
5654 host_set->ops->host_stop(host_set);
5655
5656 kfree(host_set);
5657 }
5658
5659 /**
5660 * ata_scsi_release - SCSI layer callback hook for host unload
5661 * @host: libata host to be unloaded
5662 *
5663 * Performs all duties necessary to shut down a libata port...
5664 * Kill port kthread, disable port, and release resources.
5665 *
5666 * LOCKING:
5667 * Inherited from SCSI layer.
5668 *
5669 * RETURNS:
5670 * One.
5671 */
5672
5673 int ata_scsi_release(struct Scsi_Host *host)
5674 {
5675 struct ata_port *ap = ata_shost_to_port(host);
5676
5677 DPRINTK("ENTER\n");
5678
5679 ap->ops->port_disable(ap);
5680 ap->ops->port_stop(ap);
5681
5682 DPRINTK("EXIT\n");
5683 return 1;
5684 }
5685
5686 struct ata_probe_ent *
5687 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
5688 {
5689 struct ata_probe_ent *probe_ent;
5690
5691 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
5692 if (!probe_ent) {
5693 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
5694 kobject_name(&(dev->kobj)));
5695 return NULL;
5696 }
5697
5698 INIT_LIST_HEAD(&probe_ent->node);
5699 probe_ent->dev = dev;
5700
5701 probe_ent->sht = port->sht;
5702 probe_ent->host_flags = port->host_flags;
5703 probe_ent->pio_mask = port->pio_mask;
5704 probe_ent->mwdma_mask = port->mwdma_mask;
5705 probe_ent->udma_mask = port->udma_mask;
5706 probe_ent->port_ops = port->port_ops;
5707
5708 return probe_ent;
5709 }
5710
5711 /**
5712 * ata_std_ports - initialize ioaddr with standard port offsets.
5713 * @ioaddr: IO address structure to be initialized
5714 *
5715 * Utility function which initializes data_addr, error_addr,
5716 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5717 * device_addr, status_addr, and command_addr to standard offsets
5718 * relative to cmd_addr.
5719 *
5720 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5721 */
5722
5723 void ata_std_ports(struct ata_ioports *ioaddr)
5724 {
5725 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5726 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5727 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5728 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5729 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5730 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5731 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5732 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5733 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5734 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5735 }
5736
5737
5738 #ifdef CONFIG_PCI
5739
5740 void ata_pci_host_stop (struct ata_host_set *host_set)
5741 {
5742 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5743
5744 pci_iounmap(pdev, host_set->mmio_base);
5745 }
5746
5747 /**
5748 * ata_pci_remove_one - PCI layer callback for device removal
5749 * @pdev: PCI device that was removed
5750 *
5751 * PCI layer indicates to libata via this hook that
5752 * hot-unplug or module unload event has occurred.
5753 * Handle this by unregistering all objects associated
5754 * with this PCI device. Free those objects. Then finally
5755 * release PCI resources and disable device.
5756 *
5757 * LOCKING:
5758 * Inherited from PCI layer (may sleep).
5759 */
5760
5761 void ata_pci_remove_one (struct pci_dev *pdev)
5762 {
5763 struct device *dev = pci_dev_to_dev(pdev);
5764 struct ata_host_set *host_set = dev_get_drvdata(dev);
5765
5766 ata_host_set_remove(host_set);
5767
5768 pci_release_regions(pdev);
5769 pci_disable_device(pdev);
5770 dev_set_drvdata(dev, NULL);
5771 }
5772
5773 /* move to PCI subsystem */
5774 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5775 {
5776 unsigned long tmp = 0;
5777
5778 switch (bits->width) {
5779 case 1: {
5780 u8 tmp8 = 0;
5781 pci_read_config_byte(pdev, bits->reg, &tmp8);
5782 tmp = tmp8;
5783 break;
5784 }
5785 case 2: {
5786 u16 tmp16 = 0;
5787 pci_read_config_word(pdev, bits->reg, &tmp16);
5788 tmp = tmp16;
5789 break;
5790 }
5791 case 4: {
5792 u32 tmp32 = 0;
5793 pci_read_config_dword(pdev, bits->reg, &tmp32);
5794 tmp = tmp32;
5795 break;
5796 }
5797
5798 default:
5799 return -EINVAL;
5800 }
5801
5802 tmp &= bits->mask;
5803
5804 return (tmp == bits->val) ? 1 : 0;
5805 }
5806
5807 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
5808 {
5809 pci_save_state(pdev);
5810
5811 if (mesg.event == PM_EVENT_SUSPEND) {
5812 pci_disable_device(pdev);
5813 pci_set_power_state(pdev, PCI_D3hot);
5814 }
5815 }
5816
5817 void ata_pci_device_do_resume(struct pci_dev *pdev)
5818 {
5819 pci_set_power_state(pdev, PCI_D0);
5820 pci_restore_state(pdev);
5821 pci_enable_device(pdev);
5822 pci_set_master(pdev);
5823 }
5824
5825 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
5826 {
5827 struct ata_host_set *host_set = dev_get_drvdata(&pdev->dev);
5828 int rc = 0;
5829
5830 rc = ata_host_set_suspend(host_set, mesg);
5831 if (rc)
5832 return rc;
5833
5834 ata_pci_device_do_suspend(pdev, mesg);
5835
5836 return 0;
5837 }
5838
5839 int ata_pci_device_resume(struct pci_dev *pdev)
5840 {
5841 struct ata_host_set *host_set = dev_get_drvdata(&pdev->dev);
5842
5843 ata_pci_device_do_resume(pdev);
5844 ata_host_set_resume(host_set);
5845 return 0;
5846 }
5847 #endif /* CONFIG_PCI */
5848
5849
5850 static int __init ata_init(void)
5851 {
5852 ata_probe_timeout *= HZ;
5853 ata_wq = create_workqueue("ata");
5854 if (!ata_wq)
5855 return -ENOMEM;
5856
5857 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5858 if (!ata_aux_wq) {
5859 destroy_workqueue(ata_wq);
5860 return -ENOMEM;
5861 }
5862
5863 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5864 return 0;
5865 }
5866
5867 static void __exit ata_exit(void)
5868 {
5869 destroy_workqueue(ata_wq);
5870 destroy_workqueue(ata_aux_wq);
5871 }
5872
5873 module_init(ata_init);
5874 module_exit(ata_exit);
5875
5876 static unsigned long ratelimit_time;
5877 static DEFINE_SPINLOCK(ata_ratelimit_lock);
5878
5879 int ata_ratelimit(void)
5880 {
5881 int rc;
5882 unsigned long flags;
5883
5884 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5885
5886 if (time_after(jiffies, ratelimit_time)) {
5887 rc = 1;
5888 ratelimit_time = jiffies + (HZ/5);
5889 } else
5890 rc = 0;
5891
5892 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5893
5894 return rc;
5895 }
5896
5897 /**
5898 * ata_wait_register - wait until register value changes
5899 * @reg: IO-mapped register
5900 * @mask: Mask to apply to read register value
5901 * @val: Wait condition
5902 * @interval_msec: polling interval in milliseconds
5903 * @timeout_msec: timeout in milliseconds
5904 *
5905 * Waiting for some bits of register to change is a common
5906 * operation for ATA controllers. This function reads 32bit LE
5907 * IO-mapped register @reg and tests for the following condition.
5908 *
5909 * (*@reg & mask) != val
5910 *
5911 * If the condition is met, it returns; otherwise, the process is
5912 * repeated after @interval_msec until timeout.
5913 *
5914 * LOCKING:
5915 * Kernel thread context (may sleep)
5916 *
5917 * RETURNS:
5918 * The final register value.
5919 */
5920 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5921 unsigned long interval_msec,
5922 unsigned long timeout_msec)
5923 {
5924 unsigned long timeout;
5925 u32 tmp;
5926
5927 tmp = ioread32(reg);
5928
5929 /* Calculate timeout _after_ the first read to make sure
5930 * preceding writes reach the controller before starting to
5931 * eat away the timeout.
5932 */
5933 timeout = jiffies + (timeout_msec * HZ) / 1000;
5934
5935 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5936 msleep(interval_msec);
5937 tmp = ioread32(reg);
5938 }
5939
5940 return tmp;
5941 }
5942
5943 /*
5944 * libata is essentially a library of internal helper functions for
5945 * low-level ATA host controller drivers. As such, the API/ABI is
5946 * likely to change as new drivers are added and updated.
5947 * Do not depend on ABI/API stability.
5948 */
5949
5950 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
5951 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
5952 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
5953 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5954 EXPORT_SYMBOL_GPL(ata_std_ports);
5955 EXPORT_SYMBOL_GPL(ata_host_set_init);
5956 EXPORT_SYMBOL_GPL(ata_device_add);
5957 EXPORT_SYMBOL_GPL(ata_port_detach);
5958 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5959 EXPORT_SYMBOL_GPL(ata_sg_init);
5960 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5961 EXPORT_SYMBOL_GPL(ata_hsm_move);
5962 EXPORT_SYMBOL_GPL(ata_qc_complete);
5963 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
5964 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5965 EXPORT_SYMBOL_GPL(ata_tf_load);
5966 EXPORT_SYMBOL_GPL(ata_tf_read);
5967 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5968 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5969 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5970 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5971 EXPORT_SYMBOL_GPL(ata_check_status);
5972 EXPORT_SYMBOL_GPL(ata_altstatus);
5973 EXPORT_SYMBOL_GPL(ata_exec_command);
5974 EXPORT_SYMBOL_GPL(ata_port_start);
5975 EXPORT_SYMBOL_GPL(ata_port_stop);
5976 EXPORT_SYMBOL_GPL(ata_host_stop);
5977 EXPORT_SYMBOL_GPL(ata_interrupt);
5978 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
5979 EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
5980 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
5981 EXPORT_SYMBOL_GPL(ata_qc_prep);
5982 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
5983 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5984 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5985 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5986 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5987 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5988 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
5989 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
5990 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
5991 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
5992 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
5993 EXPORT_SYMBOL_GPL(ata_port_probe);
5994 EXPORT_SYMBOL_GPL(sata_set_spd);
5995 EXPORT_SYMBOL_GPL(sata_phy_debounce);
5996 EXPORT_SYMBOL_GPL(sata_phy_resume);
5997 EXPORT_SYMBOL_GPL(sata_phy_reset);
5998 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5999 EXPORT_SYMBOL_GPL(ata_bus_reset);
6000 EXPORT_SYMBOL_GPL(ata_std_prereset);
6001 EXPORT_SYMBOL_GPL(ata_std_softreset);
6002 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6003 EXPORT_SYMBOL_GPL(ata_std_postreset);
6004 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
6005 EXPORT_SYMBOL_GPL(ata_dev_classify);
6006 EXPORT_SYMBOL_GPL(ata_dev_pair);
6007 EXPORT_SYMBOL_GPL(ata_port_disable);
6008 EXPORT_SYMBOL_GPL(ata_ratelimit);
6009 EXPORT_SYMBOL_GPL(ata_wait_register);
6010 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6011 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6012 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6013 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6014 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6015 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6016 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6017 EXPORT_SYMBOL_GPL(ata_scsi_release);
6018 EXPORT_SYMBOL_GPL(ata_host_intr);
6019 EXPORT_SYMBOL_GPL(sata_scr_valid);
6020 EXPORT_SYMBOL_GPL(sata_scr_read);
6021 EXPORT_SYMBOL_GPL(sata_scr_write);
6022 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6023 EXPORT_SYMBOL_GPL(ata_port_online);
6024 EXPORT_SYMBOL_GPL(ata_port_offline);
6025 EXPORT_SYMBOL_GPL(ata_host_set_suspend);
6026 EXPORT_SYMBOL_GPL(ata_host_set_resume);
6027 EXPORT_SYMBOL_GPL(ata_id_string);
6028 EXPORT_SYMBOL_GPL(ata_id_c_string);
6029 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6030
6031 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6032 EXPORT_SYMBOL_GPL(ata_timing_compute);
6033 EXPORT_SYMBOL_GPL(ata_timing_merge);
6034
6035 #ifdef CONFIG_PCI
6036 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6037 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
6038 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6039 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6040 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6041 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6042 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6043 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6044 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6045 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6046 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6047 #endif /* CONFIG_PCI */
6048
6049 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6050 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6051
6052 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6053 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6054 EXPORT_SYMBOL_GPL(ata_port_abort);
6055 EXPORT_SYMBOL_GPL(ata_port_freeze);
6056 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6057 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6058 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6059 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6060 EXPORT_SYMBOL_GPL(ata_do_eh);
This page took 0.1566 seconds and 5 git commands to generate.