3b7ad10497febe3f59c300f70806d1f5fec42a60
[deliverable/linux.git] / drivers / scsi / megaraid / megaraid_sas_base.c
1 /*
2 * Linux MegaRAID driver for SAS based RAID controllers
3 *
4 * Copyright (c) 2003-2012 LSI Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 * FILE: megaraid_sas_base.c
21 * Version : 06.700.06.00-rc1
22 *
23 * Authors: LSI Corporation
24 * Sreenivas Bagalkote
25 * Sumant Patro
26 * Bo Yang
27 * Adam Radford <linuxraid@lsi.com>
28 *
29 * Send feedback to: <megaraidlinux@lsi.com>
30 *
31 * Mail to: LSI Corporation, 1621 Barber Lane, Milpitas, CA 95035
32 * ATTN: Linuxraid
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/types.h>
37 #include <linux/pci.h>
38 #include <linux/list.h>
39 #include <linux/moduleparam.h>
40 #include <linux/module.h>
41 #include <linux/spinlock.h>
42 #include <linux/interrupt.h>
43 #include <linux/delay.h>
44 #include <linux/uio.h>
45 #include <linux/slab.h>
46 #include <asm/uaccess.h>
47 #include <linux/fs.h>
48 #include <linux/compat.h>
49 #include <linux/blkdev.h>
50 #include <linux/mutex.h>
51 #include <linux/poll.h>
52
53 #include <scsi/scsi.h>
54 #include <scsi/scsi_cmnd.h>
55 #include <scsi/scsi_device.h>
56 #include <scsi/scsi_host.h>
57 #include <scsi/scsi_tcq.h>
58 #include "megaraid_sas_fusion.h"
59 #include "megaraid_sas.h"
60
61 /*
62 * Number of sectors per IO command
63 * Will be set in megasas_init_mfi if user does not provide
64 */
65 static unsigned int max_sectors;
66 module_param_named(max_sectors, max_sectors, int, 0);
67 MODULE_PARM_DESC(max_sectors,
68 "Maximum number of sectors per IO command");
69
70 static int msix_disable;
71 module_param(msix_disable, int, S_IRUGO);
72 MODULE_PARM_DESC(msix_disable, "Disable MSI-X interrupt handling. Default: 0");
73
74 static unsigned int msix_vectors;
75 module_param(msix_vectors, int, S_IRUGO);
76 MODULE_PARM_DESC(msix_vectors, "MSI-X max vector count. Default: Set by FW");
77
78 static int throttlequeuedepth = MEGASAS_THROTTLE_QUEUE_DEPTH;
79 module_param(throttlequeuedepth, int, S_IRUGO);
80 MODULE_PARM_DESC(throttlequeuedepth,
81 "Adapter queue depth when throttled due to I/O timeout. Default: 16");
82
83 int resetwaittime = MEGASAS_RESET_WAIT_TIME;
84 module_param(resetwaittime, int, S_IRUGO);
85 MODULE_PARM_DESC(resetwaittime, "Wait time in seconds after I/O timeout "
86 "before resetting adapter. Default: 180");
87
88 MODULE_LICENSE("GPL");
89 MODULE_VERSION(MEGASAS_VERSION);
90 MODULE_AUTHOR("megaraidlinux@lsi.com");
91 MODULE_DESCRIPTION("LSI MegaRAID SAS Driver");
92
93 int megasas_transition_to_ready(struct megasas_instance *instance, int ocr);
94 static int megasas_get_pd_list(struct megasas_instance *instance);
95 static int megasas_ld_list_query(struct megasas_instance *instance,
96 u8 query_type);
97 static int megasas_issue_init_mfi(struct megasas_instance *instance);
98 static int megasas_register_aen(struct megasas_instance *instance,
99 u32 seq_num, u32 class_locale_word);
100 /*
101 * PCI ID table for all supported controllers
102 */
103 static struct pci_device_id megasas_pci_table[] = {
104
105 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1064R)},
106 /* xscale IOP */
107 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078R)},
108 /* ppc IOP */
109 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078DE)},
110 /* ppc IOP */
111 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078GEN2)},
112 /* gen2*/
113 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0079GEN2)},
114 /* gen2*/
115 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0073SKINNY)},
116 /* skinny*/
117 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0071SKINNY)},
118 /* skinny*/
119 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VERDE_ZCR)},
120 /* xscale IOP, vega */
121 {PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)},
122 /* xscale IOP */
123 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_FUSION)},
124 /* Fusion */
125 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_INVADER)},
126 /* Invader */
127 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_FURY)},
128 /* Fury */
129 {}
130 };
131
132 MODULE_DEVICE_TABLE(pci, megasas_pci_table);
133
134 static int megasas_mgmt_majorno;
135 static struct megasas_mgmt_info megasas_mgmt_info;
136 static struct fasync_struct *megasas_async_queue;
137 static DEFINE_MUTEX(megasas_async_queue_mutex);
138
139 static int megasas_poll_wait_aen;
140 static DECLARE_WAIT_QUEUE_HEAD(megasas_poll_wait);
141 static u32 support_poll_for_event;
142 u32 megasas_dbg_lvl;
143 static u32 support_device_change;
144
145 /* define lock for aen poll */
146 spinlock_t poll_aen_lock;
147
148 void
149 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
150 u8 alt_status);
151 static u32
152 megasas_read_fw_status_reg_gen2(struct megasas_register_set __iomem *regs);
153 static int
154 megasas_adp_reset_gen2(struct megasas_instance *instance,
155 struct megasas_register_set __iomem *reg_set);
156 static irqreturn_t megasas_isr(int irq, void *devp);
157 static u32
158 megasas_init_adapter_mfi(struct megasas_instance *instance);
159 u32
160 megasas_build_and_issue_cmd(struct megasas_instance *instance,
161 struct scsi_cmnd *scmd);
162 static void megasas_complete_cmd_dpc(unsigned long instance_addr);
163 void
164 megasas_release_fusion(struct megasas_instance *instance);
165 int
166 megasas_ioc_init_fusion(struct megasas_instance *instance);
167 void
168 megasas_free_cmds_fusion(struct megasas_instance *instance);
169 u8
170 megasas_get_map_info(struct megasas_instance *instance);
171 int
172 megasas_sync_map_info(struct megasas_instance *instance);
173 int
174 wait_and_poll(struct megasas_instance *instance, struct megasas_cmd *cmd);
175 void megasas_reset_reply_desc(struct megasas_instance *instance);
176 int megasas_reset_fusion(struct Scsi_Host *shost);
177 void megasas_fusion_ocr_wq(struct work_struct *work);
178
179 void
180 megasas_issue_dcmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
181 {
182 instance->instancet->fire_cmd(instance,
183 cmd->frame_phys_addr, 0, instance->reg_set);
184 }
185
186 /**
187 * megasas_get_cmd - Get a command from the free pool
188 * @instance: Adapter soft state
189 *
190 * Returns a free command from the pool
191 */
192 struct megasas_cmd *megasas_get_cmd(struct megasas_instance
193 *instance)
194 {
195 unsigned long flags;
196 struct megasas_cmd *cmd = NULL;
197
198 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
199
200 if (!list_empty(&instance->cmd_pool)) {
201 cmd = list_entry((&instance->cmd_pool)->next,
202 struct megasas_cmd, list);
203 list_del_init(&cmd->list);
204 } else {
205 printk(KERN_ERR "megasas: Command pool empty!\n");
206 }
207
208 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
209 return cmd;
210 }
211
212 /**
213 * megasas_return_cmd - Return a cmd to free command pool
214 * @instance: Adapter soft state
215 * @cmd: Command packet to be returned to free command pool
216 */
217 inline void
218 megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
219 {
220 unsigned long flags;
221
222 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
223
224 cmd->scmd = NULL;
225 cmd->frame_count = 0;
226 if ((instance->pdev->device != PCI_DEVICE_ID_LSI_FUSION) &&
227 (instance->pdev->device != PCI_DEVICE_ID_LSI_INVADER) &&
228 (instance->pdev->device != PCI_DEVICE_ID_LSI_FURY) &&
229 (reset_devices))
230 cmd->frame->hdr.cmd = MFI_CMD_INVALID;
231 list_add_tail(&cmd->list, &instance->cmd_pool);
232
233 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
234 }
235
236
237 /**
238 * The following functions are defined for xscale
239 * (deviceid : 1064R, PERC5) controllers
240 */
241
242 /**
243 * megasas_enable_intr_xscale - Enables interrupts
244 * @regs: MFI register set
245 */
246 static inline void
247 megasas_enable_intr_xscale(struct megasas_instance *instance)
248 {
249 struct megasas_register_set __iomem *regs;
250 regs = instance->reg_set;
251 writel(0, &(regs)->outbound_intr_mask);
252
253 /* Dummy readl to force pci flush */
254 readl(&regs->outbound_intr_mask);
255 }
256
257 /**
258 * megasas_disable_intr_xscale -Disables interrupt
259 * @regs: MFI register set
260 */
261 static inline void
262 megasas_disable_intr_xscale(struct megasas_instance *instance)
263 {
264 struct megasas_register_set __iomem *regs;
265 u32 mask = 0x1f;
266 regs = instance->reg_set;
267 writel(mask, &regs->outbound_intr_mask);
268 /* Dummy readl to force pci flush */
269 readl(&regs->outbound_intr_mask);
270 }
271
272 /**
273 * megasas_read_fw_status_reg_xscale - returns the current FW status value
274 * @regs: MFI register set
275 */
276 static u32
277 megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs)
278 {
279 return readl(&(regs)->outbound_msg_0);
280 }
281 /**
282 * megasas_clear_interrupt_xscale - Check & clear interrupt
283 * @regs: MFI register set
284 */
285 static int
286 megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs)
287 {
288 u32 status;
289 u32 mfiStatus = 0;
290 /*
291 * Check if it is our interrupt
292 */
293 status = readl(&regs->outbound_intr_status);
294
295 if (status & MFI_OB_INTR_STATUS_MASK)
296 mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE;
297 if (status & MFI_XSCALE_OMR0_CHANGE_INTERRUPT)
298 mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE;
299
300 /*
301 * Clear the interrupt by writing back the same value
302 */
303 if (mfiStatus)
304 writel(status, &regs->outbound_intr_status);
305
306 /* Dummy readl to force pci flush */
307 readl(&regs->outbound_intr_status);
308
309 return mfiStatus;
310 }
311
312 /**
313 * megasas_fire_cmd_xscale - Sends command to the FW
314 * @frame_phys_addr : Physical address of cmd
315 * @frame_count : Number of frames for the command
316 * @regs : MFI register set
317 */
318 static inline void
319 megasas_fire_cmd_xscale(struct megasas_instance *instance,
320 dma_addr_t frame_phys_addr,
321 u32 frame_count,
322 struct megasas_register_set __iomem *regs)
323 {
324 unsigned long flags;
325 spin_lock_irqsave(&instance->hba_lock, flags);
326 writel((frame_phys_addr >> 3)|(frame_count),
327 &(regs)->inbound_queue_port);
328 spin_unlock_irqrestore(&instance->hba_lock, flags);
329 }
330
331 /**
332 * megasas_adp_reset_xscale - For controller reset
333 * @regs: MFI register set
334 */
335 static int
336 megasas_adp_reset_xscale(struct megasas_instance *instance,
337 struct megasas_register_set __iomem *regs)
338 {
339 u32 i;
340 u32 pcidata;
341 writel(MFI_ADP_RESET, &regs->inbound_doorbell);
342
343 for (i = 0; i < 3; i++)
344 msleep(1000); /* sleep for 3 secs */
345 pcidata = 0;
346 pci_read_config_dword(instance->pdev, MFI_1068_PCSR_OFFSET, &pcidata);
347 printk(KERN_NOTICE "pcidata = %x\n", pcidata);
348 if (pcidata & 0x2) {
349 printk(KERN_NOTICE "mfi 1068 offset read=%x\n", pcidata);
350 pcidata &= ~0x2;
351 pci_write_config_dword(instance->pdev,
352 MFI_1068_PCSR_OFFSET, pcidata);
353
354 for (i = 0; i < 2; i++)
355 msleep(1000); /* need to wait 2 secs again */
356
357 pcidata = 0;
358 pci_read_config_dword(instance->pdev,
359 MFI_1068_FW_HANDSHAKE_OFFSET, &pcidata);
360 printk(KERN_NOTICE "1068 offset handshake read=%x\n", pcidata);
361 if ((pcidata & 0xffff0000) == MFI_1068_FW_READY) {
362 printk(KERN_NOTICE "1068 offset pcidt=%x\n", pcidata);
363 pcidata = 0;
364 pci_write_config_dword(instance->pdev,
365 MFI_1068_FW_HANDSHAKE_OFFSET, pcidata);
366 }
367 }
368 return 0;
369 }
370
371 /**
372 * megasas_check_reset_xscale - For controller reset check
373 * @regs: MFI register set
374 */
375 static int
376 megasas_check_reset_xscale(struct megasas_instance *instance,
377 struct megasas_register_set __iomem *regs)
378 {
379
380 if ((instance->adprecovery != MEGASAS_HBA_OPERATIONAL) &&
381 (le32_to_cpu(*instance->consumer) ==
382 MEGASAS_ADPRESET_INPROG_SIGN))
383 return 1;
384 return 0;
385 }
386
387 static struct megasas_instance_template megasas_instance_template_xscale = {
388
389 .fire_cmd = megasas_fire_cmd_xscale,
390 .enable_intr = megasas_enable_intr_xscale,
391 .disable_intr = megasas_disable_intr_xscale,
392 .clear_intr = megasas_clear_intr_xscale,
393 .read_fw_status_reg = megasas_read_fw_status_reg_xscale,
394 .adp_reset = megasas_adp_reset_xscale,
395 .check_reset = megasas_check_reset_xscale,
396 .service_isr = megasas_isr,
397 .tasklet = megasas_complete_cmd_dpc,
398 .init_adapter = megasas_init_adapter_mfi,
399 .build_and_issue_cmd = megasas_build_and_issue_cmd,
400 .issue_dcmd = megasas_issue_dcmd,
401 };
402
403 /**
404 * This is the end of set of functions & definitions specific
405 * to xscale (deviceid : 1064R, PERC5) controllers
406 */
407
408 /**
409 * The following functions are defined for ppc (deviceid : 0x60)
410 * controllers
411 */
412
413 /**
414 * megasas_enable_intr_ppc - Enables interrupts
415 * @regs: MFI register set
416 */
417 static inline void
418 megasas_enable_intr_ppc(struct megasas_instance *instance)
419 {
420 struct megasas_register_set __iomem *regs;
421 regs = instance->reg_set;
422 writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
423
424 writel(~0x80000000, &(regs)->outbound_intr_mask);
425
426 /* Dummy readl to force pci flush */
427 readl(&regs->outbound_intr_mask);
428 }
429
430 /**
431 * megasas_disable_intr_ppc - Disable interrupt
432 * @regs: MFI register set
433 */
434 static inline void
435 megasas_disable_intr_ppc(struct megasas_instance *instance)
436 {
437 struct megasas_register_set __iomem *regs;
438 u32 mask = 0xFFFFFFFF;
439 regs = instance->reg_set;
440 writel(mask, &regs->outbound_intr_mask);
441 /* Dummy readl to force pci flush */
442 readl(&regs->outbound_intr_mask);
443 }
444
445 /**
446 * megasas_read_fw_status_reg_ppc - returns the current FW status value
447 * @regs: MFI register set
448 */
449 static u32
450 megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs)
451 {
452 return readl(&(regs)->outbound_scratch_pad);
453 }
454
455 /**
456 * megasas_clear_interrupt_ppc - Check & clear interrupt
457 * @regs: MFI register set
458 */
459 static int
460 megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs)
461 {
462 u32 status, mfiStatus = 0;
463
464 /*
465 * Check if it is our interrupt
466 */
467 status = readl(&regs->outbound_intr_status);
468
469 if (status & MFI_REPLY_1078_MESSAGE_INTERRUPT)
470 mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE;
471
472 if (status & MFI_G2_OUTBOUND_DOORBELL_CHANGE_INTERRUPT)
473 mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE;
474
475 /*
476 * Clear the interrupt by writing back the same value
477 */
478 writel(status, &regs->outbound_doorbell_clear);
479
480 /* Dummy readl to force pci flush */
481 readl(&regs->outbound_doorbell_clear);
482
483 return mfiStatus;
484 }
485
486 /**
487 * megasas_fire_cmd_ppc - Sends command to the FW
488 * @frame_phys_addr : Physical address of cmd
489 * @frame_count : Number of frames for the command
490 * @regs : MFI register set
491 */
492 static inline void
493 megasas_fire_cmd_ppc(struct megasas_instance *instance,
494 dma_addr_t frame_phys_addr,
495 u32 frame_count,
496 struct megasas_register_set __iomem *regs)
497 {
498 unsigned long flags;
499 spin_lock_irqsave(&instance->hba_lock, flags);
500 writel((frame_phys_addr | (frame_count<<1))|1,
501 &(regs)->inbound_queue_port);
502 spin_unlock_irqrestore(&instance->hba_lock, flags);
503 }
504
505 /**
506 * megasas_check_reset_ppc - For controller reset check
507 * @regs: MFI register set
508 */
509 static int
510 megasas_check_reset_ppc(struct megasas_instance *instance,
511 struct megasas_register_set __iomem *regs)
512 {
513 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL)
514 return 1;
515
516 return 0;
517 }
518
519 static struct megasas_instance_template megasas_instance_template_ppc = {
520
521 .fire_cmd = megasas_fire_cmd_ppc,
522 .enable_intr = megasas_enable_intr_ppc,
523 .disable_intr = megasas_disable_intr_ppc,
524 .clear_intr = megasas_clear_intr_ppc,
525 .read_fw_status_reg = megasas_read_fw_status_reg_ppc,
526 .adp_reset = megasas_adp_reset_xscale,
527 .check_reset = megasas_check_reset_ppc,
528 .service_isr = megasas_isr,
529 .tasklet = megasas_complete_cmd_dpc,
530 .init_adapter = megasas_init_adapter_mfi,
531 .build_and_issue_cmd = megasas_build_and_issue_cmd,
532 .issue_dcmd = megasas_issue_dcmd,
533 };
534
535 /**
536 * megasas_enable_intr_skinny - Enables interrupts
537 * @regs: MFI register set
538 */
539 static inline void
540 megasas_enable_intr_skinny(struct megasas_instance *instance)
541 {
542 struct megasas_register_set __iomem *regs;
543 regs = instance->reg_set;
544 writel(0xFFFFFFFF, &(regs)->outbound_intr_mask);
545
546 writel(~MFI_SKINNY_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask);
547
548 /* Dummy readl to force pci flush */
549 readl(&regs->outbound_intr_mask);
550 }
551
552 /**
553 * megasas_disable_intr_skinny - Disables interrupt
554 * @regs: MFI register set
555 */
556 static inline void
557 megasas_disable_intr_skinny(struct megasas_instance *instance)
558 {
559 struct megasas_register_set __iomem *regs;
560 u32 mask = 0xFFFFFFFF;
561 regs = instance->reg_set;
562 writel(mask, &regs->outbound_intr_mask);
563 /* Dummy readl to force pci flush */
564 readl(&regs->outbound_intr_mask);
565 }
566
567 /**
568 * megasas_read_fw_status_reg_skinny - returns the current FW status value
569 * @regs: MFI register set
570 */
571 static u32
572 megasas_read_fw_status_reg_skinny(struct megasas_register_set __iomem *regs)
573 {
574 return readl(&(regs)->outbound_scratch_pad);
575 }
576
577 /**
578 * megasas_clear_interrupt_skinny - Check & clear interrupt
579 * @regs: MFI register set
580 */
581 static int
582 megasas_clear_intr_skinny(struct megasas_register_set __iomem *regs)
583 {
584 u32 status;
585 u32 mfiStatus = 0;
586
587 /*
588 * Check if it is our interrupt
589 */
590 status = readl(&regs->outbound_intr_status);
591
592 if (!(status & MFI_SKINNY_ENABLE_INTERRUPT_MASK)) {
593 return 0;
594 }
595
596 /*
597 * Check if it is our interrupt
598 */
599 if ((megasas_read_fw_status_reg_skinny(regs) & MFI_STATE_MASK) ==
600 MFI_STATE_FAULT) {
601 mfiStatus = MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE;
602 } else
603 mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE;
604
605 /*
606 * Clear the interrupt by writing back the same value
607 */
608 writel(status, &regs->outbound_intr_status);
609
610 /*
611 * dummy read to flush PCI
612 */
613 readl(&regs->outbound_intr_status);
614
615 return mfiStatus;
616 }
617
618 /**
619 * megasas_fire_cmd_skinny - Sends command to the FW
620 * @frame_phys_addr : Physical address of cmd
621 * @frame_count : Number of frames for the command
622 * @regs : MFI register set
623 */
624 static inline void
625 megasas_fire_cmd_skinny(struct megasas_instance *instance,
626 dma_addr_t frame_phys_addr,
627 u32 frame_count,
628 struct megasas_register_set __iomem *regs)
629 {
630 unsigned long flags;
631 spin_lock_irqsave(&instance->hba_lock, flags);
632 writel(upper_32_bits(frame_phys_addr),
633 &(regs)->inbound_high_queue_port);
634 writel((lower_32_bits(frame_phys_addr) | (frame_count<<1))|1,
635 &(regs)->inbound_low_queue_port);
636 spin_unlock_irqrestore(&instance->hba_lock, flags);
637 }
638
639 /**
640 * megasas_check_reset_skinny - For controller reset check
641 * @regs: MFI register set
642 */
643 static int
644 megasas_check_reset_skinny(struct megasas_instance *instance,
645 struct megasas_register_set __iomem *regs)
646 {
647 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL)
648 return 1;
649
650 return 0;
651 }
652
653 static struct megasas_instance_template megasas_instance_template_skinny = {
654
655 .fire_cmd = megasas_fire_cmd_skinny,
656 .enable_intr = megasas_enable_intr_skinny,
657 .disable_intr = megasas_disable_intr_skinny,
658 .clear_intr = megasas_clear_intr_skinny,
659 .read_fw_status_reg = megasas_read_fw_status_reg_skinny,
660 .adp_reset = megasas_adp_reset_gen2,
661 .check_reset = megasas_check_reset_skinny,
662 .service_isr = megasas_isr,
663 .tasklet = megasas_complete_cmd_dpc,
664 .init_adapter = megasas_init_adapter_mfi,
665 .build_and_issue_cmd = megasas_build_and_issue_cmd,
666 .issue_dcmd = megasas_issue_dcmd,
667 };
668
669
670 /**
671 * The following functions are defined for gen2 (deviceid : 0x78 0x79)
672 * controllers
673 */
674
675 /**
676 * megasas_enable_intr_gen2 - Enables interrupts
677 * @regs: MFI register set
678 */
679 static inline void
680 megasas_enable_intr_gen2(struct megasas_instance *instance)
681 {
682 struct megasas_register_set __iomem *regs;
683 regs = instance->reg_set;
684 writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
685
686 /* write ~0x00000005 (4 & 1) to the intr mask*/
687 writel(~MFI_GEN2_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask);
688
689 /* Dummy readl to force pci flush */
690 readl(&regs->outbound_intr_mask);
691 }
692
693 /**
694 * megasas_disable_intr_gen2 - Disables interrupt
695 * @regs: MFI register set
696 */
697 static inline void
698 megasas_disable_intr_gen2(struct megasas_instance *instance)
699 {
700 struct megasas_register_set __iomem *regs;
701 u32 mask = 0xFFFFFFFF;
702 regs = instance->reg_set;
703 writel(mask, &regs->outbound_intr_mask);
704 /* Dummy readl to force pci flush */
705 readl(&regs->outbound_intr_mask);
706 }
707
708 /**
709 * megasas_read_fw_status_reg_gen2 - returns the current FW status value
710 * @regs: MFI register set
711 */
712 static u32
713 megasas_read_fw_status_reg_gen2(struct megasas_register_set __iomem *regs)
714 {
715 return readl(&(regs)->outbound_scratch_pad);
716 }
717
718 /**
719 * megasas_clear_interrupt_gen2 - Check & clear interrupt
720 * @regs: MFI register set
721 */
722 static int
723 megasas_clear_intr_gen2(struct megasas_register_set __iomem *regs)
724 {
725 u32 status;
726 u32 mfiStatus = 0;
727 /*
728 * Check if it is our interrupt
729 */
730 status = readl(&regs->outbound_intr_status);
731
732 if (status & MFI_INTR_FLAG_REPLY_MESSAGE) {
733 mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE;
734 }
735 if (status & MFI_G2_OUTBOUND_DOORBELL_CHANGE_INTERRUPT) {
736 mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE;
737 }
738
739 /*
740 * Clear the interrupt by writing back the same value
741 */
742 if (mfiStatus)
743 writel(status, &regs->outbound_doorbell_clear);
744
745 /* Dummy readl to force pci flush */
746 readl(&regs->outbound_intr_status);
747
748 return mfiStatus;
749 }
750 /**
751 * megasas_fire_cmd_gen2 - Sends command to the FW
752 * @frame_phys_addr : Physical address of cmd
753 * @frame_count : Number of frames for the command
754 * @regs : MFI register set
755 */
756 static inline void
757 megasas_fire_cmd_gen2(struct megasas_instance *instance,
758 dma_addr_t frame_phys_addr,
759 u32 frame_count,
760 struct megasas_register_set __iomem *regs)
761 {
762 unsigned long flags;
763 spin_lock_irqsave(&instance->hba_lock, flags);
764 writel((frame_phys_addr | (frame_count<<1))|1,
765 &(regs)->inbound_queue_port);
766 spin_unlock_irqrestore(&instance->hba_lock, flags);
767 }
768
769 /**
770 * megasas_adp_reset_gen2 - For controller reset
771 * @regs: MFI register set
772 */
773 static int
774 megasas_adp_reset_gen2(struct megasas_instance *instance,
775 struct megasas_register_set __iomem *reg_set)
776 {
777 u32 retry = 0 ;
778 u32 HostDiag;
779 u32 *seq_offset = &reg_set->seq_offset;
780 u32 *hostdiag_offset = &reg_set->host_diag;
781
782 if (instance->instancet == &megasas_instance_template_skinny) {
783 seq_offset = &reg_set->fusion_seq_offset;
784 hostdiag_offset = &reg_set->fusion_host_diag;
785 }
786
787 writel(0, seq_offset);
788 writel(4, seq_offset);
789 writel(0xb, seq_offset);
790 writel(2, seq_offset);
791 writel(7, seq_offset);
792 writel(0xd, seq_offset);
793
794 msleep(1000);
795
796 HostDiag = (u32)readl(hostdiag_offset);
797
798 while ( !( HostDiag & DIAG_WRITE_ENABLE) ) {
799 msleep(100);
800 HostDiag = (u32)readl(hostdiag_offset);
801 printk(KERN_NOTICE "RESETGEN2: retry=%x, hostdiag=%x\n",
802 retry, HostDiag);
803
804 if (retry++ >= 100)
805 return 1;
806
807 }
808
809 printk(KERN_NOTICE "ADP_RESET_GEN2: HostDiag=%x\n", HostDiag);
810
811 writel((HostDiag | DIAG_RESET_ADAPTER), hostdiag_offset);
812
813 ssleep(10);
814
815 HostDiag = (u32)readl(hostdiag_offset);
816 while ( ( HostDiag & DIAG_RESET_ADAPTER) ) {
817 msleep(100);
818 HostDiag = (u32)readl(hostdiag_offset);
819 printk(KERN_NOTICE "RESET_GEN2: retry=%x, hostdiag=%x\n",
820 retry, HostDiag);
821
822 if (retry++ >= 1000)
823 return 1;
824
825 }
826 return 0;
827 }
828
829 /**
830 * megasas_check_reset_gen2 - For controller reset check
831 * @regs: MFI register set
832 */
833 static int
834 megasas_check_reset_gen2(struct megasas_instance *instance,
835 struct megasas_register_set __iomem *regs)
836 {
837 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) {
838 return 1;
839 }
840
841 return 0;
842 }
843
844 static struct megasas_instance_template megasas_instance_template_gen2 = {
845
846 .fire_cmd = megasas_fire_cmd_gen2,
847 .enable_intr = megasas_enable_intr_gen2,
848 .disable_intr = megasas_disable_intr_gen2,
849 .clear_intr = megasas_clear_intr_gen2,
850 .read_fw_status_reg = megasas_read_fw_status_reg_gen2,
851 .adp_reset = megasas_adp_reset_gen2,
852 .check_reset = megasas_check_reset_gen2,
853 .service_isr = megasas_isr,
854 .tasklet = megasas_complete_cmd_dpc,
855 .init_adapter = megasas_init_adapter_mfi,
856 .build_and_issue_cmd = megasas_build_and_issue_cmd,
857 .issue_dcmd = megasas_issue_dcmd,
858 };
859
860 /**
861 * This is the end of set of functions & definitions
862 * specific to gen2 (deviceid : 0x78, 0x79) controllers
863 */
864
865 /*
866 * Template added for TB (Fusion)
867 */
868 extern struct megasas_instance_template megasas_instance_template_fusion;
869
870 /**
871 * megasas_issue_polled - Issues a polling command
872 * @instance: Adapter soft state
873 * @cmd: Command packet to be issued
874 *
875 * For polling, MFI requires the cmd_status to be set to 0xFF before posting.
876 */
877 int
878 megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
879 {
880
881 struct megasas_header *frame_hdr = &cmd->frame->hdr;
882
883 frame_hdr->cmd_status = MFI_CMD_STATUS_POLL_MODE;
884 frame_hdr->flags |= cpu_to_le16(MFI_FRAME_DONT_POST_IN_REPLY_QUEUE);
885
886 /*
887 * Issue the frame using inbound queue port
888 */
889 instance->instancet->issue_dcmd(instance, cmd);
890
891 /*
892 * Wait for cmd_status to change
893 */
894 return wait_and_poll(instance, cmd);
895 }
896
897 /**
898 * megasas_issue_blocked_cmd - Synchronous wrapper around regular FW cmds
899 * @instance: Adapter soft state
900 * @cmd: Command to be issued
901 *
902 * This function waits on an event for the command to be returned from ISR.
903 * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
904 * Used to issue ioctl commands.
905 */
906 static int
907 megasas_issue_blocked_cmd(struct megasas_instance *instance,
908 struct megasas_cmd *cmd)
909 {
910 cmd->cmd_status = ENODATA;
911
912 instance->instancet->issue_dcmd(instance, cmd);
913
914 wait_event(instance->int_cmd_wait_q, cmd->cmd_status != ENODATA);
915
916 return 0;
917 }
918
919 /**
920 * megasas_issue_blocked_abort_cmd - Aborts previously issued cmd
921 * @instance: Adapter soft state
922 * @cmd_to_abort: Previously issued cmd to be aborted
923 *
924 * MFI firmware can abort previously issued AEN command (automatic event
925 * notification). The megasas_issue_blocked_abort_cmd() issues such abort
926 * cmd and waits for return status.
927 * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
928 */
929 static int
930 megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
931 struct megasas_cmd *cmd_to_abort)
932 {
933 struct megasas_cmd *cmd;
934 struct megasas_abort_frame *abort_fr;
935
936 cmd = megasas_get_cmd(instance);
937
938 if (!cmd)
939 return -1;
940
941 abort_fr = &cmd->frame->abort;
942
943 /*
944 * Prepare and issue the abort frame
945 */
946 abort_fr->cmd = MFI_CMD_ABORT;
947 abort_fr->cmd_status = 0xFF;
948 abort_fr->flags = cpu_to_le16(0);
949 abort_fr->abort_context = cpu_to_le32(cmd_to_abort->index);
950 abort_fr->abort_mfi_phys_addr_lo =
951 cpu_to_le32(lower_32_bits(cmd_to_abort->frame_phys_addr));
952 abort_fr->abort_mfi_phys_addr_hi =
953 cpu_to_le32(upper_32_bits(cmd_to_abort->frame_phys_addr));
954
955 cmd->sync_cmd = 1;
956 cmd->cmd_status = 0xFF;
957
958 instance->instancet->issue_dcmd(instance, cmd);
959
960 /*
961 * Wait for this cmd to complete
962 */
963 wait_event(instance->abort_cmd_wait_q, cmd->cmd_status != 0xFF);
964 cmd->sync_cmd = 0;
965
966 megasas_return_cmd(instance, cmd);
967 return 0;
968 }
969
970 /**
971 * megasas_make_sgl32 - Prepares 32-bit SGL
972 * @instance: Adapter soft state
973 * @scp: SCSI command from the mid-layer
974 * @mfi_sgl: SGL to be filled in
975 *
976 * If successful, this function returns the number of SG elements. Otherwise,
977 * it returnes -1.
978 */
979 static int
980 megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
981 union megasas_sgl *mfi_sgl)
982 {
983 int i;
984 int sge_count;
985 struct scatterlist *os_sgl;
986
987 sge_count = scsi_dma_map(scp);
988 BUG_ON(sge_count < 0);
989
990 if (sge_count) {
991 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
992 mfi_sgl->sge32[i].length = cpu_to_le32(sg_dma_len(os_sgl));
993 mfi_sgl->sge32[i].phys_addr = cpu_to_le32(sg_dma_address(os_sgl));
994 }
995 }
996 return sge_count;
997 }
998
999 /**
1000 * megasas_make_sgl64 - Prepares 64-bit SGL
1001 * @instance: Adapter soft state
1002 * @scp: SCSI command from the mid-layer
1003 * @mfi_sgl: SGL to be filled in
1004 *
1005 * If successful, this function returns the number of SG elements. Otherwise,
1006 * it returnes -1.
1007 */
1008 static int
1009 megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
1010 union megasas_sgl *mfi_sgl)
1011 {
1012 int i;
1013 int sge_count;
1014 struct scatterlist *os_sgl;
1015
1016 sge_count = scsi_dma_map(scp);
1017 BUG_ON(sge_count < 0);
1018
1019 if (sge_count) {
1020 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
1021 mfi_sgl->sge64[i].length = cpu_to_le32(sg_dma_len(os_sgl));
1022 mfi_sgl->sge64[i].phys_addr = cpu_to_le64(sg_dma_address(os_sgl));
1023 }
1024 }
1025 return sge_count;
1026 }
1027
1028 /**
1029 * megasas_make_sgl_skinny - Prepares IEEE SGL
1030 * @instance: Adapter soft state
1031 * @scp: SCSI command from the mid-layer
1032 * @mfi_sgl: SGL to be filled in
1033 *
1034 * If successful, this function returns the number of SG elements. Otherwise,
1035 * it returnes -1.
1036 */
1037 static int
1038 megasas_make_sgl_skinny(struct megasas_instance *instance,
1039 struct scsi_cmnd *scp, union megasas_sgl *mfi_sgl)
1040 {
1041 int i;
1042 int sge_count;
1043 struct scatterlist *os_sgl;
1044
1045 sge_count = scsi_dma_map(scp);
1046
1047 if (sge_count) {
1048 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
1049 mfi_sgl->sge_skinny[i].length =
1050 cpu_to_le32(sg_dma_len(os_sgl));
1051 mfi_sgl->sge_skinny[i].phys_addr =
1052 cpu_to_le64(sg_dma_address(os_sgl));
1053 mfi_sgl->sge_skinny[i].flag = cpu_to_le32(0);
1054 }
1055 }
1056 return sge_count;
1057 }
1058
1059 /**
1060 * megasas_get_frame_count - Computes the number of frames
1061 * @frame_type : type of frame- io or pthru frame
1062 * @sge_count : number of sg elements
1063 *
1064 * Returns the number of frames required for numnber of sge's (sge_count)
1065 */
1066
1067 static u32 megasas_get_frame_count(struct megasas_instance *instance,
1068 u8 sge_count, u8 frame_type)
1069 {
1070 int num_cnt;
1071 int sge_bytes;
1072 u32 sge_sz;
1073 u32 frame_count=0;
1074
1075 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
1076 sizeof(struct megasas_sge32);
1077
1078 if (instance->flag_ieee) {
1079 sge_sz = sizeof(struct megasas_sge_skinny);
1080 }
1081
1082 /*
1083 * Main frame can contain 2 SGEs for 64-bit SGLs and
1084 * 3 SGEs for 32-bit SGLs for ldio &
1085 * 1 SGEs for 64-bit SGLs and
1086 * 2 SGEs for 32-bit SGLs for pthru frame
1087 */
1088 if (unlikely(frame_type == PTHRU_FRAME)) {
1089 if (instance->flag_ieee == 1) {
1090 num_cnt = sge_count - 1;
1091 } else if (IS_DMA64)
1092 num_cnt = sge_count - 1;
1093 else
1094 num_cnt = sge_count - 2;
1095 } else {
1096 if (instance->flag_ieee == 1) {
1097 num_cnt = sge_count - 1;
1098 } else if (IS_DMA64)
1099 num_cnt = sge_count - 2;
1100 else
1101 num_cnt = sge_count - 3;
1102 }
1103
1104 if(num_cnt>0){
1105 sge_bytes = sge_sz * num_cnt;
1106
1107 frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
1108 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) ;
1109 }
1110 /* Main frame */
1111 frame_count +=1;
1112
1113 if (frame_count > 7)
1114 frame_count = 8;
1115 return frame_count;
1116 }
1117
1118 /**
1119 * megasas_build_dcdb - Prepares a direct cdb (DCDB) command
1120 * @instance: Adapter soft state
1121 * @scp: SCSI command
1122 * @cmd: Command to be prepared in
1123 *
1124 * This function prepares CDB commands. These are typcially pass-through
1125 * commands to the devices.
1126 */
1127 static int
1128 megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
1129 struct megasas_cmd *cmd)
1130 {
1131 u32 is_logical;
1132 u32 device_id;
1133 u16 flags = 0;
1134 struct megasas_pthru_frame *pthru;
1135
1136 is_logical = MEGASAS_IS_LOGICAL(scp);
1137 device_id = MEGASAS_DEV_INDEX(instance, scp);
1138 pthru = (struct megasas_pthru_frame *)cmd->frame;
1139
1140 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
1141 flags = MFI_FRAME_DIR_WRITE;
1142 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
1143 flags = MFI_FRAME_DIR_READ;
1144 else if (scp->sc_data_direction == PCI_DMA_NONE)
1145 flags = MFI_FRAME_DIR_NONE;
1146
1147 if (instance->flag_ieee == 1) {
1148 flags |= MFI_FRAME_IEEE;
1149 }
1150
1151 /*
1152 * Prepare the DCDB frame
1153 */
1154 pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
1155 pthru->cmd_status = 0x0;
1156 pthru->scsi_status = 0x0;
1157 pthru->target_id = device_id;
1158 pthru->lun = scp->device->lun;
1159 pthru->cdb_len = scp->cmd_len;
1160 pthru->timeout = 0;
1161 pthru->pad_0 = 0;
1162 pthru->flags = cpu_to_le16(flags);
1163 pthru->data_xfer_len = cpu_to_le32(scsi_bufflen(scp));
1164
1165 memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
1166
1167 /*
1168 * If the command is for the tape device, set the
1169 * pthru timeout to the os layer timeout value.
1170 */
1171 if (scp->device->type == TYPE_TAPE) {
1172 if ((scp->request->timeout / HZ) > 0xFFFF)
1173 pthru->timeout = 0xFFFF;
1174 else
1175 pthru->timeout = cpu_to_le16(scp->request->timeout / HZ);
1176 }
1177
1178 /*
1179 * Construct SGL
1180 */
1181 if (instance->flag_ieee == 1) {
1182 pthru->flags |= cpu_to_le16(MFI_FRAME_SGL64);
1183 pthru->sge_count = megasas_make_sgl_skinny(instance, scp,
1184 &pthru->sgl);
1185 } else if (IS_DMA64) {
1186 pthru->flags |= cpu_to_le16(MFI_FRAME_SGL64);
1187 pthru->sge_count = megasas_make_sgl64(instance, scp,
1188 &pthru->sgl);
1189 } else
1190 pthru->sge_count = megasas_make_sgl32(instance, scp,
1191 &pthru->sgl);
1192
1193 if (pthru->sge_count > instance->max_num_sge) {
1194 printk(KERN_ERR "megasas: DCDB two many SGE NUM=%x\n",
1195 pthru->sge_count);
1196 return 0;
1197 }
1198
1199 /*
1200 * Sense info specific
1201 */
1202 pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
1203 pthru->sense_buf_phys_addr_hi =
1204 cpu_to_le32(upper_32_bits(cmd->sense_phys_addr));
1205 pthru->sense_buf_phys_addr_lo =
1206 cpu_to_le32(lower_32_bits(cmd->sense_phys_addr));
1207
1208 /*
1209 * Compute the total number of frames this command consumes. FW uses
1210 * this number to pull sufficient number of frames from host memory.
1211 */
1212 cmd->frame_count = megasas_get_frame_count(instance, pthru->sge_count,
1213 PTHRU_FRAME);
1214
1215 return cmd->frame_count;
1216 }
1217
1218 /**
1219 * megasas_build_ldio - Prepares IOs to logical devices
1220 * @instance: Adapter soft state
1221 * @scp: SCSI command
1222 * @cmd: Command to be prepared
1223 *
1224 * Frames (and accompanying SGLs) for regular SCSI IOs use this function.
1225 */
1226 static int
1227 megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
1228 struct megasas_cmd *cmd)
1229 {
1230 u32 device_id;
1231 u8 sc = scp->cmnd[0];
1232 u16 flags = 0;
1233 struct megasas_io_frame *ldio;
1234
1235 device_id = MEGASAS_DEV_INDEX(instance, scp);
1236 ldio = (struct megasas_io_frame *)cmd->frame;
1237
1238 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
1239 flags = MFI_FRAME_DIR_WRITE;
1240 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
1241 flags = MFI_FRAME_DIR_READ;
1242
1243 if (instance->flag_ieee == 1) {
1244 flags |= MFI_FRAME_IEEE;
1245 }
1246
1247 /*
1248 * Prepare the Logical IO frame: 2nd bit is zero for all read cmds
1249 */
1250 ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
1251 ldio->cmd_status = 0x0;
1252 ldio->scsi_status = 0x0;
1253 ldio->target_id = device_id;
1254 ldio->timeout = 0;
1255 ldio->reserved_0 = 0;
1256 ldio->pad_0 = 0;
1257 ldio->flags = cpu_to_le16(flags);
1258 ldio->start_lba_hi = 0;
1259 ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
1260
1261 /*
1262 * 6-byte READ(0x08) or WRITE(0x0A) cdb
1263 */
1264 if (scp->cmd_len == 6) {
1265 ldio->lba_count = cpu_to_le32((u32) scp->cmnd[4]);
1266 ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[1] << 16) |
1267 ((u32) scp->cmnd[2] << 8) |
1268 (u32) scp->cmnd[3]);
1269
1270 ldio->start_lba_lo &= cpu_to_le32(0x1FFFFF);
1271 }
1272
1273 /*
1274 * 10-byte READ(0x28) or WRITE(0x2A) cdb
1275 */
1276 else if (scp->cmd_len == 10) {
1277 ldio->lba_count = cpu_to_le32((u32) scp->cmnd[8] |
1278 ((u32) scp->cmnd[7] << 8));
1279 ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[2] << 24) |
1280 ((u32) scp->cmnd[3] << 16) |
1281 ((u32) scp->cmnd[4] << 8) |
1282 (u32) scp->cmnd[5]);
1283 }
1284
1285 /*
1286 * 12-byte READ(0xA8) or WRITE(0xAA) cdb
1287 */
1288 else if (scp->cmd_len == 12) {
1289 ldio->lba_count = cpu_to_le32(((u32) scp->cmnd[6] << 24) |
1290 ((u32) scp->cmnd[7] << 16) |
1291 ((u32) scp->cmnd[8] << 8) |
1292 (u32) scp->cmnd[9]);
1293
1294 ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[2] << 24) |
1295 ((u32) scp->cmnd[3] << 16) |
1296 ((u32) scp->cmnd[4] << 8) |
1297 (u32) scp->cmnd[5]);
1298 }
1299
1300 /*
1301 * 16-byte READ(0x88) or WRITE(0x8A) cdb
1302 */
1303 else if (scp->cmd_len == 16) {
1304 ldio->lba_count = cpu_to_le32(((u32) scp->cmnd[10] << 24) |
1305 ((u32) scp->cmnd[11] << 16) |
1306 ((u32) scp->cmnd[12] << 8) |
1307 (u32) scp->cmnd[13]);
1308
1309 ldio->start_lba_lo = cpu_to_le32(((u32) scp->cmnd[6] << 24) |
1310 ((u32) scp->cmnd[7] << 16) |
1311 ((u32) scp->cmnd[8] << 8) |
1312 (u32) scp->cmnd[9]);
1313
1314 ldio->start_lba_hi = cpu_to_le32(((u32) scp->cmnd[2] << 24) |
1315 ((u32) scp->cmnd[3] << 16) |
1316 ((u32) scp->cmnd[4] << 8) |
1317 (u32) scp->cmnd[5]);
1318
1319 }
1320
1321 /*
1322 * Construct SGL
1323 */
1324 if (instance->flag_ieee) {
1325 ldio->flags |= cpu_to_le16(MFI_FRAME_SGL64);
1326 ldio->sge_count = megasas_make_sgl_skinny(instance, scp,
1327 &ldio->sgl);
1328 } else if (IS_DMA64) {
1329 ldio->flags |= cpu_to_le16(MFI_FRAME_SGL64);
1330 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
1331 } else
1332 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
1333
1334 if (ldio->sge_count > instance->max_num_sge) {
1335 printk(KERN_ERR "megasas: build_ld_io: sge_count = %x\n",
1336 ldio->sge_count);
1337 return 0;
1338 }
1339
1340 /*
1341 * Sense info specific
1342 */
1343 ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
1344 ldio->sense_buf_phys_addr_hi = 0;
1345 ldio->sense_buf_phys_addr_lo = cpu_to_le32(cmd->sense_phys_addr);
1346
1347 /*
1348 * Compute the total number of frames this command consumes. FW uses
1349 * this number to pull sufficient number of frames from host memory.
1350 */
1351 cmd->frame_count = megasas_get_frame_count(instance,
1352 ldio->sge_count, IO_FRAME);
1353
1354 return cmd->frame_count;
1355 }
1356
1357 /**
1358 * megasas_is_ldio - Checks if the cmd is for logical drive
1359 * @scmd: SCSI command
1360 *
1361 * Called by megasas_queue_command to find out if the command to be queued
1362 * is a logical drive command
1363 */
1364 inline int megasas_is_ldio(struct scsi_cmnd *cmd)
1365 {
1366 if (!MEGASAS_IS_LOGICAL(cmd))
1367 return 0;
1368 switch (cmd->cmnd[0]) {
1369 case READ_10:
1370 case WRITE_10:
1371 case READ_12:
1372 case WRITE_12:
1373 case READ_6:
1374 case WRITE_6:
1375 case READ_16:
1376 case WRITE_16:
1377 return 1;
1378 default:
1379 return 0;
1380 }
1381 }
1382
1383 /**
1384 * megasas_dump_pending_frames - Dumps the frame address of all pending cmds
1385 * in FW
1386 * @instance: Adapter soft state
1387 */
1388 static inline void
1389 megasas_dump_pending_frames(struct megasas_instance *instance)
1390 {
1391 struct megasas_cmd *cmd;
1392 int i,n;
1393 union megasas_sgl *mfi_sgl;
1394 struct megasas_io_frame *ldio;
1395 struct megasas_pthru_frame *pthru;
1396 u32 sgcount;
1397 u32 max_cmd = instance->max_fw_cmds;
1398
1399 printk(KERN_ERR "\nmegasas[%d]: Dumping Frame Phys Address of all pending cmds in FW\n",instance->host->host_no);
1400 printk(KERN_ERR "megasas[%d]: Total OS Pending cmds : %d\n",instance->host->host_no,atomic_read(&instance->fw_outstanding));
1401 if (IS_DMA64)
1402 printk(KERN_ERR "\nmegasas[%d]: 64 bit SGLs were sent to FW\n",instance->host->host_no);
1403 else
1404 printk(KERN_ERR "\nmegasas[%d]: 32 bit SGLs were sent to FW\n",instance->host->host_no);
1405
1406 printk(KERN_ERR "megasas[%d]: Pending OS cmds in FW : \n",instance->host->host_no);
1407 for (i = 0; i < max_cmd; i++) {
1408 cmd = instance->cmd_list[i];
1409 if(!cmd->scmd)
1410 continue;
1411 printk(KERN_ERR "megasas[%d]: Frame addr :0x%08lx : ",instance->host->host_no,(unsigned long)cmd->frame_phys_addr);
1412 if (megasas_is_ldio(cmd->scmd)){
1413 ldio = (struct megasas_io_frame *)cmd->frame;
1414 mfi_sgl = &ldio->sgl;
1415 sgcount = ldio->sge_count;
1416 printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x,"
1417 " lba lo : 0x%x, lba_hi : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",
1418 instance->host->host_no, cmd->frame_count, ldio->cmd, ldio->target_id,
1419 le32_to_cpu(ldio->start_lba_lo), le32_to_cpu(ldio->start_lba_hi),
1420 le32_to_cpu(ldio->sense_buf_phys_addr_lo), sgcount);
1421 }
1422 else {
1423 pthru = (struct megasas_pthru_frame *) cmd->frame;
1424 mfi_sgl = &pthru->sgl;
1425 sgcount = pthru->sge_count;
1426 printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, "
1427 "lun : 0x%x, cdb_len : 0x%x, data xfer len : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",
1428 instance->host->host_no, cmd->frame_count, pthru->cmd, pthru->target_id,
1429 pthru->lun, pthru->cdb_len, le32_to_cpu(pthru->data_xfer_len),
1430 le32_to_cpu(pthru->sense_buf_phys_addr_lo), sgcount);
1431 }
1432 if(megasas_dbg_lvl & MEGASAS_DBG_LVL){
1433 for (n = 0; n < sgcount; n++){
1434 if (IS_DMA64)
1435 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%llx ",
1436 le32_to_cpu(mfi_sgl->sge64[n].length),
1437 le64_to_cpu(mfi_sgl->sge64[n].phys_addr));
1438 else
1439 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%x ",
1440 le32_to_cpu(mfi_sgl->sge32[n].length),
1441 le32_to_cpu(mfi_sgl->sge32[n].phys_addr));
1442 }
1443 }
1444 printk(KERN_ERR "\n");
1445 } /*for max_cmd*/
1446 printk(KERN_ERR "\nmegasas[%d]: Pending Internal cmds in FW : \n",instance->host->host_no);
1447 for (i = 0; i < max_cmd; i++) {
1448
1449 cmd = instance->cmd_list[i];
1450
1451 if(cmd->sync_cmd == 1){
1452 printk(KERN_ERR "0x%08lx : ", (unsigned long)cmd->frame_phys_addr);
1453 }
1454 }
1455 printk(KERN_ERR "megasas[%d]: Dumping Done.\n\n",instance->host->host_no);
1456 }
1457
1458 u32
1459 megasas_build_and_issue_cmd(struct megasas_instance *instance,
1460 struct scsi_cmnd *scmd)
1461 {
1462 struct megasas_cmd *cmd;
1463 u32 frame_count;
1464
1465 cmd = megasas_get_cmd(instance);
1466 if (!cmd)
1467 return SCSI_MLQUEUE_HOST_BUSY;
1468
1469 /*
1470 * Logical drive command
1471 */
1472 if (megasas_is_ldio(scmd))
1473 frame_count = megasas_build_ldio(instance, scmd, cmd);
1474 else
1475 frame_count = megasas_build_dcdb(instance, scmd, cmd);
1476
1477 if (!frame_count)
1478 goto out_return_cmd;
1479
1480 cmd->scmd = scmd;
1481 scmd->SCp.ptr = (char *)cmd;
1482
1483 /*
1484 * Issue the command to the FW
1485 */
1486 atomic_inc(&instance->fw_outstanding);
1487
1488 instance->instancet->fire_cmd(instance, cmd->frame_phys_addr,
1489 cmd->frame_count-1, instance->reg_set);
1490
1491 return 0;
1492 out_return_cmd:
1493 megasas_return_cmd(instance, cmd);
1494 return 1;
1495 }
1496
1497
1498 /**
1499 * megasas_queue_command - Queue entry point
1500 * @scmd: SCSI command to be queued
1501 * @done: Callback entry point
1502 */
1503 static int
1504 megasas_queue_command_lck(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
1505 {
1506 struct megasas_instance *instance;
1507 unsigned long flags;
1508
1509 instance = (struct megasas_instance *)
1510 scmd->device->host->hostdata;
1511
1512 if (instance->issuepend_done == 0)
1513 return SCSI_MLQUEUE_HOST_BUSY;
1514
1515 spin_lock_irqsave(&instance->hba_lock, flags);
1516
1517 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) {
1518 spin_unlock_irqrestore(&instance->hba_lock, flags);
1519 scmd->result = DID_ERROR << 16;
1520 done(scmd);
1521 return 0;
1522 }
1523
1524 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) {
1525 spin_unlock_irqrestore(&instance->hba_lock, flags);
1526 return SCSI_MLQUEUE_HOST_BUSY;
1527 }
1528
1529 spin_unlock_irqrestore(&instance->hba_lock, flags);
1530
1531 scmd->scsi_done = done;
1532 scmd->result = 0;
1533
1534 if (MEGASAS_IS_LOGICAL(scmd) &&
1535 (scmd->device->id >= MEGASAS_MAX_LD || scmd->device->lun)) {
1536 scmd->result = DID_BAD_TARGET << 16;
1537 goto out_done;
1538 }
1539
1540 switch (scmd->cmnd[0]) {
1541 case SYNCHRONIZE_CACHE:
1542 /*
1543 * FW takes care of flush cache on its own
1544 * No need to send it down
1545 */
1546 scmd->result = DID_OK << 16;
1547 goto out_done;
1548 default:
1549 break;
1550 }
1551
1552 if (instance->instancet->build_and_issue_cmd(instance, scmd)) {
1553 printk(KERN_ERR "megasas: Err returned from build_and_issue_cmd\n");
1554 return SCSI_MLQUEUE_HOST_BUSY;
1555 }
1556
1557 return 0;
1558
1559 out_done:
1560 done(scmd);
1561 return 0;
1562 }
1563
1564 static DEF_SCSI_QCMD(megasas_queue_command)
1565
1566 static struct megasas_instance *megasas_lookup_instance(u16 host_no)
1567 {
1568 int i;
1569
1570 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
1571
1572 if ((megasas_mgmt_info.instance[i]) &&
1573 (megasas_mgmt_info.instance[i]->host->host_no == host_no))
1574 return megasas_mgmt_info.instance[i];
1575 }
1576
1577 return NULL;
1578 }
1579
1580 static int megasas_slave_configure(struct scsi_device *sdev)
1581 {
1582 u16 pd_index = 0;
1583 struct megasas_instance *instance ;
1584
1585 instance = megasas_lookup_instance(sdev->host->host_no);
1586
1587 /*
1588 * Don't export physical disk devices to the disk driver.
1589 *
1590 * FIXME: Currently we don't export them to the midlayer at all.
1591 * That will be fixed once LSI engineers have audited the
1592 * firmware for possible issues.
1593 */
1594 if (sdev->channel < MEGASAS_MAX_PD_CHANNELS &&
1595 sdev->type == TYPE_DISK) {
1596 pd_index = (sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) +
1597 sdev->id;
1598 if (instance->pd_list[pd_index].driveState ==
1599 MR_PD_STATE_SYSTEM) {
1600 blk_queue_rq_timeout(sdev->request_queue,
1601 MEGASAS_DEFAULT_CMD_TIMEOUT * HZ);
1602 return 0;
1603 }
1604 return -ENXIO;
1605 }
1606
1607 /*
1608 * The RAID firmware may require extended timeouts.
1609 */
1610 blk_queue_rq_timeout(sdev->request_queue,
1611 MEGASAS_DEFAULT_CMD_TIMEOUT * HZ);
1612 return 0;
1613 }
1614
1615 static int megasas_slave_alloc(struct scsi_device *sdev)
1616 {
1617 u16 pd_index = 0;
1618 struct megasas_instance *instance ;
1619 instance = megasas_lookup_instance(sdev->host->host_no);
1620 if ((sdev->channel < MEGASAS_MAX_PD_CHANNELS) &&
1621 (sdev->type == TYPE_DISK)) {
1622 /*
1623 * Open the OS scan to the SYSTEM PD
1624 */
1625 pd_index =
1626 (sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) +
1627 sdev->id;
1628 if ((instance->pd_list[pd_index].driveState ==
1629 MR_PD_STATE_SYSTEM) &&
1630 (instance->pd_list[pd_index].driveType ==
1631 TYPE_DISK)) {
1632 return 0;
1633 }
1634 return -ENXIO;
1635 }
1636 return 0;
1637 }
1638
1639 void megaraid_sas_kill_hba(struct megasas_instance *instance)
1640 {
1641 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
1642 (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY) ||
1643 (instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) ||
1644 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) ||
1645 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) {
1646 writel(MFI_STOP_ADP, &instance->reg_set->doorbell);
1647 } else {
1648 writel(MFI_STOP_ADP, &instance->reg_set->inbound_doorbell);
1649 }
1650 }
1651
1652 /**
1653 * megasas_check_and_restore_queue_depth - Check if queue depth needs to be
1654 * restored to max value
1655 * @instance: Adapter soft state
1656 *
1657 */
1658 void
1659 megasas_check_and_restore_queue_depth(struct megasas_instance *instance)
1660 {
1661 unsigned long flags;
1662 if (instance->flag & MEGASAS_FW_BUSY
1663 && time_after(jiffies, instance->last_time + 5 * HZ)
1664 && atomic_read(&instance->fw_outstanding) <
1665 instance->throttlequeuedepth + 1) {
1666
1667 spin_lock_irqsave(instance->host->host_lock, flags);
1668 instance->flag &= ~MEGASAS_FW_BUSY;
1669 if (instance->is_imr) {
1670 instance->host->can_queue =
1671 instance->max_fw_cmds - MEGASAS_SKINNY_INT_CMDS;
1672 } else
1673 instance->host->can_queue =
1674 instance->max_fw_cmds - MEGASAS_INT_CMDS;
1675
1676 spin_unlock_irqrestore(instance->host->host_lock, flags);
1677 }
1678 }
1679
1680 /**
1681 * megasas_complete_cmd_dpc - Returns FW's controller structure
1682 * @instance_addr: Address of adapter soft state
1683 *
1684 * Tasklet to complete cmds
1685 */
1686 static void megasas_complete_cmd_dpc(unsigned long instance_addr)
1687 {
1688 u32 producer;
1689 u32 consumer;
1690 u32 context;
1691 struct megasas_cmd *cmd;
1692 struct megasas_instance *instance =
1693 (struct megasas_instance *)instance_addr;
1694 unsigned long flags;
1695
1696 /* If we have already declared adapter dead, donot complete cmds */
1697 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR )
1698 return;
1699
1700 spin_lock_irqsave(&instance->completion_lock, flags);
1701
1702 producer = le32_to_cpu(*instance->producer);
1703 consumer = le32_to_cpu(*instance->consumer);
1704
1705 while (consumer != producer) {
1706 context = le32_to_cpu(instance->reply_queue[consumer]);
1707 if (context >= instance->max_fw_cmds) {
1708 printk(KERN_ERR "Unexpected context value %x\n",
1709 context);
1710 BUG();
1711 }
1712
1713 cmd = instance->cmd_list[context];
1714
1715 megasas_complete_cmd(instance, cmd, DID_OK);
1716
1717 consumer++;
1718 if (consumer == (instance->max_fw_cmds + 1)) {
1719 consumer = 0;
1720 }
1721 }
1722
1723 *instance->consumer = cpu_to_le32(producer);
1724
1725 spin_unlock_irqrestore(&instance->completion_lock, flags);
1726
1727 /*
1728 * Check if we can restore can_queue
1729 */
1730 megasas_check_and_restore_queue_depth(instance);
1731 }
1732
1733 static void
1734 megasas_internal_reset_defer_cmds(struct megasas_instance *instance);
1735
1736 static void
1737 process_fw_state_change_wq(struct work_struct *work);
1738
1739 void megasas_do_ocr(struct megasas_instance *instance)
1740 {
1741 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1064R) ||
1742 (instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5) ||
1743 (instance->pdev->device == PCI_DEVICE_ID_LSI_VERDE_ZCR)) {
1744 *instance->consumer = cpu_to_le32(MEGASAS_ADPRESET_INPROG_SIGN);
1745 }
1746 instance->instancet->disable_intr(instance);
1747 instance->adprecovery = MEGASAS_ADPRESET_SM_INFAULT;
1748 instance->issuepend_done = 0;
1749
1750 atomic_set(&instance->fw_outstanding, 0);
1751 megasas_internal_reset_defer_cmds(instance);
1752 process_fw_state_change_wq(&instance->work_init);
1753 }
1754
1755 /**
1756 * megasas_wait_for_outstanding - Wait for all outstanding cmds
1757 * @instance: Adapter soft state
1758 *
1759 * This function waits for up to MEGASAS_RESET_WAIT_TIME seconds for FW to
1760 * complete all its outstanding commands. Returns error if one or more IOs
1761 * are pending after this time period. It also marks the controller dead.
1762 */
1763 static int megasas_wait_for_outstanding(struct megasas_instance *instance)
1764 {
1765 int i;
1766 u32 reset_index;
1767 u32 wait_time = MEGASAS_RESET_WAIT_TIME;
1768 u8 adprecovery;
1769 unsigned long flags;
1770 struct list_head clist_local;
1771 struct megasas_cmd *reset_cmd;
1772 u32 fw_state;
1773 u8 kill_adapter_flag;
1774
1775 spin_lock_irqsave(&instance->hba_lock, flags);
1776 adprecovery = instance->adprecovery;
1777 spin_unlock_irqrestore(&instance->hba_lock, flags);
1778
1779 if (adprecovery != MEGASAS_HBA_OPERATIONAL) {
1780
1781 INIT_LIST_HEAD(&clist_local);
1782 spin_lock_irqsave(&instance->hba_lock, flags);
1783 list_splice_init(&instance->internal_reset_pending_q,
1784 &clist_local);
1785 spin_unlock_irqrestore(&instance->hba_lock, flags);
1786
1787 printk(KERN_NOTICE "megasas: HBA reset wait ...\n");
1788 for (i = 0; i < wait_time; i++) {
1789 msleep(1000);
1790 spin_lock_irqsave(&instance->hba_lock, flags);
1791 adprecovery = instance->adprecovery;
1792 spin_unlock_irqrestore(&instance->hba_lock, flags);
1793 if (adprecovery == MEGASAS_HBA_OPERATIONAL)
1794 break;
1795 }
1796
1797 if (adprecovery != MEGASAS_HBA_OPERATIONAL) {
1798 printk(KERN_NOTICE "megasas: reset: Stopping HBA.\n");
1799 spin_lock_irqsave(&instance->hba_lock, flags);
1800 instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR;
1801 spin_unlock_irqrestore(&instance->hba_lock, flags);
1802 return FAILED;
1803 }
1804
1805 reset_index = 0;
1806 while (!list_empty(&clist_local)) {
1807 reset_cmd = list_entry((&clist_local)->next,
1808 struct megasas_cmd, list);
1809 list_del_init(&reset_cmd->list);
1810 if (reset_cmd->scmd) {
1811 reset_cmd->scmd->result = DID_RESET << 16;
1812 printk(KERN_NOTICE "%d:%p reset [%02x]\n",
1813 reset_index, reset_cmd,
1814 reset_cmd->scmd->cmnd[0]);
1815
1816 reset_cmd->scmd->scsi_done(reset_cmd->scmd);
1817 megasas_return_cmd(instance, reset_cmd);
1818 } else if (reset_cmd->sync_cmd) {
1819 printk(KERN_NOTICE "megasas:%p synch cmds"
1820 "reset queue\n",
1821 reset_cmd);
1822
1823 reset_cmd->cmd_status = ENODATA;
1824 instance->instancet->fire_cmd(instance,
1825 reset_cmd->frame_phys_addr,
1826 0, instance->reg_set);
1827 } else {
1828 printk(KERN_NOTICE "megasas: %p unexpected"
1829 "cmds lst\n",
1830 reset_cmd);
1831 }
1832 reset_index++;
1833 }
1834
1835 return SUCCESS;
1836 }
1837
1838 for (i = 0; i < resetwaittime; i++) {
1839
1840 int outstanding = atomic_read(&instance->fw_outstanding);
1841
1842 if (!outstanding)
1843 break;
1844
1845 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
1846 printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
1847 "commands to complete\n",i,outstanding);
1848 /*
1849 * Call cmd completion routine. Cmd to be
1850 * be completed directly without depending on isr.
1851 */
1852 megasas_complete_cmd_dpc((unsigned long)instance);
1853 }
1854
1855 msleep(1000);
1856 }
1857
1858 i = 0;
1859 kill_adapter_flag = 0;
1860 do {
1861 fw_state = instance->instancet->read_fw_status_reg(
1862 instance->reg_set) & MFI_STATE_MASK;
1863 if ((fw_state == MFI_STATE_FAULT) &&
1864 (instance->disableOnlineCtrlReset == 0)) {
1865 if (i == 3) {
1866 kill_adapter_flag = 2;
1867 break;
1868 }
1869 megasas_do_ocr(instance);
1870 kill_adapter_flag = 1;
1871
1872 /* wait for 1 secs to let FW finish the pending cmds */
1873 msleep(1000);
1874 }
1875 i++;
1876 } while (i <= 3);
1877
1878 if (atomic_read(&instance->fw_outstanding) &&
1879 !kill_adapter_flag) {
1880 if (instance->disableOnlineCtrlReset == 0) {
1881
1882 megasas_do_ocr(instance);
1883
1884 /* wait for 5 secs to let FW finish the pending cmds */
1885 for (i = 0; i < wait_time; i++) {
1886 int outstanding =
1887 atomic_read(&instance->fw_outstanding);
1888 if (!outstanding)
1889 return SUCCESS;
1890 msleep(1000);
1891 }
1892 }
1893 }
1894
1895 if (atomic_read(&instance->fw_outstanding) ||
1896 (kill_adapter_flag == 2)) {
1897 printk(KERN_NOTICE "megaraid_sas: pending cmds after reset\n");
1898 /*
1899 * Send signal to FW to stop processing any pending cmds.
1900 * The controller will be taken offline by the OS now.
1901 */
1902 if ((instance->pdev->device ==
1903 PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
1904 (instance->pdev->device ==
1905 PCI_DEVICE_ID_LSI_SAS0071SKINNY)) {
1906 writel(MFI_STOP_ADP,
1907 &instance->reg_set->doorbell);
1908 } else {
1909 writel(MFI_STOP_ADP,
1910 &instance->reg_set->inbound_doorbell);
1911 }
1912 megasas_dump_pending_frames(instance);
1913 spin_lock_irqsave(&instance->hba_lock, flags);
1914 instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR;
1915 spin_unlock_irqrestore(&instance->hba_lock, flags);
1916 return FAILED;
1917 }
1918
1919 printk(KERN_NOTICE "megaraid_sas: no pending cmds after reset\n");
1920
1921 return SUCCESS;
1922 }
1923
1924 /**
1925 * megasas_generic_reset - Generic reset routine
1926 * @scmd: Mid-layer SCSI command
1927 *
1928 * This routine implements a generic reset handler for device, bus and host
1929 * reset requests. Device, bus and host specific reset handlers can use this
1930 * function after they do their specific tasks.
1931 */
1932 static int megasas_generic_reset(struct scsi_cmnd *scmd)
1933 {
1934 int ret_val;
1935 struct megasas_instance *instance;
1936
1937 instance = (struct megasas_instance *)scmd->device->host->hostdata;
1938
1939 scmd_printk(KERN_NOTICE, scmd, "megasas: RESET cmd=%x retries=%x\n",
1940 scmd->cmnd[0], scmd->retries);
1941
1942 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) {
1943 printk(KERN_ERR "megasas: cannot recover from previous reset "
1944 "failures\n");
1945 return FAILED;
1946 }
1947
1948 ret_val = megasas_wait_for_outstanding(instance);
1949 if (ret_val == SUCCESS)
1950 printk(KERN_NOTICE "megasas: reset successful \n");
1951 else
1952 printk(KERN_ERR "megasas: failed to do reset\n");
1953
1954 return ret_val;
1955 }
1956
1957 /**
1958 * megasas_reset_timer - quiesce the adapter if required
1959 * @scmd: scsi cmnd
1960 *
1961 * Sets the FW busy flag and reduces the host->can_queue if the
1962 * cmd has not been completed within the timeout period.
1963 */
1964 static enum
1965 blk_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd)
1966 {
1967 struct megasas_instance *instance;
1968 unsigned long flags;
1969
1970 if (time_after(jiffies, scmd->jiffies_at_alloc +
1971 (MEGASAS_DEFAULT_CMD_TIMEOUT * 2) * HZ)) {
1972 return BLK_EH_NOT_HANDLED;
1973 }
1974
1975 instance = (struct megasas_instance *)scmd->device->host->hostdata;
1976 if (!(instance->flag & MEGASAS_FW_BUSY)) {
1977 /* FW is busy, throttle IO */
1978 spin_lock_irqsave(instance->host->host_lock, flags);
1979
1980 instance->host->can_queue = instance->throttlequeuedepth;
1981 instance->last_time = jiffies;
1982 instance->flag |= MEGASAS_FW_BUSY;
1983
1984 spin_unlock_irqrestore(instance->host->host_lock, flags);
1985 }
1986 return BLK_EH_RESET_TIMER;
1987 }
1988
1989 /**
1990 * megasas_reset_device - Device reset handler entry point
1991 */
1992 static int megasas_reset_device(struct scsi_cmnd *scmd)
1993 {
1994 int ret;
1995
1996 /*
1997 * First wait for all commands to complete
1998 */
1999 ret = megasas_generic_reset(scmd);
2000
2001 return ret;
2002 }
2003
2004 /**
2005 * megasas_reset_bus_host - Bus & host reset handler entry point
2006 */
2007 static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
2008 {
2009 int ret;
2010 struct megasas_instance *instance;
2011 instance = (struct megasas_instance *)scmd->device->host->hostdata;
2012
2013 /*
2014 * First wait for all commands to complete
2015 */
2016 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) ||
2017 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) ||
2018 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY))
2019 ret = megasas_reset_fusion(scmd->device->host);
2020 else
2021 ret = megasas_generic_reset(scmd);
2022
2023 return ret;
2024 }
2025
2026 /**
2027 * megasas_bios_param - Returns disk geometry for a disk
2028 * @sdev: device handle
2029 * @bdev: block device
2030 * @capacity: drive capacity
2031 * @geom: geometry parameters
2032 */
2033 static int
2034 megasas_bios_param(struct scsi_device *sdev, struct block_device *bdev,
2035 sector_t capacity, int geom[])
2036 {
2037 int heads;
2038 int sectors;
2039 sector_t cylinders;
2040 unsigned long tmp;
2041 /* Default heads (64) & sectors (32) */
2042 heads = 64;
2043 sectors = 32;
2044
2045 tmp = heads * sectors;
2046 cylinders = capacity;
2047
2048 sector_div(cylinders, tmp);
2049
2050 /*
2051 * Handle extended translation size for logical drives > 1Gb
2052 */
2053
2054 if (capacity >= 0x200000) {
2055 heads = 255;
2056 sectors = 63;
2057 tmp = heads*sectors;
2058 cylinders = capacity;
2059 sector_div(cylinders, tmp);
2060 }
2061
2062 geom[0] = heads;
2063 geom[1] = sectors;
2064 geom[2] = cylinders;
2065
2066 return 0;
2067 }
2068
2069 static void megasas_aen_polling(struct work_struct *work);
2070
2071 /**
2072 * megasas_service_aen - Processes an event notification
2073 * @instance: Adapter soft state
2074 * @cmd: AEN command completed by the ISR
2075 *
2076 * For AEN, driver sends a command down to FW that is held by the FW till an
2077 * event occurs. When an event of interest occurs, FW completes the command
2078 * that it was previously holding.
2079 *
2080 * This routines sends SIGIO signal to processes that have registered with the
2081 * driver for AEN.
2082 */
2083 static void
2084 megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
2085 {
2086 unsigned long flags;
2087 /*
2088 * Don't signal app if it is just an aborted previously registered aen
2089 */
2090 if ((!cmd->abort_aen) && (instance->unload == 0)) {
2091 spin_lock_irqsave(&poll_aen_lock, flags);
2092 megasas_poll_wait_aen = 1;
2093 spin_unlock_irqrestore(&poll_aen_lock, flags);
2094 wake_up(&megasas_poll_wait);
2095 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
2096 }
2097 else
2098 cmd->abort_aen = 0;
2099
2100 instance->aen_cmd = NULL;
2101 megasas_return_cmd(instance, cmd);
2102
2103 if ((instance->unload == 0) &&
2104 ((instance->issuepend_done == 1))) {
2105 struct megasas_aen_event *ev;
2106 ev = kzalloc(sizeof(*ev), GFP_ATOMIC);
2107 if (!ev) {
2108 printk(KERN_ERR "megasas_service_aen: out of memory\n");
2109 } else {
2110 ev->instance = instance;
2111 instance->ev = ev;
2112 INIT_DELAYED_WORK(&ev->hotplug_work,
2113 megasas_aen_polling);
2114 schedule_delayed_work(&ev->hotplug_work, 0);
2115 }
2116 }
2117 }
2118
2119 static int megasas_change_queue_depth(struct scsi_device *sdev,
2120 int queue_depth, int reason)
2121 {
2122 if (reason != SCSI_QDEPTH_DEFAULT)
2123 return -EOPNOTSUPP;
2124
2125 if (queue_depth > sdev->host->can_queue)
2126 queue_depth = sdev->host->can_queue;
2127 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev),
2128 queue_depth);
2129
2130 return queue_depth;
2131 }
2132
2133 /*
2134 * Scsi host template for megaraid_sas driver
2135 */
2136 static struct scsi_host_template megasas_template = {
2137
2138 .module = THIS_MODULE,
2139 .name = "LSI SAS based MegaRAID driver",
2140 .proc_name = "megaraid_sas",
2141 .slave_configure = megasas_slave_configure,
2142 .slave_alloc = megasas_slave_alloc,
2143 .queuecommand = megasas_queue_command,
2144 .eh_device_reset_handler = megasas_reset_device,
2145 .eh_bus_reset_handler = megasas_reset_bus_host,
2146 .eh_host_reset_handler = megasas_reset_bus_host,
2147 .eh_timed_out = megasas_reset_timer,
2148 .bios_param = megasas_bios_param,
2149 .use_clustering = ENABLE_CLUSTERING,
2150 .change_queue_depth = megasas_change_queue_depth,
2151 .no_write_same = 1,
2152 };
2153
2154 /**
2155 * megasas_complete_int_cmd - Completes an internal command
2156 * @instance: Adapter soft state
2157 * @cmd: Command to be completed
2158 *
2159 * The megasas_issue_blocked_cmd() function waits for a command to complete
2160 * after it issues a command. This function wakes up that waiting routine by
2161 * calling wake_up() on the wait queue.
2162 */
2163 static void
2164 megasas_complete_int_cmd(struct megasas_instance *instance,
2165 struct megasas_cmd *cmd)
2166 {
2167 cmd->cmd_status = cmd->frame->io.cmd_status;
2168
2169 if (cmd->cmd_status == ENODATA) {
2170 cmd->cmd_status = 0;
2171 }
2172 wake_up(&instance->int_cmd_wait_q);
2173 }
2174
2175 /**
2176 * megasas_complete_abort - Completes aborting a command
2177 * @instance: Adapter soft state
2178 * @cmd: Cmd that was issued to abort another cmd
2179 *
2180 * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q
2181 * after it issues an abort on a previously issued command. This function
2182 * wakes up all functions waiting on the same wait queue.
2183 */
2184 static void
2185 megasas_complete_abort(struct megasas_instance *instance,
2186 struct megasas_cmd *cmd)
2187 {
2188 if (cmd->sync_cmd) {
2189 cmd->sync_cmd = 0;
2190 cmd->cmd_status = 0;
2191 wake_up(&instance->abort_cmd_wait_q);
2192 }
2193
2194 return;
2195 }
2196
2197 /**
2198 * megasas_complete_cmd - Completes a command
2199 * @instance: Adapter soft state
2200 * @cmd: Command to be completed
2201 * @alt_status: If non-zero, use this value as status to
2202 * SCSI mid-layer instead of the value returned
2203 * by the FW. This should be used if caller wants
2204 * an alternate status (as in the case of aborted
2205 * commands)
2206 */
2207 void
2208 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
2209 u8 alt_status)
2210 {
2211 int exception = 0;
2212 struct megasas_header *hdr = &cmd->frame->hdr;
2213 unsigned long flags;
2214 struct fusion_context *fusion = instance->ctrl_context;
2215 u32 opcode;
2216
2217 /* flag for the retry reset */
2218 cmd->retry_for_fw_reset = 0;
2219
2220 if (cmd->scmd)
2221 cmd->scmd->SCp.ptr = NULL;
2222
2223 switch (hdr->cmd) {
2224 case MFI_CMD_INVALID:
2225 /* Some older 1068 controller FW may keep a pended
2226 MR_DCMD_CTRL_EVENT_GET_INFO left over from the main kernel
2227 when booting the kdump kernel. Ignore this command to
2228 prevent a kernel panic on shutdown of the kdump kernel. */
2229 printk(KERN_WARNING "megaraid_sas: MFI_CMD_INVALID command "
2230 "completed.\n");
2231 printk(KERN_WARNING "megaraid_sas: If you have a controller "
2232 "other than PERC5, please upgrade your firmware.\n");
2233 break;
2234 case MFI_CMD_PD_SCSI_IO:
2235 case MFI_CMD_LD_SCSI_IO:
2236
2237 /*
2238 * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
2239 * issued either through an IO path or an IOCTL path. If it
2240 * was via IOCTL, we will send it to internal completion.
2241 */
2242 if (cmd->sync_cmd) {
2243 cmd->sync_cmd = 0;
2244 megasas_complete_int_cmd(instance, cmd);
2245 break;
2246 }
2247
2248 case MFI_CMD_LD_READ:
2249 case MFI_CMD_LD_WRITE:
2250
2251 if (alt_status) {
2252 cmd->scmd->result = alt_status << 16;
2253 exception = 1;
2254 }
2255
2256 if (exception) {
2257
2258 atomic_dec(&instance->fw_outstanding);
2259
2260 scsi_dma_unmap(cmd->scmd);
2261 cmd->scmd->scsi_done(cmd->scmd);
2262 megasas_return_cmd(instance, cmd);
2263
2264 break;
2265 }
2266
2267 switch (hdr->cmd_status) {
2268
2269 case MFI_STAT_OK:
2270 cmd->scmd->result = DID_OK << 16;
2271 break;
2272
2273 case MFI_STAT_SCSI_IO_FAILED:
2274 case MFI_STAT_LD_INIT_IN_PROGRESS:
2275 cmd->scmd->result =
2276 (DID_ERROR << 16) | hdr->scsi_status;
2277 break;
2278
2279 case MFI_STAT_SCSI_DONE_WITH_ERROR:
2280
2281 cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
2282
2283 if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
2284 memset(cmd->scmd->sense_buffer, 0,
2285 SCSI_SENSE_BUFFERSIZE);
2286 memcpy(cmd->scmd->sense_buffer, cmd->sense,
2287 hdr->sense_len);
2288
2289 cmd->scmd->result |= DRIVER_SENSE << 24;
2290 }
2291
2292 break;
2293
2294 case MFI_STAT_LD_OFFLINE:
2295 case MFI_STAT_DEVICE_NOT_FOUND:
2296 cmd->scmd->result = DID_BAD_TARGET << 16;
2297 break;
2298
2299 default:
2300 printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
2301 hdr->cmd_status);
2302 cmd->scmd->result = DID_ERROR << 16;
2303 break;
2304 }
2305
2306 atomic_dec(&instance->fw_outstanding);
2307
2308 scsi_dma_unmap(cmd->scmd);
2309 cmd->scmd->scsi_done(cmd->scmd);
2310 megasas_return_cmd(instance, cmd);
2311
2312 break;
2313
2314 case MFI_CMD_SMP:
2315 case MFI_CMD_STP:
2316 case MFI_CMD_DCMD:
2317 opcode = le32_to_cpu(cmd->frame->dcmd.opcode);
2318 /* Check for LD map update */
2319 if ((opcode == MR_DCMD_LD_MAP_GET_INFO)
2320 && (cmd->frame->dcmd.mbox.b[1] == 1)) {
2321 fusion->fast_path_io = 0;
2322 spin_lock_irqsave(instance->host->host_lock, flags);
2323 if (cmd->frame->hdr.cmd_status != 0) {
2324 if (cmd->frame->hdr.cmd_status !=
2325 MFI_STAT_NOT_FOUND)
2326 printk(KERN_WARNING "megasas: map sync"
2327 "failed, status = 0x%x.\n",
2328 cmd->frame->hdr.cmd_status);
2329 else {
2330 megasas_return_cmd(instance, cmd);
2331 spin_unlock_irqrestore(
2332 instance->host->host_lock,
2333 flags);
2334 break;
2335 }
2336 } else
2337 instance->map_id++;
2338 megasas_return_cmd(instance, cmd);
2339
2340 /*
2341 * Set fast path IO to ZERO.
2342 * Validate Map will set proper value.
2343 * Meanwhile all IOs will go as LD IO.
2344 */
2345 if (MR_ValidateMapInfo(instance))
2346 fusion->fast_path_io = 1;
2347 else
2348 fusion->fast_path_io = 0;
2349 megasas_sync_map_info(instance);
2350 spin_unlock_irqrestore(instance->host->host_lock,
2351 flags);
2352 break;
2353 }
2354 if (opcode == MR_DCMD_CTRL_EVENT_GET_INFO ||
2355 opcode == MR_DCMD_CTRL_EVENT_GET) {
2356 spin_lock_irqsave(&poll_aen_lock, flags);
2357 megasas_poll_wait_aen = 0;
2358 spin_unlock_irqrestore(&poll_aen_lock, flags);
2359 }
2360
2361 /*
2362 * See if got an event notification
2363 */
2364 if (opcode == MR_DCMD_CTRL_EVENT_WAIT)
2365 megasas_service_aen(instance, cmd);
2366 else
2367 megasas_complete_int_cmd(instance, cmd);
2368
2369 break;
2370
2371 case MFI_CMD_ABORT:
2372 /*
2373 * Cmd issued to abort another cmd returned
2374 */
2375 megasas_complete_abort(instance, cmd);
2376 break;
2377
2378 default:
2379 printk("megasas: Unknown command completed! [0x%X]\n",
2380 hdr->cmd);
2381 break;
2382 }
2383 }
2384
2385 /**
2386 * megasas_issue_pending_cmds_again - issue all pending cmds
2387 * in FW again because of the fw reset
2388 * @instance: Adapter soft state
2389 */
2390 static inline void
2391 megasas_issue_pending_cmds_again(struct megasas_instance *instance)
2392 {
2393 struct megasas_cmd *cmd;
2394 struct list_head clist_local;
2395 union megasas_evt_class_locale class_locale;
2396 unsigned long flags;
2397 u32 seq_num;
2398
2399 INIT_LIST_HEAD(&clist_local);
2400 spin_lock_irqsave(&instance->hba_lock, flags);
2401 list_splice_init(&instance->internal_reset_pending_q, &clist_local);
2402 spin_unlock_irqrestore(&instance->hba_lock, flags);
2403
2404 while (!list_empty(&clist_local)) {
2405 cmd = list_entry((&clist_local)->next,
2406 struct megasas_cmd, list);
2407 list_del_init(&cmd->list);
2408
2409 if (cmd->sync_cmd || cmd->scmd) {
2410 printk(KERN_NOTICE "megaraid_sas: command %p, %p:%d"
2411 "detected to be pending while HBA reset.\n",
2412 cmd, cmd->scmd, cmd->sync_cmd);
2413
2414 cmd->retry_for_fw_reset++;
2415
2416 if (cmd->retry_for_fw_reset == 3) {
2417 printk(KERN_NOTICE "megaraid_sas: cmd %p, %p:%d"
2418 "was tried multiple times during reset."
2419 "Shutting down the HBA\n",
2420 cmd, cmd->scmd, cmd->sync_cmd);
2421 megaraid_sas_kill_hba(instance);
2422
2423 instance->adprecovery =
2424 MEGASAS_HW_CRITICAL_ERROR;
2425 return;
2426 }
2427 }
2428
2429 if (cmd->sync_cmd == 1) {
2430 if (cmd->scmd) {
2431 printk(KERN_NOTICE "megaraid_sas: unexpected"
2432 "cmd attached to internal command!\n");
2433 }
2434 printk(KERN_NOTICE "megasas: %p synchronous cmd"
2435 "on the internal reset queue,"
2436 "issue it again.\n", cmd);
2437 cmd->cmd_status = ENODATA;
2438 instance->instancet->fire_cmd(instance,
2439 cmd->frame_phys_addr ,
2440 0, instance->reg_set);
2441 } else if (cmd->scmd) {
2442 printk(KERN_NOTICE "megasas: %p scsi cmd [%02x]"
2443 "detected on the internal queue, issue again.\n",
2444 cmd, cmd->scmd->cmnd[0]);
2445
2446 atomic_inc(&instance->fw_outstanding);
2447 instance->instancet->fire_cmd(instance,
2448 cmd->frame_phys_addr,
2449 cmd->frame_count-1, instance->reg_set);
2450 } else {
2451 printk(KERN_NOTICE "megasas: %p unexpected cmd on the"
2452 "internal reset defer list while re-issue!!\n",
2453 cmd);
2454 }
2455 }
2456
2457 if (instance->aen_cmd) {
2458 printk(KERN_NOTICE "megaraid_sas: aen_cmd in def process\n");
2459 megasas_return_cmd(instance, instance->aen_cmd);
2460
2461 instance->aen_cmd = NULL;
2462 }
2463
2464 /*
2465 * Initiate AEN (Asynchronous Event Notification)
2466 */
2467 seq_num = instance->last_seq_num;
2468 class_locale.members.reserved = 0;
2469 class_locale.members.locale = MR_EVT_LOCALE_ALL;
2470 class_locale.members.class = MR_EVT_CLASS_DEBUG;
2471
2472 megasas_register_aen(instance, seq_num, class_locale.word);
2473 }
2474
2475 /**
2476 * Move the internal reset pending commands to a deferred queue.
2477 *
2478 * We move the commands pending at internal reset time to a
2479 * pending queue. This queue would be flushed after successful
2480 * completion of the internal reset sequence. if the internal reset
2481 * did not complete in time, the kernel reset handler would flush
2482 * these commands.
2483 **/
2484 static void
2485 megasas_internal_reset_defer_cmds(struct megasas_instance *instance)
2486 {
2487 struct megasas_cmd *cmd;
2488 int i;
2489 u32 max_cmd = instance->max_fw_cmds;
2490 u32 defer_index;
2491 unsigned long flags;
2492
2493 defer_index = 0;
2494 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
2495 for (i = 0; i < max_cmd; i++) {
2496 cmd = instance->cmd_list[i];
2497 if (cmd->sync_cmd == 1 || cmd->scmd) {
2498 printk(KERN_NOTICE "megasas: moving cmd[%d]:%p:%d:%p"
2499 "on the defer queue as internal\n",
2500 defer_index, cmd, cmd->sync_cmd, cmd->scmd);
2501
2502 if (!list_empty(&cmd->list)) {
2503 printk(KERN_NOTICE "megaraid_sas: ERROR while"
2504 " moving this cmd:%p, %d %p, it was"
2505 "discovered on some list?\n",
2506 cmd, cmd->sync_cmd, cmd->scmd);
2507
2508 list_del_init(&cmd->list);
2509 }
2510 defer_index++;
2511 list_add_tail(&cmd->list,
2512 &instance->internal_reset_pending_q);
2513 }
2514 }
2515 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
2516 }
2517
2518
2519 static void
2520 process_fw_state_change_wq(struct work_struct *work)
2521 {
2522 struct megasas_instance *instance =
2523 container_of(work, struct megasas_instance, work_init);
2524 u32 wait;
2525 unsigned long flags;
2526
2527 if (instance->adprecovery != MEGASAS_ADPRESET_SM_INFAULT) {
2528 printk(KERN_NOTICE "megaraid_sas: error, recovery st %x \n",
2529 instance->adprecovery);
2530 return ;
2531 }
2532
2533 if (instance->adprecovery == MEGASAS_ADPRESET_SM_INFAULT) {
2534 printk(KERN_NOTICE "megaraid_sas: FW detected to be in fault"
2535 "state, restarting it...\n");
2536
2537 instance->instancet->disable_intr(instance);
2538 atomic_set(&instance->fw_outstanding, 0);
2539
2540 atomic_set(&instance->fw_reset_no_pci_access, 1);
2541 instance->instancet->adp_reset(instance, instance->reg_set);
2542 atomic_set(&instance->fw_reset_no_pci_access, 0 );
2543
2544 printk(KERN_NOTICE "megaraid_sas: FW restarted successfully,"
2545 "initiating next stage...\n");
2546
2547 printk(KERN_NOTICE "megaraid_sas: HBA recovery state machine,"
2548 "state 2 starting...\n");
2549
2550 /*waitting for about 20 second before start the second init*/
2551 for (wait = 0; wait < 30; wait++) {
2552 msleep(1000);
2553 }
2554
2555 if (megasas_transition_to_ready(instance, 1)) {
2556 printk(KERN_NOTICE "megaraid_sas:adapter not ready\n");
2557
2558 megaraid_sas_kill_hba(instance);
2559 instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR;
2560 return ;
2561 }
2562
2563 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1064R) ||
2564 (instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5) ||
2565 (instance->pdev->device == PCI_DEVICE_ID_LSI_VERDE_ZCR)
2566 ) {
2567 *instance->consumer = *instance->producer;
2568 } else {
2569 *instance->consumer = 0;
2570 *instance->producer = 0;
2571 }
2572
2573 megasas_issue_init_mfi(instance);
2574
2575 spin_lock_irqsave(&instance->hba_lock, flags);
2576 instance->adprecovery = MEGASAS_HBA_OPERATIONAL;
2577 spin_unlock_irqrestore(&instance->hba_lock, flags);
2578 instance->instancet->enable_intr(instance);
2579
2580 megasas_issue_pending_cmds_again(instance);
2581 instance->issuepend_done = 1;
2582 }
2583 return ;
2584 }
2585
2586 /**
2587 * megasas_deplete_reply_queue - Processes all completed commands
2588 * @instance: Adapter soft state
2589 * @alt_status: Alternate status to be returned to
2590 * SCSI mid-layer instead of the status
2591 * returned by the FW
2592 * Note: this must be called with hba lock held
2593 */
2594 static int
2595 megasas_deplete_reply_queue(struct megasas_instance *instance,
2596 u8 alt_status)
2597 {
2598 u32 mfiStatus;
2599 u32 fw_state;
2600
2601 if ((mfiStatus = instance->instancet->check_reset(instance,
2602 instance->reg_set)) == 1) {
2603 return IRQ_HANDLED;
2604 }
2605
2606 if ((mfiStatus = instance->instancet->clear_intr(
2607 instance->reg_set)
2608 ) == 0) {
2609 /* Hardware may not set outbound_intr_status in MSI-X mode */
2610 if (!instance->msix_vectors)
2611 return IRQ_NONE;
2612 }
2613
2614 instance->mfiStatus = mfiStatus;
2615
2616 if ((mfiStatus & MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE)) {
2617 fw_state = instance->instancet->read_fw_status_reg(
2618 instance->reg_set) & MFI_STATE_MASK;
2619
2620 if (fw_state != MFI_STATE_FAULT) {
2621 printk(KERN_NOTICE "megaraid_sas: fw state:%x\n",
2622 fw_state);
2623 }
2624
2625 if ((fw_state == MFI_STATE_FAULT) &&
2626 (instance->disableOnlineCtrlReset == 0)) {
2627 printk(KERN_NOTICE "megaraid_sas: wait adp restart\n");
2628
2629 if ((instance->pdev->device ==
2630 PCI_DEVICE_ID_LSI_SAS1064R) ||
2631 (instance->pdev->device ==
2632 PCI_DEVICE_ID_DELL_PERC5) ||
2633 (instance->pdev->device ==
2634 PCI_DEVICE_ID_LSI_VERDE_ZCR)) {
2635
2636 *instance->consumer =
2637 cpu_to_le32(MEGASAS_ADPRESET_INPROG_SIGN);
2638 }
2639
2640
2641 instance->instancet->disable_intr(instance);
2642 instance->adprecovery = MEGASAS_ADPRESET_SM_INFAULT;
2643 instance->issuepend_done = 0;
2644
2645 atomic_set(&instance->fw_outstanding, 0);
2646 megasas_internal_reset_defer_cmds(instance);
2647
2648 printk(KERN_NOTICE "megasas: fwState=%x, stage:%d\n",
2649 fw_state, instance->adprecovery);
2650
2651 schedule_work(&instance->work_init);
2652 return IRQ_HANDLED;
2653
2654 } else {
2655 printk(KERN_NOTICE "megasas: fwstate:%x, dis_OCR=%x\n",
2656 fw_state, instance->disableOnlineCtrlReset);
2657 }
2658 }
2659
2660 tasklet_schedule(&instance->isr_tasklet);
2661 return IRQ_HANDLED;
2662 }
2663 /**
2664 * megasas_isr - isr entry point
2665 */
2666 static irqreturn_t megasas_isr(int irq, void *devp)
2667 {
2668 struct megasas_irq_context *irq_context = devp;
2669 struct megasas_instance *instance = irq_context->instance;
2670 unsigned long flags;
2671 irqreturn_t rc;
2672
2673 if (atomic_read(&instance->fw_reset_no_pci_access))
2674 return IRQ_HANDLED;
2675
2676 spin_lock_irqsave(&instance->hba_lock, flags);
2677 rc = megasas_deplete_reply_queue(instance, DID_OK);
2678 spin_unlock_irqrestore(&instance->hba_lock, flags);
2679
2680 return rc;
2681 }
2682
2683 /**
2684 * megasas_transition_to_ready - Move the FW to READY state
2685 * @instance: Adapter soft state
2686 *
2687 * During the initialization, FW passes can potentially be in any one of
2688 * several possible states. If the FW in operational, waiting-for-handshake
2689 * states, driver must take steps to bring it to ready state. Otherwise, it
2690 * has to wait for the ready state.
2691 */
2692 int
2693 megasas_transition_to_ready(struct megasas_instance *instance, int ocr)
2694 {
2695 int i;
2696 u8 max_wait;
2697 u32 fw_state;
2698 u32 cur_state;
2699 u32 abs_state, curr_abs_state;
2700
2701 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & MFI_STATE_MASK;
2702
2703 if (fw_state != MFI_STATE_READY)
2704 printk(KERN_INFO "megasas: Waiting for FW to come to ready"
2705 " state\n");
2706
2707 while (fw_state != MFI_STATE_READY) {
2708
2709 abs_state =
2710 instance->instancet->read_fw_status_reg(instance->reg_set);
2711
2712 switch (fw_state) {
2713
2714 case MFI_STATE_FAULT:
2715 printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
2716 if (ocr) {
2717 max_wait = MEGASAS_RESET_WAIT_TIME;
2718 cur_state = MFI_STATE_FAULT;
2719 break;
2720 } else
2721 return -ENODEV;
2722
2723 case MFI_STATE_WAIT_HANDSHAKE:
2724 /*
2725 * Set the CLR bit in inbound doorbell
2726 */
2727 if ((instance->pdev->device ==
2728 PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
2729 (instance->pdev->device ==
2730 PCI_DEVICE_ID_LSI_SAS0071SKINNY) ||
2731 (instance->pdev->device ==
2732 PCI_DEVICE_ID_LSI_FUSION) ||
2733 (instance->pdev->device ==
2734 PCI_DEVICE_ID_LSI_INVADER) ||
2735 (instance->pdev->device ==
2736 PCI_DEVICE_ID_LSI_FURY)) {
2737 writel(
2738 MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
2739 &instance->reg_set->doorbell);
2740 } else {
2741 writel(
2742 MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
2743 &instance->reg_set->inbound_doorbell);
2744 }
2745
2746 max_wait = MEGASAS_RESET_WAIT_TIME;
2747 cur_state = MFI_STATE_WAIT_HANDSHAKE;
2748 break;
2749
2750 case MFI_STATE_BOOT_MESSAGE_PENDING:
2751 if ((instance->pdev->device ==
2752 PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
2753 (instance->pdev->device ==
2754 PCI_DEVICE_ID_LSI_SAS0071SKINNY) ||
2755 (instance->pdev->device ==
2756 PCI_DEVICE_ID_LSI_FUSION) ||
2757 (instance->pdev->device ==
2758 PCI_DEVICE_ID_LSI_INVADER) ||
2759 (instance->pdev->device ==
2760 PCI_DEVICE_ID_LSI_FURY)) {
2761 writel(MFI_INIT_HOTPLUG,
2762 &instance->reg_set->doorbell);
2763 } else
2764 writel(MFI_INIT_HOTPLUG,
2765 &instance->reg_set->inbound_doorbell);
2766
2767 max_wait = MEGASAS_RESET_WAIT_TIME;
2768 cur_state = MFI_STATE_BOOT_MESSAGE_PENDING;
2769 break;
2770
2771 case MFI_STATE_OPERATIONAL:
2772 /*
2773 * Bring it to READY state; assuming max wait 10 secs
2774 */
2775 instance->instancet->disable_intr(instance);
2776 if ((instance->pdev->device ==
2777 PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
2778 (instance->pdev->device ==
2779 PCI_DEVICE_ID_LSI_SAS0071SKINNY) ||
2780 (instance->pdev->device
2781 == PCI_DEVICE_ID_LSI_FUSION) ||
2782 (instance->pdev->device
2783 == PCI_DEVICE_ID_LSI_INVADER) ||
2784 (instance->pdev->device
2785 == PCI_DEVICE_ID_LSI_FURY)) {
2786 writel(MFI_RESET_FLAGS,
2787 &instance->reg_set->doorbell);
2788 if ((instance->pdev->device ==
2789 PCI_DEVICE_ID_LSI_FUSION) ||
2790 (instance->pdev->device ==
2791 PCI_DEVICE_ID_LSI_INVADER) ||
2792 (instance->pdev->device ==
2793 PCI_DEVICE_ID_LSI_FURY)) {
2794 for (i = 0; i < (10 * 1000); i += 20) {
2795 if (readl(
2796 &instance->
2797 reg_set->
2798 doorbell) & 1)
2799 msleep(20);
2800 else
2801 break;
2802 }
2803 }
2804 } else
2805 writel(MFI_RESET_FLAGS,
2806 &instance->reg_set->inbound_doorbell);
2807
2808 max_wait = MEGASAS_RESET_WAIT_TIME;
2809 cur_state = MFI_STATE_OPERATIONAL;
2810 break;
2811
2812 case MFI_STATE_UNDEFINED:
2813 /*
2814 * This state should not last for more than 2 seconds
2815 */
2816 max_wait = MEGASAS_RESET_WAIT_TIME;
2817 cur_state = MFI_STATE_UNDEFINED;
2818 break;
2819
2820 case MFI_STATE_BB_INIT:
2821 max_wait = MEGASAS_RESET_WAIT_TIME;
2822 cur_state = MFI_STATE_BB_INIT;
2823 break;
2824
2825 case MFI_STATE_FW_INIT:
2826 max_wait = MEGASAS_RESET_WAIT_TIME;
2827 cur_state = MFI_STATE_FW_INIT;
2828 break;
2829
2830 case MFI_STATE_FW_INIT_2:
2831 max_wait = MEGASAS_RESET_WAIT_TIME;
2832 cur_state = MFI_STATE_FW_INIT_2;
2833 break;
2834
2835 case MFI_STATE_DEVICE_SCAN:
2836 max_wait = MEGASAS_RESET_WAIT_TIME;
2837 cur_state = MFI_STATE_DEVICE_SCAN;
2838 break;
2839
2840 case MFI_STATE_FLUSH_CACHE:
2841 max_wait = MEGASAS_RESET_WAIT_TIME;
2842 cur_state = MFI_STATE_FLUSH_CACHE;
2843 break;
2844
2845 default:
2846 printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
2847 fw_state);
2848 return -ENODEV;
2849 }
2850
2851 /*
2852 * The cur_state should not last for more than max_wait secs
2853 */
2854 for (i = 0; i < (max_wait * 1000); i++) {
2855 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) &
2856 MFI_STATE_MASK ;
2857 curr_abs_state =
2858 instance->instancet->read_fw_status_reg(instance->reg_set);
2859
2860 if (abs_state == curr_abs_state) {
2861 msleep(1);
2862 } else
2863 break;
2864 }
2865
2866 /*
2867 * Return error if fw_state hasn't changed after max_wait
2868 */
2869 if (curr_abs_state == abs_state) {
2870 printk(KERN_DEBUG "FW state [%d] hasn't changed "
2871 "in %d secs\n", fw_state, max_wait);
2872 return -ENODEV;
2873 }
2874 }
2875 printk(KERN_INFO "megasas: FW now in Ready state\n");
2876
2877 return 0;
2878 }
2879
2880 /**
2881 * megasas_teardown_frame_pool - Destroy the cmd frame DMA pool
2882 * @instance: Adapter soft state
2883 */
2884 static void megasas_teardown_frame_pool(struct megasas_instance *instance)
2885 {
2886 int i;
2887 u32 max_cmd = instance->max_mfi_cmds;
2888 struct megasas_cmd *cmd;
2889
2890 if (!instance->frame_dma_pool)
2891 return;
2892
2893 /*
2894 * Return all frames to pool
2895 */
2896 for (i = 0; i < max_cmd; i++) {
2897
2898 cmd = instance->cmd_list[i];
2899
2900 if (cmd->frame)
2901 pci_pool_free(instance->frame_dma_pool, cmd->frame,
2902 cmd->frame_phys_addr);
2903
2904 if (cmd->sense)
2905 pci_pool_free(instance->sense_dma_pool, cmd->sense,
2906 cmd->sense_phys_addr);
2907 }
2908
2909 /*
2910 * Now destroy the pool itself
2911 */
2912 pci_pool_destroy(instance->frame_dma_pool);
2913 pci_pool_destroy(instance->sense_dma_pool);
2914
2915 instance->frame_dma_pool = NULL;
2916 instance->sense_dma_pool = NULL;
2917 }
2918
2919 /**
2920 * megasas_create_frame_pool - Creates DMA pool for cmd frames
2921 * @instance: Adapter soft state
2922 *
2923 * Each command packet has an embedded DMA memory buffer that is used for
2924 * filling MFI frame and the SG list that immediately follows the frame. This
2925 * function creates those DMA memory buffers for each command packet by using
2926 * PCI pool facility.
2927 */
2928 static int megasas_create_frame_pool(struct megasas_instance *instance)
2929 {
2930 int i;
2931 u32 max_cmd;
2932 u32 sge_sz;
2933 u32 sgl_sz;
2934 u32 total_sz;
2935 u32 frame_count;
2936 struct megasas_cmd *cmd;
2937
2938 max_cmd = instance->max_mfi_cmds;
2939
2940 /*
2941 * Size of our frame is 64 bytes for MFI frame, followed by max SG
2942 * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
2943 */
2944 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
2945 sizeof(struct megasas_sge32);
2946
2947 if (instance->flag_ieee) {
2948 sge_sz = sizeof(struct megasas_sge_skinny);
2949 }
2950
2951 /*
2952 * Calculated the number of 64byte frames required for SGL
2953 */
2954 sgl_sz = sge_sz * instance->max_num_sge;
2955 frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
2956 frame_count = 15;
2957
2958 /*
2959 * We need one extra frame for the MFI command
2960 */
2961 frame_count++;
2962
2963 total_sz = MEGAMFI_FRAME_SIZE * frame_count;
2964 /*
2965 * Use DMA pool facility provided by PCI layer
2966 */
2967 instance->frame_dma_pool = pci_pool_create("megasas frame pool",
2968 instance->pdev, total_sz, 64,
2969 0);
2970
2971 if (!instance->frame_dma_pool) {
2972 printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
2973 return -ENOMEM;
2974 }
2975
2976 instance->sense_dma_pool = pci_pool_create("megasas sense pool",
2977 instance->pdev, 128, 4, 0);
2978
2979 if (!instance->sense_dma_pool) {
2980 printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
2981
2982 pci_pool_destroy(instance->frame_dma_pool);
2983 instance->frame_dma_pool = NULL;
2984
2985 return -ENOMEM;
2986 }
2987
2988 /*
2989 * Allocate and attach a frame to each of the commands in cmd_list.
2990 * By making cmd->index as the context instead of the &cmd, we can
2991 * always use 32bit context regardless of the architecture
2992 */
2993 for (i = 0; i < max_cmd; i++) {
2994
2995 cmd = instance->cmd_list[i];
2996
2997 cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
2998 GFP_KERNEL, &cmd->frame_phys_addr);
2999
3000 cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
3001 GFP_KERNEL, &cmd->sense_phys_addr);
3002
3003 /*
3004 * megasas_teardown_frame_pool() takes care of freeing
3005 * whatever has been allocated
3006 */
3007 if (!cmd->frame || !cmd->sense) {
3008 printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
3009 megasas_teardown_frame_pool(instance);
3010 return -ENOMEM;
3011 }
3012
3013 memset(cmd->frame, 0, total_sz);
3014 cmd->frame->io.context = cpu_to_le32(cmd->index);
3015 cmd->frame->io.pad_0 = 0;
3016 if ((instance->pdev->device != PCI_DEVICE_ID_LSI_FUSION) &&
3017 (instance->pdev->device != PCI_DEVICE_ID_LSI_INVADER) &&
3018 (instance->pdev->device != PCI_DEVICE_ID_LSI_FURY) &&
3019 (reset_devices))
3020 cmd->frame->hdr.cmd = MFI_CMD_INVALID;
3021 }
3022
3023 return 0;
3024 }
3025
3026 /**
3027 * megasas_free_cmds - Free all the cmds in the free cmd pool
3028 * @instance: Adapter soft state
3029 */
3030 void megasas_free_cmds(struct megasas_instance *instance)
3031 {
3032 int i;
3033 /* First free the MFI frame pool */
3034 megasas_teardown_frame_pool(instance);
3035
3036 /* Free all the commands in the cmd_list */
3037 for (i = 0; i < instance->max_mfi_cmds; i++)
3038
3039 kfree(instance->cmd_list[i]);
3040
3041 /* Free the cmd_list buffer itself */
3042 kfree(instance->cmd_list);
3043 instance->cmd_list = NULL;
3044
3045 INIT_LIST_HEAD(&instance->cmd_pool);
3046 }
3047
3048 /**
3049 * megasas_alloc_cmds - Allocates the command packets
3050 * @instance: Adapter soft state
3051 *
3052 * Each command that is issued to the FW, whether IO commands from the OS or
3053 * internal commands like IOCTLs, are wrapped in local data structure called
3054 * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
3055 * the FW.
3056 *
3057 * Each frame has a 32-bit field called context (tag). This context is used
3058 * to get back the megasas_cmd from the frame when a frame gets completed in
3059 * the ISR. Typically the address of the megasas_cmd itself would be used as
3060 * the context. But we wanted to keep the differences between 32 and 64 bit
3061 * systems to the mininum. We always use 32 bit integers for the context. In
3062 * this driver, the 32 bit values are the indices into an array cmd_list.
3063 * This array is used only to look up the megasas_cmd given the context. The
3064 * free commands themselves are maintained in a linked list called cmd_pool.
3065 */
3066 int megasas_alloc_cmds(struct megasas_instance *instance)
3067 {
3068 int i;
3069 int j;
3070 u32 max_cmd;
3071 struct megasas_cmd *cmd;
3072
3073 max_cmd = instance->max_mfi_cmds;
3074
3075 /*
3076 * instance->cmd_list is an array of struct megasas_cmd pointers.
3077 * Allocate the dynamic array first and then allocate individual
3078 * commands.
3079 */
3080 instance->cmd_list = kcalloc(max_cmd, sizeof(struct megasas_cmd*), GFP_KERNEL);
3081
3082 if (!instance->cmd_list) {
3083 printk(KERN_DEBUG "megasas: out of memory\n");
3084 return -ENOMEM;
3085 }
3086
3087 memset(instance->cmd_list, 0, sizeof(struct megasas_cmd *) *max_cmd);
3088
3089 for (i = 0; i < max_cmd; i++) {
3090 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
3091 GFP_KERNEL);
3092
3093 if (!instance->cmd_list[i]) {
3094
3095 for (j = 0; j < i; j++)
3096 kfree(instance->cmd_list[j]);
3097
3098 kfree(instance->cmd_list);
3099 instance->cmd_list = NULL;
3100
3101 return -ENOMEM;
3102 }
3103 }
3104
3105 /*
3106 * Add all the commands to command pool (instance->cmd_pool)
3107 */
3108 for (i = 0; i < max_cmd; i++) {
3109 cmd = instance->cmd_list[i];
3110 memset(cmd, 0, sizeof(struct megasas_cmd));
3111 cmd->index = i;
3112 cmd->scmd = NULL;
3113 cmd->instance = instance;
3114
3115 list_add_tail(&cmd->list, &instance->cmd_pool);
3116 }
3117
3118 /*
3119 * Create a frame pool and assign one frame to each cmd
3120 */
3121 if (megasas_create_frame_pool(instance)) {
3122 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
3123 megasas_free_cmds(instance);
3124 }
3125
3126 return 0;
3127 }
3128
3129 /*
3130 * megasas_get_pd_list_info - Returns FW's pd_list structure
3131 * @instance: Adapter soft state
3132 * @pd_list: pd_list structure
3133 *
3134 * Issues an internal command (DCMD) to get the FW's controller PD
3135 * list structure. This information is mainly used to find out SYSTEM
3136 * supported by the FW.
3137 */
3138 static int
3139 megasas_get_pd_list(struct megasas_instance *instance)
3140 {
3141 int ret = 0, pd_index = 0;
3142 struct megasas_cmd *cmd;
3143 struct megasas_dcmd_frame *dcmd;
3144 struct MR_PD_LIST *ci;
3145 struct MR_PD_ADDRESS *pd_addr;
3146 dma_addr_t ci_h = 0;
3147
3148 cmd = megasas_get_cmd(instance);
3149
3150 if (!cmd) {
3151 printk(KERN_DEBUG "megasas (get_pd_list): Failed to get cmd\n");
3152 return -ENOMEM;
3153 }
3154
3155 dcmd = &cmd->frame->dcmd;
3156
3157 ci = pci_alloc_consistent(instance->pdev,
3158 MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST), &ci_h);
3159
3160 if (!ci) {
3161 printk(KERN_DEBUG "Failed to alloc mem for pd_list\n");
3162 megasas_return_cmd(instance, cmd);
3163 return -ENOMEM;
3164 }
3165
3166 memset(ci, 0, sizeof(*ci));
3167 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
3168
3169 dcmd->mbox.b[0] = MR_PD_QUERY_TYPE_EXPOSED_TO_HOST;
3170 dcmd->mbox.b[1] = 0;
3171 dcmd->cmd = MFI_CMD_DCMD;
3172 dcmd->cmd_status = 0xFF;
3173 dcmd->sge_count = 1;
3174 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ);
3175 dcmd->timeout = 0;
3176 dcmd->pad_0 = 0;
3177 dcmd->data_xfer_len = cpu_to_le32(MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST));
3178 dcmd->opcode = cpu_to_le32(MR_DCMD_PD_LIST_QUERY);
3179 dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(ci_h);
3180 dcmd->sgl.sge32[0].length = cpu_to_le32(MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST));
3181
3182 if (!megasas_issue_polled(instance, cmd)) {
3183 ret = 0;
3184 } else {
3185 ret = -1;
3186 }
3187
3188 /*
3189 * the following function will get the instance PD LIST.
3190 */
3191
3192 pd_addr = ci->addr;
3193
3194 if ( ret == 0 &&
3195 (le32_to_cpu(ci->count) <
3196 (MEGASAS_MAX_PD_CHANNELS * MEGASAS_MAX_DEV_PER_CHANNEL))) {
3197
3198 memset(instance->local_pd_list, 0,
3199 MEGASAS_MAX_PD * sizeof(struct megasas_pd_list));
3200
3201 for (pd_index = 0; pd_index < le32_to_cpu(ci->count); pd_index++) {
3202
3203 instance->local_pd_list[le16_to_cpu(pd_addr->deviceId)].tid =
3204 le16_to_cpu(pd_addr->deviceId);
3205 instance->local_pd_list[le16_to_cpu(pd_addr->deviceId)].driveType =
3206 pd_addr->scsiDevType;
3207 instance->local_pd_list[le16_to_cpu(pd_addr->deviceId)].driveState =
3208 MR_PD_STATE_SYSTEM;
3209 pd_addr++;
3210 }
3211 memcpy(instance->pd_list, instance->local_pd_list,
3212 sizeof(instance->pd_list));
3213 }
3214
3215 pci_free_consistent(instance->pdev,
3216 MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST),
3217 ci, ci_h);
3218 megasas_return_cmd(instance, cmd);
3219
3220 return ret;
3221 }
3222
3223 /*
3224 * megasas_get_ld_list_info - Returns FW's ld_list structure
3225 * @instance: Adapter soft state
3226 * @ld_list: ld_list structure
3227 *
3228 * Issues an internal command (DCMD) to get the FW's controller PD
3229 * list structure. This information is mainly used to find out SYSTEM
3230 * supported by the FW.
3231 */
3232 static int
3233 megasas_get_ld_list(struct megasas_instance *instance)
3234 {
3235 int ret = 0, ld_index = 0, ids = 0;
3236 struct megasas_cmd *cmd;
3237 struct megasas_dcmd_frame *dcmd;
3238 struct MR_LD_LIST *ci;
3239 dma_addr_t ci_h = 0;
3240 u32 ld_count;
3241
3242 cmd = megasas_get_cmd(instance);
3243
3244 if (!cmd) {
3245 printk(KERN_DEBUG "megasas_get_ld_list: Failed to get cmd\n");
3246 return -ENOMEM;
3247 }
3248
3249 dcmd = &cmd->frame->dcmd;
3250
3251 ci = pci_alloc_consistent(instance->pdev,
3252 sizeof(struct MR_LD_LIST),
3253 &ci_h);
3254
3255 if (!ci) {
3256 printk(KERN_DEBUG "Failed to alloc mem in get_ld_list\n");
3257 megasas_return_cmd(instance, cmd);
3258 return -ENOMEM;
3259 }
3260
3261 memset(ci, 0, sizeof(*ci));
3262 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
3263
3264 dcmd->cmd = MFI_CMD_DCMD;
3265 dcmd->cmd_status = 0xFF;
3266 dcmd->sge_count = 1;
3267 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ);
3268 dcmd->timeout = 0;
3269 dcmd->data_xfer_len = cpu_to_le32(sizeof(struct MR_LD_LIST));
3270 dcmd->opcode = cpu_to_le32(MR_DCMD_LD_GET_LIST);
3271 dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(ci_h);
3272 dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct MR_LD_LIST));
3273 dcmd->pad_0 = 0;
3274
3275 if (!megasas_issue_polled(instance, cmd)) {
3276 ret = 0;
3277 } else {
3278 ret = -1;
3279 }
3280
3281 ld_count = le32_to_cpu(ci->ldCount);
3282
3283 /* the following function will get the instance PD LIST */
3284
3285 if ((ret == 0) && (ld_count <= MAX_LOGICAL_DRIVES)) {
3286 memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS);
3287
3288 for (ld_index = 0; ld_index < ld_count; ld_index++) {
3289 if (ci->ldList[ld_index].state != 0) {
3290 ids = ci->ldList[ld_index].ref.targetId;
3291 instance->ld_ids[ids] =
3292 ci->ldList[ld_index].ref.targetId;
3293 }
3294 }
3295 }
3296
3297 pci_free_consistent(instance->pdev,
3298 sizeof(struct MR_LD_LIST),
3299 ci,
3300 ci_h);
3301
3302 megasas_return_cmd(instance, cmd);
3303 return ret;
3304 }
3305
3306 /**
3307 * megasas_ld_list_query - Returns FW's ld_list structure
3308 * @instance: Adapter soft state
3309 * @ld_list: ld_list structure
3310 *
3311 * Issues an internal command (DCMD) to get the FW's controller PD
3312 * list structure. This information is mainly used to find out SYSTEM
3313 * supported by the FW.
3314 */
3315 static int
3316 megasas_ld_list_query(struct megasas_instance *instance, u8 query_type)
3317 {
3318 int ret = 0, ld_index = 0, ids = 0;
3319 struct megasas_cmd *cmd;
3320 struct megasas_dcmd_frame *dcmd;
3321 struct MR_LD_TARGETID_LIST *ci;
3322 dma_addr_t ci_h = 0;
3323 u32 tgtid_count;
3324
3325 cmd = megasas_get_cmd(instance);
3326
3327 if (!cmd) {
3328 printk(KERN_WARNING
3329 "megasas:(megasas_ld_list_query): Failed to get cmd\n");
3330 return -ENOMEM;
3331 }
3332
3333 dcmd = &cmd->frame->dcmd;
3334
3335 ci = pci_alloc_consistent(instance->pdev,
3336 sizeof(struct MR_LD_TARGETID_LIST), &ci_h);
3337
3338 if (!ci) {
3339 printk(KERN_WARNING
3340 "megasas: Failed to alloc mem for ld_list_query\n");
3341 megasas_return_cmd(instance, cmd);
3342 return -ENOMEM;
3343 }
3344
3345 memset(ci, 0, sizeof(*ci));
3346 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
3347
3348 dcmd->mbox.b[0] = query_type;
3349
3350 dcmd->cmd = MFI_CMD_DCMD;
3351 dcmd->cmd_status = 0xFF;
3352 dcmd->sge_count = 1;
3353 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ);
3354 dcmd->timeout = 0;
3355 dcmd->data_xfer_len = cpu_to_le32(sizeof(struct MR_LD_TARGETID_LIST));
3356 dcmd->opcode = cpu_to_le32(MR_DCMD_LD_LIST_QUERY);
3357 dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(ci_h);
3358 dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct MR_LD_TARGETID_LIST));
3359 dcmd->pad_0 = 0;
3360
3361 if (!megasas_issue_polled(instance, cmd) && !dcmd->cmd_status) {
3362 ret = 0;
3363 } else {
3364 /* On failure, call older LD list DCMD */
3365 ret = 1;
3366 }
3367
3368 tgtid_count = le32_to_cpu(ci->count);
3369
3370 if ((ret == 0) && (tgtid_count <= (MAX_LOGICAL_DRIVES))) {
3371 memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS);
3372 for (ld_index = 0; ld_index < tgtid_count; ld_index++) {
3373 ids = ci->targetId[ld_index];
3374 instance->ld_ids[ids] = ci->targetId[ld_index];
3375 }
3376
3377 }
3378
3379 pci_free_consistent(instance->pdev, sizeof(struct MR_LD_TARGETID_LIST),
3380 ci, ci_h);
3381
3382 megasas_return_cmd(instance, cmd);
3383
3384 return ret;
3385 }
3386
3387 /**
3388 * megasas_get_controller_info - Returns FW's controller structure
3389 * @instance: Adapter soft state
3390 * @ctrl_info: Controller information structure
3391 *
3392 * Issues an internal command (DCMD) to get the FW's controller structure.
3393 * This information is mainly used to find out the maximum IO transfer per
3394 * command supported by the FW.
3395 */
3396 static int
3397 megasas_get_ctrl_info(struct megasas_instance *instance,
3398 struct megasas_ctrl_info *ctrl_info)
3399 {
3400 int ret = 0;
3401 struct megasas_cmd *cmd;
3402 struct megasas_dcmd_frame *dcmd;
3403 struct megasas_ctrl_info *ci;
3404 dma_addr_t ci_h = 0;
3405
3406 cmd = megasas_get_cmd(instance);
3407
3408 if (!cmd) {
3409 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
3410 return -ENOMEM;
3411 }
3412
3413 dcmd = &cmd->frame->dcmd;
3414
3415 ci = pci_alloc_consistent(instance->pdev,
3416 sizeof(struct megasas_ctrl_info), &ci_h);
3417
3418 if (!ci) {
3419 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
3420 megasas_return_cmd(instance, cmd);
3421 return -ENOMEM;
3422 }
3423
3424 memset(ci, 0, sizeof(*ci));
3425 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
3426
3427 dcmd->cmd = MFI_CMD_DCMD;
3428 dcmd->cmd_status = 0xFF;
3429 dcmd->sge_count = 1;
3430 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ);
3431 dcmd->timeout = 0;
3432 dcmd->pad_0 = 0;
3433 dcmd->data_xfer_len = cpu_to_le32(sizeof(struct megasas_ctrl_info));
3434 dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_GET_INFO);
3435 dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(ci_h);
3436 dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct megasas_ctrl_info));
3437
3438 if (!megasas_issue_polled(instance, cmd)) {
3439 ret = 0;
3440 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
3441 } else {
3442 ret = -1;
3443 }
3444
3445 pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
3446 ci, ci_h);
3447
3448 megasas_return_cmd(instance, cmd);
3449 return ret;
3450 }
3451
3452 /**
3453 * megasas_issue_init_mfi - Initializes the FW
3454 * @instance: Adapter soft state
3455 *
3456 * Issues the INIT MFI cmd
3457 */
3458 static int
3459 megasas_issue_init_mfi(struct megasas_instance *instance)
3460 {
3461 u32 context;
3462
3463 struct megasas_cmd *cmd;
3464
3465 struct megasas_init_frame *init_frame;
3466 struct megasas_init_queue_info *initq_info;
3467 dma_addr_t init_frame_h;
3468 dma_addr_t initq_info_h;
3469
3470 /*
3471 * Prepare a init frame. Note the init frame points to queue info
3472 * structure. Each frame has SGL allocated after first 64 bytes. For
3473 * this frame - since we don't need any SGL - we use SGL's space as
3474 * queue info structure
3475 *
3476 * We will not get a NULL command below. We just created the pool.
3477 */
3478 cmd = megasas_get_cmd(instance);
3479
3480 init_frame = (struct megasas_init_frame *)cmd->frame;
3481 initq_info = (struct megasas_init_queue_info *)
3482 ((unsigned long)init_frame + 64);
3483
3484 init_frame_h = cmd->frame_phys_addr;
3485 initq_info_h = init_frame_h + 64;
3486
3487 context = init_frame->context;
3488 memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
3489 memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
3490 init_frame->context = context;
3491
3492 initq_info->reply_queue_entries = cpu_to_le32(instance->max_fw_cmds + 1);
3493 initq_info->reply_queue_start_phys_addr_lo = cpu_to_le32(instance->reply_queue_h);
3494
3495 initq_info->producer_index_phys_addr_lo = cpu_to_le32(instance->producer_h);
3496 initq_info->consumer_index_phys_addr_lo = cpu_to_le32(instance->consumer_h);
3497
3498 init_frame->cmd = MFI_CMD_INIT;
3499 init_frame->cmd_status = 0xFF;
3500 init_frame->queue_info_new_phys_addr_lo =
3501 cpu_to_le32(lower_32_bits(initq_info_h));
3502 init_frame->queue_info_new_phys_addr_hi =
3503 cpu_to_le32(upper_32_bits(initq_info_h));
3504
3505 init_frame->data_xfer_len = cpu_to_le32(sizeof(struct megasas_init_queue_info));
3506
3507 /*
3508 * disable the intr before firing the init frame to FW
3509 */
3510 instance->instancet->disable_intr(instance);
3511
3512 /*
3513 * Issue the init frame in polled mode
3514 */
3515
3516 if (megasas_issue_polled(instance, cmd)) {
3517 printk(KERN_ERR "megasas: Failed to init firmware\n");
3518 megasas_return_cmd(instance, cmd);
3519 goto fail_fw_init;
3520 }
3521
3522 megasas_return_cmd(instance, cmd);
3523
3524 return 0;
3525
3526 fail_fw_init:
3527 return -EINVAL;
3528 }
3529
3530 static u32
3531 megasas_init_adapter_mfi(struct megasas_instance *instance)
3532 {
3533 struct megasas_register_set __iomem *reg_set;
3534 u32 context_sz;
3535 u32 reply_q_sz;
3536
3537 reg_set = instance->reg_set;
3538
3539 /*
3540 * Get various operational parameters from status register
3541 */
3542 instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF;
3543 /*
3544 * Reduce the max supported cmds by 1. This is to ensure that the
3545 * reply_q_sz (1 more than the max cmd that driver may send)
3546 * does not exceed max cmds that the FW can support
3547 */
3548 instance->max_fw_cmds = instance->max_fw_cmds-1;
3549 instance->max_mfi_cmds = instance->max_fw_cmds;
3550 instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >>
3551 0x10;
3552 /*
3553 * Create a pool of commands
3554 */
3555 if (megasas_alloc_cmds(instance))
3556 goto fail_alloc_cmds;
3557
3558 /*
3559 * Allocate memory for reply queue. Length of reply queue should
3560 * be _one_ more than the maximum commands handled by the firmware.
3561 *
3562 * Note: When FW completes commands, it places corresponding contex
3563 * values in this circular reply queue. This circular queue is a fairly
3564 * typical producer-consumer queue. FW is the producer (of completed
3565 * commands) and the driver is the consumer.
3566 */
3567 context_sz = sizeof(u32);
3568 reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
3569
3570 instance->reply_queue = pci_alloc_consistent(instance->pdev,
3571 reply_q_sz,
3572 &instance->reply_queue_h);
3573
3574 if (!instance->reply_queue) {
3575 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
3576 goto fail_reply_queue;
3577 }
3578
3579 if (megasas_issue_init_mfi(instance))
3580 goto fail_fw_init;
3581
3582 instance->fw_support_ieee = 0;
3583 instance->fw_support_ieee =
3584 (instance->instancet->read_fw_status_reg(reg_set) &
3585 0x04000000);
3586
3587 printk(KERN_NOTICE "megasas_init_mfi: fw_support_ieee=%d",
3588 instance->fw_support_ieee);
3589
3590 if (instance->fw_support_ieee)
3591 instance->flag_ieee = 1;
3592
3593 return 0;
3594
3595 fail_fw_init:
3596
3597 pci_free_consistent(instance->pdev, reply_q_sz,
3598 instance->reply_queue, instance->reply_queue_h);
3599 fail_reply_queue:
3600 megasas_free_cmds(instance);
3601
3602 fail_alloc_cmds:
3603 return 1;
3604 }
3605
3606 /**
3607 * megasas_init_fw - Initializes the FW
3608 * @instance: Adapter soft state
3609 *
3610 * This is the main function for initializing firmware
3611 */
3612
3613 static int megasas_init_fw(struct megasas_instance *instance)
3614 {
3615 u32 max_sectors_1;
3616 u32 max_sectors_2;
3617 u32 tmp_sectors, msix_enable, scratch_pad_2;
3618 resource_size_t base_addr;
3619 struct megasas_register_set __iomem *reg_set;
3620 struct megasas_ctrl_info *ctrl_info;
3621 unsigned long bar_list;
3622 int i, loop, fw_msix_count = 0;
3623
3624 /* Find first memory bar */
3625 bar_list = pci_select_bars(instance->pdev, IORESOURCE_MEM);
3626 instance->bar = find_first_bit(&bar_list, sizeof(unsigned long));
3627 if (pci_request_selected_regions(instance->pdev, instance->bar,
3628 "megasas: LSI")) {
3629 printk(KERN_DEBUG "megasas: IO memory region busy!\n");
3630 return -EBUSY;
3631 }
3632
3633 base_addr = pci_resource_start(instance->pdev, instance->bar);
3634 instance->reg_set = ioremap_nocache(base_addr, 8192);
3635
3636 if (!instance->reg_set) {
3637 printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
3638 goto fail_ioremap;
3639 }
3640
3641 reg_set = instance->reg_set;
3642
3643 switch (instance->pdev->device) {
3644 case PCI_DEVICE_ID_LSI_FUSION:
3645 case PCI_DEVICE_ID_LSI_INVADER:
3646 case PCI_DEVICE_ID_LSI_FURY:
3647 instance->instancet = &megasas_instance_template_fusion;
3648 break;
3649 case PCI_DEVICE_ID_LSI_SAS1078R:
3650 case PCI_DEVICE_ID_LSI_SAS1078DE:
3651 instance->instancet = &megasas_instance_template_ppc;
3652 break;
3653 case PCI_DEVICE_ID_LSI_SAS1078GEN2:
3654 case PCI_DEVICE_ID_LSI_SAS0079GEN2:
3655 instance->instancet = &megasas_instance_template_gen2;
3656 break;
3657 case PCI_DEVICE_ID_LSI_SAS0073SKINNY:
3658 case PCI_DEVICE_ID_LSI_SAS0071SKINNY:
3659 instance->instancet = &megasas_instance_template_skinny;
3660 break;
3661 case PCI_DEVICE_ID_LSI_SAS1064R:
3662 case PCI_DEVICE_ID_DELL_PERC5:
3663 default:
3664 instance->instancet = &megasas_instance_template_xscale;
3665 break;
3666 }
3667
3668 if (megasas_transition_to_ready(instance, 0)) {
3669 atomic_set(&instance->fw_reset_no_pci_access, 1);
3670 instance->instancet->adp_reset
3671 (instance, instance->reg_set);
3672 atomic_set(&instance->fw_reset_no_pci_access, 0);
3673 dev_info(&instance->pdev->dev,
3674 "megasas: FW restarted successfully from %s!\n",
3675 __func__);
3676
3677 /*waitting for about 30 second before retry*/
3678 ssleep(30);
3679
3680 if (megasas_transition_to_ready(instance, 0))
3681 goto fail_ready_state;
3682 }
3683
3684 /*
3685 * MSI-X host index 0 is common for all adapter.
3686 * It is used for all MPT based Adapters.
3687 */
3688 instance->reply_post_host_index_addr[0] =
3689 (u32 *)((u8 *)instance->reg_set +
3690 MPI2_REPLY_POST_HOST_INDEX_OFFSET);
3691
3692 /* Check if MSI-X is supported while in ready state */
3693 msix_enable = (instance->instancet->read_fw_status_reg(reg_set) &
3694 0x4000000) >> 0x1a;
3695 if (msix_enable && !msix_disable) {
3696 scratch_pad_2 = readl
3697 (&instance->reg_set->outbound_scratch_pad_2);
3698 /* Check max MSI-X vectors */
3699 if (instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) {
3700 instance->msix_vectors = (scratch_pad_2
3701 & MR_MAX_REPLY_QUEUES_OFFSET) + 1;
3702 fw_msix_count = instance->msix_vectors;
3703 if (msix_vectors)
3704 instance->msix_vectors =
3705 min(msix_vectors,
3706 instance->msix_vectors);
3707 } else if ((instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER)
3708 || (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) {
3709 /* Invader/Fury supports more than 8 MSI-X */
3710 instance->msix_vectors = ((scratch_pad_2
3711 & MR_MAX_REPLY_QUEUES_EXT_OFFSET)
3712 >> MR_MAX_REPLY_QUEUES_EXT_OFFSET_SHIFT) + 1;
3713 fw_msix_count = instance->msix_vectors;
3714 /* Save 1-15 reply post index address to local memory
3715 * Index 0 is already saved from reg offset
3716 * MPI2_REPLY_POST_HOST_INDEX_OFFSET
3717 */
3718 for (loop = 1; loop < MR_MAX_MSIX_REG_ARRAY; loop++) {
3719 instance->reply_post_host_index_addr[loop] =
3720 (u32 *)((u8 *)instance->reg_set +
3721 MPI2_SUP_REPLY_POST_HOST_INDEX_OFFSET
3722 + (loop * 0x10));
3723 }
3724 if (msix_vectors)
3725 instance->msix_vectors = min(msix_vectors,
3726 instance->msix_vectors);
3727 } else
3728 instance->msix_vectors = 1;
3729 /* Don't bother allocating more MSI-X vectors than cpus */
3730 instance->msix_vectors = min(instance->msix_vectors,
3731 (unsigned int)num_online_cpus());
3732 for (i = 0; i < instance->msix_vectors; i++)
3733 instance->msixentry[i].entry = i;
3734 i = pci_enable_msix(instance->pdev, instance->msixentry,
3735 instance->msix_vectors);
3736 if (i >= 0) {
3737 if (i) {
3738 if (!pci_enable_msix(instance->pdev,
3739 instance->msixentry, i))
3740 instance->msix_vectors = i;
3741 else
3742 instance->msix_vectors = 0;
3743 }
3744 } else
3745 instance->msix_vectors = 0;
3746
3747 dev_info(&instance->pdev->dev, "[scsi%d]: FW supports"
3748 "<%d> MSIX vector,Online CPUs: <%d>,"
3749 "Current MSIX <%d>\n", instance->host->host_no,
3750 fw_msix_count, (unsigned int)num_online_cpus(),
3751 instance->msix_vectors);
3752 }
3753
3754 /* Get operational params, sge flags, send init cmd to controller */
3755 if (instance->instancet->init_adapter(instance))
3756 goto fail_init_adapter;
3757
3758 printk(KERN_ERR "megasas: INIT adapter done\n");
3759
3760 /** for passthrough
3761 * the following function will get the PD LIST.
3762 */
3763
3764 memset(instance->pd_list, 0 ,
3765 (MEGASAS_MAX_PD * sizeof(struct megasas_pd_list)));
3766 megasas_get_pd_list(instance);
3767
3768 memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS);
3769 if (megasas_ld_list_query(instance,
3770 MR_LD_QUERY_TYPE_EXPOSED_TO_HOST))
3771 megasas_get_ld_list(instance);
3772
3773 ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
3774
3775 /*
3776 * Compute the max allowed sectors per IO: The controller info has two
3777 * limits on max sectors. Driver should use the minimum of these two.
3778 *
3779 * 1 << stripe_sz_ops.min = max sectors per strip
3780 *
3781 * Note that older firmwares ( < FW ver 30) didn't report information
3782 * to calculate max_sectors_1. So the number ended up as zero always.
3783 */
3784 tmp_sectors = 0;
3785 if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
3786
3787 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
3788 le16_to_cpu(ctrl_info->max_strips_per_io);
3789 max_sectors_2 = le32_to_cpu(ctrl_info->max_request_size);
3790
3791 tmp_sectors = min_t(u32, max_sectors_1 , max_sectors_2);
3792
3793 /*Check whether controller is iMR or MR */
3794 if (ctrl_info->memory_size) {
3795 instance->is_imr = 0;
3796 dev_info(&instance->pdev->dev, "Controller type: MR,"
3797 "Memory size is: %dMB\n",
3798 le16_to_cpu(ctrl_info->memory_size));
3799 } else {
3800 instance->is_imr = 1;
3801 dev_info(&instance->pdev->dev,
3802 "Controller type: iMR\n");
3803 }
3804 /* OnOffProperties are converted into CPU arch*/
3805 le32_to_cpus((u32 *)&ctrl_info->properties.OnOffProperties);
3806 instance->disableOnlineCtrlReset =
3807 ctrl_info->properties.OnOffProperties.disableOnlineCtrlReset;
3808 /* adapterOperations2 are converted into CPU arch*/
3809 le32_to_cpus((u32 *)&ctrl_info->adapterOperations2);
3810 instance->UnevenSpanSupport =
3811 ctrl_info->adapterOperations2.supportUnevenSpans;
3812 if (instance->UnevenSpanSupport) {
3813 struct fusion_context *fusion = instance->ctrl_context;
3814 dev_info(&instance->pdev->dev, "FW supports: "
3815 "UnevenSpanSupport=%x\n", instance->UnevenSpanSupport);
3816 if (MR_ValidateMapInfo(instance))
3817 fusion->fast_path_io = 1;
3818 else
3819 fusion->fast_path_io = 0;
3820
3821 }
3822 }
3823 instance->max_sectors_per_req = instance->max_num_sge *
3824 PAGE_SIZE / 512;
3825 if (tmp_sectors && (instance->max_sectors_per_req > tmp_sectors))
3826 instance->max_sectors_per_req = tmp_sectors;
3827
3828 kfree(ctrl_info);
3829
3830 /* Check for valid throttlequeuedepth module parameter */
3831 if (instance->is_imr) {
3832 if (throttlequeuedepth > (instance->max_fw_cmds -
3833 MEGASAS_SKINNY_INT_CMDS))
3834 instance->throttlequeuedepth =
3835 MEGASAS_THROTTLE_QUEUE_DEPTH;
3836 else
3837 instance->throttlequeuedepth = throttlequeuedepth;
3838 } else {
3839 if (throttlequeuedepth > (instance->max_fw_cmds -
3840 MEGASAS_INT_CMDS))
3841 instance->throttlequeuedepth =
3842 MEGASAS_THROTTLE_QUEUE_DEPTH;
3843 else
3844 instance->throttlequeuedepth = throttlequeuedepth;
3845 }
3846
3847 /*
3848 * Setup tasklet for cmd completion
3849 */
3850
3851 tasklet_init(&instance->isr_tasklet, instance->instancet->tasklet,
3852 (unsigned long)instance);
3853
3854 return 0;
3855
3856 fail_init_adapter:
3857 fail_ready_state:
3858 iounmap(instance->reg_set);
3859
3860 fail_ioremap:
3861 pci_release_selected_regions(instance->pdev, instance->bar);
3862
3863 return -EINVAL;
3864 }
3865
3866 /**
3867 * megasas_release_mfi - Reverses the FW initialization
3868 * @intance: Adapter soft state
3869 */
3870 static void megasas_release_mfi(struct megasas_instance *instance)
3871 {
3872 u32 reply_q_sz = sizeof(u32) *(instance->max_mfi_cmds + 1);
3873
3874 if (instance->reply_queue)
3875 pci_free_consistent(instance->pdev, reply_q_sz,
3876 instance->reply_queue, instance->reply_queue_h);
3877
3878 megasas_free_cmds(instance);
3879
3880 iounmap(instance->reg_set);
3881
3882 pci_release_selected_regions(instance->pdev, instance->bar);
3883 }
3884
3885 /**
3886 * megasas_get_seq_num - Gets latest event sequence numbers
3887 * @instance: Adapter soft state
3888 * @eli: FW event log sequence numbers information
3889 *
3890 * FW maintains a log of all events in a non-volatile area. Upper layers would
3891 * usually find out the latest sequence number of the events, the seq number at
3892 * the boot etc. They would "read" all the events below the latest seq number
3893 * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
3894 * number), they would subsribe to AEN (asynchronous event notification) and
3895 * wait for the events to happen.
3896 */
3897 static int
3898 megasas_get_seq_num(struct megasas_instance *instance,
3899 struct megasas_evt_log_info *eli)
3900 {
3901 struct megasas_cmd *cmd;
3902 struct megasas_dcmd_frame *dcmd;
3903 struct megasas_evt_log_info *el_info;
3904 dma_addr_t el_info_h = 0;
3905
3906 cmd = megasas_get_cmd(instance);
3907
3908 if (!cmd) {
3909 return -ENOMEM;
3910 }
3911
3912 dcmd = &cmd->frame->dcmd;
3913 el_info = pci_alloc_consistent(instance->pdev,
3914 sizeof(struct megasas_evt_log_info),
3915 &el_info_h);
3916
3917 if (!el_info) {
3918 megasas_return_cmd(instance, cmd);
3919 return -ENOMEM;
3920 }
3921
3922 memset(el_info, 0, sizeof(*el_info));
3923 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
3924
3925 dcmd->cmd = MFI_CMD_DCMD;
3926 dcmd->cmd_status = 0x0;
3927 dcmd->sge_count = 1;
3928 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ);
3929 dcmd->timeout = 0;
3930 dcmd->pad_0 = 0;
3931 dcmd->data_xfer_len = cpu_to_le32(sizeof(struct megasas_evt_log_info));
3932 dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_EVENT_GET_INFO);
3933 dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(el_info_h);
3934 dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct megasas_evt_log_info));
3935
3936 megasas_issue_blocked_cmd(instance, cmd);
3937
3938 /*
3939 * Copy the data back into callers buffer
3940 */
3941 eli->newest_seq_num = le32_to_cpu(el_info->newest_seq_num);
3942 eli->oldest_seq_num = le32_to_cpu(el_info->oldest_seq_num);
3943 eli->clear_seq_num = le32_to_cpu(el_info->clear_seq_num);
3944 eli->shutdown_seq_num = le32_to_cpu(el_info->shutdown_seq_num);
3945 eli->boot_seq_num = le32_to_cpu(el_info->boot_seq_num);
3946
3947 pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
3948 el_info, el_info_h);
3949
3950 megasas_return_cmd(instance, cmd);
3951
3952 return 0;
3953 }
3954
3955 /**
3956 * megasas_register_aen - Registers for asynchronous event notification
3957 * @instance: Adapter soft state
3958 * @seq_num: The starting sequence number
3959 * @class_locale: Class of the event
3960 *
3961 * This function subscribes for AEN for events beyond the @seq_num. It requests
3962 * to be notified if and only if the event is of type @class_locale
3963 */
3964 static int
3965 megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
3966 u32 class_locale_word)
3967 {
3968 int ret_val;
3969 struct megasas_cmd *cmd;
3970 struct megasas_dcmd_frame *dcmd;
3971 union megasas_evt_class_locale curr_aen;
3972 union megasas_evt_class_locale prev_aen;
3973
3974 /*
3975 * If there an AEN pending already (aen_cmd), check if the
3976 * class_locale of that pending AEN is inclusive of the new
3977 * AEN request we currently have. If it is, then we don't have
3978 * to do anything. In other words, whichever events the current
3979 * AEN request is subscribing to, have already been subscribed
3980 * to.
3981 *
3982 * If the old_cmd is _not_ inclusive, then we have to abort
3983 * that command, form a class_locale that is superset of both
3984 * old and current and re-issue to the FW
3985 */
3986
3987 curr_aen.word = class_locale_word;
3988
3989 if (instance->aen_cmd) {
3990
3991 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
3992 prev_aen.members.locale = le16_to_cpu(prev_aen.members.locale);
3993
3994 /*
3995 * A class whose enum value is smaller is inclusive of all
3996 * higher values. If a PROGRESS (= -1) was previously
3997 * registered, then a new registration requests for higher
3998 * classes need not be sent to FW. They are automatically
3999 * included.
4000 *
4001 * Locale numbers don't have such hierarchy. They are bitmap
4002 * values
4003 */
4004 if ((prev_aen.members.class <= curr_aen.members.class) &&
4005 !((prev_aen.members.locale & curr_aen.members.locale) ^
4006 curr_aen.members.locale)) {
4007 /*
4008 * Previously issued event registration includes
4009 * current request. Nothing to do.
4010 */
4011 return 0;
4012 } else {
4013 curr_aen.members.locale |= prev_aen.members.locale;
4014
4015 if (prev_aen.members.class < curr_aen.members.class)
4016 curr_aen.members.class = prev_aen.members.class;
4017
4018 instance->aen_cmd->abort_aen = 1;
4019 ret_val = megasas_issue_blocked_abort_cmd(instance,
4020 instance->
4021 aen_cmd);
4022
4023 if (ret_val) {
4024 printk(KERN_DEBUG "megasas: Failed to abort "
4025 "previous AEN command\n");
4026 return ret_val;
4027 }
4028 }
4029 }
4030
4031 cmd = megasas_get_cmd(instance);
4032
4033 if (!cmd)
4034 return -ENOMEM;
4035
4036 dcmd = &cmd->frame->dcmd;
4037
4038 memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
4039
4040 /*
4041 * Prepare DCMD for aen registration
4042 */
4043 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
4044
4045 dcmd->cmd = MFI_CMD_DCMD;
4046 dcmd->cmd_status = 0x0;
4047 dcmd->sge_count = 1;
4048 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_READ);
4049 dcmd->timeout = 0;
4050 dcmd->pad_0 = 0;
4051 dcmd->data_xfer_len = cpu_to_le32(sizeof(struct megasas_evt_detail));
4052 dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_EVENT_WAIT);
4053 dcmd->mbox.w[0] = cpu_to_le32(seq_num);
4054 instance->last_seq_num = seq_num;
4055 dcmd->mbox.w[1] = cpu_to_le32(curr_aen.word);
4056 dcmd->sgl.sge32[0].phys_addr = cpu_to_le32(instance->evt_detail_h);
4057 dcmd->sgl.sge32[0].length = cpu_to_le32(sizeof(struct megasas_evt_detail));
4058
4059 if (instance->aen_cmd != NULL) {
4060 megasas_return_cmd(instance, cmd);
4061 return 0;
4062 }
4063
4064 /*
4065 * Store reference to the cmd used to register for AEN. When an
4066 * application wants us to register for AEN, we have to abort this
4067 * cmd and re-register with a new EVENT LOCALE supplied by that app
4068 */
4069 instance->aen_cmd = cmd;
4070
4071 /*
4072 * Issue the aen registration frame
4073 */
4074 instance->instancet->issue_dcmd(instance, cmd);
4075
4076 return 0;
4077 }
4078
4079 /**
4080 * megasas_start_aen - Subscribes to AEN during driver load time
4081 * @instance: Adapter soft state
4082 */
4083 static int megasas_start_aen(struct megasas_instance *instance)
4084 {
4085 struct megasas_evt_log_info eli;
4086 union megasas_evt_class_locale class_locale;
4087
4088 /*
4089 * Get the latest sequence number from FW
4090 */
4091 memset(&eli, 0, sizeof(eli));
4092
4093 if (megasas_get_seq_num(instance, &eli))
4094 return -1;
4095
4096 /*
4097 * Register AEN with FW for latest sequence number plus 1
4098 */
4099 class_locale.members.reserved = 0;
4100 class_locale.members.locale = MR_EVT_LOCALE_ALL;
4101 class_locale.members.class = MR_EVT_CLASS_DEBUG;
4102
4103 return megasas_register_aen(instance,
4104 eli.newest_seq_num + 1,
4105 class_locale.word);
4106 }
4107
4108 /**
4109 * megasas_io_attach - Attaches this driver to SCSI mid-layer
4110 * @instance: Adapter soft state
4111 */
4112 static int megasas_io_attach(struct megasas_instance *instance)
4113 {
4114 struct Scsi_Host *host = instance->host;
4115
4116 /*
4117 * Export parameters required by SCSI mid-layer
4118 */
4119 host->irq = instance->pdev->irq;
4120 host->unique_id = instance->unique_id;
4121 if (instance->is_imr) {
4122 host->can_queue =
4123 instance->max_fw_cmds - MEGASAS_SKINNY_INT_CMDS;
4124 } else
4125 host->can_queue =
4126 instance->max_fw_cmds - MEGASAS_INT_CMDS;
4127 host->this_id = instance->init_id;
4128 host->sg_tablesize = instance->max_num_sge;
4129
4130 if (instance->fw_support_ieee)
4131 instance->max_sectors_per_req = MEGASAS_MAX_SECTORS_IEEE;
4132
4133 /*
4134 * Check if the module parameter value for max_sectors can be used
4135 */
4136 if (max_sectors && max_sectors < instance->max_sectors_per_req)
4137 instance->max_sectors_per_req = max_sectors;
4138 else {
4139 if (max_sectors) {
4140 if (((instance->pdev->device ==
4141 PCI_DEVICE_ID_LSI_SAS1078GEN2) ||
4142 (instance->pdev->device ==
4143 PCI_DEVICE_ID_LSI_SAS0079GEN2)) &&
4144 (max_sectors <= MEGASAS_MAX_SECTORS)) {
4145 instance->max_sectors_per_req = max_sectors;
4146 } else {
4147 printk(KERN_INFO "megasas: max_sectors should be > 0"
4148 "and <= %d (or < 1MB for GEN2 controller)\n",
4149 instance->max_sectors_per_req);
4150 }
4151 }
4152 }
4153
4154 host->max_sectors = instance->max_sectors_per_req;
4155 host->cmd_per_lun = MEGASAS_DEFAULT_CMD_PER_LUN;
4156 host->max_channel = MEGASAS_MAX_CHANNELS - 1;
4157 host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
4158 host->max_lun = MEGASAS_MAX_LUN;
4159 host->max_cmd_len = 16;
4160
4161 /* Fusion only supports host reset */
4162 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) ||
4163 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) ||
4164 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) {
4165 host->hostt->eh_device_reset_handler = NULL;
4166 host->hostt->eh_bus_reset_handler = NULL;
4167 }
4168
4169 /*
4170 * Notify the mid-layer about the new controller
4171 */
4172 if (scsi_add_host(host, &instance->pdev->dev)) {
4173 printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
4174 return -ENODEV;
4175 }
4176
4177 /*
4178 * Trigger SCSI to scan our drives
4179 */
4180 scsi_scan_host(host);
4181 return 0;
4182 }
4183
4184 static int
4185 megasas_set_dma_mask(struct pci_dev *pdev)
4186 {
4187 /*
4188 * All our contollers are capable of performing 64-bit DMA
4189 */
4190 if (IS_DMA64) {
4191 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) != 0) {
4192
4193 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0)
4194 goto fail_set_dma_mask;
4195 }
4196 } else {
4197 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0)
4198 goto fail_set_dma_mask;
4199 }
4200
4201 return 0;
4202
4203 fail_set_dma_mask:
4204 return 1;
4205 }
4206
4207 /**
4208 * megasas_probe_one - PCI hotplug entry point
4209 * @pdev: PCI device structure
4210 * @id: PCI ids of supported hotplugged adapter
4211 */
4212 static int megasas_probe_one(struct pci_dev *pdev,
4213 const struct pci_device_id *id)
4214 {
4215 int rval, pos, i, j;
4216 struct Scsi_Host *host;
4217 struct megasas_instance *instance;
4218 u16 control = 0;
4219
4220 /* Reset MSI-X in the kdump kernel */
4221 if (reset_devices) {
4222 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
4223 if (pos) {
4224 pci_read_config_word(pdev, pos + PCI_MSIX_FLAGS,
4225 &control);
4226 if (control & PCI_MSIX_FLAGS_ENABLE) {
4227 dev_info(&pdev->dev, "resetting MSI-X\n");
4228 pci_write_config_word(pdev,
4229 pos + PCI_MSIX_FLAGS,
4230 control &
4231 ~PCI_MSIX_FLAGS_ENABLE);
4232 }
4233 }
4234 }
4235
4236 /*
4237 * Announce PCI information
4238 */
4239 printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
4240 pdev->vendor, pdev->device, pdev->subsystem_vendor,
4241 pdev->subsystem_device);
4242
4243 printk("bus %d:slot %d:func %d\n",
4244 pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
4245
4246 /*
4247 * PCI prepping: enable device set bus mastering and dma mask
4248 */
4249 rval = pci_enable_device_mem(pdev);
4250
4251 if (rval) {
4252 return rval;
4253 }
4254
4255 pci_set_master(pdev);
4256
4257 if (megasas_set_dma_mask(pdev))
4258 goto fail_set_dma_mask;
4259
4260 host = scsi_host_alloc(&megasas_template,
4261 sizeof(struct megasas_instance));
4262
4263 if (!host) {
4264 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
4265 goto fail_alloc_instance;
4266 }
4267
4268 instance = (struct megasas_instance *)host->hostdata;
4269 memset(instance, 0, sizeof(*instance));
4270 atomic_set( &instance->fw_reset_no_pci_access, 0 );
4271 instance->pdev = pdev;
4272
4273 switch (instance->pdev->device) {
4274 case PCI_DEVICE_ID_LSI_FUSION:
4275 case PCI_DEVICE_ID_LSI_INVADER:
4276 case PCI_DEVICE_ID_LSI_FURY:
4277 {
4278 struct fusion_context *fusion;
4279
4280 instance->ctrl_context =
4281 kzalloc(sizeof(struct fusion_context), GFP_KERNEL);
4282 if (!instance->ctrl_context) {
4283 printk(KERN_DEBUG "megasas: Failed to allocate "
4284 "memory for Fusion context info\n");
4285 goto fail_alloc_dma_buf;
4286 }
4287 fusion = instance->ctrl_context;
4288 INIT_LIST_HEAD(&fusion->cmd_pool);
4289 spin_lock_init(&fusion->cmd_pool_lock);
4290 }
4291 break;
4292 default: /* For all other supported controllers */
4293
4294 instance->producer =
4295 pci_alloc_consistent(pdev, sizeof(u32),
4296 &instance->producer_h);
4297 instance->consumer =
4298 pci_alloc_consistent(pdev, sizeof(u32),
4299 &instance->consumer_h);
4300
4301 if (!instance->producer || !instance->consumer) {
4302 printk(KERN_DEBUG "megasas: Failed to allocate"
4303 "memory for producer, consumer\n");
4304 goto fail_alloc_dma_buf;
4305 }
4306
4307 *instance->producer = 0;
4308 *instance->consumer = 0;
4309 break;
4310 }
4311
4312 megasas_poll_wait_aen = 0;
4313 instance->flag_ieee = 0;
4314 instance->ev = NULL;
4315 instance->issuepend_done = 1;
4316 instance->adprecovery = MEGASAS_HBA_OPERATIONAL;
4317 instance->is_imr = 0;
4318 megasas_poll_wait_aen = 0;
4319
4320 instance->evt_detail = pci_alloc_consistent(pdev,
4321 sizeof(struct
4322 megasas_evt_detail),
4323 &instance->evt_detail_h);
4324
4325 if (!instance->evt_detail) {
4326 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
4327 "event detail structure\n");
4328 goto fail_alloc_dma_buf;
4329 }
4330
4331 /*
4332 * Initialize locks and queues
4333 */
4334 INIT_LIST_HEAD(&instance->cmd_pool);
4335 INIT_LIST_HEAD(&instance->internal_reset_pending_q);
4336
4337 atomic_set(&instance->fw_outstanding,0);
4338
4339 init_waitqueue_head(&instance->int_cmd_wait_q);
4340 init_waitqueue_head(&instance->abort_cmd_wait_q);
4341
4342 spin_lock_init(&instance->cmd_pool_lock);
4343 spin_lock_init(&instance->hba_lock);
4344 spin_lock_init(&instance->completion_lock);
4345
4346 mutex_init(&instance->aen_mutex);
4347 mutex_init(&instance->reset_mutex);
4348
4349 /*
4350 * Initialize PCI related and misc parameters
4351 */
4352 instance->host = host;
4353 instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
4354 instance->init_id = MEGASAS_DEFAULT_INIT_ID;
4355
4356 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
4357 (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY)) {
4358 instance->flag_ieee = 1;
4359 sema_init(&instance->ioctl_sem, MEGASAS_SKINNY_INT_CMDS);
4360 } else
4361 sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
4362
4363 megasas_dbg_lvl = 0;
4364 instance->flag = 0;
4365 instance->unload = 1;
4366 instance->last_time = 0;
4367 instance->disableOnlineCtrlReset = 1;
4368 instance->UnevenSpanSupport = 0;
4369
4370 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) ||
4371 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) ||
4372 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY))
4373 INIT_WORK(&instance->work_init, megasas_fusion_ocr_wq);
4374 else
4375 INIT_WORK(&instance->work_init, process_fw_state_change_wq);
4376
4377 /*
4378 * Initialize MFI Firmware
4379 */
4380 if (megasas_init_fw(instance))
4381 goto fail_init_mfi;
4382
4383 retry_irq_register:
4384 /*
4385 * Register IRQ
4386 */
4387 if (instance->msix_vectors) {
4388 for (i = 0 ; i < instance->msix_vectors; i++) {
4389 instance->irq_context[i].instance = instance;
4390 instance->irq_context[i].MSIxIndex = i;
4391 if (request_irq(instance->msixentry[i].vector,
4392 instance->instancet->service_isr, 0,
4393 "megasas",
4394 &instance->irq_context[i])) {
4395 printk(KERN_DEBUG "megasas: Failed to "
4396 "register IRQ for vector %d.\n", i);
4397 for (j = 0 ; j < i ; j++)
4398 free_irq(
4399 instance->msixentry[j].vector,
4400 &instance->irq_context[j]);
4401 /* Retry irq register for IO_APIC */
4402 instance->msix_vectors = 0;
4403 goto retry_irq_register;
4404 }
4405 }
4406 } else {
4407 instance->irq_context[0].instance = instance;
4408 instance->irq_context[0].MSIxIndex = 0;
4409 if (request_irq(pdev->irq, instance->instancet->service_isr,
4410 IRQF_SHARED, "megasas",
4411 &instance->irq_context[0])) {
4412 printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
4413 goto fail_irq;
4414 }
4415 }
4416
4417 instance->instancet->enable_intr(instance);
4418
4419 /*
4420 * Store instance in PCI softstate
4421 */
4422 pci_set_drvdata(pdev, instance);
4423
4424 /*
4425 * Add this controller to megasas_mgmt_info structure so that it
4426 * can be exported to management applications
4427 */
4428 megasas_mgmt_info.count++;
4429 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
4430 megasas_mgmt_info.max_index++;
4431
4432 /*
4433 * Register with SCSI mid-layer
4434 */
4435 if (megasas_io_attach(instance))
4436 goto fail_io_attach;
4437
4438 instance->unload = 0;
4439
4440 /*
4441 * Initiate AEN (Asynchronous Event Notification)
4442 */
4443 if (megasas_start_aen(instance)) {
4444 printk(KERN_DEBUG "megasas: start aen failed\n");
4445 goto fail_start_aen;
4446 }
4447
4448 return 0;
4449
4450 fail_start_aen:
4451 fail_io_attach:
4452 megasas_mgmt_info.count--;
4453 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
4454 megasas_mgmt_info.max_index--;
4455
4456 instance->instancet->disable_intr(instance);
4457 if (instance->msix_vectors)
4458 for (i = 0 ; i < instance->msix_vectors; i++)
4459 free_irq(instance->msixentry[i].vector,
4460 &instance->irq_context[i]);
4461 else
4462 free_irq(instance->pdev->irq, &instance->irq_context[0]);
4463 fail_irq:
4464 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) ||
4465 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) ||
4466 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY))
4467 megasas_release_fusion(instance);
4468 else
4469 megasas_release_mfi(instance);
4470 fail_init_mfi:
4471 if (instance->msix_vectors)
4472 pci_disable_msix(instance->pdev);
4473 fail_alloc_dma_buf:
4474 if (instance->evt_detail)
4475 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
4476 instance->evt_detail,
4477 instance->evt_detail_h);
4478
4479 if (instance->producer)
4480 pci_free_consistent(pdev, sizeof(u32), instance->producer,
4481 instance->producer_h);
4482 if (instance->consumer)
4483 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
4484 instance->consumer_h);
4485 scsi_host_put(host);
4486
4487 fail_alloc_instance:
4488 fail_set_dma_mask:
4489 pci_disable_device(pdev);
4490
4491 return -ENODEV;
4492 }
4493
4494 /**
4495 * megasas_flush_cache - Requests FW to flush all its caches
4496 * @instance: Adapter soft state
4497 */
4498 static void megasas_flush_cache(struct megasas_instance *instance)
4499 {
4500 struct megasas_cmd *cmd;
4501 struct megasas_dcmd_frame *dcmd;
4502
4503 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR)
4504 return;
4505
4506 cmd = megasas_get_cmd(instance);
4507
4508 if (!cmd)
4509 return;
4510
4511 dcmd = &cmd->frame->dcmd;
4512
4513 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
4514
4515 dcmd->cmd = MFI_CMD_DCMD;
4516 dcmd->cmd_status = 0x0;
4517 dcmd->sge_count = 0;
4518 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_NONE);
4519 dcmd->timeout = 0;
4520 dcmd->pad_0 = 0;
4521 dcmd->data_xfer_len = 0;
4522 dcmd->opcode = cpu_to_le32(MR_DCMD_CTRL_CACHE_FLUSH);
4523 dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
4524
4525 megasas_issue_blocked_cmd(instance, cmd);
4526
4527 megasas_return_cmd(instance, cmd);
4528
4529 return;
4530 }
4531
4532 /**
4533 * megasas_shutdown_controller - Instructs FW to shutdown the controller
4534 * @instance: Adapter soft state
4535 * @opcode: Shutdown/Hibernate
4536 */
4537 static void megasas_shutdown_controller(struct megasas_instance *instance,
4538 u32 opcode)
4539 {
4540 struct megasas_cmd *cmd;
4541 struct megasas_dcmd_frame *dcmd;
4542
4543 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR)
4544 return;
4545
4546 cmd = megasas_get_cmd(instance);
4547
4548 if (!cmd)
4549 return;
4550
4551 if (instance->aen_cmd)
4552 megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
4553 if (instance->map_update_cmd)
4554 megasas_issue_blocked_abort_cmd(instance,
4555 instance->map_update_cmd);
4556 dcmd = &cmd->frame->dcmd;
4557
4558 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
4559
4560 dcmd->cmd = MFI_CMD_DCMD;
4561 dcmd->cmd_status = 0x0;
4562 dcmd->sge_count = 0;
4563 dcmd->flags = cpu_to_le16(MFI_FRAME_DIR_NONE);
4564 dcmd->timeout = 0;
4565 dcmd->pad_0 = 0;
4566 dcmd->data_xfer_len = 0;
4567 dcmd->opcode = cpu_to_le32(opcode);
4568
4569 megasas_issue_blocked_cmd(instance, cmd);
4570
4571 megasas_return_cmd(instance, cmd);
4572
4573 return;
4574 }
4575
4576 #ifdef CONFIG_PM
4577 /**
4578 * megasas_suspend - driver suspend entry point
4579 * @pdev: PCI device structure
4580 * @state: PCI power state to suspend routine
4581 */
4582 static int
4583 megasas_suspend(struct pci_dev *pdev, pm_message_t state)
4584 {
4585 struct Scsi_Host *host;
4586 struct megasas_instance *instance;
4587 int i;
4588
4589 instance = pci_get_drvdata(pdev);
4590 host = instance->host;
4591 instance->unload = 1;
4592
4593 megasas_flush_cache(instance);
4594 megasas_shutdown_controller(instance, MR_DCMD_HIBERNATE_SHUTDOWN);
4595
4596 /* cancel the delayed work if this work still in queue */
4597 if (instance->ev != NULL) {
4598 struct megasas_aen_event *ev = instance->ev;
4599 cancel_delayed_work_sync(&ev->hotplug_work);
4600 instance->ev = NULL;
4601 }
4602
4603 tasklet_kill(&instance->isr_tasklet);
4604
4605 pci_set_drvdata(instance->pdev, instance);
4606 instance->instancet->disable_intr(instance);
4607
4608 if (instance->msix_vectors)
4609 for (i = 0 ; i < instance->msix_vectors; i++)
4610 free_irq(instance->msixentry[i].vector,
4611 &instance->irq_context[i]);
4612 else
4613 free_irq(instance->pdev->irq, &instance->irq_context[0]);
4614 if (instance->msix_vectors)
4615 pci_disable_msix(instance->pdev);
4616
4617 pci_save_state(pdev);
4618 pci_disable_device(pdev);
4619
4620 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4621
4622 return 0;
4623 }
4624
4625 /**
4626 * megasas_resume- driver resume entry point
4627 * @pdev: PCI device structure
4628 */
4629 static int
4630 megasas_resume(struct pci_dev *pdev)
4631 {
4632 int rval, i, j;
4633 struct Scsi_Host *host;
4634 struct megasas_instance *instance;
4635
4636 instance = pci_get_drvdata(pdev);
4637 host = instance->host;
4638 pci_set_power_state(pdev, PCI_D0);
4639 pci_enable_wake(pdev, PCI_D0, 0);
4640 pci_restore_state(pdev);
4641
4642 /*
4643 * PCI prepping: enable device set bus mastering and dma mask
4644 */
4645 rval = pci_enable_device_mem(pdev);
4646
4647 if (rval) {
4648 printk(KERN_ERR "megasas: Enable device failed\n");
4649 return rval;
4650 }
4651
4652 pci_set_master(pdev);
4653
4654 if (megasas_set_dma_mask(pdev))
4655 goto fail_set_dma_mask;
4656
4657 /*
4658 * Initialize MFI Firmware
4659 */
4660
4661 atomic_set(&instance->fw_outstanding, 0);
4662
4663 /*
4664 * We expect the FW state to be READY
4665 */
4666 if (megasas_transition_to_ready(instance, 0))
4667 goto fail_ready_state;
4668
4669 /* Now re-enable MSI-X */
4670 if (instance->msix_vectors)
4671 pci_enable_msix(instance->pdev, instance->msixentry,
4672 instance->msix_vectors);
4673
4674 switch (instance->pdev->device) {
4675 case PCI_DEVICE_ID_LSI_FUSION:
4676 case PCI_DEVICE_ID_LSI_INVADER:
4677 case PCI_DEVICE_ID_LSI_FURY:
4678 {
4679 megasas_reset_reply_desc(instance);
4680 if (megasas_ioc_init_fusion(instance)) {
4681 megasas_free_cmds(instance);
4682 megasas_free_cmds_fusion(instance);
4683 goto fail_init_mfi;
4684 }
4685 if (!megasas_get_map_info(instance))
4686 megasas_sync_map_info(instance);
4687 }
4688 break;
4689 default:
4690 *instance->producer = 0;
4691 *instance->consumer = 0;
4692 if (megasas_issue_init_mfi(instance))
4693 goto fail_init_mfi;
4694 break;
4695 }
4696
4697 tasklet_init(&instance->isr_tasklet, instance->instancet->tasklet,
4698 (unsigned long)instance);
4699
4700 /*
4701 * Register IRQ
4702 */
4703 if (instance->msix_vectors) {
4704 for (i = 0 ; i < instance->msix_vectors; i++) {
4705 instance->irq_context[i].instance = instance;
4706 instance->irq_context[i].MSIxIndex = i;
4707 if (request_irq(instance->msixentry[i].vector,
4708 instance->instancet->service_isr, 0,
4709 "megasas",
4710 &instance->irq_context[i])) {
4711 printk(KERN_DEBUG "megasas: Failed to "
4712 "register IRQ for vector %d.\n", i);
4713 for (j = 0 ; j < i ; j++)
4714 free_irq(
4715 instance->msixentry[j].vector,
4716 &instance->irq_context[j]);
4717 goto fail_irq;
4718 }
4719 }
4720 } else {
4721 instance->irq_context[0].instance = instance;
4722 instance->irq_context[0].MSIxIndex = 0;
4723 if (request_irq(pdev->irq, instance->instancet->service_isr,
4724 IRQF_SHARED, "megasas",
4725 &instance->irq_context[0])) {
4726 printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
4727 goto fail_irq;
4728 }
4729 }
4730
4731 instance->instancet->enable_intr(instance);
4732 instance->unload = 0;
4733
4734 /*
4735 * Initiate AEN (Asynchronous Event Notification)
4736 */
4737 if (megasas_start_aen(instance))
4738 printk(KERN_ERR "megasas: Start AEN failed\n");
4739
4740 return 0;
4741
4742 fail_irq:
4743 fail_init_mfi:
4744 if (instance->evt_detail)
4745 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
4746 instance->evt_detail,
4747 instance->evt_detail_h);
4748
4749 if (instance->producer)
4750 pci_free_consistent(pdev, sizeof(u32), instance->producer,
4751 instance->producer_h);
4752 if (instance->consumer)
4753 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
4754 instance->consumer_h);
4755 scsi_host_put(host);
4756
4757 fail_set_dma_mask:
4758 fail_ready_state:
4759
4760 pci_disable_device(pdev);
4761
4762 return -ENODEV;
4763 }
4764 #else
4765 #define megasas_suspend NULL
4766 #define megasas_resume NULL
4767 #endif
4768
4769 /**
4770 * megasas_detach_one - PCI hot"un"plug entry point
4771 * @pdev: PCI device structure
4772 */
4773 static void megasas_detach_one(struct pci_dev *pdev)
4774 {
4775 int i;
4776 struct Scsi_Host *host;
4777 struct megasas_instance *instance;
4778 struct fusion_context *fusion;
4779
4780 instance = pci_get_drvdata(pdev);
4781 instance->unload = 1;
4782 host = instance->host;
4783 fusion = instance->ctrl_context;
4784
4785 scsi_remove_host(instance->host);
4786 megasas_flush_cache(instance);
4787 megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN);
4788
4789 /* cancel the delayed work if this work still in queue*/
4790 if (instance->ev != NULL) {
4791 struct megasas_aen_event *ev = instance->ev;
4792 cancel_delayed_work_sync(&ev->hotplug_work);
4793 instance->ev = NULL;
4794 }
4795
4796 tasklet_kill(&instance->isr_tasklet);
4797
4798 /*
4799 * Take the instance off the instance array. Note that we will not
4800 * decrement the max_index. We let this array be sparse array
4801 */
4802 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
4803 if (megasas_mgmt_info.instance[i] == instance) {
4804 megasas_mgmt_info.count--;
4805 megasas_mgmt_info.instance[i] = NULL;
4806
4807 break;
4808 }
4809 }
4810
4811 instance->instancet->disable_intr(instance);
4812
4813 if (instance->msix_vectors)
4814 for (i = 0 ; i < instance->msix_vectors; i++)
4815 free_irq(instance->msixentry[i].vector,
4816 &instance->irq_context[i]);
4817 else
4818 free_irq(instance->pdev->irq, &instance->irq_context[0]);
4819 if (instance->msix_vectors)
4820 pci_disable_msix(instance->pdev);
4821
4822 switch (instance->pdev->device) {
4823 case PCI_DEVICE_ID_LSI_FUSION:
4824 case PCI_DEVICE_ID_LSI_INVADER:
4825 case PCI_DEVICE_ID_LSI_FURY:
4826 megasas_release_fusion(instance);
4827 for (i = 0; i < 2 ; i++)
4828 if (fusion->ld_map[i])
4829 dma_free_coherent(&instance->pdev->dev,
4830 fusion->map_sz,
4831 fusion->ld_map[i],
4832 fusion->
4833 ld_map_phys[i]);
4834 kfree(instance->ctrl_context);
4835 break;
4836 default:
4837 megasas_release_mfi(instance);
4838 pci_free_consistent(pdev, sizeof(u32),
4839 instance->producer,
4840 instance->producer_h);
4841 pci_free_consistent(pdev, sizeof(u32),
4842 instance->consumer,
4843 instance->consumer_h);
4844 break;
4845 }
4846
4847 if (instance->evt_detail)
4848 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
4849 instance->evt_detail, instance->evt_detail_h);
4850 scsi_host_put(host);
4851
4852 pci_disable_device(pdev);
4853
4854 return;
4855 }
4856
4857 /**
4858 * megasas_shutdown - Shutdown entry point
4859 * @device: Generic device structure
4860 */
4861 static void megasas_shutdown(struct pci_dev *pdev)
4862 {
4863 int i;
4864 struct megasas_instance *instance = pci_get_drvdata(pdev);
4865
4866 instance->unload = 1;
4867 megasas_flush_cache(instance);
4868 megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN);
4869 instance->instancet->disable_intr(instance);
4870 if (instance->msix_vectors)
4871 for (i = 0 ; i < instance->msix_vectors; i++)
4872 free_irq(instance->msixentry[i].vector,
4873 &instance->irq_context[i]);
4874 else
4875 free_irq(instance->pdev->irq, &instance->irq_context[0]);
4876 if (instance->msix_vectors)
4877 pci_disable_msix(instance->pdev);
4878 }
4879
4880 /**
4881 * megasas_mgmt_open - char node "open" entry point
4882 */
4883 static int megasas_mgmt_open(struct inode *inode, struct file *filep)
4884 {
4885 /*
4886 * Allow only those users with admin rights
4887 */
4888 if (!capable(CAP_SYS_ADMIN))
4889 return -EACCES;
4890
4891 return 0;
4892 }
4893
4894 /**
4895 * megasas_mgmt_fasync - Async notifier registration from applications
4896 *
4897 * This function adds the calling process to a driver global queue. When an
4898 * event occurs, SIGIO will be sent to all processes in this queue.
4899 */
4900 static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
4901 {
4902 int rc;
4903
4904 mutex_lock(&megasas_async_queue_mutex);
4905
4906 rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
4907
4908 mutex_unlock(&megasas_async_queue_mutex);
4909
4910 if (rc >= 0) {
4911 /* For sanity check when we get ioctl */
4912 filep->private_data = filep;
4913 return 0;
4914 }
4915
4916 printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
4917
4918 return rc;
4919 }
4920
4921 /**
4922 * megasas_mgmt_poll - char node "poll" entry point
4923 * */
4924 static unsigned int megasas_mgmt_poll(struct file *file, poll_table *wait)
4925 {
4926 unsigned int mask;
4927 unsigned long flags;
4928 poll_wait(file, &megasas_poll_wait, wait);
4929 spin_lock_irqsave(&poll_aen_lock, flags);
4930 if (megasas_poll_wait_aen)
4931 mask = (POLLIN | POLLRDNORM);
4932 else
4933 mask = 0;
4934 spin_unlock_irqrestore(&poll_aen_lock, flags);
4935 return mask;
4936 }
4937
4938 /**
4939 * megasas_mgmt_fw_ioctl - Issues management ioctls to FW
4940 * @instance: Adapter soft state
4941 * @argp: User's ioctl packet
4942 */
4943 static int
4944 megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
4945 struct megasas_iocpacket __user * user_ioc,
4946 struct megasas_iocpacket *ioc)
4947 {
4948 struct megasas_sge32 *kern_sge32;
4949 struct megasas_cmd *cmd;
4950 void *kbuff_arr[MAX_IOCTL_SGE];
4951 dma_addr_t buf_handle = 0;
4952 int error = 0, i;
4953 void *sense = NULL;
4954 dma_addr_t sense_handle;
4955 unsigned long *sense_ptr;
4956
4957 memset(kbuff_arr, 0, sizeof(kbuff_arr));
4958
4959 if (ioc->sge_count > MAX_IOCTL_SGE) {
4960 printk(KERN_DEBUG "megasas: SGE count [%d] > max limit [%d]\n",
4961 ioc->sge_count, MAX_IOCTL_SGE);
4962 return -EINVAL;
4963 }
4964
4965 cmd = megasas_get_cmd(instance);
4966 if (!cmd) {
4967 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
4968 return -ENOMEM;
4969 }
4970
4971 /*
4972 * User's IOCTL packet has 2 frames (maximum). Copy those two
4973 * frames into our cmd's frames. cmd->frame's context will get
4974 * overwritten when we copy from user's frames. So set that value
4975 * alone separately
4976 */
4977 memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
4978 cmd->frame->hdr.context = cpu_to_le32(cmd->index);
4979 cmd->frame->hdr.pad_0 = 0;
4980 cmd->frame->hdr.flags &= cpu_to_le16(~(MFI_FRAME_IEEE |
4981 MFI_FRAME_SGL64 |
4982 MFI_FRAME_SENSE64));
4983
4984 /*
4985 * The management interface between applications and the fw uses
4986 * MFI frames. E.g, RAID configuration changes, LD property changes
4987 * etc are accomplishes through different kinds of MFI frames. The
4988 * driver needs to care only about substituting user buffers with
4989 * kernel buffers in SGLs. The location of SGL is embedded in the
4990 * struct iocpacket itself.
4991 */
4992 kern_sge32 = (struct megasas_sge32 *)
4993 ((unsigned long)cmd->frame + ioc->sgl_off);
4994
4995 /*
4996 * For each user buffer, create a mirror buffer and copy in
4997 */
4998 for (i = 0; i < ioc->sge_count; i++) {
4999 if (!ioc->sgl[i].iov_len)
5000 continue;
5001
5002 kbuff_arr[i] = dma_alloc_coherent(&instance->pdev->dev,
5003 ioc->sgl[i].iov_len,
5004 &buf_handle, GFP_KERNEL);
5005 if (!kbuff_arr[i]) {
5006 printk(KERN_DEBUG "megasas: Failed to alloc "
5007 "kernel SGL buffer for IOCTL \n");
5008 error = -ENOMEM;
5009 goto out;
5010 }
5011
5012 /*
5013 * We don't change the dma_coherent_mask, so
5014 * pci_alloc_consistent only returns 32bit addresses
5015 */
5016 kern_sge32[i].phys_addr = cpu_to_le32(buf_handle);
5017 kern_sge32[i].length = cpu_to_le32(ioc->sgl[i].iov_len);
5018
5019 /*
5020 * We created a kernel buffer corresponding to the
5021 * user buffer. Now copy in from the user buffer
5022 */
5023 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
5024 (u32) (ioc->sgl[i].iov_len))) {
5025 error = -EFAULT;
5026 goto out;
5027 }
5028 }
5029
5030 if (ioc->sense_len) {
5031 sense = dma_alloc_coherent(&instance->pdev->dev, ioc->sense_len,
5032 &sense_handle, GFP_KERNEL);
5033 if (!sense) {
5034 error = -ENOMEM;
5035 goto out;
5036 }
5037
5038 sense_ptr =
5039 (unsigned long *) ((unsigned long)cmd->frame + ioc->sense_off);
5040 *sense_ptr = cpu_to_le32(sense_handle);
5041 }
5042
5043 /*
5044 * Set the sync_cmd flag so that the ISR knows not to complete this
5045 * cmd to the SCSI mid-layer
5046 */
5047 cmd->sync_cmd = 1;
5048 megasas_issue_blocked_cmd(instance, cmd);
5049 cmd->sync_cmd = 0;
5050
5051 /*
5052 * copy out the kernel buffers to user buffers
5053 */
5054 for (i = 0; i < ioc->sge_count; i++) {
5055 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
5056 ioc->sgl[i].iov_len)) {
5057 error = -EFAULT;
5058 goto out;
5059 }
5060 }
5061
5062 /*
5063 * copy out the sense
5064 */
5065 if (ioc->sense_len) {
5066 /*
5067 * sense_ptr points to the location that has the user
5068 * sense buffer address
5069 */
5070 sense_ptr = (unsigned long *) ((unsigned long)ioc->frame.raw +
5071 ioc->sense_off);
5072
5073 if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
5074 sense, ioc->sense_len)) {
5075 printk(KERN_ERR "megasas: Failed to copy out to user "
5076 "sense data\n");
5077 error = -EFAULT;
5078 goto out;
5079 }
5080 }
5081
5082 /*
5083 * copy the status codes returned by the fw
5084 */
5085 if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
5086 &cmd->frame->hdr.cmd_status, sizeof(u8))) {
5087 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
5088 error = -EFAULT;
5089 }
5090
5091 out:
5092 if (sense) {
5093 dma_free_coherent(&instance->pdev->dev, ioc->sense_len,
5094 sense, sense_handle);
5095 }
5096
5097 for (i = 0; i < ioc->sge_count; i++) {
5098 if (kbuff_arr[i])
5099 dma_free_coherent(&instance->pdev->dev,
5100 le32_to_cpu(kern_sge32[i].length),
5101 kbuff_arr[i],
5102 le32_to_cpu(kern_sge32[i].phys_addr));
5103 }
5104
5105 megasas_return_cmd(instance, cmd);
5106 return error;
5107 }
5108
5109 static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
5110 {
5111 struct megasas_iocpacket __user *user_ioc =
5112 (struct megasas_iocpacket __user *)arg;
5113 struct megasas_iocpacket *ioc;
5114 struct megasas_instance *instance;
5115 int error;
5116 int i;
5117 unsigned long flags;
5118 u32 wait_time = MEGASAS_RESET_WAIT_TIME;
5119
5120 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
5121 if (!ioc)
5122 return -ENOMEM;
5123
5124 if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
5125 error = -EFAULT;
5126 goto out_kfree_ioc;
5127 }
5128
5129 instance = megasas_lookup_instance(ioc->host_no);
5130 if (!instance) {
5131 error = -ENODEV;
5132 goto out_kfree_ioc;
5133 }
5134
5135 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) {
5136 printk(KERN_ERR "Controller in crit error\n");
5137 error = -ENODEV;
5138 goto out_kfree_ioc;
5139 }
5140
5141 if (instance->unload == 1) {
5142 error = -ENODEV;
5143 goto out_kfree_ioc;
5144 }
5145
5146 /*
5147 * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
5148 */
5149 if (down_interruptible(&instance->ioctl_sem)) {
5150 error = -ERESTARTSYS;
5151 goto out_kfree_ioc;
5152 }
5153
5154 for (i = 0; i < wait_time; i++) {
5155
5156 spin_lock_irqsave(&instance->hba_lock, flags);
5157 if (instance->adprecovery == MEGASAS_HBA_OPERATIONAL) {
5158 spin_unlock_irqrestore(&instance->hba_lock, flags);
5159 break;
5160 }
5161 spin_unlock_irqrestore(&instance->hba_lock, flags);
5162
5163 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
5164 printk(KERN_NOTICE "megasas: waiting"
5165 "for controller reset to finish\n");
5166 }
5167
5168 msleep(1000);
5169 }
5170
5171 spin_lock_irqsave(&instance->hba_lock, flags);
5172 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) {
5173 spin_unlock_irqrestore(&instance->hba_lock, flags);
5174
5175 printk(KERN_ERR "megaraid_sas: timed out while"
5176 "waiting for HBA to recover\n");
5177 error = -ENODEV;
5178 goto out_up;
5179 }
5180 spin_unlock_irqrestore(&instance->hba_lock, flags);
5181
5182 error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
5183 out_up:
5184 up(&instance->ioctl_sem);
5185
5186 out_kfree_ioc:
5187 kfree(ioc);
5188 return error;
5189 }
5190
5191 static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
5192 {
5193 struct megasas_instance *instance;
5194 struct megasas_aen aen;
5195 int error;
5196 int i;
5197 unsigned long flags;
5198 u32 wait_time = MEGASAS_RESET_WAIT_TIME;
5199
5200 if (file->private_data != file) {
5201 printk(KERN_DEBUG "megasas: fasync_helper was not "
5202 "called first\n");
5203 return -EINVAL;
5204 }
5205
5206 if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
5207 return -EFAULT;
5208
5209 instance = megasas_lookup_instance(aen.host_no);
5210
5211 if (!instance)
5212 return -ENODEV;
5213
5214 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) {
5215 return -ENODEV;
5216 }
5217
5218 if (instance->unload == 1) {
5219 return -ENODEV;
5220 }
5221
5222 for (i = 0; i < wait_time; i++) {
5223
5224 spin_lock_irqsave(&instance->hba_lock, flags);
5225 if (instance->adprecovery == MEGASAS_HBA_OPERATIONAL) {
5226 spin_unlock_irqrestore(&instance->hba_lock,
5227 flags);
5228 break;
5229 }
5230
5231 spin_unlock_irqrestore(&instance->hba_lock, flags);
5232
5233 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
5234 printk(KERN_NOTICE "megasas: waiting for"
5235 "controller reset to finish\n");
5236 }
5237
5238 msleep(1000);
5239 }
5240
5241 spin_lock_irqsave(&instance->hba_lock, flags);
5242 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) {
5243 spin_unlock_irqrestore(&instance->hba_lock, flags);
5244 printk(KERN_ERR "megaraid_sas: timed out while waiting"
5245 "for HBA to recover.\n");
5246 return -ENODEV;
5247 }
5248 spin_unlock_irqrestore(&instance->hba_lock, flags);
5249
5250 mutex_lock(&instance->aen_mutex);
5251 error = megasas_register_aen(instance, aen.seq_num,
5252 aen.class_locale_word);
5253 mutex_unlock(&instance->aen_mutex);
5254 return error;
5255 }
5256
5257 /**
5258 * megasas_mgmt_ioctl - char node ioctl entry point
5259 */
5260 static long
5261 megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5262 {
5263 switch (cmd) {
5264 case MEGASAS_IOC_FIRMWARE:
5265 return megasas_mgmt_ioctl_fw(file, arg);
5266
5267 case MEGASAS_IOC_GET_AEN:
5268 return megasas_mgmt_ioctl_aen(file, arg);
5269 }
5270
5271 return -ENOTTY;
5272 }
5273
5274 #ifdef CONFIG_COMPAT
5275 static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
5276 {
5277 struct compat_megasas_iocpacket __user *cioc =
5278 (struct compat_megasas_iocpacket __user *)arg;
5279 struct megasas_iocpacket __user *ioc =
5280 compat_alloc_user_space(sizeof(struct megasas_iocpacket));
5281 int i;
5282 int error = 0;
5283 compat_uptr_t ptr;
5284
5285 if (clear_user(ioc, sizeof(*ioc)))
5286 return -EFAULT;
5287
5288 if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
5289 copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
5290 copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
5291 copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
5292 copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
5293 copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
5294 return -EFAULT;
5295
5296 /*
5297 * The sense_ptr is used in megasas_mgmt_fw_ioctl only when
5298 * sense_len is not null, so prepare the 64bit value under
5299 * the same condition.
5300 */
5301 if (ioc->sense_len) {
5302 void __user **sense_ioc_ptr =
5303 (void __user **)(ioc->frame.raw + ioc->sense_off);
5304 compat_uptr_t *sense_cioc_ptr =
5305 (compat_uptr_t *)(cioc->frame.raw + cioc->sense_off);
5306 if (get_user(ptr, sense_cioc_ptr) ||
5307 put_user(compat_ptr(ptr), sense_ioc_ptr))
5308 return -EFAULT;
5309 }
5310
5311 for (i = 0; i < MAX_IOCTL_SGE; i++) {
5312 if (get_user(ptr, &cioc->sgl[i].iov_base) ||
5313 put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
5314 copy_in_user(&ioc->sgl[i].iov_len,
5315 &cioc->sgl[i].iov_len, sizeof(compat_size_t)))
5316 return -EFAULT;
5317 }
5318
5319 error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
5320
5321 if (copy_in_user(&cioc->frame.hdr.cmd_status,
5322 &ioc->frame.hdr.cmd_status, sizeof(u8))) {
5323 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
5324 return -EFAULT;
5325 }
5326 return error;
5327 }
5328
5329 static long
5330 megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
5331 unsigned long arg)
5332 {
5333 switch (cmd) {
5334 case MEGASAS_IOC_FIRMWARE32:
5335 return megasas_mgmt_compat_ioctl_fw(file, arg);
5336 case MEGASAS_IOC_GET_AEN:
5337 return megasas_mgmt_ioctl_aen(file, arg);
5338 }
5339
5340 return -ENOTTY;
5341 }
5342 #endif
5343
5344 /*
5345 * File operations structure for management interface
5346 */
5347 static const struct file_operations megasas_mgmt_fops = {
5348 .owner = THIS_MODULE,
5349 .open = megasas_mgmt_open,
5350 .fasync = megasas_mgmt_fasync,
5351 .unlocked_ioctl = megasas_mgmt_ioctl,
5352 .poll = megasas_mgmt_poll,
5353 #ifdef CONFIG_COMPAT
5354 .compat_ioctl = megasas_mgmt_compat_ioctl,
5355 #endif
5356 .llseek = noop_llseek,
5357 };
5358
5359 /*
5360 * PCI hotplug support registration structure
5361 */
5362 static struct pci_driver megasas_pci_driver = {
5363
5364 .name = "megaraid_sas",
5365 .id_table = megasas_pci_table,
5366 .probe = megasas_probe_one,
5367 .remove = megasas_detach_one,
5368 .suspend = megasas_suspend,
5369 .resume = megasas_resume,
5370 .shutdown = megasas_shutdown,
5371 };
5372
5373 /*
5374 * Sysfs driver attributes
5375 */
5376 static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
5377 {
5378 return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
5379 MEGASAS_VERSION);
5380 }
5381
5382 static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
5383
5384 static ssize_t
5385 megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
5386 {
5387 return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
5388 MEGASAS_RELDATE);
5389 }
5390
5391 static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
5392 NULL);
5393
5394 static ssize_t
5395 megasas_sysfs_show_support_poll_for_event(struct device_driver *dd, char *buf)
5396 {
5397 return sprintf(buf, "%u\n", support_poll_for_event);
5398 }
5399
5400 static DRIVER_ATTR(support_poll_for_event, S_IRUGO,
5401 megasas_sysfs_show_support_poll_for_event, NULL);
5402
5403 static ssize_t
5404 megasas_sysfs_show_support_device_change(struct device_driver *dd, char *buf)
5405 {
5406 return sprintf(buf, "%u\n", support_device_change);
5407 }
5408
5409 static DRIVER_ATTR(support_device_change, S_IRUGO,
5410 megasas_sysfs_show_support_device_change, NULL);
5411
5412 static ssize_t
5413 megasas_sysfs_show_dbg_lvl(struct device_driver *dd, char *buf)
5414 {
5415 return sprintf(buf, "%u\n", megasas_dbg_lvl);
5416 }
5417
5418 static ssize_t
5419 megasas_sysfs_set_dbg_lvl(struct device_driver *dd, const char *buf, size_t count)
5420 {
5421 int retval = count;
5422 if(sscanf(buf,"%u",&megasas_dbg_lvl)<1){
5423 printk(KERN_ERR "megasas: could not set dbg_lvl\n");
5424 retval = -EINVAL;
5425 }
5426 return retval;
5427 }
5428
5429 static DRIVER_ATTR(dbg_lvl, S_IRUGO|S_IWUSR, megasas_sysfs_show_dbg_lvl,
5430 megasas_sysfs_set_dbg_lvl);
5431
5432 static void
5433 megasas_aen_polling(struct work_struct *work)
5434 {
5435 struct megasas_aen_event *ev =
5436 container_of(work, struct megasas_aen_event, hotplug_work.work);
5437 struct megasas_instance *instance = ev->instance;
5438 union megasas_evt_class_locale class_locale;
5439 struct Scsi_Host *host;
5440 struct scsi_device *sdev1;
5441 u16 pd_index = 0;
5442 u16 ld_index = 0;
5443 int i, j, doscan = 0;
5444 u32 seq_num;
5445 int error;
5446
5447 if (!instance) {
5448 printk(KERN_ERR "invalid instance!\n");
5449 kfree(ev);
5450 return;
5451 }
5452 instance->ev = NULL;
5453 host = instance->host;
5454 if (instance->evt_detail) {
5455
5456 switch (le32_to_cpu(instance->evt_detail->code)) {
5457 case MR_EVT_PD_INSERTED:
5458 if (megasas_get_pd_list(instance) == 0) {
5459 for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) {
5460 for (j = 0;
5461 j < MEGASAS_MAX_DEV_PER_CHANNEL;
5462 j++) {
5463
5464 pd_index =
5465 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
5466
5467 sdev1 =
5468 scsi_device_lookup(host, i, j, 0);
5469
5470 if (instance->pd_list[pd_index].driveState
5471 == MR_PD_STATE_SYSTEM) {
5472 if (!sdev1) {
5473 scsi_add_device(host, i, j, 0);
5474 }
5475
5476 if (sdev1)
5477 scsi_device_put(sdev1);
5478 }
5479 }
5480 }
5481 }
5482 doscan = 0;
5483 break;
5484
5485 case MR_EVT_PD_REMOVED:
5486 if (megasas_get_pd_list(instance) == 0) {
5487 for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) {
5488 for (j = 0;
5489 j < MEGASAS_MAX_DEV_PER_CHANNEL;
5490 j++) {
5491
5492 pd_index =
5493 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
5494
5495 sdev1 =
5496 scsi_device_lookup(host, i, j, 0);
5497
5498 if (instance->pd_list[pd_index].driveState
5499 == MR_PD_STATE_SYSTEM) {
5500 if (sdev1) {
5501 scsi_device_put(sdev1);
5502 }
5503 } else {
5504 if (sdev1) {
5505 scsi_remove_device(sdev1);
5506 scsi_device_put(sdev1);
5507 }
5508 }
5509 }
5510 }
5511 }
5512 doscan = 0;
5513 break;
5514
5515 case MR_EVT_LD_OFFLINE:
5516 case MR_EVT_CFG_CLEARED:
5517 case MR_EVT_LD_DELETED:
5518 if (megasas_ld_list_query(instance,
5519 MR_LD_QUERY_TYPE_EXPOSED_TO_HOST))
5520 megasas_get_ld_list(instance);
5521 for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) {
5522 for (j = 0;
5523 j < MEGASAS_MAX_DEV_PER_CHANNEL;
5524 j++) {
5525
5526 ld_index =
5527 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
5528
5529 sdev1 = scsi_device_lookup(host,
5530 MEGASAS_MAX_PD_CHANNELS + i,
5531 j,
5532 0);
5533
5534 if (instance->ld_ids[ld_index] != 0xff) {
5535 if (sdev1) {
5536 scsi_device_put(sdev1);
5537 }
5538 } else {
5539 if (sdev1) {
5540 scsi_remove_device(sdev1);
5541 scsi_device_put(sdev1);
5542 }
5543 }
5544 }
5545 }
5546 doscan = 0;
5547 break;
5548 case MR_EVT_LD_CREATED:
5549 if (megasas_ld_list_query(instance,
5550 MR_LD_QUERY_TYPE_EXPOSED_TO_HOST))
5551 megasas_get_ld_list(instance);
5552 for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) {
5553 for (j = 0;
5554 j < MEGASAS_MAX_DEV_PER_CHANNEL;
5555 j++) {
5556 ld_index =
5557 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
5558
5559 sdev1 = scsi_device_lookup(host,
5560 MEGASAS_MAX_PD_CHANNELS + i,
5561 j, 0);
5562
5563 if (instance->ld_ids[ld_index] !=
5564 0xff) {
5565 if (!sdev1) {
5566 scsi_add_device(host,
5567 MEGASAS_MAX_PD_CHANNELS + i,
5568 j, 0);
5569 }
5570 }
5571 if (sdev1) {
5572 scsi_device_put(sdev1);
5573 }
5574 }
5575 }
5576 doscan = 0;
5577 break;
5578 case MR_EVT_CTRL_HOST_BUS_SCAN_REQUESTED:
5579 case MR_EVT_FOREIGN_CFG_IMPORTED:
5580 case MR_EVT_LD_STATE_CHANGE:
5581 doscan = 1;
5582 break;
5583 default:
5584 doscan = 0;
5585 break;
5586 }
5587 } else {
5588 printk(KERN_ERR "invalid evt_detail!\n");
5589 kfree(ev);
5590 return;
5591 }
5592
5593 if (doscan) {
5594 printk(KERN_INFO "scanning ...\n");
5595 megasas_get_pd_list(instance);
5596 for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) {
5597 for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) {
5598 pd_index = i*MEGASAS_MAX_DEV_PER_CHANNEL + j;
5599 sdev1 = scsi_device_lookup(host, i, j, 0);
5600 if (instance->pd_list[pd_index].driveState ==
5601 MR_PD_STATE_SYSTEM) {
5602 if (!sdev1) {
5603 scsi_add_device(host, i, j, 0);
5604 }
5605 if (sdev1)
5606 scsi_device_put(sdev1);
5607 } else {
5608 if (sdev1) {
5609 scsi_remove_device(sdev1);
5610 scsi_device_put(sdev1);
5611 }
5612 }
5613 }
5614 }
5615
5616 if (megasas_ld_list_query(instance,
5617 MR_LD_QUERY_TYPE_EXPOSED_TO_HOST))
5618 megasas_get_ld_list(instance);
5619 for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) {
5620 for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) {
5621 ld_index =
5622 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
5623
5624 sdev1 = scsi_device_lookup(host,
5625 MEGASAS_MAX_PD_CHANNELS + i, j, 0);
5626 if (instance->ld_ids[ld_index] != 0xff) {
5627 if (!sdev1) {
5628 scsi_add_device(host,
5629 MEGASAS_MAX_PD_CHANNELS + i,
5630 j, 0);
5631 } else {
5632 scsi_device_put(sdev1);
5633 }
5634 } else {
5635 if (sdev1) {
5636 scsi_remove_device(sdev1);
5637 scsi_device_put(sdev1);
5638 }
5639 }
5640 }
5641 }
5642 }
5643
5644 if ( instance->aen_cmd != NULL ) {
5645 kfree(ev);
5646 return ;
5647 }
5648
5649 seq_num = le32_to_cpu(instance->evt_detail->seq_num) + 1;
5650
5651 /* Register AEN with FW for latest sequence number plus 1 */
5652 class_locale.members.reserved = 0;
5653 class_locale.members.locale = MR_EVT_LOCALE_ALL;
5654 class_locale.members.class = MR_EVT_CLASS_DEBUG;
5655 mutex_lock(&instance->aen_mutex);
5656 error = megasas_register_aen(instance, seq_num,
5657 class_locale.word);
5658 mutex_unlock(&instance->aen_mutex);
5659
5660 if (error)
5661 printk(KERN_ERR "register aen failed error %x\n", error);
5662
5663 kfree(ev);
5664 }
5665
5666 /**
5667 * megasas_init - Driver load entry point
5668 */
5669 static int __init megasas_init(void)
5670 {
5671 int rval;
5672
5673 /*
5674 * Announce driver version and other information
5675 */
5676 printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
5677 MEGASAS_EXT_VERSION);
5678
5679 spin_lock_init(&poll_aen_lock);
5680
5681 support_poll_for_event = 2;
5682 support_device_change = 1;
5683
5684 memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
5685
5686 /*
5687 * Register character device node
5688 */
5689 rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
5690
5691 if (rval < 0) {
5692 printk(KERN_DEBUG "megasas: failed to open device node\n");
5693 return rval;
5694 }
5695
5696 megasas_mgmt_majorno = rval;
5697
5698 /*
5699 * Register ourselves as PCI hotplug module
5700 */
5701 rval = pci_register_driver(&megasas_pci_driver);
5702
5703 if (rval) {
5704 printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
5705 goto err_pcidrv;
5706 }
5707
5708 rval = driver_create_file(&megasas_pci_driver.driver,
5709 &driver_attr_version);
5710 if (rval)
5711 goto err_dcf_attr_ver;
5712 rval = driver_create_file(&megasas_pci_driver.driver,
5713 &driver_attr_release_date);
5714 if (rval)
5715 goto err_dcf_rel_date;
5716
5717 rval = driver_create_file(&megasas_pci_driver.driver,
5718 &driver_attr_support_poll_for_event);
5719 if (rval)
5720 goto err_dcf_support_poll_for_event;
5721
5722 rval = driver_create_file(&megasas_pci_driver.driver,
5723 &driver_attr_dbg_lvl);
5724 if (rval)
5725 goto err_dcf_dbg_lvl;
5726 rval = driver_create_file(&megasas_pci_driver.driver,
5727 &driver_attr_support_device_change);
5728 if (rval)
5729 goto err_dcf_support_device_change;
5730
5731 return rval;
5732
5733 err_dcf_support_device_change:
5734 driver_remove_file(&megasas_pci_driver.driver,
5735 &driver_attr_dbg_lvl);
5736 err_dcf_dbg_lvl:
5737 driver_remove_file(&megasas_pci_driver.driver,
5738 &driver_attr_support_poll_for_event);
5739
5740 err_dcf_support_poll_for_event:
5741 driver_remove_file(&megasas_pci_driver.driver,
5742 &driver_attr_release_date);
5743
5744 err_dcf_rel_date:
5745 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
5746 err_dcf_attr_ver:
5747 pci_unregister_driver(&megasas_pci_driver);
5748 err_pcidrv:
5749 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
5750 return rval;
5751 }
5752
5753 /**
5754 * megasas_exit - Driver unload entry point
5755 */
5756 static void __exit megasas_exit(void)
5757 {
5758 driver_remove_file(&megasas_pci_driver.driver,
5759 &driver_attr_dbg_lvl);
5760 driver_remove_file(&megasas_pci_driver.driver,
5761 &driver_attr_support_poll_for_event);
5762 driver_remove_file(&megasas_pci_driver.driver,
5763 &driver_attr_support_device_change);
5764 driver_remove_file(&megasas_pci_driver.driver,
5765 &driver_attr_release_date);
5766 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
5767
5768 pci_unregister_driver(&megasas_pci_driver);
5769 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
5770 }
5771
5772 module_init(megasas_init);
5773 module_exit(megasas_exit);
This page took 0.154759 seconds and 5 git commands to generate.