IRQ: Typedef the IRQ handler function type
[deliverable/linux.git] / drivers / scsi / ncr53c8xx.c
1 /******************************************************************************
2 ** Device driver for the PCI-SCSI NCR538XX controller family.
3 **
4 ** Copyright (C) 1994 Wolfgang Stanglmeier
5 **
6 ** This program is free software; you can redistribute it and/or modify
7 ** it under the terms of the GNU General Public License as published by
8 ** the Free Software Foundation; either version 2 of the License, or
9 ** (at your option) any later version.
10 **
11 ** This program is distributed in the hope that it will be useful,
12 ** but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 ** GNU General Public License for more details.
15 **
16 ** You should have received a copy of the GNU General Public License
17 ** along with this program; if not, write to the Free Software
18 ** Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 **
20 **-----------------------------------------------------------------------------
21 **
22 ** This driver has been ported to Linux from the FreeBSD NCR53C8XX driver
23 ** and is currently maintained by
24 **
25 ** Gerard Roudier <groudier@free.fr>
26 **
27 ** Being given that this driver originates from the FreeBSD version, and
28 ** in order to keep synergy on both, any suggested enhancements and corrections
29 ** received on Linux are automatically a potential candidate for the FreeBSD
30 ** version.
31 **
32 ** The original driver has been written for 386bsd and FreeBSD by
33 ** Wolfgang Stanglmeier <wolf@cologne.de>
34 ** Stefan Esser <se@mi.Uni-Koeln.de>
35 **
36 ** And has been ported to NetBSD by
37 ** Charles M. Hannum <mycroft@gnu.ai.mit.edu>
38 **
39 **-----------------------------------------------------------------------------
40 **
41 ** Brief history
42 **
43 ** December 10 1995 by Gerard Roudier:
44 ** Initial port to Linux.
45 **
46 ** June 23 1996 by Gerard Roudier:
47 ** Support for 64 bits architectures (Alpha).
48 **
49 ** November 30 1996 by Gerard Roudier:
50 ** Support for Fast-20 scsi.
51 ** Support for large DMA fifo and 128 dwords bursting.
52 **
53 ** February 27 1997 by Gerard Roudier:
54 ** Support for Fast-40 scsi.
55 ** Support for on-Board RAM.
56 **
57 ** May 3 1997 by Gerard Roudier:
58 ** Full support for scsi scripts instructions pre-fetching.
59 **
60 ** May 19 1997 by Richard Waltham <dormouse@farsrobt.demon.co.uk>:
61 ** Support for NvRAM detection and reading.
62 **
63 ** August 18 1997 by Cort <cort@cs.nmt.edu>:
64 ** Support for Power/PC (Big Endian).
65 **
66 ** June 20 1998 by Gerard Roudier
67 ** Support for up to 64 tags per lun.
68 ** O(1) everywhere (C and SCRIPTS) for normal cases.
69 ** Low PCI traffic for command handling when on-chip RAM is present.
70 ** Aggressive SCSI SCRIPTS optimizations.
71 **
72 ** 2005 by Matthew Wilcox and James Bottomley
73 ** PCI-ectomy. This driver now supports only the 720 chip (see the
74 ** NCR_Q720 and zalon drivers for the bus probe logic).
75 **
76 *******************************************************************************
77 */
78
79 /*
80 ** Supported SCSI-II features:
81 ** Synchronous negotiation
82 ** Wide negotiation (depends on the NCR Chip)
83 ** Enable disconnection
84 ** Tagged command queuing
85 ** Parity checking
86 ** Etc...
87 **
88 ** Supported NCR/SYMBIOS chips:
89 ** 53C720 (Wide, Fast SCSI-2, intfly problems)
90 */
91
92 /* Name and version of the driver */
93 #define SCSI_NCR_DRIVER_NAME "ncr53c8xx-3.4.3g"
94
95 #define SCSI_NCR_DEBUG_FLAGS (0)
96
97 #include <linux/blkdev.h>
98 #include <linux/delay.h>
99 #include <linux/dma-mapping.h>
100 #include <linux/errno.h>
101 #include <linux/init.h>
102 #include <linux/interrupt.h>
103 #include <linux/ioport.h>
104 #include <linux/mm.h>
105 #include <linux/module.h>
106 #include <linux/sched.h>
107 #include <linux/signal.h>
108 #include <linux/spinlock.h>
109 #include <linux/stat.h>
110 #include <linux/string.h>
111 #include <linux/time.h>
112 #include <linux/timer.h>
113 #include <linux/types.h>
114
115 #include <asm/dma.h>
116 #include <asm/io.h>
117 #include <asm/system.h>
118
119 #include <scsi/scsi.h>
120 #include <scsi/scsi_cmnd.h>
121 #include <scsi/scsi_dbg.h>
122 #include <scsi/scsi_device.h>
123 #include <scsi/scsi_tcq.h>
124 #include <scsi/scsi_transport.h>
125 #include <scsi/scsi_transport_spi.h>
126
127 #include "ncr53c8xx.h"
128
129 #define NAME53C8XX "ncr53c8xx"
130
131 /*==========================================================
132 **
133 ** Debugging tags
134 **
135 **==========================================================
136 */
137
138 #define DEBUG_ALLOC (0x0001)
139 #define DEBUG_PHASE (0x0002)
140 #define DEBUG_QUEUE (0x0008)
141 #define DEBUG_RESULT (0x0010)
142 #define DEBUG_POINTER (0x0020)
143 #define DEBUG_SCRIPT (0x0040)
144 #define DEBUG_TINY (0x0080)
145 #define DEBUG_TIMING (0x0100)
146 #define DEBUG_NEGO (0x0200)
147 #define DEBUG_TAGS (0x0400)
148 #define DEBUG_SCATTER (0x0800)
149 #define DEBUG_IC (0x1000)
150
151 /*
152 ** Enable/Disable debug messages.
153 ** Can be changed at runtime too.
154 */
155
156 #ifdef SCSI_NCR_DEBUG_INFO_SUPPORT
157 static int ncr_debug = SCSI_NCR_DEBUG_FLAGS;
158 #define DEBUG_FLAGS ncr_debug
159 #else
160 #define DEBUG_FLAGS SCSI_NCR_DEBUG_FLAGS
161 #endif
162
163 static inline struct list_head *ncr_list_pop(struct list_head *head)
164 {
165 if (!list_empty(head)) {
166 struct list_head *elem = head->next;
167
168 list_del(elem);
169 return elem;
170 }
171
172 return NULL;
173 }
174
175 /*==========================================================
176 **
177 ** Simple power of two buddy-like allocator.
178 **
179 ** This simple code is not intended to be fast, but to
180 ** provide power of 2 aligned memory allocations.
181 ** Since the SCRIPTS processor only supplies 8 bit
182 ** arithmetic, this allocator allows simple and fast
183 ** address calculations from the SCRIPTS code.
184 ** In addition, cache line alignment is guaranteed for
185 ** power of 2 cache line size.
186 ** Enhanced in linux-2.3.44 to provide a memory pool
187 ** per pcidev to support dynamic dma mapping. (I would
188 ** have preferred a real bus astraction, btw).
189 **
190 **==========================================================
191 */
192
193 #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */
194 #if PAGE_SIZE >= 8192
195 #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */
196 #else
197 #define MEMO_PAGE_ORDER 1 /* 2 PAGES maximum */
198 #endif
199 #define MEMO_FREE_UNUSED /* Free unused pages immediately */
200 #define MEMO_WARN 1
201 #define MEMO_GFP_FLAGS GFP_ATOMIC
202 #define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER)
203 #define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT)
204 #define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1)
205
206 typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */
207 typedef struct device *m_bush_t; /* Something that addresses DMAable */
208
209 typedef struct m_link { /* Link between free memory chunks */
210 struct m_link *next;
211 } m_link_s;
212
213 typedef struct m_vtob { /* Virtual to Bus address translation */
214 struct m_vtob *next;
215 m_addr_t vaddr;
216 m_addr_t baddr;
217 } m_vtob_s;
218 #define VTOB_HASH_SHIFT 5
219 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT)
220 #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1)
221 #define VTOB_HASH_CODE(m) \
222 ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
223
224 typedef struct m_pool { /* Memory pool of a given kind */
225 m_bush_t bush;
226 m_addr_t (*getp)(struct m_pool *);
227 void (*freep)(struct m_pool *, m_addr_t);
228 int nump;
229 m_vtob_s *(vtob[VTOB_HASH_SIZE]);
230 struct m_pool *next;
231 struct m_link h[PAGE_SHIFT-MEMO_SHIFT+MEMO_PAGE_ORDER+1];
232 } m_pool_s;
233
234 static void *___m_alloc(m_pool_s *mp, int size)
235 {
236 int i = 0;
237 int s = (1 << MEMO_SHIFT);
238 int j;
239 m_addr_t a;
240 m_link_s *h = mp->h;
241
242 if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
243 return NULL;
244
245 while (size > s) {
246 s <<= 1;
247 ++i;
248 }
249
250 j = i;
251 while (!h[j].next) {
252 if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
253 h[j].next = (m_link_s *)mp->getp(mp);
254 if (h[j].next)
255 h[j].next->next = NULL;
256 break;
257 }
258 ++j;
259 s <<= 1;
260 }
261 a = (m_addr_t) h[j].next;
262 if (a) {
263 h[j].next = h[j].next->next;
264 while (j > i) {
265 j -= 1;
266 s >>= 1;
267 h[j].next = (m_link_s *) (a+s);
268 h[j].next->next = NULL;
269 }
270 }
271 #ifdef DEBUG
272 printk("___m_alloc(%d) = %p\n", size, (void *) a);
273 #endif
274 return (void *) a;
275 }
276
277 static void ___m_free(m_pool_s *mp, void *ptr, int size)
278 {
279 int i = 0;
280 int s = (1 << MEMO_SHIFT);
281 m_link_s *q;
282 m_addr_t a, b;
283 m_link_s *h = mp->h;
284
285 #ifdef DEBUG
286 printk("___m_free(%p, %d)\n", ptr, size);
287 #endif
288
289 if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
290 return;
291
292 while (size > s) {
293 s <<= 1;
294 ++i;
295 }
296
297 a = (m_addr_t) ptr;
298
299 while (1) {
300 #ifdef MEMO_FREE_UNUSED
301 if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
302 mp->freep(mp, a);
303 break;
304 }
305 #endif
306 b = a ^ s;
307 q = &h[i];
308 while (q->next && q->next != (m_link_s *) b) {
309 q = q->next;
310 }
311 if (!q->next) {
312 ((m_link_s *) a)->next = h[i].next;
313 h[i].next = (m_link_s *) a;
314 break;
315 }
316 q->next = q->next->next;
317 a = a & b;
318 s <<= 1;
319 ++i;
320 }
321 }
322
323 static DEFINE_SPINLOCK(ncr53c8xx_lock);
324
325 static void *__m_calloc2(m_pool_s *mp, int size, char *name, int uflags)
326 {
327 void *p;
328
329 p = ___m_alloc(mp, size);
330
331 if (DEBUG_FLAGS & DEBUG_ALLOC)
332 printk ("new %-10s[%4d] @%p.\n", name, size, p);
333
334 if (p)
335 memset(p, 0, size);
336 else if (uflags & MEMO_WARN)
337 printk (NAME53C8XX ": failed to allocate %s[%d]\n", name, size);
338
339 return p;
340 }
341
342 #define __m_calloc(mp, s, n) __m_calloc2(mp, s, n, MEMO_WARN)
343
344 static void __m_free(m_pool_s *mp, void *ptr, int size, char *name)
345 {
346 if (DEBUG_FLAGS & DEBUG_ALLOC)
347 printk ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
348
349 ___m_free(mp, ptr, size);
350
351 }
352
353 /*
354 * With pci bus iommu support, we use a default pool of unmapped memory
355 * for memory we donnot need to DMA from/to and one pool per pcidev for
356 * memory accessed by the PCI chip. `mp0' is the default not DMAable pool.
357 */
358
359 static m_addr_t ___mp0_getp(m_pool_s *mp)
360 {
361 m_addr_t m = __get_free_pages(MEMO_GFP_FLAGS, MEMO_PAGE_ORDER);
362 if (m)
363 ++mp->nump;
364 return m;
365 }
366
367 static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
368 {
369 free_pages(m, MEMO_PAGE_ORDER);
370 --mp->nump;
371 }
372
373 static m_pool_s mp0 = {NULL, ___mp0_getp, ___mp0_freep};
374
375 /*
376 * DMAable pools.
377 */
378
379 /*
380 * With pci bus iommu support, we maintain one pool per pcidev and a
381 * hashed reverse table for virtual to bus physical address translations.
382 */
383 static m_addr_t ___dma_getp(m_pool_s *mp)
384 {
385 m_addr_t vp;
386 m_vtob_s *vbp;
387
388 vbp = __m_calloc(&mp0, sizeof(*vbp), "VTOB");
389 if (vbp) {
390 dma_addr_t daddr;
391 vp = (m_addr_t) dma_alloc_coherent(mp->bush,
392 PAGE_SIZE<<MEMO_PAGE_ORDER,
393 &daddr, GFP_ATOMIC);
394 if (vp) {
395 int hc = VTOB_HASH_CODE(vp);
396 vbp->vaddr = vp;
397 vbp->baddr = daddr;
398 vbp->next = mp->vtob[hc];
399 mp->vtob[hc] = vbp;
400 ++mp->nump;
401 return vp;
402 }
403 }
404 if (vbp)
405 __m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
406 return 0;
407 }
408
409 static void ___dma_freep(m_pool_s *mp, m_addr_t m)
410 {
411 m_vtob_s **vbpp, *vbp;
412 int hc = VTOB_HASH_CODE(m);
413
414 vbpp = &mp->vtob[hc];
415 while (*vbpp && (*vbpp)->vaddr != m)
416 vbpp = &(*vbpp)->next;
417 if (*vbpp) {
418 vbp = *vbpp;
419 *vbpp = (*vbpp)->next;
420 dma_free_coherent(mp->bush, PAGE_SIZE<<MEMO_PAGE_ORDER,
421 (void *)vbp->vaddr, (dma_addr_t)vbp->baddr);
422 __m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
423 --mp->nump;
424 }
425 }
426
427 static inline m_pool_s *___get_dma_pool(m_bush_t bush)
428 {
429 m_pool_s *mp;
430 for (mp = mp0.next; mp && mp->bush != bush; mp = mp->next);
431 return mp;
432 }
433
434 static m_pool_s *___cre_dma_pool(m_bush_t bush)
435 {
436 m_pool_s *mp;
437 mp = __m_calloc(&mp0, sizeof(*mp), "MPOOL");
438 if (mp) {
439 memset(mp, 0, sizeof(*mp));
440 mp->bush = bush;
441 mp->getp = ___dma_getp;
442 mp->freep = ___dma_freep;
443 mp->next = mp0.next;
444 mp0.next = mp;
445 }
446 return mp;
447 }
448
449 static void ___del_dma_pool(m_pool_s *p)
450 {
451 struct m_pool **pp = &mp0.next;
452
453 while (*pp && *pp != p)
454 pp = &(*pp)->next;
455 if (*pp) {
456 *pp = (*pp)->next;
457 __m_free(&mp0, p, sizeof(*p), "MPOOL");
458 }
459 }
460
461 static void *__m_calloc_dma(m_bush_t bush, int size, char *name)
462 {
463 u_long flags;
464 struct m_pool *mp;
465 void *m = NULL;
466
467 spin_lock_irqsave(&ncr53c8xx_lock, flags);
468 mp = ___get_dma_pool(bush);
469 if (!mp)
470 mp = ___cre_dma_pool(bush);
471 if (mp)
472 m = __m_calloc(mp, size, name);
473 if (mp && !mp->nump)
474 ___del_dma_pool(mp);
475 spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
476
477 return m;
478 }
479
480 static void __m_free_dma(m_bush_t bush, void *m, int size, char *name)
481 {
482 u_long flags;
483 struct m_pool *mp;
484
485 spin_lock_irqsave(&ncr53c8xx_lock, flags);
486 mp = ___get_dma_pool(bush);
487 if (mp)
488 __m_free(mp, m, size, name);
489 if (mp && !mp->nump)
490 ___del_dma_pool(mp);
491 spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
492 }
493
494 static m_addr_t __vtobus(m_bush_t bush, void *m)
495 {
496 u_long flags;
497 m_pool_s *mp;
498 int hc = VTOB_HASH_CODE(m);
499 m_vtob_s *vp = NULL;
500 m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
501
502 spin_lock_irqsave(&ncr53c8xx_lock, flags);
503 mp = ___get_dma_pool(bush);
504 if (mp) {
505 vp = mp->vtob[hc];
506 while (vp && (m_addr_t) vp->vaddr != a)
507 vp = vp->next;
508 }
509 spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
510 return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
511 }
512
513 #define _m_calloc_dma(np, s, n) __m_calloc_dma(np->dev, s, n)
514 #define _m_free_dma(np, p, s, n) __m_free_dma(np->dev, p, s, n)
515 #define m_calloc_dma(s, n) _m_calloc_dma(np, s, n)
516 #define m_free_dma(p, s, n) _m_free_dma(np, p, s, n)
517 #define _vtobus(np, p) __vtobus(np->dev, p)
518 #define vtobus(p) _vtobus(np, p)
519
520 /*
521 * Deal with DMA mapping/unmapping.
522 */
523
524 /* To keep track of the dma mapping (sg/single) that has been set */
525 #define __data_mapped SCp.phase
526 #define __data_mapping SCp.have_data_in
527
528 static void __unmap_scsi_data(struct device *dev, struct scsi_cmnd *cmd)
529 {
530 switch(cmd->__data_mapped) {
531 case 2:
532 dma_unmap_sg(dev, cmd->request_buffer, cmd->use_sg,
533 cmd->sc_data_direction);
534 break;
535 case 1:
536 dma_unmap_single(dev, cmd->__data_mapping,
537 cmd->request_bufflen,
538 cmd->sc_data_direction);
539 break;
540 }
541 cmd->__data_mapped = 0;
542 }
543
544 static u_long __map_scsi_single_data(struct device *dev, struct scsi_cmnd *cmd)
545 {
546 dma_addr_t mapping;
547
548 if (cmd->request_bufflen == 0)
549 return 0;
550
551 mapping = dma_map_single(dev, cmd->request_buffer,
552 cmd->request_bufflen,
553 cmd->sc_data_direction);
554 cmd->__data_mapped = 1;
555 cmd->__data_mapping = mapping;
556
557 return mapping;
558 }
559
560 static int __map_scsi_sg_data(struct device *dev, struct scsi_cmnd *cmd)
561 {
562 int use_sg;
563
564 if (cmd->use_sg == 0)
565 return 0;
566
567 use_sg = dma_map_sg(dev, cmd->request_buffer, cmd->use_sg,
568 cmd->sc_data_direction);
569 cmd->__data_mapped = 2;
570 cmd->__data_mapping = use_sg;
571
572 return use_sg;
573 }
574
575 #define unmap_scsi_data(np, cmd) __unmap_scsi_data(np->dev, cmd)
576 #define map_scsi_single_data(np, cmd) __map_scsi_single_data(np->dev, cmd)
577 #define map_scsi_sg_data(np, cmd) __map_scsi_sg_data(np->dev, cmd)
578
579 /*==========================================================
580 **
581 ** Driver setup.
582 **
583 ** This structure is initialized from linux config
584 ** options. It can be overridden at boot-up by the boot
585 ** command line.
586 **
587 **==========================================================
588 */
589 static struct ncr_driver_setup
590 driver_setup = SCSI_NCR_DRIVER_SETUP;
591
592 #ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
593 static struct ncr_driver_setup
594 driver_safe_setup __initdata = SCSI_NCR_DRIVER_SAFE_SETUP;
595 #endif
596
597 #define initverbose (driver_setup.verbose)
598 #define bootverbose (np->verbose)
599
600
601 /*===================================================================
602 **
603 ** Driver setup from the boot command line
604 **
605 **===================================================================
606 */
607
608 #ifdef MODULE
609 #define ARG_SEP ' '
610 #else
611 #define ARG_SEP ','
612 #endif
613
614 #define OPT_TAGS 1
615 #define OPT_MASTER_PARITY 2
616 #define OPT_SCSI_PARITY 3
617 #define OPT_DISCONNECTION 4
618 #define OPT_SPECIAL_FEATURES 5
619 #define OPT_UNUSED_1 6
620 #define OPT_FORCE_SYNC_NEGO 7
621 #define OPT_REVERSE_PROBE 8
622 #define OPT_DEFAULT_SYNC 9
623 #define OPT_VERBOSE 10
624 #define OPT_DEBUG 11
625 #define OPT_BURST_MAX 12
626 #define OPT_LED_PIN 13
627 #define OPT_MAX_WIDE 14
628 #define OPT_SETTLE_DELAY 15
629 #define OPT_DIFF_SUPPORT 16
630 #define OPT_IRQM 17
631 #define OPT_PCI_FIX_UP 18
632 #define OPT_BUS_CHECK 19
633 #define OPT_OPTIMIZE 20
634 #define OPT_RECOVERY 21
635 #define OPT_SAFE_SETUP 22
636 #define OPT_USE_NVRAM 23
637 #define OPT_EXCLUDE 24
638 #define OPT_HOST_ID 25
639
640 #ifdef SCSI_NCR_IARB_SUPPORT
641 #define OPT_IARB 26
642 #endif
643
644 static char setup_token[] __initdata =
645 "tags:" "mpar:"
646 "spar:" "disc:"
647 "specf:" "ultra:"
648 "fsn:" "revprob:"
649 "sync:" "verb:"
650 "debug:" "burst:"
651 "led:" "wide:"
652 "settle:" "diff:"
653 "irqm:" "pcifix:"
654 "buschk:" "optim:"
655 "recovery:"
656 "safe:" "nvram:"
657 "excl:" "hostid:"
658 #ifdef SCSI_NCR_IARB_SUPPORT
659 "iarb:"
660 #endif
661 ; /* DONNOT REMOVE THIS ';' */
662
663 #ifdef MODULE
664 #define ARG_SEP ' '
665 #else
666 #define ARG_SEP ','
667 #endif
668
669 static int __init get_setup_token(char *p)
670 {
671 char *cur = setup_token;
672 char *pc;
673 int i = 0;
674
675 while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
676 ++pc;
677 ++i;
678 if (!strncmp(p, cur, pc - cur))
679 return i;
680 cur = pc;
681 }
682 return 0;
683 }
684
685
686 static int __init sym53c8xx__setup(char *str)
687 {
688 #ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
689 char *cur = str;
690 char *pc, *pv;
691 int i, val, c;
692 int xi = 0;
693
694 while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
695 char *pe;
696
697 val = 0;
698 pv = pc;
699 c = *++pv;
700
701 if (c == 'n')
702 val = 0;
703 else if (c == 'y')
704 val = 1;
705 else
706 val = (int) simple_strtoul(pv, &pe, 0);
707
708 switch (get_setup_token(cur)) {
709 case OPT_TAGS:
710 driver_setup.default_tags = val;
711 if (pe && *pe == '/') {
712 i = 0;
713 while (*pe && *pe != ARG_SEP &&
714 i < sizeof(driver_setup.tag_ctrl)-1) {
715 driver_setup.tag_ctrl[i++] = *pe++;
716 }
717 driver_setup.tag_ctrl[i] = '\0';
718 }
719 break;
720 case OPT_MASTER_PARITY:
721 driver_setup.master_parity = val;
722 break;
723 case OPT_SCSI_PARITY:
724 driver_setup.scsi_parity = val;
725 break;
726 case OPT_DISCONNECTION:
727 driver_setup.disconnection = val;
728 break;
729 case OPT_SPECIAL_FEATURES:
730 driver_setup.special_features = val;
731 break;
732 case OPT_FORCE_SYNC_NEGO:
733 driver_setup.force_sync_nego = val;
734 break;
735 case OPT_REVERSE_PROBE:
736 driver_setup.reverse_probe = val;
737 break;
738 case OPT_DEFAULT_SYNC:
739 driver_setup.default_sync = val;
740 break;
741 case OPT_VERBOSE:
742 driver_setup.verbose = val;
743 break;
744 case OPT_DEBUG:
745 driver_setup.debug = val;
746 break;
747 case OPT_BURST_MAX:
748 driver_setup.burst_max = val;
749 break;
750 case OPT_LED_PIN:
751 driver_setup.led_pin = val;
752 break;
753 case OPT_MAX_WIDE:
754 driver_setup.max_wide = val? 1:0;
755 break;
756 case OPT_SETTLE_DELAY:
757 driver_setup.settle_delay = val;
758 break;
759 case OPT_DIFF_SUPPORT:
760 driver_setup.diff_support = val;
761 break;
762 case OPT_IRQM:
763 driver_setup.irqm = val;
764 break;
765 case OPT_PCI_FIX_UP:
766 driver_setup.pci_fix_up = val;
767 break;
768 case OPT_BUS_CHECK:
769 driver_setup.bus_check = val;
770 break;
771 case OPT_OPTIMIZE:
772 driver_setup.optimize = val;
773 break;
774 case OPT_RECOVERY:
775 driver_setup.recovery = val;
776 break;
777 case OPT_USE_NVRAM:
778 driver_setup.use_nvram = val;
779 break;
780 case OPT_SAFE_SETUP:
781 memcpy(&driver_setup, &driver_safe_setup,
782 sizeof(driver_setup));
783 break;
784 case OPT_EXCLUDE:
785 if (xi < SCSI_NCR_MAX_EXCLUDES)
786 driver_setup.excludes[xi++] = val;
787 break;
788 case OPT_HOST_ID:
789 driver_setup.host_id = val;
790 break;
791 #ifdef SCSI_NCR_IARB_SUPPORT
792 case OPT_IARB:
793 driver_setup.iarb = val;
794 break;
795 #endif
796 default:
797 printk("sym53c8xx_setup: unexpected boot option '%.*s' ignored\n", (int)(pc-cur+1), cur);
798 break;
799 }
800
801 if ((cur = strchr(cur, ARG_SEP)) != NULL)
802 ++cur;
803 }
804 #endif /* SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT */
805 return 1;
806 }
807
808 /*===================================================================
809 **
810 ** Get device queue depth from boot command line.
811 **
812 **===================================================================
813 */
814 #define DEF_DEPTH (driver_setup.default_tags)
815 #define ALL_TARGETS -2
816 #define NO_TARGET -1
817 #define ALL_LUNS -2
818 #define NO_LUN -1
819
820 static int device_queue_depth(int unit, int target, int lun)
821 {
822 int c, h, t, u, v;
823 char *p = driver_setup.tag_ctrl;
824 char *ep;
825
826 h = -1;
827 t = NO_TARGET;
828 u = NO_LUN;
829 while ((c = *p++) != 0) {
830 v = simple_strtoul(p, &ep, 0);
831 switch(c) {
832 case '/':
833 ++h;
834 t = ALL_TARGETS;
835 u = ALL_LUNS;
836 break;
837 case 't':
838 if (t != target)
839 t = (target == v) ? v : NO_TARGET;
840 u = ALL_LUNS;
841 break;
842 case 'u':
843 if (u != lun)
844 u = (lun == v) ? v : NO_LUN;
845 break;
846 case 'q':
847 if (h == unit &&
848 (t == ALL_TARGETS || t == target) &&
849 (u == ALL_LUNS || u == lun))
850 return v;
851 break;
852 case '-':
853 t = ALL_TARGETS;
854 u = ALL_LUNS;
855 break;
856 default:
857 break;
858 }
859 p = ep;
860 }
861 return DEF_DEPTH;
862 }
863
864
865 /*==========================================================
866 **
867 ** The CCB done queue uses an array of CCB virtual
868 ** addresses. Empty entries are flagged using the bogus
869 ** virtual address 0xffffffff.
870 **
871 ** Since PCI ensures that only aligned DWORDs are accessed
872 ** atomically, 64 bit little-endian architecture requires
873 ** to test the high order DWORD of the entry to determine
874 ** if it is empty or valid.
875 **
876 ** BTW, I will make things differently as soon as I will
877 ** have a better idea, but this is simple and should work.
878 **
879 **==========================================================
880 */
881
882 #define SCSI_NCR_CCB_DONE_SUPPORT
883 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
884
885 #define MAX_DONE 24
886 #define CCB_DONE_EMPTY 0xffffffffUL
887
888 /* All 32 bit architectures */
889 #if BITS_PER_LONG == 32
890 #define CCB_DONE_VALID(cp) (((u_long) cp) != CCB_DONE_EMPTY)
891
892 /* All > 32 bit (64 bit) architectures regardless endian-ness */
893 #else
894 #define CCB_DONE_VALID(cp) \
895 ((((u_long) cp) & 0xffffffff00000000ul) && \
896 (((u_long) cp) & 0xfffffffful) != CCB_DONE_EMPTY)
897 #endif
898
899 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
900
901 /*==========================================================
902 **
903 ** Configuration and Debugging
904 **
905 **==========================================================
906 */
907
908 /*
909 ** SCSI address of this device.
910 ** The boot routines should have set it.
911 ** If not, use this.
912 */
913
914 #ifndef SCSI_NCR_MYADDR
915 #define SCSI_NCR_MYADDR (7)
916 #endif
917
918 /*
919 ** The maximum number of tags per logic unit.
920 ** Used only for disk devices that support tags.
921 */
922
923 #ifndef SCSI_NCR_MAX_TAGS
924 #define SCSI_NCR_MAX_TAGS (8)
925 #endif
926
927 /*
928 ** TAGS are actually limited to 64 tags/lun.
929 ** We need to deal with power of 2, for alignment constraints.
930 */
931 #if SCSI_NCR_MAX_TAGS > 64
932 #define MAX_TAGS (64)
933 #else
934 #define MAX_TAGS SCSI_NCR_MAX_TAGS
935 #endif
936
937 #define NO_TAG (255)
938
939 /*
940 ** Choose appropriate type for tag bitmap.
941 */
942 #if MAX_TAGS > 32
943 typedef u64 tagmap_t;
944 #else
945 typedef u32 tagmap_t;
946 #endif
947
948 /*
949 ** Number of targets supported by the driver.
950 ** n permits target numbers 0..n-1.
951 ** Default is 16, meaning targets #0..#15.
952 ** #7 .. is myself.
953 */
954
955 #ifdef SCSI_NCR_MAX_TARGET
956 #define MAX_TARGET (SCSI_NCR_MAX_TARGET)
957 #else
958 #define MAX_TARGET (16)
959 #endif
960
961 /*
962 ** Number of logic units supported by the driver.
963 ** n enables logic unit numbers 0..n-1.
964 ** The common SCSI devices require only
965 ** one lun, so take 1 as the default.
966 */
967
968 #ifdef SCSI_NCR_MAX_LUN
969 #define MAX_LUN SCSI_NCR_MAX_LUN
970 #else
971 #define MAX_LUN (1)
972 #endif
973
974 /*
975 ** Asynchronous pre-scaler (ns). Shall be 40
976 */
977
978 #ifndef SCSI_NCR_MIN_ASYNC
979 #define SCSI_NCR_MIN_ASYNC (40)
980 #endif
981
982 /*
983 ** The maximum number of jobs scheduled for starting.
984 ** There should be one slot per target, and one slot
985 ** for each tag of each target in use.
986 ** The calculation below is actually quite silly ...
987 */
988
989 #ifdef SCSI_NCR_CAN_QUEUE
990 #define MAX_START (SCSI_NCR_CAN_QUEUE + 4)
991 #else
992 #define MAX_START (MAX_TARGET + 7 * MAX_TAGS)
993 #endif
994
995 /*
996 ** We limit the max number of pending IO to 250.
997 ** since we donnot want to allocate more than 1
998 ** PAGE for 'scripth'.
999 */
1000 #if MAX_START > 250
1001 #undef MAX_START
1002 #define MAX_START 250
1003 #endif
1004
1005 /*
1006 ** The maximum number of segments a transfer is split into.
1007 ** We support up to 127 segments for both read and write.
1008 ** The data scripts are broken into 2 sub-scripts.
1009 ** 80 (MAX_SCATTERL) segments are moved from a sub-script
1010 ** in on-chip RAM. This makes data transfers shorter than
1011 ** 80k (assuming 1k fs) as fast as possible.
1012 */
1013
1014 #define MAX_SCATTER (SCSI_NCR_MAX_SCATTER)
1015
1016 #if (MAX_SCATTER > 80)
1017 #define MAX_SCATTERL 80
1018 #define MAX_SCATTERH (MAX_SCATTER - MAX_SCATTERL)
1019 #else
1020 #define MAX_SCATTERL (MAX_SCATTER-1)
1021 #define MAX_SCATTERH 1
1022 #endif
1023
1024 /*
1025 ** other
1026 */
1027
1028 #define NCR_SNOOP_TIMEOUT (1000000)
1029
1030 /*
1031 ** Other definitions
1032 */
1033
1034 #define ScsiResult(host_code, scsi_code) (((host_code) << 16) + ((scsi_code) & 0x7f))
1035
1036 #define initverbose (driver_setup.verbose)
1037 #define bootverbose (np->verbose)
1038
1039 /*==========================================================
1040 **
1041 ** Command control block states.
1042 **
1043 **==========================================================
1044 */
1045
1046 #define HS_IDLE (0)
1047 #define HS_BUSY (1)
1048 #define HS_NEGOTIATE (2) /* sync/wide data transfer*/
1049 #define HS_DISCONNECT (3) /* Disconnected by target */
1050
1051 #define HS_DONEMASK (0x80)
1052 #define HS_COMPLETE (4|HS_DONEMASK)
1053 #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */
1054 #define HS_RESET (6|HS_DONEMASK) /* SCSI reset */
1055 #define HS_ABORTED (7|HS_DONEMASK) /* Transfer aborted */
1056 #define HS_TIMEOUT (8|HS_DONEMASK) /* Software timeout */
1057 #define HS_FAIL (9|HS_DONEMASK) /* SCSI or PCI bus errors */
1058 #define HS_UNEXPECTED (10|HS_DONEMASK)/* Unexpected disconnect */
1059
1060 /*
1061 ** Invalid host status values used by the SCRIPTS processor
1062 ** when the nexus is not fully identified.
1063 ** Shall never appear in a CCB.
1064 */
1065
1066 #define HS_INVALMASK (0x40)
1067 #define HS_SELECTING (0|HS_INVALMASK)
1068 #define HS_IN_RESELECT (1|HS_INVALMASK)
1069 #define HS_STARTING (2|HS_INVALMASK)
1070
1071 /*
1072 ** Flags set by the SCRIPT processor for commands
1073 ** that have been skipped.
1074 */
1075 #define HS_SKIPMASK (0x20)
1076
1077 /*==========================================================
1078 **
1079 ** Software Interrupt Codes
1080 **
1081 **==========================================================
1082 */
1083
1084 #define SIR_BAD_STATUS (1)
1085 #define SIR_XXXXXXXXXX (2)
1086 #define SIR_NEGO_SYNC (3)
1087 #define SIR_NEGO_WIDE (4)
1088 #define SIR_NEGO_FAILED (5)
1089 #define SIR_NEGO_PROTO (6)
1090 #define SIR_REJECT_RECEIVED (7)
1091 #define SIR_REJECT_SENT (8)
1092 #define SIR_IGN_RESIDUE (9)
1093 #define SIR_MISSING_SAVE (10)
1094 #define SIR_RESEL_NO_MSG_IN (11)
1095 #define SIR_RESEL_NO_IDENTIFY (12)
1096 #define SIR_RESEL_BAD_LUN (13)
1097 #define SIR_RESEL_BAD_TARGET (14)
1098 #define SIR_RESEL_BAD_I_T_L (15)
1099 #define SIR_RESEL_BAD_I_T_L_Q (16)
1100 #define SIR_DONE_OVERFLOW (17)
1101 #define SIR_INTFLY (18)
1102 #define SIR_MAX (18)
1103
1104 /*==========================================================
1105 **
1106 ** Extended error codes.
1107 ** xerr_status field of struct ccb.
1108 **
1109 **==========================================================
1110 */
1111
1112 #define XE_OK (0)
1113 #define XE_EXTRA_DATA (1) /* unexpected data phase */
1114 #define XE_BAD_PHASE (2) /* illegal phase (4/5) */
1115
1116 /*==========================================================
1117 **
1118 ** Negotiation status.
1119 ** nego_status field of struct ccb.
1120 **
1121 **==========================================================
1122 */
1123
1124 #define NS_NOCHANGE (0)
1125 #define NS_SYNC (1)
1126 #define NS_WIDE (2)
1127 #define NS_PPR (4)
1128
1129 /*==========================================================
1130 **
1131 ** Misc.
1132 **
1133 **==========================================================
1134 */
1135
1136 #define CCB_MAGIC (0xf2691ad2)
1137
1138 /*==========================================================
1139 **
1140 ** Declaration of structs.
1141 **
1142 **==========================================================
1143 */
1144
1145 static struct scsi_transport_template *ncr53c8xx_transport_template = NULL;
1146
1147 struct tcb;
1148 struct lcb;
1149 struct ccb;
1150 struct ncb;
1151 struct script;
1152
1153 struct link {
1154 ncrcmd l_cmd;
1155 ncrcmd l_paddr;
1156 };
1157
1158 struct usrcmd {
1159 u_long target;
1160 u_long lun;
1161 u_long data;
1162 u_long cmd;
1163 };
1164
1165 #define UC_SETSYNC 10
1166 #define UC_SETTAGS 11
1167 #define UC_SETDEBUG 12
1168 #define UC_SETORDER 13
1169 #define UC_SETWIDE 14
1170 #define UC_SETFLAG 15
1171 #define UC_SETVERBOSE 17
1172
1173 #define UF_TRACE (0x01)
1174 #define UF_NODISC (0x02)
1175 #define UF_NOSCAN (0x04)
1176
1177 /*========================================================================
1178 **
1179 ** Declaration of structs: target control block
1180 **
1181 **========================================================================
1182 */
1183 struct tcb {
1184 /*----------------------------------------------------------------
1185 ** During reselection the ncr jumps to this point with SFBR
1186 ** set to the encoded target number with bit 7 set.
1187 ** if it's not this target, jump to the next.
1188 **
1189 ** JUMP IF (SFBR != #target#), @(next tcb)
1190 **----------------------------------------------------------------
1191 */
1192 struct link jump_tcb;
1193
1194 /*----------------------------------------------------------------
1195 ** Load the actual values for the sxfer and the scntl3
1196 ** register (sync/wide mode).
1197 **
1198 ** SCR_COPY (1), @(sval field of this tcb), @(sxfer register)
1199 ** SCR_COPY (1), @(wval field of this tcb), @(scntl3 register)
1200 **----------------------------------------------------------------
1201 */
1202 ncrcmd getscr[6];
1203
1204 /*----------------------------------------------------------------
1205 ** Get the IDENTIFY message and load the LUN to SFBR.
1206 **
1207 ** CALL, <RESEL_LUN>
1208 **----------------------------------------------------------------
1209 */
1210 struct link call_lun;
1211
1212 /*----------------------------------------------------------------
1213 ** Now look for the right lun.
1214 **
1215 ** For i = 0 to 3
1216 ** SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(first lcb mod. i)
1217 **
1218 ** Recent chips will prefetch the 4 JUMPS using only 1 burst.
1219 ** It is kind of hashcoding.
1220 **----------------------------------------------------------------
1221 */
1222 struct link jump_lcb[4]; /* JUMPs for reselection */
1223 struct lcb * lp[MAX_LUN]; /* The lcb's of this tcb */
1224
1225 /*----------------------------------------------------------------
1226 ** Pointer to the ccb used for negotiation.
1227 ** Prevent from starting a negotiation for all queued commands
1228 ** when tagged command queuing is enabled.
1229 **----------------------------------------------------------------
1230 */
1231 struct ccb * nego_cp;
1232
1233 /*----------------------------------------------------------------
1234 ** statistical data
1235 **----------------------------------------------------------------
1236 */
1237 u_long transfers;
1238 u_long bytes;
1239
1240 /*----------------------------------------------------------------
1241 ** negotiation of wide and synch transfer and device quirks.
1242 **----------------------------------------------------------------
1243 */
1244 #ifdef SCSI_NCR_BIG_ENDIAN
1245 /*0*/ u16 period;
1246 /*2*/ u_char sval;
1247 /*3*/ u_char minsync;
1248 /*0*/ u_char wval;
1249 /*1*/ u_char widedone;
1250 /*2*/ u_char quirks;
1251 /*3*/ u_char maxoffs;
1252 #else
1253 /*0*/ u_char minsync;
1254 /*1*/ u_char sval;
1255 /*2*/ u16 period;
1256 /*0*/ u_char maxoffs;
1257 /*1*/ u_char quirks;
1258 /*2*/ u_char widedone;
1259 /*3*/ u_char wval;
1260 #endif
1261
1262 /* User settable limits and options. */
1263 u_char usrsync;
1264 u_char usrwide;
1265 u_char usrtags;
1266 u_char usrflag;
1267 struct scsi_target *starget;
1268 };
1269
1270 /*========================================================================
1271 **
1272 ** Declaration of structs: lun control block
1273 **
1274 **========================================================================
1275 */
1276 struct lcb {
1277 /*----------------------------------------------------------------
1278 ** During reselection the ncr jumps to this point
1279 ** with SFBR set to the "Identify" message.
1280 ** if it's not this lun, jump to the next.
1281 **
1282 ** JUMP IF (SFBR != #lun#), @(next lcb of this target)
1283 **
1284 ** It is this lun. Load TEMP with the nexus jumps table
1285 ** address and jump to RESEL_TAG (or RESEL_NOTAG).
1286 **
1287 ** SCR_COPY (4), p_jump_ccb, TEMP,
1288 ** SCR_JUMP, <RESEL_TAG>
1289 **----------------------------------------------------------------
1290 */
1291 struct link jump_lcb;
1292 ncrcmd load_jump_ccb[3];
1293 struct link jump_tag;
1294 ncrcmd p_jump_ccb; /* Jump table bus address */
1295
1296 /*----------------------------------------------------------------
1297 ** Jump table used by the script processor to directly jump
1298 ** to the CCB corresponding to the reselected nexus.
1299 ** Address is allocated on 256 bytes boundary in order to
1300 ** allow 8 bit calculation of the tag jump entry for up to
1301 ** 64 possible tags.
1302 **----------------------------------------------------------------
1303 */
1304 u32 jump_ccb_0; /* Default table if no tags */
1305 u32 *jump_ccb; /* Virtual address */
1306
1307 /*----------------------------------------------------------------
1308 ** CCB queue management.
1309 **----------------------------------------------------------------
1310 */
1311 struct list_head free_ccbq; /* Queue of available CCBs */
1312 struct list_head busy_ccbq; /* Queue of busy CCBs */
1313 struct list_head wait_ccbq; /* Queue of waiting for IO CCBs */
1314 struct list_head skip_ccbq; /* Queue of skipped CCBs */
1315 u_char actccbs; /* Number of allocated CCBs */
1316 u_char busyccbs; /* CCBs busy for this lun */
1317 u_char queuedccbs; /* CCBs queued to the controller*/
1318 u_char queuedepth; /* Queue depth for this lun */
1319 u_char scdev_depth; /* SCSI device queue depth */
1320 u_char maxnxs; /* Max possible nexuses */
1321
1322 /*----------------------------------------------------------------
1323 ** Control of tagged command queuing.
1324 ** Tags allocation is performed using a circular buffer.
1325 ** This avoids using a loop for tag allocation.
1326 **----------------------------------------------------------------
1327 */
1328 u_char ia_tag; /* Allocation index */
1329 u_char if_tag; /* Freeing index */
1330 u_char cb_tags[MAX_TAGS]; /* Circular tags buffer */
1331 u_char usetags; /* Command queuing is active */
1332 u_char maxtags; /* Max nr of tags asked by user */
1333 u_char numtags; /* Current number of tags */
1334
1335 /*----------------------------------------------------------------
1336 ** QUEUE FULL control and ORDERED tag control.
1337 **----------------------------------------------------------------
1338 */
1339 /*----------------------------------------------------------------
1340 ** QUEUE FULL and ORDERED tag control.
1341 **----------------------------------------------------------------
1342 */
1343 u16 num_good; /* Nr of GOOD since QUEUE FULL */
1344 tagmap_t tags_umap; /* Used tags bitmap */
1345 tagmap_t tags_smap; /* Tags in use at 'tag_stime' */
1346 u_long tags_stime; /* Last time we set smap=umap */
1347 struct ccb * held_ccb; /* CCB held for QUEUE FULL */
1348 };
1349
1350 /*========================================================================
1351 **
1352 ** Declaration of structs: the launch script.
1353 **
1354 **========================================================================
1355 **
1356 ** It is part of the CCB and is called by the scripts processor to
1357 ** start or restart the data structure (nexus).
1358 ** This 6 DWORDs mini script makes use of prefetching.
1359 **
1360 **------------------------------------------------------------------------
1361 */
1362 struct launch {
1363 /*----------------------------------------------------------------
1364 ** SCR_COPY(4), @(p_phys), @(dsa register)
1365 ** SCR_JUMP, @(scheduler_point)
1366 **----------------------------------------------------------------
1367 */
1368 ncrcmd setup_dsa[3]; /* Copy 'phys' address to dsa */
1369 struct link schedule; /* Jump to scheduler point */
1370 ncrcmd p_phys; /* 'phys' header bus address */
1371 };
1372
1373 /*========================================================================
1374 **
1375 ** Declaration of structs: global HEADER.
1376 **
1377 **========================================================================
1378 **
1379 ** This substructure is copied from the ccb to a global address after
1380 ** selection (or reselection) and copied back before disconnect.
1381 **
1382 ** These fields are accessible to the script processor.
1383 **
1384 **------------------------------------------------------------------------
1385 */
1386
1387 struct head {
1388 /*----------------------------------------------------------------
1389 ** Saved data pointer.
1390 ** Points to the position in the script responsible for the
1391 ** actual transfer transfer of data.
1392 ** It's written after reception of a SAVE_DATA_POINTER message.
1393 ** The goalpointer points after the last transfer command.
1394 **----------------------------------------------------------------
1395 */
1396 u32 savep;
1397 u32 lastp;
1398 u32 goalp;
1399
1400 /*----------------------------------------------------------------
1401 ** Alternate data pointer.
1402 ** They are copied back to savep/lastp/goalp by the SCRIPTS
1403 ** when the direction is unknown and the device claims data out.
1404 **----------------------------------------------------------------
1405 */
1406 u32 wlastp;
1407 u32 wgoalp;
1408
1409 /*----------------------------------------------------------------
1410 ** The virtual address of the ccb containing this header.
1411 **----------------------------------------------------------------
1412 */
1413 struct ccb * cp;
1414
1415 /*----------------------------------------------------------------
1416 ** Status fields.
1417 **----------------------------------------------------------------
1418 */
1419 u_char scr_st[4]; /* script status */
1420 u_char status[4]; /* host status. must be the */
1421 /* last DWORD of the header. */
1422 };
1423
1424 /*
1425 ** The status bytes are used by the host and the script processor.
1426 **
1427 ** The byte corresponding to the host_status must be stored in the
1428 ** last DWORD of the CCB header since it is used for command
1429 ** completion (ncr_wakeup()). Doing so, we are sure that the header
1430 ** has been entirely copied back to the CCB when the host_status is
1431 ** seen complete by the CPU.
1432 **
1433 ** The last four bytes (status[4]) are copied to the scratchb register
1434 ** (declared as scr0..scr3 in ncr_reg.h) just after the select/reselect,
1435 ** and copied back just after disconnecting.
1436 ** Inside the script the XX_REG are used.
1437 **
1438 ** The first four bytes (scr_st[4]) are used inside the script by
1439 ** "COPY" commands.
1440 ** Because source and destination must have the same alignment
1441 ** in a DWORD, the fields HAVE to be at the choosen offsets.
1442 ** xerr_st 0 (0x34) scratcha
1443 ** sync_st 1 (0x05) sxfer
1444 ** wide_st 3 (0x03) scntl3
1445 */
1446
1447 /*
1448 ** Last four bytes (script)
1449 */
1450 #define QU_REG scr0
1451 #define HS_REG scr1
1452 #define HS_PRT nc_scr1
1453 #define SS_REG scr2
1454 #define SS_PRT nc_scr2
1455 #define PS_REG scr3
1456
1457 /*
1458 ** Last four bytes (host)
1459 */
1460 #ifdef SCSI_NCR_BIG_ENDIAN
1461 #define actualquirks phys.header.status[3]
1462 #define host_status phys.header.status[2]
1463 #define scsi_status phys.header.status[1]
1464 #define parity_status phys.header.status[0]
1465 #else
1466 #define actualquirks phys.header.status[0]
1467 #define host_status phys.header.status[1]
1468 #define scsi_status phys.header.status[2]
1469 #define parity_status phys.header.status[3]
1470 #endif
1471
1472 /*
1473 ** First four bytes (script)
1474 */
1475 #define xerr_st header.scr_st[0]
1476 #define sync_st header.scr_st[1]
1477 #define nego_st header.scr_st[2]
1478 #define wide_st header.scr_st[3]
1479
1480 /*
1481 ** First four bytes (host)
1482 */
1483 #define xerr_status phys.xerr_st
1484 #define nego_status phys.nego_st
1485
1486 #if 0
1487 #define sync_status phys.sync_st
1488 #define wide_status phys.wide_st
1489 #endif
1490
1491 /*==========================================================
1492 **
1493 ** Declaration of structs: Data structure block
1494 **
1495 **==========================================================
1496 **
1497 ** During execution of a ccb by the script processor,
1498 ** the DSA (data structure address) register points
1499 ** to this substructure of the ccb.
1500 ** This substructure contains the header with
1501 ** the script-processor-changable data and
1502 ** data blocks for the indirect move commands.
1503 **
1504 **----------------------------------------------------------
1505 */
1506
1507 struct dsb {
1508
1509 /*
1510 ** Header.
1511 */
1512
1513 struct head header;
1514
1515 /*
1516 ** Table data for Script
1517 */
1518
1519 struct scr_tblsel select;
1520 struct scr_tblmove smsg ;
1521 struct scr_tblmove cmd ;
1522 struct scr_tblmove sense ;
1523 struct scr_tblmove data[MAX_SCATTER];
1524 };
1525
1526
1527 /*========================================================================
1528 **
1529 ** Declaration of structs: Command control block.
1530 **
1531 **========================================================================
1532 */
1533 struct ccb {
1534 /*----------------------------------------------------------------
1535 ** This is the data structure which is pointed by the DSA
1536 ** register when it is executed by the script processor.
1537 ** It must be the first entry because it contains the header
1538 ** as first entry that must be cache line aligned.
1539 **----------------------------------------------------------------
1540 */
1541 struct dsb phys;
1542
1543 /*----------------------------------------------------------------
1544 ** Mini-script used at CCB execution start-up.
1545 ** Load the DSA with the data structure address (phys) and
1546 ** jump to SELECT. Jump to CANCEL if CCB is to be canceled.
1547 **----------------------------------------------------------------
1548 */
1549 struct launch start;
1550
1551 /*----------------------------------------------------------------
1552 ** Mini-script used at CCB relection to restart the nexus.
1553 ** Load the DSA with the data structure address (phys) and
1554 ** jump to RESEL_DSA. Jump to ABORT if CCB is to be aborted.
1555 **----------------------------------------------------------------
1556 */
1557 struct launch restart;
1558
1559 /*----------------------------------------------------------------
1560 ** If a data transfer phase is terminated too early
1561 ** (after reception of a message (i.e. DISCONNECT)),
1562 ** we have to prepare a mini script to transfer
1563 ** the rest of the data.
1564 **----------------------------------------------------------------
1565 */
1566 ncrcmd patch[8];
1567
1568 /*----------------------------------------------------------------
1569 ** The general SCSI driver provides a
1570 ** pointer to a control block.
1571 **----------------------------------------------------------------
1572 */
1573 struct scsi_cmnd *cmd; /* SCSI command */
1574 u_char cdb_buf[16]; /* Copy of CDB */
1575 u_char sense_buf[64];
1576 int data_len; /* Total data length */
1577
1578 /*----------------------------------------------------------------
1579 ** Message areas.
1580 ** We prepare a message to be sent after selection.
1581 ** We may use a second one if the command is rescheduled
1582 ** due to GETCC or QFULL.
1583 ** Contents are IDENTIFY and SIMPLE_TAG.
1584 ** While negotiating sync or wide transfer,
1585 ** a SDTR or WDTR message is appended.
1586 **----------------------------------------------------------------
1587 */
1588 u_char scsi_smsg [8];
1589 u_char scsi_smsg2[8];
1590
1591 /*----------------------------------------------------------------
1592 ** Other fields.
1593 **----------------------------------------------------------------
1594 */
1595 u_long p_ccb; /* BUS address of this CCB */
1596 u_char sensecmd[6]; /* Sense command */
1597 u_char tag; /* Tag for this transfer */
1598 /* 255 means no tag */
1599 u_char target;
1600 u_char lun;
1601 u_char queued;
1602 u_char auto_sense;
1603 struct ccb * link_ccb; /* Host adapter CCB chain */
1604 struct list_head link_ccbq; /* Link to unit CCB queue */
1605 u32 startp; /* Initial data pointer */
1606 u_long magic; /* Free / busy CCB flag */
1607 };
1608
1609 #define CCB_PHYS(cp,lbl) (cp->p_ccb + offsetof(struct ccb, lbl))
1610
1611
1612 /*========================================================================
1613 **
1614 ** Declaration of structs: NCR device descriptor
1615 **
1616 **========================================================================
1617 */
1618 struct ncb {
1619 /*----------------------------------------------------------------
1620 ** The global header.
1621 ** It is accessible to both the host and the script processor.
1622 ** Must be cache line size aligned (32 for x86) in order to
1623 ** allow cache line bursting when it is copied to/from CCB.
1624 **----------------------------------------------------------------
1625 */
1626 struct head header;
1627
1628 /*----------------------------------------------------------------
1629 ** CCBs management queues.
1630 **----------------------------------------------------------------
1631 */
1632 struct scsi_cmnd *waiting_list; /* Commands waiting for a CCB */
1633 /* when lcb is not allocated. */
1634 struct scsi_cmnd *done_list; /* Commands waiting for done() */
1635 /* callback to be invoked. */
1636 spinlock_t smp_lock; /* Lock for SMP threading */
1637
1638 /*----------------------------------------------------------------
1639 ** Chip and controller indentification.
1640 **----------------------------------------------------------------
1641 */
1642 int unit; /* Unit number */
1643 char inst_name[16]; /* ncb instance name */
1644
1645 /*----------------------------------------------------------------
1646 ** Initial value of some IO register bits.
1647 ** These values are assumed to have been set by BIOS, and may
1648 ** be used for probing adapter implementation differences.
1649 **----------------------------------------------------------------
1650 */
1651 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest0, sv_ctest3,
1652 sv_ctest4, sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4;
1653
1654 /*----------------------------------------------------------------
1655 ** Actual initial value of IO register bits used by the
1656 ** driver. They are loaded at initialisation according to
1657 ** features that are to be enabled.
1658 **----------------------------------------------------------------
1659 */
1660 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest0, rv_ctest3,
1661 rv_ctest4, rv_ctest5, rv_stest2;
1662
1663 /*----------------------------------------------------------------
1664 ** Targets management.
1665 ** During reselection the ncr jumps to jump_tcb.
1666 ** The SFBR register is loaded with the encoded target id.
1667 ** For i = 0 to 3
1668 ** SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(next tcb mod. i)
1669 **
1670 ** Recent chips will prefetch the 4 JUMPS using only 1 burst.
1671 ** It is kind of hashcoding.
1672 **----------------------------------------------------------------
1673 */
1674 struct link jump_tcb[4]; /* JUMPs for reselection */
1675 struct tcb target[MAX_TARGET]; /* Target data */
1676
1677 /*----------------------------------------------------------------
1678 ** Virtual and physical bus addresses of the chip.
1679 **----------------------------------------------------------------
1680 */
1681 void __iomem *vaddr; /* Virtual and bus address of */
1682 unsigned long paddr; /* chip's IO registers. */
1683 unsigned long paddr2; /* On-chip RAM bus address. */
1684 volatile /* Pointer to volatile for */
1685 struct ncr_reg __iomem *reg; /* memory mapped IO. */
1686
1687 /*----------------------------------------------------------------
1688 ** SCRIPTS virtual and physical bus addresses.
1689 ** 'script' is loaded in the on-chip RAM if present.
1690 ** 'scripth' stays in main memory.
1691 **----------------------------------------------------------------
1692 */
1693 struct script *script0; /* Copies of script and scripth */
1694 struct scripth *scripth0; /* relocated for this ncb. */
1695 struct scripth *scripth; /* Actual scripth virt. address */
1696 u_long p_script; /* Actual script and scripth */
1697 u_long p_scripth; /* bus addresses. */
1698
1699 /*----------------------------------------------------------------
1700 ** General controller parameters and configuration.
1701 **----------------------------------------------------------------
1702 */
1703 struct device *dev;
1704 u_char revision_id; /* PCI device revision id */
1705 u32 irq; /* IRQ level */
1706 u32 features; /* Chip features map */
1707 u_char myaddr; /* SCSI id of the adapter */
1708 u_char maxburst; /* log base 2 of dwords burst */
1709 u_char maxwide; /* Maximum transfer width */
1710 u_char minsync; /* Minimum sync period factor */
1711 u_char maxsync; /* Maximum sync period factor */
1712 u_char maxoffs; /* Max scsi offset */
1713 u_char multiplier; /* Clock multiplier (1,2,4) */
1714 u_char clock_divn; /* Number of clock divisors */
1715 u_long clock_khz; /* SCSI clock frequency in KHz */
1716
1717 /*----------------------------------------------------------------
1718 ** Start queue management.
1719 ** It is filled up by the host processor and accessed by the
1720 ** SCRIPTS processor in order to start SCSI commands.
1721 **----------------------------------------------------------------
1722 */
1723 u16 squeueput; /* Next free slot of the queue */
1724 u16 actccbs; /* Number of allocated CCBs */
1725 u16 queuedccbs; /* Number of CCBs in start queue*/
1726 u16 queuedepth; /* Start queue depth */
1727
1728 /*----------------------------------------------------------------
1729 ** Timeout handler.
1730 **----------------------------------------------------------------
1731 */
1732 struct timer_list timer; /* Timer handler link header */
1733 u_long lasttime;
1734 u_long settle_time; /* Resetting the SCSI BUS */
1735
1736 /*----------------------------------------------------------------
1737 ** Debugging and profiling.
1738 **----------------------------------------------------------------
1739 */
1740 struct ncr_reg regdump; /* Register dump */
1741 u_long regtime; /* Time it has been done */
1742
1743 /*----------------------------------------------------------------
1744 ** Miscellaneous buffers accessed by the scripts-processor.
1745 ** They shall be DWORD aligned, because they may be read or
1746 ** written with a SCR_COPY script command.
1747 **----------------------------------------------------------------
1748 */
1749 u_char msgout[8]; /* Buffer for MESSAGE OUT */
1750 u_char msgin [8]; /* Buffer for MESSAGE IN */
1751 u32 lastmsg; /* Last SCSI message sent */
1752 u_char scratch; /* Scratch for SCSI receive */
1753
1754 /*----------------------------------------------------------------
1755 ** Miscellaneous configuration and status parameters.
1756 **----------------------------------------------------------------
1757 */
1758 u_char disc; /* Diconnection allowed */
1759 u_char scsi_mode; /* Current SCSI BUS mode */
1760 u_char order; /* Tag order to use */
1761 u_char verbose; /* Verbosity for this controller*/
1762 int ncr_cache; /* Used for cache test at init. */
1763 u_long p_ncb; /* BUS address of this NCB */
1764
1765 /*----------------------------------------------------------------
1766 ** Command completion handling.
1767 **----------------------------------------------------------------
1768 */
1769 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
1770 struct ccb *(ccb_done[MAX_DONE]);
1771 int ccb_done_ic;
1772 #endif
1773 /*----------------------------------------------------------------
1774 ** Fields that should be removed or changed.
1775 **----------------------------------------------------------------
1776 */
1777 struct ccb *ccb; /* Global CCB */
1778 struct usrcmd user; /* Command from user */
1779 volatile u_char release_stage; /* Synchronisation stage on release */
1780 };
1781
1782 #define NCB_SCRIPT_PHYS(np,lbl) (np->p_script + offsetof (struct script, lbl))
1783 #define NCB_SCRIPTH_PHYS(np,lbl) (np->p_scripth + offsetof (struct scripth,lbl))
1784
1785 /*==========================================================
1786 **
1787 **
1788 ** Script for NCR-Processor.
1789 **
1790 ** Use ncr_script_fill() to create the variable parts.
1791 ** Use ncr_script_copy_and_bind() to make a copy and
1792 ** bind to physical addresses.
1793 **
1794 **
1795 **==========================================================
1796 **
1797 ** We have to know the offsets of all labels before
1798 ** we reach them (for forward jumps).
1799 ** Therefore we declare a struct here.
1800 ** If you make changes inside the script,
1801 ** DONT FORGET TO CHANGE THE LENGTHS HERE!
1802 **
1803 **----------------------------------------------------------
1804 */
1805
1806 /*
1807 ** For HP Zalon/53c720 systems, the Zalon interface
1808 ** between CPU and 53c720 does prefetches, which causes
1809 ** problems with self modifying scripts. The problem
1810 ** is overcome by calling a dummy subroutine after each
1811 ** modification, to force a refetch of the script on
1812 ** return from the subroutine.
1813 */
1814
1815 #ifdef CONFIG_NCR53C8XX_PREFETCH
1816 #define PREFETCH_FLUSH_CNT 2
1817 #define PREFETCH_FLUSH SCR_CALL, PADDRH (wait_dma),
1818 #else
1819 #define PREFETCH_FLUSH_CNT 0
1820 #define PREFETCH_FLUSH
1821 #endif
1822
1823 /*
1824 ** Script fragments which are loaded into the on-chip RAM
1825 ** of 825A, 875 and 895 chips.
1826 */
1827 struct script {
1828 ncrcmd start [ 5];
1829 ncrcmd startpos [ 1];
1830 ncrcmd select [ 6];
1831 ncrcmd select2 [ 9 + PREFETCH_FLUSH_CNT];
1832 ncrcmd loadpos [ 4];
1833 ncrcmd send_ident [ 9];
1834 ncrcmd prepare [ 6];
1835 ncrcmd prepare2 [ 7];
1836 ncrcmd command [ 6];
1837 ncrcmd dispatch [ 32];
1838 ncrcmd clrack [ 4];
1839 ncrcmd no_data [ 17];
1840 ncrcmd status [ 8];
1841 ncrcmd msg_in [ 2];
1842 ncrcmd msg_in2 [ 16];
1843 ncrcmd msg_bad [ 4];
1844 ncrcmd setmsg [ 7];
1845 ncrcmd cleanup [ 6];
1846 ncrcmd complete [ 9];
1847 ncrcmd cleanup_ok [ 8 + PREFETCH_FLUSH_CNT];
1848 ncrcmd cleanup0 [ 1];
1849 #ifndef SCSI_NCR_CCB_DONE_SUPPORT
1850 ncrcmd signal [ 12];
1851 #else
1852 ncrcmd signal [ 9];
1853 ncrcmd done_pos [ 1];
1854 ncrcmd done_plug [ 2];
1855 ncrcmd done_end [ 7];
1856 #endif
1857 ncrcmd save_dp [ 7];
1858 ncrcmd restore_dp [ 5];
1859 ncrcmd disconnect [ 10];
1860 ncrcmd msg_out [ 9];
1861 ncrcmd msg_out_done [ 7];
1862 ncrcmd idle [ 2];
1863 ncrcmd reselect [ 8];
1864 ncrcmd reselected [ 8];
1865 ncrcmd resel_dsa [ 6 + PREFETCH_FLUSH_CNT];
1866 ncrcmd loadpos1 [ 4];
1867 ncrcmd resel_lun [ 6];
1868 ncrcmd resel_tag [ 6];
1869 ncrcmd jump_to_nexus [ 4 + PREFETCH_FLUSH_CNT];
1870 ncrcmd nexus_indirect [ 4];
1871 ncrcmd resel_notag [ 4];
1872 ncrcmd data_in [MAX_SCATTERL * 4];
1873 ncrcmd data_in2 [ 4];
1874 ncrcmd data_out [MAX_SCATTERL * 4];
1875 ncrcmd data_out2 [ 4];
1876 };
1877
1878 /*
1879 ** Script fragments which stay in main memory for all chips.
1880 */
1881 struct scripth {
1882 ncrcmd tryloop [MAX_START*2];
1883 ncrcmd tryloop2 [ 2];
1884 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
1885 ncrcmd done_queue [MAX_DONE*5];
1886 ncrcmd done_queue2 [ 2];
1887 #endif
1888 ncrcmd select_no_atn [ 8];
1889 ncrcmd cancel [ 4];
1890 ncrcmd skip [ 9 + PREFETCH_FLUSH_CNT];
1891 ncrcmd skip2 [ 19];
1892 ncrcmd par_err_data_in [ 6];
1893 ncrcmd par_err_other [ 4];
1894 ncrcmd msg_reject [ 8];
1895 ncrcmd msg_ign_residue [ 24];
1896 ncrcmd msg_extended [ 10];
1897 ncrcmd msg_ext_2 [ 10];
1898 ncrcmd msg_wdtr [ 14];
1899 ncrcmd send_wdtr [ 7];
1900 ncrcmd msg_ext_3 [ 10];
1901 ncrcmd msg_sdtr [ 14];
1902 ncrcmd send_sdtr [ 7];
1903 ncrcmd nego_bad_phase [ 4];
1904 ncrcmd msg_out_abort [ 10];
1905 ncrcmd hdata_in [MAX_SCATTERH * 4];
1906 ncrcmd hdata_in2 [ 2];
1907 ncrcmd hdata_out [MAX_SCATTERH * 4];
1908 ncrcmd hdata_out2 [ 2];
1909 ncrcmd reset [ 4];
1910 ncrcmd aborttag [ 4];
1911 ncrcmd abort [ 2];
1912 ncrcmd abort_resel [ 20];
1913 ncrcmd resend_ident [ 4];
1914 ncrcmd clratn_go_on [ 3];
1915 ncrcmd nxtdsp_go_on [ 1];
1916 ncrcmd sdata_in [ 8];
1917 ncrcmd data_io [ 18];
1918 ncrcmd bad_identify [ 12];
1919 ncrcmd bad_i_t_l [ 4];
1920 ncrcmd bad_i_t_l_q [ 4];
1921 ncrcmd bad_target [ 8];
1922 ncrcmd bad_status [ 8];
1923 ncrcmd start_ram [ 4 + PREFETCH_FLUSH_CNT];
1924 ncrcmd start_ram0 [ 4];
1925 ncrcmd sto_restart [ 5];
1926 ncrcmd wait_dma [ 2];
1927 ncrcmd snooptest [ 9];
1928 ncrcmd snoopend [ 2];
1929 };
1930
1931 /*==========================================================
1932 **
1933 **
1934 ** Function headers.
1935 **
1936 **
1937 **==========================================================
1938 */
1939
1940 static void ncr_alloc_ccb (struct ncb *np, u_char tn, u_char ln);
1941 static void ncr_complete (struct ncb *np, struct ccb *cp);
1942 static void ncr_exception (struct ncb *np);
1943 static void ncr_free_ccb (struct ncb *np, struct ccb *cp);
1944 static void ncr_init_ccb (struct ncb *np, struct ccb *cp);
1945 static void ncr_init_tcb (struct ncb *np, u_char tn);
1946 static struct lcb * ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln);
1947 static struct lcb * ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev);
1948 static void ncr_getclock (struct ncb *np, int mult);
1949 static void ncr_selectclock (struct ncb *np, u_char scntl3);
1950 static struct ccb *ncr_get_ccb (struct ncb *np, struct scsi_cmnd *cmd);
1951 static void ncr_chip_reset (struct ncb *np, int delay);
1952 static void ncr_init (struct ncb *np, int reset, char * msg, u_long code);
1953 static int ncr_int_sbmc (struct ncb *np);
1954 static int ncr_int_par (struct ncb *np);
1955 static void ncr_int_ma (struct ncb *np);
1956 static void ncr_int_sir (struct ncb *np);
1957 static void ncr_int_sto (struct ncb *np);
1958 static void ncr_negotiate (struct ncb* np, struct tcb* tp);
1959 static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr);
1960
1961 static void ncr_script_copy_and_bind
1962 (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len);
1963 static void ncr_script_fill (struct script * scr, struct scripth * scripth);
1964 static int ncr_scatter (struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd);
1965 static void ncr_getsync (struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p);
1966 static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer);
1967 static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev);
1968 static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack);
1969 static int ncr_snooptest (struct ncb *np);
1970 static void ncr_timeout (struct ncb *np);
1971 static void ncr_wakeup (struct ncb *np, u_long code);
1972 static void ncr_wakeup_done (struct ncb *np);
1973 static void ncr_start_next_ccb (struct ncb *np, struct lcb * lp, int maxn);
1974 static void ncr_put_start_queue(struct ncb *np, struct ccb *cp);
1975
1976 static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd);
1977 static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd);
1978 static void process_waiting_list(struct ncb *np, int sts);
1979
1980 #define remove_from_waiting_list(np, cmd) \
1981 retrieve_from_waiting_list(1, (np), (cmd))
1982 #define requeue_waiting_list(np) process_waiting_list((np), DID_OK)
1983 #define reset_waiting_list(np) process_waiting_list((np), DID_RESET)
1984
1985 static inline char *ncr_name (struct ncb *np)
1986 {
1987 return np->inst_name;
1988 }
1989
1990
1991 /*==========================================================
1992 **
1993 **
1994 ** Scripts for NCR-Processor.
1995 **
1996 ** Use ncr_script_bind for binding to physical addresses.
1997 **
1998 **
1999 **==========================================================
2000 **
2001 ** NADDR generates a reference to a field of the controller data.
2002 ** PADDR generates a reference to another part of the script.
2003 ** RADDR generates a reference to a script processor register.
2004 ** FADDR generates a reference to a script processor register
2005 ** with offset.
2006 **
2007 **----------------------------------------------------------
2008 */
2009
2010 #define RELOC_SOFTC 0x40000000
2011 #define RELOC_LABEL 0x50000000
2012 #define RELOC_REGISTER 0x60000000
2013 #if 0
2014 #define RELOC_KVAR 0x70000000
2015 #endif
2016 #define RELOC_LABELH 0x80000000
2017 #define RELOC_MASK 0xf0000000
2018
2019 #define NADDR(label) (RELOC_SOFTC | offsetof(struct ncb, label))
2020 #define PADDR(label) (RELOC_LABEL | offsetof(struct script, label))
2021 #define PADDRH(label) (RELOC_LABELH | offsetof(struct scripth, label))
2022 #define RADDR(label) (RELOC_REGISTER | REG(label))
2023 #define FADDR(label,ofs)(RELOC_REGISTER | ((REG(label))+(ofs)))
2024 #if 0
2025 #define KVAR(which) (RELOC_KVAR | (which))
2026 #endif
2027
2028 #if 0
2029 #define SCRIPT_KVAR_JIFFIES (0)
2030 #define SCRIPT_KVAR_FIRST SCRIPT_KVAR_JIFFIES
2031 #define SCRIPT_KVAR_LAST SCRIPT_KVAR_JIFFIES
2032 /*
2033 * Kernel variables referenced in the scripts.
2034 * THESE MUST ALL BE ALIGNED TO A 4-BYTE BOUNDARY.
2035 */
2036 static void *script_kvars[] __initdata =
2037 { (void *)&jiffies };
2038 #endif
2039
2040 static struct script script0 __initdata = {
2041 /*--------------------------< START >-----------------------*/ {
2042 /*
2043 ** This NOP will be patched with LED ON
2044 ** SCR_REG_REG (gpreg, SCR_AND, 0xfe)
2045 */
2046 SCR_NO_OP,
2047 0,
2048 /*
2049 ** Clear SIGP.
2050 */
2051 SCR_FROM_REG (ctest2),
2052 0,
2053 /*
2054 ** Then jump to a certain point in tryloop.
2055 ** Due to the lack of indirect addressing the code
2056 ** is self modifying here.
2057 */
2058 SCR_JUMP,
2059 }/*-------------------------< STARTPOS >--------------------*/,{
2060 PADDRH(tryloop),
2061
2062 }/*-------------------------< SELECT >----------------------*/,{
2063 /*
2064 ** DSA contains the address of a scheduled
2065 ** data structure.
2066 **
2067 ** SCRATCHA contains the address of the script,
2068 ** which starts the next entry.
2069 **
2070 ** Set Initiator mode.
2071 **
2072 ** (Target mode is left as an exercise for the reader)
2073 */
2074
2075 SCR_CLR (SCR_TRG),
2076 0,
2077 SCR_LOAD_REG (HS_REG, HS_SELECTING),
2078 0,
2079
2080 /*
2081 ** And try to select this target.
2082 */
2083 SCR_SEL_TBL_ATN ^ offsetof (struct dsb, select),
2084 PADDR (reselect),
2085
2086 }/*-------------------------< SELECT2 >----------------------*/,{
2087 /*
2088 ** Now there are 4 possibilities:
2089 **
2090 ** (1) The ncr loses arbitration.
2091 ** This is ok, because it will try again,
2092 ** when the bus becomes idle.
2093 ** (But beware of the timeout function!)
2094 **
2095 ** (2) The ncr is reselected.
2096 ** Then the script processor takes the jump
2097 ** to the RESELECT label.
2098 **
2099 ** (3) The ncr wins arbitration.
2100 ** Then it will execute SCRIPTS instruction until
2101 ** the next instruction that checks SCSI phase.
2102 ** Then will stop and wait for selection to be
2103 ** complete or selection time-out to occur.
2104 ** As a result the SCRIPTS instructions until
2105 ** LOADPOS + 2 should be executed in parallel with
2106 ** the SCSI core performing selection.
2107 */
2108
2109 /*
2110 ** The MESSAGE_REJECT problem seems to be due to a selection
2111 ** timing problem.
2112 ** Wait immediately for the selection to complete.
2113 ** (2.5x behaves so)
2114 */
2115 SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
2116 0,
2117
2118 /*
2119 ** Next time use the next slot.
2120 */
2121 SCR_COPY (4),
2122 RADDR (temp),
2123 PADDR (startpos),
2124 /*
2125 ** The ncr doesn't have an indirect load
2126 ** or store command. So we have to
2127 ** copy part of the control block to a
2128 ** fixed place, where we can access it.
2129 **
2130 ** We patch the address part of a
2131 ** COPY command with the DSA-register.
2132 */
2133 SCR_COPY_F (4),
2134 RADDR (dsa),
2135 PADDR (loadpos),
2136 /*
2137 ** Flush script prefetch if required
2138 */
2139 PREFETCH_FLUSH
2140 /*
2141 ** then we do the actual copy.
2142 */
2143 SCR_COPY (sizeof (struct head)),
2144 /*
2145 ** continued after the next label ...
2146 */
2147 }/*-------------------------< LOADPOS >---------------------*/,{
2148 0,
2149 NADDR (header),
2150 /*
2151 ** Wait for the next phase or the selection
2152 ** to complete or time-out.
2153 */
2154 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
2155 PADDR (prepare),
2156
2157 }/*-------------------------< SEND_IDENT >----------------------*/,{
2158 /*
2159 ** Selection complete.
2160 ** Send the IDENTIFY and SIMPLE_TAG messages
2161 ** (and the EXTENDED_SDTR message)
2162 */
2163 SCR_MOVE_TBL ^ SCR_MSG_OUT,
2164 offsetof (struct dsb, smsg),
2165 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
2166 PADDRH (resend_ident),
2167 SCR_LOAD_REG (scratcha, 0x80),
2168 0,
2169 SCR_COPY (1),
2170 RADDR (scratcha),
2171 NADDR (lastmsg),
2172 }/*-------------------------< PREPARE >----------------------*/,{
2173 /*
2174 ** load the savep (saved pointer) into
2175 ** the TEMP register (actual pointer)
2176 */
2177 SCR_COPY (4),
2178 NADDR (header.savep),
2179 RADDR (temp),
2180 /*
2181 ** Initialize the status registers
2182 */
2183 SCR_COPY (4),
2184 NADDR (header.status),
2185 RADDR (scr0),
2186 }/*-------------------------< PREPARE2 >---------------------*/,{
2187 /*
2188 ** Initialize the msgout buffer with a NOOP message.
2189 */
2190 SCR_LOAD_REG (scratcha, NOP),
2191 0,
2192 SCR_COPY (1),
2193 RADDR (scratcha),
2194 NADDR (msgout),
2195 #if 0
2196 SCR_COPY (1),
2197 RADDR (scratcha),
2198 NADDR (msgin),
2199 #endif
2200 /*
2201 ** Anticipate the COMMAND phase.
2202 ** This is the normal case for initial selection.
2203 */
2204 SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
2205 PADDR (dispatch),
2206
2207 }/*-------------------------< COMMAND >--------------------*/,{
2208 /*
2209 ** ... and send the command
2210 */
2211 SCR_MOVE_TBL ^ SCR_COMMAND,
2212 offsetof (struct dsb, cmd),
2213 /*
2214 ** If status is still HS_NEGOTIATE, negotiation failed.
2215 ** We check this here, since we want to do that
2216 ** only once.
2217 */
2218 SCR_FROM_REG (HS_REG),
2219 0,
2220 SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
2221 SIR_NEGO_FAILED,
2222
2223 }/*-----------------------< DISPATCH >----------------------*/,{
2224 /*
2225 ** MSG_IN is the only phase that shall be
2226 ** entered at least once for each (re)selection.
2227 ** So we test it first.
2228 */
2229 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
2230 PADDR (msg_in),
2231
2232 SCR_RETURN ^ IFTRUE (IF (SCR_DATA_OUT)),
2233 0,
2234 /*
2235 ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 4.
2236 ** Possible data corruption during Memory Write and Invalidate.
2237 ** This work-around resets the addressing logic prior to the
2238 ** start of the first MOVE of a DATA IN phase.
2239 ** (See Documentation/scsi/ncr53c8xx.txt for more information)
2240 */
2241 SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)),
2242 20,
2243 SCR_COPY (4),
2244 RADDR (scratcha),
2245 RADDR (scratcha),
2246 SCR_RETURN,
2247 0,
2248 SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
2249 PADDR (status),
2250 SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
2251 PADDR (command),
2252 SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
2253 PADDR (msg_out),
2254 /*
2255 ** Discard one illegal phase byte, if required.
2256 */
2257 SCR_LOAD_REG (scratcha, XE_BAD_PHASE),
2258 0,
2259 SCR_COPY (1),
2260 RADDR (scratcha),
2261 NADDR (xerr_st),
2262 SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_OUT)),
2263 8,
2264 SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
2265 NADDR (scratch),
2266 SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_IN)),
2267 8,
2268 SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
2269 NADDR (scratch),
2270 SCR_JUMP,
2271 PADDR (dispatch),
2272
2273 }/*-------------------------< CLRACK >----------------------*/,{
2274 /*
2275 ** Terminate possible pending message phase.
2276 */
2277 SCR_CLR (SCR_ACK),
2278 0,
2279 SCR_JUMP,
2280 PADDR (dispatch),
2281
2282 }/*-------------------------< NO_DATA >--------------------*/,{
2283 /*
2284 ** The target wants to tranfer too much data
2285 ** or in the wrong direction.
2286 ** Remember that in extended error.
2287 */
2288 SCR_LOAD_REG (scratcha, XE_EXTRA_DATA),
2289 0,
2290 SCR_COPY (1),
2291 RADDR (scratcha),
2292 NADDR (xerr_st),
2293 /*
2294 ** Discard one data byte, if required.
2295 */
2296 SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
2297 8,
2298 SCR_MOVE_ABS (1) ^ SCR_DATA_OUT,
2299 NADDR (scratch),
2300 SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)),
2301 8,
2302 SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
2303 NADDR (scratch),
2304 /*
2305 ** .. and repeat as required.
2306 */
2307 SCR_CALL,
2308 PADDR (dispatch),
2309 SCR_JUMP,
2310 PADDR (no_data),
2311
2312 }/*-------------------------< STATUS >--------------------*/,{
2313 /*
2314 ** get the status
2315 */
2316 SCR_MOVE_ABS (1) ^ SCR_STATUS,
2317 NADDR (scratch),
2318 /*
2319 ** save status to scsi_status.
2320 ** mark as complete.
2321 */
2322 SCR_TO_REG (SS_REG),
2323 0,
2324 SCR_LOAD_REG (HS_REG, HS_COMPLETE),
2325 0,
2326 SCR_JUMP,
2327 PADDR (dispatch),
2328 }/*-------------------------< MSG_IN >--------------------*/,{
2329 /*
2330 ** Get the first byte of the message
2331 ** and save it to SCRATCHA.
2332 **
2333 ** The script processor doesn't negate the
2334 ** ACK signal after this transfer.
2335 */
2336 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2337 NADDR (msgin[0]),
2338 }/*-------------------------< MSG_IN2 >--------------------*/,{
2339 /*
2340 ** Handle this message.
2341 */
2342 SCR_JUMP ^ IFTRUE (DATA (COMMAND_COMPLETE)),
2343 PADDR (complete),
2344 SCR_JUMP ^ IFTRUE (DATA (DISCONNECT)),
2345 PADDR (disconnect),
2346 SCR_JUMP ^ IFTRUE (DATA (SAVE_POINTERS)),
2347 PADDR (save_dp),
2348 SCR_JUMP ^ IFTRUE (DATA (RESTORE_POINTERS)),
2349 PADDR (restore_dp),
2350 SCR_JUMP ^ IFTRUE (DATA (EXTENDED_MESSAGE)),
2351 PADDRH (msg_extended),
2352 SCR_JUMP ^ IFTRUE (DATA (NOP)),
2353 PADDR (clrack),
2354 SCR_JUMP ^ IFTRUE (DATA (MESSAGE_REJECT)),
2355 PADDRH (msg_reject),
2356 SCR_JUMP ^ IFTRUE (DATA (IGNORE_WIDE_RESIDUE)),
2357 PADDRH (msg_ign_residue),
2358 /*
2359 ** Rest of the messages left as
2360 ** an exercise ...
2361 **
2362 ** Unimplemented messages:
2363 ** fall through to MSG_BAD.
2364 */
2365 }/*-------------------------< MSG_BAD >------------------*/,{
2366 /*
2367 ** unimplemented message - reject it.
2368 */
2369 SCR_INT,
2370 SIR_REJECT_SENT,
2371 SCR_LOAD_REG (scratcha, MESSAGE_REJECT),
2372 0,
2373 }/*-------------------------< SETMSG >----------------------*/,{
2374 SCR_COPY (1),
2375 RADDR (scratcha),
2376 NADDR (msgout),
2377 SCR_SET (SCR_ATN),
2378 0,
2379 SCR_JUMP,
2380 PADDR (clrack),
2381 }/*-------------------------< CLEANUP >-------------------*/,{
2382 /*
2383 ** dsa: Pointer to ccb
2384 ** or xxxxxxFF (no ccb)
2385 **
2386 ** HS_REG: Host-Status (<>0!)
2387 */
2388 SCR_FROM_REG (dsa),
2389 0,
2390 SCR_JUMP ^ IFTRUE (DATA (0xff)),
2391 PADDR (start),
2392 /*
2393 ** dsa is valid.
2394 ** complete the cleanup.
2395 */
2396 SCR_JUMP,
2397 PADDR (cleanup_ok),
2398
2399 }/*-------------------------< COMPLETE >-----------------*/,{
2400 /*
2401 ** Complete message.
2402 **
2403 ** Copy TEMP register to LASTP in header.
2404 */
2405 SCR_COPY (4),
2406 RADDR (temp),
2407 NADDR (header.lastp),
2408 /*
2409 ** When we terminate the cycle by clearing ACK,
2410 ** the target may disconnect immediately.
2411 **
2412 ** We don't want to be told of an
2413 ** "unexpected disconnect",
2414 ** so we disable this feature.
2415 */
2416 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
2417 0,
2418 /*
2419 ** Terminate cycle ...
2420 */
2421 SCR_CLR (SCR_ACK|SCR_ATN),
2422 0,
2423 /*
2424 ** ... and wait for the disconnect.
2425 */
2426 SCR_WAIT_DISC,
2427 0,
2428 }/*-------------------------< CLEANUP_OK >----------------*/,{
2429 /*
2430 ** Save host status to header.
2431 */
2432 SCR_COPY (4),
2433 RADDR (scr0),
2434 NADDR (header.status),
2435 /*
2436 ** and copy back the header to the ccb.
2437 */
2438 SCR_COPY_F (4),
2439 RADDR (dsa),
2440 PADDR (cleanup0),
2441 /*
2442 ** Flush script prefetch if required
2443 */
2444 PREFETCH_FLUSH
2445 SCR_COPY (sizeof (struct head)),
2446 NADDR (header),
2447 }/*-------------------------< CLEANUP0 >--------------------*/,{
2448 0,
2449 }/*-------------------------< SIGNAL >----------------------*/,{
2450 /*
2451 ** if job not completed ...
2452 */
2453 SCR_FROM_REG (HS_REG),
2454 0,
2455 /*
2456 ** ... start the next command.
2457 */
2458 SCR_JUMP ^ IFTRUE (MASK (0, (HS_DONEMASK|HS_SKIPMASK))),
2459 PADDR(start),
2460 /*
2461 ** If command resulted in not GOOD status,
2462 ** call the C code if needed.
2463 */
2464 SCR_FROM_REG (SS_REG),
2465 0,
2466 SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
2467 PADDRH (bad_status),
2468
2469 #ifndef SCSI_NCR_CCB_DONE_SUPPORT
2470
2471 /*
2472 ** ... signal completion to the host
2473 */
2474 SCR_INT,
2475 SIR_INTFLY,
2476 /*
2477 ** Auf zu neuen Schandtaten!
2478 */
2479 SCR_JUMP,
2480 PADDR(start),
2481
2482 #else /* defined SCSI_NCR_CCB_DONE_SUPPORT */
2483
2484 /*
2485 ** ... signal completion to the host
2486 */
2487 SCR_JUMP,
2488 }/*------------------------< DONE_POS >---------------------*/,{
2489 PADDRH (done_queue),
2490 }/*------------------------< DONE_PLUG >--------------------*/,{
2491 SCR_INT,
2492 SIR_DONE_OVERFLOW,
2493 }/*------------------------< DONE_END >---------------------*/,{
2494 SCR_INT,
2495 SIR_INTFLY,
2496 SCR_COPY (4),
2497 RADDR (temp),
2498 PADDR (done_pos),
2499 SCR_JUMP,
2500 PADDR (start),
2501
2502 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
2503
2504 }/*-------------------------< SAVE_DP >------------------*/,{
2505 /*
2506 ** SAVE_DP message:
2507 ** Copy TEMP register to SAVEP in header.
2508 */
2509 SCR_COPY (4),
2510 RADDR (temp),
2511 NADDR (header.savep),
2512 SCR_CLR (SCR_ACK),
2513 0,
2514 SCR_JUMP,
2515 PADDR (dispatch),
2516 }/*-------------------------< RESTORE_DP >---------------*/,{
2517 /*
2518 ** RESTORE_DP message:
2519 ** Copy SAVEP in header to TEMP register.
2520 */
2521 SCR_COPY (4),
2522 NADDR (header.savep),
2523 RADDR (temp),
2524 SCR_JUMP,
2525 PADDR (clrack),
2526
2527 }/*-------------------------< DISCONNECT >---------------*/,{
2528 /*
2529 ** DISCONNECTing ...
2530 **
2531 ** disable the "unexpected disconnect" feature,
2532 ** and remove the ACK signal.
2533 */
2534 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
2535 0,
2536 SCR_CLR (SCR_ACK|SCR_ATN),
2537 0,
2538 /*
2539 ** Wait for the disconnect.
2540 */
2541 SCR_WAIT_DISC,
2542 0,
2543 /*
2544 ** Status is: DISCONNECTED.
2545 */
2546 SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
2547 0,
2548 SCR_JUMP,
2549 PADDR (cleanup_ok),
2550
2551 }/*-------------------------< MSG_OUT >-------------------*/,{
2552 /*
2553 ** The target requests a message.
2554 */
2555 SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
2556 NADDR (msgout),
2557 SCR_COPY (1),
2558 NADDR (msgout),
2559 NADDR (lastmsg),
2560 /*
2561 ** If it was no ABORT message ...
2562 */
2563 SCR_JUMP ^ IFTRUE (DATA (ABORT_TASK_SET)),
2564 PADDRH (msg_out_abort),
2565 /*
2566 ** ... wait for the next phase
2567 ** if it's a message out, send it again, ...
2568 */
2569 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
2570 PADDR (msg_out),
2571 }/*-------------------------< MSG_OUT_DONE >--------------*/,{
2572 /*
2573 ** ... else clear the message ...
2574 */
2575 SCR_LOAD_REG (scratcha, NOP),
2576 0,
2577 SCR_COPY (4),
2578 RADDR (scratcha),
2579 NADDR (msgout),
2580 /*
2581 ** ... and process the next phase
2582 */
2583 SCR_JUMP,
2584 PADDR (dispatch),
2585 }/*-------------------------< IDLE >------------------------*/,{
2586 /*
2587 ** Nothing to do?
2588 ** Wait for reselect.
2589 ** This NOP will be patched with LED OFF
2590 ** SCR_REG_REG (gpreg, SCR_OR, 0x01)
2591 */
2592 SCR_NO_OP,
2593 0,
2594 }/*-------------------------< RESELECT >--------------------*/,{
2595 /*
2596 ** make the DSA invalid.
2597 */
2598 SCR_LOAD_REG (dsa, 0xff),
2599 0,
2600 SCR_CLR (SCR_TRG),
2601 0,
2602 SCR_LOAD_REG (HS_REG, HS_IN_RESELECT),
2603 0,
2604 /*
2605 ** Sleep waiting for a reselection.
2606 ** If SIGP is set, special treatment.
2607 **
2608 ** Zu allem bereit ..
2609 */
2610 SCR_WAIT_RESEL,
2611 PADDR(start),
2612 }/*-------------------------< RESELECTED >------------------*/,{
2613 /*
2614 ** This NOP will be patched with LED ON
2615 ** SCR_REG_REG (gpreg, SCR_AND, 0xfe)
2616 */
2617 SCR_NO_OP,
2618 0,
2619 /*
2620 ** ... zu nichts zu gebrauchen ?
2621 **
2622 ** load the target id into the SFBR
2623 ** and jump to the control block.
2624 **
2625 ** Look at the declarations of
2626 ** - struct ncb
2627 ** - struct tcb
2628 ** - struct lcb
2629 ** - struct ccb
2630 ** to understand what's going on.
2631 */
2632 SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
2633 0,
2634 SCR_TO_REG (sdid),
2635 0,
2636 SCR_JUMP,
2637 NADDR (jump_tcb),
2638
2639 }/*-------------------------< RESEL_DSA >-------------------*/,{
2640 /*
2641 ** Ack the IDENTIFY or TAG previously received.
2642 */
2643 SCR_CLR (SCR_ACK),
2644 0,
2645 /*
2646 ** The ncr doesn't have an indirect load
2647 ** or store command. So we have to
2648 ** copy part of the control block to a
2649 ** fixed place, where we can access it.
2650 **
2651 ** We patch the address part of a
2652 ** COPY command with the DSA-register.
2653 */
2654 SCR_COPY_F (4),
2655 RADDR (dsa),
2656 PADDR (loadpos1),
2657 /*
2658 ** Flush script prefetch if required
2659 */
2660 PREFETCH_FLUSH
2661 /*
2662 ** then we do the actual copy.
2663 */
2664 SCR_COPY (sizeof (struct head)),
2665 /*
2666 ** continued after the next label ...
2667 */
2668
2669 }/*-------------------------< LOADPOS1 >-------------------*/,{
2670 0,
2671 NADDR (header),
2672 /*
2673 ** The DSA contains the data structure address.
2674 */
2675 SCR_JUMP,
2676 PADDR (prepare),
2677
2678 }/*-------------------------< RESEL_LUN >-------------------*/,{
2679 /*
2680 ** come back to this point
2681 ** to get an IDENTIFY message
2682 ** Wait for a msg_in phase.
2683 */
2684 SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
2685 SIR_RESEL_NO_MSG_IN,
2686 /*
2687 ** message phase.
2688 ** Read the data directly from the BUS DATA lines.
2689 ** This helps to support very old SCSI devices that
2690 ** may reselect without sending an IDENTIFY.
2691 */
2692 SCR_FROM_REG (sbdl),
2693 0,
2694 /*
2695 ** It should be an Identify message.
2696 */
2697 SCR_RETURN,
2698 0,
2699 }/*-------------------------< RESEL_TAG >-------------------*/,{
2700 /*
2701 ** Read IDENTIFY + SIMPLE + TAG using a single MOVE.
2702 ** Agressive optimization, is'nt it?
2703 ** No need to test the SIMPLE TAG message, since the
2704 ** driver only supports conformant devices for tags. ;-)
2705 */
2706 SCR_MOVE_ABS (3) ^ SCR_MSG_IN,
2707 NADDR (msgin),
2708 /*
2709 ** Read the TAG from the SIDL.
2710 ** Still an aggressive optimization. ;-)
2711 ** Compute the CCB indirect jump address which
2712 ** is (#TAG*2 & 0xfc) due to tag numbering using
2713 ** 1,3,5..MAXTAGS*2+1 actual values.
2714 */
2715 SCR_REG_SFBR (sidl, SCR_SHL, 0),
2716 0,
2717 SCR_SFBR_REG (temp, SCR_AND, 0xfc),
2718 0,
2719 }/*-------------------------< JUMP_TO_NEXUS >-------------------*/,{
2720 SCR_COPY_F (4),
2721 RADDR (temp),
2722 PADDR (nexus_indirect),
2723 /*
2724 ** Flush script prefetch if required
2725 */
2726 PREFETCH_FLUSH
2727 SCR_COPY (4),
2728 }/*-------------------------< NEXUS_INDIRECT >-------------------*/,{
2729 0,
2730 RADDR (temp),
2731 SCR_RETURN,
2732 0,
2733 }/*-------------------------< RESEL_NOTAG >-------------------*/,{
2734 /*
2735 ** No tag expected.
2736 ** Read an throw away the IDENTIFY.
2737 */
2738 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2739 NADDR (msgin),
2740 SCR_JUMP,
2741 PADDR (jump_to_nexus),
2742 }/*-------------------------< DATA_IN >--------------------*/,{
2743 /*
2744 ** Because the size depends on the
2745 ** #define MAX_SCATTERL parameter,
2746 ** it is filled in at runtime.
2747 **
2748 ** ##===========< i=0; i<MAX_SCATTERL >=========
2749 ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
2750 ** || PADDR (dispatch),
2751 ** || SCR_MOVE_TBL ^ SCR_DATA_IN,
2752 ** || offsetof (struct dsb, data[ i]),
2753 ** ##==========================================
2754 **
2755 **---------------------------------------------------------
2756 */
2757 0
2758 }/*-------------------------< DATA_IN2 >-------------------*/,{
2759 SCR_CALL,
2760 PADDR (dispatch),
2761 SCR_JUMP,
2762 PADDR (no_data),
2763 }/*-------------------------< DATA_OUT >--------------------*/,{
2764 /*
2765 ** Because the size depends on the
2766 ** #define MAX_SCATTERL parameter,
2767 ** it is filled in at runtime.
2768 **
2769 ** ##===========< i=0; i<MAX_SCATTERL >=========
2770 ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)),
2771 ** || PADDR (dispatch),
2772 ** || SCR_MOVE_TBL ^ SCR_DATA_OUT,
2773 ** || offsetof (struct dsb, data[ i]),
2774 ** ##==========================================
2775 **
2776 **---------------------------------------------------------
2777 */
2778 0
2779 }/*-------------------------< DATA_OUT2 >-------------------*/,{
2780 SCR_CALL,
2781 PADDR (dispatch),
2782 SCR_JUMP,
2783 PADDR (no_data),
2784 }/*--------------------------------------------------------*/
2785 };
2786
2787 static struct scripth scripth0 __initdata = {
2788 /*-------------------------< TRYLOOP >---------------------*/{
2789 /*
2790 ** Start the next entry.
2791 ** Called addresses point to the launch script in the CCB.
2792 ** They are patched by the main processor.
2793 **
2794 ** Because the size depends on the
2795 ** #define MAX_START parameter, it is filled
2796 ** in at runtime.
2797 **
2798 **-----------------------------------------------------------
2799 **
2800 ** ##===========< I=0; i<MAX_START >===========
2801 ** || SCR_CALL,
2802 ** || PADDR (idle),
2803 ** ##==========================================
2804 **
2805 **-----------------------------------------------------------
2806 */
2807 0
2808 }/*------------------------< TRYLOOP2 >---------------------*/,{
2809 SCR_JUMP,
2810 PADDRH(tryloop),
2811
2812 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
2813
2814 }/*------------------------< DONE_QUEUE >-------------------*/,{
2815 /*
2816 ** Copy the CCB address to the next done entry.
2817 ** Because the size depends on the
2818 ** #define MAX_DONE parameter, it is filled
2819 ** in at runtime.
2820 **
2821 **-----------------------------------------------------------
2822 **
2823 ** ##===========< I=0; i<MAX_DONE >===========
2824 ** || SCR_COPY (sizeof(struct ccb *),
2825 ** || NADDR (header.cp),
2826 ** || NADDR (ccb_done[i]),
2827 ** || SCR_CALL,
2828 ** || PADDR (done_end),
2829 ** ##==========================================
2830 **
2831 **-----------------------------------------------------------
2832 */
2833 0
2834 }/*------------------------< DONE_QUEUE2 >------------------*/,{
2835 SCR_JUMP,
2836 PADDRH (done_queue),
2837
2838 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
2839 }/*------------------------< SELECT_NO_ATN >-----------------*/,{
2840 /*
2841 ** Set Initiator mode.
2842 ** And try to select this target without ATN.
2843 */
2844
2845 SCR_CLR (SCR_TRG),
2846 0,
2847 SCR_LOAD_REG (HS_REG, HS_SELECTING),
2848 0,
2849 SCR_SEL_TBL ^ offsetof (struct dsb, select),
2850 PADDR (reselect),
2851 SCR_JUMP,
2852 PADDR (select2),
2853
2854 }/*-------------------------< CANCEL >------------------------*/,{
2855
2856 SCR_LOAD_REG (scratcha, HS_ABORTED),
2857 0,
2858 SCR_JUMPR,
2859 8,
2860 }/*-------------------------< SKIP >------------------------*/,{
2861 SCR_LOAD_REG (scratcha, 0),
2862 0,
2863 /*
2864 ** This entry has been canceled.
2865 ** Next time use the next slot.
2866 */
2867 SCR_COPY (4),
2868 RADDR (temp),
2869 PADDR (startpos),
2870 /*
2871 ** The ncr doesn't have an indirect load
2872 ** or store command. So we have to
2873 ** copy part of the control block to a
2874 ** fixed place, where we can access it.
2875 **
2876 ** We patch the address part of a
2877 ** COPY command with the DSA-register.
2878 */
2879 SCR_COPY_F (4),
2880 RADDR (dsa),
2881 PADDRH (skip2),
2882 /*
2883 ** Flush script prefetch if required
2884 */
2885 PREFETCH_FLUSH
2886 /*
2887 ** then we do the actual copy.
2888 */
2889 SCR_COPY (sizeof (struct head)),
2890 /*
2891 ** continued after the next label ...
2892 */
2893 }/*-------------------------< SKIP2 >---------------------*/,{
2894 0,
2895 NADDR (header),
2896 /*
2897 ** Initialize the status registers
2898 */
2899 SCR_COPY (4),
2900 NADDR (header.status),
2901 RADDR (scr0),
2902 /*
2903 ** Force host status.
2904 */
2905 SCR_FROM_REG (scratcha),
2906 0,
2907 SCR_JUMPR ^ IFFALSE (MASK (0, HS_DONEMASK)),
2908 16,
2909 SCR_REG_REG (HS_REG, SCR_OR, HS_SKIPMASK),
2910 0,
2911 SCR_JUMPR,
2912 8,
2913 SCR_TO_REG (HS_REG),
2914 0,
2915 SCR_LOAD_REG (SS_REG, S_GOOD),
2916 0,
2917 SCR_JUMP,
2918 PADDR (cleanup_ok),
2919
2920 },/*-------------------------< PAR_ERR_DATA_IN >---------------*/{
2921 /*
2922 ** Ignore all data in byte, until next phase
2923 */
2924 SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
2925 PADDRH (par_err_other),
2926 SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
2927 NADDR (scratch),
2928 SCR_JUMPR,
2929 -24,
2930 },/*-------------------------< PAR_ERR_OTHER >------------------*/{
2931 /*
2932 ** count it.
2933 */
2934 SCR_REG_REG (PS_REG, SCR_ADD, 0x01),
2935 0,
2936 /*
2937 ** jump to dispatcher.
2938 */
2939 SCR_JUMP,
2940 PADDR (dispatch),
2941 }/*-------------------------< MSG_REJECT >---------------*/,{
2942 /*
2943 ** If a negotiation was in progress,
2944 ** negotiation failed.
2945 ** Otherwise, let the C code print
2946 ** some message.
2947 */
2948 SCR_FROM_REG (HS_REG),
2949 0,
2950 SCR_INT ^ IFFALSE (DATA (HS_NEGOTIATE)),
2951 SIR_REJECT_RECEIVED,
2952 SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
2953 SIR_NEGO_FAILED,
2954 SCR_JUMP,
2955 PADDR (clrack),
2956
2957 }/*-------------------------< MSG_IGN_RESIDUE >----------*/,{
2958 /*
2959 ** Terminate cycle
2960 */
2961 SCR_CLR (SCR_ACK),
2962 0,
2963 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
2964 PADDR (dispatch),
2965 /*
2966 ** get residue size.
2967 */
2968 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2969 NADDR (msgin[1]),
2970 /*
2971 ** Size is 0 .. ignore message.
2972 */
2973 SCR_JUMP ^ IFTRUE (DATA (0)),
2974 PADDR (clrack),
2975 /*
2976 ** Size is not 1 .. have to interrupt.
2977 */
2978 SCR_JUMPR ^ IFFALSE (DATA (1)),
2979 40,
2980 /*
2981 ** Check for residue byte in swide register
2982 */
2983 SCR_FROM_REG (scntl2),
2984 0,
2985 SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
2986 16,
2987 /*
2988 ** There IS data in the swide register.
2989 ** Discard it.
2990 */
2991 SCR_REG_REG (scntl2, SCR_OR, WSR),
2992 0,
2993 SCR_JUMP,
2994 PADDR (clrack),
2995 /*
2996 ** Load again the size to the sfbr register.
2997 */
2998 SCR_FROM_REG (scratcha),
2999 0,
3000 SCR_INT,
3001 SIR_IGN_RESIDUE,
3002 SCR_JUMP,
3003 PADDR (clrack),
3004
3005 }/*-------------------------< MSG_EXTENDED >-------------*/,{
3006 /*
3007 ** Terminate cycle
3008 */
3009 SCR_CLR (SCR_ACK),
3010 0,
3011 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3012 PADDR (dispatch),
3013 /*
3014 ** get length.
3015 */
3016 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3017 NADDR (msgin[1]),
3018 /*
3019 */
3020 SCR_JUMP ^ IFTRUE (DATA (3)),
3021 PADDRH (msg_ext_3),
3022 SCR_JUMP ^ IFFALSE (DATA (2)),
3023 PADDR (msg_bad),
3024 }/*-------------------------< MSG_EXT_2 >----------------*/,{
3025 SCR_CLR (SCR_ACK),
3026 0,
3027 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3028 PADDR (dispatch),
3029 /*
3030 ** get extended message code.
3031 */
3032 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3033 NADDR (msgin[2]),
3034 SCR_JUMP ^ IFTRUE (DATA (EXTENDED_WDTR)),
3035 PADDRH (msg_wdtr),
3036 /*
3037 ** unknown extended message
3038 */
3039 SCR_JUMP,
3040 PADDR (msg_bad)
3041 }/*-------------------------< MSG_WDTR >-----------------*/,{
3042 SCR_CLR (SCR_ACK),
3043 0,
3044 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3045 PADDR (dispatch),
3046 /*
3047 ** get data bus width
3048 */
3049 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3050 NADDR (msgin[3]),
3051 /*
3052 ** let the host do the real work.
3053 */
3054 SCR_INT,
3055 SIR_NEGO_WIDE,
3056 /*
3057 ** let the target fetch our answer.
3058 */
3059 SCR_SET (SCR_ATN),
3060 0,
3061 SCR_CLR (SCR_ACK),
3062 0,
3063 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
3064 PADDRH (nego_bad_phase),
3065
3066 }/*-------------------------< SEND_WDTR >----------------*/,{
3067 /*
3068 ** Send the EXTENDED_WDTR
3069 */
3070 SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
3071 NADDR (msgout),
3072 SCR_COPY (1),
3073 NADDR (msgout),
3074 NADDR (lastmsg),
3075 SCR_JUMP,
3076 PADDR (msg_out_done),
3077
3078 }/*-------------------------< MSG_EXT_3 >----------------*/,{
3079 SCR_CLR (SCR_ACK),
3080 0,
3081 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3082 PADDR (dispatch),
3083 /*
3084 ** get extended message code.
3085 */
3086 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3087 NADDR (msgin[2]),
3088 SCR_JUMP ^ IFTRUE (DATA (EXTENDED_SDTR)),
3089 PADDRH (msg_sdtr),
3090 /*
3091 ** unknown extended message
3092 */
3093 SCR_JUMP,
3094 PADDR (msg_bad)
3095
3096 }/*-------------------------< MSG_SDTR >-----------------*/,{
3097 SCR_CLR (SCR_ACK),
3098 0,
3099 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3100 PADDR (dispatch),
3101 /*
3102 ** get period and offset
3103 */
3104 SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
3105 NADDR (msgin[3]),
3106 /*
3107 ** let the host do the real work.
3108 */
3109 SCR_INT,
3110 SIR_NEGO_SYNC,
3111 /*
3112 ** let the target fetch our answer.
3113 */
3114 SCR_SET (SCR_ATN),
3115 0,
3116 SCR_CLR (SCR_ACK),
3117 0,
3118 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
3119 PADDRH (nego_bad_phase),
3120
3121 }/*-------------------------< SEND_SDTR >-------------*/,{
3122 /*
3123 ** Send the EXTENDED_SDTR
3124 */
3125 SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
3126 NADDR (msgout),
3127 SCR_COPY (1),
3128 NADDR (msgout),
3129 NADDR (lastmsg),
3130 SCR_JUMP,
3131 PADDR (msg_out_done),
3132
3133 }/*-------------------------< NEGO_BAD_PHASE >------------*/,{
3134 SCR_INT,
3135 SIR_NEGO_PROTO,
3136 SCR_JUMP,
3137 PADDR (dispatch),
3138
3139 }/*-------------------------< MSG_OUT_ABORT >-------------*/,{
3140 /*
3141 ** After ABORT message,
3142 **
3143 ** expect an immediate disconnect, ...
3144 */
3145 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
3146 0,
3147 SCR_CLR (SCR_ACK|SCR_ATN),
3148 0,
3149 SCR_WAIT_DISC,
3150 0,
3151 /*
3152 ** ... and set the status to "ABORTED"
3153 */
3154 SCR_LOAD_REG (HS_REG, HS_ABORTED),
3155 0,
3156 SCR_JUMP,
3157 PADDR (cleanup),
3158
3159 }/*-------------------------< HDATA_IN >-------------------*/,{
3160 /*
3161 ** Because the size depends on the
3162 ** #define MAX_SCATTERH parameter,
3163 ** it is filled in at runtime.
3164 **
3165 ** ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >==
3166 ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
3167 ** || PADDR (dispatch),
3168 ** || SCR_MOVE_TBL ^ SCR_DATA_IN,
3169 ** || offsetof (struct dsb, data[ i]),
3170 ** ##===================================================
3171 **
3172 **---------------------------------------------------------
3173 */
3174 0
3175 }/*-------------------------< HDATA_IN2 >------------------*/,{
3176 SCR_JUMP,
3177 PADDR (data_in),
3178
3179 }/*-------------------------< HDATA_OUT >-------------------*/,{
3180 /*
3181 ** Because the size depends on the
3182 ** #define MAX_SCATTERH parameter,
3183 ** it is filled in at runtime.
3184 **
3185 ** ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >==
3186 ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)),
3187 ** || PADDR (dispatch),
3188 ** || SCR_MOVE_TBL ^ SCR_DATA_OUT,
3189 ** || offsetof (struct dsb, data[ i]),
3190 ** ##===================================================
3191 **
3192 **---------------------------------------------------------
3193 */
3194 0
3195 }/*-------------------------< HDATA_OUT2 >------------------*/,{
3196 SCR_JUMP,
3197 PADDR (data_out),
3198
3199 }/*-------------------------< RESET >----------------------*/,{
3200 /*
3201 ** Send a TARGET_RESET message if bad IDENTIFY
3202 ** received on reselection.
3203 */
3204 SCR_LOAD_REG (scratcha, ABORT_TASK),
3205 0,
3206 SCR_JUMP,
3207 PADDRH (abort_resel),
3208 }/*-------------------------< ABORTTAG >-------------------*/,{
3209 /*
3210 ** Abort a wrong tag received on reselection.
3211 */
3212 SCR_LOAD_REG (scratcha, ABORT_TASK),
3213 0,
3214 SCR_JUMP,
3215 PADDRH (abort_resel),
3216 }/*-------------------------< ABORT >----------------------*/,{
3217 /*
3218 ** Abort a reselection when no active CCB.
3219 */
3220 SCR_LOAD_REG (scratcha, ABORT_TASK_SET),
3221 0,
3222 }/*-------------------------< ABORT_RESEL >----------------*/,{
3223 SCR_COPY (1),
3224 RADDR (scratcha),
3225 NADDR (msgout),
3226 SCR_SET (SCR_ATN),
3227 0,
3228 SCR_CLR (SCR_ACK),
3229 0,
3230 /*
3231 ** and send it.
3232 ** we expect an immediate disconnect
3233 */
3234 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
3235 0,
3236 SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
3237 NADDR (msgout),
3238 SCR_COPY (1),
3239 NADDR (msgout),
3240 NADDR (lastmsg),
3241 SCR_CLR (SCR_ACK|SCR_ATN),
3242 0,
3243 SCR_WAIT_DISC,
3244 0,
3245 SCR_JUMP,
3246 PADDR (start),
3247 }/*-------------------------< RESEND_IDENT >-------------------*/,{
3248 /*
3249 ** The target stays in MSG OUT phase after having acked
3250 ** Identify [+ Tag [+ Extended message ]]. Targets shall
3251 ** behave this way on parity error.
3252 ** We must send it again all the messages.
3253 */
3254 SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */
3255 0, /* 1rst ACK = 90 ns. Hope the NCR is'nt too fast */
3256 SCR_JUMP,
3257 PADDR (send_ident),
3258 }/*-------------------------< CLRATN_GO_ON >-------------------*/,{
3259 SCR_CLR (SCR_ATN),
3260 0,
3261 SCR_JUMP,
3262 }/*-------------------------< NXTDSP_GO_ON >-------------------*/,{
3263 0,
3264 }/*-------------------------< SDATA_IN >-------------------*/,{
3265 SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
3266 PADDR (dispatch),
3267 SCR_MOVE_TBL ^ SCR_DATA_IN,
3268 offsetof (struct dsb, sense),
3269 SCR_CALL,
3270 PADDR (dispatch),
3271 SCR_JUMP,
3272 PADDR (no_data),
3273 }/*-------------------------< DATA_IO >--------------------*/,{
3274 /*
3275 ** We jump here if the data direction was unknown at the
3276 ** time we had to queue the command to the scripts processor.
3277 ** Pointers had been set as follow in this situation:
3278 ** savep --> DATA_IO
3279 ** lastp --> start pointer when DATA_IN
3280 ** goalp --> goal pointer when DATA_IN
3281 ** wlastp --> start pointer when DATA_OUT
3282 ** wgoalp --> goal pointer when DATA_OUT
3283 ** This script sets savep/lastp/goalp according to the
3284 ** direction chosen by the target.
3285 */
3286 SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_OUT)),
3287 32,
3288 /*
3289 ** Direction is DATA IN.
3290 ** Warning: we jump here, even when phase is DATA OUT.
3291 */
3292 SCR_COPY (4),
3293 NADDR (header.lastp),
3294 NADDR (header.savep),
3295
3296 /*
3297 ** Jump to the SCRIPTS according to actual direction.
3298 */
3299 SCR_COPY (4),
3300 NADDR (header.savep),
3301 RADDR (temp),
3302 SCR_RETURN,
3303 0,
3304 /*
3305 ** Direction is DATA OUT.
3306 */
3307 SCR_COPY (4),
3308 NADDR (header.wlastp),
3309 NADDR (header.lastp),
3310 SCR_COPY (4),
3311 NADDR (header.wgoalp),
3312 NADDR (header.goalp),
3313 SCR_JUMPR,
3314 -64,
3315 }/*-------------------------< BAD_IDENTIFY >---------------*/,{
3316 /*
3317 ** If message phase but not an IDENTIFY,
3318 ** get some help from the C code.
3319 ** Old SCSI device may behave so.
3320 */
3321 SCR_JUMPR ^ IFTRUE (MASK (0x80, 0x80)),
3322 16,
3323 SCR_INT,
3324 SIR_RESEL_NO_IDENTIFY,
3325 SCR_JUMP,
3326 PADDRH (reset),
3327 /*
3328 ** Message is an IDENTIFY, but lun is unknown.
3329 ** Read the message, since we got it directly
3330 ** from the SCSI BUS data lines.
3331 ** Signal problem to C code for logging the event.
3332 ** Send an ABORT_TASK_SET to clear all pending tasks.
3333 */
3334 SCR_INT,
3335 SIR_RESEL_BAD_LUN,
3336 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3337 NADDR (msgin),
3338 SCR_JUMP,
3339 PADDRH (abort),
3340 }/*-------------------------< BAD_I_T_L >------------------*/,{
3341 /*
3342 ** We donnot have a task for that I_T_L.
3343 ** Signal problem to C code for logging the event.
3344 ** Send an ABORT_TASK_SET message.
3345 */
3346 SCR_INT,
3347 SIR_RESEL_BAD_I_T_L,
3348 SCR_JUMP,
3349 PADDRH (abort),
3350 }/*-------------------------< BAD_I_T_L_Q >----------------*/,{
3351 /*
3352 ** We donnot have a task that matches the tag.
3353 ** Signal problem to C code for logging the event.
3354 ** Send an ABORT_TASK message.
3355 */
3356 SCR_INT,
3357 SIR_RESEL_BAD_I_T_L_Q,
3358 SCR_JUMP,
3359 PADDRH (aborttag),
3360 }/*-------------------------< BAD_TARGET >-----------------*/,{
3361 /*
3362 ** We donnot know the target that reselected us.
3363 ** Grab the first message if any (IDENTIFY).
3364 ** Signal problem to C code for logging the event.
3365 ** TARGET_RESET message.
3366 */
3367 SCR_INT,
3368 SIR_RESEL_BAD_TARGET,
3369 SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_IN)),
3370 8,
3371 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3372 NADDR (msgin),
3373 SCR_JUMP,
3374 PADDRH (reset),
3375 }/*-------------------------< BAD_STATUS >-----------------*/,{
3376 /*
3377 ** If command resulted in either QUEUE FULL,
3378 ** CHECK CONDITION or COMMAND TERMINATED,
3379 ** call the C code.
3380 */
3381 SCR_INT ^ IFTRUE (DATA (S_QUEUE_FULL)),
3382 SIR_BAD_STATUS,
3383 SCR_INT ^ IFTRUE (DATA (S_CHECK_COND)),
3384 SIR_BAD_STATUS,
3385 SCR_INT ^ IFTRUE (DATA (S_TERMINATED)),
3386 SIR_BAD_STATUS,
3387 SCR_RETURN,
3388 0,
3389 }/*-------------------------< START_RAM >-------------------*/,{
3390 /*
3391 ** Load the script into on-chip RAM,
3392 ** and jump to start point.
3393 */
3394 SCR_COPY_F (4),
3395 RADDR (scratcha),
3396 PADDRH (start_ram0),
3397 /*
3398 ** Flush script prefetch if required
3399 */
3400 PREFETCH_FLUSH
3401 SCR_COPY (sizeof (struct script)),
3402 }/*-------------------------< START_RAM0 >--------------------*/,{
3403 0,
3404 PADDR (start),
3405 SCR_JUMP,
3406 PADDR (start),
3407 }/*-------------------------< STO_RESTART >-------------------*/,{
3408 /*
3409 **
3410 ** Repair start queue (e.g. next time use the next slot)
3411 ** and jump to start point.
3412 */
3413 SCR_COPY (4),
3414 RADDR (temp),
3415 PADDR (startpos),
3416 SCR_JUMP,
3417 PADDR (start),
3418 }/*-------------------------< WAIT_DMA >-------------------*/,{
3419 /*
3420 ** For HP Zalon/53c720 systems, the Zalon interface
3421 ** between CPU and 53c720 does prefetches, which causes
3422 ** problems with self modifying scripts. The problem
3423 ** is overcome by calling a dummy subroutine after each
3424 ** modification, to force a refetch of the script on
3425 ** return from the subroutine.
3426 */
3427 SCR_RETURN,
3428 0,
3429 }/*-------------------------< SNOOPTEST >-------------------*/,{
3430 /*
3431 ** Read the variable.
3432 */
3433 SCR_COPY (4),
3434 NADDR(ncr_cache),
3435 RADDR (scratcha),
3436 /*
3437 ** Write the variable.
3438 */
3439 SCR_COPY (4),
3440 RADDR (temp),
3441 NADDR(ncr_cache),
3442 /*
3443 ** Read back the variable.
3444 */
3445 SCR_COPY (4),
3446 NADDR(ncr_cache),
3447 RADDR (temp),
3448 }/*-------------------------< SNOOPEND >-------------------*/,{
3449 /*
3450 ** And stop.
3451 */
3452 SCR_INT,
3453 99,
3454 }/*--------------------------------------------------------*/
3455 };
3456
3457 /*==========================================================
3458 **
3459 **
3460 ** Fill in #define dependent parts of the script
3461 **
3462 **
3463 **==========================================================
3464 */
3465
3466 void __init ncr_script_fill (struct script * scr, struct scripth * scrh)
3467 {
3468 int i;
3469 ncrcmd *p;
3470
3471 p = scrh->tryloop;
3472 for (i=0; i<MAX_START; i++) {
3473 *p++ =SCR_CALL;
3474 *p++ =PADDR (idle);
3475 }
3476
3477 BUG_ON((u_long)p != (u_long)&scrh->tryloop + sizeof (scrh->tryloop));
3478
3479 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
3480
3481 p = scrh->done_queue;
3482 for (i = 0; i<MAX_DONE; i++) {
3483 *p++ =SCR_COPY (sizeof(struct ccb *));
3484 *p++ =NADDR (header.cp);
3485 *p++ =NADDR (ccb_done[i]);
3486 *p++ =SCR_CALL;
3487 *p++ =PADDR (done_end);
3488 }
3489
3490 BUG_ON((u_long)p != (u_long)&scrh->done_queue+sizeof(scrh->done_queue));
3491
3492 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
3493
3494 p = scrh->hdata_in;
3495 for (i=0; i<MAX_SCATTERH; i++) {
3496 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN));
3497 *p++ =PADDR (dispatch);
3498 *p++ =SCR_MOVE_TBL ^ SCR_DATA_IN;
3499 *p++ =offsetof (struct dsb, data[i]);
3500 }
3501
3502 BUG_ON((u_long)p != (u_long)&scrh->hdata_in + sizeof (scrh->hdata_in));
3503
3504 p = scr->data_in;
3505 for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) {
3506 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN));
3507 *p++ =PADDR (dispatch);
3508 *p++ =SCR_MOVE_TBL ^ SCR_DATA_IN;
3509 *p++ =offsetof (struct dsb, data[i]);
3510 }
3511
3512 BUG_ON((u_long)p != (u_long)&scr->data_in + sizeof (scr->data_in));
3513
3514 p = scrh->hdata_out;
3515 for (i=0; i<MAX_SCATTERH; i++) {
3516 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT));
3517 *p++ =PADDR (dispatch);
3518 *p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT;
3519 *p++ =offsetof (struct dsb, data[i]);
3520 }
3521
3522 BUG_ON((u_long)p != (u_long)&scrh->hdata_out + sizeof (scrh->hdata_out));
3523
3524 p = scr->data_out;
3525 for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) {
3526 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT));
3527 *p++ =PADDR (dispatch);
3528 *p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT;
3529 *p++ =offsetof (struct dsb, data[i]);
3530 }
3531
3532 BUG_ON((u_long) p != (u_long)&scr->data_out + sizeof (scr->data_out));
3533 }
3534
3535 /*==========================================================
3536 **
3537 **
3538 ** Copy and rebind a script.
3539 **
3540 **
3541 **==========================================================
3542 */
3543
3544 static void __init
3545 ncr_script_copy_and_bind (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len)
3546 {
3547 ncrcmd opcode, new, old, tmp1, tmp2;
3548 ncrcmd *start, *end;
3549 int relocs;
3550 int opchanged = 0;
3551
3552 start = src;
3553 end = src + len/4;
3554
3555 while (src < end) {
3556
3557 opcode = *src++;
3558 *dst++ = cpu_to_scr(opcode);
3559
3560 /*
3561 ** If we forget to change the length
3562 ** in struct script, a field will be
3563 ** padded with 0. This is an illegal
3564 ** command.
3565 */
3566
3567 if (opcode == 0) {
3568 printk (KERN_ERR "%s: ERROR0 IN SCRIPT at %d.\n",
3569 ncr_name(np), (int) (src-start-1));
3570 mdelay(1000);
3571 }
3572
3573 if (DEBUG_FLAGS & DEBUG_SCRIPT)
3574 printk (KERN_DEBUG "%p: <%x>\n",
3575 (src-1), (unsigned)opcode);
3576
3577 /*
3578 ** We don't have to decode ALL commands
3579 */
3580 switch (opcode >> 28) {
3581
3582 case 0xc:
3583 /*
3584 ** COPY has TWO arguments.
3585 */
3586 relocs = 2;
3587 tmp1 = src[0];
3588 #ifdef RELOC_KVAR
3589 if ((tmp1 & RELOC_MASK) == RELOC_KVAR)
3590 tmp1 = 0;
3591 #endif
3592 tmp2 = src[1];
3593 #ifdef RELOC_KVAR
3594 if ((tmp2 & RELOC_MASK) == RELOC_KVAR)
3595 tmp2 = 0;
3596 #endif
3597 if ((tmp1 ^ tmp2) & 3) {
3598 printk (KERN_ERR"%s: ERROR1 IN SCRIPT at %d.\n",
3599 ncr_name(np), (int) (src-start-1));
3600 mdelay(1000);
3601 }
3602 /*
3603 ** If PREFETCH feature not enabled, remove
3604 ** the NO FLUSH bit if present.
3605 */
3606 if ((opcode & SCR_NO_FLUSH) && !(np->features & FE_PFEN)) {
3607 dst[-1] = cpu_to_scr(opcode & ~SCR_NO_FLUSH);
3608 ++opchanged;
3609 }
3610 break;
3611
3612 case 0x0:
3613 /*
3614 ** MOVE (absolute address)
3615 */
3616 relocs = 1;
3617 break;
3618
3619 case 0x8:
3620 /*
3621 ** JUMP / CALL
3622 ** don't relocate if relative :-)
3623 */
3624 if (opcode & 0x00800000)
3625 relocs = 0;
3626 else
3627 relocs = 1;
3628 break;
3629
3630 case 0x4:
3631 case 0x5:
3632 case 0x6:
3633 case 0x7:
3634 relocs = 1;
3635 break;
3636
3637 default:
3638 relocs = 0;
3639 break;
3640 }
3641
3642 if (relocs) {
3643 while (relocs--) {
3644 old = *src++;
3645
3646 switch (old & RELOC_MASK) {
3647 case RELOC_REGISTER:
3648 new = (old & ~RELOC_MASK) + np->paddr;
3649 break;
3650 case RELOC_LABEL:
3651 new = (old & ~RELOC_MASK) + np->p_script;
3652 break;
3653 case RELOC_LABELH:
3654 new = (old & ~RELOC_MASK) + np->p_scripth;
3655 break;
3656 case RELOC_SOFTC:
3657 new = (old & ~RELOC_MASK) + np->p_ncb;
3658 break;
3659 #ifdef RELOC_KVAR
3660 case RELOC_KVAR:
3661 if (((old & ~RELOC_MASK) <
3662 SCRIPT_KVAR_FIRST) ||
3663 ((old & ~RELOC_MASK) >
3664 SCRIPT_KVAR_LAST))
3665 panic("ncr KVAR out of range");
3666 new = vtophys(script_kvars[old &
3667 ~RELOC_MASK]);
3668 break;
3669 #endif
3670 case 0:
3671 /* Don't relocate a 0 address. */
3672 if (old == 0) {
3673 new = old;
3674 break;
3675 }
3676 /* fall through */
3677 default:
3678 panic("ncr_script_copy_and_bind: weird relocation %x\n", old);
3679 break;
3680 }
3681
3682 *dst++ = cpu_to_scr(new);
3683 }
3684 } else
3685 *dst++ = cpu_to_scr(*src++);
3686
3687 }
3688 }
3689
3690 /*
3691 ** Linux host data structure
3692 */
3693
3694 struct host_data {
3695 struct ncb *ncb;
3696 };
3697
3698 #define PRINT_ADDR(cmd, arg...) dev_info(&cmd->device->sdev_gendev , ## arg)
3699
3700 static void ncr_print_msg(struct ccb *cp, char *label, u_char *msg)
3701 {
3702 PRINT_ADDR(cp->cmd, "%s: ", label);
3703
3704 spi_print_msg(msg);
3705 printk("\n");
3706 }
3707
3708 /*==========================================================
3709 **
3710 ** NCR chip clock divisor table.
3711 ** Divisors are multiplied by 10,000,000 in order to make
3712 ** calculations more simple.
3713 **
3714 **==========================================================
3715 */
3716
3717 #define _5M 5000000
3718 static u_long div_10M[] =
3719 {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
3720
3721
3722 /*===============================================================
3723 **
3724 ** Prepare io register values used by ncr_init() according
3725 ** to selected and supported features.
3726 **
3727 ** NCR chips allow burst lengths of 2, 4, 8, 16, 32, 64, 128
3728 ** transfers. 32,64,128 are only supported by 875 and 895 chips.
3729 ** We use log base 2 (burst length) as internal code, with
3730 ** value 0 meaning "burst disabled".
3731 **
3732 **===============================================================
3733 */
3734
3735 /*
3736 * Burst length from burst code.
3737 */
3738 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
3739
3740 /*
3741 * Burst code from io register bits. Burst enable is ctest0 for c720
3742 */
3743 #define burst_code(dmode, ctest0) \
3744 (ctest0) & 0x80 ? 0 : (((dmode) & 0xc0) >> 6) + 1
3745
3746 /*
3747 * Set initial io register bits from burst code.
3748 */
3749 static inline void ncr_init_burst(struct ncb *np, u_char bc)
3750 {
3751 u_char *be = &np->rv_ctest0;
3752 *be &= ~0x80;
3753 np->rv_dmode &= ~(0x3 << 6);
3754 np->rv_ctest5 &= ~0x4;
3755
3756 if (!bc) {
3757 *be |= 0x80;
3758 } else {
3759 --bc;
3760 np->rv_dmode |= ((bc & 0x3) << 6);
3761 np->rv_ctest5 |= (bc & 0x4);
3762 }
3763 }
3764
3765 static void __init ncr_prepare_setting(struct ncb *np)
3766 {
3767 u_char burst_max;
3768 u_long period;
3769 int i;
3770
3771 /*
3772 ** Save assumed BIOS setting
3773 */
3774
3775 np->sv_scntl0 = INB(nc_scntl0) & 0x0a;
3776 np->sv_scntl3 = INB(nc_scntl3) & 0x07;
3777 np->sv_dmode = INB(nc_dmode) & 0xce;
3778 np->sv_dcntl = INB(nc_dcntl) & 0xa8;
3779 np->sv_ctest0 = INB(nc_ctest0) & 0x84;
3780 np->sv_ctest3 = INB(nc_ctest3) & 0x01;
3781 np->sv_ctest4 = INB(nc_ctest4) & 0x80;
3782 np->sv_ctest5 = INB(nc_ctest5) & 0x24;
3783 np->sv_gpcntl = INB(nc_gpcntl);
3784 np->sv_stest2 = INB(nc_stest2) & 0x20;
3785 np->sv_stest4 = INB(nc_stest4);
3786
3787 /*
3788 ** Wide ?
3789 */
3790
3791 np->maxwide = (np->features & FE_WIDE)? 1 : 0;
3792
3793 /*
3794 * Guess the frequency of the chip's clock.
3795 */
3796 if (np->features & FE_ULTRA)
3797 np->clock_khz = 80000;
3798 else
3799 np->clock_khz = 40000;
3800
3801 /*
3802 * Get the clock multiplier factor.
3803 */
3804 if (np->features & FE_QUAD)
3805 np->multiplier = 4;
3806 else if (np->features & FE_DBLR)
3807 np->multiplier = 2;
3808 else
3809 np->multiplier = 1;
3810
3811 /*
3812 * Measure SCSI clock frequency for chips
3813 * it may vary from assumed one.
3814 */
3815 if (np->features & FE_VARCLK)
3816 ncr_getclock(np, np->multiplier);
3817
3818 /*
3819 * Divisor to be used for async (timer pre-scaler).
3820 */
3821 i = np->clock_divn - 1;
3822 while (--i >= 0) {
3823 if (10ul * SCSI_NCR_MIN_ASYNC * np->clock_khz > div_10M[i]) {
3824 ++i;
3825 break;
3826 }
3827 }
3828 np->rv_scntl3 = i+1;
3829
3830 /*
3831 * Minimum synchronous period factor supported by the chip.
3832 * Btw, 'period' is in tenths of nanoseconds.
3833 */
3834
3835 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
3836 if (period <= 250) np->minsync = 10;
3837 else if (period <= 303) np->minsync = 11;
3838 else if (period <= 500) np->minsync = 12;
3839 else np->minsync = (period + 40 - 1) / 40;
3840
3841 /*
3842 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
3843 */
3844
3845 if (np->minsync < 25 && !(np->features & FE_ULTRA))
3846 np->minsync = 25;
3847
3848 /*
3849 * Maximum synchronous period factor supported by the chip.
3850 */
3851
3852 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
3853 np->maxsync = period > 2540 ? 254 : period / 10;
3854
3855 /*
3856 ** Prepare initial value of other IO registers
3857 */
3858 #if defined SCSI_NCR_TRUST_BIOS_SETTING
3859 np->rv_scntl0 = np->sv_scntl0;
3860 np->rv_dmode = np->sv_dmode;
3861 np->rv_dcntl = np->sv_dcntl;
3862 np->rv_ctest0 = np->sv_ctest0;
3863 np->rv_ctest3 = np->sv_ctest3;
3864 np->rv_ctest4 = np->sv_ctest4;
3865 np->rv_ctest5 = np->sv_ctest5;
3866 burst_max = burst_code(np->sv_dmode, np->sv_ctest0);
3867 #else
3868
3869 /*
3870 ** Select burst length (dwords)
3871 */
3872 burst_max = driver_setup.burst_max;
3873 if (burst_max == 255)
3874 burst_max = burst_code(np->sv_dmode, np->sv_ctest0);
3875 if (burst_max > 7)
3876 burst_max = 7;
3877 if (burst_max > np->maxburst)
3878 burst_max = np->maxburst;
3879
3880 /*
3881 ** Select all supported special features
3882 */
3883 if (np->features & FE_ERL)
3884 np->rv_dmode |= ERL; /* Enable Read Line */
3885 if (np->features & FE_BOF)
3886 np->rv_dmode |= BOF; /* Burst Opcode Fetch */
3887 if (np->features & FE_ERMP)
3888 np->rv_dmode |= ERMP; /* Enable Read Multiple */
3889 if (np->features & FE_PFEN)
3890 np->rv_dcntl |= PFEN; /* Prefetch Enable */
3891 if (np->features & FE_CLSE)
3892 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */
3893 if (np->features & FE_WRIE)
3894 np->rv_ctest3 |= WRIE; /* Write and Invalidate */
3895 if (np->features & FE_DFS)
3896 np->rv_ctest5 |= DFS; /* Dma Fifo Size */
3897 if (np->features & FE_MUX)
3898 np->rv_ctest4 |= MUX; /* Host bus multiplex mode */
3899 if (np->features & FE_EA)
3900 np->rv_dcntl |= EA; /* Enable ACK */
3901 if (np->features & FE_EHP)
3902 np->rv_ctest0 |= EHP; /* Even host parity */
3903
3904 /*
3905 ** Select some other
3906 */
3907 if (driver_setup.master_parity)
3908 np->rv_ctest4 |= MPEE; /* Master parity checking */
3909 if (driver_setup.scsi_parity)
3910 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */
3911
3912 /*
3913 ** Get SCSI addr of host adapter (set by bios?).
3914 */
3915 if (np->myaddr == 255) {
3916 np->myaddr = INB(nc_scid) & 0x07;
3917 if (!np->myaddr)
3918 np->myaddr = SCSI_NCR_MYADDR;
3919 }
3920
3921 #endif /* SCSI_NCR_TRUST_BIOS_SETTING */
3922
3923 /*
3924 * Prepare initial io register bits for burst length
3925 */
3926 ncr_init_burst(np, burst_max);
3927
3928 /*
3929 ** Set SCSI BUS mode.
3930 **
3931 ** - ULTRA2 chips (895/895A/896) report the current
3932 ** BUS mode through the STEST4 IO register.
3933 ** - For previous generation chips (825/825A/875),
3934 ** user has to tell us how to check against HVD,
3935 ** since a 100% safe algorithm is not possible.
3936 */
3937 np->scsi_mode = SMODE_SE;
3938 if (np->features & FE_DIFF) {
3939 switch(driver_setup.diff_support) {
3940 case 4: /* Trust previous settings if present, then GPIO3 */
3941 if (np->sv_scntl3) {
3942 if (np->sv_stest2 & 0x20)
3943 np->scsi_mode = SMODE_HVD;
3944 break;
3945 }
3946 case 3: /* SYMBIOS controllers report HVD through GPIO3 */
3947 if (INB(nc_gpreg) & 0x08)
3948 break;
3949 case 2: /* Set HVD unconditionally */
3950 np->scsi_mode = SMODE_HVD;
3951 case 1: /* Trust previous settings for HVD */
3952 if (np->sv_stest2 & 0x20)
3953 np->scsi_mode = SMODE_HVD;
3954 break;
3955 default:/* Don't care about HVD */
3956 break;
3957 }
3958 }
3959 if (np->scsi_mode == SMODE_HVD)
3960 np->rv_stest2 |= 0x20;
3961
3962 /*
3963 ** Set LED support from SCRIPTS.
3964 ** Ignore this feature for boards known to use a
3965 ** specific GPIO wiring and for the 895A or 896
3966 ** that drive the LED directly.
3967 ** Also probe initial setting of GPIO0 as output.
3968 */
3969 if ((driver_setup.led_pin) &&
3970 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
3971 np->features |= FE_LED0;
3972
3973 /*
3974 ** Set irq mode.
3975 */
3976 switch(driver_setup.irqm & 3) {
3977 case 2:
3978 np->rv_dcntl |= IRQM;
3979 break;
3980 case 1:
3981 np->rv_dcntl |= (np->sv_dcntl & IRQM);
3982 break;
3983 default:
3984 break;
3985 }
3986
3987 /*
3988 ** Configure targets according to driver setup.
3989 ** Allow to override sync, wide and NOSCAN from
3990 ** boot command line.
3991 */
3992 for (i = 0 ; i < MAX_TARGET ; i++) {
3993 struct tcb *tp = &np->target[i];
3994
3995 tp->usrsync = driver_setup.default_sync;
3996 tp->usrwide = driver_setup.max_wide;
3997 tp->usrtags = MAX_TAGS;
3998 tp->period = 0xffff;
3999 if (!driver_setup.disconnection)
4000 np->target[i].usrflag = UF_NODISC;
4001 }
4002
4003 /*
4004 ** Announce all that stuff to user.
4005 */
4006
4007 printk(KERN_INFO "%s: ID %d, Fast-%d%s%s\n", ncr_name(np),
4008 np->myaddr,
4009 np->minsync < 12 ? 40 : (np->minsync < 25 ? 20 : 10),
4010 (np->rv_scntl0 & 0xa) ? ", Parity Checking" : ", NO Parity",
4011 (np->rv_stest2 & 0x20) ? ", Differential" : "");
4012
4013 if (bootverbose > 1) {
4014 printk (KERN_INFO "%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
4015 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
4016 ncr_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
4017 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
4018
4019 printk (KERN_INFO "%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
4020 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
4021 ncr_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
4022 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
4023 }
4024
4025 if (bootverbose && np->paddr2)
4026 printk (KERN_INFO "%s: on-chip RAM at 0x%lx\n",
4027 ncr_name(np), np->paddr2);
4028 }
4029
4030 /*==========================================================
4031 **
4032 **
4033 ** Done SCSI commands list management.
4034 **
4035 ** We donnot enter the scsi_done() callback immediately
4036 ** after a command has been seen as completed but we
4037 ** insert it into a list which is flushed outside any kind
4038 ** of driver critical section.
4039 ** This allows to do minimal stuff under interrupt and
4040 ** inside critical sections and to also avoid locking up
4041 ** on recursive calls to driver entry points under SMP.
4042 ** In fact, the only kernel point which is entered by the
4043 ** driver with a driver lock set is kmalloc(GFP_ATOMIC)
4044 ** that shall not reenter the driver under any circumstances,
4045 ** AFAIK.
4046 **
4047 **==========================================================
4048 */
4049 static inline void ncr_queue_done_cmd(struct ncb *np, struct scsi_cmnd *cmd)
4050 {
4051 unmap_scsi_data(np, cmd);
4052 cmd->host_scribble = (char *) np->done_list;
4053 np->done_list = cmd;
4054 }
4055
4056 static inline void ncr_flush_done_cmds(struct scsi_cmnd *lcmd)
4057 {
4058 struct scsi_cmnd *cmd;
4059
4060 while (lcmd) {
4061 cmd = lcmd;
4062 lcmd = (struct scsi_cmnd *) cmd->host_scribble;
4063 cmd->scsi_done(cmd);
4064 }
4065 }
4066
4067 /*==========================================================
4068 **
4069 **
4070 ** Prepare the next negotiation message if needed.
4071 **
4072 ** Fill in the part of message buffer that contains the
4073 ** negotiation and the nego_status field of the CCB.
4074 ** Returns the size of the message in bytes.
4075 **
4076 **
4077 **==========================================================
4078 */
4079
4080
4081 static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr)
4082 {
4083 struct tcb *tp = &np->target[cp->target];
4084 int msglen = 0;
4085 int nego = 0;
4086 struct scsi_target *starget = tp->starget;
4087
4088 /* negotiate wide transfers ? */
4089 if (!tp->widedone) {
4090 if (spi_support_wide(starget)) {
4091 nego = NS_WIDE;
4092 } else
4093 tp->widedone=1;
4094 }
4095
4096 /* negotiate synchronous transfers? */
4097 if (!nego && !tp->period) {
4098 if (spi_support_sync(starget)) {
4099 nego = NS_SYNC;
4100 } else {
4101 tp->period =0xffff;
4102 dev_info(&starget->dev, "target did not report SYNC.\n");
4103 }
4104 }
4105
4106 switch (nego) {
4107 case NS_SYNC:
4108 msglen += spi_populate_sync_msg(msgptr + msglen,
4109 tp->maxoffs ? tp->minsync : 0, tp->maxoffs);
4110 break;
4111 case NS_WIDE:
4112 msglen += spi_populate_width_msg(msgptr + msglen, tp->usrwide);
4113 break;
4114 }
4115
4116 cp->nego_status = nego;
4117
4118 if (nego) {
4119 tp->nego_cp = cp;
4120 if (DEBUG_FLAGS & DEBUG_NEGO) {
4121 ncr_print_msg(cp, nego == NS_WIDE ?
4122 "wide msgout":"sync_msgout", msgptr);
4123 }
4124 }
4125
4126 return msglen;
4127 }
4128
4129
4130
4131 /*==========================================================
4132 **
4133 **
4134 ** Start execution of a SCSI command.
4135 ** This is called from the generic SCSI driver.
4136 **
4137 **
4138 **==========================================================
4139 */
4140 static int ncr_queue_command (struct ncb *np, struct scsi_cmnd *cmd)
4141 {
4142 struct scsi_device *sdev = cmd->device;
4143 struct tcb *tp = &np->target[sdev->id];
4144 struct lcb *lp = tp->lp[sdev->lun];
4145 struct ccb *cp;
4146
4147 int segments;
4148 u_char idmsg, *msgptr;
4149 u32 msglen;
4150 int direction;
4151 u32 lastp, goalp;
4152
4153 /*---------------------------------------------
4154 **
4155 ** Some shortcuts ...
4156 **
4157 **---------------------------------------------
4158 */
4159 if ((sdev->id == np->myaddr ) ||
4160 (sdev->id >= MAX_TARGET) ||
4161 (sdev->lun >= MAX_LUN )) {
4162 return(DID_BAD_TARGET);
4163 }
4164
4165 /*---------------------------------------------
4166 **
4167 ** Complete the 1st TEST UNIT READY command
4168 ** with error condition if the device is
4169 ** flagged NOSCAN, in order to speed up
4170 ** the boot.
4171 **
4172 **---------------------------------------------
4173 */
4174 if ((cmd->cmnd[0] == 0 || cmd->cmnd[0] == 0x12) &&
4175 (tp->usrflag & UF_NOSCAN)) {
4176 tp->usrflag &= ~UF_NOSCAN;
4177 return DID_BAD_TARGET;
4178 }
4179
4180 if (DEBUG_FLAGS & DEBUG_TINY) {
4181 PRINT_ADDR(cmd, "CMD=%x ", cmd->cmnd[0]);
4182 }
4183
4184 /*---------------------------------------------------
4185 **
4186 ** Assign a ccb / bind cmd.
4187 ** If resetting, shorten settle_time if necessary
4188 ** in order to avoid spurious timeouts.
4189 ** If resetting or no free ccb,
4190 ** insert cmd into the waiting list.
4191 **
4192 **----------------------------------------------------
4193 */
4194 if (np->settle_time && cmd->timeout_per_command >= HZ) {
4195 u_long tlimit = jiffies + cmd->timeout_per_command - HZ;
4196 if (time_after(np->settle_time, tlimit))
4197 np->settle_time = tlimit;
4198 }
4199
4200 if (np->settle_time || !(cp=ncr_get_ccb (np, cmd))) {
4201 insert_into_waiting_list(np, cmd);
4202 return(DID_OK);
4203 }
4204 cp->cmd = cmd;
4205
4206 /*----------------------------------------------------
4207 **
4208 ** Build the identify / tag / sdtr message
4209 **
4210 **----------------------------------------------------
4211 */
4212
4213 idmsg = IDENTIFY(0, sdev->lun);
4214
4215 if (cp ->tag != NO_TAG ||
4216 (cp != np->ccb && np->disc && !(tp->usrflag & UF_NODISC)))
4217 idmsg |= 0x40;
4218
4219 msgptr = cp->scsi_smsg;
4220 msglen = 0;
4221 msgptr[msglen++] = idmsg;
4222
4223 if (cp->tag != NO_TAG) {
4224 char order = np->order;
4225
4226 /*
4227 ** Force ordered tag if necessary to avoid timeouts
4228 ** and to preserve interactivity.
4229 */
4230 if (lp && time_after(jiffies, lp->tags_stime)) {
4231 if (lp->tags_smap) {
4232 order = ORDERED_QUEUE_TAG;
4233 if ((DEBUG_FLAGS & DEBUG_TAGS)||bootverbose>2){
4234 PRINT_ADDR(cmd,
4235 "ordered tag forced.\n");
4236 }
4237 }
4238 lp->tags_stime = jiffies + 3*HZ;
4239 lp->tags_smap = lp->tags_umap;
4240 }
4241
4242 if (order == 0) {
4243 /*
4244 ** Ordered write ops, unordered read ops.
4245 */
4246 switch (cmd->cmnd[0]) {
4247 case 0x08: /* READ_SMALL (6) */
4248 case 0x28: /* READ_BIG (10) */
4249 case 0xa8: /* READ_HUGE (12) */
4250 order = SIMPLE_QUEUE_TAG;
4251 break;
4252 default:
4253 order = ORDERED_QUEUE_TAG;
4254 }
4255 }
4256 msgptr[msglen++] = order;
4257 /*
4258 ** Actual tags are numbered 1,3,5,..2*MAXTAGS+1,
4259 ** since we may have to deal with devices that have
4260 ** problems with #TAG 0 or too great #TAG numbers.
4261 */
4262 msgptr[msglen++] = (cp->tag << 1) + 1;
4263 }
4264
4265 /*----------------------------------------------------
4266 **
4267 ** Build the data descriptors
4268 **
4269 **----------------------------------------------------
4270 */
4271
4272 direction = cmd->sc_data_direction;
4273 if (direction != DMA_NONE) {
4274 segments = ncr_scatter(np, cp, cp->cmd);
4275 if (segments < 0) {
4276 ncr_free_ccb(np, cp);
4277 return(DID_ERROR);
4278 }
4279 }
4280 else {
4281 cp->data_len = 0;
4282 segments = 0;
4283 }
4284
4285 /*---------------------------------------------------
4286 **
4287 ** negotiation required?
4288 **
4289 ** (nego_status is filled by ncr_prepare_nego())
4290 **
4291 **---------------------------------------------------
4292 */
4293
4294 cp->nego_status = 0;
4295
4296 if ((!tp->widedone || !tp->period) && !tp->nego_cp && lp) {
4297 msglen += ncr_prepare_nego (np, cp, msgptr + msglen);
4298 }
4299
4300 /*----------------------------------------------------
4301 **
4302 ** Determine xfer direction.
4303 **
4304 **----------------------------------------------------
4305 */
4306 if (!cp->data_len)
4307 direction = DMA_NONE;
4308
4309 /*
4310 ** If data direction is BIDIRECTIONAL, speculate FROM_DEVICE
4311 ** but prepare alternate pointers for TO_DEVICE in case
4312 ** of our speculation will be just wrong.
4313 ** SCRIPTS will swap values if needed.
4314 */
4315 switch(direction) {
4316 case DMA_BIDIRECTIONAL:
4317 case DMA_TO_DEVICE:
4318 goalp = NCB_SCRIPT_PHYS (np, data_out2) + 8;
4319 if (segments <= MAX_SCATTERL)
4320 lastp = goalp - 8 - (segments * 16);
4321 else {
4322 lastp = NCB_SCRIPTH_PHYS (np, hdata_out2);
4323 lastp -= (segments - MAX_SCATTERL) * 16;
4324 }
4325 if (direction != DMA_BIDIRECTIONAL)
4326 break;
4327 cp->phys.header.wgoalp = cpu_to_scr(goalp);
4328 cp->phys.header.wlastp = cpu_to_scr(lastp);
4329 /* fall through */
4330 case DMA_FROM_DEVICE:
4331 goalp = NCB_SCRIPT_PHYS (np, data_in2) + 8;
4332 if (segments <= MAX_SCATTERL)
4333 lastp = goalp - 8 - (segments * 16);
4334 else {
4335 lastp = NCB_SCRIPTH_PHYS (np, hdata_in2);
4336 lastp -= (segments - MAX_SCATTERL) * 16;
4337 }
4338 break;
4339 default:
4340 case DMA_NONE:
4341 lastp = goalp = NCB_SCRIPT_PHYS (np, no_data);
4342 break;
4343 }
4344
4345 /*
4346 ** Set all pointers values needed by SCRIPTS.
4347 ** If direction is unknown, start at data_io.
4348 */
4349 cp->phys.header.lastp = cpu_to_scr(lastp);
4350 cp->phys.header.goalp = cpu_to_scr(goalp);
4351
4352 if (direction == DMA_BIDIRECTIONAL)
4353 cp->phys.header.savep =
4354 cpu_to_scr(NCB_SCRIPTH_PHYS (np, data_io));
4355 else
4356 cp->phys.header.savep= cpu_to_scr(lastp);
4357
4358 /*
4359 ** Save the initial data pointer in order to be able
4360 ** to redo the command.
4361 */
4362 cp->startp = cp->phys.header.savep;
4363
4364 /*----------------------------------------------------
4365 **
4366 ** fill in ccb
4367 **
4368 **----------------------------------------------------
4369 **
4370 **
4371 ** physical -> virtual backlink
4372 ** Generic SCSI command
4373 */
4374
4375 /*
4376 ** Startqueue
4377 */
4378 cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
4379 cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_dsa));
4380 /*
4381 ** select
4382 */
4383 cp->phys.select.sel_id = sdev_id(sdev);
4384 cp->phys.select.sel_scntl3 = tp->wval;
4385 cp->phys.select.sel_sxfer = tp->sval;
4386 /*
4387 ** message
4388 */
4389 cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg));
4390 cp->phys.smsg.size = cpu_to_scr(msglen);
4391
4392 /*
4393 ** command
4394 */
4395 memcpy(cp->cdb_buf, cmd->cmnd, min_t(int, cmd->cmd_len, sizeof(cp->cdb_buf)));
4396 cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, cdb_buf[0]));
4397 cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len);
4398
4399 /*
4400 ** status
4401 */
4402 cp->actualquirks = 0;
4403 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4404 cp->scsi_status = S_ILLEGAL;
4405 cp->parity_status = 0;
4406
4407 cp->xerr_status = XE_OK;
4408 #if 0
4409 cp->sync_status = tp->sval;
4410 cp->wide_status = tp->wval;
4411 #endif
4412
4413 /*----------------------------------------------------
4414 **
4415 ** Critical region: start this job.
4416 **
4417 **----------------------------------------------------
4418 */
4419
4420 /* activate this job. */
4421 cp->magic = CCB_MAGIC;
4422
4423 /*
4424 ** insert next CCBs into start queue.
4425 ** 2 max at a time is enough to flush the CCB wait queue.
4426 */
4427 cp->auto_sense = 0;
4428 if (lp)
4429 ncr_start_next_ccb(np, lp, 2);
4430 else
4431 ncr_put_start_queue(np, cp);
4432
4433 /* Command is successfully queued. */
4434
4435 return DID_OK;
4436 }
4437
4438
4439 /*==========================================================
4440 **
4441 **
4442 ** Insert a CCB into the start queue and wake up the
4443 ** SCRIPTS processor.
4444 **
4445 **
4446 **==========================================================
4447 */
4448
4449 static void ncr_start_next_ccb(struct ncb *np, struct lcb *lp, int maxn)
4450 {
4451 struct list_head *qp;
4452 struct ccb *cp;
4453
4454 if (lp->held_ccb)
4455 return;
4456
4457 while (maxn-- && lp->queuedccbs < lp->queuedepth) {
4458 qp = ncr_list_pop(&lp->wait_ccbq);
4459 if (!qp)
4460 break;
4461 ++lp->queuedccbs;
4462 cp = list_entry(qp, struct ccb, link_ccbq);
4463 list_add_tail(qp, &lp->busy_ccbq);
4464 lp->jump_ccb[cp->tag == NO_TAG ? 0 : cp->tag] =
4465 cpu_to_scr(CCB_PHYS (cp, restart));
4466 ncr_put_start_queue(np, cp);
4467 }
4468 }
4469
4470 static void ncr_put_start_queue(struct ncb *np, struct ccb *cp)
4471 {
4472 u16 qidx;
4473
4474 /*
4475 ** insert into start queue.
4476 */
4477 if (!np->squeueput) np->squeueput = 1;
4478 qidx = np->squeueput + 2;
4479 if (qidx >= MAX_START + MAX_START) qidx = 1;
4480
4481 np->scripth->tryloop [qidx] = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
4482 MEMORY_BARRIER();
4483 np->scripth->tryloop [np->squeueput] = cpu_to_scr(CCB_PHYS (cp, start));
4484
4485 np->squeueput = qidx;
4486 ++np->queuedccbs;
4487 cp->queued = 1;
4488
4489 if (DEBUG_FLAGS & DEBUG_QUEUE)
4490 printk ("%s: queuepos=%d.\n", ncr_name (np), np->squeueput);
4491
4492 /*
4493 ** Script processor may be waiting for reselect.
4494 ** Wake it up.
4495 */
4496 MEMORY_BARRIER();
4497 OUTB (nc_istat, SIGP);
4498 }
4499
4500
4501 static int ncr_reset_scsi_bus(struct ncb *np, int enab_int, int settle_delay)
4502 {
4503 u32 term;
4504 int retv = 0;
4505
4506 np->settle_time = jiffies + settle_delay * HZ;
4507
4508 if (bootverbose > 1)
4509 printk("%s: resetting, "
4510 "command processing suspended for %d seconds\n",
4511 ncr_name(np), settle_delay);
4512
4513 ncr_chip_reset(np, 100);
4514 udelay(2000); /* The 895 needs time for the bus mode to settle */
4515 if (enab_int)
4516 OUTW (nc_sien, RST);
4517 /*
4518 ** Enable Tolerant, reset IRQD if present and
4519 ** properly set IRQ mode, prior to resetting the bus.
4520 */
4521 OUTB (nc_stest3, TE);
4522 OUTB (nc_scntl1, CRST);
4523 udelay(200);
4524
4525 if (!driver_setup.bus_check)
4526 goto out;
4527 /*
4528 ** Check for no terminators or SCSI bus shorts to ground.
4529 ** Read SCSI data bus, data parity bits and control signals.
4530 ** We are expecting RESET to be TRUE and other signals to be
4531 ** FALSE.
4532 */
4533
4534 term = INB(nc_sstat0);
4535 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
4536 term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */
4537 ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */
4538 ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */
4539 INB(nc_sbcl); /* req ack bsy sel atn msg cd io */
4540
4541 if (!(np->features & FE_WIDE))
4542 term &= 0x3ffff;
4543
4544 if (term != (2<<7)) {
4545 printk("%s: suspicious SCSI data while resetting the BUS.\n",
4546 ncr_name(np));
4547 printk("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
4548 "0x%lx, expecting 0x%lx\n",
4549 ncr_name(np),
4550 (np->features & FE_WIDE) ? "dp1,d15-8," : "",
4551 (u_long)term, (u_long)(2<<7));
4552 if (driver_setup.bus_check == 1)
4553 retv = 1;
4554 }
4555 out:
4556 OUTB (nc_scntl1, 0);
4557 return retv;
4558 }
4559
4560 /*
4561 * Start reset process.
4562 * If reset in progress do nothing.
4563 * The interrupt handler will reinitialize the chip.
4564 * The timeout handler will wait for settle_time before
4565 * clearing it and so resuming command processing.
4566 */
4567 static void ncr_start_reset(struct ncb *np)
4568 {
4569 if (!np->settle_time) {
4570 ncr_reset_scsi_bus(np, 1, driver_setup.settle_delay);
4571 }
4572 }
4573
4574 /*==========================================================
4575 **
4576 **
4577 ** Reset the SCSI BUS.
4578 ** This is called from the generic SCSI driver.
4579 **
4580 **
4581 **==========================================================
4582 */
4583 static int ncr_reset_bus (struct ncb *np, struct scsi_cmnd *cmd, int sync_reset)
4584 {
4585 /* struct scsi_device *device = cmd->device; */
4586 struct ccb *cp;
4587 int found;
4588
4589 /*
4590 * Return immediately if reset is in progress.
4591 */
4592 if (np->settle_time) {
4593 return FAILED;
4594 }
4595 /*
4596 * Start the reset process.
4597 * The script processor is then assumed to be stopped.
4598 * Commands will now be queued in the waiting list until a settle
4599 * delay of 2 seconds will be completed.
4600 */
4601 ncr_start_reset(np);
4602 /*
4603 * First, look in the wakeup list
4604 */
4605 for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) {
4606 /*
4607 ** look for the ccb of this command.
4608 */
4609 if (cp->host_status == HS_IDLE) continue;
4610 if (cp->cmd == cmd) {
4611 found = 1;
4612 break;
4613 }
4614 }
4615 /*
4616 * Then, look in the waiting list
4617 */
4618 if (!found && retrieve_from_waiting_list(0, np, cmd))
4619 found = 1;
4620 /*
4621 * Wake-up all awaiting commands with DID_RESET.
4622 */
4623 reset_waiting_list(np);
4624 /*
4625 * Wake-up all pending commands with HS_RESET -> DID_RESET.
4626 */
4627 ncr_wakeup(np, HS_RESET);
4628 /*
4629 * If the involved command was not in a driver queue, and the
4630 * scsi driver told us reset is synchronous, and the command is not
4631 * currently in the waiting list, complete it with DID_RESET status,
4632 * in order to keep it alive.
4633 */
4634 if (!found && sync_reset && !retrieve_from_waiting_list(0, np, cmd)) {
4635 cmd->result = ScsiResult(DID_RESET, 0);
4636 ncr_queue_done_cmd(np, cmd);
4637 }
4638
4639 return SUCCESS;
4640 }
4641
4642 #if 0 /* unused and broken.. */
4643 /*==========================================================
4644 **
4645 **
4646 ** Abort an SCSI command.
4647 ** This is called from the generic SCSI driver.
4648 **
4649 **
4650 **==========================================================
4651 */
4652 static int ncr_abort_command (struct ncb *np, struct scsi_cmnd *cmd)
4653 {
4654 /* struct scsi_device *device = cmd->device; */
4655 struct ccb *cp;
4656 int found;
4657 int retv;
4658
4659 /*
4660 * First, look for the scsi command in the waiting list
4661 */
4662 if (remove_from_waiting_list(np, cmd)) {
4663 cmd->result = ScsiResult(DID_ABORT, 0);
4664 ncr_queue_done_cmd(np, cmd);
4665 return SCSI_ABORT_SUCCESS;
4666 }
4667
4668 /*
4669 * Then, look in the wakeup list
4670 */
4671 for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) {
4672 /*
4673 ** look for the ccb of this command.
4674 */
4675 if (cp->host_status == HS_IDLE) continue;
4676 if (cp->cmd == cmd) {
4677 found = 1;
4678 break;
4679 }
4680 }
4681
4682 if (!found) {
4683 return SCSI_ABORT_NOT_RUNNING;
4684 }
4685
4686 if (np->settle_time) {
4687 return SCSI_ABORT_SNOOZE;
4688 }
4689
4690 /*
4691 ** If the CCB is active, patch schedule jumps for the
4692 ** script to abort the command.
4693 */
4694
4695 switch(cp->host_status) {
4696 case HS_BUSY:
4697 case HS_NEGOTIATE:
4698 printk ("%s: abort ccb=%p (cancel)\n", ncr_name (np), cp);
4699 cp->start.schedule.l_paddr =
4700 cpu_to_scr(NCB_SCRIPTH_PHYS (np, cancel));
4701 retv = SCSI_ABORT_PENDING;
4702 break;
4703 case HS_DISCONNECT:
4704 cp->restart.schedule.l_paddr =
4705 cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort));
4706 retv = SCSI_ABORT_PENDING;
4707 break;
4708 default:
4709 retv = SCSI_ABORT_NOT_RUNNING;
4710 break;
4711
4712 }
4713
4714 /*
4715 ** If there are no requests, the script
4716 ** processor will sleep on SEL_WAIT_RESEL.
4717 ** Let's wake it up, since it may have to work.
4718 */
4719 OUTB (nc_istat, SIGP);
4720
4721 return retv;
4722 }
4723 #endif
4724
4725 static void ncr_detach(struct ncb *np)
4726 {
4727 struct ccb *cp;
4728 struct tcb *tp;
4729 struct lcb *lp;
4730 int target, lun;
4731 int i;
4732 char inst_name[16];
4733
4734 /* Local copy so we don't access np after freeing it! */
4735 strlcpy(inst_name, ncr_name(np), sizeof(inst_name));
4736
4737 printk("%s: releasing host resources\n", ncr_name(np));
4738
4739 /*
4740 ** Stop the ncr_timeout process
4741 ** Set release_stage to 1 and wait that ncr_timeout() set it to 2.
4742 */
4743
4744 #ifdef DEBUG_NCR53C8XX
4745 printk("%s: stopping the timer\n", ncr_name(np));
4746 #endif
4747 np->release_stage = 1;
4748 for (i = 50 ; i && np->release_stage != 2 ; i--)
4749 mdelay(100);
4750 if (np->release_stage != 2)
4751 printk("%s: the timer seems to be already stopped\n", ncr_name(np));
4752 else np->release_stage = 2;
4753
4754 /*
4755 ** Disable chip interrupts
4756 */
4757
4758 #ifdef DEBUG_NCR53C8XX
4759 printk("%s: disabling chip interrupts\n", ncr_name(np));
4760 #endif
4761 OUTW (nc_sien , 0);
4762 OUTB (nc_dien , 0);
4763
4764 /*
4765 ** Reset NCR chip
4766 ** Restore bios setting for automatic clock detection.
4767 */
4768
4769 printk("%s: resetting chip\n", ncr_name(np));
4770 ncr_chip_reset(np, 100);
4771
4772 OUTB(nc_dmode, np->sv_dmode);
4773 OUTB(nc_dcntl, np->sv_dcntl);
4774 OUTB(nc_ctest0, np->sv_ctest0);
4775 OUTB(nc_ctest3, np->sv_ctest3);
4776 OUTB(nc_ctest4, np->sv_ctest4);
4777 OUTB(nc_ctest5, np->sv_ctest5);
4778 OUTB(nc_gpcntl, np->sv_gpcntl);
4779 OUTB(nc_stest2, np->sv_stest2);
4780
4781 ncr_selectclock(np, np->sv_scntl3);
4782
4783 /*
4784 ** Free allocated ccb(s)
4785 */
4786
4787 while ((cp=np->ccb->link_ccb) != NULL) {
4788 np->ccb->link_ccb = cp->link_ccb;
4789 if (cp->host_status) {
4790 printk("%s: shall free an active ccb (host_status=%d)\n",
4791 ncr_name(np), cp->host_status);
4792 }
4793 #ifdef DEBUG_NCR53C8XX
4794 printk("%s: freeing ccb (%lx)\n", ncr_name(np), (u_long) cp);
4795 #endif
4796 m_free_dma(cp, sizeof(*cp), "CCB");
4797 }
4798
4799 /* Free allocated tp(s) */
4800
4801 for (target = 0; target < MAX_TARGET ; target++) {
4802 tp=&np->target[target];
4803 for (lun = 0 ; lun < MAX_LUN ; lun++) {
4804 lp = tp->lp[lun];
4805 if (lp) {
4806 #ifdef DEBUG_NCR53C8XX
4807 printk("%s: freeing lp (%lx)\n", ncr_name(np), (u_long) lp);
4808 #endif
4809 if (lp->jump_ccb != &lp->jump_ccb_0)
4810 m_free_dma(lp->jump_ccb,256,"JUMP_CCB");
4811 m_free_dma(lp, sizeof(*lp), "LCB");
4812 }
4813 }
4814 }
4815
4816 if (np->scripth0)
4817 m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH");
4818 if (np->script0)
4819 m_free_dma(np->script0, sizeof(struct script), "SCRIPT");
4820 if (np->ccb)
4821 m_free_dma(np->ccb, sizeof(struct ccb), "CCB");
4822 m_free_dma(np, sizeof(struct ncb), "NCB");
4823
4824 printk("%s: host resources successfully released\n", inst_name);
4825 }
4826
4827 /*==========================================================
4828 **
4829 **
4830 ** Complete execution of a SCSI command.
4831 ** Signal completion to the generic SCSI driver.
4832 **
4833 **
4834 **==========================================================
4835 */
4836
4837 void ncr_complete (struct ncb *np, struct ccb *cp)
4838 {
4839 struct scsi_cmnd *cmd;
4840 struct tcb *tp;
4841 struct lcb *lp;
4842
4843 /*
4844 ** Sanity check
4845 */
4846
4847 if (!cp || cp->magic != CCB_MAGIC || !cp->cmd)
4848 return;
4849
4850 /*
4851 ** Print minimal debug information.
4852 */
4853
4854 if (DEBUG_FLAGS & DEBUG_TINY)
4855 printk ("CCB=%lx STAT=%x/%x\n", (unsigned long)cp,
4856 cp->host_status,cp->scsi_status);
4857
4858 /*
4859 ** Get command, target and lun pointers.
4860 */
4861
4862 cmd = cp->cmd;
4863 cp->cmd = NULL;
4864 tp = &np->target[cmd->device->id];
4865 lp = tp->lp[cmd->device->lun];
4866
4867 /*
4868 ** We donnot queue more than 1 ccb per target
4869 ** with negotiation at any time. If this ccb was
4870 ** used for negotiation, clear this info in the tcb.
4871 */
4872
4873 if (cp == tp->nego_cp)
4874 tp->nego_cp = NULL;
4875
4876 /*
4877 ** If auto-sense performed, change scsi status.
4878 */
4879 if (cp->auto_sense) {
4880 cp->scsi_status = cp->auto_sense;
4881 }
4882
4883 /*
4884 ** If we were recovering from queue full or performing
4885 ** auto-sense, requeue skipped CCBs to the wait queue.
4886 */
4887
4888 if (lp && lp->held_ccb) {
4889 if (cp == lp->held_ccb) {
4890 list_splice_init(&lp->skip_ccbq, &lp->wait_ccbq);
4891 lp->held_ccb = NULL;
4892 }
4893 }
4894
4895 /*
4896 ** Check for parity errors.
4897 */
4898
4899 if (cp->parity_status > 1) {
4900 PRINT_ADDR(cmd, "%d parity error(s).\n",cp->parity_status);
4901 }
4902
4903 /*
4904 ** Check for extended errors.
4905 */
4906
4907 if (cp->xerr_status != XE_OK) {
4908 switch (cp->xerr_status) {
4909 case XE_EXTRA_DATA:
4910 PRINT_ADDR(cmd, "extraneous data discarded.\n");
4911 break;
4912 case XE_BAD_PHASE:
4913 PRINT_ADDR(cmd, "invalid scsi phase (4/5).\n");
4914 break;
4915 default:
4916 PRINT_ADDR(cmd, "extended error %d.\n",
4917 cp->xerr_status);
4918 break;
4919 }
4920 if (cp->host_status==HS_COMPLETE)
4921 cp->host_status = HS_FAIL;
4922 }
4923
4924 /*
4925 ** Print out any error for debugging purpose.
4926 */
4927 if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) {
4928 if (cp->host_status!=HS_COMPLETE || cp->scsi_status!=S_GOOD) {
4929 PRINT_ADDR(cmd, "ERROR: cmd=%x host_status=%x "
4930 "scsi_status=%x\n", cmd->cmnd[0],
4931 cp->host_status, cp->scsi_status);
4932 }
4933 }
4934
4935 /*
4936 ** Check the status.
4937 */
4938 if ( (cp->host_status == HS_COMPLETE)
4939 && (cp->scsi_status == S_GOOD ||
4940 cp->scsi_status == S_COND_MET)) {
4941 /*
4942 * All went well (GOOD status).
4943 * CONDITION MET status is returned on
4944 * `Pre-Fetch' or `Search data' success.
4945 */
4946 cmd->result = ScsiResult(DID_OK, cp->scsi_status);
4947
4948 /*
4949 ** @RESID@
4950 ** Could dig out the correct value for resid,
4951 ** but it would be quite complicated.
4952 */
4953 /* if (cp->phys.header.lastp != cp->phys.header.goalp) */
4954
4955 /*
4956 ** Allocate the lcb if not yet.
4957 */
4958 if (!lp)
4959 ncr_alloc_lcb (np, cmd->device->id, cmd->device->lun);
4960
4961 tp->bytes += cp->data_len;
4962 tp->transfers ++;
4963
4964 /*
4965 ** If tags was reduced due to queue full,
4966 ** increase tags if 1000 good status received.
4967 */
4968 if (lp && lp->usetags && lp->numtags < lp->maxtags) {
4969 ++lp->num_good;
4970 if (lp->num_good >= 1000) {
4971 lp->num_good = 0;
4972 ++lp->numtags;
4973 ncr_setup_tags (np, cmd->device);
4974 }
4975 }
4976 } else if ((cp->host_status == HS_COMPLETE)
4977 && (cp->scsi_status == S_CHECK_COND)) {
4978 /*
4979 ** Check condition code
4980 */
4981 cmd->result = ScsiResult(DID_OK, S_CHECK_COND);
4982
4983 /*
4984 ** Copy back sense data to caller's buffer.
4985 */
4986 memcpy(cmd->sense_buffer, cp->sense_buf,
4987 min(sizeof(cmd->sense_buffer), sizeof(cp->sense_buf)));
4988
4989 if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) {
4990 u_char * p = (u_char*) & cmd->sense_buffer;
4991 int i;
4992 PRINT_ADDR(cmd, "sense data:");
4993 for (i=0; i<14; i++) printk (" %x", *p++);
4994 printk (".\n");
4995 }
4996 } else if ((cp->host_status == HS_COMPLETE)
4997 && (cp->scsi_status == S_CONFLICT)) {
4998 /*
4999 ** Reservation Conflict condition code
5000 */
5001 cmd->result = ScsiResult(DID_OK, S_CONFLICT);
5002
5003 } else if ((cp->host_status == HS_COMPLETE)
5004 && (cp->scsi_status == S_BUSY ||
5005 cp->scsi_status == S_QUEUE_FULL)) {
5006
5007 /*
5008 ** Target is busy.
5009 */
5010 cmd->result = ScsiResult(DID_OK, cp->scsi_status);
5011
5012 } else if ((cp->host_status == HS_SEL_TIMEOUT)
5013 || (cp->host_status == HS_TIMEOUT)) {
5014
5015 /*
5016 ** No response
5017 */
5018 cmd->result = ScsiResult(DID_TIME_OUT, cp->scsi_status);
5019
5020 } else if (cp->host_status == HS_RESET) {
5021
5022 /*
5023 ** SCSI bus reset
5024 */
5025 cmd->result = ScsiResult(DID_RESET, cp->scsi_status);
5026
5027 } else if (cp->host_status == HS_ABORTED) {
5028
5029 /*
5030 ** Transfer aborted
5031 */
5032 cmd->result = ScsiResult(DID_ABORT, cp->scsi_status);
5033
5034 } else {
5035
5036 /*
5037 ** Other protocol messes
5038 */
5039 PRINT_ADDR(cmd, "COMMAND FAILED (%x %x) @%p.\n",
5040 cp->host_status, cp->scsi_status, cp);
5041
5042 cmd->result = ScsiResult(DID_ERROR, cp->scsi_status);
5043 }
5044
5045 /*
5046 ** trace output
5047 */
5048
5049 if (tp->usrflag & UF_TRACE) {
5050 u_char * p;
5051 int i;
5052 PRINT_ADDR(cmd, " CMD:");
5053 p = (u_char*) &cmd->cmnd[0];
5054 for (i=0; i<cmd->cmd_len; i++) printk (" %x", *p++);
5055
5056 if (cp->host_status==HS_COMPLETE) {
5057 switch (cp->scsi_status) {
5058 case S_GOOD:
5059 printk (" GOOD");
5060 break;
5061 case S_CHECK_COND:
5062 printk (" SENSE:");
5063 p = (u_char*) &cmd->sense_buffer;
5064 for (i=0; i<14; i++)
5065 printk (" %x", *p++);
5066 break;
5067 default:
5068 printk (" STAT: %x\n", cp->scsi_status);
5069 break;
5070 }
5071 } else printk (" HOSTERROR: %x", cp->host_status);
5072 printk ("\n");
5073 }
5074
5075 /*
5076 ** Free this ccb
5077 */
5078 ncr_free_ccb (np, cp);
5079
5080 /*
5081 ** requeue awaiting scsi commands for this lun.
5082 */
5083 if (lp && lp->queuedccbs < lp->queuedepth &&
5084 !list_empty(&lp->wait_ccbq))
5085 ncr_start_next_ccb(np, lp, 2);
5086
5087 /*
5088 ** requeue awaiting scsi commands for this controller.
5089 */
5090 if (np->waiting_list)
5091 requeue_waiting_list(np);
5092
5093 /*
5094 ** signal completion to generic driver.
5095 */
5096 ncr_queue_done_cmd(np, cmd);
5097 }
5098
5099 /*==========================================================
5100 **
5101 **
5102 ** Signal all (or one) control block done.
5103 **
5104 **
5105 **==========================================================
5106 */
5107
5108 /*
5109 ** This CCB has been skipped by the NCR.
5110 ** Queue it in the correponding unit queue.
5111 */
5112 static void ncr_ccb_skipped(struct ncb *np, struct ccb *cp)
5113 {
5114 struct tcb *tp = &np->target[cp->target];
5115 struct lcb *lp = tp->lp[cp->lun];
5116
5117 if (lp && cp != np->ccb) {
5118 cp->host_status &= ~HS_SKIPMASK;
5119 cp->start.schedule.l_paddr =
5120 cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
5121 list_move_tail(&cp->link_ccbq, &lp->skip_ccbq);
5122 if (cp->queued) {
5123 --lp->queuedccbs;
5124 }
5125 }
5126 if (cp->queued) {
5127 --np->queuedccbs;
5128 cp->queued = 0;
5129 }
5130 }
5131
5132 /*
5133 ** The NCR has completed CCBs.
5134 ** Look at the DONE QUEUE if enabled, otherwise scan all CCBs
5135 */
5136 void ncr_wakeup_done (struct ncb *np)
5137 {
5138 struct ccb *cp;
5139 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
5140 int i, j;
5141
5142 i = np->ccb_done_ic;
5143 while (1) {
5144 j = i+1;
5145 if (j >= MAX_DONE)
5146 j = 0;
5147
5148 cp = np->ccb_done[j];
5149 if (!CCB_DONE_VALID(cp))
5150 break;
5151
5152 np->ccb_done[j] = (struct ccb *)CCB_DONE_EMPTY;
5153 np->scripth->done_queue[5*j + 4] =
5154 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug));
5155 MEMORY_BARRIER();
5156 np->scripth->done_queue[5*i + 4] =
5157 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end));
5158
5159 if (cp->host_status & HS_DONEMASK)
5160 ncr_complete (np, cp);
5161 else if (cp->host_status & HS_SKIPMASK)
5162 ncr_ccb_skipped (np, cp);
5163
5164 i = j;
5165 }
5166 np->ccb_done_ic = i;
5167 #else
5168 cp = np->ccb;
5169 while (cp) {
5170 if (cp->host_status & HS_DONEMASK)
5171 ncr_complete (np, cp);
5172 else if (cp->host_status & HS_SKIPMASK)
5173 ncr_ccb_skipped (np, cp);
5174 cp = cp->link_ccb;
5175 }
5176 #endif
5177 }
5178
5179 /*
5180 ** Complete all active CCBs.
5181 */
5182 void ncr_wakeup (struct ncb *np, u_long code)
5183 {
5184 struct ccb *cp = np->ccb;
5185
5186 while (cp) {
5187 if (cp->host_status != HS_IDLE) {
5188 cp->host_status = code;
5189 ncr_complete (np, cp);
5190 }
5191 cp = cp->link_ccb;
5192 }
5193 }
5194
5195 /*
5196 ** Reset ncr chip.
5197 */
5198
5199 /* Some initialisation must be done immediately following reset, for 53c720,
5200 * at least. EA (dcntl bit 5) isn't set here as it is set once only in
5201 * the _detect function.
5202 */
5203 static void ncr_chip_reset(struct ncb *np, int delay)
5204 {
5205 OUTB (nc_istat, SRST);
5206 udelay(delay);
5207 OUTB (nc_istat, 0 );
5208
5209 if (np->features & FE_EHP)
5210 OUTB (nc_ctest0, EHP);
5211 if (np->features & FE_MUX)
5212 OUTB (nc_ctest4, MUX);
5213 }
5214
5215
5216 /*==========================================================
5217 **
5218 **
5219 ** Start NCR chip.
5220 **
5221 **
5222 **==========================================================
5223 */
5224
5225 void ncr_init (struct ncb *np, int reset, char * msg, u_long code)
5226 {
5227 int i;
5228
5229 /*
5230 ** Reset chip if asked, otherwise just clear fifos.
5231 */
5232
5233 if (reset) {
5234 OUTB (nc_istat, SRST);
5235 udelay(100);
5236 }
5237 else {
5238 OUTB (nc_stest3, TE|CSF);
5239 OUTONB (nc_ctest3, CLF);
5240 }
5241
5242 /*
5243 ** Message.
5244 */
5245
5246 if (msg) printk (KERN_INFO "%s: restart (%s).\n", ncr_name (np), msg);
5247
5248 /*
5249 ** Clear Start Queue
5250 */
5251 np->queuedepth = MAX_START - 1; /* 1 entry needed as end marker */
5252 for (i = 1; i < MAX_START + MAX_START; i += 2)
5253 np->scripth0->tryloop[i] =
5254 cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
5255
5256 /*
5257 ** Start at first entry.
5258 */
5259 np->squeueput = 0;
5260 np->script0->startpos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np, tryloop));
5261
5262 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
5263 /*
5264 ** Clear Done Queue
5265 */
5266 for (i = 0; i < MAX_DONE; i++) {
5267 np->ccb_done[i] = (struct ccb *)CCB_DONE_EMPTY;
5268 np->scripth0->done_queue[5*i + 4] =
5269 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end));
5270 }
5271 #endif
5272
5273 /*
5274 ** Start at first entry.
5275 */
5276 np->script0->done_pos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np,done_queue));
5277 np->ccb_done_ic = MAX_DONE-1;
5278 np->scripth0->done_queue[5*(MAX_DONE-1) + 4] =
5279 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug));
5280
5281 /*
5282 ** Wakeup all pending jobs.
5283 */
5284 ncr_wakeup (np, code);
5285
5286 /*
5287 ** Init chip.
5288 */
5289
5290 /*
5291 ** Remove reset; big delay because the 895 needs time for the
5292 ** bus mode to settle
5293 */
5294 ncr_chip_reset(np, 2000);
5295
5296 OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
5297 /* full arb., ena parity, par->ATN */
5298 OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */
5299
5300 ncr_selectclock(np, np->rv_scntl3); /* Select SCSI clock */
5301
5302 OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */
5303 OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */
5304 OUTB (nc_istat , SIGP ); /* Signal Process */
5305 OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */
5306 OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */
5307
5308 OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */
5309 OUTB (nc_ctest0, np->rv_ctest0); /* 720: CDIS and EHP */
5310 OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */
5311 OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */
5312
5313 OUTB (nc_stest2, EXT|np->rv_stest2); /* Extended Sreq/Sack filtering */
5314 OUTB (nc_stest3, TE); /* TolerANT enable */
5315 OUTB (nc_stime0, 0x0c ); /* HTH disabled STO 0.25 sec */
5316
5317 /*
5318 ** Disable disconnects.
5319 */
5320
5321 np->disc = 0;
5322
5323 /*
5324 ** Enable GPIO0 pin for writing if LED support.
5325 */
5326
5327 if (np->features & FE_LED0) {
5328 OUTOFFB (nc_gpcntl, 0x01);
5329 }
5330
5331 /*
5332 ** enable ints
5333 */
5334
5335 OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
5336 OUTB (nc_dien , MDPE|BF|ABRT|SSI|SIR|IID);
5337
5338 /*
5339 ** Fill in target structure.
5340 ** Reinitialize usrsync.
5341 ** Reinitialize usrwide.
5342 ** Prepare sync negotiation according to actual SCSI bus mode.
5343 */
5344
5345 for (i=0;i<MAX_TARGET;i++) {
5346 struct tcb *tp = &np->target[i];
5347
5348 tp->sval = 0;
5349 tp->wval = np->rv_scntl3;
5350
5351 if (tp->usrsync != 255) {
5352 if (tp->usrsync <= np->maxsync) {
5353 if (tp->usrsync < np->minsync) {
5354 tp->usrsync = np->minsync;
5355 }
5356 }
5357 else
5358 tp->usrsync = 255;
5359 }
5360
5361 if (tp->usrwide > np->maxwide)
5362 tp->usrwide = np->maxwide;
5363
5364 }
5365
5366 /*
5367 ** Start script processor.
5368 */
5369 if (np->paddr2) {
5370 if (bootverbose)
5371 printk ("%s: Downloading SCSI SCRIPTS.\n",
5372 ncr_name(np));
5373 OUTL (nc_scratcha, vtobus(np->script0));
5374 OUTL_DSP (NCB_SCRIPTH_PHYS (np, start_ram));
5375 }
5376 else
5377 OUTL_DSP (NCB_SCRIPT_PHYS (np, start));
5378 }
5379
5380 /*==========================================================
5381 **
5382 ** Prepare the negotiation values for wide and
5383 ** synchronous transfers.
5384 **
5385 **==========================================================
5386 */
5387
5388 static void ncr_negotiate (struct ncb* np, struct tcb* tp)
5389 {
5390 /*
5391 ** minsync unit is 4ns !
5392 */
5393
5394 u_long minsync = tp->usrsync;
5395
5396 /*
5397 ** SCSI bus mode limit
5398 */
5399
5400 if (np->scsi_mode && np->scsi_mode == SMODE_SE) {
5401 if (minsync < 12) minsync = 12;
5402 }
5403
5404 /*
5405 ** our limit ..
5406 */
5407
5408 if (minsync < np->minsync)
5409 minsync = np->minsync;
5410
5411 /*
5412 ** divider limit
5413 */
5414
5415 if (minsync > np->maxsync)
5416 minsync = 255;
5417
5418 if (tp->maxoffs > np->maxoffs)
5419 tp->maxoffs = np->maxoffs;
5420
5421 tp->minsync = minsync;
5422 tp->maxoffs = (minsync<255 ? tp->maxoffs : 0);
5423
5424 /*
5425 ** period=0: has to negotiate sync transfer
5426 */
5427
5428 tp->period=0;
5429
5430 /*
5431 ** widedone=0: has to negotiate wide transfer
5432 */
5433 tp->widedone=0;
5434 }
5435
5436 /*==========================================================
5437 **
5438 ** Get clock factor and sync divisor for a given
5439 ** synchronous factor period.
5440 ** Returns the clock factor (in sxfer) and scntl3
5441 ** synchronous divisor field.
5442 **
5443 **==========================================================
5444 */
5445
5446 static void ncr_getsync(struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p)
5447 {
5448 u_long clk = np->clock_khz; /* SCSI clock frequency in kHz */
5449 int div = np->clock_divn; /* Number of divisors supported */
5450 u_long fak; /* Sync factor in sxfer */
5451 u_long per; /* Period in tenths of ns */
5452 u_long kpc; /* (per * clk) */
5453
5454 /*
5455 ** Compute the synchronous period in tenths of nano-seconds
5456 */
5457 if (sfac <= 10) per = 250;
5458 else if (sfac == 11) per = 303;
5459 else if (sfac == 12) per = 500;
5460 else per = 40 * sfac;
5461
5462 /*
5463 ** Look for the greatest clock divisor that allows an
5464 ** input speed faster than the period.
5465 */
5466 kpc = per * clk;
5467 while (--div >= 0)
5468 if (kpc >= (div_10M[div] << 2)) break;
5469
5470 /*
5471 ** Calculate the lowest clock factor that allows an output
5472 ** speed not faster than the period.
5473 */
5474 fak = (kpc - 1) / div_10M[div] + 1;
5475
5476 #if 0 /* This optimization does not seem very useful */
5477
5478 per = (fak * div_10M[div]) / clk;
5479
5480 /*
5481 ** Why not to try the immediate lower divisor and to choose
5482 ** the one that allows the fastest output speed ?
5483 ** We don't want input speed too much greater than output speed.
5484 */
5485 if (div >= 1 && fak < 8) {
5486 u_long fak2, per2;
5487 fak2 = (kpc - 1) / div_10M[div-1] + 1;
5488 per2 = (fak2 * div_10M[div-1]) / clk;
5489 if (per2 < per && fak2 <= 8) {
5490 fak = fak2;
5491 per = per2;
5492 --div;
5493 }
5494 }
5495 #endif
5496
5497 if (fak < 4) fak = 4; /* Should never happen, too bad ... */
5498
5499 /*
5500 ** Compute and return sync parameters for the ncr
5501 */
5502 *fakp = fak - 4;
5503 *scntl3p = ((div+1) << 4) + (sfac < 25 ? 0x80 : 0);
5504 }
5505
5506
5507 /*==========================================================
5508 **
5509 ** Set actual values, sync status and patch all ccbs of
5510 ** a target according to new sync/wide agreement.
5511 **
5512 **==========================================================
5513 */
5514
5515 static void ncr_set_sync_wide_status (struct ncb *np, u_char target)
5516 {
5517 struct ccb *cp;
5518 struct tcb *tp = &np->target[target];
5519
5520 /*
5521 ** set actual value and sync_status
5522 */
5523 OUTB (nc_sxfer, tp->sval);
5524 np->sync_st = tp->sval;
5525 OUTB (nc_scntl3, tp->wval);
5526 np->wide_st = tp->wval;
5527
5528 /*
5529 ** patch ALL ccbs of this target.
5530 */
5531 for (cp = np->ccb; cp; cp = cp->link_ccb) {
5532 if (!cp->cmd) continue;
5533 if (scmd_id(cp->cmd) != target) continue;
5534 #if 0
5535 cp->sync_status = tp->sval;
5536 cp->wide_status = tp->wval;
5537 #endif
5538 cp->phys.select.sel_scntl3 = tp->wval;
5539 cp->phys.select.sel_sxfer = tp->sval;
5540 }
5541 }
5542
5543 /*==========================================================
5544 **
5545 ** Switch sync mode for current job and it's target
5546 **
5547 **==========================================================
5548 */
5549
5550 static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer)
5551 {
5552 struct scsi_cmnd *cmd = cp->cmd;
5553 struct tcb *tp;
5554 u_char target = INB (nc_sdid) & 0x0f;
5555 u_char idiv;
5556
5557 BUG_ON(target != (scmd_id(cmd) & 0xf));
5558
5559 tp = &np->target[target];
5560
5561 if (!scntl3 || !(sxfer & 0x1f))
5562 scntl3 = np->rv_scntl3;
5563 scntl3 = (scntl3 & 0xf0) | (tp->wval & EWS) | (np->rv_scntl3 & 0x07);
5564
5565 /*
5566 ** Deduce the value of controller sync period from scntl3.
5567 ** period is in tenths of nano-seconds.
5568 */
5569
5570 idiv = ((scntl3 >> 4) & 0x7);
5571 if ((sxfer & 0x1f) && idiv)
5572 tp->period = (((sxfer>>5)+4)*div_10M[idiv-1])/np->clock_khz;
5573 else
5574 tp->period = 0xffff;
5575
5576 /* Stop there if sync parameters are unchanged */
5577 if (tp->sval == sxfer && tp->wval == scntl3)
5578 return;
5579 tp->sval = sxfer;
5580 tp->wval = scntl3;
5581
5582 if (sxfer & 0x01f) {
5583 /* Disable extended Sreq/Sack filtering */
5584 if (tp->period <= 2000)
5585 OUTOFFB(nc_stest2, EXT);
5586 }
5587
5588 spi_display_xfer_agreement(tp->starget);
5589
5590 /*
5591 ** set actual value and sync_status
5592 ** patch ALL ccbs of this target.
5593 */
5594 ncr_set_sync_wide_status(np, target);
5595 }
5596
5597 /*==========================================================
5598 **
5599 ** Switch wide mode for current job and it's target
5600 ** SCSI specs say: a SCSI device that accepts a WDTR
5601 ** message shall reset the synchronous agreement to
5602 ** asynchronous mode.
5603 **
5604 **==========================================================
5605 */
5606
5607 static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack)
5608 {
5609 struct scsi_cmnd *cmd = cp->cmd;
5610 u16 target = INB (nc_sdid) & 0x0f;
5611 struct tcb *tp;
5612 u_char scntl3;
5613 u_char sxfer;
5614
5615 BUG_ON(target != (scmd_id(cmd) & 0xf));
5616
5617 tp = &np->target[target];
5618 tp->widedone = wide+1;
5619 scntl3 = (tp->wval & (~EWS)) | (wide ? EWS : 0);
5620
5621 sxfer = ack ? 0 : tp->sval;
5622
5623 /*
5624 ** Stop there if sync/wide parameters are unchanged
5625 */
5626 if (tp->sval == sxfer && tp->wval == scntl3) return;
5627 tp->sval = sxfer;
5628 tp->wval = scntl3;
5629
5630 /*
5631 ** Bells and whistles ;-)
5632 */
5633 if (bootverbose >= 2) {
5634 dev_info(&cmd->device->sdev_target->dev, "WIDE SCSI %sabled.\n",
5635 (scntl3 & EWS) ? "en" : "dis");
5636 }
5637
5638 /*
5639 ** set actual value and sync_status
5640 ** patch ALL ccbs of this target.
5641 */
5642 ncr_set_sync_wide_status(np, target);
5643 }
5644
5645 /*==========================================================
5646 **
5647 ** Switch tagged mode for a target.
5648 **
5649 **==========================================================
5650 */
5651
5652 static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev)
5653 {
5654 unsigned char tn = sdev->id, ln = sdev->lun;
5655 struct tcb *tp = &np->target[tn];
5656 struct lcb *lp = tp->lp[ln];
5657 u_char reqtags, maxdepth;
5658
5659 /*
5660 ** Just in case ...
5661 */
5662 if ((!tp) || (!lp) || !sdev)
5663 return;
5664
5665 /*
5666 ** If SCSI device queue depth is not yet set, leave here.
5667 */
5668 if (!lp->scdev_depth)
5669 return;
5670
5671 /*
5672 ** Donnot allow more tags than the SCSI driver can queue
5673 ** for this device.
5674 ** Donnot allow more tags than we can handle.
5675 */
5676 maxdepth = lp->scdev_depth;
5677 if (maxdepth > lp->maxnxs) maxdepth = lp->maxnxs;
5678 if (lp->maxtags > maxdepth) lp->maxtags = maxdepth;
5679 if (lp->numtags > maxdepth) lp->numtags = maxdepth;
5680
5681 /*
5682 ** only devices conformant to ANSI Version >= 2
5683 ** only devices capable of tagged commands
5684 ** only if enabled by user ..
5685 */
5686 if (sdev->tagged_supported && lp->numtags > 1) {
5687 reqtags = lp->numtags;
5688 } else {
5689 reqtags = 1;
5690 }
5691
5692 /*
5693 ** Update max number of tags
5694 */
5695 lp->numtags = reqtags;
5696 if (lp->numtags > lp->maxtags)
5697 lp->maxtags = lp->numtags;
5698
5699 /*
5700 ** If we want to switch tag mode, we must wait
5701 ** for no CCB to be active.
5702 */
5703 if (reqtags > 1 && lp->usetags) { /* Stay in tagged mode */
5704 if (lp->queuedepth == reqtags) /* Already announced */
5705 return;
5706 lp->queuedepth = reqtags;
5707 }
5708 else if (reqtags <= 1 && !lp->usetags) { /* Stay in untagged mode */
5709 lp->queuedepth = reqtags;
5710 return;
5711 }
5712 else { /* Want to switch tag mode */
5713 if (lp->busyccbs) /* If not yet safe, return */
5714 return;
5715 lp->queuedepth = reqtags;
5716 lp->usetags = reqtags > 1 ? 1 : 0;
5717 }
5718
5719 /*
5720 ** Patch the lun mini-script, according to tag mode.
5721 */
5722 lp->jump_tag.l_paddr = lp->usetags?
5723 cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_tag)) :
5724 cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_notag));
5725
5726 /*
5727 ** Announce change to user.
5728 */
5729 if (bootverbose) {
5730 if (lp->usetags) {
5731 dev_info(&sdev->sdev_gendev,
5732 "tagged command queue depth set to %d\n",
5733 reqtags);
5734 } else {
5735 dev_info(&sdev->sdev_gendev,
5736 "tagged command queueing disabled\n");
5737 }
5738 }
5739 }
5740
5741 /*==========================================================
5742 **
5743 **
5744 ** ncr timeout handler.
5745 **
5746 **
5747 **==========================================================
5748 **
5749 ** Misused to keep the driver running when
5750 ** interrupts are not configured correctly.
5751 **
5752 **----------------------------------------------------------
5753 */
5754
5755 static void ncr_timeout (struct ncb *np)
5756 {
5757 u_long thistime = jiffies;
5758
5759 /*
5760 ** If release process in progress, let's go
5761 ** Set the release stage from 1 to 2 to synchronize
5762 ** with the release process.
5763 */
5764
5765 if (np->release_stage) {
5766 if (np->release_stage == 1) np->release_stage = 2;
5767 return;
5768 }
5769
5770 np->timer.expires = jiffies + SCSI_NCR_TIMER_INTERVAL;
5771 add_timer(&np->timer);
5772
5773 /*
5774 ** If we are resetting the ncr, wait for settle_time before
5775 ** clearing it. Then command processing will be resumed.
5776 */
5777 if (np->settle_time) {
5778 if (np->settle_time <= thistime) {
5779 if (bootverbose > 1)
5780 printk("%s: command processing resumed\n", ncr_name(np));
5781 np->settle_time = 0;
5782 np->disc = 1;
5783 requeue_waiting_list(np);
5784 }
5785 return;
5786 }
5787
5788 /*
5789 ** Since the generic scsi driver only allows us 0.5 second
5790 ** to perform abort of a command, we must look at ccbs about
5791 ** every 0.25 second.
5792 */
5793 if (np->lasttime + 4*HZ < thistime) {
5794 /*
5795 ** block ncr interrupts
5796 */
5797 np->lasttime = thistime;
5798 }
5799
5800 #ifdef SCSI_NCR_BROKEN_INTR
5801 if (INB(nc_istat) & (INTF|SIP|DIP)) {
5802
5803 /*
5804 ** Process pending interrupts.
5805 */
5806 if (DEBUG_FLAGS & DEBUG_TINY) printk ("{");
5807 ncr_exception (np);
5808 if (DEBUG_FLAGS & DEBUG_TINY) printk ("}");
5809 }
5810 #endif /* SCSI_NCR_BROKEN_INTR */
5811 }
5812
5813 /*==========================================================
5814 **
5815 ** log message for real hard errors
5816 **
5817 ** "ncr0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc)."
5818 ** " reg: r0 r1 r2 r3 r4 r5 r6 ..... rf."
5819 **
5820 ** exception register:
5821 ** ds: dstat
5822 ** si: sist
5823 **
5824 ** SCSI bus lines:
5825 ** so: control lines as driver by NCR.
5826 ** si: control lines as seen by NCR.
5827 ** sd: scsi data lines as seen by NCR.
5828 **
5829 ** wide/fastmode:
5830 ** sxfer: (see the manual)
5831 ** scntl3: (see the manual)
5832 **
5833 ** current script command:
5834 ** dsp: script address (relative to start of script).
5835 ** dbc: first word of script command.
5836 **
5837 ** First 16 register of the chip:
5838 ** r0..rf
5839 **
5840 **==========================================================
5841 */
5842
5843 static void ncr_log_hard_error(struct ncb *np, u16 sist, u_char dstat)
5844 {
5845 u32 dsp;
5846 int script_ofs;
5847 int script_size;
5848 char *script_name;
5849 u_char *script_base;
5850 int i;
5851
5852 dsp = INL (nc_dsp);
5853
5854 if (dsp > np->p_script && dsp <= np->p_script + sizeof(struct script)) {
5855 script_ofs = dsp - np->p_script;
5856 script_size = sizeof(struct script);
5857 script_base = (u_char *) np->script0;
5858 script_name = "script";
5859 }
5860 else if (np->p_scripth < dsp &&
5861 dsp <= np->p_scripth + sizeof(struct scripth)) {
5862 script_ofs = dsp - np->p_scripth;
5863 script_size = sizeof(struct scripth);
5864 script_base = (u_char *) np->scripth0;
5865 script_name = "scripth";
5866 } else {
5867 script_ofs = dsp;
5868 script_size = 0;
5869 script_base = NULL;
5870 script_name = "mem";
5871 }
5872
5873 printk ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
5874 ncr_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
5875 (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), (unsigned)INB (nc_sbdl),
5876 (unsigned)INB (nc_sxfer),(unsigned)INB (nc_scntl3), script_name, script_ofs,
5877 (unsigned)INL (nc_dbc));
5878
5879 if (((script_ofs & 3) == 0) &&
5880 (unsigned)script_ofs < script_size) {
5881 printk ("%s: script cmd = %08x\n", ncr_name(np),
5882 scr_to_cpu((int) *(ncrcmd *)(script_base + script_ofs)));
5883 }
5884
5885 printk ("%s: regdump:", ncr_name(np));
5886 for (i=0; i<16;i++)
5887 printk (" %02x", (unsigned)INB_OFF(i));
5888 printk (".\n");
5889 }
5890
5891 /*============================================================
5892 **
5893 ** ncr chip exception handler.
5894 **
5895 **============================================================
5896 **
5897 ** In normal cases, interrupt conditions occur one at a
5898 ** time. The ncr is able to stack in some extra registers
5899 ** other interrupts that will occurs after the first one.
5900 ** But severall interrupts may occur at the same time.
5901 **
5902 ** We probably should only try to deal with the normal
5903 ** case, but it seems that multiple interrupts occur in
5904 ** some cases that are not abnormal at all.
5905 **
5906 ** The most frequent interrupt condition is Phase Mismatch.
5907 ** We should want to service this interrupt quickly.
5908 ** A SCSI parity error may be delivered at the same time.
5909 ** The SIR interrupt is not very frequent in this driver,
5910 ** since the INTFLY is likely used for command completion
5911 ** signaling.
5912 ** The Selection Timeout interrupt may be triggered with
5913 ** IID and/or UDC.
5914 ** The SBMC interrupt (SCSI Bus Mode Change) may probably
5915 ** occur at any time.
5916 **
5917 ** This handler try to deal as cleverly as possible with all
5918 ** the above.
5919 **
5920 **============================================================
5921 */
5922
5923 void ncr_exception (struct ncb *np)
5924 {
5925 u_char istat, dstat;
5926 u16 sist;
5927 int i;
5928
5929 /*
5930 ** interrupt on the fly ?
5931 ** Since the global header may be copied back to a CCB
5932 ** using a posted PCI memory write, the last operation on
5933 ** the istat register is a READ in order to flush posted
5934 ** PCI write commands.
5935 */
5936 istat = INB (nc_istat);
5937 if (istat & INTF) {
5938 OUTB (nc_istat, (istat & SIGP) | INTF);
5939 istat = INB (nc_istat);
5940 if (DEBUG_FLAGS & DEBUG_TINY) printk ("F ");
5941 ncr_wakeup_done (np);
5942 }
5943
5944 if (!(istat & (SIP|DIP)))
5945 return;
5946
5947 if (istat & CABRT)
5948 OUTB (nc_istat, CABRT);
5949
5950 /*
5951 ** Steinbach's Guideline for Systems Programming:
5952 ** Never test for an error condition you don't know how to handle.
5953 */
5954
5955 sist = (istat & SIP) ? INW (nc_sist) : 0;
5956 dstat = (istat & DIP) ? INB (nc_dstat) : 0;
5957
5958 if (DEBUG_FLAGS & DEBUG_TINY)
5959 printk ("<%d|%x:%x|%x:%x>",
5960 (int)INB(nc_scr0),
5961 dstat,sist,
5962 (unsigned)INL(nc_dsp),
5963 (unsigned)INL(nc_dbc));
5964
5965 /*========================================================
5966 ** First, interrupts we want to service cleanly.
5967 **
5968 ** Phase mismatch is the most frequent interrupt, and
5969 ** so we have to service it as quickly and as cleanly
5970 ** as possible.
5971 ** Programmed interrupts are rarely used in this driver,
5972 ** but we must handle them cleanly anyway.
5973 ** We try to deal with PAR and SBMC combined with
5974 ** some other interrupt(s).
5975 **=========================================================
5976 */
5977
5978 if (!(sist & (STO|GEN|HTH|SGE|UDC|RST)) &&
5979 !(dstat & (MDPE|BF|ABRT|IID))) {
5980 if ((sist & SBMC) && ncr_int_sbmc (np))
5981 return;
5982 if ((sist & PAR) && ncr_int_par (np))
5983 return;
5984 if (sist & MA) {
5985 ncr_int_ma (np);
5986 return;
5987 }
5988 if (dstat & SIR) {
5989 ncr_int_sir (np);
5990 return;
5991 }
5992 /*
5993 ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 2.
5994 */
5995 if (!(sist & (SBMC|PAR)) && !(dstat & SSI)) {
5996 printk( "%s: unknown interrupt(s) ignored, "
5997 "ISTAT=%x DSTAT=%x SIST=%x\n",
5998 ncr_name(np), istat, dstat, sist);
5999 return;
6000 }
6001 OUTONB_STD ();
6002 return;
6003 }
6004
6005 /*========================================================
6006 ** Now, interrupts that need some fixing up.
6007 ** Order and multiple interrupts is so less important.
6008 **
6009 ** If SRST has been asserted, we just reset the chip.
6010 **
6011 ** Selection is intirely handled by the chip. If the
6012 ** chip says STO, we trust it. Seems some other
6013 ** interrupts may occur at the same time (UDC, IID), so
6014 ** we ignore them. In any case we do enough fix-up
6015 ** in the service routine.
6016 ** We just exclude some fatal dma errors.
6017 **=========================================================
6018 */
6019
6020 if (sist & RST) {
6021 ncr_init (np, 1, bootverbose ? "scsi reset" : NULL, HS_RESET);
6022 return;
6023 }
6024
6025 if ((sist & STO) &&
6026 !(dstat & (MDPE|BF|ABRT))) {
6027 /*
6028 ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 1.
6029 */
6030 OUTONB (nc_ctest3, CLF);
6031
6032 ncr_int_sto (np);
6033 return;
6034 }
6035
6036 /*=========================================================
6037 ** Now, interrupts we are not able to recover cleanly.
6038 ** (At least for the moment).
6039 **
6040 ** Do the register dump.
6041 ** Log message for real hard errors.
6042 ** Clear all fifos.
6043 ** For MDPE, BF, ABORT, IID, SGE and HTH we reset the
6044 ** BUS and the chip.
6045 ** We are more soft for UDC.
6046 **=========================================================
6047 */
6048
6049 if (time_after(jiffies, np->regtime)) {
6050 np->regtime = jiffies + 10*HZ;
6051 for (i = 0; i<sizeof(np->regdump); i++)
6052 ((char*)&np->regdump)[i] = INB_OFF(i);
6053 np->regdump.nc_dstat = dstat;
6054 np->regdump.nc_sist = sist;
6055 }
6056
6057 ncr_log_hard_error(np, sist, dstat);
6058
6059 printk ("%s: have to clear fifos.\n", ncr_name (np));
6060 OUTB (nc_stest3, TE|CSF);
6061 OUTONB (nc_ctest3, CLF);
6062
6063 if ((sist & (SGE)) ||
6064 (dstat & (MDPE|BF|ABRT|IID))) {
6065 ncr_start_reset(np);
6066 return;
6067 }
6068
6069 if (sist & HTH) {
6070 printk ("%s: handshake timeout\n", ncr_name(np));
6071 ncr_start_reset(np);
6072 return;
6073 }
6074
6075 if (sist & UDC) {
6076 printk ("%s: unexpected disconnect\n", ncr_name(np));
6077 OUTB (HS_PRT, HS_UNEXPECTED);
6078 OUTL_DSP (NCB_SCRIPT_PHYS (np, cleanup));
6079 return;
6080 }
6081
6082 /*=========================================================
6083 ** We just miss the cause of the interrupt. :(
6084 ** Print a message. The timeout will do the real work.
6085 **=========================================================
6086 */
6087 printk ("%s: unknown interrupt\n", ncr_name(np));
6088 }
6089
6090 /*==========================================================
6091 **
6092 ** ncr chip exception handler for selection timeout
6093 **
6094 **==========================================================
6095 **
6096 ** There seems to be a bug in the 53c810.
6097 ** Although a STO-Interrupt is pending,
6098 ** it continues executing script commands.
6099 ** But it will fail and interrupt (IID) on
6100 ** the next instruction where it's looking
6101 ** for a valid phase.
6102 **
6103 **----------------------------------------------------------
6104 */
6105
6106 void ncr_int_sto (struct ncb *np)
6107 {
6108 u_long dsa;
6109 struct ccb *cp;
6110 if (DEBUG_FLAGS & DEBUG_TINY) printk ("T");
6111
6112 /*
6113 ** look for ccb and set the status.
6114 */
6115
6116 dsa = INL (nc_dsa);
6117 cp = np->ccb;
6118 while (cp && (CCB_PHYS (cp, phys) != dsa))
6119 cp = cp->link_ccb;
6120
6121 if (cp) {
6122 cp-> host_status = HS_SEL_TIMEOUT;
6123 ncr_complete (np, cp);
6124 }
6125
6126 /*
6127 ** repair start queue and jump to start point.
6128 */
6129
6130 OUTL_DSP (NCB_SCRIPTH_PHYS (np, sto_restart));
6131 return;
6132 }
6133
6134 /*==========================================================
6135 **
6136 ** ncr chip exception handler for SCSI bus mode change
6137 **
6138 **==========================================================
6139 **
6140 ** spi2-r12 11.2.3 says a transceiver mode change must
6141 ** generate a reset event and a device that detects a reset
6142 ** event shall initiate a hard reset. It says also that a
6143 ** device that detects a mode change shall set data transfer
6144 ** mode to eight bit asynchronous, etc...
6145 ** So, just resetting should be enough.
6146 **
6147 **
6148 **----------------------------------------------------------
6149 */
6150
6151 static int ncr_int_sbmc (struct ncb *np)
6152 {
6153 u_char scsi_mode = INB (nc_stest4) & SMODE;
6154
6155 if (scsi_mode != np->scsi_mode) {
6156 printk("%s: SCSI bus mode change from %x to %x.\n",
6157 ncr_name(np), np->scsi_mode, scsi_mode);
6158
6159 np->scsi_mode = scsi_mode;
6160
6161
6162 /*
6163 ** Suspend command processing for 1 second and
6164 ** reinitialize all except the chip.
6165 */
6166 np->settle_time = jiffies + HZ;
6167 ncr_init (np, 0, bootverbose ? "scsi mode change" : NULL, HS_RESET);
6168 return 1;
6169 }
6170 return 0;
6171 }
6172
6173 /*==========================================================
6174 **
6175 ** ncr chip exception handler for SCSI parity error.
6176 **
6177 **==========================================================
6178 **
6179 **
6180 **----------------------------------------------------------
6181 */
6182
6183 static int ncr_int_par (struct ncb *np)
6184 {
6185 u_char hsts = INB (HS_PRT);
6186 u32 dbc = INL (nc_dbc);
6187 u_char sstat1 = INB (nc_sstat1);
6188 int phase = -1;
6189 int msg = -1;
6190 u32 jmp;
6191
6192 printk("%s: SCSI parity error detected: SCR1=%d DBC=%x SSTAT1=%x\n",
6193 ncr_name(np), hsts, dbc, sstat1);
6194
6195 /*
6196 * Ignore the interrupt if the NCR is not connected
6197 * to the SCSI bus, since the right work should have
6198 * been done on unexpected disconnection handling.
6199 */
6200 if (!(INB (nc_scntl1) & ISCON))
6201 return 0;
6202
6203 /*
6204 * If the nexus is not clearly identified, reset the bus.
6205 * We will try to do better later.
6206 */
6207 if (hsts & HS_INVALMASK)
6208 goto reset_all;
6209
6210 /*
6211 * If the SCSI parity error occurs in MSG IN phase, prepare a
6212 * MSG PARITY message. Otherwise, prepare a INITIATOR DETECTED
6213 * ERROR message and let the device decide to retry the command
6214 * or to terminate with check condition. If we were in MSG IN
6215 * phase waiting for the response of a negotiation, we will
6216 * get SIR_NEGO_FAILED at dispatch.
6217 */
6218 if (!(dbc & 0xc0000000))
6219 phase = (dbc >> 24) & 7;
6220 if (phase == 7)
6221 msg = MSG_PARITY_ERROR;
6222 else
6223 msg = INITIATOR_ERROR;
6224
6225
6226 /*
6227 * If the NCR stopped on a MOVE ^ DATA_IN, we jump to a
6228 * script that will ignore all data in bytes until phase
6229 * change, since we are not sure the chip will wait the phase
6230 * change prior to delivering the interrupt.
6231 */
6232 if (phase == 1)
6233 jmp = NCB_SCRIPTH_PHYS (np, par_err_data_in);
6234 else
6235 jmp = NCB_SCRIPTH_PHYS (np, par_err_other);
6236
6237 OUTONB (nc_ctest3, CLF ); /* clear dma fifo */
6238 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
6239
6240 np->msgout[0] = msg;
6241 OUTL_DSP (jmp);
6242 return 1;
6243
6244 reset_all:
6245 ncr_start_reset(np);
6246 return 1;
6247 }
6248
6249 /*==========================================================
6250 **
6251 **
6252 ** ncr chip exception handler for phase errors.
6253 **
6254 **
6255 **==========================================================
6256 **
6257 ** We have to construct a new transfer descriptor,
6258 ** to transfer the rest of the current block.
6259 **
6260 **----------------------------------------------------------
6261 */
6262
6263 static void ncr_int_ma (struct ncb *np)
6264 {
6265 u32 dbc;
6266 u32 rest;
6267 u32 dsp;
6268 u32 dsa;
6269 u32 nxtdsp;
6270 u32 newtmp;
6271 u32 *vdsp;
6272 u32 oadr, olen;
6273 u32 *tblp;
6274 ncrcmd *newcmd;
6275 u_char cmd, sbcl;
6276 struct ccb *cp;
6277
6278 dsp = INL (nc_dsp);
6279 dbc = INL (nc_dbc);
6280 sbcl = INB (nc_sbcl);
6281
6282 cmd = dbc >> 24;
6283 rest = dbc & 0xffffff;
6284
6285 /*
6286 ** Take into account dma fifo and various buffers and latches,
6287 ** only if the interrupted phase is an OUTPUT phase.
6288 */
6289
6290 if ((cmd & 1) == 0) {
6291 u_char ctest5, ss0, ss2;
6292 u16 delta;
6293
6294 ctest5 = (np->rv_ctest5 & DFS) ? INB (nc_ctest5) : 0;
6295 if (ctest5 & DFS)
6296 delta=(((ctest5 << 8) | (INB (nc_dfifo) & 0xff)) - rest) & 0x3ff;
6297 else
6298 delta=(INB (nc_dfifo) - rest) & 0x7f;
6299
6300 /*
6301 ** The data in the dma fifo has not been transferred to
6302 ** the target -> add the amount to the rest
6303 ** and clear the data.
6304 ** Check the sstat2 register in case of wide transfer.
6305 */
6306
6307 rest += delta;
6308 ss0 = INB (nc_sstat0);
6309 if (ss0 & OLF) rest++;
6310 if (ss0 & ORF) rest++;
6311 if (INB(nc_scntl3) & EWS) {
6312 ss2 = INB (nc_sstat2);
6313 if (ss2 & OLF1) rest++;
6314 if (ss2 & ORF1) rest++;
6315 }
6316
6317 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
6318 printk ("P%x%x RL=%d D=%d SS0=%x ", cmd&7, sbcl&7,
6319 (unsigned) rest, (unsigned) delta, ss0);
6320
6321 } else {
6322 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
6323 printk ("P%x%x RL=%d ", cmd&7, sbcl&7, rest);
6324 }
6325
6326 /*
6327 ** Clear fifos.
6328 */
6329 OUTONB (nc_ctest3, CLF ); /* clear dma fifo */
6330 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
6331
6332 /*
6333 ** locate matching cp.
6334 ** if the interrupted phase is DATA IN or DATA OUT,
6335 ** trust the global header.
6336 */
6337 dsa = INL (nc_dsa);
6338 if (!(cmd & 6)) {
6339 cp = np->header.cp;
6340 if (CCB_PHYS(cp, phys) != dsa)
6341 cp = NULL;
6342 } else {
6343 cp = np->ccb;
6344 while (cp && (CCB_PHYS (cp, phys) != dsa))
6345 cp = cp->link_ccb;
6346 }
6347
6348 /*
6349 ** try to find the interrupted script command,
6350 ** and the address at which to continue.
6351 */
6352 vdsp = NULL;
6353 nxtdsp = 0;
6354 if (dsp > np->p_script &&
6355 dsp <= np->p_script + sizeof(struct script)) {
6356 vdsp = (u32 *)((char*)np->script0 + (dsp-np->p_script-8));
6357 nxtdsp = dsp;
6358 }
6359 else if (dsp > np->p_scripth &&
6360 dsp <= np->p_scripth + sizeof(struct scripth)) {
6361 vdsp = (u32 *)((char*)np->scripth0 + (dsp-np->p_scripth-8));
6362 nxtdsp = dsp;
6363 }
6364 else if (cp) {
6365 if (dsp == CCB_PHYS (cp, patch[2])) {
6366 vdsp = &cp->patch[0];
6367 nxtdsp = scr_to_cpu(vdsp[3]);
6368 }
6369 else if (dsp == CCB_PHYS (cp, patch[6])) {
6370 vdsp = &cp->patch[4];
6371 nxtdsp = scr_to_cpu(vdsp[3]);
6372 }
6373 }
6374
6375 /*
6376 ** log the information
6377 */
6378
6379 if (DEBUG_FLAGS & DEBUG_PHASE) {
6380 printk ("\nCP=%p CP2=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
6381 cp, np->header.cp,
6382 (unsigned)dsp,
6383 (unsigned)nxtdsp, vdsp, cmd);
6384 }
6385
6386 /*
6387 ** cp=0 means that the DSA does not point to a valid control
6388 ** block. This should not happen since we donnot use multi-byte
6389 ** move while we are being reselected ot after command complete.
6390 ** We are not able to recover from such a phase error.
6391 */
6392 if (!cp) {
6393 printk ("%s: SCSI phase error fixup: "
6394 "CCB already dequeued (0x%08lx)\n",
6395 ncr_name (np), (u_long) np->header.cp);
6396 goto reset_all;
6397 }
6398
6399 /*
6400 ** get old startaddress and old length.
6401 */
6402
6403 oadr = scr_to_cpu(vdsp[1]);
6404
6405 if (cmd & 0x10) { /* Table indirect */
6406 tblp = (u32 *) ((char*) &cp->phys + oadr);
6407 olen = scr_to_cpu(tblp[0]);
6408 oadr = scr_to_cpu(tblp[1]);
6409 } else {
6410 tblp = (u32 *) 0;
6411 olen = scr_to_cpu(vdsp[0]) & 0xffffff;
6412 }
6413
6414 if (DEBUG_FLAGS & DEBUG_PHASE) {
6415 printk ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
6416 (unsigned) (scr_to_cpu(vdsp[0]) >> 24),
6417 tblp,
6418 (unsigned) olen,
6419 (unsigned) oadr);
6420 }
6421
6422 /*
6423 ** check cmd against assumed interrupted script command.
6424 */
6425
6426 if (cmd != (scr_to_cpu(vdsp[0]) >> 24)) {
6427 PRINT_ADDR(cp->cmd, "internal error: cmd=%02x != %02x=(vdsp[0] "
6428 ">> 24)\n", cmd, scr_to_cpu(vdsp[0]) >> 24);
6429
6430 goto reset_all;
6431 }
6432
6433 /*
6434 ** cp != np->header.cp means that the header of the CCB
6435 ** currently being processed has not yet been copied to
6436 ** the global header area. That may happen if the device did
6437 ** not accept all our messages after having been selected.
6438 */
6439 if (cp != np->header.cp) {
6440 printk ("%s: SCSI phase error fixup: "
6441 "CCB address mismatch (0x%08lx != 0x%08lx)\n",
6442 ncr_name (np), (u_long) cp, (u_long) np->header.cp);
6443 }
6444
6445 /*
6446 ** if old phase not dataphase, leave here.
6447 */
6448
6449 if (cmd & 0x06) {
6450 PRINT_ADDR(cp->cmd, "phase change %x-%x %d@%08x resid=%d.\n",
6451 cmd&7, sbcl&7, (unsigned)olen,
6452 (unsigned)oadr, (unsigned)rest);
6453 goto unexpected_phase;
6454 }
6455
6456 /*
6457 ** choose the correct patch area.
6458 ** if savep points to one, choose the other.
6459 */
6460
6461 newcmd = cp->patch;
6462 newtmp = CCB_PHYS (cp, patch);
6463 if (newtmp == scr_to_cpu(cp->phys.header.savep)) {
6464 newcmd = &cp->patch[4];
6465 newtmp = CCB_PHYS (cp, patch[4]);
6466 }
6467
6468 /*
6469 ** fillin the commands
6470 */
6471
6472 newcmd[0] = cpu_to_scr(((cmd & 0x0f) << 24) | rest);
6473 newcmd[1] = cpu_to_scr(oadr + olen - rest);
6474 newcmd[2] = cpu_to_scr(SCR_JUMP);
6475 newcmd[3] = cpu_to_scr(nxtdsp);
6476
6477 if (DEBUG_FLAGS & DEBUG_PHASE) {
6478 PRINT_ADDR(cp->cmd, "newcmd[%d] %x %x %x %x.\n",
6479 (int) (newcmd - cp->patch),
6480 (unsigned)scr_to_cpu(newcmd[0]),
6481 (unsigned)scr_to_cpu(newcmd[1]),
6482 (unsigned)scr_to_cpu(newcmd[2]),
6483 (unsigned)scr_to_cpu(newcmd[3]));
6484 }
6485 /*
6486 ** fake the return address (to the patch).
6487 ** and restart script processor at dispatcher.
6488 */
6489 OUTL (nc_temp, newtmp);
6490 OUTL_DSP (NCB_SCRIPT_PHYS (np, dispatch));
6491 return;
6492
6493 /*
6494 ** Unexpected phase changes that occurs when the current phase
6495 ** is not a DATA IN or DATA OUT phase are due to error conditions.
6496 ** Such event may only happen when the SCRIPTS is using a
6497 ** multibyte SCSI MOVE.
6498 **
6499 ** Phase change Some possible cause
6500 **
6501 ** COMMAND --> MSG IN SCSI parity error detected by target.
6502 ** COMMAND --> STATUS Bad command or refused by target.
6503 ** MSG OUT --> MSG IN Message rejected by target.
6504 ** MSG OUT --> COMMAND Bogus target that discards extended
6505 ** negotiation messages.
6506 **
6507 ** The code below does not care of the new phase and so
6508 ** trusts the target. Why to annoy it ?
6509 ** If the interrupted phase is COMMAND phase, we restart at
6510 ** dispatcher.
6511 ** If a target does not get all the messages after selection,
6512 ** the code assumes blindly that the target discards extended
6513 ** messages and clears the negotiation status.
6514 ** If the target does not want all our response to negotiation,
6515 ** we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
6516 ** bloat for such a should_not_happen situation).
6517 ** In all other situation, we reset the BUS.
6518 ** Are these assumptions reasonnable ? (Wait and see ...)
6519 */
6520 unexpected_phase:
6521 dsp -= 8;
6522 nxtdsp = 0;
6523
6524 switch (cmd & 7) {
6525 case 2: /* COMMAND phase */
6526 nxtdsp = NCB_SCRIPT_PHYS (np, dispatch);
6527 break;
6528 #if 0
6529 case 3: /* STATUS phase */
6530 nxtdsp = NCB_SCRIPT_PHYS (np, dispatch);
6531 break;
6532 #endif
6533 case 6: /* MSG OUT phase */
6534 np->scripth->nxtdsp_go_on[0] = cpu_to_scr(dsp + 8);
6535 if (dsp == NCB_SCRIPT_PHYS (np, send_ident)) {
6536 cp->host_status = HS_BUSY;
6537 nxtdsp = NCB_SCRIPTH_PHYS (np, clratn_go_on);
6538 }
6539 else if (dsp == NCB_SCRIPTH_PHYS (np, send_wdtr) ||
6540 dsp == NCB_SCRIPTH_PHYS (np, send_sdtr)) {
6541 nxtdsp = NCB_SCRIPTH_PHYS (np, nego_bad_phase);
6542 }
6543 break;
6544 #if 0
6545 case 7: /* MSG IN phase */
6546 nxtdsp = NCB_SCRIPT_PHYS (np, clrack);
6547 break;
6548 #endif
6549 }
6550
6551 if (nxtdsp) {
6552 OUTL_DSP (nxtdsp);
6553 return;
6554 }
6555
6556 reset_all:
6557 ncr_start_reset(np);
6558 }
6559
6560
6561 static void ncr_sir_to_redo(struct ncb *np, int num, struct ccb *cp)
6562 {
6563 struct scsi_cmnd *cmd = cp->cmd;
6564 struct tcb *tp = &np->target[cmd->device->id];
6565 struct lcb *lp = tp->lp[cmd->device->lun];
6566 struct list_head *qp;
6567 struct ccb * cp2;
6568 int disc_cnt = 0;
6569 int busy_cnt = 0;
6570 u32 startp;
6571 u_char s_status = INB (SS_PRT);
6572
6573 /*
6574 ** Let the SCRIPTS processor skip all not yet started CCBs,
6575 ** and count disconnected CCBs. Since the busy queue is in
6576 ** the same order as the chip start queue, disconnected CCBs
6577 ** are before cp and busy ones after.
6578 */
6579 if (lp) {
6580 qp = lp->busy_ccbq.prev;
6581 while (qp != &lp->busy_ccbq) {
6582 cp2 = list_entry(qp, struct ccb, link_ccbq);
6583 qp = qp->prev;
6584 ++busy_cnt;
6585 if (cp2 == cp)
6586 break;
6587 cp2->start.schedule.l_paddr =
6588 cpu_to_scr(NCB_SCRIPTH_PHYS (np, skip));
6589 }
6590 lp->held_ccb = cp; /* Requeue when this one completes */
6591 disc_cnt = lp->queuedccbs - busy_cnt;
6592 }
6593
6594 switch(s_status) {
6595 default: /* Just for safety, should never happen */
6596 case S_QUEUE_FULL:
6597 /*
6598 ** Decrease number of tags to the number of
6599 ** disconnected commands.
6600 */
6601 if (!lp)
6602 goto out;
6603 if (bootverbose >= 1) {
6604 PRINT_ADDR(cmd, "QUEUE FULL! %d busy, %d disconnected "
6605 "CCBs\n", busy_cnt, disc_cnt);
6606 }
6607 if (disc_cnt < lp->numtags) {
6608 lp->numtags = disc_cnt > 2 ? disc_cnt : 2;
6609 lp->num_good = 0;
6610 ncr_setup_tags (np, cmd->device);
6611 }
6612 /*
6613 ** Requeue the command to the start queue.
6614 ** If any disconnected commands,
6615 ** Clear SIGP.
6616 ** Jump to reselect.
6617 */
6618 cp->phys.header.savep = cp->startp;
6619 cp->host_status = HS_BUSY;
6620 cp->scsi_status = S_ILLEGAL;
6621
6622 ncr_put_start_queue(np, cp);
6623 if (disc_cnt)
6624 INB (nc_ctest2); /* Clear SIGP */
6625 OUTL_DSP (NCB_SCRIPT_PHYS (np, reselect));
6626 return;
6627 case S_TERMINATED:
6628 case S_CHECK_COND:
6629 /*
6630 ** If we were requesting sense, give up.
6631 */
6632 if (cp->auto_sense)
6633 goto out;
6634
6635 /*
6636 ** Device returned CHECK CONDITION status.
6637 ** Prepare all needed data strutures for getting
6638 ** sense data.
6639 **
6640 ** identify message
6641 */
6642 cp->scsi_smsg2[0] = IDENTIFY(0, cmd->device->lun);
6643 cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg2));
6644 cp->phys.smsg.size = cpu_to_scr(1);
6645
6646 /*
6647 ** sense command
6648 */
6649 cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, sensecmd));
6650 cp->phys.cmd.size = cpu_to_scr(6);
6651
6652 /*
6653 ** patch requested size into sense command
6654 */
6655 cp->sensecmd[0] = 0x03;
6656 cp->sensecmd[1] = cmd->device->lun << 5;
6657 cp->sensecmd[4] = sizeof(cp->sense_buf);
6658
6659 /*
6660 ** sense data
6661 */
6662 memset(cp->sense_buf, 0, sizeof(cp->sense_buf));
6663 cp->phys.sense.addr = cpu_to_scr(CCB_PHYS(cp,sense_buf[0]));
6664 cp->phys.sense.size = cpu_to_scr(sizeof(cp->sense_buf));
6665
6666 /*
6667 ** requeue the command.
6668 */
6669 startp = cpu_to_scr(NCB_SCRIPTH_PHYS (np, sdata_in));
6670
6671 cp->phys.header.savep = startp;
6672 cp->phys.header.goalp = startp + 24;
6673 cp->phys.header.lastp = startp;
6674 cp->phys.header.wgoalp = startp + 24;
6675 cp->phys.header.wlastp = startp;
6676
6677 cp->host_status = HS_BUSY;
6678 cp->scsi_status = S_ILLEGAL;
6679 cp->auto_sense = s_status;
6680
6681 cp->start.schedule.l_paddr =
6682 cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
6683
6684 /*
6685 ** Select without ATN for quirky devices.
6686 */
6687 if (cmd->device->select_no_atn)
6688 cp->start.schedule.l_paddr =
6689 cpu_to_scr(NCB_SCRIPTH_PHYS (np, select_no_atn));
6690
6691 ncr_put_start_queue(np, cp);
6692
6693 OUTL_DSP (NCB_SCRIPT_PHYS (np, start));
6694 return;
6695 }
6696
6697 out:
6698 OUTONB_STD ();
6699 return;
6700 }
6701
6702
6703 /*==========================================================
6704 **
6705 **
6706 ** ncr chip exception handler for programmed interrupts.
6707 **
6708 **
6709 **==========================================================
6710 */
6711
6712 void ncr_int_sir (struct ncb *np)
6713 {
6714 u_char scntl3;
6715 u_char chg, ofs, per, fak, wide;
6716 u_char num = INB (nc_dsps);
6717 struct ccb *cp=NULL;
6718 u_long dsa = INL (nc_dsa);
6719 u_char target = INB (nc_sdid) & 0x0f;
6720 struct tcb *tp = &np->target[target];
6721 struct scsi_target *starget = tp->starget;
6722
6723 if (DEBUG_FLAGS & DEBUG_TINY) printk ("I#%d", num);
6724
6725 switch (num) {
6726 case SIR_INTFLY:
6727 /*
6728 ** This is used for HP Zalon/53c720 where INTFLY
6729 ** operation is currently broken.
6730 */
6731 ncr_wakeup_done(np);
6732 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
6733 OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, done_end) + 8);
6734 #else
6735 OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, start));
6736 #endif
6737 return;
6738 case SIR_RESEL_NO_MSG_IN:
6739 case SIR_RESEL_NO_IDENTIFY:
6740 /*
6741 ** If devices reselecting without sending an IDENTIFY
6742 ** message still exist, this should help.
6743 ** We just assume lun=0, 1 CCB, no tag.
6744 */
6745 if (tp->lp[0]) {
6746 OUTL_DSP (scr_to_cpu(tp->lp[0]->jump_ccb[0]));
6747 return;
6748 }
6749 case SIR_RESEL_BAD_TARGET: /* Will send a TARGET RESET message */
6750 case SIR_RESEL_BAD_LUN: /* Will send a TARGET RESET message */
6751 case SIR_RESEL_BAD_I_T_L_Q: /* Will send an ABORT TAG message */
6752 case SIR_RESEL_BAD_I_T_L: /* Will send an ABORT message */
6753 printk ("%s:%d: SIR %d, "
6754 "incorrect nexus identification on reselection\n",
6755 ncr_name (np), target, num);
6756 goto out;
6757 case SIR_DONE_OVERFLOW:
6758 printk ("%s:%d: SIR %d, "
6759 "CCB done queue overflow\n",
6760 ncr_name (np), target, num);
6761 goto out;
6762 case SIR_BAD_STATUS:
6763 cp = np->header.cp;
6764 if (!cp || CCB_PHYS (cp, phys) != dsa)
6765 goto out;
6766 ncr_sir_to_redo(np, num, cp);
6767 return;
6768 default:
6769 /*
6770 ** lookup the ccb
6771 */
6772 cp = np->ccb;
6773 while (cp && (CCB_PHYS (cp, phys) != dsa))
6774 cp = cp->link_ccb;
6775
6776 BUG_ON(!cp);
6777 BUG_ON(cp != np->header.cp);
6778
6779 if (!cp || cp != np->header.cp)
6780 goto out;
6781 }
6782
6783 switch (num) {
6784 /*-----------------------------------------------------------------------------
6785 **
6786 ** Was Sie schon immer ueber transfermode negotiation wissen wollten ...
6787 ** ("Everything you've always wanted to know about transfer mode
6788 ** negotiation")
6789 **
6790 ** We try to negotiate sync and wide transfer only after
6791 ** a successful inquire command. We look at byte 7 of the
6792 ** inquire data to determine the capabilities of the target.
6793 **
6794 ** When we try to negotiate, we append the negotiation message
6795 ** to the identify and (maybe) simple tag message.
6796 ** The host status field is set to HS_NEGOTIATE to mark this
6797 ** situation.
6798 **
6799 ** If the target doesn't answer this message immidiately
6800 ** (as required by the standard), the SIR_NEGO_FAIL interrupt
6801 ** will be raised eventually.
6802 ** The handler removes the HS_NEGOTIATE status, and sets the
6803 ** negotiated value to the default (async / nowide).
6804 **
6805 ** If we receive a matching answer immediately, we check it
6806 ** for validity, and set the values.
6807 **
6808 ** If we receive a Reject message immediately, we assume the
6809 ** negotiation has failed, and fall back to standard values.
6810 **
6811 ** If we receive a negotiation message while not in HS_NEGOTIATE
6812 ** state, it's a target initiated negotiation. We prepare a
6813 ** (hopefully) valid answer, set our parameters, and send back
6814 ** this answer to the target.
6815 **
6816 ** If the target doesn't fetch the answer (no message out phase),
6817 ** we assume the negotiation has failed, and fall back to default
6818 ** settings.
6819 **
6820 ** When we set the values, we adjust them in all ccbs belonging
6821 ** to this target, in the controller's register, and in the "phys"
6822 ** field of the controller's struct ncb.
6823 **
6824 ** Possible cases: hs sir msg_in value send goto
6825 ** We try to negotiate:
6826 ** -> target doesn't msgin NEG FAIL noop defa. - dispatch
6827 ** -> target rejected our msg NEG FAIL reject defa. - dispatch
6828 ** -> target answered (ok) NEG SYNC sdtr set - clrack
6829 ** -> target answered (!ok) NEG SYNC sdtr defa. REJ--->msg_bad
6830 ** -> target answered (ok) NEG WIDE wdtr set - clrack
6831 ** -> target answered (!ok) NEG WIDE wdtr defa. REJ--->msg_bad
6832 ** -> any other msgin NEG FAIL noop defa. - dispatch
6833 **
6834 ** Target tries to negotiate:
6835 ** -> incoming message --- SYNC sdtr set SDTR -
6836 ** -> incoming message --- WIDE wdtr set WDTR -
6837 ** We sent our answer:
6838 ** -> target doesn't msgout --- PROTO ? defa. - dispatch
6839 **
6840 **-----------------------------------------------------------------------------
6841 */
6842
6843 case SIR_NEGO_FAILED:
6844 /*-------------------------------------------------------
6845 **
6846 ** Negotiation failed.
6847 ** Target doesn't send an answer message,
6848 ** or target rejected our message.
6849 **
6850 ** Remove negotiation request.
6851 **
6852 **-------------------------------------------------------
6853 */
6854 OUTB (HS_PRT, HS_BUSY);
6855
6856 /* fall through */
6857
6858 case SIR_NEGO_PROTO:
6859 /*-------------------------------------------------------
6860 **
6861 ** Negotiation failed.
6862 ** Target doesn't fetch the answer message.
6863 **
6864 **-------------------------------------------------------
6865 */
6866
6867 if (DEBUG_FLAGS & DEBUG_NEGO) {
6868 PRINT_ADDR(cp->cmd, "negotiation failed sir=%x "
6869 "status=%x.\n", num, cp->nego_status);
6870 }
6871
6872 /*
6873 ** any error in negotiation:
6874 ** fall back to default mode.
6875 */
6876 switch (cp->nego_status) {
6877
6878 case NS_SYNC:
6879 spi_period(starget) = 0;
6880 spi_offset(starget) = 0;
6881 ncr_setsync (np, cp, 0, 0xe0);
6882 break;
6883
6884 case NS_WIDE:
6885 spi_width(starget) = 0;
6886 ncr_setwide (np, cp, 0, 0);
6887 break;
6888
6889 }
6890 np->msgin [0] = NOP;
6891 np->msgout[0] = NOP;
6892 cp->nego_status = 0;
6893 break;
6894
6895 case SIR_NEGO_SYNC:
6896 if (DEBUG_FLAGS & DEBUG_NEGO) {
6897 ncr_print_msg(cp, "sync msgin", np->msgin);
6898 }
6899
6900 chg = 0;
6901 per = np->msgin[3];
6902 ofs = np->msgin[4];
6903 if (ofs==0) per=255;
6904
6905 /*
6906 ** if target sends SDTR message,
6907 ** it CAN transfer synch.
6908 */
6909
6910 if (ofs && starget)
6911 spi_support_sync(starget) = 1;
6912
6913 /*
6914 ** check values against driver limits.
6915 */
6916
6917 if (per < np->minsync)
6918 {chg = 1; per = np->minsync;}
6919 if (per < tp->minsync)
6920 {chg = 1; per = tp->minsync;}
6921 if (ofs > tp->maxoffs)
6922 {chg = 1; ofs = tp->maxoffs;}
6923
6924 /*
6925 ** Check against controller limits.
6926 */
6927 fak = 7;
6928 scntl3 = 0;
6929 if (ofs != 0) {
6930 ncr_getsync(np, per, &fak, &scntl3);
6931 if (fak > 7) {
6932 chg = 1;
6933 ofs = 0;
6934 }
6935 }
6936 if (ofs == 0) {
6937 fak = 7;
6938 per = 0;
6939 scntl3 = 0;
6940 tp->minsync = 0;
6941 }
6942
6943 if (DEBUG_FLAGS & DEBUG_NEGO) {
6944 PRINT_ADDR(cp->cmd, "sync: per=%d scntl3=0x%x ofs=%d "
6945 "fak=%d chg=%d.\n", per, scntl3, ofs, fak, chg);
6946 }
6947
6948 if (INB (HS_PRT) == HS_NEGOTIATE) {
6949 OUTB (HS_PRT, HS_BUSY);
6950 switch (cp->nego_status) {
6951
6952 case NS_SYNC:
6953 /* This was an answer message */
6954 if (chg) {
6955 /* Answer wasn't acceptable. */
6956 spi_period(starget) = 0;
6957 spi_offset(starget) = 0;
6958 ncr_setsync(np, cp, 0, 0xe0);
6959 OUTL_DSP(NCB_SCRIPT_PHYS (np, msg_bad));
6960 } else {
6961 /* Answer is ok. */
6962 spi_period(starget) = per;
6963 spi_offset(starget) = ofs;
6964 ncr_setsync(np, cp, scntl3, (fak<<5)|ofs);
6965 OUTL_DSP(NCB_SCRIPT_PHYS (np, clrack));
6966 }
6967 return;
6968
6969 case NS_WIDE:
6970 spi_width(starget) = 0;
6971 ncr_setwide(np, cp, 0, 0);
6972 break;
6973 }
6974 }
6975
6976 /*
6977 ** It was a request. Set value and
6978 ** prepare an answer message
6979 */
6980
6981 spi_period(starget) = per;
6982 spi_offset(starget) = ofs;
6983 ncr_setsync(np, cp, scntl3, (fak<<5)|ofs);
6984
6985 spi_populate_sync_msg(np->msgout, per, ofs);
6986 cp->nego_status = NS_SYNC;
6987
6988 if (DEBUG_FLAGS & DEBUG_NEGO) {
6989 ncr_print_msg(cp, "sync msgout", np->msgout);
6990 }
6991
6992 if (!ofs) {
6993 OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad));
6994 return;
6995 }
6996 np->msgin [0] = NOP;
6997
6998 break;
6999
7000 case SIR_NEGO_WIDE:
7001 /*
7002 ** Wide request message received.
7003 */
7004 if (DEBUG_FLAGS & DEBUG_NEGO) {
7005 ncr_print_msg(cp, "wide msgin", np->msgin);
7006 }
7007
7008 /*
7009 ** get requested values.
7010 */
7011
7012 chg = 0;
7013 wide = np->msgin[3];
7014
7015 /*
7016 ** if target sends WDTR message,
7017 ** it CAN transfer wide.
7018 */
7019
7020 if (wide && starget)
7021 spi_support_wide(starget) = 1;
7022
7023 /*
7024 ** check values against driver limits.
7025 */
7026
7027 if (wide > tp->usrwide)
7028 {chg = 1; wide = tp->usrwide;}
7029
7030 if (DEBUG_FLAGS & DEBUG_NEGO) {
7031 PRINT_ADDR(cp->cmd, "wide: wide=%d chg=%d.\n", wide,
7032 chg);
7033 }
7034
7035 if (INB (HS_PRT) == HS_NEGOTIATE) {
7036 OUTB (HS_PRT, HS_BUSY);
7037 switch (cp->nego_status) {
7038
7039 case NS_WIDE:
7040 /*
7041 ** This was an answer message
7042 */
7043 if (chg) {
7044 /* Answer wasn't acceptable. */
7045 spi_width(starget) = 0;
7046 ncr_setwide(np, cp, 0, 1);
7047 OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad));
7048 } else {
7049 /* Answer is ok. */
7050 spi_width(starget) = wide;
7051 ncr_setwide(np, cp, wide, 1);
7052 OUTL_DSP (NCB_SCRIPT_PHYS (np, clrack));
7053 }
7054 return;
7055
7056 case NS_SYNC:
7057 spi_period(starget) = 0;
7058 spi_offset(starget) = 0;
7059 ncr_setsync(np, cp, 0, 0xe0);
7060 break;
7061 }
7062 }
7063
7064 /*
7065 ** It was a request, set value and
7066 ** prepare an answer message
7067 */
7068
7069 spi_width(starget) = wide;
7070 ncr_setwide(np, cp, wide, 1);
7071 spi_populate_width_msg(np->msgout, wide);
7072
7073 np->msgin [0] = NOP;
7074
7075 cp->nego_status = NS_WIDE;
7076
7077 if (DEBUG_FLAGS & DEBUG_NEGO) {
7078 ncr_print_msg(cp, "wide msgout", np->msgin);
7079 }
7080 break;
7081
7082 /*--------------------------------------------------------------------
7083 **
7084 ** Processing of special messages
7085 **
7086 **--------------------------------------------------------------------
7087 */
7088
7089 case SIR_REJECT_RECEIVED:
7090 /*-----------------------------------------------
7091 **
7092 ** We received a MESSAGE_REJECT.
7093 **
7094 **-----------------------------------------------
7095 */
7096
7097 PRINT_ADDR(cp->cmd, "MESSAGE_REJECT received (%x:%x).\n",
7098 (unsigned)scr_to_cpu(np->lastmsg), np->msgout[0]);
7099 break;
7100
7101 case SIR_REJECT_SENT:
7102 /*-----------------------------------------------
7103 **
7104 ** We received an unknown message
7105 **
7106 **-----------------------------------------------
7107 */
7108
7109 ncr_print_msg(cp, "MESSAGE_REJECT sent for", np->msgin);
7110 break;
7111
7112 /*--------------------------------------------------------------------
7113 **
7114 ** Processing of special messages
7115 **
7116 **--------------------------------------------------------------------
7117 */
7118
7119 case SIR_IGN_RESIDUE:
7120 /*-----------------------------------------------
7121 **
7122 ** We received an IGNORE RESIDUE message,
7123 ** which couldn't be handled by the script.
7124 **
7125 **-----------------------------------------------
7126 */
7127
7128 PRINT_ADDR(cp->cmd, "IGNORE_WIDE_RESIDUE received, but not yet "
7129 "implemented.\n");
7130 break;
7131 #if 0
7132 case SIR_MISSING_SAVE:
7133 /*-----------------------------------------------
7134 **
7135 ** We received an DISCONNECT message,
7136 ** but the datapointer wasn't saved before.
7137 **
7138 **-----------------------------------------------
7139 */
7140
7141 PRINT_ADDR(cp->cmd, "DISCONNECT received, but datapointer "
7142 "not saved: data=%x save=%x goal=%x.\n",
7143 (unsigned) INL (nc_temp),
7144 (unsigned) scr_to_cpu(np->header.savep),
7145 (unsigned) scr_to_cpu(np->header.goalp));
7146 break;
7147 #endif
7148 }
7149
7150 out:
7151 OUTONB_STD ();
7152 }
7153
7154 /*==========================================================
7155 **
7156 **
7157 ** Acquire a control block
7158 **
7159 **
7160 **==========================================================
7161 */
7162
7163 static struct ccb *ncr_get_ccb(struct ncb *np, struct scsi_cmnd *cmd)
7164 {
7165 u_char tn = cmd->device->id;
7166 u_char ln = cmd->device->lun;
7167 struct tcb *tp = &np->target[tn];
7168 struct lcb *lp = tp->lp[ln];
7169 u_char tag = NO_TAG;
7170 struct ccb *cp = NULL;
7171
7172 /*
7173 ** Lun structure available ?
7174 */
7175 if (lp) {
7176 struct list_head *qp;
7177 /*
7178 ** Keep from using more tags than we can handle.
7179 */
7180 if (lp->usetags && lp->busyccbs >= lp->maxnxs)
7181 return NULL;
7182
7183 /*
7184 ** Allocate a new CCB if needed.
7185 */
7186 if (list_empty(&lp->free_ccbq))
7187 ncr_alloc_ccb(np, tn, ln);
7188
7189 /*
7190 ** Look for free CCB
7191 */
7192 qp = ncr_list_pop(&lp->free_ccbq);
7193 if (qp) {
7194 cp = list_entry(qp, struct ccb, link_ccbq);
7195 if (cp->magic) {
7196 PRINT_ADDR(cmd, "ccb free list corrupted "
7197 "(@%p)\n", cp);
7198 cp = NULL;
7199 } else {
7200 list_add_tail(qp, &lp->wait_ccbq);
7201 ++lp->busyccbs;
7202 }
7203 }
7204
7205 /*
7206 ** If a CCB is available,
7207 ** Get a tag for this nexus if required.
7208 */
7209 if (cp) {
7210 if (lp->usetags)
7211 tag = lp->cb_tags[lp->ia_tag];
7212 }
7213 else if (lp->actccbs > 0)
7214 return NULL;
7215 }
7216
7217 /*
7218 ** if nothing available, take the default.
7219 */
7220 if (!cp)
7221 cp = np->ccb;
7222
7223 /*
7224 ** Wait until available.
7225 */
7226 #if 0
7227 while (cp->magic) {
7228 if (flags & SCSI_NOSLEEP) break;
7229 if (tsleep ((caddr_t)cp, PRIBIO|PCATCH, "ncr", 0))
7230 break;
7231 }
7232 #endif
7233
7234 if (cp->magic)
7235 return NULL;
7236
7237 cp->magic = 1;
7238
7239 /*
7240 ** Move to next available tag if tag used.
7241 */
7242 if (lp) {
7243 if (tag != NO_TAG) {
7244 ++lp->ia_tag;
7245 if (lp->ia_tag == MAX_TAGS)
7246 lp->ia_tag = 0;
7247 lp->tags_umap |= (((tagmap_t) 1) << tag);
7248 }
7249 }
7250
7251 /*
7252 ** Remember all informations needed to free this CCB.
7253 */
7254 cp->tag = tag;
7255 cp->target = tn;
7256 cp->lun = ln;
7257
7258 if (DEBUG_FLAGS & DEBUG_TAGS) {
7259 PRINT_ADDR(cmd, "ccb @%p using tag %d.\n", cp, tag);
7260 }
7261
7262 return cp;
7263 }
7264
7265 /*==========================================================
7266 **
7267 **
7268 ** Release one control block
7269 **
7270 **
7271 **==========================================================
7272 */
7273
7274 static void ncr_free_ccb (struct ncb *np, struct ccb *cp)
7275 {
7276 struct tcb *tp = &np->target[cp->target];
7277 struct lcb *lp = tp->lp[cp->lun];
7278
7279 if (DEBUG_FLAGS & DEBUG_TAGS) {
7280 PRINT_ADDR(cp->cmd, "ccb @%p freeing tag %d.\n", cp, cp->tag);
7281 }
7282
7283 /*
7284 ** If lun control block available,
7285 ** decrement active commands and increment credit,
7286 ** free the tag if any and remove the JUMP for reselect.
7287 */
7288 if (lp) {
7289 if (cp->tag != NO_TAG) {
7290 lp->cb_tags[lp->if_tag++] = cp->tag;
7291 if (lp->if_tag == MAX_TAGS)
7292 lp->if_tag = 0;
7293 lp->tags_umap &= ~(((tagmap_t) 1) << cp->tag);
7294 lp->tags_smap &= lp->tags_umap;
7295 lp->jump_ccb[cp->tag] =
7296 cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l_q));
7297 } else {
7298 lp->jump_ccb[0] =
7299 cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l));
7300 }
7301 }
7302
7303 /*
7304 ** Make this CCB available.
7305 */
7306
7307 if (lp) {
7308 if (cp != np->ccb)
7309 list_move(&cp->link_ccbq, &lp->free_ccbq);
7310 --lp->busyccbs;
7311 if (cp->queued) {
7312 --lp->queuedccbs;
7313 }
7314 }
7315 cp -> host_status = HS_IDLE;
7316 cp -> magic = 0;
7317 if (cp->queued) {
7318 --np->queuedccbs;
7319 cp->queued = 0;
7320 }
7321
7322 #if 0
7323 if (cp == np->ccb)
7324 wakeup ((caddr_t) cp);
7325 #endif
7326 }
7327
7328
7329 #define ncr_reg_bus_addr(r) (np->paddr + offsetof (struct ncr_reg, r))
7330
7331 /*------------------------------------------------------------------------
7332 ** Initialize the fixed part of a CCB structure.
7333 **------------------------------------------------------------------------
7334 **------------------------------------------------------------------------
7335 */
7336 static void ncr_init_ccb(struct ncb *np, struct ccb *cp)
7337 {
7338 ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4);
7339
7340 /*
7341 ** Remember virtual and bus address of this ccb.
7342 */
7343 cp->p_ccb = vtobus(cp);
7344 cp->phys.header.cp = cp;
7345
7346 /*
7347 ** This allows list_del to work for the default ccb.
7348 */
7349 INIT_LIST_HEAD(&cp->link_ccbq);
7350
7351 /*
7352 ** Initialyze the start and restart launch script.
7353 **
7354 ** COPY(4) @(...p_phys), @(dsa)
7355 ** JUMP @(sched_point)
7356 */
7357 cp->start.setup_dsa[0] = cpu_to_scr(copy_4);
7358 cp->start.setup_dsa[1] = cpu_to_scr(CCB_PHYS(cp, start.p_phys));
7359 cp->start.setup_dsa[2] = cpu_to_scr(ncr_reg_bus_addr(nc_dsa));
7360 cp->start.schedule.l_cmd = cpu_to_scr(SCR_JUMP);
7361 cp->start.p_phys = cpu_to_scr(CCB_PHYS(cp, phys));
7362
7363 memcpy(&cp->restart, &cp->start, sizeof(cp->restart));
7364
7365 cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
7366 cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort));
7367 }
7368
7369
7370 /*------------------------------------------------------------------------
7371 ** Allocate a CCB and initialize its fixed part.
7372 **------------------------------------------------------------------------
7373 **------------------------------------------------------------------------
7374 */
7375 static void ncr_alloc_ccb(struct ncb *np, u_char tn, u_char ln)
7376 {
7377 struct tcb *tp = &np->target[tn];
7378 struct lcb *lp = tp->lp[ln];
7379 struct ccb *cp = NULL;
7380
7381 /*
7382 ** Allocate memory for this CCB.
7383 */
7384 cp = m_calloc_dma(sizeof(struct ccb), "CCB");
7385 if (!cp)
7386 return;
7387
7388 /*
7389 ** Count it and initialyze it.
7390 */
7391 lp->actccbs++;
7392 np->actccbs++;
7393 memset(cp, 0, sizeof (*cp));
7394 ncr_init_ccb(np, cp);
7395
7396 /*
7397 ** Chain into wakeup list and free ccb queue and take it
7398 ** into account for tagged commands.
7399 */
7400 cp->link_ccb = np->ccb->link_ccb;
7401 np->ccb->link_ccb = cp;
7402
7403 list_add(&cp->link_ccbq, &lp->free_ccbq);
7404 }
7405
7406 /*==========================================================
7407 **
7408 **
7409 ** Allocation of resources for Targets/Luns/Tags.
7410 **
7411 **
7412 **==========================================================
7413 */
7414
7415
7416 /*------------------------------------------------------------------------
7417 ** Target control block initialisation.
7418 **------------------------------------------------------------------------
7419 ** This data structure is fully initialized after a SCSI command
7420 ** has been successfully completed for this target.
7421 ** It contains a SCRIPT that is called on target reselection.
7422 **------------------------------------------------------------------------
7423 */
7424 static void ncr_init_tcb (struct ncb *np, u_char tn)
7425 {
7426 struct tcb *tp = &np->target[tn];
7427 ncrcmd copy_1 = np->features & FE_PFEN ? SCR_COPY(1) : SCR_COPY_F(1);
7428 int th = tn & 3;
7429 int i;
7430
7431 /*
7432 ** Jump to next tcb if SFBR does not match this target.
7433 ** JUMP IF (SFBR != #target#), @(next tcb)
7434 */
7435 tp->jump_tcb.l_cmd =
7436 cpu_to_scr((SCR_JUMP ^ IFFALSE (DATA (0x80 + tn))));
7437 tp->jump_tcb.l_paddr = np->jump_tcb[th].l_paddr;
7438
7439 /*
7440 ** Load the synchronous transfer register.
7441 ** COPY @(tp->sval), @(sxfer)
7442 */
7443 tp->getscr[0] = cpu_to_scr(copy_1);
7444 tp->getscr[1] = cpu_to_scr(vtobus (&tp->sval));
7445 #ifdef SCSI_NCR_BIG_ENDIAN
7446 tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer) ^ 3);
7447 #else
7448 tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer));
7449 #endif
7450
7451 /*
7452 ** Load the timing register.
7453 ** COPY @(tp->wval), @(scntl3)
7454 */
7455 tp->getscr[3] = cpu_to_scr(copy_1);
7456 tp->getscr[4] = cpu_to_scr(vtobus (&tp->wval));
7457 #ifdef SCSI_NCR_BIG_ENDIAN
7458 tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3) ^ 3);
7459 #else
7460 tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3));
7461 #endif
7462
7463 /*
7464 ** Get the IDENTIFY message and the lun.
7465 ** CALL @script(resel_lun)
7466 */
7467 tp->call_lun.l_cmd = cpu_to_scr(SCR_CALL);
7468 tp->call_lun.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_lun));
7469
7470 /*
7471 ** Look for the lun control block of this nexus.
7472 ** For i = 0 to 3
7473 ** JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb)
7474 */
7475 for (i = 0 ; i < 4 ; i++) {
7476 tp->jump_lcb[i].l_cmd =
7477 cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3))));
7478 tp->jump_lcb[i].l_paddr =
7479 cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_identify));
7480 }
7481
7482 /*
7483 ** Link this target control block to the JUMP chain.
7484 */
7485 np->jump_tcb[th].l_paddr = cpu_to_scr(vtobus (&tp->jump_tcb));
7486
7487 /*
7488 ** These assert's should be moved at driver initialisations.
7489 */
7490 #ifdef SCSI_NCR_BIG_ENDIAN
7491 BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^
7492 offsetof(struct tcb , sval )) &3) != 3);
7493 BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^
7494 offsetof(struct tcb , wval )) &3) != 3);
7495 #else
7496 BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^
7497 offsetof(struct tcb , sval )) &3) != 0);
7498 BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^
7499 offsetof(struct tcb , wval )) &3) != 0);
7500 #endif
7501 }
7502
7503
7504 /*------------------------------------------------------------------------
7505 ** Lun control block allocation and initialization.
7506 **------------------------------------------------------------------------
7507 ** This data structure is allocated and initialized after a SCSI
7508 ** command has been successfully completed for this target/lun.
7509 **------------------------------------------------------------------------
7510 */
7511 static struct lcb *ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln)
7512 {
7513 struct tcb *tp = &np->target[tn];
7514 struct lcb *lp = tp->lp[ln];
7515 ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4);
7516 int lh = ln & 3;
7517
7518 /*
7519 ** Already done, return.
7520 */
7521 if (lp)
7522 return lp;
7523
7524 /*
7525 ** Allocate the lcb.
7526 */
7527 lp = m_calloc_dma(sizeof(struct lcb), "LCB");
7528 if (!lp)
7529 goto fail;
7530 memset(lp, 0, sizeof(*lp));
7531 tp->lp[ln] = lp;
7532
7533 /*
7534 ** Initialize the target control block if not yet.
7535 */
7536 if (!tp->jump_tcb.l_cmd)
7537 ncr_init_tcb(np, tn);
7538
7539 /*
7540 ** Initialize the CCB queue headers.
7541 */
7542 INIT_LIST_HEAD(&lp->free_ccbq);
7543 INIT_LIST_HEAD(&lp->busy_ccbq);
7544 INIT_LIST_HEAD(&lp->wait_ccbq);
7545 INIT_LIST_HEAD(&lp->skip_ccbq);
7546
7547 /*
7548 ** Set max CCBs to 1 and use the default 1 entry
7549 ** jump table by default.
7550 */
7551 lp->maxnxs = 1;
7552 lp->jump_ccb = &lp->jump_ccb_0;
7553 lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb));
7554
7555 /*
7556 ** Initilialyze the reselect script:
7557 **
7558 ** Jump to next lcb if SFBR does not match this lun.
7559 ** Load TEMP with the CCB direct jump table bus address.
7560 ** Get the SIMPLE TAG message and the tag.
7561 **
7562 ** JUMP IF (SFBR != #lun#), @(next lcb)
7563 ** COPY @(lp->p_jump_ccb), @(temp)
7564 ** JUMP @script(resel_notag)
7565 */
7566 lp->jump_lcb.l_cmd =
7567 cpu_to_scr((SCR_JUMP ^ IFFALSE (MASK (0x80+ln, 0xff))));
7568 lp->jump_lcb.l_paddr = tp->jump_lcb[lh].l_paddr;
7569
7570 lp->load_jump_ccb[0] = cpu_to_scr(copy_4);
7571 lp->load_jump_ccb[1] = cpu_to_scr(vtobus (&lp->p_jump_ccb));
7572 lp->load_jump_ccb[2] = cpu_to_scr(ncr_reg_bus_addr(nc_temp));
7573
7574 lp->jump_tag.l_cmd = cpu_to_scr(SCR_JUMP);
7575 lp->jump_tag.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_notag));
7576
7577 /*
7578 ** Link this lun control block to the JUMP chain.
7579 */
7580 tp->jump_lcb[lh].l_paddr = cpu_to_scr(vtobus (&lp->jump_lcb));
7581
7582 /*
7583 ** Initialize command queuing control.
7584 */
7585 lp->busyccbs = 1;
7586 lp->queuedccbs = 1;
7587 lp->queuedepth = 1;
7588 fail:
7589 return lp;
7590 }
7591
7592
7593 /*------------------------------------------------------------------------
7594 ** Lun control block setup on INQUIRY data received.
7595 **------------------------------------------------------------------------
7596 ** We only support WIDE, SYNC for targets and CMDQ for logical units.
7597 ** This setup is done on each INQUIRY since we are expecting user
7598 ** will play with CHANGE DEFINITION commands. :-)
7599 **------------------------------------------------------------------------
7600 */
7601 static struct lcb *ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev)
7602 {
7603 unsigned char tn = sdev->id, ln = sdev->lun;
7604 struct tcb *tp = &np->target[tn];
7605 struct lcb *lp = tp->lp[ln];
7606
7607 /* If no lcb, try to allocate it. */
7608 if (!lp && !(lp = ncr_alloc_lcb(np, tn, ln)))
7609 goto fail;
7610
7611 /*
7612 ** If unit supports tagged commands, allocate the
7613 ** CCB JUMP table if not yet.
7614 */
7615 if (sdev->tagged_supported && lp->jump_ccb == &lp->jump_ccb_0) {
7616 int i;
7617 lp->jump_ccb = m_calloc_dma(256, "JUMP_CCB");
7618 if (!lp->jump_ccb) {
7619 lp->jump_ccb = &lp->jump_ccb_0;
7620 goto fail;
7621 }
7622 lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb));
7623 for (i = 0 ; i < 64 ; i++)
7624 lp->jump_ccb[i] =
7625 cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_i_t_l_q));
7626 for (i = 0 ; i < MAX_TAGS ; i++)
7627 lp->cb_tags[i] = i;
7628 lp->maxnxs = MAX_TAGS;
7629 lp->tags_stime = jiffies + 3*HZ;
7630 ncr_setup_tags (np, sdev);
7631 }
7632
7633
7634 fail:
7635 return lp;
7636 }
7637
7638 /*==========================================================
7639 **
7640 **
7641 ** Build Scatter Gather Block
7642 **
7643 **
7644 **==========================================================
7645 **
7646 ** The transfer area may be scattered among
7647 ** several non adjacent physical pages.
7648 **
7649 ** We may use MAX_SCATTER blocks.
7650 **
7651 **----------------------------------------------------------
7652 */
7653
7654 /*
7655 ** We try to reduce the number of interrupts caused
7656 ** by unexpected phase changes due to disconnects.
7657 ** A typical harddisk may disconnect before ANY block.
7658 ** If we wanted to avoid unexpected phase changes at all
7659 ** we had to use a break point every 512 bytes.
7660 ** Of course the number of scatter/gather blocks is
7661 ** limited.
7662 ** Under Linux, the scatter/gatter blocks are provided by
7663 ** the generic driver. We just have to copy addresses and
7664 ** sizes to the data segment array.
7665 */
7666
7667 static int ncr_scatter_no_sglist(struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd)
7668 {
7669 struct scr_tblmove *data = &cp->phys.data[MAX_SCATTER - 1];
7670 int segment;
7671
7672 cp->data_len = cmd->request_bufflen;
7673
7674 if (cmd->request_bufflen) {
7675 dma_addr_t baddr = map_scsi_single_data(np, cmd);
7676 if (baddr) {
7677 ncr_build_sge(np, data, baddr, cmd->request_bufflen);
7678 segment = 1;
7679 } else {
7680 segment = -2;
7681 }
7682 } else {
7683 segment = 0;
7684 }
7685
7686 return segment;
7687 }
7688
7689 static int ncr_scatter(struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd)
7690 {
7691 int segment = 0;
7692 int use_sg = (int) cmd->use_sg;
7693
7694 cp->data_len = 0;
7695
7696 if (!use_sg)
7697 segment = ncr_scatter_no_sglist(np, cp, cmd);
7698 else if ((use_sg = map_scsi_sg_data(np, cmd)) > 0) {
7699 struct scatterlist *scatter = (struct scatterlist *)cmd->request_buffer;
7700 struct scr_tblmove *data;
7701
7702 if (use_sg > MAX_SCATTER) {
7703 unmap_scsi_data(np, cmd);
7704 return -1;
7705 }
7706
7707 data = &cp->phys.data[MAX_SCATTER - use_sg];
7708
7709 for (segment = 0; segment < use_sg; segment++) {
7710 dma_addr_t baddr = sg_dma_address(&scatter[segment]);
7711 unsigned int len = sg_dma_len(&scatter[segment]);
7712
7713 ncr_build_sge(np, &data[segment], baddr, len);
7714 cp->data_len += len;
7715 }
7716 } else {
7717 segment = -2;
7718 }
7719
7720 return segment;
7721 }
7722
7723 /*==========================================================
7724 **
7725 **
7726 ** Test the bus snoop logic :-(
7727 **
7728 ** Has to be called with interrupts disabled.
7729 **
7730 **
7731 **==========================================================
7732 */
7733
7734 static int __init ncr_regtest (struct ncb* np)
7735 {
7736 register volatile u32 data;
7737 /*
7738 ** ncr registers may NOT be cached.
7739 ** write 0xffffffff to a read only register area,
7740 ** and try to read it back.
7741 */
7742 data = 0xffffffff;
7743 OUTL_OFF(offsetof(struct ncr_reg, nc_dstat), data);
7744 data = INL_OFF(offsetof(struct ncr_reg, nc_dstat));
7745 #if 1
7746 if (data == 0xffffffff) {
7747 #else
7748 if ((data & 0xe2f0fffd) != 0x02000080) {
7749 #endif
7750 printk ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
7751 (unsigned) data);
7752 return (0x10);
7753 }
7754 return (0);
7755 }
7756
7757 static int __init ncr_snooptest (struct ncb* np)
7758 {
7759 u32 ncr_rd, ncr_wr, ncr_bk, host_rd, host_wr, pc;
7760 int i, err=0;
7761 if (np->reg) {
7762 err |= ncr_regtest (np);
7763 if (err)
7764 return (err);
7765 }
7766
7767 /* init */
7768 pc = NCB_SCRIPTH_PHYS (np, snooptest);
7769 host_wr = 1;
7770 ncr_wr = 2;
7771 /*
7772 ** Set memory and register.
7773 */
7774 np->ncr_cache = cpu_to_scr(host_wr);
7775 OUTL (nc_temp, ncr_wr);
7776 /*
7777 ** Start script (exchange values)
7778 */
7779 OUTL_DSP (pc);
7780 /*
7781 ** Wait 'til done (with timeout)
7782 */
7783 for (i=0; i<NCR_SNOOP_TIMEOUT; i++)
7784 if (INB(nc_istat) & (INTF|SIP|DIP))
7785 break;
7786 /*
7787 ** Save termination position.
7788 */
7789 pc = INL (nc_dsp);
7790 /*
7791 ** Read memory and register.
7792 */
7793 host_rd = scr_to_cpu(np->ncr_cache);
7794 ncr_rd = INL (nc_scratcha);
7795 ncr_bk = INL (nc_temp);
7796 /*
7797 ** Reset ncr chip
7798 */
7799 ncr_chip_reset(np, 100);
7800 /*
7801 ** check for timeout
7802 */
7803 if (i>=NCR_SNOOP_TIMEOUT) {
7804 printk ("CACHE TEST FAILED: timeout.\n");
7805 return (0x20);
7806 }
7807 /*
7808 ** Check termination position.
7809 */
7810 if (pc != NCB_SCRIPTH_PHYS (np, snoopend)+8) {
7811 printk ("CACHE TEST FAILED: script execution failed.\n");
7812 printk ("start=%08lx, pc=%08lx, end=%08lx\n",
7813 (u_long) NCB_SCRIPTH_PHYS (np, snooptest), (u_long) pc,
7814 (u_long) NCB_SCRIPTH_PHYS (np, snoopend) +8);
7815 return (0x40);
7816 }
7817 /*
7818 ** Show results.
7819 */
7820 if (host_wr != ncr_rd) {
7821 printk ("CACHE TEST FAILED: host wrote %d, ncr read %d.\n",
7822 (int) host_wr, (int) ncr_rd);
7823 err |= 1;
7824 }
7825 if (host_rd != ncr_wr) {
7826 printk ("CACHE TEST FAILED: ncr wrote %d, host read %d.\n",
7827 (int) ncr_wr, (int) host_rd);
7828 err |= 2;
7829 }
7830 if (ncr_bk != ncr_wr) {
7831 printk ("CACHE TEST FAILED: ncr wrote %d, read back %d.\n",
7832 (int) ncr_wr, (int) ncr_bk);
7833 err |= 4;
7834 }
7835 return (err);
7836 }
7837
7838 /*==========================================================
7839 **
7840 ** Determine the ncr's clock frequency.
7841 ** This is essential for the negotiation
7842 ** of the synchronous transfer rate.
7843 **
7844 **==========================================================
7845 **
7846 ** Note: we have to return the correct value.
7847 ** THERE IS NO SAFE DEFAULT VALUE.
7848 **
7849 ** Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
7850 ** 53C860 and 53C875 rev. 1 support fast20 transfers but
7851 ** do not have a clock doubler and so are provided with a
7852 ** 80 MHz clock. All other fast20 boards incorporate a doubler
7853 ** and so should be delivered with a 40 MHz clock.
7854 ** The future fast40 chips (895/895) use a 40 Mhz base clock
7855 ** and provide a clock quadrupler (160 Mhz). The code below
7856 ** tries to deal as cleverly as possible with all this stuff.
7857 **
7858 **----------------------------------------------------------
7859 */
7860
7861 /*
7862 * Select NCR SCSI clock frequency
7863 */
7864 static void ncr_selectclock(struct ncb *np, u_char scntl3)
7865 {
7866 if (np->multiplier < 2) {
7867 OUTB(nc_scntl3, scntl3);
7868 return;
7869 }
7870
7871 if (bootverbose >= 2)
7872 printk ("%s: enabling clock multiplier\n", ncr_name(np));
7873
7874 OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */
7875 if (np->multiplier > 2) { /* Poll bit 5 of stest4 for quadrupler */
7876 int i = 20;
7877 while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
7878 udelay(20);
7879 if (!i)
7880 printk("%s: the chip cannot lock the frequency\n", ncr_name(np));
7881 } else /* Wait 20 micro-seconds for doubler */
7882 udelay(20);
7883 OUTB(nc_stest3, HSC); /* Halt the scsi clock */
7884 OUTB(nc_scntl3, scntl3);
7885 OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */
7886 OUTB(nc_stest3, 0x00); /* Restart scsi clock */
7887 }
7888
7889
7890 /*
7891 * calculate NCR SCSI clock frequency (in KHz)
7892 */
7893 static unsigned __init ncrgetfreq (struct ncb *np, int gen)
7894 {
7895 unsigned ms = 0;
7896 char count = 0;
7897
7898 /*
7899 * Measure GEN timer delay in order
7900 * to calculate SCSI clock frequency
7901 *
7902 * This code will never execute too
7903 * many loop iterations (if DELAY is
7904 * reasonably correct). It could get
7905 * too low a delay (too high a freq.)
7906 * if the CPU is slow executing the
7907 * loop for some reason (an NMI, for
7908 * example). For this reason we will
7909 * if multiple measurements are to be
7910 * performed trust the higher delay
7911 * (lower frequency returned).
7912 */
7913 OUTB (nc_stest1, 0); /* make sure clock doubler is OFF */
7914 OUTW (nc_sien , 0); /* mask all scsi interrupts */
7915 (void) INW (nc_sist); /* clear pending scsi interrupt */
7916 OUTB (nc_dien , 0); /* mask all dma interrupts */
7917 (void) INW (nc_sist); /* another one, just to be sure :) */
7918 OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */
7919 OUTB (nc_stime1, 0); /* disable general purpose timer */
7920 OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */
7921 while (!(INW(nc_sist) & GEN) && ms++ < 100000) {
7922 for (count = 0; count < 10; count ++)
7923 udelay(100); /* count ms */
7924 }
7925 OUTB (nc_stime1, 0); /* disable general purpose timer */
7926 /*
7927 * set prescaler to divide by whatever 0 means
7928 * 0 ought to choose divide by 2, but appears
7929 * to set divide by 3.5 mode in my 53c810 ...
7930 */
7931 OUTB (nc_scntl3, 0);
7932
7933 if (bootverbose >= 2)
7934 printk ("%s: Delay (GEN=%d): %u msec\n", ncr_name(np), gen, ms);
7935 /*
7936 * adjust for prescaler, and convert into KHz
7937 */
7938 return ms ? ((1 << gen) * 4340) / ms : 0;
7939 }
7940
7941 /*
7942 * Get/probe NCR SCSI clock frequency
7943 */
7944 static void __init ncr_getclock (struct ncb *np, int mult)
7945 {
7946 unsigned char scntl3 = INB(nc_scntl3);
7947 unsigned char stest1 = INB(nc_stest1);
7948 unsigned f1;
7949
7950 np->multiplier = 1;
7951 f1 = 40000;
7952
7953 /*
7954 ** True with 875 or 895 with clock multiplier selected
7955 */
7956 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
7957 if (bootverbose >= 2)
7958 printk ("%s: clock multiplier found\n", ncr_name(np));
7959 np->multiplier = mult;
7960 }
7961
7962 /*
7963 ** If multiplier not found or scntl3 not 7,5,3,
7964 ** reset chip and get frequency from general purpose timer.
7965 ** Otherwise trust scntl3 BIOS setting.
7966 */
7967 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
7968 unsigned f2;
7969
7970 ncr_chip_reset(np, 5);
7971
7972 (void) ncrgetfreq (np, 11); /* throw away first result */
7973 f1 = ncrgetfreq (np, 11);
7974 f2 = ncrgetfreq (np, 11);
7975
7976 if(bootverbose)
7977 printk ("%s: NCR clock is %uKHz, %uKHz\n", ncr_name(np), f1, f2);
7978
7979 if (f1 > f2) f1 = f2; /* trust lower result */
7980
7981 if (f1 < 45000) f1 = 40000;
7982 else if (f1 < 55000) f1 = 50000;
7983 else f1 = 80000;
7984
7985 if (f1 < 80000 && mult > 1) {
7986 if (bootverbose >= 2)
7987 printk ("%s: clock multiplier assumed\n", ncr_name(np));
7988 np->multiplier = mult;
7989 }
7990 } else {
7991 if ((scntl3 & 7) == 3) f1 = 40000;
7992 else if ((scntl3 & 7) == 5) f1 = 80000;
7993 else f1 = 160000;
7994
7995 f1 /= np->multiplier;
7996 }
7997
7998 /*
7999 ** Compute controller synchronous parameters.
8000 */
8001 f1 *= np->multiplier;
8002 np->clock_khz = f1;
8003 }
8004
8005 /*===================== LINUX ENTRY POINTS SECTION ==========================*/
8006
8007 static int ncr53c8xx_slave_alloc(struct scsi_device *device)
8008 {
8009 struct Scsi_Host *host = device->host;
8010 struct ncb *np = ((struct host_data *) host->hostdata)->ncb;
8011 struct tcb *tp = &np->target[device->id];
8012 tp->starget = device->sdev_target;
8013
8014 return 0;
8015 }
8016
8017 static int ncr53c8xx_slave_configure(struct scsi_device *device)
8018 {
8019 struct Scsi_Host *host = device->host;
8020 struct ncb *np = ((struct host_data *) host->hostdata)->ncb;
8021 struct tcb *tp = &np->target[device->id];
8022 struct lcb *lp = tp->lp[device->lun];
8023 int numtags, depth_to_use;
8024
8025 ncr_setup_lcb(np, device);
8026
8027 /*
8028 ** Select queue depth from driver setup.
8029 ** Donnot use more than configured by user.
8030 ** Use at least 2.
8031 ** Donnot use more than our maximum.
8032 */
8033 numtags = device_queue_depth(np->unit, device->id, device->lun);
8034 if (numtags > tp->usrtags)
8035 numtags = tp->usrtags;
8036 if (!device->tagged_supported)
8037 numtags = 1;
8038 depth_to_use = numtags;
8039 if (depth_to_use < 2)
8040 depth_to_use = 2;
8041 if (depth_to_use > MAX_TAGS)
8042 depth_to_use = MAX_TAGS;
8043
8044 scsi_adjust_queue_depth(device,
8045 (device->tagged_supported ?
8046 MSG_SIMPLE_TAG : 0),
8047 depth_to_use);
8048
8049 /*
8050 ** Since the queue depth is not tunable under Linux,
8051 ** we need to know this value in order not to
8052 ** announce stupid things to user.
8053 **
8054 ** XXX(hch): As of Linux 2.6 it certainly _is_ tunable..
8055 ** In fact we just tuned it, or did I miss
8056 ** something important? :)
8057 */
8058 if (lp) {
8059 lp->numtags = lp->maxtags = numtags;
8060 lp->scdev_depth = depth_to_use;
8061 }
8062 ncr_setup_tags (np, device);
8063
8064 #ifdef DEBUG_NCR53C8XX
8065 printk("ncr53c8xx_select_queue_depth: host=%d, id=%d, lun=%d, depth=%d\n",
8066 np->unit, device->id, device->lun, depth_to_use);
8067 #endif
8068
8069 if (spi_support_sync(device->sdev_target) &&
8070 !spi_initial_dv(device->sdev_target))
8071 spi_dv_device(device);
8072 return 0;
8073 }
8074
8075 static int ncr53c8xx_queue_command (struct scsi_cmnd *cmd, void (* done)(struct scsi_cmnd *))
8076 {
8077 struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
8078 unsigned long flags;
8079 int sts;
8080
8081 #ifdef DEBUG_NCR53C8XX
8082 printk("ncr53c8xx_queue_command\n");
8083 #endif
8084
8085 cmd->scsi_done = done;
8086 cmd->host_scribble = NULL;
8087 cmd->__data_mapped = 0;
8088 cmd->__data_mapping = 0;
8089
8090 spin_lock_irqsave(&np->smp_lock, flags);
8091
8092 if ((sts = ncr_queue_command(np, cmd)) != DID_OK) {
8093 cmd->result = ScsiResult(sts, 0);
8094 #ifdef DEBUG_NCR53C8XX
8095 printk("ncr53c8xx : command not queued - result=%d\n", sts);
8096 #endif
8097 }
8098 #ifdef DEBUG_NCR53C8XX
8099 else
8100 printk("ncr53c8xx : command successfully queued\n");
8101 #endif
8102
8103 spin_unlock_irqrestore(&np->smp_lock, flags);
8104
8105 if (sts != DID_OK) {
8106 unmap_scsi_data(np, cmd);
8107 done(cmd);
8108 sts = 0;
8109 }
8110
8111 return sts;
8112 }
8113
8114 irqreturn_t ncr53c8xx_intr(int irq, void *dev_id, struct pt_regs * regs)
8115 {
8116 unsigned long flags;
8117 struct Scsi_Host *shost = (struct Scsi_Host *)dev_id;
8118 struct host_data *host_data = (struct host_data *)shost->hostdata;
8119 struct ncb *np = host_data->ncb;
8120 struct scsi_cmnd *done_list;
8121
8122 #ifdef DEBUG_NCR53C8XX
8123 printk("ncr53c8xx : interrupt received\n");
8124 #endif
8125
8126 if (DEBUG_FLAGS & DEBUG_TINY) printk ("[");
8127
8128 spin_lock_irqsave(&np->smp_lock, flags);
8129 ncr_exception(np);
8130 done_list = np->done_list;
8131 np->done_list = NULL;
8132 spin_unlock_irqrestore(&np->smp_lock, flags);
8133
8134 if (DEBUG_FLAGS & DEBUG_TINY) printk ("]\n");
8135
8136 if (done_list)
8137 ncr_flush_done_cmds(done_list);
8138 return IRQ_HANDLED;
8139 }
8140
8141 static void ncr53c8xx_timeout(unsigned long npref)
8142 {
8143 struct ncb *np = (struct ncb *) npref;
8144 unsigned long flags;
8145 struct scsi_cmnd *done_list;
8146
8147 spin_lock_irqsave(&np->smp_lock, flags);
8148 ncr_timeout(np);
8149 done_list = np->done_list;
8150 np->done_list = NULL;
8151 spin_unlock_irqrestore(&np->smp_lock, flags);
8152
8153 if (done_list)
8154 ncr_flush_done_cmds(done_list);
8155 }
8156
8157 static int ncr53c8xx_bus_reset(struct scsi_cmnd *cmd)
8158 {
8159 struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
8160 int sts;
8161 unsigned long flags;
8162 struct scsi_cmnd *done_list;
8163
8164 /*
8165 * If the mid-level driver told us reset is synchronous, it seems
8166 * that we must call the done() callback for the involved command,
8167 * even if this command was not queued to the low-level driver,
8168 * before returning SUCCESS.
8169 */
8170
8171 spin_lock_irqsave(&np->smp_lock, flags);
8172 sts = ncr_reset_bus(np, cmd, 1);
8173
8174 done_list = np->done_list;
8175 np->done_list = NULL;
8176 spin_unlock_irqrestore(&np->smp_lock, flags);
8177
8178 ncr_flush_done_cmds(done_list);
8179
8180 return sts;
8181 }
8182
8183 #if 0 /* unused and broken */
8184 static int ncr53c8xx_abort(struct scsi_cmnd *cmd)
8185 {
8186 struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
8187 int sts;
8188 unsigned long flags;
8189 struct scsi_cmnd *done_list;
8190
8191 #if defined SCSI_RESET_SYNCHRONOUS && defined SCSI_RESET_ASYNCHRONOUS
8192 printk("ncr53c8xx_abort: pid=%lu serial_number=%ld\n",
8193 cmd->pid, cmd->serial_number);
8194 #else
8195 printk("ncr53c8xx_abort: command pid %lu\n", cmd->pid);
8196 #endif
8197
8198 NCR_LOCK_NCB(np, flags);
8199
8200 sts = ncr_abort_command(np, cmd);
8201 out:
8202 done_list = np->done_list;
8203 np->done_list = NULL;
8204 NCR_UNLOCK_NCB(np, flags);
8205
8206 ncr_flush_done_cmds(done_list);
8207
8208 return sts;
8209 }
8210 #endif
8211
8212
8213 /*
8214 ** Scsi command waiting list management.
8215 **
8216 ** It may happen that we cannot insert a scsi command into the start queue,
8217 ** in the following circumstances.
8218 ** Too few preallocated ccb(s),
8219 ** maxtags < cmd_per_lun of the Linux host control block,
8220 ** etc...
8221 ** Such scsi commands are inserted into a waiting list.
8222 ** When a scsi command complete, we try to requeue the commands of the
8223 ** waiting list.
8224 */
8225
8226 #define next_wcmd host_scribble
8227
8228 static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd)
8229 {
8230 struct scsi_cmnd *wcmd;
8231
8232 #ifdef DEBUG_WAITING_LIST
8233 printk("%s: cmd %lx inserted into waiting list\n", ncr_name(np), (u_long) cmd);
8234 #endif
8235 cmd->next_wcmd = NULL;
8236 if (!(wcmd = np->waiting_list)) np->waiting_list = cmd;
8237 else {
8238 while ((wcmd->next_wcmd) != 0)
8239 wcmd = (struct scsi_cmnd *) wcmd->next_wcmd;
8240 wcmd->next_wcmd = (char *) cmd;
8241 }
8242 }
8243
8244 static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd)
8245 {
8246 struct scsi_cmnd **pcmd = &np->waiting_list;
8247
8248 while (*pcmd) {
8249 if (cmd == *pcmd) {
8250 if (to_remove) {
8251 *pcmd = (struct scsi_cmnd *) cmd->next_wcmd;
8252 cmd->next_wcmd = NULL;
8253 }
8254 #ifdef DEBUG_WAITING_LIST
8255 printk("%s: cmd %lx retrieved from waiting list\n", ncr_name(np), (u_long) cmd);
8256 #endif
8257 return cmd;
8258 }
8259 pcmd = (struct scsi_cmnd **) &(*pcmd)->next_wcmd;
8260 }
8261 return NULL;
8262 }
8263
8264 static void process_waiting_list(struct ncb *np, int sts)
8265 {
8266 struct scsi_cmnd *waiting_list, *wcmd;
8267
8268 waiting_list = np->waiting_list;
8269 np->waiting_list = NULL;
8270
8271 #ifdef DEBUG_WAITING_LIST
8272 if (waiting_list) printk("%s: waiting_list=%lx processing sts=%d\n", ncr_name(np), (u_long) waiting_list, sts);
8273 #endif
8274 while ((wcmd = waiting_list) != 0) {
8275 waiting_list = (struct scsi_cmnd *) wcmd->next_wcmd;
8276 wcmd->next_wcmd = NULL;
8277 if (sts == DID_OK) {
8278 #ifdef DEBUG_WAITING_LIST
8279 printk("%s: cmd %lx trying to requeue\n", ncr_name(np), (u_long) wcmd);
8280 #endif
8281 sts = ncr_queue_command(np, wcmd);
8282 }
8283 if (sts != DID_OK) {
8284 #ifdef DEBUG_WAITING_LIST
8285 printk("%s: cmd %lx done forced sts=%d\n", ncr_name(np), (u_long) wcmd, sts);
8286 #endif
8287 wcmd->result = ScsiResult(sts, 0);
8288 ncr_queue_done_cmd(np, wcmd);
8289 }
8290 }
8291 }
8292
8293 #undef next_wcmd
8294
8295 static ssize_t show_ncr53c8xx_revision(struct class_device *dev, char *buf)
8296 {
8297 struct Scsi_Host *host = class_to_shost(dev);
8298 struct host_data *host_data = (struct host_data *)host->hostdata;
8299
8300 return snprintf(buf, 20, "0x%x\n", host_data->ncb->revision_id);
8301 }
8302
8303 static struct class_device_attribute ncr53c8xx_revision_attr = {
8304 .attr = { .name = "revision", .mode = S_IRUGO, },
8305 .show = show_ncr53c8xx_revision,
8306 };
8307
8308 static struct class_device_attribute *ncr53c8xx_host_attrs[] = {
8309 &ncr53c8xx_revision_attr,
8310 NULL
8311 };
8312
8313 /*==========================================================
8314 **
8315 ** Boot command line.
8316 **
8317 **==========================================================
8318 */
8319 #ifdef MODULE
8320 char *ncr53c8xx; /* command line passed by insmod */
8321 module_param(ncr53c8xx, charp, 0);
8322 #endif
8323
8324 static int __init ncr53c8xx_setup(char *str)
8325 {
8326 return sym53c8xx__setup(str);
8327 }
8328
8329 #ifndef MODULE
8330 __setup("ncr53c8xx=", ncr53c8xx_setup);
8331 #endif
8332
8333
8334 /*
8335 * Host attach and initialisations.
8336 *
8337 * Allocate host data and ncb structure.
8338 * Request IO region and remap MMIO region.
8339 * Do chip initialization.
8340 * If all is OK, install interrupt handling and
8341 * start the timer daemon.
8342 */
8343 struct Scsi_Host * __init ncr_attach(struct scsi_host_template *tpnt,
8344 int unit, struct ncr_device *device)
8345 {
8346 struct host_data *host_data;
8347 struct ncb *np = NULL;
8348 struct Scsi_Host *instance = NULL;
8349 u_long flags = 0;
8350 int i;
8351
8352 if (!tpnt->name)
8353 tpnt->name = SCSI_NCR_DRIVER_NAME;
8354 if (!tpnt->shost_attrs)
8355 tpnt->shost_attrs = ncr53c8xx_host_attrs;
8356
8357 tpnt->queuecommand = ncr53c8xx_queue_command;
8358 tpnt->slave_configure = ncr53c8xx_slave_configure;
8359 tpnt->slave_alloc = ncr53c8xx_slave_alloc;
8360 tpnt->eh_bus_reset_handler = ncr53c8xx_bus_reset;
8361 tpnt->can_queue = SCSI_NCR_CAN_QUEUE;
8362 tpnt->this_id = 7;
8363 tpnt->sg_tablesize = SCSI_NCR_SG_TABLESIZE;
8364 tpnt->cmd_per_lun = SCSI_NCR_CMD_PER_LUN;
8365 tpnt->use_clustering = ENABLE_CLUSTERING;
8366
8367 if (device->differential)
8368 driver_setup.diff_support = device->differential;
8369
8370 printk(KERN_INFO "ncr53c720-%d: rev 0x%x irq %d\n",
8371 unit, device->chip.revision_id, device->slot.irq);
8372
8373 instance = scsi_host_alloc(tpnt, sizeof(*host_data));
8374 if (!instance)
8375 goto attach_error;
8376 host_data = (struct host_data *) instance->hostdata;
8377
8378 np = __m_calloc_dma(device->dev, sizeof(struct ncb), "NCB");
8379 if (!np)
8380 goto attach_error;
8381 spin_lock_init(&np->smp_lock);
8382 np->dev = device->dev;
8383 np->p_ncb = vtobus(np);
8384 host_data->ncb = np;
8385
8386 np->ccb = m_calloc_dma(sizeof(struct ccb), "CCB");
8387 if (!np->ccb)
8388 goto attach_error;
8389
8390 /* Store input information in the host data structure. */
8391 np->unit = unit;
8392 np->verbose = driver_setup.verbose;
8393 sprintf(np->inst_name, "ncr53c720-%d", np->unit);
8394 np->revision_id = device->chip.revision_id;
8395 np->features = device->chip.features;
8396 np->clock_divn = device->chip.nr_divisor;
8397 np->maxoffs = device->chip.offset_max;
8398 np->maxburst = device->chip.burst_max;
8399 np->myaddr = device->host_id;
8400
8401 /* Allocate SCRIPTS areas. */
8402 np->script0 = m_calloc_dma(sizeof(struct script), "SCRIPT");
8403 if (!np->script0)
8404 goto attach_error;
8405 np->scripth0 = m_calloc_dma(sizeof(struct scripth), "SCRIPTH");
8406 if (!np->scripth0)
8407 goto attach_error;
8408
8409 init_timer(&np->timer);
8410 np->timer.data = (unsigned long) np;
8411 np->timer.function = ncr53c8xx_timeout;
8412
8413 /* Try to map the controller chip to virtual and physical memory. */
8414
8415 np->paddr = device->slot.base;
8416 np->paddr2 = (np->features & FE_RAM) ? device->slot.base_2 : 0;
8417
8418 if (device->slot.base_v)
8419 np->vaddr = device->slot.base_v;
8420 else
8421 np->vaddr = ioremap(device->slot.base_c, 128);
8422
8423 if (!np->vaddr) {
8424 printk(KERN_ERR
8425 "%s: can't map memory mapped IO region\n",ncr_name(np));
8426 goto attach_error;
8427 } else {
8428 if (bootverbose > 1)
8429 printk(KERN_INFO
8430 "%s: using memory mapped IO at virtual address 0x%lx\n", ncr_name(np), (u_long) np->vaddr);
8431 }
8432
8433 /* Make the controller's registers available. Now the INB INW INL
8434 * OUTB OUTW OUTL macros can be used safely.
8435 */
8436
8437 np->reg = (struct ncr_reg __iomem *)np->vaddr;
8438
8439 /* Do chip dependent initialization. */
8440 ncr_prepare_setting(np);
8441
8442 if (np->paddr2 && sizeof(struct script) > 4096) {
8443 np->paddr2 = 0;
8444 printk(KERN_WARNING "%s: script too large, NOT using on chip RAM.\n",
8445 ncr_name(np));
8446 }
8447
8448 instance->max_channel = 0;
8449 instance->this_id = np->myaddr;
8450 instance->max_id = np->maxwide ? 16 : 8;
8451 instance->max_lun = SCSI_NCR_MAX_LUN;
8452 instance->base = (unsigned long) np->reg;
8453 instance->irq = device->slot.irq;
8454 instance->unique_id = device->slot.base;
8455 instance->dma_channel = 0;
8456 instance->cmd_per_lun = MAX_TAGS;
8457 instance->can_queue = (MAX_START-4);
8458 /* This can happen if you forget to call ncr53c8xx_init from
8459 * your module_init */
8460 BUG_ON(!ncr53c8xx_transport_template);
8461 instance->transportt = ncr53c8xx_transport_template;
8462
8463 /* Patch script to physical addresses */
8464 ncr_script_fill(&script0, &scripth0);
8465
8466 np->scripth = np->scripth0;
8467 np->p_scripth = vtobus(np->scripth);
8468 np->p_script = (np->paddr2) ? np->paddr2 : vtobus(np->script0);
8469
8470 ncr_script_copy_and_bind(np, (ncrcmd *) &script0,
8471 (ncrcmd *) np->script0, sizeof(struct script));
8472 ncr_script_copy_and_bind(np, (ncrcmd *) &scripth0,
8473 (ncrcmd *) np->scripth0, sizeof(struct scripth));
8474 np->ccb->p_ccb = vtobus (np->ccb);
8475
8476 /* Patch the script for LED support. */
8477
8478 if (np->features & FE_LED0) {
8479 np->script0->idle[0] =
8480 cpu_to_scr(SCR_REG_REG(gpreg, SCR_OR, 0x01));
8481 np->script0->reselected[0] =
8482 cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
8483 np->script0->start[0] =
8484 cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
8485 }
8486
8487 /*
8488 * Look for the target control block of this nexus.
8489 * For i = 0 to 3
8490 * JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb)
8491 */
8492 for (i = 0 ; i < 4 ; i++) {
8493 np->jump_tcb[i].l_cmd =
8494 cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3))));
8495 np->jump_tcb[i].l_paddr =
8496 cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_target));
8497 }
8498
8499 ncr_chip_reset(np, 100);
8500
8501 /* Now check the cache handling of the chipset. */
8502
8503 if (ncr_snooptest(np)) {
8504 printk(KERN_ERR "CACHE INCORRECTLY CONFIGURED.\n");
8505 goto attach_error;
8506 }
8507
8508 /* Install the interrupt handler. */
8509 np->irq = device->slot.irq;
8510
8511 /* Initialize the fixed part of the default ccb. */
8512 ncr_init_ccb(np, np->ccb);
8513
8514 /*
8515 * After SCSI devices have been opened, we cannot reset the bus
8516 * safely, so we do it here. Interrupt handler does the real work.
8517 * Process the reset exception if interrupts are not enabled yet.
8518 * Then enable disconnects.
8519 */
8520 spin_lock_irqsave(&np->smp_lock, flags);
8521 if (ncr_reset_scsi_bus(np, 0, driver_setup.settle_delay) != 0) {
8522 printk(KERN_ERR "%s: FATAL ERROR: CHECK SCSI BUS - CABLES, TERMINATION, DEVICE POWER etc.!\n", ncr_name(np));
8523
8524 spin_unlock_irqrestore(&np->smp_lock, flags);
8525 goto attach_error;
8526 }
8527 ncr_exception(np);
8528
8529 np->disc = 1;
8530
8531 /*
8532 * The middle-level SCSI driver does not wait for devices to settle.
8533 * Wait synchronously if more than 2 seconds.
8534 */
8535 if (driver_setup.settle_delay > 2) {
8536 printk(KERN_INFO "%s: waiting %d seconds for scsi devices to settle...\n",
8537 ncr_name(np), driver_setup.settle_delay);
8538 mdelay(1000 * driver_setup.settle_delay);
8539 }
8540
8541 /* start the timeout daemon */
8542 np->lasttime=0;
8543 ncr_timeout (np);
8544
8545 /* use SIMPLE TAG messages by default */
8546 #ifdef SCSI_NCR_ALWAYS_SIMPLE_TAG
8547 np->order = SIMPLE_QUEUE_TAG;
8548 #endif
8549
8550 spin_unlock_irqrestore(&np->smp_lock, flags);
8551
8552 return instance;
8553
8554 attach_error:
8555 if (!instance)
8556 return NULL;
8557 printk(KERN_INFO "%s: detaching...\n", ncr_name(np));
8558 if (!np)
8559 goto unregister;
8560 if (np->scripth0)
8561 m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH");
8562 if (np->script0)
8563 m_free_dma(np->script0, sizeof(struct script), "SCRIPT");
8564 if (np->ccb)
8565 m_free_dma(np->ccb, sizeof(struct ccb), "CCB");
8566 m_free_dma(np, sizeof(struct ncb), "NCB");
8567 host_data->ncb = NULL;
8568
8569 unregister:
8570 scsi_host_put(instance);
8571
8572 return NULL;
8573 }
8574
8575
8576 int ncr53c8xx_release(struct Scsi_Host *host)
8577 {
8578 struct host_data *host_data;
8579 #ifdef DEBUG_NCR53C8XX
8580 printk("ncr53c8xx: release\n");
8581 #endif
8582 if (!host)
8583 return 1;
8584 host_data = (struct host_data *)host->hostdata;
8585 if (host_data && host_data->ncb)
8586 ncr_detach(host_data->ncb);
8587 return 1;
8588 }
8589
8590 static void ncr53c8xx_set_period(struct scsi_target *starget, int period)
8591 {
8592 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8593 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8594 struct tcb *tp = &np->target[starget->id];
8595
8596 if (period > np->maxsync)
8597 period = np->maxsync;
8598 else if (period < np->minsync)
8599 period = np->minsync;
8600
8601 tp->usrsync = period;
8602
8603 ncr_negotiate(np, tp);
8604 }
8605
8606 static void ncr53c8xx_set_offset(struct scsi_target *starget, int offset)
8607 {
8608 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8609 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8610 struct tcb *tp = &np->target[starget->id];
8611
8612 if (offset > np->maxoffs)
8613 offset = np->maxoffs;
8614 else if (offset < 0)
8615 offset = 0;
8616
8617 tp->maxoffs = offset;
8618
8619 ncr_negotiate(np, tp);
8620 }
8621
8622 static void ncr53c8xx_set_width(struct scsi_target *starget, int width)
8623 {
8624 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8625 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8626 struct tcb *tp = &np->target[starget->id];
8627
8628 if (width > np->maxwide)
8629 width = np->maxwide;
8630 else if (width < 0)
8631 width = 0;
8632
8633 tp->usrwide = width;
8634
8635 ncr_negotiate(np, tp);
8636 }
8637
8638 static void ncr53c8xx_get_signalling(struct Scsi_Host *shost)
8639 {
8640 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8641 enum spi_signal_type type;
8642
8643 switch (np->scsi_mode) {
8644 case SMODE_SE:
8645 type = SPI_SIGNAL_SE;
8646 break;
8647 case SMODE_HVD:
8648 type = SPI_SIGNAL_HVD;
8649 break;
8650 default:
8651 type = SPI_SIGNAL_UNKNOWN;
8652 break;
8653 }
8654 spi_signalling(shost) = type;
8655 }
8656
8657 static struct spi_function_template ncr53c8xx_transport_functions = {
8658 .set_period = ncr53c8xx_set_period,
8659 .show_period = 1,
8660 .set_offset = ncr53c8xx_set_offset,
8661 .show_offset = 1,
8662 .set_width = ncr53c8xx_set_width,
8663 .show_width = 1,
8664 .get_signalling = ncr53c8xx_get_signalling,
8665 };
8666
8667 int __init ncr53c8xx_init(void)
8668 {
8669 ncr53c8xx_transport_template = spi_attach_transport(&ncr53c8xx_transport_functions);
8670 if (!ncr53c8xx_transport_template)
8671 return -ENODEV;
8672 return 0;
8673 }
8674
8675 void ncr53c8xx_exit(void)
8676 {
8677 spi_release_transport(ncr53c8xx_transport_template);
8678 }
This page took 0.226278 seconds and 6 git commands to generate.