Merge tag 'asm-generic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / scsi / qla2xxx / qla_sup.c
1 /*
2 * QLogic Fibre Channel HBA Driver
3 * Copyright (c) 2003-2014 QLogic Corporation
4 *
5 * See LICENSE.qla2xxx for copyright and licensing details.
6 */
7 #include "qla_def.h"
8
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/vmalloc.h>
12 #include <asm/uaccess.h>
13
14 /*
15 * NVRAM support routines
16 */
17
18 /**
19 * qla2x00_lock_nvram_access() -
20 * @ha: HA context
21 */
22 static void
23 qla2x00_lock_nvram_access(struct qla_hw_data *ha)
24 {
25 uint16_t data;
26 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
27
28 if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
29 data = RD_REG_WORD(&reg->nvram);
30 while (data & NVR_BUSY) {
31 udelay(100);
32 data = RD_REG_WORD(&reg->nvram);
33 }
34
35 /* Lock resource */
36 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
37 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
38 udelay(5);
39 data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
40 while ((data & BIT_0) == 0) {
41 /* Lock failed */
42 udelay(100);
43 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
44 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
45 udelay(5);
46 data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
47 }
48 }
49 }
50
51 /**
52 * qla2x00_unlock_nvram_access() -
53 * @ha: HA context
54 */
55 static void
56 qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
57 {
58 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
59
60 if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
61 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
62 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
63 }
64 }
65
66 /**
67 * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
68 * @ha: HA context
69 * @data: Serial interface selector
70 */
71 static void
72 qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
73 {
74 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
75
76 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
77 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
78 NVRAM_DELAY();
79 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
80 NVR_WRT_ENABLE);
81 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
82 NVRAM_DELAY();
83 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
84 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
85 NVRAM_DELAY();
86 }
87
88 /**
89 * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
90 * NVRAM.
91 * @ha: HA context
92 * @nv_cmd: NVRAM command
93 *
94 * Bit definitions for NVRAM command:
95 *
96 * Bit 26 = start bit
97 * Bit 25, 24 = opcode
98 * Bit 23-16 = address
99 * Bit 15-0 = write data
100 *
101 * Returns the word read from nvram @addr.
102 */
103 static uint16_t
104 qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
105 {
106 uint8_t cnt;
107 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
108 uint16_t data = 0;
109 uint16_t reg_data;
110
111 /* Send command to NVRAM. */
112 nv_cmd <<= 5;
113 for (cnt = 0; cnt < 11; cnt++) {
114 if (nv_cmd & BIT_31)
115 qla2x00_nv_write(ha, NVR_DATA_OUT);
116 else
117 qla2x00_nv_write(ha, 0);
118 nv_cmd <<= 1;
119 }
120
121 /* Read data from NVRAM. */
122 for (cnt = 0; cnt < 16; cnt++) {
123 WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
124 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
125 NVRAM_DELAY();
126 data <<= 1;
127 reg_data = RD_REG_WORD(&reg->nvram);
128 if (reg_data & NVR_DATA_IN)
129 data |= BIT_0;
130 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
131 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
132 NVRAM_DELAY();
133 }
134
135 /* Deselect chip. */
136 WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
137 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
138 NVRAM_DELAY();
139
140 return data;
141 }
142
143
144 /**
145 * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
146 * request routine to get the word from NVRAM.
147 * @ha: HA context
148 * @addr: Address in NVRAM to read
149 *
150 * Returns the word read from nvram @addr.
151 */
152 static uint16_t
153 qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
154 {
155 uint16_t data;
156 uint32_t nv_cmd;
157
158 nv_cmd = addr << 16;
159 nv_cmd |= NV_READ_OP;
160 data = qla2x00_nvram_request(ha, nv_cmd);
161
162 return (data);
163 }
164
165 /**
166 * qla2x00_nv_deselect() - Deselect NVRAM operations.
167 * @ha: HA context
168 */
169 static void
170 qla2x00_nv_deselect(struct qla_hw_data *ha)
171 {
172 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
173
174 WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
175 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
176 NVRAM_DELAY();
177 }
178
179 /**
180 * qla2x00_write_nvram_word() - Write NVRAM data.
181 * @ha: HA context
182 * @addr: Address in NVRAM to write
183 * @data: word to program
184 */
185 static void
186 qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
187 {
188 int count;
189 uint16_t word;
190 uint32_t nv_cmd, wait_cnt;
191 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
192 scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
193
194 qla2x00_nv_write(ha, NVR_DATA_OUT);
195 qla2x00_nv_write(ha, 0);
196 qla2x00_nv_write(ha, 0);
197
198 for (word = 0; word < 8; word++)
199 qla2x00_nv_write(ha, NVR_DATA_OUT);
200
201 qla2x00_nv_deselect(ha);
202
203 /* Write data */
204 nv_cmd = (addr << 16) | NV_WRITE_OP;
205 nv_cmd |= data;
206 nv_cmd <<= 5;
207 for (count = 0; count < 27; count++) {
208 if (nv_cmd & BIT_31)
209 qla2x00_nv_write(ha, NVR_DATA_OUT);
210 else
211 qla2x00_nv_write(ha, 0);
212
213 nv_cmd <<= 1;
214 }
215
216 qla2x00_nv_deselect(ha);
217
218 /* Wait for NVRAM to become ready */
219 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
220 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
221 wait_cnt = NVR_WAIT_CNT;
222 do {
223 if (!--wait_cnt) {
224 ql_dbg(ql_dbg_user, vha, 0x708d,
225 "NVRAM didn't go ready...\n");
226 break;
227 }
228 NVRAM_DELAY();
229 word = RD_REG_WORD(&reg->nvram);
230 } while ((word & NVR_DATA_IN) == 0);
231
232 qla2x00_nv_deselect(ha);
233
234 /* Disable writes */
235 qla2x00_nv_write(ha, NVR_DATA_OUT);
236 for (count = 0; count < 10; count++)
237 qla2x00_nv_write(ha, 0);
238
239 qla2x00_nv_deselect(ha);
240 }
241
242 static int
243 qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
244 uint16_t data, uint32_t tmo)
245 {
246 int ret, count;
247 uint16_t word;
248 uint32_t nv_cmd;
249 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
250
251 ret = QLA_SUCCESS;
252
253 qla2x00_nv_write(ha, NVR_DATA_OUT);
254 qla2x00_nv_write(ha, 0);
255 qla2x00_nv_write(ha, 0);
256
257 for (word = 0; word < 8; word++)
258 qla2x00_nv_write(ha, NVR_DATA_OUT);
259
260 qla2x00_nv_deselect(ha);
261
262 /* Write data */
263 nv_cmd = (addr << 16) | NV_WRITE_OP;
264 nv_cmd |= data;
265 nv_cmd <<= 5;
266 for (count = 0; count < 27; count++) {
267 if (nv_cmd & BIT_31)
268 qla2x00_nv_write(ha, NVR_DATA_OUT);
269 else
270 qla2x00_nv_write(ha, 0);
271
272 nv_cmd <<= 1;
273 }
274
275 qla2x00_nv_deselect(ha);
276
277 /* Wait for NVRAM to become ready */
278 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
279 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
280 do {
281 NVRAM_DELAY();
282 word = RD_REG_WORD(&reg->nvram);
283 if (!--tmo) {
284 ret = QLA_FUNCTION_FAILED;
285 break;
286 }
287 } while ((word & NVR_DATA_IN) == 0);
288
289 qla2x00_nv_deselect(ha);
290
291 /* Disable writes */
292 qla2x00_nv_write(ha, NVR_DATA_OUT);
293 for (count = 0; count < 10; count++)
294 qla2x00_nv_write(ha, 0);
295
296 qla2x00_nv_deselect(ha);
297
298 return ret;
299 }
300
301 /**
302 * qla2x00_clear_nvram_protection() -
303 * @ha: HA context
304 */
305 static int
306 qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
307 {
308 int ret, stat;
309 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
310 uint32_t word, wait_cnt;
311 uint16_t wprot, wprot_old;
312 scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
313
314 /* Clear NVRAM write protection. */
315 ret = QLA_FUNCTION_FAILED;
316
317 wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
318 stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
319 cpu_to_le16(0x1234), 100000);
320 wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
321 if (stat != QLA_SUCCESS || wprot != 0x1234) {
322 /* Write enable. */
323 qla2x00_nv_write(ha, NVR_DATA_OUT);
324 qla2x00_nv_write(ha, 0);
325 qla2x00_nv_write(ha, 0);
326 for (word = 0; word < 8; word++)
327 qla2x00_nv_write(ha, NVR_DATA_OUT);
328
329 qla2x00_nv_deselect(ha);
330
331 /* Enable protection register. */
332 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
333 qla2x00_nv_write(ha, NVR_PR_ENABLE);
334 qla2x00_nv_write(ha, NVR_PR_ENABLE);
335 for (word = 0; word < 8; word++)
336 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
337
338 qla2x00_nv_deselect(ha);
339
340 /* Clear protection register (ffff is cleared). */
341 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
342 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
343 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
344 for (word = 0; word < 8; word++)
345 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
346
347 qla2x00_nv_deselect(ha);
348
349 /* Wait for NVRAM to become ready. */
350 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
351 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
352 wait_cnt = NVR_WAIT_CNT;
353 do {
354 if (!--wait_cnt) {
355 ql_dbg(ql_dbg_user, vha, 0x708e,
356 "NVRAM didn't go ready...\n");
357 break;
358 }
359 NVRAM_DELAY();
360 word = RD_REG_WORD(&reg->nvram);
361 } while ((word & NVR_DATA_IN) == 0);
362
363 if (wait_cnt)
364 ret = QLA_SUCCESS;
365 } else
366 qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
367
368 return ret;
369 }
370
371 static void
372 qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
373 {
374 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
375 uint32_t word, wait_cnt;
376 scsi_qla_host_t *vha = pci_get_drvdata(ha->pdev);
377
378 if (stat != QLA_SUCCESS)
379 return;
380
381 /* Set NVRAM write protection. */
382 /* Write enable. */
383 qla2x00_nv_write(ha, NVR_DATA_OUT);
384 qla2x00_nv_write(ha, 0);
385 qla2x00_nv_write(ha, 0);
386 for (word = 0; word < 8; word++)
387 qla2x00_nv_write(ha, NVR_DATA_OUT);
388
389 qla2x00_nv_deselect(ha);
390
391 /* Enable protection register. */
392 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
393 qla2x00_nv_write(ha, NVR_PR_ENABLE);
394 qla2x00_nv_write(ha, NVR_PR_ENABLE);
395 for (word = 0; word < 8; word++)
396 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
397
398 qla2x00_nv_deselect(ha);
399
400 /* Enable protection register. */
401 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
402 qla2x00_nv_write(ha, NVR_PR_ENABLE);
403 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
404 for (word = 0; word < 8; word++)
405 qla2x00_nv_write(ha, NVR_PR_ENABLE);
406
407 qla2x00_nv_deselect(ha);
408
409 /* Wait for NVRAM to become ready. */
410 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
411 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
412 wait_cnt = NVR_WAIT_CNT;
413 do {
414 if (!--wait_cnt) {
415 ql_dbg(ql_dbg_user, vha, 0x708f,
416 "NVRAM didn't go ready...\n");
417 break;
418 }
419 NVRAM_DELAY();
420 word = RD_REG_WORD(&reg->nvram);
421 } while ((word & NVR_DATA_IN) == 0);
422 }
423
424
425 /*****************************************************************************/
426 /* Flash Manipulation Routines */
427 /*****************************************************************************/
428
429 static inline uint32_t
430 flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
431 {
432 return ha->flash_conf_off | faddr;
433 }
434
435 static inline uint32_t
436 flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
437 {
438 return ha->flash_data_off | faddr;
439 }
440
441 static inline uint32_t
442 nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
443 {
444 return ha->nvram_conf_off | naddr;
445 }
446
447 static inline uint32_t
448 nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
449 {
450 return ha->nvram_data_off | naddr;
451 }
452
453 static uint32_t
454 qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
455 {
456 int rval;
457 uint32_t cnt, data;
458 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
459
460 WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
461 /* Wait for READ cycle to complete. */
462 rval = QLA_SUCCESS;
463 for (cnt = 3000;
464 (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
465 rval == QLA_SUCCESS; cnt--) {
466 if (cnt)
467 udelay(10);
468 else
469 rval = QLA_FUNCTION_TIMEOUT;
470 cond_resched();
471 }
472
473 /* TODO: What happens if we time out? */
474 data = 0xDEADDEAD;
475 if (rval == QLA_SUCCESS)
476 data = RD_REG_DWORD(&reg->flash_data);
477
478 return data;
479 }
480
481 uint32_t *
482 qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
483 uint32_t dwords)
484 {
485 uint32_t i;
486 struct qla_hw_data *ha = vha->hw;
487
488 /* Dword reads to flash. */
489 for (i = 0; i < dwords; i++, faddr++)
490 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
491 flash_data_addr(ha, faddr)));
492
493 return dwptr;
494 }
495
496 static int
497 qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
498 {
499 int rval;
500 uint32_t cnt;
501 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
502
503 WRT_REG_DWORD(&reg->flash_data, data);
504 RD_REG_DWORD(&reg->flash_data); /* PCI Posting. */
505 WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
506 /* Wait for Write cycle to complete. */
507 rval = QLA_SUCCESS;
508 for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
509 rval == QLA_SUCCESS; cnt--) {
510 if (cnt)
511 udelay(10);
512 else
513 rval = QLA_FUNCTION_TIMEOUT;
514 cond_resched();
515 }
516 return rval;
517 }
518
519 static void
520 qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
521 uint8_t *flash_id)
522 {
523 uint32_t ids;
524
525 ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
526 *man_id = LSB(ids);
527 *flash_id = MSB(ids);
528
529 /* Check if man_id and flash_id are valid. */
530 if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
531 /* Read information using 0x9f opcode
532 * Device ID, Mfg ID would be read in the format:
533 * <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
534 * Example: ATMEL 0x00 01 45 1F
535 * Extract MFG and Dev ID from last two bytes.
536 */
537 ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
538 *man_id = LSB(ids);
539 *flash_id = MSB(ids);
540 }
541 }
542
543 static int
544 qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
545 {
546 const char *loc, *locations[] = { "DEF", "PCI" };
547 uint32_t pcihdr, pcids;
548 uint32_t *dcode;
549 uint8_t *buf, *bcode, last_image;
550 uint16_t cnt, chksum, *wptr;
551 struct qla_flt_location *fltl;
552 struct qla_hw_data *ha = vha->hw;
553 struct req_que *req = ha->req_q_map[0];
554
555 /*
556 * FLT-location structure resides after the last PCI region.
557 */
558
559 /* Begin with sane defaults. */
560 loc = locations[0];
561 *start = 0;
562 if (IS_QLA24XX_TYPE(ha))
563 *start = FA_FLASH_LAYOUT_ADDR_24;
564 else if (IS_QLA25XX(ha))
565 *start = FA_FLASH_LAYOUT_ADDR;
566 else if (IS_QLA81XX(ha))
567 *start = FA_FLASH_LAYOUT_ADDR_81;
568 else if (IS_P3P_TYPE(ha)) {
569 *start = FA_FLASH_LAYOUT_ADDR_82;
570 goto end;
571 } else if (IS_QLA83XX(ha) || IS_QLA27XX(ha)) {
572 *start = FA_FLASH_LAYOUT_ADDR_83;
573 goto end;
574 }
575 /* Begin with first PCI expansion ROM header. */
576 buf = (uint8_t *)req->ring;
577 dcode = (uint32_t *)req->ring;
578 pcihdr = 0;
579 last_image = 1;
580 do {
581 /* Verify PCI expansion ROM header. */
582 qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
583 bcode = buf + (pcihdr % 4);
584 if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
585 goto end;
586
587 /* Locate PCI data structure. */
588 pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
589 qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
590 bcode = buf + (pcihdr % 4);
591
592 /* Validate signature of PCI data structure. */
593 if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
594 bcode[0x2] != 'I' || bcode[0x3] != 'R')
595 goto end;
596
597 last_image = bcode[0x15] & BIT_7;
598
599 /* Locate next PCI expansion ROM. */
600 pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
601 } while (!last_image);
602
603 /* Now verify FLT-location structure. */
604 fltl = (struct qla_flt_location *)req->ring;
605 qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
606 sizeof(struct qla_flt_location) >> 2);
607 if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
608 fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
609 goto end;
610
611 wptr = (uint16_t *)req->ring;
612 cnt = sizeof(struct qla_flt_location) >> 1;
613 for (chksum = 0; cnt; cnt--)
614 chksum += le16_to_cpu(*wptr++);
615 if (chksum) {
616 ql_log(ql_log_fatal, vha, 0x0045,
617 "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
618 ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010e,
619 buf, sizeof(struct qla_flt_location));
620 return QLA_FUNCTION_FAILED;
621 }
622
623 /* Good data. Use specified location. */
624 loc = locations[1];
625 *start = (le16_to_cpu(fltl->start_hi) << 16 |
626 le16_to_cpu(fltl->start_lo)) >> 2;
627 end:
628 ql_dbg(ql_dbg_init, vha, 0x0046,
629 "FLTL[%s] = 0x%x.\n",
630 loc, *start);
631 return QLA_SUCCESS;
632 }
633
634 static void
635 qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
636 {
637 const char *loc, *locations[] = { "DEF", "FLT" };
638 const uint32_t def_fw[] =
639 { FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 };
640 const uint32_t def_boot[] =
641 { FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 };
642 const uint32_t def_vpd_nvram[] =
643 { FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 };
644 const uint32_t def_vpd0[] =
645 { 0, 0, FA_VPD0_ADDR_81 };
646 const uint32_t def_vpd1[] =
647 { 0, 0, FA_VPD1_ADDR_81 };
648 const uint32_t def_nvram0[] =
649 { 0, 0, FA_NVRAM0_ADDR_81 };
650 const uint32_t def_nvram1[] =
651 { 0, 0, FA_NVRAM1_ADDR_81 };
652 const uint32_t def_fdt[] =
653 { FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR,
654 FA_FLASH_DESCR_ADDR_81 };
655 const uint32_t def_npiv_conf0[] =
656 { FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR,
657 FA_NPIV_CONF0_ADDR_81 };
658 const uint32_t def_npiv_conf1[] =
659 { FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR,
660 FA_NPIV_CONF1_ADDR_81 };
661 const uint32_t fcp_prio_cfg0[] =
662 { FA_FCP_PRIO0_ADDR, FA_FCP_PRIO0_ADDR_25,
663 0 };
664 const uint32_t fcp_prio_cfg1[] =
665 { FA_FCP_PRIO1_ADDR, FA_FCP_PRIO1_ADDR_25,
666 0 };
667 uint32_t def;
668 uint16_t *wptr;
669 uint16_t cnt, chksum;
670 uint32_t start;
671 struct qla_flt_header *flt;
672 struct qla_flt_region *region;
673 struct qla_hw_data *ha = vha->hw;
674 struct req_que *req = ha->req_q_map[0];
675
676 def = 0;
677 if (IS_QLA25XX(ha))
678 def = 1;
679 else if (IS_QLA81XX(ha))
680 def = 2;
681
682 /* Assign FCP prio region since older adapters may not have FLT, or
683 FCP prio region in it's FLT.
684 */
685 ha->flt_region_fcp_prio = (ha->port_no == 0) ?
686 fcp_prio_cfg0[def] : fcp_prio_cfg1[def];
687
688 ha->flt_region_flt = flt_addr;
689 wptr = (uint16_t *)req->ring;
690 flt = (struct qla_flt_header *)req->ring;
691 region = (struct qla_flt_region *)&flt[1];
692 ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
693 flt_addr << 2, OPTROM_BURST_SIZE);
694 if (*wptr == cpu_to_le16(0xffff))
695 goto no_flash_data;
696 if (flt->version != cpu_to_le16(1)) {
697 ql_log(ql_log_warn, vha, 0x0047,
698 "Unsupported FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
699 le16_to_cpu(flt->version), le16_to_cpu(flt->length),
700 le16_to_cpu(flt->checksum));
701 goto no_flash_data;
702 }
703
704 cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
705 for (chksum = 0; cnt; cnt--)
706 chksum += le16_to_cpu(*wptr++);
707 if (chksum) {
708 ql_log(ql_log_fatal, vha, 0x0048,
709 "Inconsistent FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
710 le16_to_cpu(flt->version), le16_to_cpu(flt->length),
711 le16_to_cpu(flt->checksum));
712 goto no_flash_data;
713 }
714
715 loc = locations[1];
716 cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
717 for ( ; cnt; cnt--, region++) {
718 /* Store addresses as DWORD offsets. */
719 start = le32_to_cpu(region->start) >> 2;
720 ql_dbg(ql_dbg_init, vha, 0x0049,
721 "FLT[%02x]: start=0x%x "
722 "end=0x%x size=0x%x.\n", le32_to_cpu(region->code) & 0xff,
723 start, le32_to_cpu(region->end) >> 2,
724 le32_to_cpu(region->size));
725
726 switch (le32_to_cpu(region->code) & 0xff) {
727 case FLT_REG_FCOE_FW:
728 if (!IS_QLA8031(ha))
729 break;
730 ha->flt_region_fw = start;
731 break;
732 case FLT_REG_FW:
733 if (IS_QLA8031(ha))
734 break;
735 ha->flt_region_fw = start;
736 break;
737 case FLT_REG_BOOT_CODE:
738 ha->flt_region_boot = start;
739 break;
740 case FLT_REG_VPD_0:
741 if (IS_QLA8031(ha))
742 break;
743 ha->flt_region_vpd_nvram = start;
744 if (IS_P3P_TYPE(ha))
745 break;
746 if (ha->port_no == 0)
747 ha->flt_region_vpd = start;
748 break;
749 case FLT_REG_VPD_1:
750 if (IS_P3P_TYPE(ha) || IS_QLA8031(ha))
751 break;
752 if (ha->port_no == 1)
753 ha->flt_region_vpd = start;
754 break;
755 case FLT_REG_VPD_2:
756 if (!IS_QLA27XX(ha))
757 break;
758 if (ha->port_no == 2)
759 ha->flt_region_vpd = start;
760 break;
761 case FLT_REG_VPD_3:
762 if (!IS_QLA27XX(ha))
763 break;
764 if (ha->port_no == 3)
765 ha->flt_region_vpd = start;
766 break;
767 case FLT_REG_NVRAM_0:
768 if (IS_QLA8031(ha))
769 break;
770 if (ha->port_no == 0)
771 ha->flt_region_nvram = start;
772 break;
773 case FLT_REG_NVRAM_1:
774 if (IS_QLA8031(ha))
775 break;
776 if (ha->port_no == 1)
777 ha->flt_region_nvram = start;
778 break;
779 case FLT_REG_NVRAM_2:
780 if (!IS_QLA27XX(ha))
781 break;
782 if (ha->port_no == 2)
783 ha->flt_region_nvram = start;
784 break;
785 case FLT_REG_NVRAM_3:
786 if (!IS_QLA27XX(ha))
787 break;
788 if (ha->port_no == 3)
789 ha->flt_region_nvram = start;
790 break;
791 case FLT_REG_FDT:
792 ha->flt_region_fdt = start;
793 break;
794 case FLT_REG_NPIV_CONF_0:
795 if (ha->port_no == 0)
796 ha->flt_region_npiv_conf = start;
797 break;
798 case FLT_REG_NPIV_CONF_1:
799 if (ha->port_no == 1)
800 ha->flt_region_npiv_conf = start;
801 break;
802 case FLT_REG_GOLD_FW:
803 ha->flt_region_gold_fw = start;
804 break;
805 case FLT_REG_FCP_PRIO_0:
806 if (ha->port_no == 0)
807 ha->flt_region_fcp_prio = start;
808 break;
809 case FLT_REG_FCP_PRIO_1:
810 if (ha->port_no == 1)
811 ha->flt_region_fcp_prio = start;
812 break;
813 case FLT_REG_BOOT_CODE_82XX:
814 ha->flt_region_boot = start;
815 break;
816 case FLT_REG_BOOT_CODE_8044:
817 if (IS_QLA8044(ha))
818 ha->flt_region_boot = start;
819 break;
820 case FLT_REG_FW_82XX:
821 ha->flt_region_fw = start;
822 break;
823 case FLT_REG_CNA_FW:
824 if (IS_CNA_CAPABLE(ha))
825 ha->flt_region_fw = start;
826 break;
827 case FLT_REG_GOLD_FW_82XX:
828 ha->flt_region_gold_fw = start;
829 break;
830 case FLT_REG_BOOTLOAD_82XX:
831 ha->flt_region_bootload = start;
832 break;
833 case FLT_REG_VPD_8XXX:
834 if (IS_CNA_CAPABLE(ha))
835 ha->flt_region_vpd = start;
836 break;
837 case FLT_REG_FCOE_NVRAM_0:
838 if (!(IS_QLA8031(ha) || IS_QLA8044(ha)))
839 break;
840 if (ha->port_no == 0)
841 ha->flt_region_nvram = start;
842 break;
843 case FLT_REG_FCOE_NVRAM_1:
844 if (!(IS_QLA8031(ha) || IS_QLA8044(ha)))
845 break;
846 if (ha->port_no == 1)
847 ha->flt_region_nvram = start;
848 break;
849 }
850 }
851 goto done;
852
853 no_flash_data:
854 /* Use hardcoded defaults. */
855 loc = locations[0];
856 ha->flt_region_fw = def_fw[def];
857 ha->flt_region_boot = def_boot[def];
858 ha->flt_region_vpd_nvram = def_vpd_nvram[def];
859 ha->flt_region_vpd = (ha->port_no == 0) ?
860 def_vpd0[def] : def_vpd1[def];
861 ha->flt_region_nvram = (ha->port_no == 0) ?
862 def_nvram0[def] : def_nvram1[def];
863 ha->flt_region_fdt = def_fdt[def];
864 ha->flt_region_npiv_conf = (ha->port_no == 0) ?
865 def_npiv_conf0[def] : def_npiv_conf1[def];
866 done:
867 ql_dbg(ql_dbg_init, vha, 0x004a,
868 "FLT[%s]: boot=0x%x fw=0x%x vpd_nvram=0x%x vpd=0x%x nvram=0x%x "
869 "fdt=0x%x flt=0x%x npiv=0x%x fcp_prif_cfg=0x%x.\n",
870 loc, ha->flt_region_boot, ha->flt_region_fw,
871 ha->flt_region_vpd_nvram, ha->flt_region_vpd, ha->flt_region_nvram,
872 ha->flt_region_fdt, ha->flt_region_flt, ha->flt_region_npiv_conf,
873 ha->flt_region_fcp_prio);
874 }
875
876 static void
877 qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
878 {
879 #define FLASH_BLK_SIZE_4K 0x1000
880 #define FLASH_BLK_SIZE_32K 0x8000
881 #define FLASH_BLK_SIZE_64K 0x10000
882 const char *loc, *locations[] = { "MID", "FDT" };
883 uint16_t cnt, chksum;
884 uint16_t *wptr;
885 struct qla_fdt_layout *fdt;
886 uint8_t man_id, flash_id;
887 uint16_t mid = 0, fid = 0;
888 struct qla_hw_data *ha = vha->hw;
889 struct req_que *req = ha->req_q_map[0];
890
891 wptr = (uint16_t *)req->ring;
892 fdt = (struct qla_fdt_layout *)req->ring;
893 ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
894 ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
895 if (*wptr == cpu_to_le16(0xffff))
896 goto no_flash_data;
897 if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
898 fdt->sig[3] != 'D')
899 goto no_flash_data;
900
901 for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
902 cnt++)
903 chksum += le16_to_cpu(*wptr++);
904 if (chksum) {
905 ql_dbg(ql_dbg_init, vha, 0x004c,
906 "Inconsistent FDT detected:"
907 " checksum=0x%x id=%c version0x%x.\n", chksum,
908 fdt->sig[0], le16_to_cpu(fdt->version));
909 ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x0113,
910 (uint8_t *)fdt, sizeof(*fdt));
911 goto no_flash_data;
912 }
913
914 loc = locations[1];
915 mid = le16_to_cpu(fdt->man_id);
916 fid = le16_to_cpu(fdt->id);
917 ha->fdt_wrt_disable = fdt->wrt_disable_bits;
918 ha->fdt_wrt_enable = fdt->wrt_enable_bits;
919 ha->fdt_wrt_sts_reg_cmd = fdt->wrt_sts_reg_cmd;
920 if (IS_QLA8044(ha))
921 ha->fdt_erase_cmd = fdt->erase_cmd;
922 else
923 ha->fdt_erase_cmd =
924 flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
925 ha->fdt_block_size = le32_to_cpu(fdt->block_size);
926 if (fdt->unprotect_sec_cmd) {
927 ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
928 fdt->unprotect_sec_cmd);
929 ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
930 flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
931 flash_conf_addr(ha, 0x0336);
932 }
933 goto done;
934 no_flash_data:
935 loc = locations[0];
936 if (IS_P3P_TYPE(ha)) {
937 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
938 goto done;
939 }
940 qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
941 mid = man_id;
942 fid = flash_id;
943 ha->fdt_wrt_disable = 0x9c;
944 ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
945 switch (man_id) {
946 case 0xbf: /* STT flash. */
947 if (flash_id == 0x8e)
948 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
949 else
950 ha->fdt_block_size = FLASH_BLK_SIZE_32K;
951
952 if (flash_id == 0x80)
953 ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
954 break;
955 case 0x13: /* ST M25P80. */
956 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
957 break;
958 case 0x1f: /* Atmel 26DF081A. */
959 ha->fdt_block_size = FLASH_BLK_SIZE_4K;
960 ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
961 ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
962 ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
963 break;
964 default:
965 /* Default to 64 kb sector size. */
966 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
967 break;
968 }
969 done:
970 ql_dbg(ql_dbg_init, vha, 0x004d,
971 "FDT[%s]: (0x%x/0x%x) erase=0x%x "
972 "pr=%x wrtd=0x%x blk=0x%x.\n",
973 loc, mid, fid,
974 ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
975 ha->fdt_wrt_disable, ha->fdt_block_size);
976
977 }
978
979 static void
980 qla2xxx_get_idc_param(scsi_qla_host_t *vha)
981 {
982 #define QLA82XX_IDC_PARAM_ADDR 0x003e885c
983 uint32_t *wptr;
984 struct qla_hw_data *ha = vha->hw;
985 struct req_que *req = ha->req_q_map[0];
986
987 if (!(IS_P3P_TYPE(ha)))
988 return;
989
990 wptr = (uint32_t *)req->ring;
991 ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
992 QLA82XX_IDC_PARAM_ADDR , 8);
993
994 if (*wptr == cpu_to_le32(0xffffffff)) {
995 ha->fcoe_dev_init_timeout = QLA82XX_ROM_DEV_INIT_TIMEOUT;
996 ha->fcoe_reset_timeout = QLA82XX_ROM_DRV_RESET_ACK_TIMEOUT;
997 } else {
998 ha->fcoe_dev_init_timeout = le32_to_cpu(*wptr++);
999 ha->fcoe_reset_timeout = le32_to_cpu(*wptr);
1000 }
1001 ql_dbg(ql_dbg_init, vha, 0x004e,
1002 "fcoe_dev_init_timeout=%d "
1003 "fcoe_reset_timeout=%d.\n", ha->fcoe_dev_init_timeout,
1004 ha->fcoe_reset_timeout);
1005 return;
1006 }
1007
1008 int
1009 qla2xxx_get_flash_info(scsi_qla_host_t *vha)
1010 {
1011 int ret;
1012 uint32_t flt_addr;
1013 struct qla_hw_data *ha = vha->hw;
1014
1015 if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) &&
1016 !IS_CNA_CAPABLE(ha) && !IS_QLA2031(ha) && !IS_QLA27XX(ha))
1017 return QLA_SUCCESS;
1018
1019 ret = qla2xxx_find_flt_start(vha, &flt_addr);
1020 if (ret != QLA_SUCCESS)
1021 return ret;
1022
1023 qla2xxx_get_flt_info(vha, flt_addr);
1024 qla2xxx_get_fdt_info(vha);
1025 qla2xxx_get_idc_param(vha);
1026
1027 return QLA_SUCCESS;
1028 }
1029
1030 void
1031 qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
1032 {
1033 #define NPIV_CONFIG_SIZE (16*1024)
1034 void *data;
1035 uint16_t *wptr;
1036 uint16_t cnt, chksum;
1037 int i;
1038 struct qla_npiv_header hdr;
1039 struct qla_npiv_entry *entry;
1040 struct qla_hw_data *ha = vha->hw;
1041
1042 if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) &&
1043 !IS_CNA_CAPABLE(ha) && !IS_QLA2031(ha))
1044 return;
1045
1046 if (ha->flags.nic_core_reset_hdlr_active)
1047 return;
1048
1049 if (IS_QLA8044(ha))
1050 return;
1051
1052 ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
1053 ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
1054 if (hdr.version == cpu_to_le16(0xffff))
1055 return;
1056 if (hdr.version != cpu_to_le16(1)) {
1057 ql_dbg(ql_dbg_user, vha, 0x7090,
1058 "Unsupported NPIV-Config "
1059 "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
1060 le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
1061 le16_to_cpu(hdr.checksum));
1062 return;
1063 }
1064
1065 data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
1066 if (!data) {
1067 ql_log(ql_log_warn, vha, 0x7091,
1068 "Unable to allocate memory for data.\n");
1069 return;
1070 }
1071
1072 ha->isp_ops->read_optrom(vha, (uint8_t *)data,
1073 ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);
1074
1075 cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
1076 sizeof(struct qla_npiv_entry)) >> 1;
1077 for (wptr = data, chksum = 0; cnt; cnt--)
1078 chksum += le16_to_cpu(*wptr++);
1079 if (chksum) {
1080 ql_dbg(ql_dbg_user, vha, 0x7092,
1081 "Inconsistent NPIV-Config "
1082 "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
1083 le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
1084 le16_to_cpu(hdr.checksum));
1085 goto done;
1086 }
1087
1088 entry = data + sizeof(struct qla_npiv_header);
1089 cnt = le16_to_cpu(hdr.entries);
1090 for (i = 0; cnt; cnt--, entry++, i++) {
1091 uint16_t flags;
1092 struct fc_vport_identifiers vid;
1093 struct fc_vport *vport;
1094
1095 memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));
1096
1097 flags = le16_to_cpu(entry->flags);
1098 if (flags == 0xffff)
1099 continue;
1100 if ((flags & BIT_0) == 0)
1101 continue;
1102
1103 memset(&vid, 0, sizeof(vid));
1104 vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
1105 vid.vport_type = FC_PORTTYPE_NPIV;
1106 vid.disable = false;
1107 vid.port_name = wwn_to_u64(entry->port_name);
1108 vid.node_name = wwn_to_u64(entry->node_name);
1109
1110 ql_dbg(ql_dbg_user, vha, 0x7093,
1111 "NPIV[%02x]: wwpn=%llx "
1112 "wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
1113 (unsigned long long)vid.port_name,
1114 (unsigned long long)vid.node_name,
1115 le16_to_cpu(entry->vf_id),
1116 entry->q_qos, entry->f_qos);
1117
1118 if (i < QLA_PRECONFIG_VPORTS) {
1119 vport = fc_vport_create(vha->host, 0, &vid);
1120 if (!vport)
1121 ql_log(ql_log_warn, vha, 0x7094,
1122 "NPIV-Config Failed to create vport [%02x]: "
1123 "wwpn=%llx wwnn=%llx.\n", cnt,
1124 (unsigned long long)vid.port_name,
1125 (unsigned long long)vid.node_name);
1126 }
1127 }
1128 done:
1129 kfree(data);
1130 }
1131
1132 static int
1133 qla24xx_unprotect_flash(scsi_qla_host_t *vha)
1134 {
1135 struct qla_hw_data *ha = vha->hw;
1136 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1137
1138 if (ha->flags.fac_supported)
1139 return qla81xx_fac_do_write_enable(vha, 1);
1140
1141 /* Enable flash write. */
1142 WRT_REG_DWORD(&reg->ctrl_status,
1143 RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1144 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1145
1146 if (!ha->fdt_wrt_disable)
1147 goto done;
1148
1149 /* Disable flash write-protection, first clear SR protection bit */
1150 qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1151 /* Then write zero again to clear remaining SR bits.*/
1152 qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1153 done:
1154 return QLA_SUCCESS;
1155 }
1156
1157 static int
1158 qla24xx_protect_flash(scsi_qla_host_t *vha)
1159 {
1160 uint32_t cnt;
1161 struct qla_hw_data *ha = vha->hw;
1162 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1163
1164 if (ha->flags.fac_supported)
1165 return qla81xx_fac_do_write_enable(vha, 0);
1166
1167 if (!ha->fdt_wrt_disable)
1168 goto skip_wrt_protect;
1169
1170 /* Enable flash write-protection and wait for completion. */
1171 qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
1172 ha->fdt_wrt_disable);
1173 for (cnt = 300; cnt &&
1174 qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
1175 cnt--) {
1176 udelay(10);
1177 }
1178
1179 skip_wrt_protect:
1180 /* Disable flash write. */
1181 WRT_REG_DWORD(&reg->ctrl_status,
1182 RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1183 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1184
1185 return QLA_SUCCESS;
1186 }
1187
1188 static int
1189 qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata)
1190 {
1191 struct qla_hw_data *ha = vha->hw;
1192 uint32_t start, finish;
1193
1194 if (ha->flags.fac_supported) {
1195 start = fdata >> 2;
1196 finish = start + (ha->fdt_block_size >> 2) - 1;
1197 return qla81xx_fac_erase_sector(vha, flash_data_addr(ha,
1198 start), flash_data_addr(ha, finish));
1199 }
1200
1201 return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
1202 (fdata & 0xff00) | ((fdata << 16) & 0xff0000) |
1203 ((fdata >> 16) & 0xff));
1204 }
1205
1206 static int
1207 qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
1208 uint32_t dwords)
1209 {
1210 int ret;
1211 uint32_t liter;
1212 uint32_t sec_mask, rest_addr;
1213 uint32_t fdata;
1214 dma_addr_t optrom_dma;
1215 void *optrom = NULL;
1216 struct qla_hw_data *ha = vha->hw;
1217
1218 /* Prepare burst-capable write on supported ISPs. */
1219 if ((IS_QLA25XX(ha) || IS_QLA81XX(ha) || IS_QLA83XX(ha) ||
1220 IS_QLA27XX(ha)) &&
1221 !(faddr & 0xfff) && dwords > OPTROM_BURST_DWORDS) {
1222 optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1223 &optrom_dma, GFP_KERNEL);
1224 if (!optrom) {
1225 ql_log(ql_log_warn, vha, 0x7095,
1226 "Unable to allocate "
1227 "memory for optrom burst write (%x KB).\n",
1228 OPTROM_BURST_SIZE / 1024);
1229 }
1230 }
1231
1232 rest_addr = (ha->fdt_block_size >> 2) - 1;
1233 sec_mask = ~rest_addr;
1234
1235 ret = qla24xx_unprotect_flash(vha);
1236 if (ret != QLA_SUCCESS) {
1237 ql_log(ql_log_warn, vha, 0x7096,
1238 "Unable to unprotect flash for update.\n");
1239 goto done;
1240 }
1241
1242 for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
1243 fdata = (faddr & sec_mask) << 2;
1244
1245 /* Are we at the beginning of a sector? */
1246 if ((faddr & rest_addr) == 0) {
1247 /* Do sector unprotect. */
1248 if (ha->fdt_unprotect_sec_cmd)
1249 qla24xx_write_flash_dword(ha,
1250 ha->fdt_unprotect_sec_cmd,
1251 (fdata & 0xff00) | ((fdata << 16) &
1252 0xff0000) | ((fdata >> 16) & 0xff));
1253 ret = qla24xx_erase_sector(vha, fdata);
1254 if (ret != QLA_SUCCESS) {
1255 ql_dbg(ql_dbg_user, vha, 0x7007,
1256 "Unable to erase erase sector: address=%x.\n",
1257 faddr);
1258 break;
1259 }
1260 }
1261
1262 /* Go with burst-write. */
1263 if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1264 /* Copy data to DMA'ble buffer. */
1265 memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
1266
1267 ret = qla2x00_load_ram(vha, optrom_dma,
1268 flash_data_addr(ha, faddr),
1269 OPTROM_BURST_DWORDS);
1270 if (ret != QLA_SUCCESS) {
1271 ql_log(ql_log_warn, vha, 0x7097,
1272 "Unable to burst-write optrom segment "
1273 "(%x/%x/%llx).\n", ret,
1274 flash_data_addr(ha, faddr),
1275 (unsigned long long)optrom_dma);
1276 ql_log(ql_log_warn, vha, 0x7098,
1277 "Reverting to slow-write.\n");
1278
1279 dma_free_coherent(&ha->pdev->dev,
1280 OPTROM_BURST_SIZE, optrom, optrom_dma);
1281 optrom = NULL;
1282 } else {
1283 liter += OPTROM_BURST_DWORDS - 1;
1284 faddr += OPTROM_BURST_DWORDS - 1;
1285 dwptr += OPTROM_BURST_DWORDS - 1;
1286 continue;
1287 }
1288 }
1289
1290 ret = qla24xx_write_flash_dword(ha,
1291 flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
1292 if (ret != QLA_SUCCESS) {
1293 ql_dbg(ql_dbg_user, vha, 0x7006,
1294 "Unable to program flash address=%x data=%x.\n",
1295 faddr, *dwptr);
1296 break;
1297 }
1298
1299 /* Do sector protect. */
1300 if (ha->fdt_unprotect_sec_cmd &&
1301 ((faddr & rest_addr) == rest_addr))
1302 qla24xx_write_flash_dword(ha,
1303 ha->fdt_protect_sec_cmd,
1304 (fdata & 0xff00) | ((fdata << 16) &
1305 0xff0000) | ((fdata >> 16) & 0xff));
1306 }
1307
1308 ret = qla24xx_protect_flash(vha);
1309 if (ret != QLA_SUCCESS)
1310 ql_log(ql_log_warn, vha, 0x7099,
1311 "Unable to protect flash after update.\n");
1312 done:
1313 if (optrom)
1314 dma_free_coherent(&ha->pdev->dev,
1315 OPTROM_BURST_SIZE, optrom, optrom_dma);
1316
1317 return ret;
1318 }
1319
1320 uint8_t *
1321 qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1322 uint32_t bytes)
1323 {
1324 uint32_t i;
1325 uint16_t *wptr;
1326 struct qla_hw_data *ha = vha->hw;
1327
1328 /* Word reads to NVRAM via registers. */
1329 wptr = (uint16_t *)buf;
1330 qla2x00_lock_nvram_access(ha);
1331 for (i = 0; i < bytes >> 1; i++, naddr++)
1332 wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
1333 naddr));
1334 qla2x00_unlock_nvram_access(ha);
1335
1336 return buf;
1337 }
1338
1339 uint8_t *
1340 qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1341 uint32_t bytes)
1342 {
1343 uint32_t i;
1344 uint32_t *dwptr;
1345 struct qla_hw_data *ha = vha->hw;
1346
1347 if (IS_P3P_TYPE(ha))
1348 return buf;
1349
1350 /* Dword reads to flash. */
1351 dwptr = (uint32_t *)buf;
1352 for (i = 0; i < bytes >> 2; i++, naddr++)
1353 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1354 nvram_data_addr(ha, naddr)));
1355
1356 return buf;
1357 }
1358
1359 int
1360 qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1361 uint32_t bytes)
1362 {
1363 int ret, stat;
1364 uint32_t i;
1365 uint16_t *wptr;
1366 unsigned long flags;
1367 struct qla_hw_data *ha = vha->hw;
1368
1369 ret = QLA_SUCCESS;
1370
1371 spin_lock_irqsave(&ha->hardware_lock, flags);
1372 qla2x00_lock_nvram_access(ha);
1373
1374 /* Disable NVRAM write-protection. */
1375 stat = qla2x00_clear_nvram_protection(ha);
1376
1377 wptr = (uint16_t *)buf;
1378 for (i = 0; i < bytes >> 1; i++, naddr++) {
1379 qla2x00_write_nvram_word(ha, naddr,
1380 cpu_to_le16(*wptr));
1381 wptr++;
1382 }
1383
1384 /* Enable NVRAM write-protection. */
1385 qla2x00_set_nvram_protection(ha, stat);
1386
1387 qla2x00_unlock_nvram_access(ha);
1388 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1389
1390 return ret;
1391 }
1392
1393 int
1394 qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1395 uint32_t bytes)
1396 {
1397 int ret;
1398 uint32_t i;
1399 uint32_t *dwptr;
1400 struct qla_hw_data *ha = vha->hw;
1401 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1402
1403 ret = QLA_SUCCESS;
1404
1405 if (IS_P3P_TYPE(ha))
1406 return ret;
1407
1408 /* Enable flash write. */
1409 WRT_REG_DWORD(&reg->ctrl_status,
1410 RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1411 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1412
1413 /* Disable NVRAM write-protection. */
1414 qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1415 qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1416
1417 /* Dword writes to flash. */
1418 dwptr = (uint32_t *)buf;
1419 for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
1420 ret = qla24xx_write_flash_dword(ha,
1421 nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
1422 if (ret != QLA_SUCCESS) {
1423 ql_dbg(ql_dbg_user, vha, 0x709a,
1424 "Unable to program nvram address=%x data=%x.\n",
1425 naddr, *dwptr);
1426 break;
1427 }
1428 }
1429
1430 /* Enable NVRAM write-protection. */
1431 qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
1432
1433 /* Disable flash write. */
1434 WRT_REG_DWORD(&reg->ctrl_status,
1435 RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1436 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1437
1438 return ret;
1439 }
1440
1441 uint8_t *
1442 qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1443 uint32_t bytes)
1444 {
1445 uint32_t i;
1446 uint32_t *dwptr;
1447 struct qla_hw_data *ha = vha->hw;
1448
1449 /* Dword reads to flash. */
1450 dwptr = (uint32_t *)buf;
1451 for (i = 0; i < bytes >> 2; i++, naddr++)
1452 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1453 flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
1454
1455 return buf;
1456 }
1457
1458 int
1459 qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1460 uint32_t bytes)
1461 {
1462 struct qla_hw_data *ha = vha->hw;
1463 #define RMW_BUFFER_SIZE (64 * 1024)
1464 uint8_t *dbuf;
1465
1466 dbuf = vmalloc(RMW_BUFFER_SIZE);
1467 if (!dbuf)
1468 return QLA_MEMORY_ALLOC_FAILED;
1469 ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1470 RMW_BUFFER_SIZE);
1471 memcpy(dbuf + (naddr << 2), buf, bytes);
1472 ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1473 RMW_BUFFER_SIZE);
1474 vfree(dbuf);
1475
1476 return QLA_SUCCESS;
1477 }
1478
1479 static inline void
1480 qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1481 {
1482 if (IS_QLA2322(ha)) {
1483 /* Flip all colors. */
1484 if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1485 /* Turn off. */
1486 ha->beacon_color_state = 0;
1487 *pflags = GPIO_LED_ALL_OFF;
1488 } else {
1489 /* Turn on. */
1490 ha->beacon_color_state = QLA_LED_ALL_ON;
1491 *pflags = GPIO_LED_RGA_ON;
1492 }
1493 } else {
1494 /* Flip green led only. */
1495 if (ha->beacon_color_state == QLA_LED_GRN_ON) {
1496 /* Turn off. */
1497 ha->beacon_color_state = 0;
1498 *pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
1499 } else {
1500 /* Turn on. */
1501 ha->beacon_color_state = QLA_LED_GRN_ON;
1502 *pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
1503 }
1504 }
1505 }
1506
1507 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
1508
1509 void
1510 qla2x00_beacon_blink(struct scsi_qla_host *vha)
1511 {
1512 uint16_t gpio_enable;
1513 uint16_t gpio_data;
1514 uint16_t led_color = 0;
1515 unsigned long flags;
1516 struct qla_hw_data *ha = vha->hw;
1517 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1518
1519 if (IS_P3P_TYPE(ha))
1520 return;
1521
1522 spin_lock_irqsave(&ha->hardware_lock, flags);
1523
1524 /* Save the Original GPIOE. */
1525 if (ha->pio_address) {
1526 gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1527 gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1528 } else {
1529 gpio_enable = RD_REG_WORD(&reg->gpioe);
1530 gpio_data = RD_REG_WORD(&reg->gpiod);
1531 }
1532
1533 /* Set the modified gpio_enable values */
1534 gpio_enable |= GPIO_LED_MASK;
1535
1536 if (ha->pio_address) {
1537 WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1538 } else {
1539 WRT_REG_WORD(&reg->gpioe, gpio_enable);
1540 RD_REG_WORD(&reg->gpioe);
1541 }
1542
1543 qla2x00_flip_colors(ha, &led_color);
1544
1545 /* Clear out any previously set LED color. */
1546 gpio_data &= ~GPIO_LED_MASK;
1547
1548 /* Set the new input LED color to GPIOD. */
1549 gpio_data |= led_color;
1550
1551 /* Set the modified gpio_data values */
1552 if (ha->pio_address) {
1553 WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1554 } else {
1555 WRT_REG_WORD(&reg->gpiod, gpio_data);
1556 RD_REG_WORD(&reg->gpiod);
1557 }
1558
1559 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1560 }
1561
1562 int
1563 qla2x00_beacon_on(struct scsi_qla_host *vha)
1564 {
1565 uint16_t gpio_enable;
1566 uint16_t gpio_data;
1567 unsigned long flags;
1568 struct qla_hw_data *ha = vha->hw;
1569 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1570
1571 ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1572 ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
1573
1574 if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1575 ql_log(ql_log_warn, vha, 0x709b,
1576 "Unable to update fw options (beacon on).\n");
1577 return QLA_FUNCTION_FAILED;
1578 }
1579
1580 /* Turn off LEDs. */
1581 spin_lock_irqsave(&ha->hardware_lock, flags);
1582 if (ha->pio_address) {
1583 gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1584 gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1585 } else {
1586 gpio_enable = RD_REG_WORD(&reg->gpioe);
1587 gpio_data = RD_REG_WORD(&reg->gpiod);
1588 }
1589 gpio_enable |= GPIO_LED_MASK;
1590
1591 /* Set the modified gpio_enable values. */
1592 if (ha->pio_address) {
1593 WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1594 } else {
1595 WRT_REG_WORD(&reg->gpioe, gpio_enable);
1596 RD_REG_WORD(&reg->gpioe);
1597 }
1598
1599 /* Clear out previously set LED colour. */
1600 gpio_data &= ~GPIO_LED_MASK;
1601 if (ha->pio_address) {
1602 WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1603 } else {
1604 WRT_REG_WORD(&reg->gpiod, gpio_data);
1605 RD_REG_WORD(&reg->gpiod);
1606 }
1607 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1608
1609 /*
1610 * Let the per HBA timer kick off the blinking process based on
1611 * the following flags. No need to do anything else now.
1612 */
1613 ha->beacon_blink_led = 1;
1614 ha->beacon_color_state = 0;
1615
1616 return QLA_SUCCESS;
1617 }
1618
1619 int
1620 qla2x00_beacon_off(struct scsi_qla_host *vha)
1621 {
1622 int rval = QLA_SUCCESS;
1623 struct qla_hw_data *ha = vha->hw;
1624
1625 ha->beacon_blink_led = 0;
1626
1627 /* Set the on flag so when it gets flipped it will be off. */
1628 if (IS_QLA2322(ha))
1629 ha->beacon_color_state = QLA_LED_ALL_ON;
1630 else
1631 ha->beacon_color_state = QLA_LED_GRN_ON;
1632
1633 ha->isp_ops->beacon_blink(vha); /* This turns green LED off */
1634
1635 ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1636 ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1637
1638 rval = qla2x00_set_fw_options(vha, ha->fw_options);
1639 if (rval != QLA_SUCCESS)
1640 ql_log(ql_log_warn, vha, 0x709c,
1641 "Unable to update fw options (beacon off).\n");
1642 return rval;
1643 }
1644
1645
1646 static inline void
1647 qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1648 {
1649 /* Flip all colors. */
1650 if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1651 /* Turn off. */
1652 ha->beacon_color_state = 0;
1653 *pflags = 0;
1654 } else {
1655 /* Turn on. */
1656 ha->beacon_color_state = QLA_LED_ALL_ON;
1657 *pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
1658 }
1659 }
1660
1661 void
1662 qla24xx_beacon_blink(struct scsi_qla_host *vha)
1663 {
1664 uint16_t led_color = 0;
1665 uint32_t gpio_data;
1666 unsigned long flags;
1667 struct qla_hw_data *ha = vha->hw;
1668 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1669
1670 /* Save the Original GPIOD. */
1671 spin_lock_irqsave(&ha->hardware_lock, flags);
1672 gpio_data = RD_REG_DWORD(&reg->gpiod);
1673
1674 /* Enable the gpio_data reg for update. */
1675 gpio_data |= GPDX_LED_UPDATE_MASK;
1676
1677 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1678 gpio_data = RD_REG_DWORD(&reg->gpiod);
1679
1680 /* Set the color bits. */
1681 qla24xx_flip_colors(ha, &led_color);
1682
1683 /* Clear out any previously set LED color. */
1684 gpio_data &= ~GPDX_LED_COLOR_MASK;
1685
1686 /* Set the new input LED color to GPIOD. */
1687 gpio_data |= led_color;
1688
1689 /* Set the modified gpio_data values. */
1690 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1691 gpio_data = RD_REG_DWORD(&reg->gpiod);
1692 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1693 }
1694
1695 static uint32_t
1696 qla83xx_select_led_port(struct qla_hw_data *ha)
1697 {
1698 uint32_t led_select_value = 0;
1699
1700 if (!IS_QLA83XX(ha) && !IS_QLA27XX(ha))
1701 goto out;
1702
1703 if (ha->port_no == 0)
1704 led_select_value = QLA83XX_LED_PORT0;
1705 else
1706 led_select_value = QLA83XX_LED_PORT1;
1707
1708 out:
1709 return led_select_value;
1710 }
1711
1712 void
1713 qla83xx_beacon_blink(struct scsi_qla_host *vha)
1714 {
1715 uint32_t led_select_value;
1716 struct qla_hw_data *ha = vha->hw;
1717 uint16_t led_cfg[6];
1718 uint16_t orig_led_cfg[6];
1719 uint32_t led_10_value, led_43_value;
1720
1721 if (!IS_QLA83XX(ha) && !IS_QLA81XX(ha) && !IS_QLA27XX(ha))
1722 return;
1723
1724 if (!ha->beacon_blink_led)
1725 return;
1726
1727 if (IS_QLA27XX(ha)) {
1728 qla2x00_write_ram_word(vha, 0x1003, 0x40000230);
1729 qla2x00_write_ram_word(vha, 0x1004, 0x40000230);
1730 } else if (IS_QLA2031(ha)) {
1731 led_select_value = qla83xx_select_led_port(ha);
1732
1733 qla83xx_wr_reg(vha, led_select_value, 0x40000230);
1734 qla83xx_wr_reg(vha, led_select_value + 4, 0x40000230);
1735 } else if (IS_QLA8031(ha)) {
1736 led_select_value = qla83xx_select_led_port(ha);
1737
1738 qla83xx_rd_reg(vha, led_select_value, &led_10_value);
1739 qla83xx_rd_reg(vha, led_select_value + 0x10, &led_43_value);
1740 qla83xx_wr_reg(vha, led_select_value, 0x01f44000);
1741 msleep(500);
1742 qla83xx_wr_reg(vha, led_select_value, 0x400001f4);
1743 msleep(1000);
1744 qla83xx_wr_reg(vha, led_select_value, led_10_value);
1745 qla83xx_wr_reg(vha, led_select_value + 0x10, led_43_value);
1746 } else if (IS_QLA81XX(ha)) {
1747 int rval;
1748
1749 /* Save Current */
1750 rval = qla81xx_get_led_config(vha, orig_led_cfg);
1751 /* Do the blink */
1752 if (rval == QLA_SUCCESS) {
1753 if (IS_QLA81XX(ha)) {
1754 led_cfg[0] = 0x4000;
1755 led_cfg[1] = 0x2000;
1756 led_cfg[2] = 0;
1757 led_cfg[3] = 0;
1758 led_cfg[4] = 0;
1759 led_cfg[5] = 0;
1760 } else {
1761 led_cfg[0] = 0x4000;
1762 led_cfg[1] = 0x4000;
1763 led_cfg[2] = 0x4000;
1764 led_cfg[3] = 0x2000;
1765 led_cfg[4] = 0;
1766 led_cfg[5] = 0x2000;
1767 }
1768 rval = qla81xx_set_led_config(vha, led_cfg);
1769 msleep(1000);
1770 if (IS_QLA81XX(ha)) {
1771 led_cfg[0] = 0x4000;
1772 led_cfg[1] = 0x2000;
1773 led_cfg[2] = 0;
1774 } else {
1775 led_cfg[0] = 0x4000;
1776 led_cfg[1] = 0x2000;
1777 led_cfg[2] = 0x4000;
1778 led_cfg[3] = 0x4000;
1779 led_cfg[4] = 0;
1780 led_cfg[5] = 0x2000;
1781 }
1782 rval = qla81xx_set_led_config(vha, led_cfg);
1783 }
1784 /* On exit, restore original (presumes no status change) */
1785 qla81xx_set_led_config(vha, orig_led_cfg);
1786 }
1787 }
1788
1789 int
1790 qla24xx_beacon_on(struct scsi_qla_host *vha)
1791 {
1792 uint32_t gpio_data;
1793 unsigned long flags;
1794 struct qla_hw_data *ha = vha->hw;
1795 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1796
1797 if (IS_P3P_TYPE(ha))
1798 return QLA_SUCCESS;
1799
1800 if (IS_QLA8031(ha) || IS_QLA81XX(ha))
1801 goto skip_gpio; /* let blink handle it */
1802
1803 if (ha->beacon_blink_led == 0) {
1804 /* Enable firmware for update */
1805 ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
1806
1807 if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1808 return QLA_FUNCTION_FAILED;
1809
1810 if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1811 QLA_SUCCESS) {
1812 ql_log(ql_log_warn, vha, 0x7009,
1813 "Unable to update fw options (beacon on).\n");
1814 return QLA_FUNCTION_FAILED;
1815 }
1816
1817 if (IS_QLA2031(ha) || IS_QLA27XX(ha))
1818 goto skip_gpio;
1819
1820 spin_lock_irqsave(&ha->hardware_lock, flags);
1821 gpio_data = RD_REG_DWORD(&reg->gpiod);
1822
1823 /* Enable the gpio_data reg for update. */
1824 gpio_data |= GPDX_LED_UPDATE_MASK;
1825 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1826 RD_REG_DWORD(&reg->gpiod);
1827
1828 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1829 }
1830
1831 /* So all colors blink together. */
1832 ha->beacon_color_state = 0;
1833
1834 skip_gpio:
1835 /* Let the per HBA timer kick off the blinking process. */
1836 ha->beacon_blink_led = 1;
1837
1838 return QLA_SUCCESS;
1839 }
1840
1841 int
1842 qla24xx_beacon_off(struct scsi_qla_host *vha)
1843 {
1844 uint32_t gpio_data;
1845 unsigned long flags;
1846 struct qla_hw_data *ha = vha->hw;
1847 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1848
1849 if (IS_P3P_TYPE(ha))
1850 return QLA_SUCCESS;
1851
1852 ha->beacon_blink_led = 0;
1853
1854 if (IS_QLA2031(ha) || IS_QLA27XX(ha))
1855 goto set_fw_options;
1856
1857 if (IS_QLA8031(ha) || IS_QLA81XX(ha))
1858 return QLA_SUCCESS;
1859
1860 ha->beacon_color_state = QLA_LED_ALL_ON;
1861
1862 ha->isp_ops->beacon_blink(vha); /* Will flip to all off. */
1863
1864 /* Give control back to firmware. */
1865 spin_lock_irqsave(&ha->hardware_lock, flags);
1866 gpio_data = RD_REG_DWORD(&reg->gpiod);
1867
1868 /* Disable the gpio_data reg for update. */
1869 gpio_data &= ~GPDX_LED_UPDATE_MASK;
1870 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1871 RD_REG_DWORD(&reg->gpiod);
1872 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1873
1874 set_fw_options:
1875 ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1876
1877 if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1878 ql_log(ql_log_warn, vha, 0x704d,
1879 "Unable to update fw options (beacon on).\n");
1880 return QLA_FUNCTION_FAILED;
1881 }
1882
1883 if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1884 ql_log(ql_log_warn, vha, 0x704e,
1885 "Unable to update fw options (beacon on).\n");
1886 return QLA_FUNCTION_FAILED;
1887 }
1888
1889 return QLA_SUCCESS;
1890 }
1891
1892
1893 /*
1894 * Flash support routines
1895 */
1896
1897 /**
1898 * qla2x00_flash_enable() - Setup flash for reading and writing.
1899 * @ha: HA context
1900 */
1901 static void
1902 qla2x00_flash_enable(struct qla_hw_data *ha)
1903 {
1904 uint16_t data;
1905 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1906
1907 data = RD_REG_WORD(&reg->ctrl_status);
1908 data |= CSR_FLASH_ENABLE;
1909 WRT_REG_WORD(&reg->ctrl_status, data);
1910 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1911 }
1912
1913 /**
1914 * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1915 * @ha: HA context
1916 */
1917 static void
1918 qla2x00_flash_disable(struct qla_hw_data *ha)
1919 {
1920 uint16_t data;
1921 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1922
1923 data = RD_REG_WORD(&reg->ctrl_status);
1924 data &= ~(CSR_FLASH_ENABLE);
1925 WRT_REG_WORD(&reg->ctrl_status, data);
1926 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1927 }
1928
1929 /**
1930 * qla2x00_read_flash_byte() - Reads a byte from flash
1931 * @ha: HA context
1932 * @addr: Address in flash to read
1933 *
1934 * A word is read from the chip, but, only the lower byte is valid.
1935 *
1936 * Returns the byte read from flash @addr.
1937 */
1938 static uint8_t
1939 qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1940 {
1941 uint16_t data;
1942 uint16_t bank_select;
1943 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1944
1945 bank_select = RD_REG_WORD(&reg->ctrl_status);
1946
1947 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1948 /* Specify 64K address range: */
1949 /* clear out Module Select and Flash Address bits [19:16]. */
1950 bank_select &= ~0xf8;
1951 bank_select |= addr >> 12 & 0xf0;
1952 bank_select |= CSR_FLASH_64K_BANK;
1953 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1954 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1955
1956 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1957 data = RD_REG_WORD(&reg->flash_data);
1958
1959 return (uint8_t)data;
1960 }
1961
1962 /* Setup bit 16 of flash address. */
1963 if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1964 bank_select |= CSR_FLASH_64K_BANK;
1965 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1966 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1967 } else if (((addr & BIT_16) == 0) &&
1968 (bank_select & CSR_FLASH_64K_BANK)) {
1969 bank_select &= ~(CSR_FLASH_64K_BANK);
1970 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1971 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1972 }
1973
1974 /* Always perform IO mapped accesses to the FLASH registers. */
1975 if (ha->pio_address) {
1976 uint16_t data2;
1977
1978 WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1979 do {
1980 data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1981 barrier();
1982 cpu_relax();
1983 data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1984 } while (data != data2);
1985 } else {
1986 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1987 data = qla2x00_debounce_register(&reg->flash_data);
1988 }
1989
1990 return (uint8_t)data;
1991 }
1992
1993 /**
1994 * qla2x00_write_flash_byte() - Write a byte to flash
1995 * @ha: HA context
1996 * @addr: Address in flash to write
1997 * @data: Data to write
1998 */
1999 static void
2000 qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
2001 {
2002 uint16_t bank_select;
2003 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2004
2005 bank_select = RD_REG_WORD(&reg->ctrl_status);
2006 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2007 /* Specify 64K address range: */
2008 /* clear out Module Select and Flash Address bits [19:16]. */
2009 bank_select &= ~0xf8;
2010 bank_select |= addr >> 12 & 0xf0;
2011 bank_select |= CSR_FLASH_64K_BANK;
2012 WRT_REG_WORD(&reg->ctrl_status, bank_select);
2013 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
2014
2015 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
2016 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
2017 WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
2018 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
2019
2020 return;
2021 }
2022
2023 /* Setup bit 16 of flash address. */
2024 if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
2025 bank_select |= CSR_FLASH_64K_BANK;
2026 WRT_REG_WORD(&reg->ctrl_status, bank_select);
2027 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
2028 } else if (((addr & BIT_16) == 0) &&
2029 (bank_select & CSR_FLASH_64K_BANK)) {
2030 bank_select &= ~(CSR_FLASH_64K_BANK);
2031 WRT_REG_WORD(&reg->ctrl_status, bank_select);
2032 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
2033 }
2034
2035 /* Always perform IO mapped accesses to the FLASH registers. */
2036 if (ha->pio_address) {
2037 WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
2038 WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
2039 } else {
2040 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
2041 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
2042 WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
2043 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
2044 }
2045 }
2046
2047 /**
2048 * qla2x00_poll_flash() - Polls flash for completion.
2049 * @ha: HA context
2050 * @addr: Address in flash to poll
2051 * @poll_data: Data to be polled
2052 * @man_id: Flash manufacturer ID
2053 * @flash_id: Flash ID
2054 *
2055 * This function polls the device until bit 7 of what is read matches data
2056 * bit 7 or until data bit 5 becomes a 1. If that hapens, the flash ROM timed
2057 * out (a fatal error). The flash book recommeds reading bit 7 again after
2058 * reading bit 5 as a 1.
2059 *
2060 * Returns 0 on success, else non-zero.
2061 */
2062 static int
2063 qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
2064 uint8_t man_id, uint8_t flash_id)
2065 {
2066 int status;
2067 uint8_t flash_data;
2068 uint32_t cnt;
2069
2070 status = 1;
2071
2072 /* Wait for 30 seconds for command to finish. */
2073 poll_data &= BIT_7;
2074 for (cnt = 3000000; cnt; cnt--) {
2075 flash_data = qla2x00_read_flash_byte(ha, addr);
2076 if ((flash_data & BIT_7) == poll_data) {
2077 status = 0;
2078 break;
2079 }
2080
2081 if (man_id != 0x40 && man_id != 0xda) {
2082 if ((flash_data & BIT_5) && cnt > 2)
2083 cnt = 2;
2084 }
2085 udelay(10);
2086 barrier();
2087 cond_resched();
2088 }
2089 return status;
2090 }
2091
2092 /**
2093 * qla2x00_program_flash_address() - Programs a flash address
2094 * @ha: HA context
2095 * @addr: Address in flash to program
2096 * @data: Data to be written in flash
2097 * @man_id: Flash manufacturer ID
2098 * @flash_id: Flash ID
2099 *
2100 * Returns 0 on success, else non-zero.
2101 */
2102 static int
2103 qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
2104 uint8_t data, uint8_t man_id, uint8_t flash_id)
2105 {
2106 /* Write Program Command Sequence. */
2107 if (IS_OEM_001(ha)) {
2108 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
2109 qla2x00_write_flash_byte(ha, 0x555, 0x55);
2110 qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
2111 qla2x00_write_flash_byte(ha, addr, data);
2112 } else {
2113 if (man_id == 0xda && flash_id == 0xc1) {
2114 qla2x00_write_flash_byte(ha, addr, data);
2115 if (addr & 0x7e)
2116 return 0;
2117 } else {
2118 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2119 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2120 qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
2121 qla2x00_write_flash_byte(ha, addr, data);
2122 }
2123 }
2124
2125 udelay(150);
2126
2127 /* Wait for write to complete. */
2128 return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
2129 }
2130
2131 /**
2132 * qla2x00_erase_flash() - Erase the flash.
2133 * @ha: HA context
2134 * @man_id: Flash manufacturer ID
2135 * @flash_id: Flash ID
2136 *
2137 * Returns 0 on success, else non-zero.
2138 */
2139 static int
2140 qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
2141 {
2142 /* Individual Sector Erase Command Sequence */
2143 if (IS_OEM_001(ha)) {
2144 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
2145 qla2x00_write_flash_byte(ha, 0x555, 0x55);
2146 qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
2147 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
2148 qla2x00_write_flash_byte(ha, 0x555, 0x55);
2149 qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
2150 } else {
2151 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2152 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2153 qla2x00_write_flash_byte(ha, 0x5555, 0x80);
2154 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2155 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2156 qla2x00_write_flash_byte(ha, 0x5555, 0x10);
2157 }
2158
2159 udelay(150);
2160
2161 /* Wait for erase to complete. */
2162 return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
2163 }
2164
2165 /**
2166 * qla2x00_erase_flash_sector() - Erase a flash sector.
2167 * @ha: HA context
2168 * @addr: Flash sector to erase
2169 * @sec_mask: Sector address mask
2170 * @man_id: Flash manufacturer ID
2171 * @flash_id: Flash ID
2172 *
2173 * Returns 0 on success, else non-zero.
2174 */
2175 static int
2176 qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
2177 uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
2178 {
2179 /* Individual Sector Erase Command Sequence */
2180 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2181 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2182 qla2x00_write_flash_byte(ha, 0x5555, 0x80);
2183 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2184 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2185 if (man_id == 0x1f && flash_id == 0x13)
2186 qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
2187 else
2188 qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
2189
2190 udelay(150);
2191
2192 /* Wait for erase to complete. */
2193 return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
2194 }
2195
2196 /**
2197 * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
2198 * @man_id: Flash manufacturer ID
2199 * @flash_id: Flash ID
2200 */
2201 static void
2202 qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
2203 uint8_t *flash_id)
2204 {
2205 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2206 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2207 qla2x00_write_flash_byte(ha, 0x5555, 0x90);
2208 *man_id = qla2x00_read_flash_byte(ha, 0x0000);
2209 *flash_id = qla2x00_read_flash_byte(ha, 0x0001);
2210 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
2211 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
2212 qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
2213 }
2214
2215 static void
2216 qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
2217 uint32_t saddr, uint32_t length)
2218 {
2219 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2220 uint32_t midpoint, ilength;
2221 uint8_t data;
2222
2223 midpoint = length / 2;
2224
2225 WRT_REG_WORD(&reg->nvram, 0);
2226 RD_REG_WORD(&reg->nvram);
2227 for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
2228 if (ilength == midpoint) {
2229 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2230 RD_REG_WORD(&reg->nvram);
2231 }
2232 data = qla2x00_read_flash_byte(ha, saddr);
2233 if (saddr % 100)
2234 udelay(10);
2235 *tmp_buf = data;
2236 cond_resched();
2237 }
2238 }
2239
2240 static inline void
2241 qla2x00_suspend_hba(struct scsi_qla_host *vha)
2242 {
2243 int cnt;
2244 unsigned long flags;
2245 struct qla_hw_data *ha = vha->hw;
2246 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2247
2248 /* Suspend HBA. */
2249 scsi_block_requests(vha->host);
2250 ha->isp_ops->disable_intrs(ha);
2251 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2252
2253 /* Pause RISC. */
2254 spin_lock_irqsave(&ha->hardware_lock, flags);
2255 WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
2256 RD_REG_WORD(&reg->hccr);
2257 if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
2258 for (cnt = 0; cnt < 30000; cnt++) {
2259 if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
2260 break;
2261 udelay(100);
2262 }
2263 } else {
2264 udelay(10);
2265 }
2266 spin_unlock_irqrestore(&ha->hardware_lock, flags);
2267 }
2268
2269 static inline void
2270 qla2x00_resume_hba(struct scsi_qla_host *vha)
2271 {
2272 struct qla_hw_data *ha = vha->hw;
2273
2274 /* Resume HBA. */
2275 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2276 set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
2277 qla2xxx_wake_dpc(vha);
2278 qla2x00_wait_for_chip_reset(vha);
2279 scsi_unblock_requests(vha->host);
2280 }
2281
2282 uint8_t *
2283 qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2284 uint32_t offset, uint32_t length)
2285 {
2286 uint32_t addr, midpoint;
2287 uint8_t *data;
2288 struct qla_hw_data *ha = vha->hw;
2289 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2290
2291 /* Suspend HBA. */
2292 qla2x00_suspend_hba(vha);
2293
2294 /* Go with read. */
2295 midpoint = ha->optrom_size / 2;
2296
2297 qla2x00_flash_enable(ha);
2298 WRT_REG_WORD(&reg->nvram, 0);
2299 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
2300 for (addr = offset, data = buf; addr < length; addr++, data++) {
2301 if (addr == midpoint) {
2302 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2303 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
2304 }
2305
2306 *data = qla2x00_read_flash_byte(ha, addr);
2307 }
2308 qla2x00_flash_disable(ha);
2309
2310 /* Resume HBA. */
2311 qla2x00_resume_hba(vha);
2312
2313 return buf;
2314 }
2315
2316 int
2317 qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2318 uint32_t offset, uint32_t length)
2319 {
2320
2321 int rval;
2322 uint8_t man_id, flash_id, sec_number, data;
2323 uint16_t wd;
2324 uint32_t addr, liter, sec_mask, rest_addr;
2325 struct qla_hw_data *ha = vha->hw;
2326 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2327
2328 /* Suspend HBA. */
2329 qla2x00_suspend_hba(vha);
2330
2331 rval = QLA_SUCCESS;
2332 sec_number = 0;
2333
2334 /* Reset ISP chip. */
2335 WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
2336 pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
2337
2338 /* Go with write. */
2339 qla2x00_flash_enable(ha);
2340 do { /* Loop once to provide quick error exit */
2341 /* Structure of flash memory based on manufacturer */
2342 if (IS_OEM_001(ha)) {
2343 /* OEM variant with special flash part. */
2344 man_id = flash_id = 0;
2345 rest_addr = 0xffff;
2346 sec_mask = 0x10000;
2347 goto update_flash;
2348 }
2349 qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
2350 switch (man_id) {
2351 case 0x20: /* ST flash. */
2352 if (flash_id == 0xd2 || flash_id == 0xe3) {
2353 /*
2354 * ST m29w008at part - 64kb sector size with
2355 * 32kb,8kb,8kb,16kb sectors at memory address
2356 * 0xf0000.
2357 */
2358 rest_addr = 0xffff;
2359 sec_mask = 0x10000;
2360 break;
2361 }
2362 /*
2363 * ST m29w010b part - 16kb sector size
2364 * Default to 16kb sectors
2365 */
2366 rest_addr = 0x3fff;
2367 sec_mask = 0x1c000;
2368 break;
2369 case 0x40: /* Mostel flash. */
2370 /* Mostel v29c51001 part - 512 byte sector size. */
2371 rest_addr = 0x1ff;
2372 sec_mask = 0x1fe00;
2373 break;
2374 case 0xbf: /* SST flash. */
2375 /* SST39sf10 part - 4kb sector size. */
2376 rest_addr = 0xfff;
2377 sec_mask = 0x1f000;
2378 break;
2379 case 0xda: /* Winbond flash. */
2380 /* Winbond W29EE011 part - 256 byte sector size. */
2381 rest_addr = 0x7f;
2382 sec_mask = 0x1ff80;
2383 break;
2384 case 0xc2: /* Macronix flash. */
2385 /* 64k sector size. */
2386 if (flash_id == 0x38 || flash_id == 0x4f) {
2387 rest_addr = 0xffff;
2388 sec_mask = 0x10000;
2389 break;
2390 }
2391 /* Fall through... */
2392
2393 case 0x1f: /* Atmel flash. */
2394 /* 512k sector size. */
2395 if (flash_id == 0x13) {
2396 rest_addr = 0x7fffffff;
2397 sec_mask = 0x80000000;
2398 break;
2399 }
2400 /* Fall through... */
2401
2402 case 0x01: /* AMD flash. */
2403 if (flash_id == 0x38 || flash_id == 0x40 ||
2404 flash_id == 0x4f) {
2405 /* Am29LV081 part - 64kb sector size. */
2406 /* Am29LV002BT part - 64kb sector size. */
2407 rest_addr = 0xffff;
2408 sec_mask = 0x10000;
2409 break;
2410 } else if (flash_id == 0x3e) {
2411 /*
2412 * Am29LV008b part - 64kb sector size with
2413 * 32kb,8kb,8kb,16kb sector at memory address
2414 * h0xf0000.
2415 */
2416 rest_addr = 0xffff;
2417 sec_mask = 0x10000;
2418 break;
2419 } else if (flash_id == 0x20 || flash_id == 0x6e) {
2420 /*
2421 * Am29LV010 part or AM29f010 - 16kb sector
2422 * size.
2423 */
2424 rest_addr = 0x3fff;
2425 sec_mask = 0x1c000;
2426 break;
2427 } else if (flash_id == 0x6d) {
2428 /* Am29LV001 part - 8kb sector size. */
2429 rest_addr = 0x1fff;
2430 sec_mask = 0x1e000;
2431 break;
2432 }
2433 default:
2434 /* Default to 16 kb sector size. */
2435 rest_addr = 0x3fff;
2436 sec_mask = 0x1c000;
2437 break;
2438 }
2439
2440 update_flash:
2441 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2442 if (qla2x00_erase_flash(ha, man_id, flash_id)) {
2443 rval = QLA_FUNCTION_FAILED;
2444 break;
2445 }
2446 }
2447
2448 for (addr = offset, liter = 0; liter < length; liter++,
2449 addr++) {
2450 data = buf[liter];
2451 /* Are we at the beginning of a sector? */
2452 if ((addr & rest_addr) == 0) {
2453 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2454 if (addr >= 0x10000UL) {
2455 if (((addr >> 12) & 0xf0) &&
2456 ((man_id == 0x01 &&
2457 flash_id == 0x3e) ||
2458 (man_id == 0x20 &&
2459 flash_id == 0xd2))) {
2460 sec_number++;
2461 if (sec_number == 1) {
2462 rest_addr =
2463 0x7fff;
2464 sec_mask =
2465 0x18000;
2466 } else if (
2467 sec_number == 2 ||
2468 sec_number == 3) {
2469 rest_addr =
2470 0x1fff;
2471 sec_mask =
2472 0x1e000;
2473 } else if (
2474 sec_number == 4) {
2475 rest_addr =
2476 0x3fff;
2477 sec_mask =
2478 0x1c000;
2479 }
2480 }
2481 }
2482 } else if (addr == ha->optrom_size / 2) {
2483 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2484 RD_REG_WORD(&reg->nvram);
2485 }
2486
2487 if (flash_id == 0xda && man_id == 0xc1) {
2488 qla2x00_write_flash_byte(ha, 0x5555,
2489 0xaa);
2490 qla2x00_write_flash_byte(ha, 0x2aaa,
2491 0x55);
2492 qla2x00_write_flash_byte(ha, 0x5555,
2493 0xa0);
2494 } else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
2495 /* Then erase it */
2496 if (qla2x00_erase_flash_sector(ha,
2497 addr, sec_mask, man_id,
2498 flash_id)) {
2499 rval = QLA_FUNCTION_FAILED;
2500 break;
2501 }
2502 if (man_id == 0x01 && flash_id == 0x6d)
2503 sec_number++;
2504 }
2505 }
2506
2507 if (man_id == 0x01 && flash_id == 0x6d) {
2508 if (sec_number == 1 &&
2509 addr == (rest_addr - 1)) {
2510 rest_addr = 0x0fff;
2511 sec_mask = 0x1f000;
2512 } else if (sec_number == 3 && (addr & 0x7ffe)) {
2513 rest_addr = 0x3fff;
2514 sec_mask = 0x1c000;
2515 }
2516 }
2517
2518 if (qla2x00_program_flash_address(ha, addr, data,
2519 man_id, flash_id)) {
2520 rval = QLA_FUNCTION_FAILED;
2521 break;
2522 }
2523 cond_resched();
2524 }
2525 } while (0);
2526 qla2x00_flash_disable(ha);
2527
2528 /* Resume HBA. */
2529 qla2x00_resume_hba(vha);
2530
2531 return rval;
2532 }
2533
2534 uint8_t *
2535 qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2536 uint32_t offset, uint32_t length)
2537 {
2538 struct qla_hw_data *ha = vha->hw;
2539
2540 /* Suspend HBA. */
2541 scsi_block_requests(vha->host);
2542 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2543
2544 /* Go with read. */
2545 qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2546
2547 /* Resume HBA. */
2548 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2549 scsi_unblock_requests(vha->host);
2550
2551 return buf;
2552 }
2553
2554 int
2555 qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2556 uint32_t offset, uint32_t length)
2557 {
2558 int rval;
2559 struct qla_hw_data *ha = vha->hw;
2560
2561 /* Suspend HBA. */
2562 scsi_block_requests(vha->host);
2563 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2564
2565 /* Go with write. */
2566 rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2567 length >> 2);
2568
2569 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2570 scsi_unblock_requests(vha->host);
2571
2572 return rval;
2573 }
2574
2575 uint8_t *
2576 qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2577 uint32_t offset, uint32_t length)
2578 {
2579 int rval;
2580 dma_addr_t optrom_dma;
2581 void *optrom;
2582 uint8_t *pbuf;
2583 uint32_t faddr, left, burst;
2584 struct qla_hw_data *ha = vha->hw;
2585
2586 if (IS_QLA25XX(ha) || IS_QLA81XX(ha) || IS_QLA83XX(ha) ||
2587 IS_QLA27XX(ha))
2588 goto try_fast;
2589 if (offset & 0xfff)
2590 goto slow_read;
2591 if (length < OPTROM_BURST_SIZE)
2592 goto slow_read;
2593
2594 try_fast:
2595 optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2596 &optrom_dma, GFP_KERNEL);
2597 if (!optrom) {
2598 ql_log(ql_log_warn, vha, 0x00cc,
2599 "Unable to allocate memory for optrom burst read (%x KB).\n",
2600 OPTROM_BURST_SIZE / 1024);
2601 goto slow_read;
2602 }
2603
2604 pbuf = buf;
2605 faddr = offset >> 2;
2606 left = length >> 2;
2607 burst = OPTROM_BURST_DWORDS;
2608 while (left != 0) {
2609 if (burst > left)
2610 burst = left;
2611
2612 rval = qla2x00_dump_ram(vha, optrom_dma,
2613 flash_data_addr(ha, faddr), burst);
2614 if (rval) {
2615 ql_log(ql_log_warn, vha, 0x00f5,
2616 "Unable to burst-read optrom segment (%x/%x/%llx).\n",
2617 rval, flash_data_addr(ha, faddr),
2618 (unsigned long long)optrom_dma);
2619 ql_log(ql_log_warn, vha, 0x00f6,
2620 "Reverting to slow-read.\n");
2621
2622 dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2623 optrom, optrom_dma);
2624 goto slow_read;
2625 }
2626
2627 memcpy(pbuf, optrom, burst * 4);
2628
2629 left -= burst;
2630 faddr += burst;
2631 pbuf += burst * 4;
2632 }
2633
2634 dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
2635 optrom_dma);
2636
2637 return buf;
2638
2639 slow_read:
2640 return qla24xx_read_optrom_data(vha, buf, offset, length);
2641 }
2642
2643 /**
2644 * qla2x00_get_fcode_version() - Determine an FCODE image's version.
2645 * @ha: HA context
2646 * @pcids: Pointer to the FCODE PCI data structure
2647 *
2648 * The process of retrieving the FCODE version information is at best
2649 * described as interesting.
2650 *
2651 * Within the first 100h bytes of the image an ASCII string is present
2652 * which contains several pieces of information including the FCODE
2653 * version. Unfortunately it seems the only reliable way to retrieve
2654 * the version is by scanning for another sentinel within the string,
2655 * the FCODE build date:
2656 *
2657 * ... 2.00.02 10/17/02 ...
2658 *
2659 * Returns QLA_SUCCESS on successful retrieval of version.
2660 */
2661 static void
2662 qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2663 {
2664 int ret = QLA_FUNCTION_FAILED;
2665 uint32_t istart, iend, iter, vend;
2666 uint8_t do_next, rbyte, *vbyte;
2667
2668 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2669
2670 /* Skip the PCI data structure. */
2671 istart = pcids +
2672 ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
2673 qla2x00_read_flash_byte(ha, pcids + 0x0A));
2674 iend = istart + 0x100;
2675 do {
2676 /* Scan for the sentinel date string...eeewww. */
2677 do_next = 0;
2678 iter = istart;
2679 while ((iter < iend) && !do_next) {
2680 iter++;
2681 if (qla2x00_read_flash_byte(ha, iter) == '/') {
2682 if (qla2x00_read_flash_byte(ha, iter + 2) ==
2683 '/')
2684 do_next++;
2685 else if (qla2x00_read_flash_byte(ha,
2686 iter + 3) == '/')
2687 do_next++;
2688 }
2689 }
2690 if (!do_next)
2691 break;
2692
2693 /* Backtrack to previous ' ' (space). */
2694 do_next = 0;
2695 while ((iter > istart) && !do_next) {
2696 iter--;
2697 if (qla2x00_read_flash_byte(ha, iter) == ' ')
2698 do_next++;
2699 }
2700 if (!do_next)
2701 break;
2702
2703 /*
2704 * Mark end of version tag, and find previous ' ' (space) or
2705 * string length (recent FCODE images -- major hack ahead!!!).
2706 */
2707 vend = iter - 1;
2708 do_next = 0;
2709 while ((iter > istart) && !do_next) {
2710 iter--;
2711 rbyte = qla2x00_read_flash_byte(ha, iter);
2712 if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
2713 do_next++;
2714 }
2715 if (!do_next)
2716 break;
2717
2718 /* Mark beginning of version tag, and copy data. */
2719 iter++;
2720 if ((vend - iter) &&
2721 ((vend - iter) < sizeof(ha->fcode_revision))) {
2722 vbyte = ha->fcode_revision;
2723 while (iter <= vend) {
2724 *vbyte++ = qla2x00_read_flash_byte(ha, iter);
2725 iter++;
2726 }
2727 ret = QLA_SUCCESS;
2728 }
2729 } while (0);
2730
2731 if (ret != QLA_SUCCESS)
2732 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2733 }
2734
2735 int
2736 qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2737 {
2738 int ret = QLA_SUCCESS;
2739 uint8_t code_type, last_image;
2740 uint32_t pcihdr, pcids;
2741 uint8_t *dbyte;
2742 uint16_t *dcode;
2743 struct qla_hw_data *ha = vha->hw;
2744
2745 if (!ha->pio_address || !mbuf)
2746 return QLA_FUNCTION_FAILED;
2747
2748 memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2749 memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2750 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2751 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2752
2753 qla2x00_flash_enable(ha);
2754
2755 /* Begin with first PCI expansion ROM header. */
2756 pcihdr = 0;
2757 last_image = 1;
2758 do {
2759 /* Verify PCI expansion ROM header. */
2760 if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2761 qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2762 /* No signature */
2763 ql_log(ql_log_fatal, vha, 0x0050,
2764 "No matching ROM signature.\n");
2765 ret = QLA_FUNCTION_FAILED;
2766 break;
2767 }
2768
2769 /* Locate PCI data structure. */
2770 pcids = pcihdr +
2771 ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2772 qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2773
2774 /* Validate signature of PCI data structure. */
2775 if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2776 qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2777 qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2778 qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2779 /* Incorrect header. */
2780 ql_log(ql_log_fatal, vha, 0x0051,
2781 "PCI data struct not found pcir_adr=%x.\n", pcids);
2782 ret = QLA_FUNCTION_FAILED;
2783 break;
2784 }
2785
2786 /* Read version */
2787 code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2788 switch (code_type) {
2789 case ROM_CODE_TYPE_BIOS:
2790 /* Intel x86, PC-AT compatible. */
2791 ha->bios_revision[0] =
2792 qla2x00_read_flash_byte(ha, pcids + 0x12);
2793 ha->bios_revision[1] =
2794 qla2x00_read_flash_byte(ha, pcids + 0x13);
2795 ql_dbg(ql_dbg_init, vha, 0x0052,
2796 "Read BIOS %d.%d.\n",
2797 ha->bios_revision[1], ha->bios_revision[0]);
2798 break;
2799 case ROM_CODE_TYPE_FCODE:
2800 /* Open Firmware standard for PCI (FCode). */
2801 /* Eeeewww... */
2802 qla2x00_get_fcode_version(ha, pcids);
2803 break;
2804 case ROM_CODE_TYPE_EFI:
2805 /* Extensible Firmware Interface (EFI). */
2806 ha->efi_revision[0] =
2807 qla2x00_read_flash_byte(ha, pcids + 0x12);
2808 ha->efi_revision[1] =
2809 qla2x00_read_flash_byte(ha, pcids + 0x13);
2810 ql_dbg(ql_dbg_init, vha, 0x0053,
2811 "Read EFI %d.%d.\n",
2812 ha->efi_revision[1], ha->efi_revision[0]);
2813 break;
2814 default:
2815 ql_log(ql_log_warn, vha, 0x0054,
2816 "Unrecognized code type %x at pcids %x.\n",
2817 code_type, pcids);
2818 break;
2819 }
2820
2821 last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2822
2823 /* Locate next PCI expansion ROM. */
2824 pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2825 qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2826 } while (!last_image);
2827
2828 if (IS_QLA2322(ha)) {
2829 /* Read firmware image information. */
2830 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2831 dbyte = mbuf;
2832 memset(dbyte, 0, 8);
2833 dcode = (uint16_t *)dbyte;
2834
2835 qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2836 8);
2837 ql_dbg(ql_dbg_init + ql_dbg_buffer, vha, 0x010a,
2838 "Dumping fw "
2839 "ver from flash:.\n");
2840 ql_dump_buffer(ql_dbg_init + ql_dbg_buffer, vha, 0x010b,
2841 (uint8_t *)dbyte, 8);
2842
2843 if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2844 dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2845 (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2846 dcode[3] == 0)) {
2847 ql_log(ql_log_warn, vha, 0x0057,
2848 "Unrecognized fw revision at %x.\n",
2849 ha->flt_region_fw * 4);
2850 } else {
2851 /* values are in big endian */
2852 ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2853 ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2854 ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2855 ql_dbg(ql_dbg_init, vha, 0x0058,
2856 "FW Version: "
2857 "%d.%d.%d.\n", ha->fw_revision[0],
2858 ha->fw_revision[1], ha->fw_revision[2]);
2859 }
2860 }
2861
2862 qla2x00_flash_disable(ha);
2863
2864 return ret;
2865 }
2866
2867 int
2868 qla82xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2869 {
2870 int ret = QLA_SUCCESS;
2871 uint32_t pcihdr, pcids;
2872 uint32_t *dcode;
2873 uint8_t *bcode;
2874 uint8_t code_type, last_image;
2875 struct qla_hw_data *ha = vha->hw;
2876
2877 if (!mbuf)
2878 return QLA_FUNCTION_FAILED;
2879
2880 memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2881 memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2882 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2883 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2884
2885 dcode = mbuf;
2886
2887 /* Begin with first PCI expansion ROM header. */
2888 pcihdr = ha->flt_region_boot << 2;
2889 last_image = 1;
2890 do {
2891 /* Verify PCI expansion ROM header. */
2892 ha->isp_ops->read_optrom(vha, (uint8_t *)dcode, pcihdr,
2893 0x20 * 4);
2894 bcode = mbuf + (pcihdr % 4);
2895 if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2896 /* No signature */
2897 ql_log(ql_log_fatal, vha, 0x0154,
2898 "No matching ROM signature.\n");
2899 ret = QLA_FUNCTION_FAILED;
2900 break;
2901 }
2902
2903 /* Locate PCI data structure. */
2904 pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2905
2906 ha->isp_ops->read_optrom(vha, (uint8_t *)dcode, pcids,
2907 0x20 * 4);
2908 bcode = mbuf + (pcihdr % 4);
2909
2910 /* Validate signature of PCI data structure. */
2911 if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2912 bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2913 /* Incorrect header. */
2914 ql_log(ql_log_fatal, vha, 0x0155,
2915 "PCI data struct not found pcir_adr=%x.\n", pcids);
2916 ret = QLA_FUNCTION_FAILED;
2917 break;
2918 }
2919
2920 /* Read version */
2921 code_type = bcode[0x14];
2922 switch (code_type) {
2923 case ROM_CODE_TYPE_BIOS:
2924 /* Intel x86, PC-AT compatible. */
2925 ha->bios_revision[0] = bcode[0x12];
2926 ha->bios_revision[1] = bcode[0x13];
2927 ql_dbg(ql_dbg_init, vha, 0x0156,
2928 "Read BIOS %d.%d.\n",
2929 ha->bios_revision[1], ha->bios_revision[0]);
2930 break;
2931 case ROM_CODE_TYPE_FCODE:
2932 /* Open Firmware standard for PCI (FCode). */
2933 ha->fcode_revision[0] = bcode[0x12];
2934 ha->fcode_revision[1] = bcode[0x13];
2935 ql_dbg(ql_dbg_init, vha, 0x0157,
2936 "Read FCODE %d.%d.\n",
2937 ha->fcode_revision[1], ha->fcode_revision[0]);
2938 break;
2939 case ROM_CODE_TYPE_EFI:
2940 /* Extensible Firmware Interface (EFI). */
2941 ha->efi_revision[0] = bcode[0x12];
2942 ha->efi_revision[1] = bcode[0x13];
2943 ql_dbg(ql_dbg_init, vha, 0x0158,
2944 "Read EFI %d.%d.\n",
2945 ha->efi_revision[1], ha->efi_revision[0]);
2946 break;
2947 default:
2948 ql_log(ql_log_warn, vha, 0x0159,
2949 "Unrecognized code type %x at pcids %x.\n",
2950 code_type, pcids);
2951 break;
2952 }
2953
2954 last_image = bcode[0x15] & BIT_7;
2955
2956 /* Locate next PCI expansion ROM. */
2957 pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2958 } while (!last_image);
2959
2960 /* Read firmware image information. */
2961 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2962 dcode = mbuf;
2963 ha->isp_ops->read_optrom(vha, (uint8_t *)dcode, ha->flt_region_fw << 2,
2964 0x20);
2965 bcode = mbuf + (pcihdr % 4);
2966
2967 /* Validate signature of PCI data structure. */
2968 if (bcode[0x0] == 0x3 && bcode[0x1] == 0x0 &&
2969 bcode[0x2] == 0x40 && bcode[0x3] == 0x40) {
2970 ha->fw_revision[0] = bcode[0x4];
2971 ha->fw_revision[1] = bcode[0x5];
2972 ha->fw_revision[2] = bcode[0x6];
2973 ql_dbg(ql_dbg_init, vha, 0x0153,
2974 "Firmware revision %d.%d.%d\n",
2975 ha->fw_revision[0], ha->fw_revision[1],
2976 ha->fw_revision[2]);
2977 }
2978
2979 return ret;
2980 }
2981
2982 int
2983 qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2984 {
2985 int ret = QLA_SUCCESS;
2986 uint32_t pcihdr, pcids;
2987 uint32_t *dcode;
2988 uint8_t *bcode;
2989 uint8_t code_type, last_image;
2990 int i;
2991 struct qla_hw_data *ha = vha->hw;
2992
2993 if (IS_P3P_TYPE(ha))
2994 return ret;
2995
2996 if (!mbuf)
2997 return QLA_FUNCTION_FAILED;
2998
2999 memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
3000 memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
3001 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
3002 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
3003
3004 dcode = mbuf;
3005
3006 /* Begin with first PCI expansion ROM header. */
3007 pcihdr = ha->flt_region_boot << 2;
3008 last_image = 1;
3009 do {
3010 /* Verify PCI expansion ROM header. */
3011 qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
3012 bcode = mbuf + (pcihdr % 4);
3013 if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
3014 /* No signature */
3015 ql_log(ql_log_fatal, vha, 0x0059,
3016 "No matching ROM signature.\n");
3017 ret = QLA_FUNCTION_FAILED;
3018 break;
3019 }
3020
3021 /* Locate PCI data structure. */
3022 pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
3023
3024 qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
3025 bcode = mbuf + (pcihdr % 4);
3026
3027 /* Validate signature of PCI data structure. */
3028 if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
3029 bcode[0x2] != 'I' || bcode[0x3] != 'R') {
3030 /* Incorrect header. */
3031 ql_log(ql_log_fatal, vha, 0x005a,
3032 "PCI data struct not found pcir_adr=%x.\n", pcids);
3033 ret = QLA_FUNCTION_FAILED;
3034 break;
3035 }
3036
3037 /* Read version */
3038 code_type = bcode[0x14];
3039 switch (code_type) {
3040 case ROM_CODE_TYPE_BIOS:
3041 /* Intel x86, PC-AT compatible. */
3042 ha->bios_revision[0] = bcode[0x12];
3043 ha->bios_revision[1] = bcode[0x13];
3044 ql_dbg(ql_dbg_init, vha, 0x005b,
3045 "Read BIOS %d.%d.\n",
3046 ha->bios_revision[1], ha->bios_revision[0]);
3047 break;
3048 case ROM_CODE_TYPE_FCODE:
3049 /* Open Firmware standard for PCI (FCode). */
3050 ha->fcode_revision[0] = bcode[0x12];
3051 ha->fcode_revision[1] = bcode[0x13];
3052 ql_dbg(ql_dbg_init, vha, 0x005c,
3053 "Read FCODE %d.%d.\n",
3054 ha->fcode_revision[1], ha->fcode_revision[0]);
3055 break;
3056 case ROM_CODE_TYPE_EFI:
3057 /* Extensible Firmware Interface (EFI). */
3058 ha->efi_revision[0] = bcode[0x12];
3059 ha->efi_revision[1] = bcode[0x13];
3060 ql_dbg(ql_dbg_init, vha, 0x005d,
3061 "Read EFI %d.%d.\n",
3062 ha->efi_revision[1], ha->efi_revision[0]);
3063 break;
3064 default:
3065 ql_log(ql_log_warn, vha, 0x005e,
3066 "Unrecognized code type %x at pcids %x.\n",
3067 code_type, pcids);
3068 break;
3069 }
3070
3071 last_image = bcode[0x15] & BIT_7;
3072
3073 /* Locate next PCI expansion ROM. */
3074 pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
3075 } while (!last_image);
3076
3077 /* Read firmware image information. */
3078 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
3079 dcode = mbuf;
3080
3081 qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
3082 for (i = 0; i < 4; i++)
3083 dcode[i] = be32_to_cpu(dcode[i]);
3084
3085 if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
3086 dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
3087 (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
3088 dcode[3] == 0)) {
3089 ql_log(ql_log_warn, vha, 0x005f,
3090 "Unrecognized fw revision at %x.\n",
3091 ha->flt_region_fw * 4);
3092 } else {
3093 ha->fw_revision[0] = dcode[0];
3094 ha->fw_revision[1] = dcode[1];
3095 ha->fw_revision[2] = dcode[2];
3096 ha->fw_revision[3] = dcode[3];
3097 ql_dbg(ql_dbg_init, vha, 0x0060,
3098 "Firmware revision %d.%d.%d (%x).\n",
3099 ha->fw_revision[0], ha->fw_revision[1],
3100 ha->fw_revision[2], ha->fw_revision[3]);
3101 }
3102
3103 /* Check for golden firmware and get version if available */
3104 if (!IS_QLA81XX(ha)) {
3105 /* Golden firmware is not present in non 81XX adapters */
3106 return ret;
3107 }
3108
3109 memset(ha->gold_fw_version, 0, sizeof(ha->gold_fw_version));
3110 dcode = mbuf;
3111 ha->isp_ops->read_optrom(vha, (uint8_t *)dcode,
3112 ha->flt_region_gold_fw << 2, 32);
3113
3114 if (dcode[4] == 0xFFFFFFFF && dcode[5] == 0xFFFFFFFF &&
3115 dcode[6] == 0xFFFFFFFF && dcode[7] == 0xFFFFFFFF) {
3116 ql_log(ql_log_warn, vha, 0x0056,
3117 "Unrecognized golden fw at 0x%x.\n",
3118 ha->flt_region_gold_fw * 4);
3119 return ret;
3120 }
3121
3122 for (i = 4; i < 8; i++)
3123 ha->gold_fw_version[i-4] = be32_to_cpu(dcode[i]);
3124
3125 return ret;
3126 }
3127
3128 static int
3129 qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
3130 {
3131 if (pos >= end || *pos != 0x82)
3132 return 0;
3133
3134 pos += 3 + pos[1];
3135 if (pos >= end || *pos != 0x90)
3136 return 0;
3137
3138 pos += 3 + pos[1];
3139 if (pos >= end || *pos != 0x78)
3140 return 0;
3141
3142 return 1;
3143 }
3144
3145 int
3146 qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
3147 {
3148 struct qla_hw_data *ha = vha->hw;
3149 uint8_t *pos = ha->vpd;
3150 uint8_t *end = pos + ha->vpd_size;
3151 int len = 0;
3152
3153 if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
3154 return 0;
3155
3156 while (pos < end && *pos != 0x78) {
3157 len = (*pos == 0x82) ? pos[1] : pos[2];
3158
3159 if (!strncmp(pos, key, strlen(key)))
3160 break;
3161
3162 if (*pos != 0x90 && *pos != 0x91)
3163 pos += len;
3164
3165 pos += 3;
3166 }
3167
3168 if (pos < end - len && *pos != 0x78)
3169 return scnprintf(str, size, "%.*s", len, pos + 3);
3170
3171 return 0;
3172 }
3173
3174 int
3175 qla24xx_read_fcp_prio_cfg(scsi_qla_host_t *vha)
3176 {
3177 int len, max_len;
3178 uint32_t fcp_prio_addr;
3179 struct qla_hw_data *ha = vha->hw;
3180
3181 if (!ha->fcp_prio_cfg) {
3182 ha->fcp_prio_cfg = vmalloc(FCP_PRIO_CFG_SIZE);
3183 if (!ha->fcp_prio_cfg) {
3184 ql_log(ql_log_warn, vha, 0x00d5,
3185 "Unable to allocate memory for fcp priorty data (%x).\n",
3186 FCP_PRIO_CFG_SIZE);
3187 return QLA_FUNCTION_FAILED;
3188 }
3189 }
3190 memset(ha->fcp_prio_cfg, 0, FCP_PRIO_CFG_SIZE);
3191
3192 fcp_prio_addr = ha->flt_region_fcp_prio;
3193
3194 /* first read the fcp priority data header from flash */
3195 ha->isp_ops->read_optrom(vha, (uint8_t *)ha->fcp_prio_cfg,
3196 fcp_prio_addr << 2, FCP_PRIO_CFG_HDR_SIZE);
3197
3198 if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 0))
3199 goto fail;
3200
3201 /* read remaining FCP CMD config data from flash */
3202 fcp_prio_addr += (FCP_PRIO_CFG_HDR_SIZE >> 2);
3203 len = ha->fcp_prio_cfg->num_entries * FCP_PRIO_CFG_ENTRY_SIZE;
3204 max_len = FCP_PRIO_CFG_SIZE - FCP_PRIO_CFG_HDR_SIZE;
3205
3206 ha->isp_ops->read_optrom(vha, (uint8_t *)&ha->fcp_prio_cfg->entry[0],
3207 fcp_prio_addr << 2, (len < max_len ? len : max_len));
3208
3209 /* revalidate the entire FCP priority config data, including entries */
3210 if (!qla24xx_fcp_prio_cfg_valid(vha, ha->fcp_prio_cfg, 1))
3211 goto fail;
3212
3213 ha->flags.fcp_prio_enabled = 1;
3214 return QLA_SUCCESS;
3215 fail:
3216 vfree(ha->fcp_prio_cfg);
3217 ha->fcp_prio_cfg = NULL;
3218 return QLA_FUNCTION_FAILED;
3219 }
This page took 0.100808 seconds and 5 git commands to generate.