0c86be71bb33773d504a325270deaf00b88655a2
[deliverable/linux.git] / drivers / scsi / scsi_lib.c
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
9
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 #include <linux/scatterlist.h>
21
22 #include <scsi/scsi.h>
23 #include <scsi/scsi_cmnd.h>
24 #include <scsi/scsi_dbg.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_driver.h>
27 #include <scsi/scsi_eh.h>
28 #include <scsi/scsi_host.h>
29
30 #include "scsi_priv.h"
31 #include "scsi_logging.h"
32
33
34 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
35 #define SG_MEMPOOL_SIZE 2
36
37 /*
38 * The maximum number of SG segments that we will put inside a scatterlist
39 * (unless chaining is used). Should ideally fit inside a single page, to
40 * avoid a higher order allocation.
41 */
42 #define SCSI_MAX_SG_SEGMENTS 128
43
44 struct scsi_host_sg_pool {
45 size_t size;
46 char *name;
47 struct kmem_cache *slab;
48 mempool_t *pool;
49 };
50
51 #define SP(x) { x, "sgpool-" #x }
52 static struct scsi_host_sg_pool scsi_sg_pools[] = {
53 SP(8),
54 SP(16),
55 #if (SCSI_MAX_SG_SEGMENTS > 16)
56 SP(32),
57 #if (SCSI_MAX_SG_SEGMENTS > 32)
58 SP(64),
59 #if (SCSI_MAX_SG_SEGMENTS > 64)
60 SP(128),
61 #endif
62 #endif
63 #endif
64 };
65 #undef SP
66
67 static void scsi_run_queue(struct request_queue *q);
68
69 /*
70 * Function: scsi_unprep_request()
71 *
72 * Purpose: Remove all preparation done for a request, including its
73 * associated scsi_cmnd, so that it can be requeued.
74 *
75 * Arguments: req - request to unprepare
76 *
77 * Lock status: Assumed that no locks are held upon entry.
78 *
79 * Returns: Nothing.
80 */
81 static void scsi_unprep_request(struct request *req)
82 {
83 struct scsi_cmnd *cmd = req->special;
84
85 req->cmd_flags &= ~REQ_DONTPREP;
86 req->special = NULL;
87
88 scsi_put_command(cmd);
89 }
90
91 /*
92 * Function: scsi_queue_insert()
93 *
94 * Purpose: Insert a command in the midlevel queue.
95 *
96 * Arguments: cmd - command that we are adding to queue.
97 * reason - why we are inserting command to queue.
98 *
99 * Lock status: Assumed that lock is not held upon entry.
100 *
101 * Returns: Nothing.
102 *
103 * Notes: We do this for one of two cases. Either the host is busy
104 * and it cannot accept any more commands for the time being,
105 * or the device returned QUEUE_FULL and can accept no more
106 * commands.
107 * Notes: This could be called either from an interrupt context or a
108 * normal process context.
109 */
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111 {
112 struct Scsi_Host *host = cmd->device->host;
113 struct scsi_device *device = cmd->device;
114 struct request_queue *q = device->request_queue;
115 unsigned long flags;
116
117 SCSI_LOG_MLQUEUE(1,
118 printk("Inserting command %p into mlqueue\n", cmd));
119
120 /*
121 * Set the appropriate busy bit for the device/host.
122 *
123 * If the host/device isn't busy, assume that something actually
124 * completed, and that we should be able to queue a command now.
125 *
126 * Note that the prior mid-layer assumption that any host could
127 * always queue at least one command is now broken. The mid-layer
128 * will implement a user specifiable stall (see
129 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130 * if a command is requeued with no other commands outstanding
131 * either for the device or for the host.
132 */
133 if (reason == SCSI_MLQUEUE_HOST_BUSY)
134 host->host_blocked = host->max_host_blocked;
135 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136 device->device_blocked = device->max_device_blocked;
137
138 /*
139 * Decrement the counters, since these commands are no longer
140 * active on the host/device.
141 */
142 scsi_device_unbusy(device);
143
144 /*
145 * Requeue this command. It will go before all other commands
146 * that are already in the queue.
147 *
148 * NOTE: there is magic here about the way the queue is plugged if
149 * we have no outstanding commands.
150 *
151 * Although we *don't* plug the queue, we call the request
152 * function. The SCSI request function detects the blocked condition
153 * and plugs the queue appropriately.
154 */
155 spin_lock_irqsave(q->queue_lock, flags);
156 blk_requeue_request(q, cmd->request);
157 spin_unlock_irqrestore(q->queue_lock, flags);
158
159 scsi_run_queue(q);
160
161 return 0;
162 }
163
164 /**
165 * scsi_execute - insert request and wait for the result
166 * @sdev: scsi device
167 * @cmd: scsi command
168 * @data_direction: data direction
169 * @buffer: data buffer
170 * @bufflen: len of buffer
171 * @sense: optional sense buffer
172 * @timeout: request timeout in seconds
173 * @retries: number of times to retry request
174 * @flags: or into request flags;
175 *
176 * returns the req->errors value which is the scsi_cmnd result
177 * field.
178 **/
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180 int data_direction, void *buffer, unsigned bufflen,
181 unsigned char *sense, int timeout, int retries, int flags)
182 {
183 struct request *req;
184 int write = (data_direction == DMA_TO_DEVICE);
185 int ret = DRIVER_ERROR << 24;
186
187 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188
189 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
190 buffer, bufflen, __GFP_WAIT))
191 goto out;
192
193 req->cmd_len = COMMAND_SIZE(cmd[0]);
194 memcpy(req->cmd, cmd, req->cmd_len);
195 req->sense = sense;
196 req->sense_len = 0;
197 req->retries = retries;
198 req->timeout = timeout;
199 req->cmd_type = REQ_TYPE_BLOCK_PC;
200 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
201
202 /*
203 * head injection *required* here otherwise quiesce won't work
204 */
205 blk_execute_rq(req->q, NULL, req, 1);
206
207 ret = req->errors;
208 out:
209 blk_put_request(req);
210
211 return ret;
212 }
213 EXPORT_SYMBOL(scsi_execute);
214
215
216 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217 int data_direction, void *buffer, unsigned bufflen,
218 struct scsi_sense_hdr *sshdr, int timeout, int retries)
219 {
220 char *sense = NULL;
221 int result;
222
223 if (sshdr) {
224 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225 if (!sense)
226 return DRIVER_ERROR << 24;
227 }
228 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229 sense, timeout, retries, 0);
230 if (sshdr)
231 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
232
233 kfree(sense);
234 return result;
235 }
236 EXPORT_SYMBOL(scsi_execute_req);
237
238 struct scsi_io_context {
239 void *data;
240 void (*done)(void *data, char *sense, int result, int resid);
241 char sense[SCSI_SENSE_BUFFERSIZE];
242 };
243
244 static struct kmem_cache *scsi_io_context_cache;
245
246 static void scsi_end_async(struct request *req, int uptodate)
247 {
248 struct scsi_io_context *sioc = req->end_io_data;
249
250 if (sioc->done)
251 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
252
253 kmem_cache_free(scsi_io_context_cache, sioc);
254 __blk_put_request(req->q, req);
255 }
256
257 static int scsi_merge_bio(struct request *rq, struct bio *bio)
258 {
259 struct request_queue *q = rq->q;
260
261 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262 if (rq_data_dir(rq) == WRITE)
263 bio->bi_rw |= (1 << BIO_RW);
264 blk_queue_bounce(q, &bio);
265
266 return blk_rq_append_bio(q, rq, bio);
267 }
268
269 static void scsi_bi_endio(struct bio *bio, int error)
270 {
271 bio_put(bio);
272 }
273
274 /**
275 * scsi_req_map_sg - map a scatterlist into a request
276 * @rq: request to fill
277 * @sg: scatterlist
278 * @nsegs: number of elements
279 * @bufflen: len of buffer
280 * @gfp: memory allocation flags
281 *
282 * scsi_req_map_sg maps a scatterlist into a request so that the
283 * request can be sent to the block layer. We do not trust the scatterlist
284 * sent to use, as some ULDs use that struct to only organize the pages.
285 */
286 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
287 int nsegs, unsigned bufflen, gfp_t gfp)
288 {
289 struct request_queue *q = rq->q;
290 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
291 unsigned int data_len = bufflen, len, bytes, off;
292 struct scatterlist *sg;
293 struct page *page;
294 struct bio *bio = NULL;
295 int i, err, nr_vecs = 0;
296
297 for_each_sg(sgl, sg, nsegs, i) {
298 page = sg->page;
299 off = sg->offset;
300 len = sg->length;
301 data_len += len;
302
303 while (len > 0 && data_len > 0) {
304 /*
305 * sg sends a scatterlist that is larger than
306 * the data_len it wants transferred for certain
307 * IO sizes
308 */
309 bytes = min_t(unsigned int, len, PAGE_SIZE - off);
310 bytes = min(bytes, data_len);
311
312 if (!bio) {
313 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
314 nr_pages -= nr_vecs;
315
316 bio = bio_alloc(gfp, nr_vecs);
317 if (!bio) {
318 err = -ENOMEM;
319 goto free_bios;
320 }
321 bio->bi_end_io = scsi_bi_endio;
322 }
323
324 if (bio_add_pc_page(q, bio, page, bytes, off) !=
325 bytes) {
326 bio_put(bio);
327 err = -EINVAL;
328 goto free_bios;
329 }
330
331 if (bio->bi_vcnt >= nr_vecs) {
332 err = scsi_merge_bio(rq, bio);
333 if (err) {
334 bio_endio(bio, 0);
335 goto free_bios;
336 }
337 bio = NULL;
338 }
339
340 page++;
341 len -= bytes;
342 data_len -=bytes;
343 off = 0;
344 }
345 }
346
347 rq->buffer = rq->data = NULL;
348 rq->data_len = bufflen;
349 return 0;
350
351 free_bios:
352 while ((bio = rq->bio) != NULL) {
353 rq->bio = bio->bi_next;
354 /*
355 * call endio instead of bio_put incase it was bounced
356 */
357 bio_endio(bio, 0);
358 }
359
360 return err;
361 }
362
363 /**
364 * scsi_execute_async - insert request
365 * @sdev: scsi device
366 * @cmd: scsi command
367 * @cmd_len: length of scsi cdb
368 * @data_direction: data direction
369 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
370 * @bufflen: len of buffer
371 * @use_sg: if buffer is a scatterlist this is the number of elements
372 * @timeout: request timeout in seconds
373 * @retries: number of times to retry request
374 * @flags: or into request flags
375 **/
376 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
377 int cmd_len, int data_direction, void *buffer, unsigned bufflen,
378 int use_sg, int timeout, int retries, void *privdata,
379 void (*done)(void *, char *, int, int), gfp_t gfp)
380 {
381 struct request *req;
382 struct scsi_io_context *sioc;
383 int err = 0;
384 int write = (data_direction == DMA_TO_DEVICE);
385
386 sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
387 if (!sioc)
388 return DRIVER_ERROR << 24;
389
390 req = blk_get_request(sdev->request_queue, write, gfp);
391 if (!req)
392 goto free_sense;
393 req->cmd_type = REQ_TYPE_BLOCK_PC;
394 req->cmd_flags |= REQ_QUIET;
395
396 if (use_sg)
397 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
398 else if (bufflen)
399 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
400
401 if (err)
402 goto free_req;
403
404 req->cmd_len = cmd_len;
405 memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
406 memcpy(req->cmd, cmd, req->cmd_len);
407 req->sense = sioc->sense;
408 req->sense_len = 0;
409 req->timeout = timeout;
410 req->retries = retries;
411 req->end_io_data = sioc;
412
413 sioc->data = privdata;
414 sioc->done = done;
415
416 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
417 return 0;
418
419 free_req:
420 blk_put_request(req);
421 free_sense:
422 kmem_cache_free(scsi_io_context_cache, sioc);
423 return DRIVER_ERROR << 24;
424 }
425 EXPORT_SYMBOL_GPL(scsi_execute_async);
426
427 /*
428 * Function: scsi_init_cmd_errh()
429 *
430 * Purpose: Initialize cmd fields related to error handling.
431 *
432 * Arguments: cmd - command that is ready to be queued.
433 *
434 * Notes: This function has the job of initializing a number of
435 * fields related to error handling. Typically this will
436 * be called once for each command, as required.
437 */
438 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
439 {
440 cmd->serial_number = 0;
441 cmd->resid = 0;
442 memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
443 if (cmd->cmd_len == 0)
444 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
445 }
446
447 void scsi_device_unbusy(struct scsi_device *sdev)
448 {
449 struct Scsi_Host *shost = sdev->host;
450 unsigned long flags;
451
452 spin_lock_irqsave(shost->host_lock, flags);
453 shost->host_busy--;
454 if (unlikely(scsi_host_in_recovery(shost) &&
455 (shost->host_failed || shost->host_eh_scheduled)))
456 scsi_eh_wakeup(shost);
457 spin_unlock(shost->host_lock);
458 spin_lock(sdev->request_queue->queue_lock);
459 sdev->device_busy--;
460 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
461 }
462
463 /*
464 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
465 * and call blk_run_queue for all the scsi_devices on the target -
466 * including current_sdev first.
467 *
468 * Called with *no* scsi locks held.
469 */
470 static void scsi_single_lun_run(struct scsi_device *current_sdev)
471 {
472 struct Scsi_Host *shost = current_sdev->host;
473 struct scsi_device *sdev, *tmp;
474 struct scsi_target *starget = scsi_target(current_sdev);
475 unsigned long flags;
476
477 spin_lock_irqsave(shost->host_lock, flags);
478 starget->starget_sdev_user = NULL;
479 spin_unlock_irqrestore(shost->host_lock, flags);
480
481 /*
482 * Call blk_run_queue for all LUNs on the target, starting with
483 * current_sdev. We race with others (to set starget_sdev_user),
484 * but in most cases, we will be first. Ideally, each LU on the
485 * target would get some limited time or requests on the target.
486 */
487 blk_run_queue(current_sdev->request_queue);
488
489 spin_lock_irqsave(shost->host_lock, flags);
490 if (starget->starget_sdev_user)
491 goto out;
492 list_for_each_entry_safe(sdev, tmp, &starget->devices,
493 same_target_siblings) {
494 if (sdev == current_sdev)
495 continue;
496 if (scsi_device_get(sdev))
497 continue;
498
499 spin_unlock_irqrestore(shost->host_lock, flags);
500 blk_run_queue(sdev->request_queue);
501 spin_lock_irqsave(shost->host_lock, flags);
502
503 scsi_device_put(sdev);
504 }
505 out:
506 spin_unlock_irqrestore(shost->host_lock, flags);
507 }
508
509 /*
510 * Function: scsi_run_queue()
511 *
512 * Purpose: Select a proper request queue to serve next
513 *
514 * Arguments: q - last request's queue
515 *
516 * Returns: Nothing
517 *
518 * Notes: The previous command was completely finished, start
519 * a new one if possible.
520 */
521 static void scsi_run_queue(struct request_queue *q)
522 {
523 struct scsi_device *sdev = q->queuedata;
524 struct Scsi_Host *shost = sdev->host;
525 unsigned long flags;
526
527 if (sdev->single_lun)
528 scsi_single_lun_run(sdev);
529
530 spin_lock_irqsave(shost->host_lock, flags);
531 while (!list_empty(&shost->starved_list) &&
532 !shost->host_blocked && !shost->host_self_blocked &&
533 !((shost->can_queue > 0) &&
534 (shost->host_busy >= shost->can_queue))) {
535 /*
536 * As long as shost is accepting commands and we have
537 * starved queues, call blk_run_queue. scsi_request_fn
538 * drops the queue_lock and can add us back to the
539 * starved_list.
540 *
541 * host_lock protects the starved_list and starved_entry.
542 * scsi_request_fn must get the host_lock before checking
543 * or modifying starved_list or starved_entry.
544 */
545 sdev = list_entry(shost->starved_list.next,
546 struct scsi_device, starved_entry);
547 list_del_init(&sdev->starved_entry);
548 spin_unlock_irqrestore(shost->host_lock, flags);
549
550
551 if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
552 !test_and_set_bit(QUEUE_FLAG_REENTER,
553 &sdev->request_queue->queue_flags)) {
554 blk_run_queue(sdev->request_queue);
555 clear_bit(QUEUE_FLAG_REENTER,
556 &sdev->request_queue->queue_flags);
557 } else
558 blk_run_queue(sdev->request_queue);
559
560 spin_lock_irqsave(shost->host_lock, flags);
561 if (unlikely(!list_empty(&sdev->starved_entry)))
562 /*
563 * sdev lost a race, and was put back on the
564 * starved list. This is unlikely but without this
565 * in theory we could loop forever.
566 */
567 break;
568 }
569 spin_unlock_irqrestore(shost->host_lock, flags);
570
571 blk_run_queue(q);
572 }
573
574 /*
575 * Function: scsi_requeue_command()
576 *
577 * Purpose: Handle post-processing of completed commands.
578 *
579 * Arguments: q - queue to operate on
580 * cmd - command that may need to be requeued.
581 *
582 * Returns: Nothing
583 *
584 * Notes: After command completion, there may be blocks left
585 * over which weren't finished by the previous command
586 * this can be for a number of reasons - the main one is
587 * I/O errors in the middle of the request, in which case
588 * we need to request the blocks that come after the bad
589 * sector.
590 * Notes: Upon return, cmd is a stale pointer.
591 */
592 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
593 {
594 struct request *req = cmd->request;
595 unsigned long flags;
596
597 scsi_unprep_request(req);
598 spin_lock_irqsave(q->queue_lock, flags);
599 blk_requeue_request(q, req);
600 spin_unlock_irqrestore(q->queue_lock, flags);
601
602 scsi_run_queue(q);
603 }
604
605 void scsi_next_command(struct scsi_cmnd *cmd)
606 {
607 struct scsi_device *sdev = cmd->device;
608 struct request_queue *q = sdev->request_queue;
609
610 /* need to hold a reference on the device before we let go of the cmd */
611 get_device(&sdev->sdev_gendev);
612
613 scsi_put_command(cmd);
614 scsi_run_queue(q);
615
616 /* ok to remove device now */
617 put_device(&sdev->sdev_gendev);
618 }
619
620 void scsi_run_host_queues(struct Scsi_Host *shost)
621 {
622 struct scsi_device *sdev;
623
624 shost_for_each_device(sdev, shost)
625 scsi_run_queue(sdev->request_queue);
626 }
627
628 /*
629 * Function: scsi_end_request()
630 *
631 * Purpose: Post-processing of completed commands (usually invoked at end
632 * of upper level post-processing and scsi_io_completion).
633 *
634 * Arguments: cmd - command that is complete.
635 * uptodate - 1 if I/O indicates success, <= 0 for I/O error.
636 * bytes - number of bytes of completed I/O
637 * requeue - indicates whether we should requeue leftovers.
638 *
639 * Lock status: Assumed that lock is not held upon entry.
640 *
641 * Returns: cmd if requeue required, NULL otherwise.
642 *
643 * Notes: This is called for block device requests in order to
644 * mark some number of sectors as complete.
645 *
646 * We are guaranteeing that the request queue will be goosed
647 * at some point during this call.
648 * Notes: If cmd was requeued, upon return it will be a stale pointer.
649 */
650 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
651 int bytes, int requeue)
652 {
653 struct request_queue *q = cmd->device->request_queue;
654 struct request *req = cmd->request;
655 unsigned long flags;
656
657 /*
658 * If there are blocks left over at the end, set up the command
659 * to queue the remainder of them.
660 */
661 if (end_that_request_chunk(req, uptodate, bytes)) {
662 int leftover = (req->hard_nr_sectors << 9);
663
664 if (blk_pc_request(req))
665 leftover = req->data_len;
666
667 /* kill remainder if no retrys */
668 if (!uptodate && blk_noretry_request(req))
669 end_that_request_chunk(req, 0, leftover);
670 else {
671 if (requeue) {
672 /*
673 * Bleah. Leftovers again. Stick the
674 * leftovers in the front of the
675 * queue, and goose the queue again.
676 */
677 scsi_requeue_command(q, cmd);
678 cmd = NULL;
679 }
680 return cmd;
681 }
682 }
683
684 add_disk_randomness(req->rq_disk);
685
686 spin_lock_irqsave(q->queue_lock, flags);
687 if (blk_rq_tagged(req))
688 blk_queue_end_tag(q, req);
689 end_that_request_last(req, uptodate);
690 spin_unlock_irqrestore(q->queue_lock, flags);
691
692 /*
693 * This will goose the queue request function at the end, so we don't
694 * need to worry about launching another command.
695 */
696 scsi_next_command(cmd);
697 return NULL;
698 }
699
700 /*
701 * Like SCSI_MAX_SG_SEGMENTS, but for archs that have sg chaining. This limit
702 * is totally arbitrary, a setting of 2048 will get you at least 8mb ios.
703 */
704 #define SCSI_MAX_SG_CHAIN_SEGMENTS 2048
705
706 static inline unsigned int scsi_sgtable_index(unsigned short nents)
707 {
708 unsigned int index;
709
710 switch (nents) {
711 case 1 ... 8:
712 index = 0;
713 break;
714 case 9 ... 16:
715 index = 1;
716 break;
717 #if (SCSI_MAX_SG_SEGMENTS > 16)
718 case 17 ... 32:
719 index = 2;
720 break;
721 #if (SCSI_MAX_SG_SEGMENTS > 32)
722 case 33 ... 64:
723 index = 3;
724 break;
725 #if (SCSI_MAX_SG_SEGMENTS > 64)
726 case 65 ... 128:
727 index = 4;
728 break;
729 #endif
730 #endif
731 #endif
732 default:
733 printk(KERN_ERR "scsi: bad segment count=%d\n", nents);
734 BUG();
735 }
736
737 return index;
738 }
739
740 struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
741 {
742 struct scsi_host_sg_pool *sgp;
743 struct scatterlist *sgl, *prev, *ret;
744 unsigned int index;
745 int this, left;
746
747 BUG_ON(!cmd->use_sg);
748
749 left = cmd->use_sg;
750 ret = prev = NULL;
751 do {
752 this = left;
753 if (this > SCSI_MAX_SG_SEGMENTS) {
754 this = SCSI_MAX_SG_SEGMENTS - 1;
755 index = SG_MEMPOOL_NR - 1;
756 } else
757 index = scsi_sgtable_index(this);
758
759 left -= this;
760
761 sgp = scsi_sg_pools + index;
762
763 sgl = mempool_alloc(sgp->pool, gfp_mask);
764 if (unlikely(!sgl))
765 goto enomem;
766
767 /*
768 * first loop through, set initial index and return value
769 */
770 if (!ret)
771 ret = sgl;
772
773 /*
774 * chain previous sglist, if any. we know the previous
775 * sglist must be the biggest one, or we would not have
776 * ended up doing another loop.
777 */
778 if (prev)
779 sg_chain(prev, SCSI_MAX_SG_SEGMENTS, sgl);
780
781 /*
782 * don't allow subsequent mempool allocs to sleep, it would
783 * violate the mempool principle.
784 */
785 gfp_mask &= ~__GFP_WAIT;
786 gfp_mask |= __GFP_HIGH;
787 prev = sgl;
788 } while (left);
789
790 /*
791 * ->use_sg may get modified after dma mapping has potentially
792 * shrunk the number of segments, so keep a copy of it for free.
793 */
794 cmd->__use_sg = cmd->use_sg;
795 return ret;
796 enomem:
797 if (ret) {
798 /*
799 * Free entries chained off ret. Since we were trying to
800 * allocate another sglist, we know that all entries are of
801 * the max size.
802 */
803 sgp = scsi_sg_pools + SG_MEMPOOL_NR - 1;
804 prev = ret;
805 ret = &ret[SCSI_MAX_SG_SEGMENTS - 1];
806
807 while ((sgl = sg_chain_ptr(ret)) != NULL) {
808 ret = &sgl[SCSI_MAX_SG_SEGMENTS - 1];
809 mempool_free(sgl, sgp->pool);
810 }
811
812 mempool_free(prev, sgp->pool);
813 }
814 return NULL;
815 }
816
817 EXPORT_SYMBOL(scsi_alloc_sgtable);
818
819 void scsi_free_sgtable(struct scsi_cmnd *cmd)
820 {
821 struct scatterlist *sgl = cmd->request_buffer;
822 struct scsi_host_sg_pool *sgp;
823
824 /*
825 * if this is the biggest size sglist, check if we have
826 * chained parts we need to free
827 */
828 if (cmd->__use_sg > SCSI_MAX_SG_SEGMENTS) {
829 unsigned short this, left;
830 struct scatterlist *next;
831 unsigned int index;
832
833 left = cmd->__use_sg - (SCSI_MAX_SG_SEGMENTS - 1);
834 next = sg_chain_ptr(&sgl[SCSI_MAX_SG_SEGMENTS - 1]);
835 while (left && next) {
836 sgl = next;
837 this = left;
838 if (this > SCSI_MAX_SG_SEGMENTS) {
839 this = SCSI_MAX_SG_SEGMENTS - 1;
840 index = SG_MEMPOOL_NR - 1;
841 } else
842 index = scsi_sgtable_index(this);
843
844 left -= this;
845
846 sgp = scsi_sg_pools + index;
847
848 if (left)
849 next = sg_chain_ptr(&sgl[sgp->size - 1]);
850
851 mempool_free(sgl, sgp->pool);
852 }
853
854 /*
855 * Restore original, will be freed below
856 */
857 sgl = cmd->request_buffer;
858 sgp = scsi_sg_pools + SG_MEMPOOL_NR - 1;
859 } else
860 sgp = scsi_sg_pools + scsi_sgtable_index(cmd->__use_sg);
861
862 mempool_free(sgl, sgp->pool);
863 }
864
865 EXPORT_SYMBOL(scsi_free_sgtable);
866
867 /*
868 * Function: scsi_release_buffers()
869 *
870 * Purpose: Completion processing for block device I/O requests.
871 *
872 * Arguments: cmd - command that we are bailing.
873 *
874 * Lock status: Assumed that no lock is held upon entry.
875 *
876 * Returns: Nothing
877 *
878 * Notes: In the event that an upper level driver rejects a
879 * command, we must release resources allocated during
880 * the __init_io() function. Primarily this would involve
881 * the scatter-gather table, and potentially any bounce
882 * buffers.
883 */
884 static void scsi_release_buffers(struct scsi_cmnd *cmd)
885 {
886 if (cmd->use_sg)
887 scsi_free_sgtable(cmd);
888
889 /*
890 * Zero these out. They now point to freed memory, and it is
891 * dangerous to hang onto the pointers.
892 */
893 cmd->request_buffer = NULL;
894 cmd->request_bufflen = 0;
895 }
896
897 /*
898 * Function: scsi_io_completion()
899 *
900 * Purpose: Completion processing for block device I/O requests.
901 *
902 * Arguments: cmd - command that is finished.
903 *
904 * Lock status: Assumed that no lock is held upon entry.
905 *
906 * Returns: Nothing
907 *
908 * Notes: This function is matched in terms of capabilities to
909 * the function that created the scatter-gather list.
910 * In other words, if there are no bounce buffers
911 * (the normal case for most drivers), we don't need
912 * the logic to deal with cleaning up afterwards.
913 *
914 * We must do one of several things here:
915 *
916 * a) Call scsi_end_request. This will finish off the
917 * specified number of sectors. If we are done, the
918 * command block will be released, and the queue
919 * function will be goosed. If we are not done, then
920 * scsi_end_request will directly goose the queue.
921 *
922 * b) We can just use scsi_requeue_command() here. This would
923 * be used if we just wanted to retry, for example.
924 */
925 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
926 {
927 int result = cmd->result;
928 int this_count = cmd->request_bufflen;
929 struct request_queue *q = cmd->device->request_queue;
930 struct request *req = cmd->request;
931 int clear_errors = 1;
932 struct scsi_sense_hdr sshdr;
933 int sense_valid = 0;
934 int sense_deferred = 0;
935
936 scsi_release_buffers(cmd);
937
938 if (result) {
939 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
940 if (sense_valid)
941 sense_deferred = scsi_sense_is_deferred(&sshdr);
942 }
943
944 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
945 req->errors = result;
946 if (result) {
947 clear_errors = 0;
948 if (sense_valid && req->sense) {
949 /*
950 * SG_IO wants current and deferred errors
951 */
952 int len = 8 + cmd->sense_buffer[7];
953
954 if (len > SCSI_SENSE_BUFFERSIZE)
955 len = SCSI_SENSE_BUFFERSIZE;
956 memcpy(req->sense, cmd->sense_buffer, len);
957 req->sense_len = len;
958 }
959 }
960 req->data_len = cmd->resid;
961 }
962
963 /*
964 * Next deal with any sectors which we were able to correctly
965 * handle.
966 */
967 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
968 "%d bytes done.\n",
969 req->nr_sectors, good_bytes));
970 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
971
972 if (clear_errors)
973 req->errors = 0;
974
975 /* A number of bytes were successfully read. If there
976 * are leftovers and there is some kind of error
977 * (result != 0), retry the rest.
978 */
979 if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
980 return;
981
982 /* good_bytes = 0, or (inclusive) there were leftovers and
983 * result = 0, so scsi_end_request couldn't retry.
984 */
985 if (sense_valid && !sense_deferred) {
986 switch (sshdr.sense_key) {
987 case UNIT_ATTENTION:
988 if (cmd->device->removable) {
989 /* Detected disc change. Set a bit
990 * and quietly refuse further access.
991 */
992 cmd->device->changed = 1;
993 scsi_end_request(cmd, 0, this_count, 1);
994 return;
995 } else {
996 /* Must have been a power glitch, or a
997 * bus reset. Could not have been a
998 * media change, so we just retry the
999 * request and see what happens.
1000 */
1001 scsi_requeue_command(q, cmd);
1002 return;
1003 }
1004 break;
1005 case ILLEGAL_REQUEST:
1006 /* If we had an ILLEGAL REQUEST returned, then
1007 * we may have performed an unsupported
1008 * command. The only thing this should be
1009 * would be a ten byte read where only a six
1010 * byte read was supported. Also, on a system
1011 * where READ CAPACITY failed, we may have
1012 * read past the end of the disk.
1013 */
1014 if ((cmd->device->use_10_for_rw &&
1015 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
1016 (cmd->cmnd[0] == READ_10 ||
1017 cmd->cmnd[0] == WRITE_10)) {
1018 cmd->device->use_10_for_rw = 0;
1019 /* This will cause a retry with a
1020 * 6-byte command.
1021 */
1022 scsi_requeue_command(q, cmd);
1023 return;
1024 } else {
1025 scsi_end_request(cmd, 0, this_count, 1);
1026 return;
1027 }
1028 break;
1029 case NOT_READY:
1030 /* If the device is in the process of becoming
1031 * ready, or has a temporary blockage, retry.
1032 */
1033 if (sshdr.asc == 0x04) {
1034 switch (sshdr.ascq) {
1035 case 0x01: /* becoming ready */
1036 case 0x04: /* format in progress */
1037 case 0x05: /* rebuild in progress */
1038 case 0x06: /* recalculation in progress */
1039 case 0x07: /* operation in progress */
1040 case 0x08: /* Long write in progress */
1041 case 0x09: /* self test in progress */
1042 scsi_requeue_command(q, cmd);
1043 return;
1044 default:
1045 break;
1046 }
1047 }
1048 if (!(req->cmd_flags & REQ_QUIET))
1049 scsi_cmd_print_sense_hdr(cmd,
1050 "Device not ready",
1051 &sshdr);
1052
1053 scsi_end_request(cmd, 0, this_count, 1);
1054 return;
1055 case VOLUME_OVERFLOW:
1056 if (!(req->cmd_flags & REQ_QUIET)) {
1057 scmd_printk(KERN_INFO, cmd,
1058 "Volume overflow, CDB: ");
1059 __scsi_print_command(cmd->cmnd);
1060 scsi_print_sense("", cmd);
1061 }
1062 /* See SSC3rXX or current. */
1063 scsi_end_request(cmd, 0, this_count, 1);
1064 return;
1065 default:
1066 break;
1067 }
1068 }
1069 if (host_byte(result) == DID_RESET) {
1070 /* Third party bus reset or reset for error recovery
1071 * reasons. Just retry the request and see what
1072 * happens.
1073 */
1074 scsi_requeue_command(q, cmd);
1075 return;
1076 }
1077 if (result) {
1078 if (!(req->cmd_flags & REQ_QUIET)) {
1079 scsi_print_result(cmd);
1080 if (driver_byte(result) & DRIVER_SENSE)
1081 scsi_print_sense("", cmd);
1082 }
1083 }
1084 scsi_end_request(cmd, 0, this_count, !result);
1085 }
1086
1087 /*
1088 * Function: scsi_init_io()
1089 *
1090 * Purpose: SCSI I/O initialize function.
1091 *
1092 * Arguments: cmd - Command descriptor we wish to initialize
1093 *
1094 * Returns: 0 on success
1095 * BLKPREP_DEFER if the failure is retryable
1096 * BLKPREP_KILL if the failure is fatal
1097 */
1098 static int scsi_init_io(struct scsi_cmnd *cmd)
1099 {
1100 struct request *req = cmd->request;
1101 int count;
1102
1103 /*
1104 * We used to not use scatter-gather for single segment request,
1105 * but now we do (it makes highmem I/O easier to support without
1106 * kmapping pages)
1107 */
1108 cmd->use_sg = req->nr_phys_segments;
1109
1110 /*
1111 * If sg table allocation fails, requeue request later.
1112 */
1113 cmd->request_buffer = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1114 if (unlikely(!cmd->request_buffer)) {
1115 scsi_unprep_request(req);
1116 return BLKPREP_DEFER;
1117 }
1118
1119 req->buffer = NULL;
1120 if (blk_pc_request(req))
1121 cmd->request_bufflen = req->data_len;
1122 else
1123 cmd->request_bufflen = req->nr_sectors << 9;
1124
1125 /*
1126 * Next, walk the list, and fill in the addresses and sizes of
1127 * each segment.
1128 */
1129 count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1130 if (likely(count <= cmd->use_sg)) {
1131 cmd->use_sg = count;
1132 return BLKPREP_OK;
1133 }
1134
1135 printk(KERN_ERR "Incorrect number of segments after building list\n");
1136 printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1137 printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1138 req->current_nr_sectors);
1139
1140 return BLKPREP_KILL;
1141 }
1142
1143 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1144 struct request *req)
1145 {
1146 struct scsi_cmnd *cmd;
1147
1148 if (!req->special) {
1149 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1150 if (unlikely(!cmd))
1151 return NULL;
1152 req->special = cmd;
1153 } else {
1154 cmd = req->special;
1155 }
1156
1157 /* pull a tag out of the request if we have one */
1158 cmd->tag = req->tag;
1159 cmd->request = req;
1160
1161 return cmd;
1162 }
1163
1164 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1165 {
1166 struct scsi_cmnd *cmd;
1167 int ret = scsi_prep_state_check(sdev, req);
1168
1169 if (ret != BLKPREP_OK)
1170 return ret;
1171
1172 cmd = scsi_get_cmd_from_req(sdev, req);
1173 if (unlikely(!cmd))
1174 return BLKPREP_DEFER;
1175
1176 /*
1177 * BLOCK_PC requests may transfer data, in which case they must
1178 * a bio attached to them. Or they might contain a SCSI command
1179 * that does not transfer data, in which case they may optionally
1180 * submit a request without an attached bio.
1181 */
1182 if (req->bio) {
1183 int ret;
1184
1185 BUG_ON(!req->nr_phys_segments);
1186
1187 ret = scsi_init_io(cmd);
1188 if (unlikely(ret))
1189 return ret;
1190 } else {
1191 BUG_ON(req->data_len);
1192 BUG_ON(req->data);
1193
1194 cmd->request_bufflen = 0;
1195 cmd->request_buffer = NULL;
1196 cmd->use_sg = 0;
1197 req->buffer = NULL;
1198 }
1199
1200 BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1201 memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1202 cmd->cmd_len = req->cmd_len;
1203 if (!req->data_len)
1204 cmd->sc_data_direction = DMA_NONE;
1205 else if (rq_data_dir(req) == WRITE)
1206 cmd->sc_data_direction = DMA_TO_DEVICE;
1207 else
1208 cmd->sc_data_direction = DMA_FROM_DEVICE;
1209
1210 cmd->transfersize = req->data_len;
1211 cmd->allowed = req->retries;
1212 cmd->timeout_per_command = req->timeout;
1213 return BLKPREP_OK;
1214 }
1215 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1216
1217 /*
1218 * Setup a REQ_TYPE_FS command. These are simple read/write request
1219 * from filesystems that still need to be translated to SCSI CDBs from
1220 * the ULD.
1221 */
1222 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1223 {
1224 struct scsi_cmnd *cmd;
1225 int ret = scsi_prep_state_check(sdev, req);
1226
1227 if (ret != BLKPREP_OK)
1228 return ret;
1229 /*
1230 * Filesystem requests must transfer data.
1231 */
1232 BUG_ON(!req->nr_phys_segments);
1233
1234 cmd = scsi_get_cmd_from_req(sdev, req);
1235 if (unlikely(!cmd))
1236 return BLKPREP_DEFER;
1237
1238 return scsi_init_io(cmd);
1239 }
1240 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1241
1242 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1243 {
1244 int ret = BLKPREP_OK;
1245
1246 /*
1247 * If the device is not in running state we will reject some
1248 * or all commands.
1249 */
1250 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1251 switch (sdev->sdev_state) {
1252 case SDEV_OFFLINE:
1253 /*
1254 * If the device is offline we refuse to process any
1255 * commands. The device must be brought online
1256 * before trying any recovery commands.
1257 */
1258 sdev_printk(KERN_ERR, sdev,
1259 "rejecting I/O to offline device\n");
1260 ret = BLKPREP_KILL;
1261 break;
1262 case SDEV_DEL:
1263 /*
1264 * If the device is fully deleted, we refuse to
1265 * process any commands as well.
1266 */
1267 sdev_printk(KERN_ERR, sdev,
1268 "rejecting I/O to dead device\n");
1269 ret = BLKPREP_KILL;
1270 break;
1271 case SDEV_QUIESCE:
1272 case SDEV_BLOCK:
1273 /*
1274 * If the devices is blocked we defer normal commands.
1275 */
1276 if (!(req->cmd_flags & REQ_PREEMPT))
1277 ret = BLKPREP_DEFER;
1278 break;
1279 default:
1280 /*
1281 * For any other not fully online state we only allow
1282 * special commands. In particular any user initiated
1283 * command is not allowed.
1284 */
1285 if (!(req->cmd_flags & REQ_PREEMPT))
1286 ret = BLKPREP_KILL;
1287 break;
1288 }
1289 }
1290 return ret;
1291 }
1292 EXPORT_SYMBOL(scsi_prep_state_check);
1293
1294 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1295 {
1296 struct scsi_device *sdev = q->queuedata;
1297
1298 switch (ret) {
1299 case BLKPREP_KILL:
1300 req->errors = DID_NO_CONNECT << 16;
1301 /* release the command and kill it */
1302 if (req->special) {
1303 struct scsi_cmnd *cmd = req->special;
1304 scsi_release_buffers(cmd);
1305 scsi_put_command(cmd);
1306 req->special = NULL;
1307 }
1308 break;
1309 case BLKPREP_DEFER:
1310 /*
1311 * If we defer, the elv_next_request() returns NULL, but the
1312 * queue must be restarted, so we plug here if no returning
1313 * command will automatically do that.
1314 */
1315 if (sdev->device_busy == 0)
1316 blk_plug_device(q);
1317 break;
1318 default:
1319 req->cmd_flags |= REQ_DONTPREP;
1320 }
1321
1322 return ret;
1323 }
1324 EXPORT_SYMBOL(scsi_prep_return);
1325
1326 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1327 {
1328 struct scsi_device *sdev = q->queuedata;
1329 int ret = BLKPREP_KILL;
1330
1331 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1332 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1333 return scsi_prep_return(q, req, ret);
1334 }
1335
1336 /*
1337 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1338 * return 0.
1339 *
1340 * Called with the queue_lock held.
1341 */
1342 static inline int scsi_dev_queue_ready(struct request_queue *q,
1343 struct scsi_device *sdev)
1344 {
1345 if (sdev->device_busy >= sdev->queue_depth)
1346 return 0;
1347 if (sdev->device_busy == 0 && sdev->device_blocked) {
1348 /*
1349 * unblock after device_blocked iterates to zero
1350 */
1351 if (--sdev->device_blocked == 0) {
1352 SCSI_LOG_MLQUEUE(3,
1353 sdev_printk(KERN_INFO, sdev,
1354 "unblocking device at zero depth\n"));
1355 } else {
1356 blk_plug_device(q);
1357 return 0;
1358 }
1359 }
1360 if (sdev->device_blocked)
1361 return 0;
1362
1363 return 1;
1364 }
1365
1366 /*
1367 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1368 * return 0. We must end up running the queue again whenever 0 is
1369 * returned, else IO can hang.
1370 *
1371 * Called with host_lock held.
1372 */
1373 static inline int scsi_host_queue_ready(struct request_queue *q,
1374 struct Scsi_Host *shost,
1375 struct scsi_device *sdev)
1376 {
1377 if (scsi_host_in_recovery(shost))
1378 return 0;
1379 if (shost->host_busy == 0 && shost->host_blocked) {
1380 /*
1381 * unblock after host_blocked iterates to zero
1382 */
1383 if (--shost->host_blocked == 0) {
1384 SCSI_LOG_MLQUEUE(3,
1385 printk("scsi%d unblocking host at zero depth\n",
1386 shost->host_no));
1387 } else {
1388 blk_plug_device(q);
1389 return 0;
1390 }
1391 }
1392 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1393 shost->host_blocked || shost->host_self_blocked) {
1394 if (list_empty(&sdev->starved_entry))
1395 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1396 return 0;
1397 }
1398
1399 /* We're OK to process the command, so we can't be starved */
1400 if (!list_empty(&sdev->starved_entry))
1401 list_del_init(&sdev->starved_entry);
1402
1403 return 1;
1404 }
1405
1406 /*
1407 * Kill a request for a dead device
1408 */
1409 static void scsi_kill_request(struct request *req, struct request_queue *q)
1410 {
1411 struct scsi_cmnd *cmd = req->special;
1412 struct scsi_device *sdev = cmd->device;
1413 struct Scsi_Host *shost = sdev->host;
1414
1415 blkdev_dequeue_request(req);
1416
1417 if (unlikely(cmd == NULL)) {
1418 printk(KERN_CRIT "impossible request in %s.\n",
1419 __FUNCTION__);
1420 BUG();
1421 }
1422
1423 scsi_init_cmd_errh(cmd);
1424 cmd->result = DID_NO_CONNECT << 16;
1425 atomic_inc(&cmd->device->iorequest_cnt);
1426
1427 /*
1428 * SCSI request completion path will do scsi_device_unbusy(),
1429 * bump busy counts. To bump the counters, we need to dance
1430 * with the locks as normal issue path does.
1431 */
1432 sdev->device_busy++;
1433 spin_unlock(sdev->request_queue->queue_lock);
1434 spin_lock(shost->host_lock);
1435 shost->host_busy++;
1436 spin_unlock(shost->host_lock);
1437 spin_lock(sdev->request_queue->queue_lock);
1438
1439 __scsi_done(cmd);
1440 }
1441
1442 static void scsi_softirq_done(struct request *rq)
1443 {
1444 struct scsi_cmnd *cmd = rq->completion_data;
1445 unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1446 int disposition;
1447
1448 INIT_LIST_HEAD(&cmd->eh_entry);
1449
1450 disposition = scsi_decide_disposition(cmd);
1451 if (disposition != SUCCESS &&
1452 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1453 sdev_printk(KERN_ERR, cmd->device,
1454 "timing out command, waited %lus\n",
1455 wait_for/HZ);
1456 disposition = SUCCESS;
1457 }
1458
1459 scsi_log_completion(cmd, disposition);
1460
1461 switch (disposition) {
1462 case SUCCESS:
1463 scsi_finish_command(cmd);
1464 break;
1465 case NEEDS_RETRY:
1466 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1467 break;
1468 case ADD_TO_MLQUEUE:
1469 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1470 break;
1471 default:
1472 if (!scsi_eh_scmd_add(cmd, 0))
1473 scsi_finish_command(cmd);
1474 }
1475 }
1476
1477 /*
1478 * Function: scsi_request_fn()
1479 *
1480 * Purpose: Main strategy routine for SCSI.
1481 *
1482 * Arguments: q - Pointer to actual queue.
1483 *
1484 * Returns: Nothing
1485 *
1486 * Lock status: IO request lock assumed to be held when called.
1487 */
1488 static void scsi_request_fn(struct request_queue *q)
1489 {
1490 struct scsi_device *sdev = q->queuedata;
1491 struct Scsi_Host *shost;
1492 struct scsi_cmnd *cmd;
1493 struct request *req;
1494
1495 if (!sdev) {
1496 printk("scsi: killing requests for dead queue\n");
1497 while ((req = elv_next_request(q)) != NULL)
1498 scsi_kill_request(req, q);
1499 return;
1500 }
1501
1502 if(!get_device(&sdev->sdev_gendev))
1503 /* We must be tearing the block queue down already */
1504 return;
1505
1506 /*
1507 * To start with, we keep looping until the queue is empty, or until
1508 * the host is no longer able to accept any more requests.
1509 */
1510 shost = sdev->host;
1511 while (!blk_queue_plugged(q)) {
1512 int rtn;
1513 /*
1514 * get next queueable request. We do this early to make sure
1515 * that the request is fully prepared even if we cannot
1516 * accept it.
1517 */
1518 req = elv_next_request(q);
1519 if (!req || !scsi_dev_queue_ready(q, sdev))
1520 break;
1521
1522 if (unlikely(!scsi_device_online(sdev))) {
1523 sdev_printk(KERN_ERR, sdev,
1524 "rejecting I/O to offline device\n");
1525 scsi_kill_request(req, q);
1526 continue;
1527 }
1528
1529
1530 /*
1531 * Remove the request from the request list.
1532 */
1533 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1534 blkdev_dequeue_request(req);
1535 sdev->device_busy++;
1536
1537 spin_unlock(q->queue_lock);
1538 cmd = req->special;
1539 if (unlikely(cmd == NULL)) {
1540 printk(KERN_CRIT "impossible request in %s.\n"
1541 "please mail a stack trace to "
1542 "linux-scsi@vger.kernel.org\n",
1543 __FUNCTION__);
1544 blk_dump_rq_flags(req, "foo");
1545 BUG();
1546 }
1547 spin_lock(shost->host_lock);
1548
1549 if (!scsi_host_queue_ready(q, shost, sdev))
1550 goto not_ready;
1551 if (sdev->single_lun) {
1552 if (scsi_target(sdev)->starget_sdev_user &&
1553 scsi_target(sdev)->starget_sdev_user != sdev)
1554 goto not_ready;
1555 scsi_target(sdev)->starget_sdev_user = sdev;
1556 }
1557 shost->host_busy++;
1558
1559 /*
1560 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1561 * take the lock again.
1562 */
1563 spin_unlock_irq(shost->host_lock);
1564
1565 /*
1566 * Finally, initialize any error handling parameters, and set up
1567 * the timers for timeouts.
1568 */
1569 scsi_init_cmd_errh(cmd);
1570
1571 /*
1572 * Dispatch the command to the low-level driver.
1573 */
1574 rtn = scsi_dispatch_cmd(cmd);
1575 spin_lock_irq(q->queue_lock);
1576 if(rtn) {
1577 /* we're refusing the command; because of
1578 * the way locks get dropped, we need to
1579 * check here if plugging is required */
1580 if(sdev->device_busy == 0)
1581 blk_plug_device(q);
1582
1583 break;
1584 }
1585 }
1586
1587 goto out;
1588
1589 not_ready:
1590 spin_unlock_irq(shost->host_lock);
1591
1592 /*
1593 * lock q, handle tag, requeue req, and decrement device_busy. We
1594 * must return with queue_lock held.
1595 *
1596 * Decrementing device_busy without checking it is OK, as all such
1597 * cases (host limits or settings) should run the queue at some
1598 * later time.
1599 */
1600 spin_lock_irq(q->queue_lock);
1601 blk_requeue_request(q, req);
1602 sdev->device_busy--;
1603 if(sdev->device_busy == 0)
1604 blk_plug_device(q);
1605 out:
1606 /* must be careful here...if we trigger the ->remove() function
1607 * we cannot be holding the q lock */
1608 spin_unlock_irq(q->queue_lock);
1609 put_device(&sdev->sdev_gendev);
1610 spin_lock_irq(q->queue_lock);
1611 }
1612
1613 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1614 {
1615 struct device *host_dev;
1616 u64 bounce_limit = 0xffffffff;
1617
1618 if (shost->unchecked_isa_dma)
1619 return BLK_BOUNCE_ISA;
1620 /*
1621 * Platforms with virtual-DMA translation
1622 * hardware have no practical limit.
1623 */
1624 if (!PCI_DMA_BUS_IS_PHYS)
1625 return BLK_BOUNCE_ANY;
1626
1627 host_dev = scsi_get_device(shost);
1628 if (host_dev && host_dev->dma_mask)
1629 bounce_limit = *host_dev->dma_mask;
1630
1631 return bounce_limit;
1632 }
1633 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1634
1635 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1636 request_fn_proc *request_fn)
1637 {
1638 struct request_queue *q;
1639
1640 q = blk_init_queue(request_fn, NULL);
1641 if (!q)
1642 return NULL;
1643
1644 /*
1645 * this limit is imposed by hardware restrictions
1646 */
1647 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1648
1649 /*
1650 * In the future, sg chaining support will be mandatory and this
1651 * ifdef can then go away. Right now we don't have all archs
1652 * converted, so better keep it safe.
1653 */
1654 #ifdef ARCH_HAS_SG_CHAIN
1655 if (shost->use_sg_chaining)
1656 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1657 else
1658 blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1659 #else
1660 blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1661 #endif
1662
1663 blk_queue_max_sectors(q, shost->max_sectors);
1664 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1665 blk_queue_segment_boundary(q, shost->dma_boundary);
1666
1667 if (!shost->use_clustering)
1668 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1669 return q;
1670 }
1671 EXPORT_SYMBOL(__scsi_alloc_queue);
1672
1673 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1674 {
1675 struct request_queue *q;
1676
1677 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1678 if (!q)
1679 return NULL;
1680
1681 blk_queue_prep_rq(q, scsi_prep_fn);
1682 blk_queue_softirq_done(q, scsi_softirq_done);
1683 return q;
1684 }
1685
1686 void scsi_free_queue(struct request_queue *q)
1687 {
1688 blk_cleanup_queue(q);
1689 }
1690
1691 /*
1692 * Function: scsi_block_requests()
1693 *
1694 * Purpose: Utility function used by low-level drivers to prevent further
1695 * commands from being queued to the device.
1696 *
1697 * Arguments: shost - Host in question
1698 *
1699 * Returns: Nothing
1700 *
1701 * Lock status: No locks are assumed held.
1702 *
1703 * Notes: There is no timer nor any other means by which the requests
1704 * get unblocked other than the low-level driver calling
1705 * scsi_unblock_requests().
1706 */
1707 void scsi_block_requests(struct Scsi_Host *shost)
1708 {
1709 shost->host_self_blocked = 1;
1710 }
1711 EXPORT_SYMBOL(scsi_block_requests);
1712
1713 /*
1714 * Function: scsi_unblock_requests()
1715 *
1716 * Purpose: Utility function used by low-level drivers to allow further
1717 * commands from being queued to the device.
1718 *
1719 * Arguments: shost - Host in question
1720 *
1721 * Returns: Nothing
1722 *
1723 * Lock status: No locks are assumed held.
1724 *
1725 * Notes: There is no timer nor any other means by which the requests
1726 * get unblocked other than the low-level driver calling
1727 * scsi_unblock_requests().
1728 *
1729 * This is done as an API function so that changes to the
1730 * internals of the scsi mid-layer won't require wholesale
1731 * changes to drivers that use this feature.
1732 */
1733 void scsi_unblock_requests(struct Scsi_Host *shost)
1734 {
1735 shost->host_self_blocked = 0;
1736 scsi_run_host_queues(shost);
1737 }
1738 EXPORT_SYMBOL(scsi_unblock_requests);
1739
1740 int __init scsi_init_queue(void)
1741 {
1742 int i;
1743
1744 scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1745 sizeof(struct scsi_io_context),
1746 0, 0, NULL);
1747 if (!scsi_io_context_cache) {
1748 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1749 return -ENOMEM;
1750 }
1751
1752 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1753 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1754 int size = sgp->size * sizeof(struct scatterlist);
1755
1756 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1757 SLAB_HWCACHE_ALIGN, NULL);
1758 if (!sgp->slab) {
1759 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1760 sgp->name);
1761 }
1762
1763 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1764 sgp->slab);
1765 if (!sgp->pool) {
1766 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1767 sgp->name);
1768 }
1769 }
1770
1771 return 0;
1772 }
1773
1774 void scsi_exit_queue(void)
1775 {
1776 int i;
1777
1778 kmem_cache_destroy(scsi_io_context_cache);
1779
1780 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1781 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1782 mempool_destroy(sgp->pool);
1783 kmem_cache_destroy(sgp->slab);
1784 }
1785 }
1786
1787 /**
1788 * scsi_mode_select - issue a mode select
1789 * @sdev: SCSI device to be queried
1790 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1791 * @sp: Save page bit (0 == don't save, 1 == save)
1792 * @modepage: mode page being requested
1793 * @buffer: request buffer (may not be smaller than eight bytes)
1794 * @len: length of request buffer.
1795 * @timeout: command timeout
1796 * @retries: number of retries before failing
1797 * @data: returns a structure abstracting the mode header data
1798 * @sense: place to put sense data (or NULL if no sense to be collected).
1799 * must be SCSI_SENSE_BUFFERSIZE big.
1800 *
1801 * Returns zero if successful; negative error number or scsi
1802 * status on error
1803 *
1804 */
1805 int
1806 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1807 unsigned char *buffer, int len, int timeout, int retries,
1808 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1809 {
1810 unsigned char cmd[10];
1811 unsigned char *real_buffer;
1812 int ret;
1813
1814 memset(cmd, 0, sizeof(cmd));
1815 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1816
1817 if (sdev->use_10_for_ms) {
1818 if (len > 65535)
1819 return -EINVAL;
1820 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1821 if (!real_buffer)
1822 return -ENOMEM;
1823 memcpy(real_buffer + 8, buffer, len);
1824 len += 8;
1825 real_buffer[0] = 0;
1826 real_buffer[1] = 0;
1827 real_buffer[2] = data->medium_type;
1828 real_buffer[3] = data->device_specific;
1829 real_buffer[4] = data->longlba ? 0x01 : 0;
1830 real_buffer[5] = 0;
1831 real_buffer[6] = data->block_descriptor_length >> 8;
1832 real_buffer[7] = data->block_descriptor_length;
1833
1834 cmd[0] = MODE_SELECT_10;
1835 cmd[7] = len >> 8;
1836 cmd[8] = len;
1837 } else {
1838 if (len > 255 || data->block_descriptor_length > 255 ||
1839 data->longlba)
1840 return -EINVAL;
1841
1842 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1843 if (!real_buffer)
1844 return -ENOMEM;
1845 memcpy(real_buffer + 4, buffer, len);
1846 len += 4;
1847 real_buffer[0] = 0;
1848 real_buffer[1] = data->medium_type;
1849 real_buffer[2] = data->device_specific;
1850 real_buffer[3] = data->block_descriptor_length;
1851
1852
1853 cmd[0] = MODE_SELECT;
1854 cmd[4] = len;
1855 }
1856
1857 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1858 sshdr, timeout, retries);
1859 kfree(real_buffer);
1860 return ret;
1861 }
1862 EXPORT_SYMBOL_GPL(scsi_mode_select);
1863
1864 /**
1865 * scsi_mode_sense - issue a mode sense, falling back from 10 to
1866 * six bytes if necessary.
1867 * @sdev: SCSI device to be queried
1868 * @dbd: set if mode sense will allow block descriptors to be returned
1869 * @modepage: mode page being requested
1870 * @buffer: request buffer (may not be smaller than eight bytes)
1871 * @len: length of request buffer.
1872 * @timeout: command timeout
1873 * @retries: number of retries before failing
1874 * @data: returns a structure abstracting the mode header data
1875 * @sense: place to put sense data (or NULL if no sense to be collected).
1876 * must be SCSI_SENSE_BUFFERSIZE big.
1877 *
1878 * Returns zero if unsuccessful, or the header offset (either 4
1879 * or 8 depending on whether a six or ten byte command was
1880 * issued) if successful.
1881 **/
1882 int
1883 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1884 unsigned char *buffer, int len, int timeout, int retries,
1885 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1886 {
1887 unsigned char cmd[12];
1888 int use_10_for_ms;
1889 int header_length;
1890 int result;
1891 struct scsi_sense_hdr my_sshdr;
1892
1893 memset(data, 0, sizeof(*data));
1894 memset(&cmd[0], 0, 12);
1895 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1896 cmd[2] = modepage;
1897
1898 /* caller might not be interested in sense, but we need it */
1899 if (!sshdr)
1900 sshdr = &my_sshdr;
1901
1902 retry:
1903 use_10_for_ms = sdev->use_10_for_ms;
1904
1905 if (use_10_for_ms) {
1906 if (len < 8)
1907 len = 8;
1908
1909 cmd[0] = MODE_SENSE_10;
1910 cmd[8] = len;
1911 header_length = 8;
1912 } else {
1913 if (len < 4)
1914 len = 4;
1915
1916 cmd[0] = MODE_SENSE;
1917 cmd[4] = len;
1918 header_length = 4;
1919 }
1920
1921 memset(buffer, 0, len);
1922
1923 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1924 sshdr, timeout, retries);
1925
1926 /* This code looks awful: what it's doing is making sure an
1927 * ILLEGAL REQUEST sense return identifies the actual command
1928 * byte as the problem. MODE_SENSE commands can return
1929 * ILLEGAL REQUEST if the code page isn't supported */
1930
1931 if (use_10_for_ms && !scsi_status_is_good(result) &&
1932 (driver_byte(result) & DRIVER_SENSE)) {
1933 if (scsi_sense_valid(sshdr)) {
1934 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1935 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1936 /*
1937 * Invalid command operation code
1938 */
1939 sdev->use_10_for_ms = 0;
1940 goto retry;
1941 }
1942 }
1943 }
1944
1945 if(scsi_status_is_good(result)) {
1946 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1947 (modepage == 6 || modepage == 8))) {
1948 /* Initio breakage? */
1949 header_length = 0;
1950 data->length = 13;
1951 data->medium_type = 0;
1952 data->device_specific = 0;
1953 data->longlba = 0;
1954 data->block_descriptor_length = 0;
1955 } else if(use_10_for_ms) {
1956 data->length = buffer[0]*256 + buffer[1] + 2;
1957 data->medium_type = buffer[2];
1958 data->device_specific = buffer[3];
1959 data->longlba = buffer[4] & 0x01;
1960 data->block_descriptor_length = buffer[6]*256
1961 + buffer[7];
1962 } else {
1963 data->length = buffer[0] + 1;
1964 data->medium_type = buffer[1];
1965 data->device_specific = buffer[2];
1966 data->block_descriptor_length = buffer[3];
1967 }
1968 data->header_length = header_length;
1969 }
1970
1971 return result;
1972 }
1973 EXPORT_SYMBOL(scsi_mode_sense);
1974
1975 int
1976 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1977 {
1978 char cmd[] = {
1979 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1980 };
1981 struct scsi_sense_hdr sshdr;
1982 int result;
1983
1984 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1985 timeout, retries);
1986
1987 if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1988
1989 if ((scsi_sense_valid(&sshdr)) &&
1990 ((sshdr.sense_key == UNIT_ATTENTION) ||
1991 (sshdr.sense_key == NOT_READY))) {
1992 sdev->changed = 1;
1993 result = 0;
1994 }
1995 }
1996 return result;
1997 }
1998 EXPORT_SYMBOL(scsi_test_unit_ready);
1999
2000 /**
2001 * scsi_device_set_state - Take the given device through the device
2002 * state model.
2003 * @sdev: scsi device to change the state of.
2004 * @state: state to change to.
2005 *
2006 * Returns zero if unsuccessful or an error if the requested
2007 * transition is illegal.
2008 **/
2009 int
2010 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2011 {
2012 enum scsi_device_state oldstate = sdev->sdev_state;
2013
2014 if (state == oldstate)
2015 return 0;
2016
2017 switch (state) {
2018 case SDEV_CREATED:
2019 /* There are no legal states that come back to
2020 * created. This is the manually initialised start
2021 * state */
2022 goto illegal;
2023
2024 case SDEV_RUNNING:
2025 switch (oldstate) {
2026 case SDEV_CREATED:
2027 case SDEV_OFFLINE:
2028 case SDEV_QUIESCE:
2029 case SDEV_BLOCK:
2030 break;
2031 default:
2032 goto illegal;
2033 }
2034 break;
2035
2036 case SDEV_QUIESCE:
2037 switch (oldstate) {
2038 case SDEV_RUNNING:
2039 case SDEV_OFFLINE:
2040 break;
2041 default:
2042 goto illegal;
2043 }
2044 break;
2045
2046 case SDEV_OFFLINE:
2047 switch (oldstate) {
2048 case SDEV_CREATED:
2049 case SDEV_RUNNING:
2050 case SDEV_QUIESCE:
2051 case SDEV_BLOCK:
2052 break;
2053 default:
2054 goto illegal;
2055 }
2056 break;
2057
2058 case SDEV_BLOCK:
2059 switch (oldstate) {
2060 case SDEV_CREATED:
2061 case SDEV_RUNNING:
2062 break;
2063 default:
2064 goto illegal;
2065 }
2066 break;
2067
2068 case SDEV_CANCEL:
2069 switch (oldstate) {
2070 case SDEV_CREATED:
2071 case SDEV_RUNNING:
2072 case SDEV_QUIESCE:
2073 case SDEV_OFFLINE:
2074 case SDEV_BLOCK:
2075 break;
2076 default:
2077 goto illegal;
2078 }
2079 break;
2080
2081 case SDEV_DEL:
2082 switch (oldstate) {
2083 case SDEV_CREATED:
2084 case SDEV_RUNNING:
2085 case SDEV_OFFLINE:
2086 case SDEV_CANCEL:
2087 break;
2088 default:
2089 goto illegal;
2090 }
2091 break;
2092
2093 }
2094 sdev->sdev_state = state;
2095 return 0;
2096
2097 illegal:
2098 SCSI_LOG_ERROR_RECOVERY(1,
2099 sdev_printk(KERN_ERR, sdev,
2100 "Illegal state transition %s->%s\n",
2101 scsi_device_state_name(oldstate),
2102 scsi_device_state_name(state))
2103 );
2104 return -EINVAL;
2105 }
2106 EXPORT_SYMBOL(scsi_device_set_state);
2107
2108 /**
2109 * scsi_device_quiesce - Block user issued commands.
2110 * @sdev: scsi device to quiesce.
2111 *
2112 * This works by trying to transition to the SDEV_QUIESCE state
2113 * (which must be a legal transition). When the device is in this
2114 * state, only special requests will be accepted, all others will
2115 * be deferred. Since special requests may also be requeued requests,
2116 * a successful return doesn't guarantee the device will be
2117 * totally quiescent.
2118 *
2119 * Must be called with user context, may sleep.
2120 *
2121 * Returns zero if unsuccessful or an error if not.
2122 **/
2123 int
2124 scsi_device_quiesce(struct scsi_device *sdev)
2125 {
2126 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2127 if (err)
2128 return err;
2129
2130 scsi_run_queue(sdev->request_queue);
2131 while (sdev->device_busy) {
2132 msleep_interruptible(200);
2133 scsi_run_queue(sdev->request_queue);
2134 }
2135 return 0;
2136 }
2137 EXPORT_SYMBOL(scsi_device_quiesce);
2138
2139 /**
2140 * scsi_device_resume - Restart user issued commands to a quiesced device.
2141 * @sdev: scsi device to resume.
2142 *
2143 * Moves the device from quiesced back to running and restarts the
2144 * queues.
2145 *
2146 * Must be called with user context, may sleep.
2147 **/
2148 void
2149 scsi_device_resume(struct scsi_device *sdev)
2150 {
2151 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2152 return;
2153 scsi_run_queue(sdev->request_queue);
2154 }
2155 EXPORT_SYMBOL(scsi_device_resume);
2156
2157 static void
2158 device_quiesce_fn(struct scsi_device *sdev, void *data)
2159 {
2160 scsi_device_quiesce(sdev);
2161 }
2162
2163 void
2164 scsi_target_quiesce(struct scsi_target *starget)
2165 {
2166 starget_for_each_device(starget, NULL, device_quiesce_fn);
2167 }
2168 EXPORT_SYMBOL(scsi_target_quiesce);
2169
2170 static void
2171 device_resume_fn(struct scsi_device *sdev, void *data)
2172 {
2173 scsi_device_resume(sdev);
2174 }
2175
2176 void
2177 scsi_target_resume(struct scsi_target *starget)
2178 {
2179 starget_for_each_device(starget, NULL, device_resume_fn);
2180 }
2181 EXPORT_SYMBOL(scsi_target_resume);
2182
2183 /**
2184 * scsi_internal_device_block - internal function to put a device
2185 * temporarily into the SDEV_BLOCK state
2186 * @sdev: device to block
2187 *
2188 * Block request made by scsi lld's to temporarily stop all
2189 * scsi commands on the specified device. Called from interrupt
2190 * or normal process context.
2191 *
2192 * Returns zero if successful or error if not
2193 *
2194 * Notes:
2195 * This routine transitions the device to the SDEV_BLOCK state
2196 * (which must be a legal transition). When the device is in this
2197 * state, all commands are deferred until the scsi lld reenables
2198 * the device with scsi_device_unblock or device_block_tmo fires.
2199 * This routine assumes the host_lock is held on entry.
2200 **/
2201 int
2202 scsi_internal_device_block(struct scsi_device *sdev)
2203 {
2204 struct request_queue *q = sdev->request_queue;
2205 unsigned long flags;
2206 int err = 0;
2207
2208 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2209 if (err)
2210 return err;
2211
2212 /*
2213 * The device has transitioned to SDEV_BLOCK. Stop the
2214 * block layer from calling the midlayer with this device's
2215 * request queue.
2216 */
2217 spin_lock_irqsave(q->queue_lock, flags);
2218 blk_stop_queue(q);
2219 spin_unlock_irqrestore(q->queue_lock, flags);
2220
2221 return 0;
2222 }
2223 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2224
2225 /**
2226 * scsi_internal_device_unblock - resume a device after a block request
2227 * @sdev: device to resume
2228 *
2229 * Called by scsi lld's or the midlayer to restart the device queue
2230 * for the previously suspended scsi device. Called from interrupt or
2231 * normal process context.
2232 *
2233 * Returns zero if successful or error if not.
2234 *
2235 * Notes:
2236 * This routine transitions the device to the SDEV_RUNNING state
2237 * (which must be a legal transition) allowing the midlayer to
2238 * goose the queue for this device. This routine assumes the
2239 * host_lock is held upon entry.
2240 **/
2241 int
2242 scsi_internal_device_unblock(struct scsi_device *sdev)
2243 {
2244 struct request_queue *q = sdev->request_queue;
2245 int err;
2246 unsigned long flags;
2247
2248 /*
2249 * Try to transition the scsi device to SDEV_RUNNING
2250 * and goose the device queue if successful.
2251 */
2252 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2253 if (err)
2254 return err;
2255
2256 spin_lock_irqsave(q->queue_lock, flags);
2257 blk_start_queue(q);
2258 spin_unlock_irqrestore(q->queue_lock, flags);
2259
2260 return 0;
2261 }
2262 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2263
2264 static void
2265 device_block(struct scsi_device *sdev, void *data)
2266 {
2267 scsi_internal_device_block(sdev);
2268 }
2269
2270 static int
2271 target_block(struct device *dev, void *data)
2272 {
2273 if (scsi_is_target_device(dev))
2274 starget_for_each_device(to_scsi_target(dev), NULL,
2275 device_block);
2276 return 0;
2277 }
2278
2279 void
2280 scsi_target_block(struct device *dev)
2281 {
2282 if (scsi_is_target_device(dev))
2283 starget_for_each_device(to_scsi_target(dev), NULL,
2284 device_block);
2285 else
2286 device_for_each_child(dev, NULL, target_block);
2287 }
2288 EXPORT_SYMBOL_GPL(scsi_target_block);
2289
2290 static void
2291 device_unblock(struct scsi_device *sdev, void *data)
2292 {
2293 scsi_internal_device_unblock(sdev);
2294 }
2295
2296 static int
2297 target_unblock(struct device *dev, void *data)
2298 {
2299 if (scsi_is_target_device(dev))
2300 starget_for_each_device(to_scsi_target(dev), NULL,
2301 device_unblock);
2302 return 0;
2303 }
2304
2305 void
2306 scsi_target_unblock(struct device *dev)
2307 {
2308 if (scsi_is_target_device(dev))
2309 starget_for_each_device(to_scsi_target(dev), NULL,
2310 device_unblock);
2311 else
2312 device_for_each_child(dev, NULL, target_unblock);
2313 }
2314 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2315
2316 /**
2317 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2318 * @sg: scatter-gather list
2319 * @sg_count: number of segments in sg
2320 * @offset: offset in bytes into sg, on return offset into the mapped area
2321 * @len: bytes to map, on return number of bytes mapped
2322 *
2323 * Returns virtual address of the start of the mapped page
2324 */
2325 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2326 size_t *offset, size_t *len)
2327 {
2328 int i;
2329 size_t sg_len = 0, len_complete = 0;
2330 struct scatterlist *sg;
2331 struct page *page;
2332
2333 WARN_ON(!irqs_disabled());
2334
2335 for_each_sg(sgl, sg, sg_count, i) {
2336 len_complete = sg_len; /* Complete sg-entries */
2337 sg_len += sg->length;
2338 if (sg_len > *offset)
2339 break;
2340 }
2341
2342 if (unlikely(i == sg_count)) {
2343 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2344 "elements %d\n",
2345 __FUNCTION__, sg_len, *offset, sg_count);
2346 WARN_ON(1);
2347 return NULL;
2348 }
2349
2350 /* Offset starting from the beginning of first page in this sg-entry */
2351 *offset = *offset - len_complete + sg->offset;
2352
2353 /* Assumption: contiguous pages can be accessed as "page + i" */
2354 page = nth_page(sg->page, (*offset >> PAGE_SHIFT));
2355 *offset &= ~PAGE_MASK;
2356
2357 /* Bytes in this sg-entry from *offset to the end of the page */
2358 sg_len = PAGE_SIZE - *offset;
2359 if (*len > sg_len)
2360 *len = sg_len;
2361
2362 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2363 }
2364 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2365
2366 /**
2367 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2368 * mapped with scsi_kmap_atomic_sg
2369 * @virt: virtual address to be unmapped
2370 */
2371 void scsi_kunmap_atomic_sg(void *virt)
2372 {
2373 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2374 }
2375 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
This page took 0.074731 seconds and 4 git commands to generate.