Merge branch 'proc-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/adobriyan...
[deliverable/linux.git] / drivers / scsi / scsi_lib.c
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33
34
35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE 2
37
38 struct scsi_host_sg_pool {
39 size_t size;
40 char *name;
41 struct kmem_cache *slab;
42 mempool_t *pool;
43 };
44
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 SP(8),
51 SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67
68 struct kmem_cache *scsi_sdb_cache;
69
70 static void scsi_run_queue(struct request_queue *q);
71
72 /*
73 * Function: scsi_unprep_request()
74 *
75 * Purpose: Remove all preparation done for a request, including its
76 * associated scsi_cmnd, so that it can be requeued.
77 *
78 * Arguments: req - request to unprepare
79 *
80 * Lock status: Assumed that no locks are held upon entry.
81 *
82 * Returns: Nothing.
83 */
84 static void scsi_unprep_request(struct request *req)
85 {
86 struct scsi_cmnd *cmd = req->special;
87
88 req->cmd_flags &= ~REQ_DONTPREP;
89 req->special = NULL;
90
91 scsi_put_command(cmd);
92 }
93
94 /*
95 * Function: scsi_queue_insert()
96 *
97 * Purpose: Insert a command in the midlevel queue.
98 *
99 * Arguments: cmd - command that we are adding to queue.
100 * reason - why we are inserting command to queue.
101 *
102 * Lock status: Assumed that lock is not held upon entry.
103 *
104 * Returns: Nothing.
105 *
106 * Notes: We do this for one of two cases. Either the host is busy
107 * and it cannot accept any more commands for the time being,
108 * or the device returned QUEUE_FULL and can accept no more
109 * commands.
110 * Notes: This could be called either from an interrupt context or a
111 * normal process context.
112 */
113 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
114 {
115 struct Scsi_Host *host = cmd->device->host;
116 struct scsi_device *device = cmd->device;
117 struct scsi_target *starget = scsi_target(device);
118 struct request_queue *q = device->request_queue;
119 unsigned long flags;
120
121 SCSI_LOG_MLQUEUE(1,
122 printk("Inserting command %p into mlqueue\n", cmd));
123
124 /*
125 * Set the appropriate busy bit for the device/host.
126 *
127 * If the host/device isn't busy, assume that something actually
128 * completed, and that we should be able to queue a command now.
129 *
130 * Note that the prior mid-layer assumption that any host could
131 * always queue at least one command is now broken. The mid-layer
132 * will implement a user specifiable stall (see
133 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
134 * if a command is requeued with no other commands outstanding
135 * either for the device or for the host.
136 */
137 switch (reason) {
138 case SCSI_MLQUEUE_HOST_BUSY:
139 host->host_blocked = host->max_host_blocked;
140 break;
141 case SCSI_MLQUEUE_DEVICE_BUSY:
142 device->device_blocked = device->max_device_blocked;
143 break;
144 case SCSI_MLQUEUE_TARGET_BUSY:
145 starget->target_blocked = starget->max_target_blocked;
146 break;
147 }
148
149 /*
150 * Decrement the counters, since these commands are no longer
151 * active on the host/device.
152 */
153 scsi_device_unbusy(device);
154
155 /*
156 * Requeue this command. It will go before all other commands
157 * that are already in the queue.
158 *
159 * NOTE: there is magic here about the way the queue is plugged if
160 * we have no outstanding commands.
161 *
162 * Although we *don't* plug the queue, we call the request
163 * function. The SCSI request function detects the blocked condition
164 * and plugs the queue appropriately.
165 */
166 spin_lock_irqsave(q->queue_lock, flags);
167 blk_requeue_request(q, cmd->request);
168 spin_unlock_irqrestore(q->queue_lock, flags);
169
170 scsi_run_queue(q);
171
172 return 0;
173 }
174
175 /**
176 * scsi_execute - insert request and wait for the result
177 * @sdev: scsi device
178 * @cmd: scsi command
179 * @data_direction: data direction
180 * @buffer: data buffer
181 * @bufflen: len of buffer
182 * @sense: optional sense buffer
183 * @timeout: request timeout in seconds
184 * @retries: number of times to retry request
185 * @flags: or into request flags;
186 * @resid: optional residual length
187 *
188 * returns the req->errors value which is the scsi_cmnd result
189 * field.
190 */
191 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
192 int data_direction, void *buffer, unsigned bufflen,
193 unsigned char *sense, int timeout, int retries, int flags,
194 int *resid)
195 {
196 struct request *req;
197 int write = (data_direction == DMA_TO_DEVICE);
198 int ret = DRIVER_ERROR << 24;
199
200 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
201
202 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
203 buffer, bufflen, __GFP_WAIT))
204 goto out;
205
206 req->cmd_len = COMMAND_SIZE(cmd[0]);
207 memcpy(req->cmd, cmd, req->cmd_len);
208 req->sense = sense;
209 req->sense_len = 0;
210 req->retries = retries;
211 req->timeout = timeout;
212 req->cmd_type = REQ_TYPE_BLOCK_PC;
213 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
214
215 /*
216 * head injection *required* here otherwise quiesce won't work
217 */
218 blk_execute_rq(req->q, NULL, req, 1);
219
220 /*
221 * Some devices (USB mass-storage in particular) may transfer
222 * garbage data together with a residue indicating that the data
223 * is invalid. Prevent the garbage from being misinterpreted
224 * and prevent security leaks by zeroing out the excess data.
225 */
226 if (unlikely(req->data_len > 0 && req->data_len <= bufflen))
227 memset(buffer + (bufflen - req->data_len), 0, req->data_len);
228
229 if (resid)
230 *resid = req->data_len;
231 ret = req->errors;
232 out:
233 blk_put_request(req);
234
235 return ret;
236 }
237 EXPORT_SYMBOL(scsi_execute);
238
239
240 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
241 int data_direction, void *buffer, unsigned bufflen,
242 struct scsi_sense_hdr *sshdr, int timeout, int retries,
243 int *resid)
244 {
245 char *sense = NULL;
246 int result;
247
248 if (sshdr) {
249 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
250 if (!sense)
251 return DRIVER_ERROR << 24;
252 }
253 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
254 sense, timeout, retries, 0, resid);
255 if (sshdr)
256 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
257
258 kfree(sense);
259 return result;
260 }
261 EXPORT_SYMBOL(scsi_execute_req);
262
263 struct scsi_io_context {
264 void *data;
265 void (*done)(void *data, char *sense, int result, int resid);
266 char sense[SCSI_SENSE_BUFFERSIZE];
267 };
268
269 static struct kmem_cache *scsi_io_context_cache;
270
271 static void scsi_end_async(struct request *req, int uptodate)
272 {
273 struct scsi_io_context *sioc = req->end_io_data;
274
275 if (sioc->done)
276 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
277
278 kmem_cache_free(scsi_io_context_cache, sioc);
279 __blk_put_request(req->q, req);
280 }
281
282 static int scsi_merge_bio(struct request *rq, struct bio *bio)
283 {
284 struct request_queue *q = rq->q;
285
286 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
287 if (rq_data_dir(rq) == WRITE)
288 bio->bi_rw |= (1 << BIO_RW);
289 blk_queue_bounce(q, &bio);
290
291 return blk_rq_append_bio(q, rq, bio);
292 }
293
294 static void scsi_bi_endio(struct bio *bio, int error)
295 {
296 bio_put(bio);
297 }
298
299 /**
300 * scsi_req_map_sg - map a scatterlist into a request
301 * @rq: request to fill
302 * @sgl: scatterlist
303 * @nsegs: number of elements
304 * @bufflen: len of buffer
305 * @gfp: memory allocation flags
306 *
307 * scsi_req_map_sg maps a scatterlist into a request so that the
308 * request can be sent to the block layer. We do not trust the scatterlist
309 * sent to use, as some ULDs use that struct to only organize the pages.
310 */
311 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
312 int nsegs, unsigned bufflen, gfp_t gfp)
313 {
314 struct request_queue *q = rq->q;
315 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
316 unsigned int data_len = bufflen, len, bytes, off;
317 struct scatterlist *sg;
318 struct page *page;
319 struct bio *bio = NULL;
320 int i, err, nr_vecs = 0;
321
322 for_each_sg(sgl, sg, nsegs, i) {
323 page = sg_page(sg);
324 off = sg->offset;
325 len = sg->length;
326
327 while (len > 0 && data_len > 0) {
328 /*
329 * sg sends a scatterlist that is larger than
330 * the data_len it wants transferred for certain
331 * IO sizes
332 */
333 bytes = min_t(unsigned int, len, PAGE_SIZE - off);
334 bytes = min(bytes, data_len);
335
336 if (!bio) {
337 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
338 nr_pages -= nr_vecs;
339
340 bio = bio_alloc(gfp, nr_vecs);
341 if (!bio) {
342 err = -ENOMEM;
343 goto free_bios;
344 }
345 bio->bi_end_io = scsi_bi_endio;
346 }
347
348 if (bio_add_pc_page(q, bio, page, bytes, off) !=
349 bytes) {
350 bio_put(bio);
351 err = -EINVAL;
352 goto free_bios;
353 }
354
355 if (bio->bi_vcnt >= nr_vecs) {
356 err = scsi_merge_bio(rq, bio);
357 if (err) {
358 bio_endio(bio, 0);
359 goto free_bios;
360 }
361 bio = NULL;
362 }
363
364 page++;
365 len -= bytes;
366 data_len -=bytes;
367 off = 0;
368 }
369 }
370
371 rq->buffer = rq->data = NULL;
372 rq->data_len = bufflen;
373 return 0;
374
375 free_bios:
376 while ((bio = rq->bio) != NULL) {
377 rq->bio = bio->bi_next;
378 /*
379 * call endio instead of bio_put incase it was bounced
380 */
381 bio_endio(bio, 0);
382 }
383
384 return err;
385 }
386
387 /**
388 * scsi_execute_async - insert request
389 * @sdev: scsi device
390 * @cmd: scsi command
391 * @cmd_len: length of scsi cdb
392 * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
393 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
394 * @bufflen: len of buffer
395 * @use_sg: if buffer is a scatterlist this is the number of elements
396 * @timeout: request timeout in seconds
397 * @retries: number of times to retry request
398 * @privdata: data passed to done()
399 * @done: callback function when done
400 * @gfp: memory allocation flags
401 */
402 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
403 int cmd_len, int data_direction, void *buffer, unsigned bufflen,
404 int use_sg, int timeout, int retries, void *privdata,
405 void (*done)(void *, char *, int, int), gfp_t gfp)
406 {
407 struct request *req;
408 struct scsi_io_context *sioc;
409 int err = 0;
410 int write = (data_direction == DMA_TO_DEVICE);
411
412 sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
413 if (!sioc)
414 return DRIVER_ERROR << 24;
415
416 req = blk_get_request(sdev->request_queue, write, gfp);
417 if (!req)
418 goto free_sense;
419 req->cmd_type = REQ_TYPE_BLOCK_PC;
420 req->cmd_flags |= REQ_QUIET;
421
422 if (use_sg)
423 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
424 else if (bufflen)
425 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
426
427 if (err)
428 goto free_req;
429
430 req->cmd_len = cmd_len;
431 memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
432 memcpy(req->cmd, cmd, req->cmd_len);
433 req->sense = sioc->sense;
434 req->sense_len = 0;
435 req->timeout = timeout;
436 req->retries = retries;
437 req->end_io_data = sioc;
438
439 sioc->data = privdata;
440 sioc->done = done;
441
442 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
443 return 0;
444
445 free_req:
446 blk_put_request(req);
447 free_sense:
448 kmem_cache_free(scsi_io_context_cache, sioc);
449 return DRIVER_ERROR << 24;
450 }
451 EXPORT_SYMBOL_GPL(scsi_execute_async);
452
453 /*
454 * Function: scsi_init_cmd_errh()
455 *
456 * Purpose: Initialize cmd fields related to error handling.
457 *
458 * Arguments: cmd - command that is ready to be queued.
459 *
460 * Notes: This function has the job of initializing a number of
461 * fields related to error handling. Typically this will
462 * be called once for each command, as required.
463 */
464 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
465 {
466 cmd->serial_number = 0;
467 scsi_set_resid(cmd, 0);
468 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
469 if (cmd->cmd_len == 0)
470 cmd->cmd_len = scsi_command_size(cmd->cmnd);
471 }
472
473 void scsi_device_unbusy(struct scsi_device *sdev)
474 {
475 struct Scsi_Host *shost = sdev->host;
476 struct scsi_target *starget = scsi_target(sdev);
477 unsigned long flags;
478
479 spin_lock_irqsave(shost->host_lock, flags);
480 shost->host_busy--;
481 starget->target_busy--;
482 if (unlikely(scsi_host_in_recovery(shost) &&
483 (shost->host_failed || shost->host_eh_scheduled)))
484 scsi_eh_wakeup(shost);
485 spin_unlock(shost->host_lock);
486 spin_lock(sdev->request_queue->queue_lock);
487 sdev->device_busy--;
488 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
489 }
490
491 /*
492 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
493 * and call blk_run_queue for all the scsi_devices on the target -
494 * including current_sdev first.
495 *
496 * Called with *no* scsi locks held.
497 */
498 static void scsi_single_lun_run(struct scsi_device *current_sdev)
499 {
500 struct Scsi_Host *shost = current_sdev->host;
501 struct scsi_device *sdev, *tmp;
502 struct scsi_target *starget = scsi_target(current_sdev);
503 unsigned long flags;
504
505 spin_lock_irqsave(shost->host_lock, flags);
506 starget->starget_sdev_user = NULL;
507 spin_unlock_irqrestore(shost->host_lock, flags);
508
509 /*
510 * Call blk_run_queue for all LUNs on the target, starting with
511 * current_sdev. We race with others (to set starget_sdev_user),
512 * but in most cases, we will be first. Ideally, each LU on the
513 * target would get some limited time or requests on the target.
514 */
515 blk_run_queue(current_sdev->request_queue);
516
517 spin_lock_irqsave(shost->host_lock, flags);
518 if (starget->starget_sdev_user)
519 goto out;
520 list_for_each_entry_safe(sdev, tmp, &starget->devices,
521 same_target_siblings) {
522 if (sdev == current_sdev)
523 continue;
524 if (scsi_device_get(sdev))
525 continue;
526
527 spin_unlock_irqrestore(shost->host_lock, flags);
528 blk_run_queue(sdev->request_queue);
529 spin_lock_irqsave(shost->host_lock, flags);
530
531 scsi_device_put(sdev);
532 }
533 out:
534 spin_unlock_irqrestore(shost->host_lock, flags);
535 }
536
537 static inline int scsi_device_is_busy(struct scsi_device *sdev)
538 {
539 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
540 return 1;
541
542 return 0;
543 }
544
545 static inline int scsi_target_is_busy(struct scsi_target *starget)
546 {
547 return ((starget->can_queue > 0 &&
548 starget->target_busy >= starget->can_queue) ||
549 starget->target_blocked);
550 }
551
552 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
553 {
554 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
555 shost->host_blocked || shost->host_self_blocked)
556 return 1;
557
558 return 0;
559 }
560
561 /*
562 * Function: scsi_run_queue()
563 *
564 * Purpose: Select a proper request queue to serve next
565 *
566 * Arguments: q - last request's queue
567 *
568 * Returns: Nothing
569 *
570 * Notes: The previous command was completely finished, start
571 * a new one if possible.
572 */
573 static void scsi_run_queue(struct request_queue *q)
574 {
575 struct scsi_device *sdev = q->queuedata;
576 struct Scsi_Host *shost = sdev->host;
577 LIST_HEAD(starved_list);
578 unsigned long flags;
579
580 if (scsi_target(sdev)->single_lun)
581 scsi_single_lun_run(sdev);
582
583 spin_lock_irqsave(shost->host_lock, flags);
584 list_splice_init(&shost->starved_list, &starved_list);
585
586 while (!list_empty(&starved_list)) {
587 int flagset;
588
589 /*
590 * As long as shost is accepting commands and we have
591 * starved queues, call blk_run_queue. scsi_request_fn
592 * drops the queue_lock and can add us back to the
593 * starved_list.
594 *
595 * host_lock protects the starved_list and starved_entry.
596 * scsi_request_fn must get the host_lock before checking
597 * or modifying starved_list or starved_entry.
598 */
599 if (scsi_host_is_busy(shost))
600 break;
601
602 sdev = list_entry(starved_list.next,
603 struct scsi_device, starved_entry);
604 list_del_init(&sdev->starved_entry);
605 if (scsi_target_is_busy(scsi_target(sdev))) {
606 list_move_tail(&sdev->starved_entry,
607 &shost->starved_list);
608 continue;
609 }
610
611 spin_unlock(shost->host_lock);
612
613 spin_lock(sdev->request_queue->queue_lock);
614 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
615 !test_bit(QUEUE_FLAG_REENTER,
616 &sdev->request_queue->queue_flags);
617 if (flagset)
618 queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
619 __blk_run_queue(sdev->request_queue);
620 if (flagset)
621 queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
622 spin_unlock(sdev->request_queue->queue_lock);
623
624 spin_lock(shost->host_lock);
625 }
626 /* put any unprocessed entries back */
627 list_splice(&starved_list, &shost->starved_list);
628 spin_unlock_irqrestore(shost->host_lock, flags);
629
630 blk_run_queue(q);
631 }
632
633 /*
634 * Function: scsi_requeue_command()
635 *
636 * Purpose: Handle post-processing of completed commands.
637 *
638 * Arguments: q - queue to operate on
639 * cmd - command that may need to be requeued.
640 *
641 * Returns: Nothing
642 *
643 * Notes: After command completion, there may be blocks left
644 * over which weren't finished by the previous command
645 * this can be for a number of reasons - the main one is
646 * I/O errors in the middle of the request, in which case
647 * we need to request the blocks that come after the bad
648 * sector.
649 * Notes: Upon return, cmd is a stale pointer.
650 */
651 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
652 {
653 struct request *req = cmd->request;
654 unsigned long flags;
655
656 spin_lock_irqsave(q->queue_lock, flags);
657 scsi_unprep_request(req);
658 blk_requeue_request(q, req);
659 spin_unlock_irqrestore(q->queue_lock, flags);
660
661 scsi_run_queue(q);
662 }
663
664 void scsi_next_command(struct scsi_cmnd *cmd)
665 {
666 struct scsi_device *sdev = cmd->device;
667 struct request_queue *q = sdev->request_queue;
668
669 /* need to hold a reference on the device before we let go of the cmd */
670 get_device(&sdev->sdev_gendev);
671
672 scsi_put_command(cmd);
673 scsi_run_queue(q);
674
675 /* ok to remove device now */
676 put_device(&sdev->sdev_gendev);
677 }
678
679 void scsi_run_host_queues(struct Scsi_Host *shost)
680 {
681 struct scsi_device *sdev;
682
683 shost_for_each_device(sdev, shost)
684 scsi_run_queue(sdev->request_queue);
685 }
686
687 /*
688 * Function: scsi_end_request()
689 *
690 * Purpose: Post-processing of completed commands (usually invoked at end
691 * of upper level post-processing and scsi_io_completion).
692 *
693 * Arguments: cmd - command that is complete.
694 * error - 0 if I/O indicates success, < 0 for I/O error.
695 * bytes - number of bytes of completed I/O
696 * requeue - indicates whether we should requeue leftovers.
697 *
698 * Lock status: Assumed that lock is not held upon entry.
699 *
700 * Returns: cmd if requeue required, NULL otherwise.
701 *
702 * Notes: This is called for block device requests in order to
703 * mark some number of sectors as complete.
704 *
705 * We are guaranteeing that the request queue will be goosed
706 * at some point during this call.
707 * Notes: If cmd was requeued, upon return it will be a stale pointer.
708 */
709 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
710 int bytes, int requeue)
711 {
712 struct request_queue *q = cmd->device->request_queue;
713 struct request *req = cmd->request;
714
715 /*
716 * If there are blocks left over at the end, set up the command
717 * to queue the remainder of them.
718 */
719 if (blk_end_request(req, error, bytes)) {
720 int leftover = (req->hard_nr_sectors << 9);
721
722 if (blk_pc_request(req))
723 leftover = req->data_len;
724
725 /* kill remainder if no retrys */
726 if (error && scsi_noretry_cmd(cmd))
727 blk_end_request(req, error, leftover);
728 else {
729 if (requeue) {
730 /*
731 * Bleah. Leftovers again. Stick the
732 * leftovers in the front of the
733 * queue, and goose the queue again.
734 */
735 scsi_requeue_command(q, cmd);
736 cmd = NULL;
737 }
738 return cmd;
739 }
740 }
741
742 /*
743 * This will goose the queue request function at the end, so we don't
744 * need to worry about launching another command.
745 */
746 scsi_next_command(cmd);
747 return NULL;
748 }
749
750 static inline unsigned int scsi_sgtable_index(unsigned short nents)
751 {
752 unsigned int index;
753
754 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
755
756 if (nents <= 8)
757 index = 0;
758 else
759 index = get_count_order(nents) - 3;
760
761 return index;
762 }
763
764 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
765 {
766 struct scsi_host_sg_pool *sgp;
767
768 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
769 mempool_free(sgl, sgp->pool);
770 }
771
772 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
773 {
774 struct scsi_host_sg_pool *sgp;
775
776 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
777 return mempool_alloc(sgp->pool, gfp_mask);
778 }
779
780 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
781 gfp_t gfp_mask)
782 {
783 int ret;
784
785 BUG_ON(!nents);
786
787 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
788 gfp_mask, scsi_sg_alloc);
789 if (unlikely(ret))
790 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
791 scsi_sg_free);
792
793 return ret;
794 }
795
796 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
797 {
798 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
799 }
800
801 /*
802 * Function: scsi_release_buffers()
803 *
804 * Purpose: Completion processing for block device I/O requests.
805 *
806 * Arguments: cmd - command that we are bailing.
807 *
808 * Lock status: Assumed that no lock is held upon entry.
809 *
810 * Returns: Nothing
811 *
812 * Notes: In the event that an upper level driver rejects a
813 * command, we must release resources allocated during
814 * the __init_io() function. Primarily this would involve
815 * the scatter-gather table, and potentially any bounce
816 * buffers.
817 */
818 void scsi_release_buffers(struct scsi_cmnd *cmd)
819 {
820 if (cmd->sdb.table.nents)
821 scsi_free_sgtable(&cmd->sdb);
822
823 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
824
825 if (scsi_bidi_cmnd(cmd)) {
826 struct scsi_data_buffer *bidi_sdb =
827 cmd->request->next_rq->special;
828 scsi_free_sgtable(bidi_sdb);
829 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
830 cmd->request->next_rq->special = NULL;
831 }
832
833 if (scsi_prot_sg_count(cmd))
834 scsi_free_sgtable(cmd->prot_sdb);
835 }
836 EXPORT_SYMBOL(scsi_release_buffers);
837
838 /*
839 * Bidi commands Must be complete as a whole, both sides at once.
840 * If part of the bytes were written and lld returned
841 * scsi_in()->resid and/or scsi_out()->resid this information will be left
842 * in req->data_len and req->next_rq->data_len. The upper-layer driver can
843 * decide what to do with this information.
844 */
845 static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
846 {
847 struct request *req = cmd->request;
848 unsigned int dlen = req->data_len;
849 unsigned int next_dlen = req->next_rq->data_len;
850
851 req->data_len = scsi_out(cmd)->resid;
852 req->next_rq->data_len = scsi_in(cmd)->resid;
853
854 /* The req and req->next_rq have not been completed */
855 BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
856
857 scsi_release_buffers(cmd);
858
859 /*
860 * This will goose the queue request function at the end, so we don't
861 * need to worry about launching another command.
862 */
863 scsi_next_command(cmd);
864 }
865
866 /*
867 * Function: scsi_io_completion()
868 *
869 * Purpose: Completion processing for block device I/O requests.
870 *
871 * Arguments: cmd - command that is finished.
872 *
873 * Lock status: Assumed that no lock is held upon entry.
874 *
875 * Returns: Nothing
876 *
877 * Notes: This function is matched in terms of capabilities to
878 * the function that created the scatter-gather list.
879 * In other words, if there are no bounce buffers
880 * (the normal case for most drivers), we don't need
881 * the logic to deal with cleaning up afterwards.
882 *
883 * We must call scsi_end_request(). This will finish off
884 * the specified number of sectors. If we are done, the
885 * command block will be released and the queue function
886 * will be goosed. If we are not done then we have to
887 * figure out what to do next:
888 *
889 * a) We can call scsi_requeue_command(). The request
890 * will be unprepared and put back on the queue. Then
891 * a new command will be created for it. This should
892 * be used if we made forward progress, or if we want
893 * to switch from READ(10) to READ(6) for example.
894 *
895 * b) We can call scsi_queue_insert(). The request will
896 * be put back on the queue and retried using the same
897 * command as before, possibly after a delay.
898 *
899 * c) We can call blk_end_request() with -EIO to fail
900 * the remainder of the request.
901 */
902 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
903 {
904 int result = cmd->result;
905 int this_count;
906 struct request_queue *q = cmd->device->request_queue;
907 struct request *req = cmd->request;
908 int error = 0;
909 struct scsi_sense_hdr sshdr;
910 int sense_valid = 0;
911 int sense_deferred = 0;
912 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
913 ACTION_DELAYED_RETRY} action;
914 char *description = NULL;
915
916 if (result) {
917 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
918 if (sense_valid)
919 sense_deferred = scsi_sense_is_deferred(&sshdr);
920 }
921
922 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
923 req->errors = result;
924 if (result) {
925 if (sense_valid && req->sense) {
926 /*
927 * SG_IO wants current and deferred errors
928 */
929 int len = 8 + cmd->sense_buffer[7];
930
931 if (len > SCSI_SENSE_BUFFERSIZE)
932 len = SCSI_SENSE_BUFFERSIZE;
933 memcpy(req->sense, cmd->sense_buffer, len);
934 req->sense_len = len;
935 }
936 if (!sense_deferred)
937 error = -EIO;
938 }
939 if (scsi_bidi_cmnd(cmd)) {
940 /* will also release_buffers */
941 scsi_end_bidi_request(cmd);
942 return;
943 }
944 req->data_len = scsi_get_resid(cmd);
945 }
946
947 BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
948 scsi_release_buffers(cmd);
949
950 /*
951 * Next deal with any sectors which we were able to correctly
952 * handle.
953 */
954 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
955 "%d bytes done.\n",
956 req->nr_sectors, good_bytes));
957
958 /* A number of bytes were successfully read. If there
959 * are leftovers and there is some kind of error
960 * (result != 0), retry the rest.
961 */
962 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
963 return;
964 this_count = blk_rq_bytes(req);
965
966 if (host_byte(result) == DID_RESET) {
967 /* Third party bus reset or reset for error recovery
968 * reasons. Just retry the command and see what
969 * happens.
970 */
971 action = ACTION_RETRY;
972 } else if (sense_valid && !sense_deferred) {
973 switch (sshdr.sense_key) {
974 case UNIT_ATTENTION:
975 if (cmd->device->removable) {
976 /* Detected disc change. Set a bit
977 * and quietly refuse further access.
978 */
979 cmd->device->changed = 1;
980 description = "Media Changed";
981 action = ACTION_FAIL;
982 } else {
983 /* Must have been a power glitch, or a
984 * bus reset. Could not have been a
985 * media change, so we just retry the
986 * command and see what happens.
987 */
988 action = ACTION_RETRY;
989 }
990 break;
991 case ILLEGAL_REQUEST:
992 /* If we had an ILLEGAL REQUEST returned, then
993 * we may have performed an unsupported
994 * command. The only thing this should be
995 * would be a ten byte read where only a six
996 * byte read was supported. Also, on a system
997 * where READ CAPACITY failed, we may have
998 * read past the end of the disk.
999 */
1000 if ((cmd->device->use_10_for_rw &&
1001 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
1002 (cmd->cmnd[0] == READ_10 ||
1003 cmd->cmnd[0] == WRITE_10)) {
1004 /* This will issue a new 6-byte command. */
1005 cmd->device->use_10_for_rw = 0;
1006 action = ACTION_REPREP;
1007 } else
1008 action = ACTION_FAIL;
1009 break;
1010 case ABORTED_COMMAND:
1011 if (sshdr.asc == 0x10) { /* DIF */
1012 action = ACTION_FAIL;
1013 description = "Data Integrity Failure";
1014 } else
1015 action = ACTION_RETRY;
1016 break;
1017 case NOT_READY:
1018 /* If the device is in the process of becoming
1019 * ready, or has a temporary blockage, retry.
1020 */
1021 if (sshdr.asc == 0x04) {
1022 switch (sshdr.ascq) {
1023 case 0x01: /* becoming ready */
1024 case 0x04: /* format in progress */
1025 case 0x05: /* rebuild in progress */
1026 case 0x06: /* recalculation in progress */
1027 case 0x07: /* operation in progress */
1028 case 0x08: /* Long write in progress */
1029 case 0x09: /* self test in progress */
1030 action = ACTION_DELAYED_RETRY;
1031 break;
1032 }
1033 } else {
1034 description = "Device not ready";
1035 action = ACTION_FAIL;
1036 }
1037 break;
1038 case VOLUME_OVERFLOW:
1039 /* See SSC3rXX or current. */
1040 action = ACTION_FAIL;
1041 break;
1042 default:
1043 description = "Unhandled sense code";
1044 action = ACTION_FAIL;
1045 break;
1046 }
1047 } else {
1048 description = "Unhandled error code";
1049 action = ACTION_FAIL;
1050 }
1051
1052 switch (action) {
1053 case ACTION_FAIL:
1054 /* Give up and fail the remainder of the request */
1055 if (!(req->cmd_flags & REQ_QUIET)) {
1056 if (description)
1057 scmd_printk(KERN_INFO, cmd, "%s",
1058 description);
1059 scsi_print_result(cmd);
1060 if (driver_byte(result) & DRIVER_SENSE)
1061 scsi_print_sense("", cmd);
1062 }
1063 blk_end_request(req, -EIO, blk_rq_bytes(req));
1064 scsi_next_command(cmd);
1065 break;
1066 case ACTION_REPREP:
1067 /* Unprep the request and put it back at the head of the queue.
1068 * A new command will be prepared and issued.
1069 */
1070 scsi_requeue_command(q, cmd);
1071 break;
1072 case ACTION_RETRY:
1073 /* Retry the same command immediately */
1074 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1075 break;
1076 case ACTION_DELAYED_RETRY:
1077 /* Retry the same command after a delay */
1078 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1079 break;
1080 }
1081 }
1082
1083 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1084 gfp_t gfp_mask)
1085 {
1086 int count;
1087
1088 /*
1089 * If sg table allocation fails, requeue request later.
1090 */
1091 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1092 gfp_mask))) {
1093 return BLKPREP_DEFER;
1094 }
1095
1096 req->buffer = NULL;
1097
1098 /*
1099 * Next, walk the list, and fill in the addresses and sizes of
1100 * each segment.
1101 */
1102 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1103 BUG_ON(count > sdb->table.nents);
1104 sdb->table.nents = count;
1105 if (blk_pc_request(req))
1106 sdb->length = req->data_len;
1107 else
1108 sdb->length = req->nr_sectors << 9;
1109 return BLKPREP_OK;
1110 }
1111
1112 /*
1113 * Function: scsi_init_io()
1114 *
1115 * Purpose: SCSI I/O initialize function.
1116 *
1117 * Arguments: cmd - Command descriptor we wish to initialize
1118 *
1119 * Returns: 0 on success
1120 * BLKPREP_DEFER if the failure is retryable
1121 * BLKPREP_KILL if the failure is fatal
1122 */
1123 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1124 {
1125 int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
1126 if (error)
1127 goto err_exit;
1128
1129 if (blk_bidi_rq(cmd->request)) {
1130 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1131 scsi_sdb_cache, GFP_ATOMIC);
1132 if (!bidi_sdb) {
1133 error = BLKPREP_DEFER;
1134 goto err_exit;
1135 }
1136
1137 cmd->request->next_rq->special = bidi_sdb;
1138 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1139 GFP_ATOMIC);
1140 if (error)
1141 goto err_exit;
1142 }
1143
1144 if (blk_integrity_rq(cmd->request)) {
1145 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1146 int ivecs, count;
1147
1148 BUG_ON(prot_sdb == NULL);
1149 ivecs = blk_rq_count_integrity_sg(cmd->request);
1150
1151 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1152 error = BLKPREP_DEFER;
1153 goto err_exit;
1154 }
1155
1156 count = blk_rq_map_integrity_sg(cmd->request,
1157 prot_sdb->table.sgl);
1158 BUG_ON(unlikely(count > ivecs));
1159
1160 cmd->prot_sdb = prot_sdb;
1161 cmd->prot_sdb->table.nents = count;
1162 }
1163
1164 return BLKPREP_OK ;
1165
1166 err_exit:
1167 scsi_release_buffers(cmd);
1168 if (error == BLKPREP_KILL)
1169 scsi_put_command(cmd);
1170 else /* BLKPREP_DEFER */
1171 scsi_unprep_request(cmd->request);
1172
1173 return error;
1174 }
1175 EXPORT_SYMBOL(scsi_init_io);
1176
1177 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1178 struct request *req)
1179 {
1180 struct scsi_cmnd *cmd;
1181
1182 if (!req->special) {
1183 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1184 if (unlikely(!cmd))
1185 return NULL;
1186 req->special = cmd;
1187 } else {
1188 cmd = req->special;
1189 }
1190
1191 /* pull a tag out of the request if we have one */
1192 cmd->tag = req->tag;
1193 cmd->request = req;
1194
1195 cmd->cmnd = req->cmd;
1196
1197 return cmd;
1198 }
1199
1200 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1201 {
1202 struct scsi_cmnd *cmd;
1203 int ret = scsi_prep_state_check(sdev, req);
1204
1205 if (ret != BLKPREP_OK)
1206 return ret;
1207
1208 cmd = scsi_get_cmd_from_req(sdev, req);
1209 if (unlikely(!cmd))
1210 return BLKPREP_DEFER;
1211
1212 /*
1213 * BLOCK_PC requests may transfer data, in which case they must
1214 * a bio attached to them. Or they might contain a SCSI command
1215 * that does not transfer data, in which case they may optionally
1216 * submit a request without an attached bio.
1217 */
1218 if (req->bio) {
1219 int ret;
1220
1221 BUG_ON(!req->nr_phys_segments);
1222
1223 ret = scsi_init_io(cmd, GFP_ATOMIC);
1224 if (unlikely(ret))
1225 return ret;
1226 } else {
1227 BUG_ON(req->data_len);
1228 BUG_ON(req->data);
1229
1230 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1231 req->buffer = NULL;
1232 }
1233
1234 cmd->cmd_len = req->cmd_len;
1235 if (!req->data_len)
1236 cmd->sc_data_direction = DMA_NONE;
1237 else if (rq_data_dir(req) == WRITE)
1238 cmd->sc_data_direction = DMA_TO_DEVICE;
1239 else
1240 cmd->sc_data_direction = DMA_FROM_DEVICE;
1241
1242 cmd->transfersize = req->data_len;
1243 cmd->allowed = req->retries;
1244 return BLKPREP_OK;
1245 }
1246 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1247
1248 /*
1249 * Setup a REQ_TYPE_FS command. These are simple read/write request
1250 * from filesystems that still need to be translated to SCSI CDBs from
1251 * the ULD.
1252 */
1253 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1254 {
1255 struct scsi_cmnd *cmd;
1256 int ret = scsi_prep_state_check(sdev, req);
1257
1258 if (ret != BLKPREP_OK)
1259 return ret;
1260
1261 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1262 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1263 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1264 if (ret != BLKPREP_OK)
1265 return ret;
1266 }
1267
1268 /*
1269 * Filesystem requests must transfer data.
1270 */
1271 BUG_ON(!req->nr_phys_segments);
1272
1273 cmd = scsi_get_cmd_from_req(sdev, req);
1274 if (unlikely(!cmd))
1275 return BLKPREP_DEFER;
1276
1277 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1278 return scsi_init_io(cmd, GFP_ATOMIC);
1279 }
1280 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1281
1282 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1283 {
1284 int ret = BLKPREP_OK;
1285
1286 /*
1287 * If the device is not in running state we will reject some
1288 * or all commands.
1289 */
1290 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1291 switch (sdev->sdev_state) {
1292 case SDEV_OFFLINE:
1293 /*
1294 * If the device is offline we refuse to process any
1295 * commands. The device must be brought online
1296 * before trying any recovery commands.
1297 */
1298 sdev_printk(KERN_ERR, sdev,
1299 "rejecting I/O to offline device\n");
1300 ret = BLKPREP_KILL;
1301 break;
1302 case SDEV_DEL:
1303 /*
1304 * If the device is fully deleted, we refuse to
1305 * process any commands as well.
1306 */
1307 sdev_printk(KERN_ERR, sdev,
1308 "rejecting I/O to dead device\n");
1309 ret = BLKPREP_KILL;
1310 break;
1311 case SDEV_QUIESCE:
1312 case SDEV_BLOCK:
1313 case SDEV_CREATED_BLOCK:
1314 /*
1315 * If the devices is blocked we defer normal commands.
1316 */
1317 if (!(req->cmd_flags & REQ_PREEMPT))
1318 ret = BLKPREP_DEFER;
1319 break;
1320 default:
1321 /*
1322 * For any other not fully online state we only allow
1323 * special commands. In particular any user initiated
1324 * command is not allowed.
1325 */
1326 if (!(req->cmd_flags & REQ_PREEMPT))
1327 ret = BLKPREP_KILL;
1328 break;
1329 }
1330 }
1331 return ret;
1332 }
1333 EXPORT_SYMBOL(scsi_prep_state_check);
1334
1335 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1336 {
1337 struct scsi_device *sdev = q->queuedata;
1338
1339 switch (ret) {
1340 case BLKPREP_KILL:
1341 req->errors = DID_NO_CONNECT << 16;
1342 /* release the command and kill it */
1343 if (req->special) {
1344 struct scsi_cmnd *cmd = req->special;
1345 scsi_release_buffers(cmd);
1346 scsi_put_command(cmd);
1347 req->special = NULL;
1348 }
1349 break;
1350 case BLKPREP_DEFER:
1351 /*
1352 * If we defer, the elv_next_request() returns NULL, but the
1353 * queue must be restarted, so we plug here if no returning
1354 * command will automatically do that.
1355 */
1356 if (sdev->device_busy == 0)
1357 blk_plug_device(q);
1358 break;
1359 default:
1360 req->cmd_flags |= REQ_DONTPREP;
1361 }
1362
1363 return ret;
1364 }
1365 EXPORT_SYMBOL(scsi_prep_return);
1366
1367 int scsi_prep_fn(struct request_queue *q, struct request *req)
1368 {
1369 struct scsi_device *sdev = q->queuedata;
1370 int ret = BLKPREP_KILL;
1371
1372 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1373 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1374 return scsi_prep_return(q, req, ret);
1375 }
1376
1377 /*
1378 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1379 * return 0.
1380 *
1381 * Called with the queue_lock held.
1382 */
1383 static inline int scsi_dev_queue_ready(struct request_queue *q,
1384 struct scsi_device *sdev)
1385 {
1386 if (sdev->device_busy == 0 && sdev->device_blocked) {
1387 /*
1388 * unblock after device_blocked iterates to zero
1389 */
1390 if (--sdev->device_blocked == 0) {
1391 SCSI_LOG_MLQUEUE(3,
1392 sdev_printk(KERN_INFO, sdev,
1393 "unblocking device at zero depth\n"));
1394 } else {
1395 blk_plug_device(q);
1396 return 0;
1397 }
1398 }
1399 if (scsi_device_is_busy(sdev))
1400 return 0;
1401
1402 return 1;
1403 }
1404
1405
1406 /*
1407 * scsi_target_queue_ready: checks if there we can send commands to target
1408 * @sdev: scsi device on starget to check.
1409 *
1410 * Called with the host lock held.
1411 */
1412 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1413 struct scsi_device *sdev)
1414 {
1415 struct scsi_target *starget = scsi_target(sdev);
1416
1417 if (starget->single_lun) {
1418 if (starget->starget_sdev_user &&
1419 starget->starget_sdev_user != sdev)
1420 return 0;
1421 starget->starget_sdev_user = sdev;
1422 }
1423
1424 if (starget->target_busy == 0 && starget->target_blocked) {
1425 /*
1426 * unblock after target_blocked iterates to zero
1427 */
1428 if (--starget->target_blocked == 0) {
1429 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1430 "unblocking target at zero depth\n"));
1431 } else {
1432 blk_plug_device(sdev->request_queue);
1433 return 0;
1434 }
1435 }
1436
1437 if (scsi_target_is_busy(starget)) {
1438 if (list_empty(&sdev->starved_entry)) {
1439 list_add_tail(&sdev->starved_entry,
1440 &shost->starved_list);
1441 return 0;
1442 }
1443 }
1444
1445 /* We're OK to process the command, so we can't be starved */
1446 if (!list_empty(&sdev->starved_entry))
1447 list_del_init(&sdev->starved_entry);
1448 return 1;
1449 }
1450
1451 /*
1452 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1453 * return 0. We must end up running the queue again whenever 0 is
1454 * returned, else IO can hang.
1455 *
1456 * Called with host_lock held.
1457 */
1458 static inline int scsi_host_queue_ready(struct request_queue *q,
1459 struct Scsi_Host *shost,
1460 struct scsi_device *sdev)
1461 {
1462 if (scsi_host_in_recovery(shost))
1463 return 0;
1464 if (shost->host_busy == 0 && shost->host_blocked) {
1465 /*
1466 * unblock after host_blocked iterates to zero
1467 */
1468 if (--shost->host_blocked == 0) {
1469 SCSI_LOG_MLQUEUE(3,
1470 printk("scsi%d unblocking host at zero depth\n",
1471 shost->host_no));
1472 } else {
1473 return 0;
1474 }
1475 }
1476 if (scsi_host_is_busy(shost)) {
1477 if (list_empty(&sdev->starved_entry))
1478 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1479 return 0;
1480 }
1481
1482 /* We're OK to process the command, so we can't be starved */
1483 if (!list_empty(&sdev->starved_entry))
1484 list_del_init(&sdev->starved_entry);
1485
1486 return 1;
1487 }
1488
1489 /*
1490 * Busy state exporting function for request stacking drivers.
1491 *
1492 * For efficiency, no lock is taken to check the busy state of
1493 * shost/starget/sdev, since the returned value is not guaranteed and
1494 * may be changed after request stacking drivers call the function,
1495 * regardless of taking lock or not.
1496 *
1497 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1498 * (e.g. !sdev), scsi needs to return 'not busy'.
1499 * Otherwise, request stacking drivers may hold requests forever.
1500 */
1501 static int scsi_lld_busy(struct request_queue *q)
1502 {
1503 struct scsi_device *sdev = q->queuedata;
1504 struct Scsi_Host *shost;
1505 struct scsi_target *starget;
1506
1507 if (!sdev)
1508 return 0;
1509
1510 shost = sdev->host;
1511 starget = scsi_target(sdev);
1512
1513 if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1514 scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1515 return 1;
1516
1517 return 0;
1518 }
1519
1520 /*
1521 * Kill a request for a dead device
1522 */
1523 static void scsi_kill_request(struct request *req, struct request_queue *q)
1524 {
1525 struct scsi_cmnd *cmd = req->special;
1526 struct scsi_device *sdev = cmd->device;
1527 struct scsi_target *starget = scsi_target(sdev);
1528 struct Scsi_Host *shost = sdev->host;
1529
1530 blkdev_dequeue_request(req);
1531
1532 if (unlikely(cmd == NULL)) {
1533 printk(KERN_CRIT "impossible request in %s.\n",
1534 __func__);
1535 BUG();
1536 }
1537
1538 scsi_init_cmd_errh(cmd);
1539 cmd->result = DID_NO_CONNECT << 16;
1540 atomic_inc(&cmd->device->iorequest_cnt);
1541
1542 /*
1543 * SCSI request completion path will do scsi_device_unbusy(),
1544 * bump busy counts. To bump the counters, we need to dance
1545 * with the locks as normal issue path does.
1546 */
1547 sdev->device_busy++;
1548 spin_unlock(sdev->request_queue->queue_lock);
1549 spin_lock(shost->host_lock);
1550 shost->host_busy++;
1551 starget->target_busy++;
1552 spin_unlock(shost->host_lock);
1553 spin_lock(sdev->request_queue->queue_lock);
1554
1555 blk_complete_request(req);
1556 }
1557
1558 static void scsi_softirq_done(struct request *rq)
1559 {
1560 struct scsi_cmnd *cmd = rq->special;
1561 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1562 int disposition;
1563
1564 INIT_LIST_HEAD(&cmd->eh_entry);
1565
1566 /*
1567 * Set the serial numbers back to zero
1568 */
1569 cmd->serial_number = 0;
1570
1571 atomic_inc(&cmd->device->iodone_cnt);
1572 if (cmd->result)
1573 atomic_inc(&cmd->device->ioerr_cnt);
1574
1575 disposition = scsi_decide_disposition(cmd);
1576 if (disposition != SUCCESS &&
1577 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1578 sdev_printk(KERN_ERR, cmd->device,
1579 "timing out command, waited %lus\n",
1580 wait_for/HZ);
1581 disposition = SUCCESS;
1582 }
1583
1584 scsi_log_completion(cmd, disposition);
1585
1586 switch (disposition) {
1587 case SUCCESS:
1588 scsi_finish_command(cmd);
1589 break;
1590 case NEEDS_RETRY:
1591 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1592 break;
1593 case ADD_TO_MLQUEUE:
1594 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1595 break;
1596 default:
1597 if (!scsi_eh_scmd_add(cmd, 0))
1598 scsi_finish_command(cmd);
1599 }
1600 }
1601
1602 /*
1603 * Function: scsi_request_fn()
1604 *
1605 * Purpose: Main strategy routine for SCSI.
1606 *
1607 * Arguments: q - Pointer to actual queue.
1608 *
1609 * Returns: Nothing
1610 *
1611 * Lock status: IO request lock assumed to be held when called.
1612 */
1613 static void scsi_request_fn(struct request_queue *q)
1614 {
1615 struct scsi_device *sdev = q->queuedata;
1616 struct Scsi_Host *shost;
1617 struct scsi_cmnd *cmd;
1618 struct request *req;
1619
1620 if (!sdev) {
1621 printk("scsi: killing requests for dead queue\n");
1622 while ((req = elv_next_request(q)) != NULL)
1623 scsi_kill_request(req, q);
1624 return;
1625 }
1626
1627 if(!get_device(&sdev->sdev_gendev))
1628 /* We must be tearing the block queue down already */
1629 return;
1630
1631 /*
1632 * To start with, we keep looping until the queue is empty, or until
1633 * the host is no longer able to accept any more requests.
1634 */
1635 shost = sdev->host;
1636 while (!blk_queue_plugged(q)) {
1637 int rtn;
1638 /*
1639 * get next queueable request. We do this early to make sure
1640 * that the request is fully prepared even if we cannot
1641 * accept it.
1642 */
1643 req = elv_next_request(q);
1644 if (!req || !scsi_dev_queue_ready(q, sdev))
1645 break;
1646
1647 if (unlikely(!scsi_device_online(sdev))) {
1648 sdev_printk(KERN_ERR, sdev,
1649 "rejecting I/O to offline device\n");
1650 scsi_kill_request(req, q);
1651 continue;
1652 }
1653
1654
1655 /*
1656 * Remove the request from the request list.
1657 */
1658 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1659 blkdev_dequeue_request(req);
1660 sdev->device_busy++;
1661
1662 spin_unlock(q->queue_lock);
1663 cmd = req->special;
1664 if (unlikely(cmd == NULL)) {
1665 printk(KERN_CRIT "impossible request in %s.\n"
1666 "please mail a stack trace to "
1667 "linux-scsi@vger.kernel.org\n",
1668 __func__);
1669 blk_dump_rq_flags(req, "foo");
1670 BUG();
1671 }
1672 spin_lock(shost->host_lock);
1673
1674 /*
1675 * We hit this when the driver is using a host wide
1676 * tag map. For device level tag maps the queue_depth check
1677 * in the device ready fn would prevent us from trying
1678 * to allocate a tag. Since the map is a shared host resource
1679 * we add the dev to the starved list so it eventually gets
1680 * a run when a tag is freed.
1681 */
1682 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1683 if (list_empty(&sdev->starved_entry))
1684 list_add_tail(&sdev->starved_entry,
1685 &shost->starved_list);
1686 goto not_ready;
1687 }
1688
1689 if (!scsi_target_queue_ready(shost, sdev))
1690 goto not_ready;
1691
1692 if (!scsi_host_queue_ready(q, shost, sdev))
1693 goto not_ready;
1694
1695 scsi_target(sdev)->target_busy++;
1696 shost->host_busy++;
1697
1698 /*
1699 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1700 * take the lock again.
1701 */
1702 spin_unlock_irq(shost->host_lock);
1703
1704 /*
1705 * Finally, initialize any error handling parameters, and set up
1706 * the timers for timeouts.
1707 */
1708 scsi_init_cmd_errh(cmd);
1709
1710 /*
1711 * Dispatch the command to the low-level driver.
1712 */
1713 rtn = scsi_dispatch_cmd(cmd);
1714 spin_lock_irq(q->queue_lock);
1715 if(rtn) {
1716 /* we're refusing the command; because of
1717 * the way locks get dropped, we need to
1718 * check here if plugging is required */
1719 if(sdev->device_busy == 0)
1720 blk_plug_device(q);
1721
1722 break;
1723 }
1724 }
1725
1726 goto out;
1727
1728 not_ready:
1729 spin_unlock_irq(shost->host_lock);
1730
1731 /*
1732 * lock q, handle tag, requeue req, and decrement device_busy. We
1733 * must return with queue_lock held.
1734 *
1735 * Decrementing device_busy without checking it is OK, as all such
1736 * cases (host limits or settings) should run the queue at some
1737 * later time.
1738 */
1739 spin_lock_irq(q->queue_lock);
1740 blk_requeue_request(q, req);
1741 sdev->device_busy--;
1742 if(sdev->device_busy == 0)
1743 blk_plug_device(q);
1744 out:
1745 /* must be careful here...if we trigger the ->remove() function
1746 * we cannot be holding the q lock */
1747 spin_unlock_irq(q->queue_lock);
1748 put_device(&sdev->sdev_gendev);
1749 spin_lock_irq(q->queue_lock);
1750 }
1751
1752 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1753 {
1754 struct device *host_dev;
1755 u64 bounce_limit = 0xffffffff;
1756
1757 if (shost->unchecked_isa_dma)
1758 return BLK_BOUNCE_ISA;
1759 /*
1760 * Platforms with virtual-DMA translation
1761 * hardware have no practical limit.
1762 */
1763 if (!PCI_DMA_BUS_IS_PHYS)
1764 return BLK_BOUNCE_ANY;
1765
1766 host_dev = scsi_get_device(shost);
1767 if (host_dev && host_dev->dma_mask)
1768 bounce_limit = *host_dev->dma_mask;
1769
1770 return bounce_limit;
1771 }
1772 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1773
1774 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1775 request_fn_proc *request_fn)
1776 {
1777 struct request_queue *q;
1778 struct device *dev = shost->shost_gendev.parent;
1779
1780 q = blk_init_queue(request_fn, NULL);
1781 if (!q)
1782 return NULL;
1783
1784 /*
1785 * this limit is imposed by hardware restrictions
1786 */
1787 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1788 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1789
1790 blk_queue_max_sectors(q, shost->max_sectors);
1791 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1792 blk_queue_segment_boundary(q, shost->dma_boundary);
1793 dma_set_seg_boundary(dev, shost->dma_boundary);
1794
1795 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1796
1797 /* New queue, no concurrency on queue_flags */
1798 if (!shost->use_clustering)
1799 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1800
1801 /*
1802 * set a reasonable default alignment on word boundaries: the
1803 * host and device may alter it using
1804 * blk_queue_update_dma_alignment() later.
1805 */
1806 blk_queue_dma_alignment(q, 0x03);
1807
1808 return q;
1809 }
1810 EXPORT_SYMBOL(__scsi_alloc_queue);
1811
1812 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1813 {
1814 struct request_queue *q;
1815
1816 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1817 if (!q)
1818 return NULL;
1819
1820 blk_queue_prep_rq(q, scsi_prep_fn);
1821 blk_queue_softirq_done(q, scsi_softirq_done);
1822 blk_queue_rq_timed_out(q, scsi_times_out);
1823 blk_queue_lld_busy(q, scsi_lld_busy);
1824 return q;
1825 }
1826
1827 void scsi_free_queue(struct request_queue *q)
1828 {
1829 blk_cleanup_queue(q);
1830 }
1831
1832 /*
1833 * Function: scsi_block_requests()
1834 *
1835 * Purpose: Utility function used by low-level drivers to prevent further
1836 * commands from being queued to the device.
1837 *
1838 * Arguments: shost - Host in question
1839 *
1840 * Returns: Nothing
1841 *
1842 * Lock status: No locks are assumed held.
1843 *
1844 * Notes: There is no timer nor any other means by which the requests
1845 * get unblocked other than the low-level driver calling
1846 * scsi_unblock_requests().
1847 */
1848 void scsi_block_requests(struct Scsi_Host *shost)
1849 {
1850 shost->host_self_blocked = 1;
1851 }
1852 EXPORT_SYMBOL(scsi_block_requests);
1853
1854 /*
1855 * Function: scsi_unblock_requests()
1856 *
1857 * Purpose: Utility function used by low-level drivers to allow further
1858 * commands from being queued to the device.
1859 *
1860 * Arguments: shost - Host in question
1861 *
1862 * Returns: Nothing
1863 *
1864 * Lock status: No locks are assumed held.
1865 *
1866 * Notes: There is no timer nor any other means by which the requests
1867 * get unblocked other than the low-level driver calling
1868 * scsi_unblock_requests().
1869 *
1870 * This is done as an API function so that changes to the
1871 * internals of the scsi mid-layer won't require wholesale
1872 * changes to drivers that use this feature.
1873 */
1874 void scsi_unblock_requests(struct Scsi_Host *shost)
1875 {
1876 shost->host_self_blocked = 0;
1877 scsi_run_host_queues(shost);
1878 }
1879 EXPORT_SYMBOL(scsi_unblock_requests);
1880
1881 int __init scsi_init_queue(void)
1882 {
1883 int i;
1884
1885 scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1886 sizeof(struct scsi_io_context),
1887 0, 0, NULL);
1888 if (!scsi_io_context_cache) {
1889 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1890 return -ENOMEM;
1891 }
1892
1893 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1894 sizeof(struct scsi_data_buffer),
1895 0, 0, NULL);
1896 if (!scsi_sdb_cache) {
1897 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1898 goto cleanup_io_context;
1899 }
1900
1901 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1902 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1903 int size = sgp->size * sizeof(struct scatterlist);
1904
1905 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1906 SLAB_HWCACHE_ALIGN, NULL);
1907 if (!sgp->slab) {
1908 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1909 sgp->name);
1910 goto cleanup_sdb;
1911 }
1912
1913 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1914 sgp->slab);
1915 if (!sgp->pool) {
1916 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1917 sgp->name);
1918 goto cleanup_sdb;
1919 }
1920 }
1921
1922 return 0;
1923
1924 cleanup_sdb:
1925 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1926 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1927 if (sgp->pool)
1928 mempool_destroy(sgp->pool);
1929 if (sgp->slab)
1930 kmem_cache_destroy(sgp->slab);
1931 }
1932 kmem_cache_destroy(scsi_sdb_cache);
1933 cleanup_io_context:
1934 kmem_cache_destroy(scsi_io_context_cache);
1935
1936 return -ENOMEM;
1937 }
1938
1939 void scsi_exit_queue(void)
1940 {
1941 int i;
1942
1943 kmem_cache_destroy(scsi_io_context_cache);
1944 kmem_cache_destroy(scsi_sdb_cache);
1945
1946 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1947 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1948 mempool_destroy(sgp->pool);
1949 kmem_cache_destroy(sgp->slab);
1950 }
1951 }
1952
1953 /**
1954 * scsi_mode_select - issue a mode select
1955 * @sdev: SCSI device to be queried
1956 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1957 * @sp: Save page bit (0 == don't save, 1 == save)
1958 * @modepage: mode page being requested
1959 * @buffer: request buffer (may not be smaller than eight bytes)
1960 * @len: length of request buffer.
1961 * @timeout: command timeout
1962 * @retries: number of retries before failing
1963 * @data: returns a structure abstracting the mode header data
1964 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1965 * must be SCSI_SENSE_BUFFERSIZE big.
1966 *
1967 * Returns zero if successful; negative error number or scsi
1968 * status on error
1969 *
1970 */
1971 int
1972 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1973 unsigned char *buffer, int len, int timeout, int retries,
1974 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1975 {
1976 unsigned char cmd[10];
1977 unsigned char *real_buffer;
1978 int ret;
1979
1980 memset(cmd, 0, sizeof(cmd));
1981 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1982
1983 if (sdev->use_10_for_ms) {
1984 if (len > 65535)
1985 return -EINVAL;
1986 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1987 if (!real_buffer)
1988 return -ENOMEM;
1989 memcpy(real_buffer + 8, buffer, len);
1990 len += 8;
1991 real_buffer[0] = 0;
1992 real_buffer[1] = 0;
1993 real_buffer[2] = data->medium_type;
1994 real_buffer[3] = data->device_specific;
1995 real_buffer[4] = data->longlba ? 0x01 : 0;
1996 real_buffer[5] = 0;
1997 real_buffer[6] = data->block_descriptor_length >> 8;
1998 real_buffer[7] = data->block_descriptor_length;
1999
2000 cmd[0] = MODE_SELECT_10;
2001 cmd[7] = len >> 8;
2002 cmd[8] = len;
2003 } else {
2004 if (len > 255 || data->block_descriptor_length > 255 ||
2005 data->longlba)
2006 return -EINVAL;
2007
2008 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2009 if (!real_buffer)
2010 return -ENOMEM;
2011 memcpy(real_buffer + 4, buffer, len);
2012 len += 4;
2013 real_buffer[0] = 0;
2014 real_buffer[1] = data->medium_type;
2015 real_buffer[2] = data->device_specific;
2016 real_buffer[3] = data->block_descriptor_length;
2017
2018
2019 cmd[0] = MODE_SELECT;
2020 cmd[4] = len;
2021 }
2022
2023 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2024 sshdr, timeout, retries, NULL);
2025 kfree(real_buffer);
2026 return ret;
2027 }
2028 EXPORT_SYMBOL_GPL(scsi_mode_select);
2029
2030 /**
2031 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2032 * @sdev: SCSI device to be queried
2033 * @dbd: set if mode sense will allow block descriptors to be returned
2034 * @modepage: mode page being requested
2035 * @buffer: request buffer (may not be smaller than eight bytes)
2036 * @len: length of request buffer.
2037 * @timeout: command timeout
2038 * @retries: number of retries before failing
2039 * @data: returns a structure abstracting the mode header data
2040 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2041 * must be SCSI_SENSE_BUFFERSIZE big.
2042 *
2043 * Returns zero if unsuccessful, or the header offset (either 4
2044 * or 8 depending on whether a six or ten byte command was
2045 * issued) if successful.
2046 */
2047 int
2048 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2049 unsigned char *buffer, int len, int timeout, int retries,
2050 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2051 {
2052 unsigned char cmd[12];
2053 int use_10_for_ms;
2054 int header_length;
2055 int result;
2056 struct scsi_sense_hdr my_sshdr;
2057
2058 memset(data, 0, sizeof(*data));
2059 memset(&cmd[0], 0, 12);
2060 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2061 cmd[2] = modepage;
2062
2063 /* caller might not be interested in sense, but we need it */
2064 if (!sshdr)
2065 sshdr = &my_sshdr;
2066
2067 retry:
2068 use_10_for_ms = sdev->use_10_for_ms;
2069
2070 if (use_10_for_ms) {
2071 if (len < 8)
2072 len = 8;
2073
2074 cmd[0] = MODE_SENSE_10;
2075 cmd[8] = len;
2076 header_length = 8;
2077 } else {
2078 if (len < 4)
2079 len = 4;
2080
2081 cmd[0] = MODE_SENSE;
2082 cmd[4] = len;
2083 header_length = 4;
2084 }
2085
2086 memset(buffer, 0, len);
2087
2088 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2089 sshdr, timeout, retries, NULL);
2090
2091 /* This code looks awful: what it's doing is making sure an
2092 * ILLEGAL REQUEST sense return identifies the actual command
2093 * byte as the problem. MODE_SENSE commands can return
2094 * ILLEGAL REQUEST if the code page isn't supported */
2095
2096 if (use_10_for_ms && !scsi_status_is_good(result) &&
2097 (driver_byte(result) & DRIVER_SENSE)) {
2098 if (scsi_sense_valid(sshdr)) {
2099 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2100 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2101 /*
2102 * Invalid command operation code
2103 */
2104 sdev->use_10_for_ms = 0;
2105 goto retry;
2106 }
2107 }
2108 }
2109
2110 if(scsi_status_is_good(result)) {
2111 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2112 (modepage == 6 || modepage == 8))) {
2113 /* Initio breakage? */
2114 header_length = 0;
2115 data->length = 13;
2116 data->medium_type = 0;
2117 data->device_specific = 0;
2118 data->longlba = 0;
2119 data->block_descriptor_length = 0;
2120 } else if(use_10_for_ms) {
2121 data->length = buffer[0]*256 + buffer[1] + 2;
2122 data->medium_type = buffer[2];
2123 data->device_specific = buffer[3];
2124 data->longlba = buffer[4] & 0x01;
2125 data->block_descriptor_length = buffer[6]*256
2126 + buffer[7];
2127 } else {
2128 data->length = buffer[0] + 1;
2129 data->medium_type = buffer[1];
2130 data->device_specific = buffer[2];
2131 data->block_descriptor_length = buffer[3];
2132 }
2133 data->header_length = header_length;
2134 }
2135
2136 return result;
2137 }
2138 EXPORT_SYMBOL(scsi_mode_sense);
2139
2140 /**
2141 * scsi_test_unit_ready - test if unit is ready
2142 * @sdev: scsi device to change the state of.
2143 * @timeout: command timeout
2144 * @retries: number of retries before failing
2145 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2146 * returning sense. Make sure that this is cleared before passing
2147 * in.
2148 *
2149 * Returns zero if unsuccessful or an error if TUR failed. For
2150 * removable media, a return of NOT_READY or UNIT_ATTENTION is
2151 * translated to success, with the ->changed flag updated.
2152 **/
2153 int
2154 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2155 struct scsi_sense_hdr *sshdr_external)
2156 {
2157 char cmd[] = {
2158 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2159 };
2160 struct scsi_sense_hdr *sshdr;
2161 int result;
2162
2163 if (!sshdr_external)
2164 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2165 else
2166 sshdr = sshdr_external;
2167
2168 /* try to eat the UNIT_ATTENTION if there are enough retries */
2169 do {
2170 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2171 timeout, retries, NULL);
2172 if (sdev->removable && scsi_sense_valid(sshdr) &&
2173 sshdr->sense_key == UNIT_ATTENTION)
2174 sdev->changed = 1;
2175 } while (scsi_sense_valid(sshdr) &&
2176 sshdr->sense_key == UNIT_ATTENTION && --retries);
2177
2178 if (!sshdr)
2179 /* could not allocate sense buffer, so can't process it */
2180 return result;
2181
2182 if (sdev->removable && scsi_sense_valid(sshdr) &&
2183 (sshdr->sense_key == UNIT_ATTENTION ||
2184 sshdr->sense_key == NOT_READY)) {
2185 sdev->changed = 1;
2186 result = 0;
2187 }
2188 if (!sshdr_external)
2189 kfree(sshdr);
2190 return result;
2191 }
2192 EXPORT_SYMBOL(scsi_test_unit_ready);
2193
2194 /**
2195 * scsi_device_set_state - Take the given device through the device state model.
2196 * @sdev: scsi device to change the state of.
2197 * @state: state to change to.
2198 *
2199 * Returns zero if unsuccessful or an error if the requested
2200 * transition is illegal.
2201 */
2202 int
2203 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2204 {
2205 enum scsi_device_state oldstate = sdev->sdev_state;
2206
2207 if (state == oldstate)
2208 return 0;
2209
2210 switch (state) {
2211 case SDEV_CREATED:
2212 switch (oldstate) {
2213 case SDEV_CREATED_BLOCK:
2214 break;
2215 default:
2216 goto illegal;
2217 }
2218 break;
2219
2220 case SDEV_RUNNING:
2221 switch (oldstate) {
2222 case SDEV_CREATED:
2223 case SDEV_OFFLINE:
2224 case SDEV_QUIESCE:
2225 case SDEV_BLOCK:
2226 break;
2227 default:
2228 goto illegal;
2229 }
2230 break;
2231
2232 case SDEV_QUIESCE:
2233 switch (oldstate) {
2234 case SDEV_RUNNING:
2235 case SDEV_OFFLINE:
2236 break;
2237 default:
2238 goto illegal;
2239 }
2240 break;
2241
2242 case SDEV_OFFLINE:
2243 switch (oldstate) {
2244 case SDEV_CREATED:
2245 case SDEV_RUNNING:
2246 case SDEV_QUIESCE:
2247 case SDEV_BLOCK:
2248 break;
2249 default:
2250 goto illegal;
2251 }
2252 break;
2253
2254 case SDEV_BLOCK:
2255 switch (oldstate) {
2256 case SDEV_RUNNING:
2257 case SDEV_CREATED_BLOCK:
2258 break;
2259 default:
2260 goto illegal;
2261 }
2262 break;
2263
2264 case SDEV_CREATED_BLOCK:
2265 switch (oldstate) {
2266 case SDEV_CREATED:
2267 break;
2268 default:
2269 goto illegal;
2270 }
2271 break;
2272
2273 case SDEV_CANCEL:
2274 switch (oldstate) {
2275 case SDEV_CREATED:
2276 case SDEV_RUNNING:
2277 case SDEV_QUIESCE:
2278 case SDEV_OFFLINE:
2279 case SDEV_BLOCK:
2280 break;
2281 default:
2282 goto illegal;
2283 }
2284 break;
2285
2286 case SDEV_DEL:
2287 switch (oldstate) {
2288 case SDEV_CREATED:
2289 case SDEV_RUNNING:
2290 case SDEV_OFFLINE:
2291 case SDEV_CANCEL:
2292 break;
2293 default:
2294 goto illegal;
2295 }
2296 break;
2297
2298 }
2299 sdev->sdev_state = state;
2300 return 0;
2301
2302 illegal:
2303 SCSI_LOG_ERROR_RECOVERY(1,
2304 sdev_printk(KERN_ERR, sdev,
2305 "Illegal state transition %s->%s\n",
2306 scsi_device_state_name(oldstate),
2307 scsi_device_state_name(state))
2308 );
2309 return -EINVAL;
2310 }
2311 EXPORT_SYMBOL(scsi_device_set_state);
2312
2313 /**
2314 * sdev_evt_emit - emit a single SCSI device uevent
2315 * @sdev: associated SCSI device
2316 * @evt: event to emit
2317 *
2318 * Send a single uevent (scsi_event) to the associated scsi_device.
2319 */
2320 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2321 {
2322 int idx = 0;
2323 char *envp[3];
2324
2325 switch (evt->evt_type) {
2326 case SDEV_EVT_MEDIA_CHANGE:
2327 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2328 break;
2329
2330 default:
2331 /* do nothing */
2332 break;
2333 }
2334
2335 envp[idx++] = NULL;
2336
2337 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2338 }
2339
2340 /**
2341 * sdev_evt_thread - send a uevent for each scsi event
2342 * @work: work struct for scsi_device
2343 *
2344 * Dispatch queued events to their associated scsi_device kobjects
2345 * as uevents.
2346 */
2347 void scsi_evt_thread(struct work_struct *work)
2348 {
2349 struct scsi_device *sdev;
2350 LIST_HEAD(event_list);
2351
2352 sdev = container_of(work, struct scsi_device, event_work);
2353
2354 while (1) {
2355 struct scsi_event *evt;
2356 struct list_head *this, *tmp;
2357 unsigned long flags;
2358
2359 spin_lock_irqsave(&sdev->list_lock, flags);
2360 list_splice_init(&sdev->event_list, &event_list);
2361 spin_unlock_irqrestore(&sdev->list_lock, flags);
2362
2363 if (list_empty(&event_list))
2364 break;
2365
2366 list_for_each_safe(this, tmp, &event_list) {
2367 evt = list_entry(this, struct scsi_event, node);
2368 list_del(&evt->node);
2369 scsi_evt_emit(sdev, evt);
2370 kfree(evt);
2371 }
2372 }
2373 }
2374
2375 /**
2376 * sdev_evt_send - send asserted event to uevent thread
2377 * @sdev: scsi_device event occurred on
2378 * @evt: event to send
2379 *
2380 * Assert scsi device event asynchronously.
2381 */
2382 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2383 {
2384 unsigned long flags;
2385
2386 #if 0
2387 /* FIXME: currently this check eliminates all media change events
2388 * for polled devices. Need to update to discriminate between AN
2389 * and polled events */
2390 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2391 kfree(evt);
2392 return;
2393 }
2394 #endif
2395
2396 spin_lock_irqsave(&sdev->list_lock, flags);
2397 list_add_tail(&evt->node, &sdev->event_list);
2398 schedule_work(&sdev->event_work);
2399 spin_unlock_irqrestore(&sdev->list_lock, flags);
2400 }
2401 EXPORT_SYMBOL_GPL(sdev_evt_send);
2402
2403 /**
2404 * sdev_evt_alloc - allocate a new scsi event
2405 * @evt_type: type of event to allocate
2406 * @gfpflags: GFP flags for allocation
2407 *
2408 * Allocates and returns a new scsi_event.
2409 */
2410 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2411 gfp_t gfpflags)
2412 {
2413 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2414 if (!evt)
2415 return NULL;
2416
2417 evt->evt_type = evt_type;
2418 INIT_LIST_HEAD(&evt->node);
2419
2420 /* evt_type-specific initialization, if any */
2421 switch (evt_type) {
2422 case SDEV_EVT_MEDIA_CHANGE:
2423 default:
2424 /* do nothing */
2425 break;
2426 }
2427
2428 return evt;
2429 }
2430 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2431
2432 /**
2433 * sdev_evt_send_simple - send asserted event to uevent thread
2434 * @sdev: scsi_device event occurred on
2435 * @evt_type: type of event to send
2436 * @gfpflags: GFP flags for allocation
2437 *
2438 * Assert scsi device event asynchronously, given an event type.
2439 */
2440 void sdev_evt_send_simple(struct scsi_device *sdev,
2441 enum scsi_device_event evt_type, gfp_t gfpflags)
2442 {
2443 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2444 if (!evt) {
2445 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2446 evt_type);
2447 return;
2448 }
2449
2450 sdev_evt_send(sdev, evt);
2451 }
2452 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2453
2454 /**
2455 * scsi_device_quiesce - Block user issued commands.
2456 * @sdev: scsi device to quiesce.
2457 *
2458 * This works by trying to transition to the SDEV_QUIESCE state
2459 * (which must be a legal transition). When the device is in this
2460 * state, only special requests will be accepted, all others will
2461 * be deferred. Since special requests may also be requeued requests,
2462 * a successful return doesn't guarantee the device will be
2463 * totally quiescent.
2464 *
2465 * Must be called with user context, may sleep.
2466 *
2467 * Returns zero if unsuccessful or an error if not.
2468 */
2469 int
2470 scsi_device_quiesce(struct scsi_device *sdev)
2471 {
2472 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2473 if (err)
2474 return err;
2475
2476 scsi_run_queue(sdev->request_queue);
2477 while (sdev->device_busy) {
2478 msleep_interruptible(200);
2479 scsi_run_queue(sdev->request_queue);
2480 }
2481 return 0;
2482 }
2483 EXPORT_SYMBOL(scsi_device_quiesce);
2484
2485 /**
2486 * scsi_device_resume - Restart user issued commands to a quiesced device.
2487 * @sdev: scsi device to resume.
2488 *
2489 * Moves the device from quiesced back to running and restarts the
2490 * queues.
2491 *
2492 * Must be called with user context, may sleep.
2493 */
2494 void
2495 scsi_device_resume(struct scsi_device *sdev)
2496 {
2497 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2498 return;
2499 scsi_run_queue(sdev->request_queue);
2500 }
2501 EXPORT_SYMBOL(scsi_device_resume);
2502
2503 static void
2504 device_quiesce_fn(struct scsi_device *sdev, void *data)
2505 {
2506 scsi_device_quiesce(sdev);
2507 }
2508
2509 void
2510 scsi_target_quiesce(struct scsi_target *starget)
2511 {
2512 starget_for_each_device(starget, NULL, device_quiesce_fn);
2513 }
2514 EXPORT_SYMBOL(scsi_target_quiesce);
2515
2516 static void
2517 device_resume_fn(struct scsi_device *sdev, void *data)
2518 {
2519 scsi_device_resume(sdev);
2520 }
2521
2522 void
2523 scsi_target_resume(struct scsi_target *starget)
2524 {
2525 starget_for_each_device(starget, NULL, device_resume_fn);
2526 }
2527 EXPORT_SYMBOL(scsi_target_resume);
2528
2529 /**
2530 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2531 * @sdev: device to block
2532 *
2533 * Block request made by scsi lld's to temporarily stop all
2534 * scsi commands on the specified device. Called from interrupt
2535 * or normal process context.
2536 *
2537 * Returns zero if successful or error if not
2538 *
2539 * Notes:
2540 * This routine transitions the device to the SDEV_BLOCK state
2541 * (which must be a legal transition). When the device is in this
2542 * state, all commands are deferred until the scsi lld reenables
2543 * the device with scsi_device_unblock or device_block_tmo fires.
2544 * This routine assumes the host_lock is held on entry.
2545 */
2546 int
2547 scsi_internal_device_block(struct scsi_device *sdev)
2548 {
2549 struct request_queue *q = sdev->request_queue;
2550 unsigned long flags;
2551 int err = 0;
2552
2553 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2554 if (err) {
2555 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2556
2557 if (err)
2558 return err;
2559 }
2560
2561 /*
2562 * The device has transitioned to SDEV_BLOCK. Stop the
2563 * block layer from calling the midlayer with this device's
2564 * request queue.
2565 */
2566 spin_lock_irqsave(q->queue_lock, flags);
2567 blk_stop_queue(q);
2568 spin_unlock_irqrestore(q->queue_lock, flags);
2569
2570 return 0;
2571 }
2572 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2573
2574 /**
2575 * scsi_internal_device_unblock - resume a device after a block request
2576 * @sdev: device to resume
2577 *
2578 * Called by scsi lld's or the midlayer to restart the device queue
2579 * for the previously suspended scsi device. Called from interrupt or
2580 * normal process context.
2581 *
2582 * Returns zero if successful or error if not.
2583 *
2584 * Notes:
2585 * This routine transitions the device to the SDEV_RUNNING state
2586 * (which must be a legal transition) allowing the midlayer to
2587 * goose the queue for this device. This routine assumes the
2588 * host_lock is held upon entry.
2589 */
2590 int
2591 scsi_internal_device_unblock(struct scsi_device *sdev)
2592 {
2593 struct request_queue *q = sdev->request_queue;
2594 int err;
2595 unsigned long flags;
2596
2597 /*
2598 * Try to transition the scsi device to SDEV_RUNNING
2599 * and goose the device queue if successful.
2600 */
2601 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2602 if (err) {
2603 err = scsi_device_set_state(sdev, SDEV_CREATED);
2604
2605 if (err)
2606 return err;
2607 }
2608
2609 spin_lock_irqsave(q->queue_lock, flags);
2610 blk_start_queue(q);
2611 spin_unlock_irqrestore(q->queue_lock, flags);
2612
2613 return 0;
2614 }
2615 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2616
2617 static void
2618 device_block(struct scsi_device *sdev, void *data)
2619 {
2620 scsi_internal_device_block(sdev);
2621 }
2622
2623 static int
2624 target_block(struct device *dev, void *data)
2625 {
2626 if (scsi_is_target_device(dev))
2627 starget_for_each_device(to_scsi_target(dev), NULL,
2628 device_block);
2629 return 0;
2630 }
2631
2632 void
2633 scsi_target_block(struct device *dev)
2634 {
2635 if (scsi_is_target_device(dev))
2636 starget_for_each_device(to_scsi_target(dev), NULL,
2637 device_block);
2638 else
2639 device_for_each_child(dev, NULL, target_block);
2640 }
2641 EXPORT_SYMBOL_GPL(scsi_target_block);
2642
2643 static void
2644 device_unblock(struct scsi_device *sdev, void *data)
2645 {
2646 scsi_internal_device_unblock(sdev);
2647 }
2648
2649 static int
2650 target_unblock(struct device *dev, void *data)
2651 {
2652 if (scsi_is_target_device(dev))
2653 starget_for_each_device(to_scsi_target(dev), NULL,
2654 device_unblock);
2655 return 0;
2656 }
2657
2658 void
2659 scsi_target_unblock(struct device *dev)
2660 {
2661 if (scsi_is_target_device(dev))
2662 starget_for_each_device(to_scsi_target(dev), NULL,
2663 device_unblock);
2664 else
2665 device_for_each_child(dev, NULL, target_unblock);
2666 }
2667 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2668
2669 /**
2670 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2671 * @sgl: scatter-gather list
2672 * @sg_count: number of segments in sg
2673 * @offset: offset in bytes into sg, on return offset into the mapped area
2674 * @len: bytes to map, on return number of bytes mapped
2675 *
2676 * Returns virtual address of the start of the mapped page
2677 */
2678 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2679 size_t *offset, size_t *len)
2680 {
2681 int i;
2682 size_t sg_len = 0, len_complete = 0;
2683 struct scatterlist *sg;
2684 struct page *page;
2685
2686 WARN_ON(!irqs_disabled());
2687
2688 for_each_sg(sgl, sg, sg_count, i) {
2689 len_complete = sg_len; /* Complete sg-entries */
2690 sg_len += sg->length;
2691 if (sg_len > *offset)
2692 break;
2693 }
2694
2695 if (unlikely(i == sg_count)) {
2696 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2697 "elements %d\n",
2698 __func__, sg_len, *offset, sg_count);
2699 WARN_ON(1);
2700 return NULL;
2701 }
2702
2703 /* Offset starting from the beginning of first page in this sg-entry */
2704 *offset = *offset - len_complete + sg->offset;
2705
2706 /* Assumption: contiguous pages can be accessed as "page + i" */
2707 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2708 *offset &= ~PAGE_MASK;
2709
2710 /* Bytes in this sg-entry from *offset to the end of the page */
2711 sg_len = PAGE_SIZE - *offset;
2712 if (*len > sg_len)
2713 *len = sg_len;
2714
2715 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2716 }
2717 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2718
2719 /**
2720 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2721 * @virt: virtual address to be unmapped
2722 */
2723 void scsi_kunmap_atomic_sg(void *virt)
2724 {
2725 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2726 }
2727 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
This page took 0.086881 seconds and 5 git commands to generate.