scsi: stop passing a gfp_mask argument down the command setup path
[deliverable/linux.git] / drivers / scsi / scsi_lib.c
1 /*
2 * Copyright (C) 1999 Eric Youngdale
3 * Copyright (C) 2014 Christoph Hellwig
4 *
5 * SCSI queueing library.
6 * Initial versions: Eric Youngdale (eric@andante.org).
7 * Based upon conversations with large numbers
8 * of people at Linux Expo.
9 */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/hardirq.h>
23 #include <linux/scatterlist.h>
24 #include <linux/blk-mq.h>
25 #include <linux/ratelimit.h>
26
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34
35 #include <trace/events/scsi.h>
36
37 #include "scsi_priv.h"
38 #include "scsi_logging.h"
39
40
41 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
42 #define SG_MEMPOOL_SIZE 2
43
44 struct scsi_host_sg_pool {
45 size_t size;
46 char *name;
47 struct kmem_cache *slab;
48 mempool_t *pool;
49 };
50
51 #define SP(x) { .size = x, "sgpool-" __stringify(x) }
52 #if (SCSI_MAX_SG_SEGMENTS < 32)
53 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
54 #endif
55 static struct scsi_host_sg_pool scsi_sg_pools[] = {
56 SP(8),
57 SP(16),
58 #if (SCSI_MAX_SG_SEGMENTS > 32)
59 SP(32),
60 #if (SCSI_MAX_SG_SEGMENTS > 64)
61 SP(64),
62 #if (SCSI_MAX_SG_SEGMENTS > 128)
63 SP(128),
64 #if (SCSI_MAX_SG_SEGMENTS > 256)
65 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
66 #endif
67 #endif
68 #endif
69 #endif
70 SP(SCSI_MAX_SG_SEGMENTS)
71 };
72 #undef SP
73
74 struct kmem_cache *scsi_sdb_cache;
75
76 /*
77 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
78 * not change behaviour from the previous unplug mechanism, experimentation
79 * may prove this needs changing.
80 */
81 #define SCSI_QUEUE_DELAY 3
82
83 static void
84 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
85 {
86 struct Scsi_Host *host = cmd->device->host;
87 struct scsi_device *device = cmd->device;
88 struct scsi_target *starget = scsi_target(device);
89
90 /*
91 * Set the appropriate busy bit for the device/host.
92 *
93 * If the host/device isn't busy, assume that something actually
94 * completed, and that we should be able to queue a command now.
95 *
96 * Note that the prior mid-layer assumption that any host could
97 * always queue at least one command is now broken. The mid-layer
98 * will implement a user specifiable stall (see
99 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
100 * if a command is requeued with no other commands outstanding
101 * either for the device or for the host.
102 */
103 switch (reason) {
104 case SCSI_MLQUEUE_HOST_BUSY:
105 atomic_set(&host->host_blocked, host->max_host_blocked);
106 break;
107 case SCSI_MLQUEUE_DEVICE_BUSY:
108 case SCSI_MLQUEUE_EH_RETRY:
109 atomic_set(&device->device_blocked,
110 device->max_device_blocked);
111 break;
112 case SCSI_MLQUEUE_TARGET_BUSY:
113 atomic_set(&starget->target_blocked,
114 starget->max_target_blocked);
115 break;
116 }
117 }
118
119 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
120 {
121 struct scsi_device *sdev = cmd->device;
122 struct request_queue *q = cmd->request->q;
123
124 blk_mq_requeue_request(cmd->request);
125 blk_mq_kick_requeue_list(q);
126 put_device(&sdev->sdev_gendev);
127 }
128
129 /**
130 * __scsi_queue_insert - private queue insertion
131 * @cmd: The SCSI command being requeued
132 * @reason: The reason for the requeue
133 * @unbusy: Whether the queue should be unbusied
134 *
135 * This is a private queue insertion. The public interface
136 * scsi_queue_insert() always assumes the queue should be unbusied
137 * because it's always called before the completion. This function is
138 * for a requeue after completion, which should only occur in this
139 * file.
140 */
141 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
142 {
143 struct scsi_device *device = cmd->device;
144 struct request_queue *q = device->request_queue;
145 unsigned long flags;
146
147 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
148 "Inserting command %p into mlqueue\n", cmd));
149
150 scsi_set_blocked(cmd, reason);
151
152 /*
153 * Decrement the counters, since these commands are no longer
154 * active on the host/device.
155 */
156 if (unbusy)
157 scsi_device_unbusy(device);
158
159 /*
160 * Requeue this command. It will go before all other commands
161 * that are already in the queue. Schedule requeue work under
162 * lock such that the kblockd_schedule_work() call happens
163 * before blk_cleanup_queue() finishes.
164 */
165 cmd->result = 0;
166 if (q->mq_ops) {
167 scsi_mq_requeue_cmd(cmd);
168 return;
169 }
170 spin_lock_irqsave(q->queue_lock, flags);
171 blk_requeue_request(q, cmd->request);
172 kblockd_schedule_work(&device->requeue_work);
173 spin_unlock_irqrestore(q->queue_lock, flags);
174 }
175
176 /*
177 * Function: scsi_queue_insert()
178 *
179 * Purpose: Insert a command in the midlevel queue.
180 *
181 * Arguments: cmd - command that we are adding to queue.
182 * reason - why we are inserting command to queue.
183 *
184 * Lock status: Assumed that lock is not held upon entry.
185 *
186 * Returns: Nothing.
187 *
188 * Notes: We do this for one of two cases. Either the host is busy
189 * and it cannot accept any more commands for the time being,
190 * or the device returned QUEUE_FULL and can accept no more
191 * commands.
192 * Notes: This could be called either from an interrupt context or a
193 * normal process context.
194 */
195 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
196 {
197 __scsi_queue_insert(cmd, reason, 1);
198 }
199 /**
200 * scsi_execute - insert request and wait for the result
201 * @sdev: scsi device
202 * @cmd: scsi command
203 * @data_direction: data direction
204 * @buffer: data buffer
205 * @bufflen: len of buffer
206 * @sense: optional sense buffer
207 * @timeout: request timeout in seconds
208 * @retries: number of times to retry request
209 * @flags: or into request flags;
210 * @resid: optional residual length
211 *
212 * returns the req->errors value which is the scsi_cmnd result
213 * field.
214 */
215 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
216 int data_direction, void *buffer, unsigned bufflen,
217 unsigned char *sense, int timeout, int retries, u64 flags,
218 int *resid)
219 {
220 struct request *req;
221 int write = (data_direction == DMA_TO_DEVICE);
222 int ret = DRIVER_ERROR << 24;
223
224 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
225 if (IS_ERR(req))
226 return ret;
227 blk_rq_set_block_pc(req);
228
229 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
230 buffer, bufflen, __GFP_WAIT))
231 goto out;
232
233 req->cmd_len = COMMAND_SIZE(cmd[0]);
234 memcpy(req->cmd, cmd, req->cmd_len);
235 req->sense = sense;
236 req->sense_len = 0;
237 req->retries = retries;
238 req->timeout = timeout;
239 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
240
241 /*
242 * head injection *required* here otherwise quiesce won't work
243 */
244 blk_execute_rq(req->q, NULL, req, 1);
245
246 /*
247 * Some devices (USB mass-storage in particular) may transfer
248 * garbage data together with a residue indicating that the data
249 * is invalid. Prevent the garbage from being misinterpreted
250 * and prevent security leaks by zeroing out the excess data.
251 */
252 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
253 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
254
255 if (resid)
256 *resid = req->resid_len;
257 ret = req->errors;
258 out:
259 blk_put_request(req);
260
261 return ret;
262 }
263 EXPORT_SYMBOL(scsi_execute);
264
265 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
266 int data_direction, void *buffer, unsigned bufflen,
267 struct scsi_sense_hdr *sshdr, int timeout, int retries,
268 int *resid, u64 flags)
269 {
270 char *sense = NULL;
271 int result;
272
273 if (sshdr) {
274 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
275 if (!sense)
276 return DRIVER_ERROR << 24;
277 }
278 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
279 sense, timeout, retries, flags, resid);
280 if (sshdr)
281 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
282
283 kfree(sense);
284 return result;
285 }
286 EXPORT_SYMBOL(scsi_execute_req_flags);
287
288 /*
289 * Function: scsi_init_cmd_errh()
290 *
291 * Purpose: Initialize cmd fields related to error handling.
292 *
293 * Arguments: cmd - command that is ready to be queued.
294 *
295 * Notes: This function has the job of initializing a number of
296 * fields related to error handling. Typically this will
297 * be called once for each command, as required.
298 */
299 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
300 {
301 cmd->serial_number = 0;
302 scsi_set_resid(cmd, 0);
303 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
304 if (cmd->cmd_len == 0)
305 cmd->cmd_len = scsi_command_size(cmd->cmnd);
306 }
307
308 void scsi_device_unbusy(struct scsi_device *sdev)
309 {
310 struct Scsi_Host *shost = sdev->host;
311 struct scsi_target *starget = scsi_target(sdev);
312 unsigned long flags;
313
314 atomic_dec(&shost->host_busy);
315 if (starget->can_queue > 0)
316 atomic_dec(&starget->target_busy);
317
318 if (unlikely(scsi_host_in_recovery(shost) &&
319 (shost->host_failed || shost->host_eh_scheduled))) {
320 spin_lock_irqsave(shost->host_lock, flags);
321 scsi_eh_wakeup(shost);
322 spin_unlock_irqrestore(shost->host_lock, flags);
323 }
324
325 atomic_dec(&sdev->device_busy);
326 }
327
328 static void scsi_kick_queue(struct request_queue *q)
329 {
330 if (q->mq_ops)
331 blk_mq_start_hw_queues(q);
332 else
333 blk_run_queue(q);
334 }
335
336 /*
337 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
338 * and call blk_run_queue for all the scsi_devices on the target -
339 * including current_sdev first.
340 *
341 * Called with *no* scsi locks held.
342 */
343 static void scsi_single_lun_run(struct scsi_device *current_sdev)
344 {
345 struct Scsi_Host *shost = current_sdev->host;
346 struct scsi_device *sdev, *tmp;
347 struct scsi_target *starget = scsi_target(current_sdev);
348 unsigned long flags;
349
350 spin_lock_irqsave(shost->host_lock, flags);
351 starget->starget_sdev_user = NULL;
352 spin_unlock_irqrestore(shost->host_lock, flags);
353
354 /*
355 * Call blk_run_queue for all LUNs on the target, starting with
356 * current_sdev. We race with others (to set starget_sdev_user),
357 * but in most cases, we will be first. Ideally, each LU on the
358 * target would get some limited time or requests on the target.
359 */
360 scsi_kick_queue(current_sdev->request_queue);
361
362 spin_lock_irqsave(shost->host_lock, flags);
363 if (starget->starget_sdev_user)
364 goto out;
365 list_for_each_entry_safe(sdev, tmp, &starget->devices,
366 same_target_siblings) {
367 if (sdev == current_sdev)
368 continue;
369 if (scsi_device_get(sdev))
370 continue;
371
372 spin_unlock_irqrestore(shost->host_lock, flags);
373 scsi_kick_queue(sdev->request_queue);
374 spin_lock_irqsave(shost->host_lock, flags);
375
376 scsi_device_put(sdev);
377 }
378 out:
379 spin_unlock_irqrestore(shost->host_lock, flags);
380 }
381
382 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
383 {
384 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
385 return true;
386 if (atomic_read(&sdev->device_blocked) > 0)
387 return true;
388 return false;
389 }
390
391 static inline bool scsi_target_is_busy(struct scsi_target *starget)
392 {
393 if (starget->can_queue > 0) {
394 if (atomic_read(&starget->target_busy) >= starget->can_queue)
395 return true;
396 if (atomic_read(&starget->target_blocked) > 0)
397 return true;
398 }
399 return false;
400 }
401
402 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
403 {
404 if (shost->can_queue > 0 &&
405 atomic_read(&shost->host_busy) >= shost->can_queue)
406 return true;
407 if (atomic_read(&shost->host_blocked) > 0)
408 return true;
409 if (shost->host_self_blocked)
410 return true;
411 return false;
412 }
413
414 static void scsi_starved_list_run(struct Scsi_Host *shost)
415 {
416 LIST_HEAD(starved_list);
417 struct scsi_device *sdev;
418 unsigned long flags;
419
420 spin_lock_irqsave(shost->host_lock, flags);
421 list_splice_init(&shost->starved_list, &starved_list);
422
423 while (!list_empty(&starved_list)) {
424 struct request_queue *slq;
425
426 /*
427 * As long as shost is accepting commands and we have
428 * starved queues, call blk_run_queue. scsi_request_fn
429 * drops the queue_lock and can add us back to the
430 * starved_list.
431 *
432 * host_lock protects the starved_list and starved_entry.
433 * scsi_request_fn must get the host_lock before checking
434 * or modifying starved_list or starved_entry.
435 */
436 if (scsi_host_is_busy(shost))
437 break;
438
439 sdev = list_entry(starved_list.next,
440 struct scsi_device, starved_entry);
441 list_del_init(&sdev->starved_entry);
442 if (scsi_target_is_busy(scsi_target(sdev))) {
443 list_move_tail(&sdev->starved_entry,
444 &shost->starved_list);
445 continue;
446 }
447
448 /*
449 * Once we drop the host lock, a racing scsi_remove_device()
450 * call may remove the sdev from the starved list and destroy
451 * it and the queue. Mitigate by taking a reference to the
452 * queue and never touching the sdev again after we drop the
453 * host lock. Note: if __scsi_remove_device() invokes
454 * blk_cleanup_queue() before the queue is run from this
455 * function then blk_run_queue() will return immediately since
456 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
457 */
458 slq = sdev->request_queue;
459 if (!blk_get_queue(slq))
460 continue;
461 spin_unlock_irqrestore(shost->host_lock, flags);
462
463 scsi_kick_queue(slq);
464 blk_put_queue(slq);
465
466 spin_lock_irqsave(shost->host_lock, flags);
467 }
468 /* put any unprocessed entries back */
469 list_splice(&starved_list, &shost->starved_list);
470 spin_unlock_irqrestore(shost->host_lock, flags);
471 }
472
473 /*
474 * Function: scsi_run_queue()
475 *
476 * Purpose: Select a proper request queue to serve next
477 *
478 * Arguments: q - last request's queue
479 *
480 * Returns: Nothing
481 *
482 * Notes: The previous command was completely finished, start
483 * a new one if possible.
484 */
485 static void scsi_run_queue(struct request_queue *q)
486 {
487 struct scsi_device *sdev = q->queuedata;
488
489 if (scsi_target(sdev)->single_lun)
490 scsi_single_lun_run(sdev);
491 if (!list_empty(&sdev->host->starved_list))
492 scsi_starved_list_run(sdev->host);
493
494 if (q->mq_ops)
495 blk_mq_start_stopped_hw_queues(q, false);
496 else
497 blk_run_queue(q);
498 }
499
500 void scsi_requeue_run_queue(struct work_struct *work)
501 {
502 struct scsi_device *sdev;
503 struct request_queue *q;
504
505 sdev = container_of(work, struct scsi_device, requeue_work);
506 q = sdev->request_queue;
507 scsi_run_queue(q);
508 }
509
510 /*
511 * Function: scsi_requeue_command()
512 *
513 * Purpose: Handle post-processing of completed commands.
514 *
515 * Arguments: q - queue to operate on
516 * cmd - command that may need to be requeued.
517 *
518 * Returns: Nothing
519 *
520 * Notes: After command completion, there may be blocks left
521 * over which weren't finished by the previous command
522 * this can be for a number of reasons - the main one is
523 * I/O errors in the middle of the request, in which case
524 * we need to request the blocks that come after the bad
525 * sector.
526 * Notes: Upon return, cmd is a stale pointer.
527 */
528 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
529 {
530 struct scsi_device *sdev = cmd->device;
531 struct request *req = cmd->request;
532 unsigned long flags;
533
534 spin_lock_irqsave(q->queue_lock, flags);
535 blk_unprep_request(req);
536 req->special = NULL;
537 scsi_put_command(cmd);
538 blk_requeue_request(q, req);
539 spin_unlock_irqrestore(q->queue_lock, flags);
540
541 scsi_run_queue(q);
542
543 put_device(&sdev->sdev_gendev);
544 }
545
546 void scsi_run_host_queues(struct Scsi_Host *shost)
547 {
548 struct scsi_device *sdev;
549
550 shost_for_each_device(sdev, shost)
551 scsi_run_queue(sdev->request_queue);
552 }
553
554 static inline unsigned int scsi_sgtable_index(unsigned short nents)
555 {
556 unsigned int index;
557
558 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
559
560 if (nents <= 8)
561 index = 0;
562 else
563 index = get_count_order(nents) - 3;
564
565 return index;
566 }
567
568 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
569 {
570 struct scsi_host_sg_pool *sgp;
571
572 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
573 mempool_free(sgl, sgp->pool);
574 }
575
576 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
577 {
578 struct scsi_host_sg_pool *sgp;
579
580 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
581 return mempool_alloc(sgp->pool, gfp_mask);
582 }
583
584 static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
585 {
586 if (mq && sdb->table.nents <= SCSI_MAX_SG_SEGMENTS)
587 return;
588 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
589 }
590
591 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, bool mq)
592 {
593 struct scatterlist *first_chunk = NULL;
594 gfp_t gfp_mask = mq ? GFP_NOIO : GFP_ATOMIC;
595 int ret;
596
597 BUG_ON(!nents);
598
599 if (mq) {
600 if (nents <= SCSI_MAX_SG_SEGMENTS) {
601 sdb->table.nents = nents;
602 sg_init_table(sdb->table.sgl, sdb->table.nents);
603 return 0;
604 }
605 first_chunk = sdb->table.sgl;
606 }
607
608 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
609 first_chunk, gfp_mask, scsi_sg_alloc);
610 if (unlikely(ret))
611 scsi_free_sgtable(sdb, mq);
612 return ret;
613 }
614
615 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
616 {
617 if (cmd->request->cmd_type == REQ_TYPE_FS) {
618 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
619
620 if (drv->uninit_command)
621 drv->uninit_command(cmd);
622 }
623 }
624
625 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
626 {
627 if (cmd->sdb.table.nents)
628 scsi_free_sgtable(&cmd->sdb, true);
629 if (cmd->request->next_rq && cmd->request->next_rq->special)
630 scsi_free_sgtable(cmd->request->next_rq->special, true);
631 if (scsi_prot_sg_count(cmd))
632 scsi_free_sgtable(cmd->prot_sdb, true);
633 }
634
635 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
636 {
637 struct scsi_device *sdev = cmd->device;
638 struct Scsi_Host *shost = sdev->host;
639 unsigned long flags;
640
641 scsi_mq_free_sgtables(cmd);
642 scsi_uninit_cmd(cmd);
643
644 if (shost->use_cmd_list) {
645 BUG_ON(list_empty(&cmd->list));
646 spin_lock_irqsave(&sdev->list_lock, flags);
647 list_del_init(&cmd->list);
648 spin_unlock_irqrestore(&sdev->list_lock, flags);
649 }
650 }
651
652 /*
653 * Function: scsi_release_buffers()
654 *
655 * Purpose: Free resources allocate for a scsi_command.
656 *
657 * Arguments: cmd - command that we are bailing.
658 *
659 * Lock status: Assumed that no lock is held upon entry.
660 *
661 * Returns: Nothing
662 *
663 * Notes: In the event that an upper level driver rejects a
664 * command, we must release resources allocated during
665 * the __init_io() function. Primarily this would involve
666 * the scatter-gather table.
667 */
668 static void scsi_release_buffers(struct scsi_cmnd *cmd)
669 {
670 if (cmd->sdb.table.nents)
671 scsi_free_sgtable(&cmd->sdb, false);
672
673 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
674
675 if (scsi_prot_sg_count(cmd))
676 scsi_free_sgtable(cmd->prot_sdb, false);
677 }
678
679 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
680 {
681 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
682
683 scsi_free_sgtable(bidi_sdb, false);
684 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
685 cmd->request->next_rq->special = NULL;
686 }
687
688 static bool scsi_end_request(struct request *req, int error,
689 unsigned int bytes, unsigned int bidi_bytes)
690 {
691 struct scsi_cmnd *cmd = req->special;
692 struct scsi_device *sdev = cmd->device;
693 struct request_queue *q = sdev->request_queue;
694
695 if (blk_update_request(req, error, bytes))
696 return true;
697
698 /* Bidi request must be completed as a whole */
699 if (unlikely(bidi_bytes) &&
700 blk_update_request(req->next_rq, error, bidi_bytes))
701 return true;
702
703 if (blk_queue_add_random(q))
704 add_disk_randomness(req->rq_disk);
705
706 if (req->mq_ctx) {
707 /*
708 * In the MQ case the command gets freed by __blk_mq_end_request,
709 * so we have to do all cleanup that depends on it earlier.
710 *
711 * We also can't kick the queues from irq context, so we
712 * will have to defer it to a workqueue.
713 */
714 scsi_mq_uninit_cmd(cmd);
715
716 __blk_mq_end_request(req, error);
717
718 if (scsi_target(sdev)->single_lun ||
719 !list_empty(&sdev->host->starved_list))
720 kblockd_schedule_work(&sdev->requeue_work);
721 else
722 blk_mq_start_stopped_hw_queues(q, true);
723 } else {
724 unsigned long flags;
725
726 if (bidi_bytes)
727 scsi_release_bidi_buffers(cmd);
728
729 spin_lock_irqsave(q->queue_lock, flags);
730 blk_finish_request(req, error);
731 spin_unlock_irqrestore(q->queue_lock, flags);
732
733 scsi_release_buffers(cmd);
734
735 scsi_put_command(cmd);
736 scsi_run_queue(q);
737 }
738
739 put_device(&sdev->sdev_gendev);
740 return false;
741 }
742
743 /**
744 * __scsi_error_from_host_byte - translate SCSI error code into errno
745 * @cmd: SCSI command (unused)
746 * @result: scsi error code
747 *
748 * Translate SCSI error code into standard UNIX errno.
749 * Return values:
750 * -ENOLINK temporary transport failure
751 * -EREMOTEIO permanent target failure, do not retry
752 * -EBADE permanent nexus failure, retry on other path
753 * -ENOSPC No write space available
754 * -ENODATA Medium error
755 * -EIO unspecified I/O error
756 */
757 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
758 {
759 int error = 0;
760
761 switch(host_byte(result)) {
762 case DID_TRANSPORT_FAILFAST:
763 error = -ENOLINK;
764 break;
765 case DID_TARGET_FAILURE:
766 set_host_byte(cmd, DID_OK);
767 error = -EREMOTEIO;
768 break;
769 case DID_NEXUS_FAILURE:
770 set_host_byte(cmd, DID_OK);
771 error = -EBADE;
772 break;
773 case DID_ALLOC_FAILURE:
774 set_host_byte(cmd, DID_OK);
775 error = -ENOSPC;
776 break;
777 case DID_MEDIUM_ERROR:
778 set_host_byte(cmd, DID_OK);
779 error = -ENODATA;
780 break;
781 default:
782 error = -EIO;
783 break;
784 }
785
786 return error;
787 }
788
789 /*
790 * Function: scsi_io_completion()
791 *
792 * Purpose: Completion processing for block device I/O requests.
793 *
794 * Arguments: cmd - command that is finished.
795 *
796 * Lock status: Assumed that no lock is held upon entry.
797 *
798 * Returns: Nothing
799 *
800 * Notes: We will finish off the specified number of sectors. If we
801 * are done, the command block will be released and the queue
802 * function will be goosed. If we are not done then we have to
803 * figure out what to do next:
804 *
805 * a) We can call scsi_requeue_command(). The request
806 * will be unprepared and put back on the queue. Then
807 * a new command will be created for it. This should
808 * be used if we made forward progress, or if we want
809 * to switch from READ(10) to READ(6) for example.
810 *
811 * b) We can call __scsi_queue_insert(). The request will
812 * be put back on the queue and retried using the same
813 * command as before, possibly after a delay.
814 *
815 * c) We can call scsi_end_request() with -EIO to fail
816 * the remainder of the request.
817 */
818 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
819 {
820 int result = cmd->result;
821 struct request_queue *q = cmd->device->request_queue;
822 struct request *req = cmd->request;
823 int error = 0;
824 struct scsi_sense_hdr sshdr;
825 bool sense_valid = false;
826 int sense_deferred = 0, level = 0;
827 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
828 ACTION_DELAYED_RETRY} action;
829 unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
830
831 if (result) {
832 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
833 if (sense_valid)
834 sense_deferred = scsi_sense_is_deferred(&sshdr);
835 }
836
837 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
838 if (result) {
839 if (sense_valid && req->sense) {
840 /*
841 * SG_IO wants current and deferred errors
842 */
843 int len = 8 + cmd->sense_buffer[7];
844
845 if (len > SCSI_SENSE_BUFFERSIZE)
846 len = SCSI_SENSE_BUFFERSIZE;
847 memcpy(req->sense, cmd->sense_buffer, len);
848 req->sense_len = len;
849 }
850 if (!sense_deferred)
851 error = __scsi_error_from_host_byte(cmd, result);
852 }
853 /*
854 * __scsi_error_from_host_byte may have reset the host_byte
855 */
856 req->errors = cmd->result;
857
858 req->resid_len = scsi_get_resid(cmd);
859
860 if (scsi_bidi_cmnd(cmd)) {
861 /*
862 * Bidi commands Must be complete as a whole,
863 * both sides at once.
864 */
865 req->next_rq->resid_len = scsi_in(cmd)->resid;
866 if (scsi_end_request(req, 0, blk_rq_bytes(req),
867 blk_rq_bytes(req->next_rq)))
868 BUG();
869 return;
870 }
871 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
872 /*
873 * Certain non BLOCK_PC requests are commands that don't
874 * actually transfer anything (FLUSH), so cannot use
875 * good_bytes != blk_rq_bytes(req) as the signal for an error.
876 * This sets the error explicitly for the problem case.
877 */
878 error = __scsi_error_from_host_byte(cmd, result);
879 }
880
881 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
882 BUG_ON(blk_bidi_rq(req));
883
884 /*
885 * Next deal with any sectors which we were able to correctly
886 * handle.
887 */
888 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
889 "%u sectors total, %d bytes done.\n",
890 blk_rq_sectors(req), good_bytes));
891
892 /*
893 * Recovered errors need reporting, but they're always treated
894 * as success, so fiddle the result code here. For BLOCK_PC
895 * we already took a copy of the original into rq->errors which
896 * is what gets returned to the user
897 */
898 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
899 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
900 * print since caller wants ATA registers. Only occurs on
901 * SCSI ATA PASS_THROUGH commands when CK_COND=1
902 */
903 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
904 ;
905 else if (!(req->cmd_flags & REQ_QUIET))
906 scsi_print_sense(cmd);
907 result = 0;
908 /* BLOCK_PC may have set error */
909 error = 0;
910 }
911
912 /*
913 * If we finished all bytes in the request we are done now.
914 */
915 if (!scsi_end_request(req, error, good_bytes, 0))
916 return;
917
918 /*
919 * Kill remainder if no retrys.
920 */
921 if (error && scsi_noretry_cmd(cmd)) {
922 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
923 BUG();
924 return;
925 }
926
927 /*
928 * If there had been no error, but we have leftover bytes in the
929 * requeues just queue the command up again.
930 */
931 if (result == 0)
932 goto requeue;
933
934 error = __scsi_error_from_host_byte(cmd, result);
935
936 if (host_byte(result) == DID_RESET) {
937 /* Third party bus reset or reset for error recovery
938 * reasons. Just retry the command and see what
939 * happens.
940 */
941 action = ACTION_RETRY;
942 } else if (sense_valid && !sense_deferred) {
943 switch (sshdr.sense_key) {
944 case UNIT_ATTENTION:
945 if (cmd->device->removable) {
946 /* Detected disc change. Set a bit
947 * and quietly refuse further access.
948 */
949 cmd->device->changed = 1;
950 action = ACTION_FAIL;
951 } else {
952 /* Must have been a power glitch, or a
953 * bus reset. Could not have been a
954 * media change, so we just retry the
955 * command and see what happens.
956 */
957 action = ACTION_RETRY;
958 }
959 break;
960 case ILLEGAL_REQUEST:
961 /* If we had an ILLEGAL REQUEST returned, then
962 * we may have performed an unsupported
963 * command. The only thing this should be
964 * would be a ten byte read where only a six
965 * byte read was supported. Also, on a system
966 * where READ CAPACITY failed, we may have
967 * read past the end of the disk.
968 */
969 if ((cmd->device->use_10_for_rw &&
970 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
971 (cmd->cmnd[0] == READ_10 ||
972 cmd->cmnd[0] == WRITE_10)) {
973 /* This will issue a new 6-byte command. */
974 cmd->device->use_10_for_rw = 0;
975 action = ACTION_REPREP;
976 } else if (sshdr.asc == 0x10) /* DIX */ {
977 action = ACTION_FAIL;
978 error = -EILSEQ;
979 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
980 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
981 action = ACTION_FAIL;
982 error = -EREMOTEIO;
983 } else
984 action = ACTION_FAIL;
985 break;
986 case ABORTED_COMMAND:
987 action = ACTION_FAIL;
988 if (sshdr.asc == 0x10) /* DIF */
989 error = -EILSEQ;
990 break;
991 case NOT_READY:
992 /* If the device is in the process of becoming
993 * ready, or has a temporary blockage, retry.
994 */
995 if (sshdr.asc == 0x04) {
996 switch (sshdr.ascq) {
997 case 0x01: /* becoming ready */
998 case 0x04: /* format in progress */
999 case 0x05: /* rebuild in progress */
1000 case 0x06: /* recalculation in progress */
1001 case 0x07: /* operation in progress */
1002 case 0x08: /* Long write in progress */
1003 case 0x09: /* self test in progress */
1004 case 0x14: /* space allocation in progress */
1005 action = ACTION_DELAYED_RETRY;
1006 break;
1007 default:
1008 action = ACTION_FAIL;
1009 break;
1010 }
1011 } else
1012 action = ACTION_FAIL;
1013 break;
1014 case VOLUME_OVERFLOW:
1015 /* See SSC3rXX or current. */
1016 action = ACTION_FAIL;
1017 break;
1018 default:
1019 action = ACTION_FAIL;
1020 break;
1021 }
1022 } else
1023 action = ACTION_FAIL;
1024
1025 if (action != ACTION_FAIL &&
1026 time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1027 action = ACTION_FAIL;
1028
1029 switch (action) {
1030 case ACTION_FAIL:
1031 /* Give up and fail the remainder of the request */
1032 if (!(req->cmd_flags & REQ_QUIET)) {
1033 static DEFINE_RATELIMIT_STATE(_rs,
1034 DEFAULT_RATELIMIT_INTERVAL,
1035 DEFAULT_RATELIMIT_BURST);
1036
1037 if (unlikely(scsi_logging_level))
1038 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1039 SCSI_LOG_MLCOMPLETE_BITS);
1040
1041 /*
1042 * if logging is enabled the failure will be printed
1043 * in scsi_log_completion(), so avoid duplicate messages
1044 */
1045 if (!level && __ratelimit(&_rs)) {
1046 scsi_print_result(cmd, NULL, FAILED);
1047 if (driver_byte(result) & DRIVER_SENSE)
1048 scsi_print_sense(cmd);
1049 scsi_print_command(cmd);
1050 }
1051 }
1052 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1053 return;
1054 /*FALLTHRU*/
1055 case ACTION_REPREP:
1056 requeue:
1057 /* Unprep the request and put it back at the head of the queue.
1058 * A new command will be prepared and issued.
1059 */
1060 if (q->mq_ops) {
1061 cmd->request->cmd_flags &= ~REQ_DONTPREP;
1062 scsi_mq_uninit_cmd(cmd);
1063 scsi_mq_requeue_cmd(cmd);
1064 } else {
1065 scsi_release_buffers(cmd);
1066 scsi_requeue_command(q, cmd);
1067 }
1068 break;
1069 case ACTION_RETRY:
1070 /* Retry the same command immediately */
1071 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1072 break;
1073 case ACTION_DELAYED_RETRY:
1074 /* Retry the same command after a delay */
1075 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1076 break;
1077 }
1078 }
1079
1080 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1081 {
1082 int count;
1083
1084 /*
1085 * If sg table allocation fails, requeue request later.
1086 */
1087 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1088 req->mq_ctx != NULL)))
1089 return BLKPREP_DEFER;
1090
1091 /*
1092 * Next, walk the list, and fill in the addresses and sizes of
1093 * each segment.
1094 */
1095 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1096 BUG_ON(count > sdb->table.nents);
1097 sdb->table.nents = count;
1098 sdb->length = blk_rq_bytes(req);
1099 return BLKPREP_OK;
1100 }
1101
1102 /*
1103 * Function: scsi_init_io()
1104 *
1105 * Purpose: SCSI I/O initialize function.
1106 *
1107 * Arguments: cmd - Command descriptor we wish to initialize
1108 *
1109 * Returns: 0 on success
1110 * BLKPREP_DEFER if the failure is retryable
1111 * BLKPREP_KILL if the failure is fatal
1112 */
1113 int scsi_init_io(struct scsi_cmnd *cmd)
1114 {
1115 struct scsi_device *sdev = cmd->device;
1116 struct request *rq = cmd->request;
1117 bool is_mq = (rq->mq_ctx != NULL);
1118 int error;
1119
1120 BUG_ON(!rq->nr_phys_segments);
1121
1122 error = scsi_init_sgtable(rq, &cmd->sdb);
1123 if (error)
1124 goto err_exit;
1125
1126 if (blk_bidi_rq(rq)) {
1127 if (!rq->q->mq_ops) {
1128 struct scsi_data_buffer *bidi_sdb =
1129 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1130 if (!bidi_sdb) {
1131 error = BLKPREP_DEFER;
1132 goto err_exit;
1133 }
1134
1135 rq->next_rq->special = bidi_sdb;
1136 }
1137
1138 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1139 if (error)
1140 goto err_exit;
1141 }
1142
1143 if (blk_integrity_rq(rq)) {
1144 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1145 int ivecs, count;
1146
1147 BUG_ON(prot_sdb == NULL);
1148 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1149
1150 if (scsi_alloc_sgtable(prot_sdb, ivecs, is_mq)) {
1151 error = BLKPREP_DEFER;
1152 goto err_exit;
1153 }
1154
1155 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1156 prot_sdb->table.sgl);
1157 BUG_ON(unlikely(count > ivecs));
1158 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1159
1160 cmd->prot_sdb = prot_sdb;
1161 cmd->prot_sdb->table.nents = count;
1162 }
1163
1164 return BLKPREP_OK;
1165 err_exit:
1166 if (is_mq) {
1167 scsi_mq_free_sgtables(cmd);
1168 } else {
1169 scsi_release_buffers(cmd);
1170 cmd->request->special = NULL;
1171 scsi_put_command(cmd);
1172 put_device(&sdev->sdev_gendev);
1173 }
1174 return error;
1175 }
1176 EXPORT_SYMBOL(scsi_init_io);
1177
1178 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1179 struct request *req)
1180 {
1181 struct scsi_cmnd *cmd;
1182
1183 if (!req->special) {
1184 /* Bail if we can't get a reference to the device */
1185 if (!get_device(&sdev->sdev_gendev))
1186 return NULL;
1187
1188 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1189 if (unlikely(!cmd)) {
1190 put_device(&sdev->sdev_gendev);
1191 return NULL;
1192 }
1193 req->special = cmd;
1194 } else {
1195 cmd = req->special;
1196 }
1197
1198 /* pull a tag out of the request if we have one */
1199 cmd->tag = req->tag;
1200 cmd->request = req;
1201
1202 cmd->cmnd = req->cmd;
1203 cmd->prot_op = SCSI_PROT_NORMAL;
1204
1205 return cmd;
1206 }
1207
1208 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1209 {
1210 struct scsi_cmnd *cmd = req->special;
1211
1212 /*
1213 * BLOCK_PC requests may transfer data, in which case they must
1214 * a bio attached to them. Or they might contain a SCSI command
1215 * that does not transfer data, in which case they may optionally
1216 * submit a request without an attached bio.
1217 */
1218 if (req->bio) {
1219 int ret = scsi_init_io(cmd);
1220 if (unlikely(ret))
1221 return ret;
1222 } else {
1223 BUG_ON(blk_rq_bytes(req));
1224
1225 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1226 }
1227
1228 cmd->cmd_len = req->cmd_len;
1229 cmd->transfersize = blk_rq_bytes(req);
1230 cmd->allowed = req->retries;
1231 return BLKPREP_OK;
1232 }
1233
1234 /*
1235 * Setup a REQ_TYPE_FS command. These are simple request from filesystems
1236 * that still need to be translated to SCSI CDBs from the ULD.
1237 */
1238 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1239 {
1240 struct scsi_cmnd *cmd = req->special;
1241
1242 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1243 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1244 int ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1245 if (ret != BLKPREP_OK)
1246 return ret;
1247 }
1248
1249 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1250 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1251 }
1252
1253 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1254 {
1255 struct scsi_cmnd *cmd = req->special;
1256
1257 if (!blk_rq_bytes(req))
1258 cmd->sc_data_direction = DMA_NONE;
1259 else if (rq_data_dir(req) == WRITE)
1260 cmd->sc_data_direction = DMA_TO_DEVICE;
1261 else
1262 cmd->sc_data_direction = DMA_FROM_DEVICE;
1263
1264 switch (req->cmd_type) {
1265 case REQ_TYPE_FS:
1266 return scsi_setup_fs_cmnd(sdev, req);
1267 case REQ_TYPE_BLOCK_PC:
1268 return scsi_setup_blk_pc_cmnd(sdev, req);
1269 default:
1270 return BLKPREP_KILL;
1271 }
1272 }
1273
1274 static int
1275 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1276 {
1277 int ret = BLKPREP_OK;
1278
1279 /*
1280 * If the device is not in running state we will reject some
1281 * or all commands.
1282 */
1283 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1284 switch (sdev->sdev_state) {
1285 case SDEV_OFFLINE:
1286 case SDEV_TRANSPORT_OFFLINE:
1287 /*
1288 * If the device is offline we refuse to process any
1289 * commands. The device must be brought online
1290 * before trying any recovery commands.
1291 */
1292 sdev_printk(KERN_ERR, sdev,
1293 "rejecting I/O to offline device\n");
1294 ret = BLKPREP_KILL;
1295 break;
1296 case SDEV_DEL:
1297 /*
1298 * If the device is fully deleted, we refuse to
1299 * process any commands as well.
1300 */
1301 sdev_printk(KERN_ERR, sdev,
1302 "rejecting I/O to dead device\n");
1303 ret = BLKPREP_KILL;
1304 break;
1305 case SDEV_QUIESCE:
1306 case SDEV_BLOCK:
1307 case SDEV_CREATED_BLOCK:
1308 /*
1309 * If the devices is blocked we defer normal commands.
1310 */
1311 if (!(req->cmd_flags & REQ_PREEMPT))
1312 ret = BLKPREP_DEFER;
1313 break;
1314 default:
1315 /*
1316 * For any other not fully online state we only allow
1317 * special commands. In particular any user initiated
1318 * command is not allowed.
1319 */
1320 if (!(req->cmd_flags & REQ_PREEMPT))
1321 ret = BLKPREP_KILL;
1322 break;
1323 }
1324 }
1325 return ret;
1326 }
1327
1328 static int
1329 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1330 {
1331 struct scsi_device *sdev = q->queuedata;
1332
1333 switch (ret) {
1334 case BLKPREP_KILL:
1335 req->errors = DID_NO_CONNECT << 16;
1336 /* release the command and kill it */
1337 if (req->special) {
1338 struct scsi_cmnd *cmd = req->special;
1339 scsi_release_buffers(cmd);
1340 scsi_put_command(cmd);
1341 put_device(&sdev->sdev_gendev);
1342 req->special = NULL;
1343 }
1344 break;
1345 case BLKPREP_DEFER:
1346 /*
1347 * If we defer, the blk_peek_request() returns NULL, but the
1348 * queue must be restarted, so we schedule a callback to happen
1349 * shortly.
1350 */
1351 if (atomic_read(&sdev->device_busy) == 0)
1352 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1353 break;
1354 default:
1355 req->cmd_flags |= REQ_DONTPREP;
1356 }
1357
1358 return ret;
1359 }
1360
1361 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1362 {
1363 struct scsi_device *sdev = q->queuedata;
1364 struct scsi_cmnd *cmd;
1365 int ret;
1366
1367 ret = scsi_prep_state_check(sdev, req);
1368 if (ret != BLKPREP_OK)
1369 goto out;
1370
1371 cmd = scsi_get_cmd_from_req(sdev, req);
1372 if (unlikely(!cmd)) {
1373 ret = BLKPREP_DEFER;
1374 goto out;
1375 }
1376
1377 ret = scsi_setup_cmnd(sdev, req);
1378 out:
1379 return scsi_prep_return(q, req, ret);
1380 }
1381
1382 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1383 {
1384 scsi_uninit_cmd(req->special);
1385 }
1386
1387 /*
1388 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1389 * return 0.
1390 *
1391 * Called with the queue_lock held.
1392 */
1393 static inline int scsi_dev_queue_ready(struct request_queue *q,
1394 struct scsi_device *sdev)
1395 {
1396 unsigned int busy;
1397
1398 busy = atomic_inc_return(&sdev->device_busy) - 1;
1399 if (atomic_read(&sdev->device_blocked)) {
1400 if (busy)
1401 goto out_dec;
1402
1403 /*
1404 * unblock after device_blocked iterates to zero
1405 */
1406 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1407 /*
1408 * For the MQ case we take care of this in the caller.
1409 */
1410 if (!q->mq_ops)
1411 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1412 goto out_dec;
1413 }
1414 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1415 "unblocking device at zero depth\n"));
1416 }
1417
1418 if (busy >= sdev->queue_depth)
1419 goto out_dec;
1420
1421 return 1;
1422 out_dec:
1423 atomic_dec(&sdev->device_busy);
1424 return 0;
1425 }
1426
1427 /*
1428 * scsi_target_queue_ready: checks if there we can send commands to target
1429 * @sdev: scsi device on starget to check.
1430 */
1431 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1432 struct scsi_device *sdev)
1433 {
1434 struct scsi_target *starget = scsi_target(sdev);
1435 unsigned int busy;
1436
1437 if (starget->single_lun) {
1438 spin_lock_irq(shost->host_lock);
1439 if (starget->starget_sdev_user &&
1440 starget->starget_sdev_user != sdev) {
1441 spin_unlock_irq(shost->host_lock);
1442 return 0;
1443 }
1444 starget->starget_sdev_user = sdev;
1445 spin_unlock_irq(shost->host_lock);
1446 }
1447
1448 if (starget->can_queue <= 0)
1449 return 1;
1450
1451 busy = atomic_inc_return(&starget->target_busy) - 1;
1452 if (atomic_read(&starget->target_blocked) > 0) {
1453 if (busy)
1454 goto starved;
1455
1456 /*
1457 * unblock after target_blocked iterates to zero
1458 */
1459 if (atomic_dec_return(&starget->target_blocked) > 0)
1460 goto out_dec;
1461
1462 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1463 "unblocking target at zero depth\n"));
1464 }
1465
1466 if (busy >= starget->can_queue)
1467 goto starved;
1468
1469 return 1;
1470
1471 starved:
1472 spin_lock_irq(shost->host_lock);
1473 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1474 spin_unlock_irq(shost->host_lock);
1475 out_dec:
1476 if (starget->can_queue > 0)
1477 atomic_dec(&starget->target_busy);
1478 return 0;
1479 }
1480
1481 /*
1482 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1483 * return 0. We must end up running the queue again whenever 0 is
1484 * returned, else IO can hang.
1485 */
1486 static inline int scsi_host_queue_ready(struct request_queue *q,
1487 struct Scsi_Host *shost,
1488 struct scsi_device *sdev)
1489 {
1490 unsigned int busy;
1491
1492 if (scsi_host_in_recovery(shost))
1493 return 0;
1494
1495 busy = atomic_inc_return(&shost->host_busy) - 1;
1496 if (atomic_read(&shost->host_blocked) > 0) {
1497 if (busy)
1498 goto starved;
1499
1500 /*
1501 * unblock after host_blocked iterates to zero
1502 */
1503 if (atomic_dec_return(&shost->host_blocked) > 0)
1504 goto out_dec;
1505
1506 SCSI_LOG_MLQUEUE(3,
1507 shost_printk(KERN_INFO, shost,
1508 "unblocking host at zero depth\n"));
1509 }
1510
1511 if (shost->can_queue > 0 && busy >= shost->can_queue)
1512 goto starved;
1513 if (shost->host_self_blocked)
1514 goto starved;
1515
1516 /* We're OK to process the command, so we can't be starved */
1517 if (!list_empty(&sdev->starved_entry)) {
1518 spin_lock_irq(shost->host_lock);
1519 if (!list_empty(&sdev->starved_entry))
1520 list_del_init(&sdev->starved_entry);
1521 spin_unlock_irq(shost->host_lock);
1522 }
1523
1524 return 1;
1525
1526 starved:
1527 spin_lock_irq(shost->host_lock);
1528 if (list_empty(&sdev->starved_entry))
1529 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1530 spin_unlock_irq(shost->host_lock);
1531 out_dec:
1532 atomic_dec(&shost->host_busy);
1533 return 0;
1534 }
1535
1536 /*
1537 * Busy state exporting function for request stacking drivers.
1538 *
1539 * For efficiency, no lock is taken to check the busy state of
1540 * shost/starget/sdev, since the returned value is not guaranteed and
1541 * may be changed after request stacking drivers call the function,
1542 * regardless of taking lock or not.
1543 *
1544 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1545 * needs to return 'not busy'. Otherwise, request stacking drivers
1546 * may hold requests forever.
1547 */
1548 static int scsi_lld_busy(struct request_queue *q)
1549 {
1550 struct scsi_device *sdev = q->queuedata;
1551 struct Scsi_Host *shost;
1552
1553 if (blk_queue_dying(q))
1554 return 0;
1555
1556 shost = sdev->host;
1557
1558 /*
1559 * Ignore host/starget busy state.
1560 * Since block layer does not have a concept of fairness across
1561 * multiple queues, congestion of host/starget needs to be handled
1562 * in SCSI layer.
1563 */
1564 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1565 return 1;
1566
1567 return 0;
1568 }
1569
1570 /*
1571 * Kill a request for a dead device
1572 */
1573 static void scsi_kill_request(struct request *req, struct request_queue *q)
1574 {
1575 struct scsi_cmnd *cmd = req->special;
1576 struct scsi_device *sdev;
1577 struct scsi_target *starget;
1578 struct Scsi_Host *shost;
1579
1580 blk_start_request(req);
1581
1582 scmd_printk(KERN_INFO, cmd, "killing request\n");
1583
1584 sdev = cmd->device;
1585 starget = scsi_target(sdev);
1586 shost = sdev->host;
1587 scsi_init_cmd_errh(cmd);
1588 cmd->result = DID_NO_CONNECT << 16;
1589 atomic_inc(&cmd->device->iorequest_cnt);
1590
1591 /*
1592 * SCSI request completion path will do scsi_device_unbusy(),
1593 * bump busy counts. To bump the counters, we need to dance
1594 * with the locks as normal issue path does.
1595 */
1596 atomic_inc(&sdev->device_busy);
1597 atomic_inc(&shost->host_busy);
1598 if (starget->can_queue > 0)
1599 atomic_inc(&starget->target_busy);
1600
1601 blk_complete_request(req);
1602 }
1603
1604 static void scsi_softirq_done(struct request *rq)
1605 {
1606 struct scsi_cmnd *cmd = rq->special;
1607 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1608 int disposition;
1609
1610 INIT_LIST_HEAD(&cmd->eh_entry);
1611
1612 atomic_inc(&cmd->device->iodone_cnt);
1613 if (cmd->result)
1614 atomic_inc(&cmd->device->ioerr_cnt);
1615
1616 disposition = scsi_decide_disposition(cmd);
1617 if (disposition != SUCCESS &&
1618 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1619 sdev_printk(KERN_ERR, cmd->device,
1620 "timing out command, waited %lus\n",
1621 wait_for/HZ);
1622 disposition = SUCCESS;
1623 }
1624
1625 scsi_log_completion(cmd, disposition);
1626
1627 switch (disposition) {
1628 case SUCCESS:
1629 scsi_finish_command(cmd);
1630 break;
1631 case NEEDS_RETRY:
1632 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1633 break;
1634 case ADD_TO_MLQUEUE:
1635 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1636 break;
1637 default:
1638 if (!scsi_eh_scmd_add(cmd, 0))
1639 scsi_finish_command(cmd);
1640 }
1641 }
1642
1643 /**
1644 * scsi_done - Invoke completion on finished SCSI command.
1645 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1646 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1647 *
1648 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1649 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1650 * calls blk_complete_request() for further processing.
1651 *
1652 * This function is interrupt context safe.
1653 */
1654 static void scsi_done(struct scsi_cmnd *cmd)
1655 {
1656 trace_scsi_dispatch_cmd_done(cmd);
1657 blk_complete_request(cmd->request);
1658 }
1659
1660 /*
1661 * Function: scsi_request_fn()
1662 *
1663 * Purpose: Main strategy routine for SCSI.
1664 *
1665 * Arguments: q - Pointer to actual queue.
1666 *
1667 * Returns: Nothing
1668 *
1669 * Lock status: IO request lock assumed to be held when called.
1670 */
1671 static void scsi_request_fn(struct request_queue *q)
1672 __releases(q->queue_lock)
1673 __acquires(q->queue_lock)
1674 {
1675 struct scsi_device *sdev = q->queuedata;
1676 struct Scsi_Host *shost;
1677 struct scsi_cmnd *cmd;
1678 struct request *req;
1679
1680 /*
1681 * To start with, we keep looping until the queue is empty, or until
1682 * the host is no longer able to accept any more requests.
1683 */
1684 shost = sdev->host;
1685 for (;;) {
1686 int rtn;
1687 /*
1688 * get next queueable request. We do this early to make sure
1689 * that the request is fully prepared even if we cannot
1690 * accept it.
1691 */
1692 req = blk_peek_request(q);
1693 if (!req)
1694 break;
1695
1696 if (unlikely(!scsi_device_online(sdev))) {
1697 sdev_printk(KERN_ERR, sdev,
1698 "rejecting I/O to offline device\n");
1699 scsi_kill_request(req, q);
1700 continue;
1701 }
1702
1703 if (!scsi_dev_queue_ready(q, sdev))
1704 break;
1705
1706 /*
1707 * Remove the request from the request list.
1708 */
1709 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1710 blk_start_request(req);
1711
1712 spin_unlock_irq(q->queue_lock);
1713 cmd = req->special;
1714 if (unlikely(cmd == NULL)) {
1715 printk(KERN_CRIT "impossible request in %s.\n"
1716 "please mail a stack trace to "
1717 "linux-scsi@vger.kernel.org\n",
1718 __func__);
1719 blk_dump_rq_flags(req, "foo");
1720 BUG();
1721 }
1722
1723 /*
1724 * We hit this when the driver is using a host wide
1725 * tag map. For device level tag maps the queue_depth check
1726 * in the device ready fn would prevent us from trying
1727 * to allocate a tag. Since the map is a shared host resource
1728 * we add the dev to the starved list so it eventually gets
1729 * a run when a tag is freed.
1730 */
1731 if (blk_queue_tagged(q) && !(req->cmd_flags & REQ_QUEUED)) {
1732 spin_lock_irq(shost->host_lock);
1733 if (list_empty(&sdev->starved_entry))
1734 list_add_tail(&sdev->starved_entry,
1735 &shost->starved_list);
1736 spin_unlock_irq(shost->host_lock);
1737 goto not_ready;
1738 }
1739
1740 if (!scsi_target_queue_ready(shost, sdev))
1741 goto not_ready;
1742
1743 if (!scsi_host_queue_ready(q, shost, sdev))
1744 goto host_not_ready;
1745
1746 if (sdev->simple_tags)
1747 cmd->flags |= SCMD_TAGGED;
1748 else
1749 cmd->flags &= ~SCMD_TAGGED;
1750
1751 /*
1752 * Finally, initialize any error handling parameters, and set up
1753 * the timers for timeouts.
1754 */
1755 scsi_init_cmd_errh(cmd);
1756
1757 /*
1758 * Dispatch the command to the low-level driver.
1759 */
1760 cmd->scsi_done = scsi_done;
1761 rtn = scsi_dispatch_cmd(cmd);
1762 if (rtn) {
1763 scsi_queue_insert(cmd, rtn);
1764 spin_lock_irq(q->queue_lock);
1765 goto out_delay;
1766 }
1767 spin_lock_irq(q->queue_lock);
1768 }
1769
1770 return;
1771
1772 host_not_ready:
1773 if (scsi_target(sdev)->can_queue > 0)
1774 atomic_dec(&scsi_target(sdev)->target_busy);
1775 not_ready:
1776 /*
1777 * lock q, handle tag, requeue req, and decrement device_busy. We
1778 * must return with queue_lock held.
1779 *
1780 * Decrementing device_busy without checking it is OK, as all such
1781 * cases (host limits or settings) should run the queue at some
1782 * later time.
1783 */
1784 spin_lock_irq(q->queue_lock);
1785 blk_requeue_request(q, req);
1786 atomic_dec(&sdev->device_busy);
1787 out_delay:
1788 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1789 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1790 }
1791
1792 static inline int prep_to_mq(int ret)
1793 {
1794 switch (ret) {
1795 case BLKPREP_OK:
1796 return 0;
1797 case BLKPREP_DEFER:
1798 return BLK_MQ_RQ_QUEUE_BUSY;
1799 default:
1800 return BLK_MQ_RQ_QUEUE_ERROR;
1801 }
1802 }
1803
1804 static int scsi_mq_prep_fn(struct request *req)
1805 {
1806 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1807 struct scsi_device *sdev = req->q->queuedata;
1808 struct Scsi_Host *shost = sdev->host;
1809 unsigned char *sense_buf = cmd->sense_buffer;
1810 struct scatterlist *sg;
1811
1812 memset(cmd, 0, sizeof(struct scsi_cmnd));
1813
1814 req->special = cmd;
1815
1816 cmd->request = req;
1817 cmd->device = sdev;
1818 cmd->sense_buffer = sense_buf;
1819
1820 cmd->tag = req->tag;
1821
1822 cmd->cmnd = req->cmd;
1823 cmd->prot_op = SCSI_PROT_NORMAL;
1824
1825 INIT_LIST_HEAD(&cmd->list);
1826 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1827 cmd->jiffies_at_alloc = jiffies;
1828
1829 if (shost->use_cmd_list) {
1830 spin_lock_irq(&sdev->list_lock);
1831 list_add_tail(&cmd->list, &sdev->cmd_list);
1832 spin_unlock_irq(&sdev->list_lock);
1833 }
1834
1835 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1836 cmd->sdb.table.sgl = sg;
1837
1838 if (scsi_host_get_prot(shost)) {
1839 cmd->prot_sdb = (void *)sg +
1840 shost->sg_tablesize * sizeof(struct scatterlist);
1841 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1842
1843 cmd->prot_sdb->table.sgl =
1844 (struct scatterlist *)(cmd->prot_sdb + 1);
1845 }
1846
1847 if (blk_bidi_rq(req)) {
1848 struct request *next_rq = req->next_rq;
1849 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1850
1851 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1852 bidi_sdb->table.sgl =
1853 (struct scatterlist *)(bidi_sdb + 1);
1854
1855 next_rq->special = bidi_sdb;
1856 }
1857
1858 blk_mq_start_request(req);
1859
1860 return scsi_setup_cmnd(sdev, req);
1861 }
1862
1863 static void scsi_mq_done(struct scsi_cmnd *cmd)
1864 {
1865 trace_scsi_dispatch_cmd_done(cmd);
1866 blk_mq_complete_request(cmd->request);
1867 }
1868
1869 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx, struct request *req,
1870 bool last)
1871 {
1872 struct request_queue *q = req->q;
1873 struct scsi_device *sdev = q->queuedata;
1874 struct Scsi_Host *shost = sdev->host;
1875 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1876 int ret;
1877 int reason;
1878
1879 ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1880 if (ret)
1881 goto out;
1882
1883 ret = BLK_MQ_RQ_QUEUE_BUSY;
1884 if (!get_device(&sdev->sdev_gendev))
1885 goto out;
1886
1887 if (!scsi_dev_queue_ready(q, sdev))
1888 goto out_put_device;
1889 if (!scsi_target_queue_ready(shost, sdev))
1890 goto out_dec_device_busy;
1891 if (!scsi_host_queue_ready(q, shost, sdev))
1892 goto out_dec_target_busy;
1893
1894
1895 if (!(req->cmd_flags & REQ_DONTPREP)) {
1896 ret = prep_to_mq(scsi_mq_prep_fn(req));
1897 if (ret)
1898 goto out_dec_host_busy;
1899 req->cmd_flags |= REQ_DONTPREP;
1900 } else {
1901 blk_mq_start_request(req);
1902 }
1903
1904 if (sdev->simple_tags)
1905 cmd->flags |= SCMD_TAGGED;
1906 else
1907 cmd->flags &= ~SCMD_TAGGED;
1908
1909 scsi_init_cmd_errh(cmd);
1910 cmd->scsi_done = scsi_mq_done;
1911
1912 reason = scsi_dispatch_cmd(cmd);
1913 if (reason) {
1914 scsi_set_blocked(cmd, reason);
1915 ret = BLK_MQ_RQ_QUEUE_BUSY;
1916 goto out_dec_host_busy;
1917 }
1918
1919 return BLK_MQ_RQ_QUEUE_OK;
1920
1921 out_dec_host_busy:
1922 atomic_dec(&shost->host_busy);
1923 out_dec_target_busy:
1924 if (scsi_target(sdev)->can_queue > 0)
1925 atomic_dec(&scsi_target(sdev)->target_busy);
1926 out_dec_device_busy:
1927 atomic_dec(&sdev->device_busy);
1928 out_put_device:
1929 put_device(&sdev->sdev_gendev);
1930 out:
1931 switch (ret) {
1932 case BLK_MQ_RQ_QUEUE_BUSY:
1933 blk_mq_stop_hw_queue(hctx);
1934 if (atomic_read(&sdev->device_busy) == 0 &&
1935 !scsi_device_blocked(sdev))
1936 blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
1937 break;
1938 case BLK_MQ_RQ_QUEUE_ERROR:
1939 /*
1940 * Make sure to release all allocated ressources when
1941 * we hit an error, as we will never see this command
1942 * again.
1943 */
1944 if (req->cmd_flags & REQ_DONTPREP)
1945 scsi_mq_uninit_cmd(cmd);
1946 break;
1947 default:
1948 break;
1949 }
1950 return ret;
1951 }
1952
1953 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1954 bool reserved)
1955 {
1956 if (reserved)
1957 return BLK_EH_RESET_TIMER;
1958 return scsi_times_out(req);
1959 }
1960
1961 static int scsi_init_request(void *data, struct request *rq,
1962 unsigned int hctx_idx, unsigned int request_idx,
1963 unsigned int numa_node)
1964 {
1965 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1966
1967 cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
1968 numa_node);
1969 if (!cmd->sense_buffer)
1970 return -ENOMEM;
1971 return 0;
1972 }
1973
1974 static void scsi_exit_request(void *data, struct request *rq,
1975 unsigned int hctx_idx, unsigned int request_idx)
1976 {
1977 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1978
1979 kfree(cmd->sense_buffer);
1980 }
1981
1982 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1983 {
1984 struct device *host_dev;
1985 u64 bounce_limit = 0xffffffff;
1986
1987 if (shost->unchecked_isa_dma)
1988 return BLK_BOUNCE_ISA;
1989 /*
1990 * Platforms with virtual-DMA translation
1991 * hardware have no practical limit.
1992 */
1993 if (!PCI_DMA_BUS_IS_PHYS)
1994 return BLK_BOUNCE_ANY;
1995
1996 host_dev = scsi_get_device(shost);
1997 if (host_dev && host_dev->dma_mask)
1998 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
1999
2000 return bounce_limit;
2001 }
2002
2003 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2004 {
2005 struct device *dev = shost->dma_dev;
2006
2007 /*
2008 * this limit is imposed by hardware restrictions
2009 */
2010 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2011 SCSI_MAX_SG_CHAIN_SEGMENTS));
2012
2013 if (scsi_host_prot_dma(shost)) {
2014 shost->sg_prot_tablesize =
2015 min_not_zero(shost->sg_prot_tablesize,
2016 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2017 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2018 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2019 }
2020
2021 blk_queue_max_hw_sectors(q, shost->max_sectors);
2022 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2023 blk_queue_segment_boundary(q, shost->dma_boundary);
2024 dma_set_seg_boundary(dev, shost->dma_boundary);
2025
2026 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2027
2028 if (!shost->use_clustering)
2029 q->limits.cluster = 0;
2030
2031 /*
2032 * set a reasonable default alignment on word boundaries: the
2033 * host and device may alter it using
2034 * blk_queue_update_dma_alignment() later.
2035 */
2036 blk_queue_dma_alignment(q, 0x03);
2037 }
2038
2039 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2040 request_fn_proc *request_fn)
2041 {
2042 struct request_queue *q;
2043
2044 q = blk_init_queue(request_fn, NULL);
2045 if (!q)
2046 return NULL;
2047 __scsi_init_queue(shost, q);
2048 return q;
2049 }
2050 EXPORT_SYMBOL(__scsi_alloc_queue);
2051
2052 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2053 {
2054 struct request_queue *q;
2055
2056 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2057 if (!q)
2058 return NULL;
2059
2060 blk_queue_prep_rq(q, scsi_prep_fn);
2061 blk_queue_unprep_rq(q, scsi_unprep_fn);
2062 blk_queue_softirq_done(q, scsi_softirq_done);
2063 blk_queue_rq_timed_out(q, scsi_times_out);
2064 blk_queue_lld_busy(q, scsi_lld_busy);
2065 return q;
2066 }
2067
2068 static struct blk_mq_ops scsi_mq_ops = {
2069 .map_queue = blk_mq_map_queue,
2070 .queue_rq = scsi_queue_rq,
2071 .complete = scsi_softirq_done,
2072 .timeout = scsi_timeout,
2073 .init_request = scsi_init_request,
2074 .exit_request = scsi_exit_request,
2075 };
2076
2077 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2078 {
2079 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2080 if (IS_ERR(sdev->request_queue))
2081 return NULL;
2082
2083 sdev->request_queue->queuedata = sdev;
2084 __scsi_init_queue(sdev->host, sdev->request_queue);
2085 return sdev->request_queue;
2086 }
2087
2088 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2089 {
2090 unsigned int cmd_size, sgl_size, tbl_size;
2091
2092 tbl_size = shost->sg_tablesize;
2093 if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2094 tbl_size = SCSI_MAX_SG_SEGMENTS;
2095 sgl_size = tbl_size * sizeof(struct scatterlist);
2096 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2097 if (scsi_host_get_prot(shost))
2098 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2099
2100 memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2101 shost->tag_set.ops = &scsi_mq_ops;
2102 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2103 shost->tag_set.queue_depth = shost->can_queue;
2104 shost->tag_set.cmd_size = cmd_size;
2105 shost->tag_set.numa_node = NUMA_NO_NODE;
2106 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2107 shost->tag_set.driver_data = shost;
2108
2109 return blk_mq_alloc_tag_set(&shost->tag_set);
2110 }
2111
2112 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2113 {
2114 blk_mq_free_tag_set(&shost->tag_set);
2115 }
2116
2117 /*
2118 * Function: scsi_block_requests()
2119 *
2120 * Purpose: Utility function used by low-level drivers to prevent further
2121 * commands from being queued to the device.
2122 *
2123 * Arguments: shost - Host in question
2124 *
2125 * Returns: Nothing
2126 *
2127 * Lock status: No locks are assumed held.
2128 *
2129 * Notes: There is no timer nor any other means by which the requests
2130 * get unblocked other than the low-level driver calling
2131 * scsi_unblock_requests().
2132 */
2133 void scsi_block_requests(struct Scsi_Host *shost)
2134 {
2135 shost->host_self_blocked = 1;
2136 }
2137 EXPORT_SYMBOL(scsi_block_requests);
2138
2139 /*
2140 * Function: scsi_unblock_requests()
2141 *
2142 * Purpose: Utility function used by low-level drivers to allow further
2143 * commands from being queued to the device.
2144 *
2145 * Arguments: shost - Host in question
2146 *
2147 * Returns: Nothing
2148 *
2149 * Lock status: No locks are assumed held.
2150 *
2151 * Notes: There is no timer nor any other means by which the requests
2152 * get unblocked other than the low-level driver calling
2153 * scsi_unblock_requests().
2154 *
2155 * This is done as an API function so that changes to the
2156 * internals of the scsi mid-layer won't require wholesale
2157 * changes to drivers that use this feature.
2158 */
2159 void scsi_unblock_requests(struct Scsi_Host *shost)
2160 {
2161 shost->host_self_blocked = 0;
2162 scsi_run_host_queues(shost);
2163 }
2164 EXPORT_SYMBOL(scsi_unblock_requests);
2165
2166 int __init scsi_init_queue(void)
2167 {
2168 int i;
2169
2170 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2171 sizeof(struct scsi_data_buffer),
2172 0, 0, NULL);
2173 if (!scsi_sdb_cache) {
2174 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2175 return -ENOMEM;
2176 }
2177
2178 for (i = 0; i < SG_MEMPOOL_NR; i++) {
2179 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2180 int size = sgp->size * sizeof(struct scatterlist);
2181
2182 sgp->slab = kmem_cache_create(sgp->name, size, 0,
2183 SLAB_HWCACHE_ALIGN, NULL);
2184 if (!sgp->slab) {
2185 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2186 sgp->name);
2187 goto cleanup_sdb;
2188 }
2189
2190 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2191 sgp->slab);
2192 if (!sgp->pool) {
2193 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2194 sgp->name);
2195 goto cleanup_sdb;
2196 }
2197 }
2198
2199 return 0;
2200
2201 cleanup_sdb:
2202 for (i = 0; i < SG_MEMPOOL_NR; i++) {
2203 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2204 if (sgp->pool)
2205 mempool_destroy(sgp->pool);
2206 if (sgp->slab)
2207 kmem_cache_destroy(sgp->slab);
2208 }
2209 kmem_cache_destroy(scsi_sdb_cache);
2210
2211 return -ENOMEM;
2212 }
2213
2214 void scsi_exit_queue(void)
2215 {
2216 int i;
2217
2218 kmem_cache_destroy(scsi_sdb_cache);
2219
2220 for (i = 0; i < SG_MEMPOOL_NR; i++) {
2221 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2222 mempool_destroy(sgp->pool);
2223 kmem_cache_destroy(sgp->slab);
2224 }
2225 }
2226
2227 /**
2228 * scsi_mode_select - issue a mode select
2229 * @sdev: SCSI device to be queried
2230 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2231 * @sp: Save page bit (0 == don't save, 1 == save)
2232 * @modepage: mode page being requested
2233 * @buffer: request buffer (may not be smaller than eight bytes)
2234 * @len: length of request buffer.
2235 * @timeout: command timeout
2236 * @retries: number of retries before failing
2237 * @data: returns a structure abstracting the mode header data
2238 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2239 * must be SCSI_SENSE_BUFFERSIZE big.
2240 *
2241 * Returns zero if successful; negative error number or scsi
2242 * status on error
2243 *
2244 */
2245 int
2246 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2247 unsigned char *buffer, int len, int timeout, int retries,
2248 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2249 {
2250 unsigned char cmd[10];
2251 unsigned char *real_buffer;
2252 int ret;
2253
2254 memset(cmd, 0, sizeof(cmd));
2255 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2256
2257 if (sdev->use_10_for_ms) {
2258 if (len > 65535)
2259 return -EINVAL;
2260 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2261 if (!real_buffer)
2262 return -ENOMEM;
2263 memcpy(real_buffer + 8, buffer, len);
2264 len += 8;
2265 real_buffer[0] = 0;
2266 real_buffer[1] = 0;
2267 real_buffer[2] = data->medium_type;
2268 real_buffer[3] = data->device_specific;
2269 real_buffer[4] = data->longlba ? 0x01 : 0;
2270 real_buffer[5] = 0;
2271 real_buffer[6] = data->block_descriptor_length >> 8;
2272 real_buffer[7] = data->block_descriptor_length;
2273
2274 cmd[0] = MODE_SELECT_10;
2275 cmd[7] = len >> 8;
2276 cmd[8] = len;
2277 } else {
2278 if (len > 255 || data->block_descriptor_length > 255 ||
2279 data->longlba)
2280 return -EINVAL;
2281
2282 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2283 if (!real_buffer)
2284 return -ENOMEM;
2285 memcpy(real_buffer + 4, buffer, len);
2286 len += 4;
2287 real_buffer[0] = 0;
2288 real_buffer[1] = data->medium_type;
2289 real_buffer[2] = data->device_specific;
2290 real_buffer[3] = data->block_descriptor_length;
2291
2292
2293 cmd[0] = MODE_SELECT;
2294 cmd[4] = len;
2295 }
2296
2297 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2298 sshdr, timeout, retries, NULL);
2299 kfree(real_buffer);
2300 return ret;
2301 }
2302 EXPORT_SYMBOL_GPL(scsi_mode_select);
2303
2304 /**
2305 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2306 * @sdev: SCSI device to be queried
2307 * @dbd: set if mode sense will allow block descriptors to be returned
2308 * @modepage: mode page being requested
2309 * @buffer: request buffer (may not be smaller than eight bytes)
2310 * @len: length of request buffer.
2311 * @timeout: command timeout
2312 * @retries: number of retries before failing
2313 * @data: returns a structure abstracting the mode header data
2314 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2315 * must be SCSI_SENSE_BUFFERSIZE big.
2316 *
2317 * Returns zero if unsuccessful, or the header offset (either 4
2318 * or 8 depending on whether a six or ten byte command was
2319 * issued) if successful.
2320 */
2321 int
2322 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2323 unsigned char *buffer, int len, int timeout, int retries,
2324 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2325 {
2326 unsigned char cmd[12];
2327 int use_10_for_ms;
2328 int header_length;
2329 int result;
2330 struct scsi_sense_hdr my_sshdr;
2331
2332 memset(data, 0, sizeof(*data));
2333 memset(&cmd[0], 0, 12);
2334 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2335 cmd[2] = modepage;
2336
2337 /* caller might not be interested in sense, but we need it */
2338 if (!sshdr)
2339 sshdr = &my_sshdr;
2340
2341 retry:
2342 use_10_for_ms = sdev->use_10_for_ms;
2343
2344 if (use_10_for_ms) {
2345 if (len < 8)
2346 len = 8;
2347
2348 cmd[0] = MODE_SENSE_10;
2349 cmd[8] = len;
2350 header_length = 8;
2351 } else {
2352 if (len < 4)
2353 len = 4;
2354
2355 cmd[0] = MODE_SENSE;
2356 cmd[4] = len;
2357 header_length = 4;
2358 }
2359
2360 memset(buffer, 0, len);
2361
2362 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2363 sshdr, timeout, retries, NULL);
2364
2365 /* This code looks awful: what it's doing is making sure an
2366 * ILLEGAL REQUEST sense return identifies the actual command
2367 * byte as the problem. MODE_SENSE commands can return
2368 * ILLEGAL REQUEST if the code page isn't supported */
2369
2370 if (use_10_for_ms && !scsi_status_is_good(result) &&
2371 (driver_byte(result) & DRIVER_SENSE)) {
2372 if (scsi_sense_valid(sshdr)) {
2373 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2374 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2375 /*
2376 * Invalid command operation code
2377 */
2378 sdev->use_10_for_ms = 0;
2379 goto retry;
2380 }
2381 }
2382 }
2383
2384 if(scsi_status_is_good(result)) {
2385 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2386 (modepage == 6 || modepage == 8))) {
2387 /* Initio breakage? */
2388 header_length = 0;
2389 data->length = 13;
2390 data->medium_type = 0;
2391 data->device_specific = 0;
2392 data->longlba = 0;
2393 data->block_descriptor_length = 0;
2394 } else if(use_10_for_ms) {
2395 data->length = buffer[0]*256 + buffer[1] + 2;
2396 data->medium_type = buffer[2];
2397 data->device_specific = buffer[3];
2398 data->longlba = buffer[4] & 0x01;
2399 data->block_descriptor_length = buffer[6]*256
2400 + buffer[7];
2401 } else {
2402 data->length = buffer[0] + 1;
2403 data->medium_type = buffer[1];
2404 data->device_specific = buffer[2];
2405 data->block_descriptor_length = buffer[3];
2406 }
2407 data->header_length = header_length;
2408 }
2409
2410 return result;
2411 }
2412 EXPORT_SYMBOL(scsi_mode_sense);
2413
2414 /**
2415 * scsi_test_unit_ready - test if unit is ready
2416 * @sdev: scsi device to change the state of.
2417 * @timeout: command timeout
2418 * @retries: number of retries before failing
2419 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2420 * returning sense. Make sure that this is cleared before passing
2421 * in.
2422 *
2423 * Returns zero if unsuccessful or an error if TUR failed. For
2424 * removable media, UNIT_ATTENTION sets ->changed flag.
2425 **/
2426 int
2427 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2428 struct scsi_sense_hdr *sshdr_external)
2429 {
2430 char cmd[] = {
2431 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2432 };
2433 struct scsi_sense_hdr *sshdr;
2434 int result;
2435
2436 if (!sshdr_external)
2437 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2438 else
2439 sshdr = sshdr_external;
2440
2441 /* try to eat the UNIT_ATTENTION if there are enough retries */
2442 do {
2443 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2444 timeout, retries, NULL);
2445 if (sdev->removable && scsi_sense_valid(sshdr) &&
2446 sshdr->sense_key == UNIT_ATTENTION)
2447 sdev->changed = 1;
2448 } while (scsi_sense_valid(sshdr) &&
2449 sshdr->sense_key == UNIT_ATTENTION && --retries);
2450
2451 if (!sshdr_external)
2452 kfree(sshdr);
2453 return result;
2454 }
2455 EXPORT_SYMBOL(scsi_test_unit_ready);
2456
2457 /**
2458 * scsi_device_set_state - Take the given device through the device state model.
2459 * @sdev: scsi device to change the state of.
2460 * @state: state to change to.
2461 *
2462 * Returns zero if unsuccessful or an error if the requested
2463 * transition is illegal.
2464 */
2465 int
2466 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2467 {
2468 enum scsi_device_state oldstate = sdev->sdev_state;
2469
2470 if (state == oldstate)
2471 return 0;
2472
2473 switch (state) {
2474 case SDEV_CREATED:
2475 switch (oldstate) {
2476 case SDEV_CREATED_BLOCK:
2477 break;
2478 default:
2479 goto illegal;
2480 }
2481 break;
2482
2483 case SDEV_RUNNING:
2484 switch (oldstate) {
2485 case SDEV_CREATED:
2486 case SDEV_OFFLINE:
2487 case SDEV_TRANSPORT_OFFLINE:
2488 case SDEV_QUIESCE:
2489 case SDEV_BLOCK:
2490 break;
2491 default:
2492 goto illegal;
2493 }
2494 break;
2495
2496 case SDEV_QUIESCE:
2497 switch (oldstate) {
2498 case SDEV_RUNNING:
2499 case SDEV_OFFLINE:
2500 case SDEV_TRANSPORT_OFFLINE:
2501 break;
2502 default:
2503 goto illegal;
2504 }
2505 break;
2506
2507 case SDEV_OFFLINE:
2508 case SDEV_TRANSPORT_OFFLINE:
2509 switch (oldstate) {
2510 case SDEV_CREATED:
2511 case SDEV_RUNNING:
2512 case SDEV_QUIESCE:
2513 case SDEV_BLOCK:
2514 break;
2515 default:
2516 goto illegal;
2517 }
2518 break;
2519
2520 case SDEV_BLOCK:
2521 switch (oldstate) {
2522 case SDEV_RUNNING:
2523 case SDEV_CREATED_BLOCK:
2524 break;
2525 default:
2526 goto illegal;
2527 }
2528 break;
2529
2530 case SDEV_CREATED_BLOCK:
2531 switch (oldstate) {
2532 case SDEV_CREATED:
2533 break;
2534 default:
2535 goto illegal;
2536 }
2537 break;
2538
2539 case SDEV_CANCEL:
2540 switch (oldstate) {
2541 case SDEV_CREATED:
2542 case SDEV_RUNNING:
2543 case SDEV_QUIESCE:
2544 case SDEV_OFFLINE:
2545 case SDEV_TRANSPORT_OFFLINE:
2546 case SDEV_BLOCK:
2547 break;
2548 default:
2549 goto illegal;
2550 }
2551 break;
2552
2553 case SDEV_DEL:
2554 switch (oldstate) {
2555 case SDEV_CREATED:
2556 case SDEV_RUNNING:
2557 case SDEV_OFFLINE:
2558 case SDEV_TRANSPORT_OFFLINE:
2559 case SDEV_CANCEL:
2560 case SDEV_CREATED_BLOCK:
2561 break;
2562 default:
2563 goto illegal;
2564 }
2565 break;
2566
2567 }
2568 sdev->sdev_state = state;
2569 return 0;
2570
2571 illegal:
2572 SCSI_LOG_ERROR_RECOVERY(1,
2573 sdev_printk(KERN_ERR, sdev,
2574 "Illegal state transition %s->%s",
2575 scsi_device_state_name(oldstate),
2576 scsi_device_state_name(state))
2577 );
2578 return -EINVAL;
2579 }
2580 EXPORT_SYMBOL(scsi_device_set_state);
2581
2582 /**
2583 * sdev_evt_emit - emit a single SCSI device uevent
2584 * @sdev: associated SCSI device
2585 * @evt: event to emit
2586 *
2587 * Send a single uevent (scsi_event) to the associated scsi_device.
2588 */
2589 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2590 {
2591 int idx = 0;
2592 char *envp[3];
2593
2594 switch (evt->evt_type) {
2595 case SDEV_EVT_MEDIA_CHANGE:
2596 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2597 break;
2598 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2599 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2600 break;
2601 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2602 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2603 break;
2604 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2605 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2606 break;
2607 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2608 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2609 break;
2610 case SDEV_EVT_LUN_CHANGE_REPORTED:
2611 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2612 break;
2613 default:
2614 /* do nothing */
2615 break;
2616 }
2617
2618 envp[idx++] = NULL;
2619
2620 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2621 }
2622
2623 /**
2624 * sdev_evt_thread - send a uevent for each scsi event
2625 * @work: work struct for scsi_device
2626 *
2627 * Dispatch queued events to their associated scsi_device kobjects
2628 * as uevents.
2629 */
2630 void scsi_evt_thread(struct work_struct *work)
2631 {
2632 struct scsi_device *sdev;
2633 enum scsi_device_event evt_type;
2634 LIST_HEAD(event_list);
2635
2636 sdev = container_of(work, struct scsi_device, event_work);
2637
2638 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2639 if (test_and_clear_bit(evt_type, sdev->pending_events))
2640 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2641
2642 while (1) {
2643 struct scsi_event *evt;
2644 struct list_head *this, *tmp;
2645 unsigned long flags;
2646
2647 spin_lock_irqsave(&sdev->list_lock, flags);
2648 list_splice_init(&sdev->event_list, &event_list);
2649 spin_unlock_irqrestore(&sdev->list_lock, flags);
2650
2651 if (list_empty(&event_list))
2652 break;
2653
2654 list_for_each_safe(this, tmp, &event_list) {
2655 evt = list_entry(this, struct scsi_event, node);
2656 list_del(&evt->node);
2657 scsi_evt_emit(sdev, evt);
2658 kfree(evt);
2659 }
2660 }
2661 }
2662
2663 /**
2664 * sdev_evt_send - send asserted event to uevent thread
2665 * @sdev: scsi_device event occurred on
2666 * @evt: event to send
2667 *
2668 * Assert scsi device event asynchronously.
2669 */
2670 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2671 {
2672 unsigned long flags;
2673
2674 #if 0
2675 /* FIXME: currently this check eliminates all media change events
2676 * for polled devices. Need to update to discriminate between AN
2677 * and polled events */
2678 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2679 kfree(evt);
2680 return;
2681 }
2682 #endif
2683
2684 spin_lock_irqsave(&sdev->list_lock, flags);
2685 list_add_tail(&evt->node, &sdev->event_list);
2686 schedule_work(&sdev->event_work);
2687 spin_unlock_irqrestore(&sdev->list_lock, flags);
2688 }
2689 EXPORT_SYMBOL_GPL(sdev_evt_send);
2690
2691 /**
2692 * sdev_evt_alloc - allocate a new scsi event
2693 * @evt_type: type of event to allocate
2694 * @gfpflags: GFP flags for allocation
2695 *
2696 * Allocates and returns a new scsi_event.
2697 */
2698 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2699 gfp_t gfpflags)
2700 {
2701 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2702 if (!evt)
2703 return NULL;
2704
2705 evt->evt_type = evt_type;
2706 INIT_LIST_HEAD(&evt->node);
2707
2708 /* evt_type-specific initialization, if any */
2709 switch (evt_type) {
2710 case SDEV_EVT_MEDIA_CHANGE:
2711 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2712 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2713 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2714 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2715 case SDEV_EVT_LUN_CHANGE_REPORTED:
2716 default:
2717 /* do nothing */
2718 break;
2719 }
2720
2721 return evt;
2722 }
2723 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2724
2725 /**
2726 * sdev_evt_send_simple - send asserted event to uevent thread
2727 * @sdev: scsi_device event occurred on
2728 * @evt_type: type of event to send
2729 * @gfpflags: GFP flags for allocation
2730 *
2731 * Assert scsi device event asynchronously, given an event type.
2732 */
2733 void sdev_evt_send_simple(struct scsi_device *sdev,
2734 enum scsi_device_event evt_type, gfp_t gfpflags)
2735 {
2736 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2737 if (!evt) {
2738 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2739 evt_type);
2740 return;
2741 }
2742
2743 sdev_evt_send(sdev, evt);
2744 }
2745 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2746
2747 /**
2748 * scsi_device_quiesce - Block user issued commands.
2749 * @sdev: scsi device to quiesce.
2750 *
2751 * This works by trying to transition to the SDEV_QUIESCE state
2752 * (which must be a legal transition). When the device is in this
2753 * state, only special requests will be accepted, all others will
2754 * be deferred. Since special requests may also be requeued requests,
2755 * a successful return doesn't guarantee the device will be
2756 * totally quiescent.
2757 *
2758 * Must be called with user context, may sleep.
2759 *
2760 * Returns zero if unsuccessful or an error if not.
2761 */
2762 int
2763 scsi_device_quiesce(struct scsi_device *sdev)
2764 {
2765 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2766 if (err)
2767 return err;
2768
2769 scsi_run_queue(sdev->request_queue);
2770 while (atomic_read(&sdev->device_busy)) {
2771 msleep_interruptible(200);
2772 scsi_run_queue(sdev->request_queue);
2773 }
2774 return 0;
2775 }
2776 EXPORT_SYMBOL(scsi_device_quiesce);
2777
2778 /**
2779 * scsi_device_resume - Restart user issued commands to a quiesced device.
2780 * @sdev: scsi device to resume.
2781 *
2782 * Moves the device from quiesced back to running and restarts the
2783 * queues.
2784 *
2785 * Must be called with user context, may sleep.
2786 */
2787 void scsi_device_resume(struct scsi_device *sdev)
2788 {
2789 /* check if the device state was mutated prior to resume, and if
2790 * so assume the state is being managed elsewhere (for example
2791 * device deleted during suspend)
2792 */
2793 if (sdev->sdev_state != SDEV_QUIESCE ||
2794 scsi_device_set_state(sdev, SDEV_RUNNING))
2795 return;
2796 scsi_run_queue(sdev->request_queue);
2797 }
2798 EXPORT_SYMBOL(scsi_device_resume);
2799
2800 static void
2801 device_quiesce_fn(struct scsi_device *sdev, void *data)
2802 {
2803 scsi_device_quiesce(sdev);
2804 }
2805
2806 void
2807 scsi_target_quiesce(struct scsi_target *starget)
2808 {
2809 starget_for_each_device(starget, NULL, device_quiesce_fn);
2810 }
2811 EXPORT_SYMBOL(scsi_target_quiesce);
2812
2813 static void
2814 device_resume_fn(struct scsi_device *sdev, void *data)
2815 {
2816 scsi_device_resume(sdev);
2817 }
2818
2819 void
2820 scsi_target_resume(struct scsi_target *starget)
2821 {
2822 starget_for_each_device(starget, NULL, device_resume_fn);
2823 }
2824 EXPORT_SYMBOL(scsi_target_resume);
2825
2826 /**
2827 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2828 * @sdev: device to block
2829 *
2830 * Block request made by scsi lld's to temporarily stop all
2831 * scsi commands on the specified device. Called from interrupt
2832 * or normal process context.
2833 *
2834 * Returns zero if successful or error if not
2835 *
2836 * Notes:
2837 * This routine transitions the device to the SDEV_BLOCK state
2838 * (which must be a legal transition). When the device is in this
2839 * state, all commands are deferred until the scsi lld reenables
2840 * the device with scsi_device_unblock or device_block_tmo fires.
2841 */
2842 int
2843 scsi_internal_device_block(struct scsi_device *sdev)
2844 {
2845 struct request_queue *q = sdev->request_queue;
2846 unsigned long flags;
2847 int err = 0;
2848
2849 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2850 if (err) {
2851 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2852
2853 if (err)
2854 return err;
2855 }
2856
2857 /*
2858 * The device has transitioned to SDEV_BLOCK. Stop the
2859 * block layer from calling the midlayer with this device's
2860 * request queue.
2861 */
2862 if (q->mq_ops) {
2863 blk_mq_stop_hw_queues(q);
2864 } else {
2865 spin_lock_irqsave(q->queue_lock, flags);
2866 blk_stop_queue(q);
2867 spin_unlock_irqrestore(q->queue_lock, flags);
2868 }
2869
2870 return 0;
2871 }
2872 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2873
2874 /**
2875 * scsi_internal_device_unblock - resume a device after a block request
2876 * @sdev: device to resume
2877 * @new_state: state to set devices to after unblocking
2878 *
2879 * Called by scsi lld's or the midlayer to restart the device queue
2880 * for the previously suspended scsi device. Called from interrupt or
2881 * normal process context.
2882 *
2883 * Returns zero if successful or error if not.
2884 *
2885 * Notes:
2886 * This routine transitions the device to the SDEV_RUNNING state
2887 * or to one of the offline states (which must be a legal transition)
2888 * allowing the midlayer to goose the queue for this device.
2889 */
2890 int
2891 scsi_internal_device_unblock(struct scsi_device *sdev,
2892 enum scsi_device_state new_state)
2893 {
2894 struct request_queue *q = sdev->request_queue;
2895 unsigned long flags;
2896
2897 /*
2898 * Try to transition the scsi device to SDEV_RUNNING or one of the
2899 * offlined states and goose the device queue if successful.
2900 */
2901 if ((sdev->sdev_state == SDEV_BLOCK) ||
2902 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2903 sdev->sdev_state = new_state;
2904 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2905 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2906 new_state == SDEV_OFFLINE)
2907 sdev->sdev_state = new_state;
2908 else
2909 sdev->sdev_state = SDEV_CREATED;
2910 } else if (sdev->sdev_state != SDEV_CANCEL &&
2911 sdev->sdev_state != SDEV_OFFLINE)
2912 return -EINVAL;
2913
2914 if (q->mq_ops) {
2915 blk_mq_start_stopped_hw_queues(q, false);
2916 } else {
2917 spin_lock_irqsave(q->queue_lock, flags);
2918 blk_start_queue(q);
2919 spin_unlock_irqrestore(q->queue_lock, flags);
2920 }
2921
2922 return 0;
2923 }
2924 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2925
2926 static void
2927 device_block(struct scsi_device *sdev, void *data)
2928 {
2929 scsi_internal_device_block(sdev);
2930 }
2931
2932 static int
2933 target_block(struct device *dev, void *data)
2934 {
2935 if (scsi_is_target_device(dev))
2936 starget_for_each_device(to_scsi_target(dev), NULL,
2937 device_block);
2938 return 0;
2939 }
2940
2941 void
2942 scsi_target_block(struct device *dev)
2943 {
2944 if (scsi_is_target_device(dev))
2945 starget_for_each_device(to_scsi_target(dev), NULL,
2946 device_block);
2947 else
2948 device_for_each_child(dev, NULL, target_block);
2949 }
2950 EXPORT_SYMBOL_GPL(scsi_target_block);
2951
2952 static void
2953 device_unblock(struct scsi_device *sdev, void *data)
2954 {
2955 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2956 }
2957
2958 static int
2959 target_unblock(struct device *dev, void *data)
2960 {
2961 if (scsi_is_target_device(dev))
2962 starget_for_each_device(to_scsi_target(dev), data,
2963 device_unblock);
2964 return 0;
2965 }
2966
2967 void
2968 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2969 {
2970 if (scsi_is_target_device(dev))
2971 starget_for_each_device(to_scsi_target(dev), &new_state,
2972 device_unblock);
2973 else
2974 device_for_each_child(dev, &new_state, target_unblock);
2975 }
2976 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2977
2978 /**
2979 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2980 * @sgl: scatter-gather list
2981 * @sg_count: number of segments in sg
2982 * @offset: offset in bytes into sg, on return offset into the mapped area
2983 * @len: bytes to map, on return number of bytes mapped
2984 *
2985 * Returns virtual address of the start of the mapped page
2986 */
2987 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2988 size_t *offset, size_t *len)
2989 {
2990 int i;
2991 size_t sg_len = 0, len_complete = 0;
2992 struct scatterlist *sg;
2993 struct page *page;
2994
2995 WARN_ON(!irqs_disabled());
2996
2997 for_each_sg(sgl, sg, sg_count, i) {
2998 len_complete = sg_len; /* Complete sg-entries */
2999 sg_len += sg->length;
3000 if (sg_len > *offset)
3001 break;
3002 }
3003
3004 if (unlikely(i == sg_count)) {
3005 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3006 "elements %d\n",
3007 __func__, sg_len, *offset, sg_count);
3008 WARN_ON(1);
3009 return NULL;
3010 }
3011
3012 /* Offset starting from the beginning of first page in this sg-entry */
3013 *offset = *offset - len_complete + sg->offset;
3014
3015 /* Assumption: contiguous pages can be accessed as "page + i" */
3016 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3017 *offset &= ~PAGE_MASK;
3018
3019 /* Bytes in this sg-entry from *offset to the end of the page */
3020 sg_len = PAGE_SIZE - *offset;
3021 if (*len > sg_len)
3022 *len = sg_len;
3023
3024 return kmap_atomic(page);
3025 }
3026 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3027
3028 /**
3029 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3030 * @virt: virtual address to be unmapped
3031 */
3032 void scsi_kunmap_atomic_sg(void *virt)
3033 {
3034 kunmap_atomic(virt);
3035 }
3036 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3037
3038 void sdev_disable_disk_events(struct scsi_device *sdev)
3039 {
3040 atomic_inc(&sdev->disk_events_disable_depth);
3041 }
3042 EXPORT_SYMBOL(sdev_disable_disk_events);
3043
3044 void sdev_enable_disk_events(struct scsi_device *sdev)
3045 {
3046 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3047 return;
3048 atomic_dec(&sdev->disk_events_disable_depth);
3049 }
3050 EXPORT_SYMBOL(sdev_enable_disk_events);
This page took 0.114991 seconds and 5 git commands to generate.