Merge branch 'for-next' of git://git.samba.org/sfrench/cifs-2.6
[deliverable/linux.git] / drivers / scsi / scsi_lib.c
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34
35
36 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE 2
38
39 struct scsi_host_sg_pool {
40 size_t size;
41 char *name;
42 struct kmem_cache *slab;
43 mempool_t *pool;
44 };
45
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51 SP(8),
52 SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65 SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68
69 struct kmem_cache *scsi_sdb_cache;
70
71 #ifdef CONFIG_ACPI
72 #include <acpi/acpi_bus.h>
73
74 int scsi_register_acpi_bus_type(struct acpi_bus_type *bus)
75 {
76 bus->bus = &scsi_bus_type;
77 return register_acpi_bus_type(bus);
78 }
79 EXPORT_SYMBOL_GPL(scsi_register_acpi_bus_type);
80
81 void scsi_unregister_acpi_bus_type(struct acpi_bus_type *bus)
82 {
83 unregister_acpi_bus_type(bus);
84 }
85 EXPORT_SYMBOL_GPL(scsi_unregister_acpi_bus_type);
86 #endif
87
88 /*
89 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
90 * not change behaviour from the previous unplug mechanism, experimentation
91 * may prove this needs changing.
92 */
93 #define SCSI_QUEUE_DELAY 3
94
95 /*
96 * Function: scsi_unprep_request()
97 *
98 * Purpose: Remove all preparation done for a request, including its
99 * associated scsi_cmnd, so that it can be requeued.
100 *
101 * Arguments: req - request to unprepare
102 *
103 * Lock status: Assumed that no locks are held upon entry.
104 *
105 * Returns: Nothing.
106 */
107 static void scsi_unprep_request(struct request *req)
108 {
109 struct scsi_cmnd *cmd = req->special;
110
111 blk_unprep_request(req);
112 req->special = NULL;
113
114 scsi_put_command(cmd);
115 }
116
117 /**
118 * __scsi_queue_insert - private queue insertion
119 * @cmd: The SCSI command being requeued
120 * @reason: The reason for the requeue
121 * @unbusy: Whether the queue should be unbusied
122 *
123 * This is a private queue insertion. The public interface
124 * scsi_queue_insert() always assumes the queue should be unbusied
125 * because it's always called before the completion. This function is
126 * for a requeue after completion, which should only occur in this
127 * file.
128 */
129 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
130 {
131 struct Scsi_Host *host = cmd->device->host;
132 struct scsi_device *device = cmd->device;
133 struct scsi_target *starget = scsi_target(device);
134 struct request_queue *q = device->request_queue;
135 unsigned long flags;
136
137 SCSI_LOG_MLQUEUE(1,
138 printk("Inserting command %p into mlqueue\n", cmd));
139
140 /*
141 * Set the appropriate busy bit for the device/host.
142 *
143 * If the host/device isn't busy, assume that something actually
144 * completed, and that we should be able to queue a command now.
145 *
146 * Note that the prior mid-layer assumption that any host could
147 * always queue at least one command is now broken. The mid-layer
148 * will implement a user specifiable stall (see
149 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
150 * if a command is requeued with no other commands outstanding
151 * either for the device or for the host.
152 */
153 switch (reason) {
154 case SCSI_MLQUEUE_HOST_BUSY:
155 host->host_blocked = host->max_host_blocked;
156 break;
157 case SCSI_MLQUEUE_DEVICE_BUSY:
158 case SCSI_MLQUEUE_EH_RETRY:
159 device->device_blocked = device->max_device_blocked;
160 break;
161 case SCSI_MLQUEUE_TARGET_BUSY:
162 starget->target_blocked = starget->max_target_blocked;
163 break;
164 }
165
166 /*
167 * Decrement the counters, since these commands are no longer
168 * active on the host/device.
169 */
170 if (unbusy)
171 scsi_device_unbusy(device);
172
173 /*
174 * Requeue this command. It will go before all other commands
175 * that are already in the queue. Schedule requeue work under
176 * lock such that the kblockd_schedule_work() call happens
177 * before blk_cleanup_queue() finishes.
178 */
179 spin_lock_irqsave(q->queue_lock, flags);
180 blk_requeue_request(q, cmd->request);
181 kblockd_schedule_work(q, &device->requeue_work);
182 spin_unlock_irqrestore(q->queue_lock, flags);
183 }
184
185 /*
186 * Function: scsi_queue_insert()
187 *
188 * Purpose: Insert a command in the midlevel queue.
189 *
190 * Arguments: cmd - command that we are adding to queue.
191 * reason - why we are inserting command to queue.
192 *
193 * Lock status: Assumed that lock is not held upon entry.
194 *
195 * Returns: Nothing.
196 *
197 * Notes: We do this for one of two cases. Either the host is busy
198 * and it cannot accept any more commands for the time being,
199 * or the device returned QUEUE_FULL and can accept no more
200 * commands.
201 * Notes: This could be called either from an interrupt context or a
202 * normal process context.
203 */
204 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
205 {
206 __scsi_queue_insert(cmd, reason, 1);
207 }
208 /**
209 * scsi_execute - insert request and wait for the result
210 * @sdev: scsi device
211 * @cmd: scsi command
212 * @data_direction: data direction
213 * @buffer: data buffer
214 * @bufflen: len of buffer
215 * @sense: optional sense buffer
216 * @timeout: request timeout in seconds
217 * @retries: number of times to retry request
218 * @flags: or into request flags;
219 * @resid: optional residual length
220 *
221 * returns the req->errors value which is the scsi_cmnd result
222 * field.
223 */
224 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
225 int data_direction, void *buffer, unsigned bufflen,
226 unsigned char *sense, int timeout, int retries, int flags,
227 int *resid)
228 {
229 struct request *req;
230 int write = (data_direction == DMA_TO_DEVICE);
231 int ret = DRIVER_ERROR << 24;
232
233 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
234 if (!req)
235 return ret;
236
237 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
238 buffer, bufflen, __GFP_WAIT))
239 goto out;
240
241 req->cmd_len = COMMAND_SIZE(cmd[0]);
242 memcpy(req->cmd, cmd, req->cmd_len);
243 req->sense = sense;
244 req->sense_len = 0;
245 req->retries = retries;
246 req->timeout = timeout;
247 req->cmd_type = REQ_TYPE_BLOCK_PC;
248 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
249
250 /*
251 * head injection *required* here otherwise quiesce won't work
252 */
253 blk_execute_rq(req->q, NULL, req, 1);
254
255 /*
256 * Some devices (USB mass-storage in particular) may transfer
257 * garbage data together with a residue indicating that the data
258 * is invalid. Prevent the garbage from being misinterpreted
259 * and prevent security leaks by zeroing out the excess data.
260 */
261 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
262 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
263
264 if (resid)
265 *resid = req->resid_len;
266 ret = req->errors;
267 out:
268 blk_put_request(req);
269
270 return ret;
271 }
272 EXPORT_SYMBOL(scsi_execute);
273
274
275 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
276 int data_direction, void *buffer, unsigned bufflen,
277 struct scsi_sense_hdr *sshdr, int timeout, int retries,
278 int *resid)
279 {
280 char *sense = NULL;
281 int result;
282
283 if (sshdr) {
284 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
285 if (!sense)
286 return DRIVER_ERROR << 24;
287 }
288 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
289 sense, timeout, retries, 0, resid);
290 if (sshdr)
291 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
292
293 kfree(sense);
294 return result;
295 }
296 EXPORT_SYMBOL(scsi_execute_req);
297
298 /*
299 * Function: scsi_init_cmd_errh()
300 *
301 * Purpose: Initialize cmd fields related to error handling.
302 *
303 * Arguments: cmd - command that is ready to be queued.
304 *
305 * Notes: This function has the job of initializing a number of
306 * fields related to error handling. Typically this will
307 * be called once for each command, as required.
308 */
309 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
310 {
311 cmd->serial_number = 0;
312 scsi_set_resid(cmd, 0);
313 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
314 if (cmd->cmd_len == 0)
315 cmd->cmd_len = scsi_command_size(cmd->cmnd);
316 }
317
318 void scsi_device_unbusy(struct scsi_device *sdev)
319 {
320 struct Scsi_Host *shost = sdev->host;
321 struct scsi_target *starget = scsi_target(sdev);
322 unsigned long flags;
323
324 spin_lock_irqsave(shost->host_lock, flags);
325 shost->host_busy--;
326 starget->target_busy--;
327 if (unlikely(scsi_host_in_recovery(shost) &&
328 (shost->host_failed || shost->host_eh_scheduled)))
329 scsi_eh_wakeup(shost);
330 spin_unlock(shost->host_lock);
331 spin_lock(sdev->request_queue->queue_lock);
332 sdev->device_busy--;
333 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
334 }
335
336 /*
337 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
338 * and call blk_run_queue for all the scsi_devices on the target -
339 * including current_sdev first.
340 *
341 * Called with *no* scsi locks held.
342 */
343 static void scsi_single_lun_run(struct scsi_device *current_sdev)
344 {
345 struct Scsi_Host *shost = current_sdev->host;
346 struct scsi_device *sdev, *tmp;
347 struct scsi_target *starget = scsi_target(current_sdev);
348 unsigned long flags;
349
350 spin_lock_irqsave(shost->host_lock, flags);
351 starget->starget_sdev_user = NULL;
352 spin_unlock_irqrestore(shost->host_lock, flags);
353
354 /*
355 * Call blk_run_queue for all LUNs on the target, starting with
356 * current_sdev. We race with others (to set starget_sdev_user),
357 * but in most cases, we will be first. Ideally, each LU on the
358 * target would get some limited time or requests on the target.
359 */
360 blk_run_queue(current_sdev->request_queue);
361
362 spin_lock_irqsave(shost->host_lock, flags);
363 if (starget->starget_sdev_user)
364 goto out;
365 list_for_each_entry_safe(sdev, tmp, &starget->devices,
366 same_target_siblings) {
367 if (sdev == current_sdev)
368 continue;
369 if (scsi_device_get(sdev))
370 continue;
371
372 spin_unlock_irqrestore(shost->host_lock, flags);
373 blk_run_queue(sdev->request_queue);
374 spin_lock_irqsave(shost->host_lock, flags);
375
376 scsi_device_put(sdev);
377 }
378 out:
379 spin_unlock_irqrestore(shost->host_lock, flags);
380 }
381
382 static inline int scsi_device_is_busy(struct scsi_device *sdev)
383 {
384 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
385 return 1;
386
387 return 0;
388 }
389
390 static inline int scsi_target_is_busy(struct scsi_target *starget)
391 {
392 return ((starget->can_queue > 0 &&
393 starget->target_busy >= starget->can_queue) ||
394 starget->target_blocked);
395 }
396
397 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
398 {
399 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
400 shost->host_blocked || shost->host_self_blocked)
401 return 1;
402
403 return 0;
404 }
405
406 /*
407 * Function: scsi_run_queue()
408 *
409 * Purpose: Select a proper request queue to serve next
410 *
411 * Arguments: q - last request's queue
412 *
413 * Returns: Nothing
414 *
415 * Notes: The previous command was completely finished, start
416 * a new one if possible.
417 */
418 static void scsi_run_queue(struct request_queue *q)
419 {
420 struct scsi_device *sdev = q->queuedata;
421 struct Scsi_Host *shost;
422 LIST_HEAD(starved_list);
423 unsigned long flags;
424
425 shost = sdev->host;
426 if (scsi_target(sdev)->single_lun)
427 scsi_single_lun_run(sdev);
428
429 spin_lock_irqsave(shost->host_lock, flags);
430 list_splice_init(&shost->starved_list, &starved_list);
431
432 while (!list_empty(&starved_list)) {
433 /*
434 * As long as shost is accepting commands and we have
435 * starved queues, call blk_run_queue. scsi_request_fn
436 * drops the queue_lock and can add us back to the
437 * starved_list.
438 *
439 * host_lock protects the starved_list and starved_entry.
440 * scsi_request_fn must get the host_lock before checking
441 * or modifying starved_list or starved_entry.
442 */
443 if (scsi_host_is_busy(shost))
444 break;
445
446 sdev = list_entry(starved_list.next,
447 struct scsi_device, starved_entry);
448 list_del_init(&sdev->starved_entry);
449 if (scsi_target_is_busy(scsi_target(sdev))) {
450 list_move_tail(&sdev->starved_entry,
451 &shost->starved_list);
452 continue;
453 }
454
455 spin_unlock(shost->host_lock);
456 spin_lock(sdev->request_queue->queue_lock);
457 __blk_run_queue(sdev->request_queue);
458 spin_unlock(sdev->request_queue->queue_lock);
459 spin_lock(shost->host_lock);
460 }
461 /* put any unprocessed entries back */
462 list_splice(&starved_list, &shost->starved_list);
463 spin_unlock_irqrestore(shost->host_lock, flags);
464
465 blk_run_queue(q);
466 }
467
468 void scsi_requeue_run_queue(struct work_struct *work)
469 {
470 struct scsi_device *sdev;
471 struct request_queue *q;
472
473 sdev = container_of(work, struct scsi_device, requeue_work);
474 q = sdev->request_queue;
475 scsi_run_queue(q);
476 }
477
478 /*
479 * Function: scsi_requeue_command()
480 *
481 * Purpose: Handle post-processing of completed commands.
482 *
483 * Arguments: q - queue to operate on
484 * cmd - command that may need to be requeued.
485 *
486 * Returns: Nothing
487 *
488 * Notes: After command completion, there may be blocks left
489 * over which weren't finished by the previous command
490 * this can be for a number of reasons - the main one is
491 * I/O errors in the middle of the request, in which case
492 * we need to request the blocks that come after the bad
493 * sector.
494 * Notes: Upon return, cmd is a stale pointer.
495 */
496 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
497 {
498 struct scsi_device *sdev = cmd->device;
499 struct request *req = cmd->request;
500 unsigned long flags;
501
502 /*
503 * We need to hold a reference on the device to avoid the queue being
504 * killed after the unlock and before scsi_run_queue is invoked which
505 * may happen because scsi_unprep_request() puts the command which
506 * releases its reference on the device.
507 */
508 get_device(&sdev->sdev_gendev);
509
510 spin_lock_irqsave(q->queue_lock, flags);
511 scsi_unprep_request(req);
512 blk_requeue_request(q, req);
513 spin_unlock_irqrestore(q->queue_lock, flags);
514
515 scsi_run_queue(q);
516
517 put_device(&sdev->sdev_gendev);
518 }
519
520 void scsi_next_command(struct scsi_cmnd *cmd)
521 {
522 struct scsi_device *sdev = cmd->device;
523 struct request_queue *q = sdev->request_queue;
524
525 /* need to hold a reference on the device before we let go of the cmd */
526 get_device(&sdev->sdev_gendev);
527
528 scsi_put_command(cmd);
529 scsi_run_queue(q);
530
531 /* ok to remove device now */
532 put_device(&sdev->sdev_gendev);
533 }
534
535 void scsi_run_host_queues(struct Scsi_Host *shost)
536 {
537 struct scsi_device *sdev;
538
539 shost_for_each_device(sdev, shost)
540 scsi_run_queue(sdev->request_queue);
541 }
542
543 static void __scsi_release_buffers(struct scsi_cmnd *, int);
544
545 /*
546 * Function: scsi_end_request()
547 *
548 * Purpose: Post-processing of completed commands (usually invoked at end
549 * of upper level post-processing and scsi_io_completion).
550 *
551 * Arguments: cmd - command that is complete.
552 * error - 0 if I/O indicates success, < 0 for I/O error.
553 * bytes - number of bytes of completed I/O
554 * requeue - indicates whether we should requeue leftovers.
555 *
556 * Lock status: Assumed that lock is not held upon entry.
557 *
558 * Returns: cmd if requeue required, NULL otherwise.
559 *
560 * Notes: This is called for block device requests in order to
561 * mark some number of sectors as complete.
562 *
563 * We are guaranteeing that the request queue will be goosed
564 * at some point during this call.
565 * Notes: If cmd was requeued, upon return it will be a stale pointer.
566 */
567 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
568 int bytes, int requeue)
569 {
570 struct request_queue *q = cmd->device->request_queue;
571 struct request *req = cmd->request;
572
573 /*
574 * If there are blocks left over at the end, set up the command
575 * to queue the remainder of them.
576 */
577 if (blk_end_request(req, error, bytes)) {
578 /* kill remainder if no retrys */
579 if (error && scsi_noretry_cmd(cmd))
580 blk_end_request_all(req, error);
581 else {
582 if (requeue) {
583 /*
584 * Bleah. Leftovers again. Stick the
585 * leftovers in the front of the
586 * queue, and goose the queue again.
587 */
588 scsi_release_buffers(cmd);
589 scsi_requeue_command(q, cmd);
590 cmd = NULL;
591 }
592 return cmd;
593 }
594 }
595
596 /*
597 * This will goose the queue request function at the end, so we don't
598 * need to worry about launching another command.
599 */
600 __scsi_release_buffers(cmd, 0);
601 scsi_next_command(cmd);
602 return NULL;
603 }
604
605 static inline unsigned int scsi_sgtable_index(unsigned short nents)
606 {
607 unsigned int index;
608
609 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
610
611 if (nents <= 8)
612 index = 0;
613 else
614 index = get_count_order(nents) - 3;
615
616 return index;
617 }
618
619 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
620 {
621 struct scsi_host_sg_pool *sgp;
622
623 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
624 mempool_free(sgl, sgp->pool);
625 }
626
627 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
628 {
629 struct scsi_host_sg_pool *sgp;
630
631 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
632 return mempool_alloc(sgp->pool, gfp_mask);
633 }
634
635 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
636 gfp_t gfp_mask)
637 {
638 int ret;
639
640 BUG_ON(!nents);
641
642 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
643 gfp_mask, scsi_sg_alloc);
644 if (unlikely(ret))
645 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
646 scsi_sg_free);
647
648 return ret;
649 }
650
651 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
652 {
653 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
654 }
655
656 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
657 {
658
659 if (cmd->sdb.table.nents)
660 scsi_free_sgtable(&cmd->sdb);
661
662 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
663
664 if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
665 struct scsi_data_buffer *bidi_sdb =
666 cmd->request->next_rq->special;
667 scsi_free_sgtable(bidi_sdb);
668 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
669 cmd->request->next_rq->special = NULL;
670 }
671
672 if (scsi_prot_sg_count(cmd))
673 scsi_free_sgtable(cmd->prot_sdb);
674 }
675
676 /*
677 * Function: scsi_release_buffers()
678 *
679 * Purpose: Completion processing for block device I/O requests.
680 *
681 * Arguments: cmd - command that we are bailing.
682 *
683 * Lock status: Assumed that no lock is held upon entry.
684 *
685 * Returns: Nothing
686 *
687 * Notes: In the event that an upper level driver rejects a
688 * command, we must release resources allocated during
689 * the __init_io() function. Primarily this would involve
690 * the scatter-gather table, and potentially any bounce
691 * buffers.
692 */
693 void scsi_release_buffers(struct scsi_cmnd *cmd)
694 {
695 __scsi_release_buffers(cmd, 1);
696 }
697 EXPORT_SYMBOL(scsi_release_buffers);
698
699 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
700 {
701 int error = 0;
702
703 switch(host_byte(result)) {
704 case DID_TRANSPORT_FAILFAST:
705 error = -ENOLINK;
706 break;
707 case DID_TARGET_FAILURE:
708 set_host_byte(cmd, DID_OK);
709 error = -EREMOTEIO;
710 break;
711 case DID_NEXUS_FAILURE:
712 set_host_byte(cmd, DID_OK);
713 error = -EBADE;
714 break;
715 default:
716 error = -EIO;
717 break;
718 }
719
720 return error;
721 }
722
723 /*
724 * Function: scsi_io_completion()
725 *
726 * Purpose: Completion processing for block device I/O requests.
727 *
728 * Arguments: cmd - command that is finished.
729 *
730 * Lock status: Assumed that no lock is held upon entry.
731 *
732 * Returns: Nothing
733 *
734 * Notes: This function is matched in terms of capabilities to
735 * the function that created the scatter-gather list.
736 * In other words, if there are no bounce buffers
737 * (the normal case for most drivers), we don't need
738 * the logic to deal with cleaning up afterwards.
739 *
740 * We must call scsi_end_request(). This will finish off
741 * the specified number of sectors. If we are done, the
742 * command block will be released and the queue function
743 * will be goosed. If we are not done then we have to
744 * figure out what to do next:
745 *
746 * a) We can call scsi_requeue_command(). The request
747 * will be unprepared and put back on the queue. Then
748 * a new command will be created for it. This should
749 * be used if we made forward progress, or if we want
750 * to switch from READ(10) to READ(6) for example.
751 *
752 * b) We can call scsi_queue_insert(). The request will
753 * be put back on the queue and retried using the same
754 * command as before, possibly after a delay.
755 *
756 * c) We can call blk_end_request() with -EIO to fail
757 * the remainder of the request.
758 */
759 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
760 {
761 int result = cmd->result;
762 struct request_queue *q = cmd->device->request_queue;
763 struct request *req = cmd->request;
764 int error = 0;
765 struct scsi_sense_hdr sshdr;
766 int sense_valid = 0;
767 int sense_deferred = 0;
768 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
769 ACTION_DELAYED_RETRY} action;
770 char *description = NULL;
771
772 if (result) {
773 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
774 if (sense_valid)
775 sense_deferred = scsi_sense_is_deferred(&sshdr);
776 }
777
778 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
779 req->errors = result;
780 if (result) {
781 if (sense_valid && req->sense) {
782 /*
783 * SG_IO wants current and deferred errors
784 */
785 int len = 8 + cmd->sense_buffer[7];
786
787 if (len > SCSI_SENSE_BUFFERSIZE)
788 len = SCSI_SENSE_BUFFERSIZE;
789 memcpy(req->sense, cmd->sense_buffer, len);
790 req->sense_len = len;
791 }
792 if (!sense_deferred)
793 error = __scsi_error_from_host_byte(cmd, result);
794 }
795
796 req->resid_len = scsi_get_resid(cmd);
797
798 if (scsi_bidi_cmnd(cmd)) {
799 /*
800 * Bidi commands Must be complete as a whole,
801 * both sides at once.
802 */
803 req->next_rq->resid_len = scsi_in(cmd)->resid;
804
805 scsi_release_buffers(cmd);
806 blk_end_request_all(req, 0);
807
808 scsi_next_command(cmd);
809 return;
810 }
811 }
812
813 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
814 BUG_ON(blk_bidi_rq(req));
815
816 /*
817 * Next deal with any sectors which we were able to correctly
818 * handle.
819 */
820 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
821 "%d bytes done.\n",
822 blk_rq_sectors(req), good_bytes));
823
824 /*
825 * Recovered errors need reporting, but they're always treated
826 * as success, so fiddle the result code here. For BLOCK_PC
827 * we already took a copy of the original into rq->errors which
828 * is what gets returned to the user
829 */
830 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
831 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
832 * print since caller wants ATA registers. Only occurs on
833 * SCSI ATA PASS_THROUGH commands when CK_COND=1
834 */
835 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
836 ;
837 else if (!(req->cmd_flags & REQ_QUIET))
838 scsi_print_sense("", cmd);
839 result = 0;
840 /* BLOCK_PC may have set error */
841 error = 0;
842 }
843
844 /*
845 * A number of bytes were successfully read. If there
846 * are leftovers and there is some kind of error
847 * (result != 0), retry the rest.
848 */
849 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
850 return;
851
852 error = __scsi_error_from_host_byte(cmd, result);
853
854 if (host_byte(result) == DID_RESET) {
855 /* Third party bus reset or reset for error recovery
856 * reasons. Just retry the command and see what
857 * happens.
858 */
859 action = ACTION_RETRY;
860 } else if (sense_valid && !sense_deferred) {
861 switch (sshdr.sense_key) {
862 case UNIT_ATTENTION:
863 if (cmd->device->removable) {
864 /* Detected disc change. Set a bit
865 * and quietly refuse further access.
866 */
867 cmd->device->changed = 1;
868 description = "Media Changed";
869 action = ACTION_FAIL;
870 } else {
871 /* Must have been a power glitch, or a
872 * bus reset. Could not have been a
873 * media change, so we just retry the
874 * command and see what happens.
875 */
876 action = ACTION_RETRY;
877 }
878 break;
879 case ILLEGAL_REQUEST:
880 /* If we had an ILLEGAL REQUEST returned, then
881 * we may have performed an unsupported
882 * command. The only thing this should be
883 * would be a ten byte read where only a six
884 * byte read was supported. Also, on a system
885 * where READ CAPACITY failed, we may have
886 * read past the end of the disk.
887 */
888 if ((cmd->device->use_10_for_rw &&
889 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
890 (cmd->cmnd[0] == READ_10 ||
891 cmd->cmnd[0] == WRITE_10)) {
892 /* This will issue a new 6-byte command. */
893 cmd->device->use_10_for_rw = 0;
894 action = ACTION_REPREP;
895 } else if (sshdr.asc == 0x10) /* DIX */ {
896 description = "Host Data Integrity Failure";
897 action = ACTION_FAIL;
898 error = -EILSEQ;
899 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
900 } else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
901 (cmd->cmnd[0] == UNMAP ||
902 cmd->cmnd[0] == WRITE_SAME_16 ||
903 cmd->cmnd[0] == WRITE_SAME)) {
904 description = "Discard failure";
905 action = ACTION_FAIL;
906 error = -EREMOTEIO;
907 } else
908 action = ACTION_FAIL;
909 break;
910 case ABORTED_COMMAND:
911 action = ACTION_FAIL;
912 if (sshdr.asc == 0x10) { /* DIF */
913 description = "Target Data Integrity Failure";
914 error = -EILSEQ;
915 }
916 break;
917 case NOT_READY:
918 /* If the device is in the process of becoming
919 * ready, or has a temporary blockage, retry.
920 */
921 if (sshdr.asc == 0x04) {
922 switch (sshdr.ascq) {
923 case 0x01: /* becoming ready */
924 case 0x04: /* format in progress */
925 case 0x05: /* rebuild in progress */
926 case 0x06: /* recalculation in progress */
927 case 0x07: /* operation in progress */
928 case 0x08: /* Long write in progress */
929 case 0x09: /* self test in progress */
930 case 0x14: /* space allocation in progress */
931 action = ACTION_DELAYED_RETRY;
932 break;
933 default:
934 description = "Device not ready";
935 action = ACTION_FAIL;
936 break;
937 }
938 } else {
939 description = "Device not ready";
940 action = ACTION_FAIL;
941 }
942 break;
943 case VOLUME_OVERFLOW:
944 /* See SSC3rXX or current. */
945 action = ACTION_FAIL;
946 break;
947 default:
948 description = "Unhandled sense code";
949 action = ACTION_FAIL;
950 break;
951 }
952 } else {
953 description = "Unhandled error code";
954 action = ACTION_FAIL;
955 }
956
957 switch (action) {
958 case ACTION_FAIL:
959 /* Give up and fail the remainder of the request */
960 scsi_release_buffers(cmd);
961 if (!(req->cmd_flags & REQ_QUIET)) {
962 if (description)
963 scmd_printk(KERN_INFO, cmd, "%s\n",
964 description);
965 scsi_print_result(cmd);
966 if (driver_byte(result) & DRIVER_SENSE)
967 scsi_print_sense("", cmd);
968 scsi_print_command(cmd);
969 }
970 if (blk_end_request_err(req, error))
971 scsi_requeue_command(q, cmd);
972 else
973 scsi_next_command(cmd);
974 break;
975 case ACTION_REPREP:
976 /* Unprep the request and put it back at the head of the queue.
977 * A new command will be prepared and issued.
978 */
979 scsi_release_buffers(cmd);
980 scsi_requeue_command(q, cmd);
981 break;
982 case ACTION_RETRY:
983 /* Retry the same command immediately */
984 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
985 break;
986 case ACTION_DELAYED_RETRY:
987 /* Retry the same command after a delay */
988 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
989 break;
990 }
991 }
992
993 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
994 gfp_t gfp_mask)
995 {
996 int count;
997
998 /*
999 * If sg table allocation fails, requeue request later.
1000 */
1001 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1002 gfp_mask))) {
1003 return BLKPREP_DEFER;
1004 }
1005
1006 req->buffer = NULL;
1007
1008 /*
1009 * Next, walk the list, and fill in the addresses and sizes of
1010 * each segment.
1011 */
1012 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1013 BUG_ON(count > sdb->table.nents);
1014 sdb->table.nents = count;
1015 sdb->length = blk_rq_bytes(req);
1016 return BLKPREP_OK;
1017 }
1018
1019 /*
1020 * Function: scsi_init_io()
1021 *
1022 * Purpose: SCSI I/O initialize function.
1023 *
1024 * Arguments: cmd - Command descriptor we wish to initialize
1025 *
1026 * Returns: 0 on success
1027 * BLKPREP_DEFER if the failure is retryable
1028 * BLKPREP_KILL if the failure is fatal
1029 */
1030 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1031 {
1032 struct request *rq = cmd->request;
1033
1034 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1035 if (error)
1036 goto err_exit;
1037
1038 if (blk_bidi_rq(rq)) {
1039 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1040 scsi_sdb_cache, GFP_ATOMIC);
1041 if (!bidi_sdb) {
1042 error = BLKPREP_DEFER;
1043 goto err_exit;
1044 }
1045
1046 rq->next_rq->special = bidi_sdb;
1047 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1048 if (error)
1049 goto err_exit;
1050 }
1051
1052 if (blk_integrity_rq(rq)) {
1053 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1054 int ivecs, count;
1055
1056 BUG_ON(prot_sdb == NULL);
1057 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1058
1059 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1060 error = BLKPREP_DEFER;
1061 goto err_exit;
1062 }
1063
1064 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1065 prot_sdb->table.sgl);
1066 BUG_ON(unlikely(count > ivecs));
1067 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1068
1069 cmd->prot_sdb = prot_sdb;
1070 cmd->prot_sdb->table.nents = count;
1071 }
1072
1073 return BLKPREP_OK ;
1074
1075 err_exit:
1076 scsi_release_buffers(cmd);
1077 cmd->request->special = NULL;
1078 scsi_put_command(cmd);
1079 return error;
1080 }
1081 EXPORT_SYMBOL(scsi_init_io);
1082
1083 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1084 struct request *req)
1085 {
1086 struct scsi_cmnd *cmd;
1087
1088 if (!req->special) {
1089 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1090 if (unlikely(!cmd))
1091 return NULL;
1092 req->special = cmd;
1093 } else {
1094 cmd = req->special;
1095 }
1096
1097 /* pull a tag out of the request if we have one */
1098 cmd->tag = req->tag;
1099 cmd->request = req;
1100
1101 cmd->cmnd = req->cmd;
1102 cmd->prot_op = SCSI_PROT_NORMAL;
1103
1104 return cmd;
1105 }
1106
1107 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1108 {
1109 struct scsi_cmnd *cmd;
1110 int ret = scsi_prep_state_check(sdev, req);
1111
1112 if (ret != BLKPREP_OK)
1113 return ret;
1114
1115 cmd = scsi_get_cmd_from_req(sdev, req);
1116 if (unlikely(!cmd))
1117 return BLKPREP_DEFER;
1118
1119 /*
1120 * BLOCK_PC requests may transfer data, in which case they must
1121 * a bio attached to them. Or they might contain a SCSI command
1122 * that does not transfer data, in which case they may optionally
1123 * submit a request without an attached bio.
1124 */
1125 if (req->bio) {
1126 int ret;
1127
1128 BUG_ON(!req->nr_phys_segments);
1129
1130 ret = scsi_init_io(cmd, GFP_ATOMIC);
1131 if (unlikely(ret))
1132 return ret;
1133 } else {
1134 BUG_ON(blk_rq_bytes(req));
1135
1136 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1137 req->buffer = NULL;
1138 }
1139
1140 cmd->cmd_len = req->cmd_len;
1141 if (!blk_rq_bytes(req))
1142 cmd->sc_data_direction = DMA_NONE;
1143 else if (rq_data_dir(req) == WRITE)
1144 cmd->sc_data_direction = DMA_TO_DEVICE;
1145 else
1146 cmd->sc_data_direction = DMA_FROM_DEVICE;
1147
1148 cmd->transfersize = blk_rq_bytes(req);
1149 cmd->allowed = req->retries;
1150 return BLKPREP_OK;
1151 }
1152 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1153
1154 /*
1155 * Setup a REQ_TYPE_FS command. These are simple read/write request
1156 * from filesystems that still need to be translated to SCSI CDBs from
1157 * the ULD.
1158 */
1159 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1160 {
1161 struct scsi_cmnd *cmd;
1162 int ret = scsi_prep_state_check(sdev, req);
1163
1164 if (ret != BLKPREP_OK)
1165 return ret;
1166
1167 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1168 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1169 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1170 if (ret != BLKPREP_OK)
1171 return ret;
1172 }
1173
1174 /*
1175 * Filesystem requests must transfer data.
1176 */
1177 BUG_ON(!req->nr_phys_segments);
1178
1179 cmd = scsi_get_cmd_from_req(sdev, req);
1180 if (unlikely(!cmd))
1181 return BLKPREP_DEFER;
1182
1183 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1184 return scsi_init_io(cmd, GFP_ATOMIC);
1185 }
1186 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1187
1188 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1189 {
1190 int ret = BLKPREP_OK;
1191
1192 /*
1193 * If the device is not in running state we will reject some
1194 * or all commands.
1195 */
1196 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1197 switch (sdev->sdev_state) {
1198 case SDEV_OFFLINE:
1199 case SDEV_TRANSPORT_OFFLINE:
1200 /*
1201 * If the device is offline we refuse to process any
1202 * commands. The device must be brought online
1203 * before trying any recovery commands.
1204 */
1205 sdev_printk(KERN_ERR, sdev,
1206 "rejecting I/O to offline device\n");
1207 ret = BLKPREP_KILL;
1208 break;
1209 case SDEV_DEL:
1210 /*
1211 * If the device is fully deleted, we refuse to
1212 * process any commands as well.
1213 */
1214 sdev_printk(KERN_ERR, sdev,
1215 "rejecting I/O to dead device\n");
1216 ret = BLKPREP_KILL;
1217 break;
1218 case SDEV_QUIESCE:
1219 case SDEV_BLOCK:
1220 case SDEV_CREATED_BLOCK:
1221 /*
1222 * If the devices is blocked we defer normal commands.
1223 */
1224 if (!(req->cmd_flags & REQ_PREEMPT))
1225 ret = BLKPREP_DEFER;
1226 break;
1227 default:
1228 /*
1229 * For any other not fully online state we only allow
1230 * special commands. In particular any user initiated
1231 * command is not allowed.
1232 */
1233 if (!(req->cmd_flags & REQ_PREEMPT))
1234 ret = BLKPREP_KILL;
1235 break;
1236 }
1237 }
1238 return ret;
1239 }
1240 EXPORT_SYMBOL(scsi_prep_state_check);
1241
1242 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1243 {
1244 struct scsi_device *sdev = q->queuedata;
1245
1246 switch (ret) {
1247 case BLKPREP_KILL:
1248 req->errors = DID_NO_CONNECT << 16;
1249 /* release the command and kill it */
1250 if (req->special) {
1251 struct scsi_cmnd *cmd = req->special;
1252 scsi_release_buffers(cmd);
1253 scsi_put_command(cmd);
1254 req->special = NULL;
1255 }
1256 break;
1257 case BLKPREP_DEFER:
1258 /*
1259 * If we defer, the blk_peek_request() returns NULL, but the
1260 * queue must be restarted, so we schedule a callback to happen
1261 * shortly.
1262 */
1263 if (sdev->device_busy == 0)
1264 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1265 break;
1266 default:
1267 req->cmd_flags |= REQ_DONTPREP;
1268 }
1269
1270 return ret;
1271 }
1272 EXPORT_SYMBOL(scsi_prep_return);
1273
1274 int scsi_prep_fn(struct request_queue *q, struct request *req)
1275 {
1276 struct scsi_device *sdev = q->queuedata;
1277 int ret = BLKPREP_KILL;
1278
1279 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1280 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1281 return scsi_prep_return(q, req, ret);
1282 }
1283 EXPORT_SYMBOL(scsi_prep_fn);
1284
1285 /*
1286 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1287 * return 0.
1288 *
1289 * Called with the queue_lock held.
1290 */
1291 static inline int scsi_dev_queue_ready(struct request_queue *q,
1292 struct scsi_device *sdev)
1293 {
1294 if (sdev->device_busy == 0 && sdev->device_blocked) {
1295 /*
1296 * unblock after device_blocked iterates to zero
1297 */
1298 if (--sdev->device_blocked == 0) {
1299 SCSI_LOG_MLQUEUE(3,
1300 sdev_printk(KERN_INFO, sdev,
1301 "unblocking device at zero depth\n"));
1302 } else {
1303 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1304 return 0;
1305 }
1306 }
1307 if (scsi_device_is_busy(sdev))
1308 return 0;
1309
1310 return 1;
1311 }
1312
1313
1314 /*
1315 * scsi_target_queue_ready: checks if there we can send commands to target
1316 * @sdev: scsi device on starget to check.
1317 *
1318 * Called with the host lock held.
1319 */
1320 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1321 struct scsi_device *sdev)
1322 {
1323 struct scsi_target *starget = scsi_target(sdev);
1324
1325 if (starget->single_lun) {
1326 if (starget->starget_sdev_user &&
1327 starget->starget_sdev_user != sdev)
1328 return 0;
1329 starget->starget_sdev_user = sdev;
1330 }
1331
1332 if (starget->target_busy == 0 && starget->target_blocked) {
1333 /*
1334 * unblock after target_blocked iterates to zero
1335 */
1336 if (--starget->target_blocked == 0) {
1337 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1338 "unblocking target at zero depth\n"));
1339 } else
1340 return 0;
1341 }
1342
1343 if (scsi_target_is_busy(starget)) {
1344 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1345 return 0;
1346 }
1347
1348 return 1;
1349 }
1350
1351 /*
1352 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1353 * return 0. We must end up running the queue again whenever 0 is
1354 * returned, else IO can hang.
1355 *
1356 * Called with host_lock held.
1357 */
1358 static inline int scsi_host_queue_ready(struct request_queue *q,
1359 struct Scsi_Host *shost,
1360 struct scsi_device *sdev)
1361 {
1362 if (scsi_host_in_recovery(shost))
1363 return 0;
1364 if (shost->host_busy == 0 && shost->host_blocked) {
1365 /*
1366 * unblock after host_blocked iterates to zero
1367 */
1368 if (--shost->host_blocked == 0) {
1369 SCSI_LOG_MLQUEUE(3,
1370 printk("scsi%d unblocking host at zero depth\n",
1371 shost->host_no));
1372 } else {
1373 return 0;
1374 }
1375 }
1376 if (scsi_host_is_busy(shost)) {
1377 if (list_empty(&sdev->starved_entry))
1378 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1379 return 0;
1380 }
1381
1382 /* We're OK to process the command, so we can't be starved */
1383 if (!list_empty(&sdev->starved_entry))
1384 list_del_init(&sdev->starved_entry);
1385
1386 return 1;
1387 }
1388
1389 /*
1390 * Busy state exporting function for request stacking drivers.
1391 *
1392 * For efficiency, no lock is taken to check the busy state of
1393 * shost/starget/sdev, since the returned value is not guaranteed and
1394 * may be changed after request stacking drivers call the function,
1395 * regardless of taking lock or not.
1396 *
1397 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1398 * needs to return 'not busy'. Otherwise, request stacking drivers
1399 * may hold requests forever.
1400 */
1401 static int scsi_lld_busy(struct request_queue *q)
1402 {
1403 struct scsi_device *sdev = q->queuedata;
1404 struct Scsi_Host *shost;
1405
1406 if (blk_queue_dead(q))
1407 return 0;
1408
1409 shost = sdev->host;
1410
1411 /*
1412 * Ignore host/starget busy state.
1413 * Since block layer does not have a concept of fairness across
1414 * multiple queues, congestion of host/starget needs to be handled
1415 * in SCSI layer.
1416 */
1417 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1418 return 1;
1419
1420 return 0;
1421 }
1422
1423 /*
1424 * Kill a request for a dead device
1425 */
1426 static void scsi_kill_request(struct request *req, struct request_queue *q)
1427 {
1428 struct scsi_cmnd *cmd = req->special;
1429 struct scsi_device *sdev;
1430 struct scsi_target *starget;
1431 struct Scsi_Host *shost;
1432
1433 blk_start_request(req);
1434
1435 scmd_printk(KERN_INFO, cmd, "killing request\n");
1436
1437 sdev = cmd->device;
1438 starget = scsi_target(sdev);
1439 shost = sdev->host;
1440 scsi_init_cmd_errh(cmd);
1441 cmd->result = DID_NO_CONNECT << 16;
1442 atomic_inc(&cmd->device->iorequest_cnt);
1443
1444 /*
1445 * SCSI request completion path will do scsi_device_unbusy(),
1446 * bump busy counts. To bump the counters, we need to dance
1447 * with the locks as normal issue path does.
1448 */
1449 sdev->device_busy++;
1450 spin_unlock(sdev->request_queue->queue_lock);
1451 spin_lock(shost->host_lock);
1452 shost->host_busy++;
1453 starget->target_busy++;
1454 spin_unlock(shost->host_lock);
1455 spin_lock(sdev->request_queue->queue_lock);
1456
1457 blk_complete_request(req);
1458 }
1459
1460 static void scsi_softirq_done(struct request *rq)
1461 {
1462 struct scsi_cmnd *cmd = rq->special;
1463 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1464 int disposition;
1465
1466 INIT_LIST_HEAD(&cmd->eh_entry);
1467
1468 atomic_inc(&cmd->device->iodone_cnt);
1469 if (cmd->result)
1470 atomic_inc(&cmd->device->ioerr_cnt);
1471
1472 disposition = scsi_decide_disposition(cmd);
1473 if (disposition != SUCCESS &&
1474 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1475 sdev_printk(KERN_ERR, cmd->device,
1476 "timing out command, waited %lus\n",
1477 wait_for/HZ);
1478 disposition = SUCCESS;
1479 }
1480
1481 scsi_log_completion(cmd, disposition);
1482
1483 switch (disposition) {
1484 case SUCCESS:
1485 scsi_finish_command(cmd);
1486 break;
1487 case NEEDS_RETRY:
1488 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1489 break;
1490 case ADD_TO_MLQUEUE:
1491 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1492 break;
1493 default:
1494 if (!scsi_eh_scmd_add(cmd, 0))
1495 scsi_finish_command(cmd);
1496 }
1497 }
1498
1499 /*
1500 * Function: scsi_request_fn()
1501 *
1502 * Purpose: Main strategy routine for SCSI.
1503 *
1504 * Arguments: q - Pointer to actual queue.
1505 *
1506 * Returns: Nothing
1507 *
1508 * Lock status: IO request lock assumed to be held when called.
1509 */
1510 static void scsi_request_fn(struct request_queue *q)
1511 {
1512 struct scsi_device *sdev = q->queuedata;
1513 struct Scsi_Host *shost;
1514 struct scsi_cmnd *cmd;
1515 struct request *req;
1516
1517 if(!get_device(&sdev->sdev_gendev))
1518 /* We must be tearing the block queue down already */
1519 return;
1520
1521 /*
1522 * To start with, we keep looping until the queue is empty, or until
1523 * the host is no longer able to accept any more requests.
1524 */
1525 shost = sdev->host;
1526 for (;;) {
1527 int rtn;
1528 /*
1529 * get next queueable request. We do this early to make sure
1530 * that the request is fully prepared even if we cannot
1531 * accept it.
1532 */
1533 req = blk_peek_request(q);
1534 if (!req || !scsi_dev_queue_ready(q, sdev))
1535 break;
1536
1537 if (unlikely(!scsi_device_online(sdev))) {
1538 sdev_printk(KERN_ERR, sdev,
1539 "rejecting I/O to offline device\n");
1540 scsi_kill_request(req, q);
1541 continue;
1542 }
1543
1544
1545 /*
1546 * Remove the request from the request list.
1547 */
1548 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1549 blk_start_request(req);
1550 sdev->device_busy++;
1551
1552 spin_unlock(q->queue_lock);
1553 cmd = req->special;
1554 if (unlikely(cmd == NULL)) {
1555 printk(KERN_CRIT "impossible request in %s.\n"
1556 "please mail a stack trace to "
1557 "linux-scsi@vger.kernel.org\n",
1558 __func__);
1559 blk_dump_rq_flags(req, "foo");
1560 BUG();
1561 }
1562 spin_lock(shost->host_lock);
1563
1564 /*
1565 * We hit this when the driver is using a host wide
1566 * tag map. For device level tag maps the queue_depth check
1567 * in the device ready fn would prevent us from trying
1568 * to allocate a tag. Since the map is a shared host resource
1569 * we add the dev to the starved list so it eventually gets
1570 * a run when a tag is freed.
1571 */
1572 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1573 if (list_empty(&sdev->starved_entry))
1574 list_add_tail(&sdev->starved_entry,
1575 &shost->starved_list);
1576 goto not_ready;
1577 }
1578
1579 if (!scsi_target_queue_ready(shost, sdev))
1580 goto not_ready;
1581
1582 if (!scsi_host_queue_ready(q, shost, sdev))
1583 goto not_ready;
1584
1585 scsi_target(sdev)->target_busy++;
1586 shost->host_busy++;
1587
1588 /*
1589 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1590 * take the lock again.
1591 */
1592 spin_unlock_irq(shost->host_lock);
1593
1594 /*
1595 * Finally, initialize any error handling parameters, and set up
1596 * the timers for timeouts.
1597 */
1598 scsi_init_cmd_errh(cmd);
1599
1600 /*
1601 * Dispatch the command to the low-level driver.
1602 */
1603 rtn = scsi_dispatch_cmd(cmd);
1604 spin_lock_irq(q->queue_lock);
1605 if (rtn)
1606 goto out_delay;
1607 }
1608
1609 goto out;
1610
1611 not_ready:
1612 spin_unlock_irq(shost->host_lock);
1613
1614 /*
1615 * lock q, handle tag, requeue req, and decrement device_busy. We
1616 * must return with queue_lock held.
1617 *
1618 * Decrementing device_busy without checking it is OK, as all such
1619 * cases (host limits or settings) should run the queue at some
1620 * later time.
1621 */
1622 spin_lock_irq(q->queue_lock);
1623 blk_requeue_request(q, req);
1624 sdev->device_busy--;
1625 out_delay:
1626 if (sdev->device_busy == 0)
1627 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1628 out:
1629 /* must be careful here...if we trigger the ->remove() function
1630 * we cannot be holding the q lock */
1631 spin_unlock_irq(q->queue_lock);
1632 put_device(&sdev->sdev_gendev);
1633 spin_lock_irq(q->queue_lock);
1634 }
1635
1636 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1637 {
1638 struct device *host_dev;
1639 u64 bounce_limit = 0xffffffff;
1640
1641 if (shost->unchecked_isa_dma)
1642 return BLK_BOUNCE_ISA;
1643 /*
1644 * Platforms with virtual-DMA translation
1645 * hardware have no practical limit.
1646 */
1647 if (!PCI_DMA_BUS_IS_PHYS)
1648 return BLK_BOUNCE_ANY;
1649
1650 host_dev = scsi_get_device(shost);
1651 if (host_dev && host_dev->dma_mask)
1652 bounce_limit = *host_dev->dma_mask;
1653
1654 return bounce_limit;
1655 }
1656 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1657
1658 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1659 request_fn_proc *request_fn)
1660 {
1661 struct request_queue *q;
1662 struct device *dev = shost->dma_dev;
1663
1664 q = blk_init_queue(request_fn, NULL);
1665 if (!q)
1666 return NULL;
1667
1668 /*
1669 * this limit is imposed by hardware restrictions
1670 */
1671 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1672 SCSI_MAX_SG_CHAIN_SEGMENTS));
1673
1674 if (scsi_host_prot_dma(shost)) {
1675 shost->sg_prot_tablesize =
1676 min_not_zero(shost->sg_prot_tablesize,
1677 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1678 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1679 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1680 }
1681
1682 blk_queue_max_hw_sectors(q, shost->max_sectors);
1683 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1684 blk_queue_segment_boundary(q, shost->dma_boundary);
1685 dma_set_seg_boundary(dev, shost->dma_boundary);
1686
1687 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1688
1689 if (!shost->use_clustering)
1690 q->limits.cluster = 0;
1691
1692 /*
1693 * set a reasonable default alignment on word boundaries: the
1694 * host and device may alter it using
1695 * blk_queue_update_dma_alignment() later.
1696 */
1697 blk_queue_dma_alignment(q, 0x03);
1698
1699 return q;
1700 }
1701 EXPORT_SYMBOL(__scsi_alloc_queue);
1702
1703 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1704 {
1705 struct request_queue *q;
1706
1707 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1708 if (!q)
1709 return NULL;
1710
1711 blk_queue_prep_rq(q, scsi_prep_fn);
1712 blk_queue_softirq_done(q, scsi_softirq_done);
1713 blk_queue_rq_timed_out(q, scsi_times_out);
1714 blk_queue_lld_busy(q, scsi_lld_busy);
1715 return q;
1716 }
1717
1718 /*
1719 * Function: scsi_block_requests()
1720 *
1721 * Purpose: Utility function used by low-level drivers to prevent further
1722 * commands from being queued to the device.
1723 *
1724 * Arguments: shost - Host in question
1725 *
1726 * Returns: Nothing
1727 *
1728 * Lock status: No locks are assumed held.
1729 *
1730 * Notes: There is no timer nor any other means by which the requests
1731 * get unblocked other than the low-level driver calling
1732 * scsi_unblock_requests().
1733 */
1734 void scsi_block_requests(struct Scsi_Host *shost)
1735 {
1736 shost->host_self_blocked = 1;
1737 }
1738 EXPORT_SYMBOL(scsi_block_requests);
1739
1740 /*
1741 * Function: scsi_unblock_requests()
1742 *
1743 * Purpose: Utility function used by low-level drivers to allow further
1744 * commands from being queued to the device.
1745 *
1746 * Arguments: shost - Host in question
1747 *
1748 * Returns: Nothing
1749 *
1750 * Lock status: No locks are assumed held.
1751 *
1752 * Notes: There is no timer nor any other means by which the requests
1753 * get unblocked other than the low-level driver calling
1754 * scsi_unblock_requests().
1755 *
1756 * This is done as an API function so that changes to the
1757 * internals of the scsi mid-layer won't require wholesale
1758 * changes to drivers that use this feature.
1759 */
1760 void scsi_unblock_requests(struct Scsi_Host *shost)
1761 {
1762 shost->host_self_blocked = 0;
1763 scsi_run_host_queues(shost);
1764 }
1765 EXPORT_SYMBOL(scsi_unblock_requests);
1766
1767 int __init scsi_init_queue(void)
1768 {
1769 int i;
1770
1771 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1772 sizeof(struct scsi_data_buffer),
1773 0, 0, NULL);
1774 if (!scsi_sdb_cache) {
1775 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1776 return -ENOMEM;
1777 }
1778
1779 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1780 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1781 int size = sgp->size * sizeof(struct scatterlist);
1782
1783 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1784 SLAB_HWCACHE_ALIGN, NULL);
1785 if (!sgp->slab) {
1786 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1787 sgp->name);
1788 goto cleanup_sdb;
1789 }
1790
1791 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1792 sgp->slab);
1793 if (!sgp->pool) {
1794 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1795 sgp->name);
1796 goto cleanup_sdb;
1797 }
1798 }
1799
1800 return 0;
1801
1802 cleanup_sdb:
1803 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1804 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1805 if (sgp->pool)
1806 mempool_destroy(sgp->pool);
1807 if (sgp->slab)
1808 kmem_cache_destroy(sgp->slab);
1809 }
1810 kmem_cache_destroy(scsi_sdb_cache);
1811
1812 return -ENOMEM;
1813 }
1814
1815 void scsi_exit_queue(void)
1816 {
1817 int i;
1818
1819 kmem_cache_destroy(scsi_sdb_cache);
1820
1821 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1822 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1823 mempool_destroy(sgp->pool);
1824 kmem_cache_destroy(sgp->slab);
1825 }
1826 }
1827
1828 /**
1829 * scsi_mode_select - issue a mode select
1830 * @sdev: SCSI device to be queried
1831 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1832 * @sp: Save page bit (0 == don't save, 1 == save)
1833 * @modepage: mode page being requested
1834 * @buffer: request buffer (may not be smaller than eight bytes)
1835 * @len: length of request buffer.
1836 * @timeout: command timeout
1837 * @retries: number of retries before failing
1838 * @data: returns a structure abstracting the mode header data
1839 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1840 * must be SCSI_SENSE_BUFFERSIZE big.
1841 *
1842 * Returns zero if successful; negative error number or scsi
1843 * status on error
1844 *
1845 */
1846 int
1847 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1848 unsigned char *buffer, int len, int timeout, int retries,
1849 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1850 {
1851 unsigned char cmd[10];
1852 unsigned char *real_buffer;
1853 int ret;
1854
1855 memset(cmd, 0, sizeof(cmd));
1856 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1857
1858 if (sdev->use_10_for_ms) {
1859 if (len > 65535)
1860 return -EINVAL;
1861 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1862 if (!real_buffer)
1863 return -ENOMEM;
1864 memcpy(real_buffer + 8, buffer, len);
1865 len += 8;
1866 real_buffer[0] = 0;
1867 real_buffer[1] = 0;
1868 real_buffer[2] = data->medium_type;
1869 real_buffer[3] = data->device_specific;
1870 real_buffer[4] = data->longlba ? 0x01 : 0;
1871 real_buffer[5] = 0;
1872 real_buffer[6] = data->block_descriptor_length >> 8;
1873 real_buffer[7] = data->block_descriptor_length;
1874
1875 cmd[0] = MODE_SELECT_10;
1876 cmd[7] = len >> 8;
1877 cmd[8] = len;
1878 } else {
1879 if (len > 255 || data->block_descriptor_length > 255 ||
1880 data->longlba)
1881 return -EINVAL;
1882
1883 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1884 if (!real_buffer)
1885 return -ENOMEM;
1886 memcpy(real_buffer + 4, buffer, len);
1887 len += 4;
1888 real_buffer[0] = 0;
1889 real_buffer[1] = data->medium_type;
1890 real_buffer[2] = data->device_specific;
1891 real_buffer[3] = data->block_descriptor_length;
1892
1893
1894 cmd[0] = MODE_SELECT;
1895 cmd[4] = len;
1896 }
1897
1898 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1899 sshdr, timeout, retries, NULL);
1900 kfree(real_buffer);
1901 return ret;
1902 }
1903 EXPORT_SYMBOL_GPL(scsi_mode_select);
1904
1905 /**
1906 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1907 * @sdev: SCSI device to be queried
1908 * @dbd: set if mode sense will allow block descriptors to be returned
1909 * @modepage: mode page being requested
1910 * @buffer: request buffer (may not be smaller than eight bytes)
1911 * @len: length of request buffer.
1912 * @timeout: command timeout
1913 * @retries: number of retries before failing
1914 * @data: returns a structure abstracting the mode header data
1915 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1916 * must be SCSI_SENSE_BUFFERSIZE big.
1917 *
1918 * Returns zero if unsuccessful, or the header offset (either 4
1919 * or 8 depending on whether a six or ten byte command was
1920 * issued) if successful.
1921 */
1922 int
1923 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1924 unsigned char *buffer, int len, int timeout, int retries,
1925 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1926 {
1927 unsigned char cmd[12];
1928 int use_10_for_ms;
1929 int header_length;
1930 int result;
1931 struct scsi_sense_hdr my_sshdr;
1932
1933 memset(data, 0, sizeof(*data));
1934 memset(&cmd[0], 0, 12);
1935 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1936 cmd[2] = modepage;
1937
1938 /* caller might not be interested in sense, but we need it */
1939 if (!sshdr)
1940 sshdr = &my_sshdr;
1941
1942 retry:
1943 use_10_for_ms = sdev->use_10_for_ms;
1944
1945 if (use_10_for_ms) {
1946 if (len < 8)
1947 len = 8;
1948
1949 cmd[0] = MODE_SENSE_10;
1950 cmd[8] = len;
1951 header_length = 8;
1952 } else {
1953 if (len < 4)
1954 len = 4;
1955
1956 cmd[0] = MODE_SENSE;
1957 cmd[4] = len;
1958 header_length = 4;
1959 }
1960
1961 memset(buffer, 0, len);
1962
1963 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1964 sshdr, timeout, retries, NULL);
1965
1966 /* This code looks awful: what it's doing is making sure an
1967 * ILLEGAL REQUEST sense return identifies the actual command
1968 * byte as the problem. MODE_SENSE commands can return
1969 * ILLEGAL REQUEST if the code page isn't supported */
1970
1971 if (use_10_for_ms && !scsi_status_is_good(result) &&
1972 (driver_byte(result) & DRIVER_SENSE)) {
1973 if (scsi_sense_valid(sshdr)) {
1974 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1975 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1976 /*
1977 * Invalid command operation code
1978 */
1979 sdev->use_10_for_ms = 0;
1980 goto retry;
1981 }
1982 }
1983 }
1984
1985 if(scsi_status_is_good(result)) {
1986 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1987 (modepage == 6 || modepage == 8))) {
1988 /* Initio breakage? */
1989 header_length = 0;
1990 data->length = 13;
1991 data->medium_type = 0;
1992 data->device_specific = 0;
1993 data->longlba = 0;
1994 data->block_descriptor_length = 0;
1995 } else if(use_10_for_ms) {
1996 data->length = buffer[0]*256 + buffer[1] + 2;
1997 data->medium_type = buffer[2];
1998 data->device_specific = buffer[3];
1999 data->longlba = buffer[4] & 0x01;
2000 data->block_descriptor_length = buffer[6]*256
2001 + buffer[7];
2002 } else {
2003 data->length = buffer[0] + 1;
2004 data->medium_type = buffer[1];
2005 data->device_specific = buffer[2];
2006 data->block_descriptor_length = buffer[3];
2007 }
2008 data->header_length = header_length;
2009 }
2010
2011 return result;
2012 }
2013 EXPORT_SYMBOL(scsi_mode_sense);
2014
2015 /**
2016 * scsi_test_unit_ready - test if unit is ready
2017 * @sdev: scsi device to change the state of.
2018 * @timeout: command timeout
2019 * @retries: number of retries before failing
2020 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2021 * returning sense. Make sure that this is cleared before passing
2022 * in.
2023 *
2024 * Returns zero if unsuccessful or an error if TUR failed. For
2025 * removable media, UNIT_ATTENTION sets ->changed flag.
2026 **/
2027 int
2028 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2029 struct scsi_sense_hdr *sshdr_external)
2030 {
2031 char cmd[] = {
2032 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2033 };
2034 struct scsi_sense_hdr *sshdr;
2035 int result;
2036
2037 if (!sshdr_external)
2038 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2039 else
2040 sshdr = sshdr_external;
2041
2042 /* try to eat the UNIT_ATTENTION if there are enough retries */
2043 do {
2044 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2045 timeout, retries, NULL);
2046 if (sdev->removable && scsi_sense_valid(sshdr) &&
2047 sshdr->sense_key == UNIT_ATTENTION)
2048 sdev->changed = 1;
2049 } while (scsi_sense_valid(sshdr) &&
2050 sshdr->sense_key == UNIT_ATTENTION && --retries);
2051
2052 if (!sshdr_external)
2053 kfree(sshdr);
2054 return result;
2055 }
2056 EXPORT_SYMBOL(scsi_test_unit_ready);
2057
2058 /**
2059 * scsi_device_set_state - Take the given device through the device state model.
2060 * @sdev: scsi device to change the state of.
2061 * @state: state to change to.
2062 *
2063 * Returns zero if unsuccessful or an error if the requested
2064 * transition is illegal.
2065 */
2066 int
2067 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2068 {
2069 enum scsi_device_state oldstate = sdev->sdev_state;
2070
2071 if (state == oldstate)
2072 return 0;
2073
2074 switch (state) {
2075 case SDEV_CREATED:
2076 switch (oldstate) {
2077 case SDEV_CREATED_BLOCK:
2078 break;
2079 default:
2080 goto illegal;
2081 }
2082 break;
2083
2084 case SDEV_RUNNING:
2085 switch (oldstate) {
2086 case SDEV_CREATED:
2087 case SDEV_OFFLINE:
2088 case SDEV_TRANSPORT_OFFLINE:
2089 case SDEV_QUIESCE:
2090 case SDEV_BLOCK:
2091 break;
2092 default:
2093 goto illegal;
2094 }
2095 break;
2096
2097 case SDEV_QUIESCE:
2098 switch (oldstate) {
2099 case SDEV_RUNNING:
2100 case SDEV_OFFLINE:
2101 case SDEV_TRANSPORT_OFFLINE:
2102 break;
2103 default:
2104 goto illegal;
2105 }
2106 break;
2107
2108 case SDEV_OFFLINE:
2109 case SDEV_TRANSPORT_OFFLINE:
2110 switch (oldstate) {
2111 case SDEV_CREATED:
2112 case SDEV_RUNNING:
2113 case SDEV_QUIESCE:
2114 case SDEV_BLOCK:
2115 break;
2116 default:
2117 goto illegal;
2118 }
2119 break;
2120
2121 case SDEV_BLOCK:
2122 switch (oldstate) {
2123 case SDEV_RUNNING:
2124 case SDEV_CREATED_BLOCK:
2125 break;
2126 default:
2127 goto illegal;
2128 }
2129 break;
2130
2131 case SDEV_CREATED_BLOCK:
2132 switch (oldstate) {
2133 case SDEV_CREATED:
2134 break;
2135 default:
2136 goto illegal;
2137 }
2138 break;
2139
2140 case SDEV_CANCEL:
2141 switch (oldstate) {
2142 case SDEV_CREATED:
2143 case SDEV_RUNNING:
2144 case SDEV_QUIESCE:
2145 case SDEV_OFFLINE:
2146 case SDEV_TRANSPORT_OFFLINE:
2147 case SDEV_BLOCK:
2148 break;
2149 default:
2150 goto illegal;
2151 }
2152 break;
2153
2154 case SDEV_DEL:
2155 switch (oldstate) {
2156 case SDEV_CREATED:
2157 case SDEV_RUNNING:
2158 case SDEV_OFFLINE:
2159 case SDEV_TRANSPORT_OFFLINE:
2160 case SDEV_CANCEL:
2161 break;
2162 default:
2163 goto illegal;
2164 }
2165 break;
2166
2167 }
2168 sdev->sdev_state = state;
2169 return 0;
2170
2171 illegal:
2172 SCSI_LOG_ERROR_RECOVERY(1,
2173 sdev_printk(KERN_ERR, sdev,
2174 "Illegal state transition %s->%s\n",
2175 scsi_device_state_name(oldstate),
2176 scsi_device_state_name(state))
2177 );
2178 return -EINVAL;
2179 }
2180 EXPORT_SYMBOL(scsi_device_set_state);
2181
2182 /**
2183 * sdev_evt_emit - emit a single SCSI device uevent
2184 * @sdev: associated SCSI device
2185 * @evt: event to emit
2186 *
2187 * Send a single uevent (scsi_event) to the associated scsi_device.
2188 */
2189 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2190 {
2191 int idx = 0;
2192 char *envp[3];
2193
2194 switch (evt->evt_type) {
2195 case SDEV_EVT_MEDIA_CHANGE:
2196 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2197 break;
2198
2199 default:
2200 /* do nothing */
2201 break;
2202 }
2203
2204 envp[idx++] = NULL;
2205
2206 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2207 }
2208
2209 /**
2210 * sdev_evt_thread - send a uevent for each scsi event
2211 * @work: work struct for scsi_device
2212 *
2213 * Dispatch queued events to their associated scsi_device kobjects
2214 * as uevents.
2215 */
2216 void scsi_evt_thread(struct work_struct *work)
2217 {
2218 struct scsi_device *sdev;
2219 LIST_HEAD(event_list);
2220
2221 sdev = container_of(work, struct scsi_device, event_work);
2222
2223 while (1) {
2224 struct scsi_event *evt;
2225 struct list_head *this, *tmp;
2226 unsigned long flags;
2227
2228 spin_lock_irqsave(&sdev->list_lock, flags);
2229 list_splice_init(&sdev->event_list, &event_list);
2230 spin_unlock_irqrestore(&sdev->list_lock, flags);
2231
2232 if (list_empty(&event_list))
2233 break;
2234
2235 list_for_each_safe(this, tmp, &event_list) {
2236 evt = list_entry(this, struct scsi_event, node);
2237 list_del(&evt->node);
2238 scsi_evt_emit(sdev, evt);
2239 kfree(evt);
2240 }
2241 }
2242 }
2243
2244 /**
2245 * sdev_evt_send - send asserted event to uevent thread
2246 * @sdev: scsi_device event occurred on
2247 * @evt: event to send
2248 *
2249 * Assert scsi device event asynchronously.
2250 */
2251 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2252 {
2253 unsigned long flags;
2254
2255 #if 0
2256 /* FIXME: currently this check eliminates all media change events
2257 * for polled devices. Need to update to discriminate between AN
2258 * and polled events */
2259 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2260 kfree(evt);
2261 return;
2262 }
2263 #endif
2264
2265 spin_lock_irqsave(&sdev->list_lock, flags);
2266 list_add_tail(&evt->node, &sdev->event_list);
2267 schedule_work(&sdev->event_work);
2268 spin_unlock_irqrestore(&sdev->list_lock, flags);
2269 }
2270 EXPORT_SYMBOL_GPL(sdev_evt_send);
2271
2272 /**
2273 * sdev_evt_alloc - allocate a new scsi event
2274 * @evt_type: type of event to allocate
2275 * @gfpflags: GFP flags for allocation
2276 *
2277 * Allocates and returns a new scsi_event.
2278 */
2279 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2280 gfp_t gfpflags)
2281 {
2282 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2283 if (!evt)
2284 return NULL;
2285
2286 evt->evt_type = evt_type;
2287 INIT_LIST_HEAD(&evt->node);
2288
2289 /* evt_type-specific initialization, if any */
2290 switch (evt_type) {
2291 case SDEV_EVT_MEDIA_CHANGE:
2292 default:
2293 /* do nothing */
2294 break;
2295 }
2296
2297 return evt;
2298 }
2299 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2300
2301 /**
2302 * sdev_evt_send_simple - send asserted event to uevent thread
2303 * @sdev: scsi_device event occurred on
2304 * @evt_type: type of event to send
2305 * @gfpflags: GFP flags for allocation
2306 *
2307 * Assert scsi device event asynchronously, given an event type.
2308 */
2309 void sdev_evt_send_simple(struct scsi_device *sdev,
2310 enum scsi_device_event evt_type, gfp_t gfpflags)
2311 {
2312 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2313 if (!evt) {
2314 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2315 evt_type);
2316 return;
2317 }
2318
2319 sdev_evt_send(sdev, evt);
2320 }
2321 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2322
2323 /**
2324 * scsi_device_quiesce - Block user issued commands.
2325 * @sdev: scsi device to quiesce.
2326 *
2327 * This works by trying to transition to the SDEV_QUIESCE state
2328 * (which must be a legal transition). When the device is in this
2329 * state, only special requests will be accepted, all others will
2330 * be deferred. Since special requests may also be requeued requests,
2331 * a successful return doesn't guarantee the device will be
2332 * totally quiescent.
2333 *
2334 * Must be called with user context, may sleep.
2335 *
2336 * Returns zero if unsuccessful or an error if not.
2337 */
2338 int
2339 scsi_device_quiesce(struct scsi_device *sdev)
2340 {
2341 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2342 if (err)
2343 return err;
2344
2345 scsi_run_queue(sdev->request_queue);
2346 while (sdev->device_busy) {
2347 msleep_interruptible(200);
2348 scsi_run_queue(sdev->request_queue);
2349 }
2350 return 0;
2351 }
2352 EXPORT_SYMBOL(scsi_device_quiesce);
2353
2354 /**
2355 * scsi_device_resume - Restart user issued commands to a quiesced device.
2356 * @sdev: scsi device to resume.
2357 *
2358 * Moves the device from quiesced back to running and restarts the
2359 * queues.
2360 *
2361 * Must be called with user context, may sleep.
2362 */
2363 void scsi_device_resume(struct scsi_device *sdev)
2364 {
2365 /* check if the device state was mutated prior to resume, and if
2366 * so assume the state is being managed elsewhere (for example
2367 * device deleted during suspend)
2368 */
2369 if (sdev->sdev_state != SDEV_QUIESCE ||
2370 scsi_device_set_state(sdev, SDEV_RUNNING))
2371 return;
2372 scsi_run_queue(sdev->request_queue);
2373 }
2374 EXPORT_SYMBOL(scsi_device_resume);
2375
2376 static void
2377 device_quiesce_fn(struct scsi_device *sdev, void *data)
2378 {
2379 scsi_device_quiesce(sdev);
2380 }
2381
2382 void
2383 scsi_target_quiesce(struct scsi_target *starget)
2384 {
2385 starget_for_each_device(starget, NULL, device_quiesce_fn);
2386 }
2387 EXPORT_SYMBOL(scsi_target_quiesce);
2388
2389 static void
2390 device_resume_fn(struct scsi_device *sdev, void *data)
2391 {
2392 scsi_device_resume(sdev);
2393 }
2394
2395 void
2396 scsi_target_resume(struct scsi_target *starget)
2397 {
2398 starget_for_each_device(starget, NULL, device_resume_fn);
2399 }
2400 EXPORT_SYMBOL(scsi_target_resume);
2401
2402 /**
2403 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2404 * @sdev: device to block
2405 *
2406 * Block request made by scsi lld's to temporarily stop all
2407 * scsi commands on the specified device. Called from interrupt
2408 * or normal process context.
2409 *
2410 * Returns zero if successful or error if not
2411 *
2412 * Notes:
2413 * This routine transitions the device to the SDEV_BLOCK state
2414 * (which must be a legal transition). When the device is in this
2415 * state, all commands are deferred until the scsi lld reenables
2416 * the device with scsi_device_unblock or device_block_tmo fires.
2417 */
2418 int
2419 scsi_internal_device_block(struct scsi_device *sdev)
2420 {
2421 struct request_queue *q = sdev->request_queue;
2422 unsigned long flags;
2423 int err = 0;
2424
2425 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2426 if (err) {
2427 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2428
2429 if (err)
2430 return err;
2431 }
2432
2433 /*
2434 * The device has transitioned to SDEV_BLOCK. Stop the
2435 * block layer from calling the midlayer with this device's
2436 * request queue.
2437 */
2438 spin_lock_irqsave(q->queue_lock, flags);
2439 blk_stop_queue(q);
2440 spin_unlock_irqrestore(q->queue_lock, flags);
2441
2442 return 0;
2443 }
2444 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2445
2446 /**
2447 * scsi_internal_device_unblock - resume a device after a block request
2448 * @sdev: device to resume
2449 * @new_state: state to set devices to after unblocking
2450 *
2451 * Called by scsi lld's or the midlayer to restart the device queue
2452 * for the previously suspended scsi device. Called from interrupt or
2453 * normal process context.
2454 *
2455 * Returns zero if successful or error if not.
2456 *
2457 * Notes:
2458 * This routine transitions the device to the SDEV_RUNNING state
2459 * or to one of the offline states (which must be a legal transition)
2460 * allowing the midlayer to goose the queue for this device.
2461 */
2462 int
2463 scsi_internal_device_unblock(struct scsi_device *sdev,
2464 enum scsi_device_state new_state)
2465 {
2466 struct request_queue *q = sdev->request_queue;
2467 unsigned long flags;
2468
2469 /*
2470 * Try to transition the scsi device to SDEV_RUNNING or one of the
2471 * offlined states and goose the device queue if successful.
2472 */
2473 if (sdev->sdev_state == SDEV_BLOCK)
2474 sdev->sdev_state = new_state;
2475 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2476 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2477 new_state == SDEV_OFFLINE)
2478 sdev->sdev_state = new_state;
2479 else
2480 sdev->sdev_state = SDEV_CREATED;
2481 } else if (sdev->sdev_state != SDEV_CANCEL &&
2482 sdev->sdev_state != SDEV_OFFLINE)
2483 return -EINVAL;
2484
2485 spin_lock_irqsave(q->queue_lock, flags);
2486 blk_start_queue(q);
2487 spin_unlock_irqrestore(q->queue_lock, flags);
2488
2489 return 0;
2490 }
2491 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2492
2493 static void
2494 device_block(struct scsi_device *sdev, void *data)
2495 {
2496 scsi_internal_device_block(sdev);
2497 }
2498
2499 static int
2500 target_block(struct device *dev, void *data)
2501 {
2502 if (scsi_is_target_device(dev))
2503 starget_for_each_device(to_scsi_target(dev), NULL,
2504 device_block);
2505 return 0;
2506 }
2507
2508 void
2509 scsi_target_block(struct device *dev)
2510 {
2511 if (scsi_is_target_device(dev))
2512 starget_for_each_device(to_scsi_target(dev), NULL,
2513 device_block);
2514 else
2515 device_for_each_child(dev, NULL, target_block);
2516 }
2517 EXPORT_SYMBOL_GPL(scsi_target_block);
2518
2519 static void
2520 device_unblock(struct scsi_device *sdev, void *data)
2521 {
2522 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2523 }
2524
2525 static int
2526 target_unblock(struct device *dev, void *data)
2527 {
2528 if (scsi_is_target_device(dev))
2529 starget_for_each_device(to_scsi_target(dev), data,
2530 device_unblock);
2531 return 0;
2532 }
2533
2534 void
2535 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2536 {
2537 if (scsi_is_target_device(dev))
2538 starget_for_each_device(to_scsi_target(dev), &new_state,
2539 device_unblock);
2540 else
2541 device_for_each_child(dev, &new_state, target_unblock);
2542 }
2543 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2544
2545 /**
2546 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2547 * @sgl: scatter-gather list
2548 * @sg_count: number of segments in sg
2549 * @offset: offset in bytes into sg, on return offset into the mapped area
2550 * @len: bytes to map, on return number of bytes mapped
2551 *
2552 * Returns virtual address of the start of the mapped page
2553 */
2554 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2555 size_t *offset, size_t *len)
2556 {
2557 int i;
2558 size_t sg_len = 0, len_complete = 0;
2559 struct scatterlist *sg;
2560 struct page *page;
2561
2562 WARN_ON(!irqs_disabled());
2563
2564 for_each_sg(sgl, sg, sg_count, i) {
2565 len_complete = sg_len; /* Complete sg-entries */
2566 sg_len += sg->length;
2567 if (sg_len > *offset)
2568 break;
2569 }
2570
2571 if (unlikely(i == sg_count)) {
2572 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2573 "elements %d\n",
2574 __func__, sg_len, *offset, sg_count);
2575 WARN_ON(1);
2576 return NULL;
2577 }
2578
2579 /* Offset starting from the beginning of first page in this sg-entry */
2580 *offset = *offset - len_complete + sg->offset;
2581
2582 /* Assumption: contiguous pages can be accessed as "page + i" */
2583 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2584 *offset &= ~PAGE_MASK;
2585
2586 /* Bytes in this sg-entry from *offset to the end of the page */
2587 sg_len = PAGE_SIZE - *offset;
2588 if (*len > sg_len)
2589 *len = sg_len;
2590
2591 return kmap_atomic(page);
2592 }
2593 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2594
2595 /**
2596 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2597 * @virt: virtual address to be unmapped
2598 */
2599 void scsi_kunmap_atomic_sg(void *virt)
2600 {
2601 kunmap_atomic(virt);
2602 }
2603 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
This page took 0.088463 seconds and 5 git commands to generate.