Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[deliverable/linux.git] / drivers / scsi / scsi_lib.c
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33
34
35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE 2
37
38 struct scsi_host_sg_pool {
39 size_t size;
40 char *name;
41 struct kmem_cache *slab;
42 mempool_t *pool;
43 };
44
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 SP(8),
51 SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67
68 struct kmem_cache *scsi_sdb_cache;
69
70 static void scsi_run_queue(struct request_queue *q);
71
72 /*
73 * Function: scsi_unprep_request()
74 *
75 * Purpose: Remove all preparation done for a request, including its
76 * associated scsi_cmnd, so that it can be requeued.
77 *
78 * Arguments: req - request to unprepare
79 *
80 * Lock status: Assumed that no locks are held upon entry.
81 *
82 * Returns: Nothing.
83 */
84 static void scsi_unprep_request(struct request *req)
85 {
86 struct scsi_cmnd *cmd = req->special;
87
88 req->cmd_flags &= ~REQ_DONTPREP;
89 req->special = NULL;
90
91 scsi_put_command(cmd);
92 }
93
94 /*
95 * Function: scsi_queue_insert()
96 *
97 * Purpose: Insert a command in the midlevel queue.
98 *
99 * Arguments: cmd - command that we are adding to queue.
100 * reason - why we are inserting command to queue.
101 *
102 * Lock status: Assumed that lock is not held upon entry.
103 *
104 * Returns: Nothing.
105 *
106 * Notes: We do this for one of two cases. Either the host is busy
107 * and it cannot accept any more commands for the time being,
108 * or the device returned QUEUE_FULL and can accept no more
109 * commands.
110 * Notes: This could be called either from an interrupt context or a
111 * normal process context.
112 */
113 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
114 {
115 struct Scsi_Host *host = cmd->device->host;
116 struct scsi_device *device = cmd->device;
117 struct scsi_target *starget = scsi_target(device);
118 struct request_queue *q = device->request_queue;
119 unsigned long flags;
120
121 SCSI_LOG_MLQUEUE(1,
122 printk("Inserting command %p into mlqueue\n", cmd));
123
124 /*
125 * Set the appropriate busy bit for the device/host.
126 *
127 * If the host/device isn't busy, assume that something actually
128 * completed, and that we should be able to queue a command now.
129 *
130 * Note that the prior mid-layer assumption that any host could
131 * always queue at least one command is now broken. The mid-layer
132 * will implement a user specifiable stall (see
133 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
134 * if a command is requeued with no other commands outstanding
135 * either for the device or for the host.
136 */
137 switch (reason) {
138 case SCSI_MLQUEUE_HOST_BUSY:
139 host->host_blocked = host->max_host_blocked;
140 break;
141 case SCSI_MLQUEUE_DEVICE_BUSY:
142 device->device_blocked = device->max_device_blocked;
143 break;
144 case SCSI_MLQUEUE_TARGET_BUSY:
145 starget->target_blocked = starget->max_target_blocked;
146 break;
147 }
148
149 /*
150 * Decrement the counters, since these commands are no longer
151 * active on the host/device.
152 */
153 scsi_device_unbusy(device);
154
155 /*
156 * Requeue this command. It will go before all other commands
157 * that are already in the queue.
158 *
159 * NOTE: there is magic here about the way the queue is plugged if
160 * we have no outstanding commands.
161 *
162 * Although we *don't* plug the queue, we call the request
163 * function. The SCSI request function detects the blocked condition
164 * and plugs the queue appropriately.
165 */
166 spin_lock_irqsave(q->queue_lock, flags);
167 blk_requeue_request(q, cmd->request);
168 spin_unlock_irqrestore(q->queue_lock, flags);
169
170 scsi_run_queue(q);
171
172 return 0;
173 }
174
175 /**
176 * scsi_execute - insert request and wait for the result
177 * @sdev: scsi device
178 * @cmd: scsi command
179 * @data_direction: data direction
180 * @buffer: data buffer
181 * @bufflen: len of buffer
182 * @sense: optional sense buffer
183 * @timeout: request timeout in seconds
184 * @retries: number of times to retry request
185 * @flags: or into request flags;
186 *
187 * returns the req->errors value which is the scsi_cmnd result
188 * field.
189 */
190 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
191 int data_direction, void *buffer, unsigned bufflen,
192 unsigned char *sense, int timeout, int retries, int flags)
193 {
194 struct request *req;
195 int write = (data_direction == DMA_TO_DEVICE);
196 int ret = DRIVER_ERROR << 24;
197
198 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
199
200 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
201 buffer, bufflen, __GFP_WAIT))
202 goto out;
203
204 req->cmd_len = COMMAND_SIZE(cmd[0]);
205 memcpy(req->cmd, cmd, req->cmd_len);
206 req->sense = sense;
207 req->sense_len = 0;
208 req->retries = retries;
209 req->timeout = timeout;
210 req->cmd_type = REQ_TYPE_BLOCK_PC;
211 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
212
213 /*
214 * head injection *required* here otherwise quiesce won't work
215 */
216 blk_execute_rq(req->q, NULL, req, 1);
217
218 /*
219 * Some devices (USB mass-storage in particular) may transfer
220 * garbage data together with a residue indicating that the data
221 * is invalid. Prevent the garbage from being misinterpreted
222 * and prevent security leaks by zeroing out the excess data.
223 */
224 if (unlikely(req->data_len > 0 && req->data_len <= bufflen))
225 memset(buffer + (bufflen - req->data_len), 0, req->data_len);
226
227 ret = req->errors;
228 out:
229 blk_put_request(req);
230
231 return ret;
232 }
233 EXPORT_SYMBOL(scsi_execute);
234
235
236 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
237 int data_direction, void *buffer, unsigned bufflen,
238 struct scsi_sense_hdr *sshdr, int timeout, int retries)
239 {
240 char *sense = NULL;
241 int result;
242
243 if (sshdr) {
244 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
245 if (!sense)
246 return DRIVER_ERROR << 24;
247 }
248 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
249 sense, timeout, retries, 0);
250 if (sshdr)
251 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
252
253 kfree(sense);
254 return result;
255 }
256 EXPORT_SYMBOL(scsi_execute_req);
257
258 struct scsi_io_context {
259 void *data;
260 void (*done)(void *data, char *sense, int result, int resid);
261 char sense[SCSI_SENSE_BUFFERSIZE];
262 };
263
264 static struct kmem_cache *scsi_io_context_cache;
265
266 static void scsi_end_async(struct request *req, int uptodate)
267 {
268 struct scsi_io_context *sioc = req->end_io_data;
269
270 if (sioc->done)
271 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
272
273 kmem_cache_free(scsi_io_context_cache, sioc);
274 __blk_put_request(req->q, req);
275 }
276
277 static int scsi_merge_bio(struct request *rq, struct bio *bio)
278 {
279 struct request_queue *q = rq->q;
280
281 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
282 if (rq_data_dir(rq) == WRITE)
283 bio->bi_rw |= (1 << BIO_RW);
284 blk_queue_bounce(q, &bio);
285
286 return blk_rq_append_bio(q, rq, bio);
287 }
288
289 static void scsi_bi_endio(struct bio *bio, int error)
290 {
291 bio_put(bio);
292 }
293
294 /**
295 * scsi_req_map_sg - map a scatterlist into a request
296 * @rq: request to fill
297 * @sgl: scatterlist
298 * @nsegs: number of elements
299 * @bufflen: len of buffer
300 * @gfp: memory allocation flags
301 *
302 * scsi_req_map_sg maps a scatterlist into a request so that the
303 * request can be sent to the block layer. We do not trust the scatterlist
304 * sent to use, as some ULDs use that struct to only organize the pages.
305 */
306 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
307 int nsegs, unsigned bufflen, gfp_t gfp)
308 {
309 struct request_queue *q = rq->q;
310 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
311 unsigned int data_len = bufflen, len, bytes, off;
312 struct scatterlist *sg;
313 struct page *page;
314 struct bio *bio = NULL;
315 int i, err, nr_vecs = 0;
316
317 for_each_sg(sgl, sg, nsegs, i) {
318 page = sg_page(sg);
319 off = sg->offset;
320 len = sg->length;
321
322 while (len > 0 && data_len > 0) {
323 /*
324 * sg sends a scatterlist that is larger than
325 * the data_len it wants transferred for certain
326 * IO sizes
327 */
328 bytes = min_t(unsigned int, len, PAGE_SIZE - off);
329 bytes = min(bytes, data_len);
330
331 if (!bio) {
332 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
333 nr_pages -= nr_vecs;
334
335 bio = bio_alloc(gfp, nr_vecs);
336 if (!bio) {
337 err = -ENOMEM;
338 goto free_bios;
339 }
340 bio->bi_end_io = scsi_bi_endio;
341 }
342
343 if (bio_add_pc_page(q, bio, page, bytes, off) !=
344 bytes) {
345 bio_put(bio);
346 err = -EINVAL;
347 goto free_bios;
348 }
349
350 if (bio->bi_vcnt >= nr_vecs) {
351 err = scsi_merge_bio(rq, bio);
352 if (err) {
353 bio_endio(bio, 0);
354 goto free_bios;
355 }
356 bio = NULL;
357 }
358
359 page++;
360 len -= bytes;
361 data_len -=bytes;
362 off = 0;
363 }
364 }
365
366 rq->buffer = rq->data = NULL;
367 rq->data_len = bufflen;
368 return 0;
369
370 free_bios:
371 while ((bio = rq->bio) != NULL) {
372 rq->bio = bio->bi_next;
373 /*
374 * call endio instead of bio_put incase it was bounced
375 */
376 bio_endio(bio, 0);
377 }
378
379 return err;
380 }
381
382 /**
383 * scsi_execute_async - insert request
384 * @sdev: scsi device
385 * @cmd: scsi command
386 * @cmd_len: length of scsi cdb
387 * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
388 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
389 * @bufflen: len of buffer
390 * @use_sg: if buffer is a scatterlist this is the number of elements
391 * @timeout: request timeout in seconds
392 * @retries: number of times to retry request
393 * @privdata: data passed to done()
394 * @done: callback function when done
395 * @gfp: memory allocation flags
396 */
397 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
398 int cmd_len, int data_direction, void *buffer, unsigned bufflen,
399 int use_sg, int timeout, int retries, void *privdata,
400 void (*done)(void *, char *, int, int), gfp_t gfp)
401 {
402 struct request *req;
403 struct scsi_io_context *sioc;
404 int err = 0;
405 int write = (data_direction == DMA_TO_DEVICE);
406
407 sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
408 if (!sioc)
409 return DRIVER_ERROR << 24;
410
411 req = blk_get_request(sdev->request_queue, write, gfp);
412 if (!req)
413 goto free_sense;
414 req->cmd_type = REQ_TYPE_BLOCK_PC;
415 req->cmd_flags |= REQ_QUIET;
416
417 if (use_sg)
418 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
419 else if (bufflen)
420 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
421
422 if (err)
423 goto free_req;
424
425 req->cmd_len = cmd_len;
426 memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
427 memcpy(req->cmd, cmd, req->cmd_len);
428 req->sense = sioc->sense;
429 req->sense_len = 0;
430 req->timeout = timeout;
431 req->retries = retries;
432 req->end_io_data = sioc;
433
434 sioc->data = privdata;
435 sioc->done = done;
436
437 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
438 return 0;
439
440 free_req:
441 blk_put_request(req);
442 free_sense:
443 kmem_cache_free(scsi_io_context_cache, sioc);
444 return DRIVER_ERROR << 24;
445 }
446 EXPORT_SYMBOL_GPL(scsi_execute_async);
447
448 /*
449 * Function: scsi_init_cmd_errh()
450 *
451 * Purpose: Initialize cmd fields related to error handling.
452 *
453 * Arguments: cmd - command that is ready to be queued.
454 *
455 * Notes: This function has the job of initializing a number of
456 * fields related to error handling. Typically this will
457 * be called once for each command, as required.
458 */
459 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
460 {
461 cmd->serial_number = 0;
462 scsi_set_resid(cmd, 0);
463 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
464 if (cmd->cmd_len == 0)
465 cmd->cmd_len = scsi_command_size(cmd->cmnd);
466 }
467
468 void scsi_device_unbusy(struct scsi_device *sdev)
469 {
470 struct Scsi_Host *shost = sdev->host;
471 struct scsi_target *starget = scsi_target(sdev);
472 unsigned long flags;
473
474 spin_lock_irqsave(shost->host_lock, flags);
475 shost->host_busy--;
476 starget->target_busy--;
477 if (unlikely(scsi_host_in_recovery(shost) &&
478 (shost->host_failed || shost->host_eh_scheduled)))
479 scsi_eh_wakeup(shost);
480 spin_unlock(shost->host_lock);
481 spin_lock(sdev->request_queue->queue_lock);
482 sdev->device_busy--;
483 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
484 }
485
486 /*
487 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
488 * and call blk_run_queue for all the scsi_devices on the target -
489 * including current_sdev first.
490 *
491 * Called with *no* scsi locks held.
492 */
493 static void scsi_single_lun_run(struct scsi_device *current_sdev)
494 {
495 struct Scsi_Host *shost = current_sdev->host;
496 struct scsi_device *sdev, *tmp;
497 struct scsi_target *starget = scsi_target(current_sdev);
498 unsigned long flags;
499
500 spin_lock_irqsave(shost->host_lock, flags);
501 starget->starget_sdev_user = NULL;
502 spin_unlock_irqrestore(shost->host_lock, flags);
503
504 /*
505 * Call blk_run_queue for all LUNs on the target, starting with
506 * current_sdev. We race with others (to set starget_sdev_user),
507 * but in most cases, we will be first. Ideally, each LU on the
508 * target would get some limited time or requests on the target.
509 */
510 blk_run_queue(current_sdev->request_queue);
511
512 spin_lock_irqsave(shost->host_lock, flags);
513 if (starget->starget_sdev_user)
514 goto out;
515 list_for_each_entry_safe(sdev, tmp, &starget->devices,
516 same_target_siblings) {
517 if (sdev == current_sdev)
518 continue;
519 if (scsi_device_get(sdev))
520 continue;
521
522 spin_unlock_irqrestore(shost->host_lock, flags);
523 blk_run_queue(sdev->request_queue);
524 spin_lock_irqsave(shost->host_lock, flags);
525
526 scsi_device_put(sdev);
527 }
528 out:
529 spin_unlock_irqrestore(shost->host_lock, flags);
530 }
531
532 static inline int scsi_device_is_busy(struct scsi_device *sdev)
533 {
534 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
535 return 1;
536
537 return 0;
538 }
539
540 static inline int scsi_target_is_busy(struct scsi_target *starget)
541 {
542 return ((starget->can_queue > 0 &&
543 starget->target_busy >= starget->can_queue) ||
544 starget->target_blocked);
545 }
546
547 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
548 {
549 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
550 shost->host_blocked || shost->host_self_blocked)
551 return 1;
552
553 return 0;
554 }
555
556 /*
557 * Function: scsi_run_queue()
558 *
559 * Purpose: Select a proper request queue to serve next
560 *
561 * Arguments: q - last request's queue
562 *
563 * Returns: Nothing
564 *
565 * Notes: The previous command was completely finished, start
566 * a new one if possible.
567 */
568 static void scsi_run_queue(struct request_queue *q)
569 {
570 struct scsi_device *starved_head = NULL, *sdev = q->queuedata;
571 struct Scsi_Host *shost = sdev->host;
572 unsigned long flags;
573
574 if (scsi_target(sdev)->single_lun)
575 scsi_single_lun_run(sdev);
576
577 spin_lock_irqsave(shost->host_lock, flags);
578 while (!list_empty(&shost->starved_list) && !scsi_host_is_busy(shost)) {
579 int flagset;
580
581 /*
582 * As long as shost is accepting commands and we have
583 * starved queues, call blk_run_queue. scsi_request_fn
584 * drops the queue_lock and can add us back to the
585 * starved_list.
586 *
587 * host_lock protects the starved_list and starved_entry.
588 * scsi_request_fn must get the host_lock before checking
589 * or modifying starved_list or starved_entry.
590 */
591 sdev = list_entry(shost->starved_list.next,
592 struct scsi_device, starved_entry);
593 /*
594 * The *queue_ready functions can add a device back onto the
595 * starved list's tail, so we must check for a infinite loop.
596 */
597 if (sdev == starved_head)
598 break;
599 if (!starved_head)
600 starved_head = sdev;
601
602 if (scsi_target_is_busy(scsi_target(sdev))) {
603 list_move_tail(&sdev->starved_entry,
604 &shost->starved_list);
605 continue;
606 }
607
608 list_del_init(&sdev->starved_entry);
609 spin_unlock(shost->host_lock);
610
611 spin_lock(sdev->request_queue->queue_lock);
612 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
613 !test_bit(QUEUE_FLAG_REENTER,
614 &sdev->request_queue->queue_flags);
615 if (flagset)
616 queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
617 __blk_run_queue(sdev->request_queue);
618 if (flagset)
619 queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
620 spin_unlock(sdev->request_queue->queue_lock);
621
622 spin_lock(shost->host_lock);
623 }
624 spin_unlock_irqrestore(shost->host_lock, flags);
625
626 blk_run_queue(q);
627 }
628
629 /*
630 * Function: scsi_requeue_command()
631 *
632 * Purpose: Handle post-processing of completed commands.
633 *
634 * Arguments: q - queue to operate on
635 * cmd - command that may need to be requeued.
636 *
637 * Returns: Nothing
638 *
639 * Notes: After command completion, there may be blocks left
640 * over which weren't finished by the previous command
641 * this can be for a number of reasons - the main one is
642 * I/O errors in the middle of the request, in which case
643 * we need to request the blocks that come after the bad
644 * sector.
645 * Notes: Upon return, cmd is a stale pointer.
646 */
647 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
648 {
649 struct request *req = cmd->request;
650 unsigned long flags;
651
652 scsi_unprep_request(req);
653 spin_lock_irqsave(q->queue_lock, flags);
654 blk_requeue_request(q, req);
655 spin_unlock_irqrestore(q->queue_lock, flags);
656
657 scsi_run_queue(q);
658 }
659
660 void scsi_next_command(struct scsi_cmnd *cmd)
661 {
662 struct scsi_device *sdev = cmd->device;
663 struct request_queue *q = sdev->request_queue;
664
665 /* need to hold a reference on the device before we let go of the cmd */
666 get_device(&sdev->sdev_gendev);
667
668 scsi_put_command(cmd);
669 scsi_run_queue(q);
670
671 /* ok to remove device now */
672 put_device(&sdev->sdev_gendev);
673 }
674
675 void scsi_run_host_queues(struct Scsi_Host *shost)
676 {
677 struct scsi_device *sdev;
678
679 shost_for_each_device(sdev, shost)
680 scsi_run_queue(sdev->request_queue);
681 }
682
683 /*
684 * Function: scsi_end_request()
685 *
686 * Purpose: Post-processing of completed commands (usually invoked at end
687 * of upper level post-processing and scsi_io_completion).
688 *
689 * Arguments: cmd - command that is complete.
690 * error - 0 if I/O indicates success, < 0 for I/O error.
691 * bytes - number of bytes of completed I/O
692 * requeue - indicates whether we should requeue leftovers.
693 *
694 * Lock status: Assumed that lock is not held upon entry.
695 *
696 * Returns: cmd if requeue required, NULL otherwise.
697 *
698 * Notes: This is called for block device requests in order to
699 * mark some number of sectors as complete.
700 *
701 * We are guaranteeing that the request queue will be goosed
702 * at some point during this call.
703 * Notes: If cmd was requeued, upon return it will be a stale pointer.
704 */
705 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
706 int bytes, int requeue)
707 {
708 struct request_queue *q = cmd->device->request_queue;
709 struct request *req = cmd->request;
710
711 /*
712 * If there are blocks left over at the end, set up the command
713 * to queue the remainder of them.
714 */
715 if (blk_end_request(req, error, bytes)) {
716 int leftover = (req->hard_nr_sectors << 9);
717
718 if (blk_pc_request(req))
719 leftover = req->data_len;
720
721 /* kill remainder if no retrys */
722 if (error && scsi_noretry_cmd(cmd))
723 blk_end_request(req, error, leftover);
724 else {
725 if (requeue) {
726 /*
727 * Bleah. Leftovers again. Stick the
728 * leftovers in the front of the
729 * queue, and goose the queue again.
730 */
731 scsi_requeue_command(q, cmd);
732 cmd = NULL;
733 }
734 return cmd;
735 }
736 }
737
738 /*
739 * This will goose the queue request function at the end, so we don't
740 * need to worry about launching another command.
741 */
742 scsi_next_command(cmd);
743 return NULL;
744 }
745
746 static inline unsigned int scsi_sgtable_index(unsigned short nents)
747 {
748 unsigned int index;
749
750 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
751
752 if (nents <= 8)
753 index = 0;
754 else
755 index = get_count_order(nents) - 3;
756
757 return index;
758 }
759
760 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
761 {
762 struct scsi_host_sg_pool *sgp;
763
764 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
765 mempool_free(sgl, sgp->pool);
766 }
767
768 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
769 {
770 struct scsi_host_sg_pool *sgp;
771
772 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
773 return mempool_alloc(sgp->pool, gfp_mask);
774 }
775
776 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
777 gfp_t gfp_mask)
778 {
779 int ret;
780
781 BUG_ON(!nents);
782
783 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
784 gfp_mask, scsi_sg_alloc);
785 if (unlikely(ret))
786 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
787 scsi_sg_free);
788
789 return ret;
790 }
791
792 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
793 {
794 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
795 }
796
797 /*
798 * Function: scsi_release_buffers()
799 *
800 * Purpose: Completion processing for block device I/O requests.
801 *
802 * Arguments: cmd - command that we are bailing.
803 *
804 * Lock status: Assumed that no lock is held upon entry.
805 *
806 * Returns: Nothing
807 *
808 * Notes: In the event that an upper level driver rejects a
809 * command, we must release resources allocated during
810 * the __init_io() function. Primarily this would involve
811 * the scatter-gather table, and potentially any bounce
812 * buffers.
813 */
814 void scsi_release_buffers(struct scsi_cmnd *cmd)
815 {
816 if (cmd->sdb.table.nents)
817 scsi_free_sgtable(&cmd->sdb);
818
819 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
820
821 if (scsi_bidi_cmnd(cmd)) {
822 struct scsi_data_buffer *bidi_sdb =
823 cmd->request->next_rq->special;
824 scsi_free_sgtable(bidi_sdb);
825 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
826 cmd->request->next_rq->special = NULL;
827 }
828
829 if (scsi_prot_sg_count(cmd))
830 scsi_free_sgtable(cmd->prot_sdb);
831 }
832 EXPORT_SYMBOL(scsi_release_buffers);
833
834 /*
835 * Bidi commands Must be complete as a whole, both sides at once.
836 * If part of the bytes were written and lld returned
837 * scsi_in()->resid and/or scsi_out()->resid this information will be left
838 * in req->data_len and req->next_rq->data_len. The upper-layer driver can
839 * decide what to do with this information.
840 */
841 static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
842 {
843 struct request *req = cmd->request;
844 unsigned int dlen = req->data_len;
845 unsigned int next_dlen = req->next_rq->data_len;
846
847 req->data_len = scsi_out(cmd)->resid;
848 req->next_rq->data_len = scsi_in(cmd)->resid;
849
850 /* The req and req->next_rq have not been completed */
851 BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
852
853 scsi_release_buffers(cmd);
854
855 /*
856 * This will goose the queue request function at the end, so we don't
857 * need to worry about launching another command.
858 */
859 scsi_next_command(cmd);
860 }
861
862 /*
863 * Function: scsi_io_completion()
864 *
865 * Purpose: Completion processing for block device I/O requests.
866 *
867 * Arguments: cmd - command that is finished.
868 *
869 * Lock status: Assumed that no lock is held upon entry.
870 *
871 * Returns: Nothing
872 *
873 * Notes: This function is matched in terms of capabilities to
874 * the function that created the scatter-gather list.
875 * In other words, if there are no bounce buffers
876 * (the normal case for most drivers), we don't need
877 * the logic to deal with cleaning up afterwards.
878 *
879 * We must do one of several things here:
880 *
881 * a) Call scsi_end_request. This will finish off the
882 * specified number of sectors. If we are done, the
883 * command block will be released, and the queue
884 * function will be goosed. If we are not done, then
885 * scsi_end_request will directly goose the queue.
886 *
887 * b) We can just use scsi_requeue_command() here. This would
888 * be used if we just wanted to retry, for example.
889 */
890 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
891 {
892 int result = cmd->result;
893 int this_count;
894 struct request_queue *q = cmd->device->request_queue;
895 struct request *req = cmd->request;
896 int error = 0;
897 struct scsi_sense_hdr sshdr;
898 int sense_valid = 0;
899 int sense_deferred = 0;
900
901 if (result) {
902 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
903 if (sense_valid)
904 sense_deferred = scsi_sense_is_deferred(&sshdr);
905 }
906
907 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
908 req->errors = result;
909 if (result) {
910 if (sense_valid && req->sense) {
911 /*
912 * SG_IO wants current and deferred errors
913 */
914 int len = 8 + cmd->sense_buffer[7];
915
916 if (len > SCSI_SENSE_BUFFERSIZE)
917 len = SCSI_SENSE_BUFFERSIZE;
918 memcpy(req->sense, cmd->sense_buffer, len);
919 req->sense_len = len;
920 }
921 if (!sense_deferred)
922 error = -EIO;
923 }
924 if (scsi_bidi_cmnd(cmd)) {
925 /* will also release_buffers */
926 scsi_end_bidi_request(cmd);
927 return;
928 }
929 req->data_len = scsi_get_resid(cmd);
930 }
931
932 BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
933 scsi_release_buffers(cmd);
934
935 /*
936 * Next deal with any sectors which we were able to correctly
937 * handle.
938 */
939 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
940 "%d bytes done.\n",
941 req->nr_sectors, good_bytes));
942
943 /* A number of bytes were successfully read. If there
944 * are leftovers and there is some kind of error
945 * (result != 0), retry the rest.
946 */
947 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
948 return;
949 this_count = blk_rq_bytes(req);
950
951 /* good_bytes = 0, or (inclusive) there were leftovers and
952 * result = 0, so scsi_end_request couldn't retry.
953 */
954 if (sense_valid && !sense_deferred) {
955 switch (sshdr.sense_key) {
956 case UNIT_ATTENTION:
957 if (cmd->device->removable) {
958 /* Detected disc change. Set a bit
959 * and quietly refuse further access.
960 */
961 cmd->device->changed = 1;
962 scsi_end_request(cmd, -EIO, this_count, 1);
963 return;
964 } else {
965 /* Must have been a power glitch, or a
966 * bus reset. Could not have been a
967 * media change, so we just retry the
968 * request and see what happens.
969 */
970 scsi_requeue_command(q, cmd);
971 return;
972 }
973 break;
974 case ILLEGAL_REQUEST:
975 /* If we had an ILLEGAL REQUEST returned, then
976 * we may have performed an unsupported
977 * command. The only thing this should be
978 * would be a ten byte read where only a six
979 * byte read was supported. Also, on a system
980 * where READ CAPACITY failed, we may have
981 * read past the end of the disk.
982 */
983 if ((cmd->device->use_10_for_rw &&
984 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
985 (cmd->cmnd[0] == READ_10 ||
986 cmd->cmnd[0] == WRITE_10)) {
987 cmd->device->use_10_for_rw = 0;
988 /* This will cause a retry with a
989 * 6-byte command.
990 */
991 scsi_requeue_command(q, cmd);
992 } else if (sshdr.asc == 0x10) /* DIX */
993 scsi_end_request(cmd, -EIO, this_count, 0);
994 else
995 scsi_end_request(cmd, -EIO, this_count, 1);
996 return;
997 case ABORTED_COMMAND:
998 if (sshdr.asc == 0x10) { /* DIF */
999 scsi_end_request(cmd, -EIO, this_count, 0);
1000 return;
1001 }
1002 break;
1003 case NOT_READY:
1004 /* If the device is in the process of becoming
1005 * ready, or has a temporary blockage, retry.
1006 */
1007 if (sshdr.asc == 0x04) {
1008 switch (sshdr.ascq) {
1009 case 0x01: /* becoming ready */
1010 case 0x04: /* format in progress */
1011 case 0x05: /* rebuild in progress */
1012 case 0x06: /* recalculation in progress */
1013 case 0x07: /* operation in progress */
1014 case 0x08: /* Long write in progress */
1015 case 0x09: /* self test in progress */
1016 scsi_requeue_command(q, cmd);
1017 return;
1018 default:
1019 break;
1020 }
1021 }
1022 if (!(req->cmd_flags & REQ_QUIET))
1023 scsi_cmd_print_sense_hdr(cmd,
1024 "Device not ready",
1025 &sshdr);
1026
1027 scsi_end_request(cmd, -EIO, this_count, 1);
1028 return;
1029 case VOLUME_OVERFLOW:
1030 if (!(req->cmd_flags & REQ_QUIET)) {
1031 scmd_printk(KERN_INFO, cmd,
1032 "Volume overflow, CDB: ");
1033 __scsi_print_command(cmd->cmnd);
1034 scsi_print_sense("", cmd);
1035 }
1036 /* See SSC3rXX or current. */
1037 scsi_end_request(cmd, -EIO, this_count, 1);
1038 return;
1039 default:
1040 break;
1041 }
1042 }
1043 if (host_byte(result) == DID_RESET) {
1044 /* Third party bus reset or reset for error recovery
1045 * reasons. Just retry the request and see what
1046 * happens.
1047 */
1048 scsi_requeue_command(q, cmd);
1049 return;
1050 }
1051 if (result) {
1052 if (!(req->cmd_flags & REQ_QUIET)) {
1053 scsi_print_result(cmd);
1054 if (driver_byte(result) & DRIVER_SENSE)
1055 scsi_print_sense("", cmd);
1056 }
1057 }
1058 scsi_end_request(cmd, -EIO, this_count, !result);
1059 }
1060
1061 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1062 gfp_t gfp_mask)
1063 {
1064 int count;
1065
1066 /*
1067 * If sg table allocation fails, requeue request later.
1068 */
1069 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1070 gfp_mask))) {
1071 return BLKPREP_DEFER;
1072 }
1073
1074 req->buffer = NULL;
1075
1076 /*
1077 * Next, walk the list, and fill in the addresses and sizes of
1078 * each segment.
1079 */
1080 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1081 BUG_ON(count > sdb->table.nents);
1082 sdb->table.nents = count;
1083 if (blk_pc_request(req))
1084 sdb->length = req->data_len;
1085 else
1086 sdb->length = req->nr_sectors << 9;
1087 return BLKPREP_OK;
1088 }
1089
1090 /*
1091 * Function: scsi_init_io()
1092 *
1093 * Purpose: SCSI I/O initialize function.
1094 *
1095 * Arguments: cmd - Command descriptor we wish to initialize
1096 *
1097 * Returns: 0 on success
1098 * BLKPREP_DEFER if the failure is retryable
1099 * BLKPREP_KILL if the failure is fatal
1100 */
1101 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1102 {
1103 int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
1104 if (error)
1105 goto err_exit;
1106
1107 if (blk_bidi_rq(cmd->request)) {
1108 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1109 scsi_sdb_cache, GFP_ATOMIC);
1110 if (!bidi_sdb) {
1111 error = BLKPREP_DEFER;
1112 goto err_exit;
1113 }
1114
1115 cmd->request->next_rq->special = bidi_sdb;
1116 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1117 GFP_ATOMIC);
1118 if (error)
1119 goto err_exit;
1120 }
1121
1122 if (blk_integrity_rq(cmd->request)) {
1123 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1124 int ivecs, count;
1125
1126 BUG_ON(prot_sdb == NULL);
1127 ivecs = blk_rq_count_integrity_sg(cmd->request);
1128
1129 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1130 error = BLKPREP_DEFER;
1131 goto err_exit;
1132 }
1133
1134 count = blk_rq_map_integrity_sg(cmd->request,
1135 prot_sdb->table.sgl);
1136 BUG_ON(unlikely(count > ivecs));
1137
1138 cmd->prot_sdb = prot_sdb;
1139 cmd->prot_sdb->table.nents = count;
1140 }
1141
1142 return BLKPREP_OK ;
1143
1144 err_exit:
1145 scsi_release_buffers(cmd);
1146 if (error == BLKPREP_KILL)
1147 scsi_put_command(cmd);
1148 else /* BLKPREP_DEFER */
1149 scsi_unprep_request(cmd->request);
1150
1151 return error;
1152 }
1153 EXPORT_SYMBOL(scsi_init_io);
1154
1155 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1156 struct request *req)
1157 {
1158 struct scsi_cmnd *cmd;
1159
1160 if (!req->special) {
1161 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1162 if (unlikely(!cmd))
1163 return NULL;
1164 req->special = cmd;
1165 } else {
1166 cmd = req->special;
1167 }
1168
1169 /* pull a tag out of the request if we have one */
1170 cmd->tag = req->tag;
1171 cmd->request = req;
1172
1173 cmd->cmnd = req->cmd;
1174
1175 return cmd;
1176 }
1177
1178 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1179 {
1180 struct scsi_cmnd *cmd;
1181 int ret = scsi_prep_state_check(sdev, req);
1182
1183 if (ret != BLKPREP_OK)
1184 return ret;
1185
1186 cmd = scsi_get_cmd_from_req(sdev, req);
1187 if (unlikely(!cmd))
1188 return BLKPREP_DEFER;
1189
1190 /*
1191 * BLOCK_PC requests may transfer data, in which case they must
1192 * a bio attached to them. Or they might contain a SCSI command
1193 * that does not transfer data, in which case they may optionally
1194 * submit a request without an attached bio.
1195 */
1196 if (req->bio) {
1197 int ret;
1198
1199 BUG_ON(!req->nr_phys_segments);
1200
1201 ret = scsi_init_io(cmd, GFP_ATOMIC);
1202 if (unlikely(ret))
1203 return ret;
1204 } else {
1205 BUG_ON(req->data_len);
1206 BUG_ON(req->data);
1207
1208 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1209 req->buffer = NULL;
1210 }
1211
1212 cmd->cmd_len = req->cmd_len;
1213 if (!req->data_len)
1214 cmd->sc_data_direction = DMA_NONE;
1215 else if (rq_data_dir(req) == WRITE)
1216 cmd->sc_data_direction = DMA_TO_DEVICE;
1217 else
1218 cmd->sc_data_direction = DMA_FROM_DEVICE;
1219
1220 cmd->transfersize = req->data_len;
1221 cmd->allowed = req->retries;
1222 return BLKPREP_OK;
1223 }
1224 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1225
1226 /*
1227 * Setup a REQ_TYPE_FS command. These are simple read/write request
1228 * from filesystems that still need to be translated to SCSI CDBs from
1229 * the ULD.
1230 */
1231 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1232 {
1233 struct scsi_cmnd *cmd;
1234 int ret = scsi_prep_state_check(sdev, req);
1235
1236 if (ret != BLKPREP_OK)
1237 return ret;
1238
1239 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1240 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1241 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1242 if (ret != BLKPREP_OK)
1243 return ret;
1244 }
1245
1246 /*
1247 * Filesystem requests must transfer data.
1248 */
1249 BUG_ON(!req->nr_phys_segments);
1250
1251 cmd = scsi_get_cmd_from_req(sdev, req);
1252 if (unlikely(!cmd))
1253 return BLKPREP_DEFER;
1254
1255 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1256 return scsi_init_io(cmd, GFP_ATOMIC);
1257 }
1258 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1259
1260 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1261 {
1262 int ret = BLKPREP_OK;
1263
1264 /*
1265 * If the device is not in running state we will reject some
1266 * or all commands.
1267 */
1268 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1269 switch (sdev->sdev_state) {
1270 case SDEV_OFFLINE:
1271 /*
1272 * If the device is offline we refuse to process any
1273 * commands. The device must be brought online
1274 * before trying any recovery commands.
1275 */
1276 sdev_printk(KERN_ERR, sdev,
1277 "rejecting I/O to offline device\n");
1278 ret = BLKPREP_KILL;
1279 break;
1280 case SDEV_DEL:
1281 /*
1282 * If the device is fully deleted, we refuse to
1283 * process any commands as well.
1284 */
1285 sdev_printk(KERN_ERR, sdev,
1286 "rejecting I/O to dead device\n");
1287 ret = BLKPREP_KILL;
1288 break;
1289 case SDEV_QUIESCE:
1290 case SDEV_BLOCK:
1291 case SDEV_CREATED_BLOCK:
1292 /*
1293 * If the devices is blocked we defer normal commands.
1294 */
1295 if (!(req->cmd_flags & REQ_PREEMPT))
1296 ret = BLKPREP_DEFER;
1297 break;
1298 default:
1299 /*
1300 * For any other not fully online state we only allow
1301 * special commands. In particular any user initiated
1302 * command is not allowed.
1303 */
1304 if (!(req->cmd_flags & REQ_PREEMPT))
1305 ret = BLKPREP_KILL;
1306 break;
1307 }
1308 }
1309 return ret;
1310 }
1311 EXPORT_SYMBOL(scsi_prep_state_check);
1312
1313 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1314 {
1315 struct scsi_device *sdev = q->queuedata;
1316
1317 switch (ret) {
1318 case BLKPREP_KILL:
1319 req->errors = DID_NO_CONNECT << 16;
1320 /* release the command and kill it */
1321 if (req->special) {
1322 struct scsi_cmnd *cmd = req->special;
1323 scsi_release_buffers(cmd);
1324 scsi_put_command(cmd);
1325 req->special = NULL;
1326 }
1327 break;
1328 case BLKPREP_DEFER:
1329 /*
1330 * If we defer, the elv_next_request() returns NULL, but the
1331 * queue must be restarted, so we plug here if no returning
1332 * command will automatically do that.
1333 */
1334 if (sdev->device_busy == 0)
1335 blk_plug_device(q);
1336 break;
1337 default:
1338 req->cmd_flags |= REQ_DONTPREP;
1339 }
1340
1341 return ret;
1342 }
1343 EXPORT_SYMBOL(scsi_prep_return);
1344
1345 int scsi_prep_fn(struct request_queue *q, struct request *req)
1346 {
1347 struct scsi_device *sdev = q->queuedata;
1348 int ret = BLKPREP_KILL;
1349
1350 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1351 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1352 return scsi_prep_return(q, req, ret);
1353 }
1354
1355 /*
1356 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1357 * return 0.
1358 *
1359 * Called with the queue_lock held.
1360 */
1361 static inline int scsi_dev_queue_ready(struct request_queue *q,
1362 struct scsi_device *sdev)
1363 {
1364 if (sdev->device_busy == 0 && sdev->device_blocked) {
1365 /*
1366 * unblock after device_blocked iterates to zero
1367 */
1368 if (--sdev->device_blocked == 0) {
1369 SCSI_LOG_MLQUEUE(3,
1370 sdev_printk(KERN_INFO, sdev,
1371 "unblocking device at zero depth\n"));
1372 } else {
1373 blk_plug_device(q);
1374 return 0;
1375 }
1376 }
1377 if (scsi_device_is_busy(sdev))
1378 return 0;
1379
1380 return 1;
1381 }
1382
1383
1384 /*
1385 * scsi_target_queue_ready: checks if there we can send commands to target
1386 * @sdev: scsi device on starget to check.
1387 *
1388 * Called with the host lock held.
1389 */
1390 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1391 struct scsi_device *sdev)
1392 {
1393 struct scsi_target *starget = scsi_target(sdev);
1394
1395 if (starget->single_lun) {
1396 if (starget->starget_sdev_user &&
1397 starget->starget_sdev_user != sdev)
1398 return 0;
1399 starget->starget_sdev_user = sdev;
1400 }
1401
1402 if (starget->target_busy == 0 && starget->target_blocked) {
1403 /*
1404 * unblock after target_blocked iterates to zero
1405 */
1406 if (--starget->target_blocked == 0) {
1407 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1408 "unblocking target at zero depth\n"));
1409 } else {
1410 blk_plug_device(sdev->request_queue);
1411 return 0;
1412 }
1413 }
1414
1415 if (scsi_target_is_busy(starget)) {
1416 if (list_empty(&sdev->starved_entry)) {
1417 list_add_tail(&sdev->starved_entry,
1418 &shost->starved_list);
1419 return 0;
1420 }
1421 }
1422
1423 /* We're OK to process the command, so we can't be starved */
1424 if (!list_empty(&sdev->starved_entry))
1425 list_del_init(&sdev->starved_entry);
1426 return 1;
1427 }
1428
1429 /*
1430 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1431 * return 0. We must end up running the queue again whenever 0 is
1432 * returned, else IO can hang.
1433 *
1434 * Called with host_lock held.
1435 */
1436 static inline int scsi_host_queue_ready(struct request_queue *q,
1437 struct Scsi_Host *shost,
1438 struct scsi_device *sdev)
1439 {
1440 if (scsi_host_in_recovery(shost))
1441 return 0;
1442 if (shost->host_busy == 0 && shost->host_blocked) {
1443 /*
1444 * unblock after host_blocked iterates to zero
1445 */
1446 if (--shost->host_blocked == 0) {
1447 SCSI_LOG_MLQUEUE(3,
1448 printk("scsi%d unblocking host at zero depth\n",
1449 shost->host_no));
1450 } else {
1451 return 0;
1452 }
1453 }
1454 if (scsi_host_is_busy(shost)) {
1455 if (list_empty(&sdev->starved_entry))
1456 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1457 return 0;
1458 }
1459
1460 /* We're OK to process the command, so we can't be starved */
1461 if (!list_empty(&sdev->starved_entry))
1462 list_del_init(&sdev->starved_entry);
1463
1464 return 1;
1465 }
1466
1467 /*
1468 * Busy state exporting function for request stacking drivers.
1469 *
1470 * For efficiency, no lock is taken to check the busy state of
1471 * shost/starget/sdev, since the returned value is not guaranteed and
1472 * may be changed after request stacking drivers call the function,
1473 * regardless of taking lock or not.
1474 *
1475 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1476 * (e.g. !sdev), scsi needs to return 'not busy'.
1477 * Otherwise, request stacking drivers may hold requests forever.
1478 */
1479 static int scsi_lld_busy(struct request_queue *q)
1480 {
1481 struct scsi_device *sdev = q->queuedata;
1482 struct Scsi_Host *shost;
1483 struct scsi_target *starget;
1484
1485 if (!sdev)
1486 return 0;
1487
1488 shost = sdev->host;
1489 starget = scsi_target(sdev);
1490
1491 if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1492 scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1493 return 1;
1494
1495 return 0;
1496 }
1497
1498 /*
1499 * Kill a request for a dead device
1500 */
1501 static void scsi_kill_request(struct request *req, struct request_queue *q)
1502 {
1503 struct scsi_cmnd *cmd = req->special;
1504 struct scsi_device *sdev = cmd->device;
1505 struct scsi_target *starget = scsi_target(sdev);
1506 struct Scsi_Host *shost = sdev->host;
1507
1508 blkdev_dequeue_request(req);
1509
1510 if (unlikely(cmd == NULL)) {
1511 printk(KERN_CRIT "impossible request in %s.\n",
1512 __func__);
1513 BUG();
1514 }
1515
1516 scsi_init_cmd_errh(cmd);
1517 cmd->result = DID_NO_CONNECT << 16;
1518 atomic_inc(&cmd->device->iorequest_cnt);
1519
1520 /*
1521 * SCSI request completion path will do scsi_device_unbusy(),
1522 * bump busy counts. To bump the counters, we need to dance
1523 * with the locks as normal issue path does.
1524 */
1525 sdev->device_busy++;
1526 spin_unlock(sdev->request_queue->queue_lock);
1527 spin_lock(shost->host_lock);
1528 shost->host_busy++;
1529 starget->target_busy++;
1530 spin_unlock(shost->host_lock);
1531 spin_lock(sdev->request_queue->queue_lock);
1532
1533 blk_complete_request(req);
1534 }
1535
1536 static void scsi_softirq_done(struct request *rq)
1537 {
1538 struct scsi_cmnd *cmd = rq->special;
1539 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1540 int disposition;
1541
1542 INIT_LIST_HEAD(&cmd->eh_entry);
1543
1544 /*
1545 * Set the serial numbers back to zero
1546 */
1547 cmd->serial_number = 0;
1548
1549 atomic_inc(&cmd->device->iodone_cnt);
1550 if (cmd->result)
1551 atomic_inc(&cmd->device->ioerr_cnt);
1552
1553 disposition = scsi_decide_disposition(cmd);
1554 if (disposition != SUCCESS &&
1555 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1556 sdev_printk(KERN_ERR, cmd->device,
1557 "timing out command, waited %lus\n",
1558 wait_for/HZ);
1559 disposition = SUCCESS;
1560 }
1561
1562 scsi_log_completion(cmd, disposition);
1563
1564 switch (disposition) {
1565 case SUCCESS:
1566 scsi_finish_command(cmd);
1567 break;
1568 case NEEDS_RETRY:
1569 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1570 break;
1571 case ADD_TO_MLQUEUE:
1572 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1573 break;
1574 default:
1575 if (!scsi_eh_scmd_add(cmd, 0))
1576 scsi_finish_command(cmd);
1577 }
1578 }
1579
1580 /*
1581 * Function: scsi_request_fn()
1582 *
1583 * Purpose: Main strategy routine for SCSI.
1584 *
1585 * Arguments: q - Pointer to actual queue.
1586 *
1587 * Returns: Nothing
1588 *
1589 * Lock status: IO request lock assumed to be held when called.
1590 */
1591 static void scsi_request_fn(struct request_queue *q)
1592 {
1593 struct scsi_device *sdev = q->queuedata;
1594 struct Scsi_Host *shost;
1595 struct scsi_cmnd *cmd;
1596 struct request *req;
1597
1598 if (!sdev) {
1599 printk("scsi: killing requests for dead queue\n");
1600 while ((req = elv_next_request(q)) != NULL)
1601 scsi_kill_request(req, q);
1602 return;
1603 }
1604
1605 if(!get_device(&sdev->sdev_gendev))
1606 /* We must be tearing the block queue down already */
1607 return;
1608
1609 /*
1610 * To start with, we keep looping until the queue is empty, or until
1611 * the host is no longer able to accept any more requests.
1612 */
1613 shost = sdev->host;
1614 while (!blk_queue_plugged(q)) {
1615 int rtn;
1616 /*
1617 * get next queueable request. We do this early to make sure
1618 * that the request is fully prepared even if we cannot
1619 * accept it.
1620 */
1621 req = elv_next_request(q);
1622 if (!req || !scsi_dev_queue_ready(q, sdev))
1623 break;
1624
1625 if (unlikely(!scsi_device_online(sdev))) {
1626 sdev_printk(KERN_ERR, sdev,
1627 "rejecting I/O to offline device\n");
1628 scsi_kill_request(req, q);
1629 continue;
1630 }
1631
1632
1633 /*
1634 * Remove the request from the request list.
1635 */
1636 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1637 blkdev_dequeue_request(req);
1638 sdev->device_busy++;
1639
1640 spin_unlock(q->queue_lock);
1641 cmd = req->special;
1642 if (unlikely(cmd == NULL)) {
1643 printk(KERN_CRIT "impossible request in %s.\n"
1644 "please mail a stack trace to "
1645 "linux-scsi@vger.kernel.org\n",
1646 __func__);
1647 blk_dump_rq_flags(req, "foo");
1648 BUG();
1649 }
1650 spin_lock(shost->host_lock);
1651
1652 /*
1653 * We hit this when the driver is using a host wide
1654 * tag map. For device level tag maps the queue_depth check
1655 * in the device ready fn would prevent us from trying
1656 * to allocate a tag. Since the map is a shared host resource
1657 * we add the dev to the starved list so it eventually gets
1658 * a run when a tag is freed.
1659 */
1660 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1661 if (list_empty(&sdev->starved_entry))
1662 list_add_tail(&sdev->starved_entry,
1663 &shost->starved_list);
1664 goto not_ready;
1665 }
1666
1667 if (!scsi_target_queue_ready(shost, sdev))
1668 goto not_ready;
1669
1670 if (!scsi_host_queue_ready(q, shost, sdev))
1671 goto not_ready;
1672
1673 scsi_target(sdev)->target_busy++;
1674 shost->host_busy++;
1675
1676 /*
1677 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1678 * take the lock again.
1679 */
1680 spin_unlock_irq(shost->host_lock);
1681
1682 /*
1683 * Finally, initialize any error handling parameters, and set up
1684 * the timers for timeouts.
1685 */
1686 scsi_init_cmd_errh(cmd);
1687
1688 /*
1689 * Dispatch the command to the low-level driver.
1690 */
1691 rtn = scsi_dispatch_cmd(cmd);
1692 spin_lock_irq(q->queue_lock);
1693 if(rtn) {
1694 /* we're refusing the command; because of
1695 * the way locks get dropped, we need to
1696 * check here if plugging is required */
1697 if(sdev->device_busy == 0)
1698 blk_plug_device(q);
1699
1700 break;
1701 }
1702 }
1703
1704 goto out;
1705
1706 not_ready:
1707 spin_unlock_irq(shost->host_lock);
1708
1709 /*
1710 * lock q, handle tag, requeue req, and decrement device_busy. We
1711 * must return with queue_lock held.
1712 *
1713 * Decrementing device_busy without checking it is OK, as all such
1714 * cases (host limits or settings) should run the queue at some
1715 * later time.
1716 */
1717 spin_lock_irq(q->queue_lock);
1718 blk_requeue_request(q, req);
1719 sdev->device_busy--;
1720 if(sdev->device_busy == 0)
1721 blk_plug_device(q);
1722 out:
1723 /* must be careful here...if we trigger the ->remove() function
1724 * we cannot be holding the q lock */
1725 spin_unlock_irq(q->queue_lock);
1726 put_device(&sdev->sdev_gendev);
1727 spin_lock_irq(q->queue_lock);
1728 }
1729
1730 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1731 {
1732 struct device *host_dev;
1733 u64 bounce_limit = 0xffffffff;
1734
1735 if (shost->unchecked_isa_dma)
1736 return BLK_BOUNCE_ISA;
1737 /*
1738 * Platforms with virtual-DMA translation
1739 * hardware have no practical limit.
1740 */
1741 if (!PCI_DMA_BUS_IS_PHYS)
1742 return BLK_BOUNCE_ANY;
1743
1744 host_dev = scsi_get_device(shost);
1745 if (host_dev && host_dev->dma_mask)
1746 bounce_limit = *host_dev->dma_mask;
1747
1748 return bounce_limit;
1749 }
1750 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1751
1752 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1753 request_fn_proc *request_fn)
1754 {
1755 struct request_queue *q;
1756 struct device *dev = shost->shost_gendev.parent;
1757
1758 q = blk_init_queue(request_fn, NULL);
1759 if (!q)
1760 return NULL;
1761
1762 /*
1763 * this limit is imposed by hardware restrictions
1764 */
1765 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1766 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1767
1768 blk_queue_max_sectors(q, shost->max_sectors);
1769 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1770 blk_queue_segment_boundary(q, shost->dma_boundary);
1771 dma_set_seg_boundary(dev, shost->dma_boundary);
1772
1773 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1774
1775 /* New queue, no concurrency on queue_flags */
1776 if (!shost->use_clustering)
1777 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1778
1779 /*
1780 * set a reasonable default alignment on word boundaries: the
1781 * host and device may alter it using
1782 * blk_queue_update_dma_alignment() later.
1783 */
1784 blk_queue_dma_alignment(q, 0x03);
1785
1786 return q;
1787 }
1788 EXPORT_SYMBOL(__scsi_alloc_queue);
1789
1790 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1791 {
1792 struct request_queue *q;
1793
1794 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1795 if (!q)
1796 return NULL;
1797
1798 blk_queue_prep_rq(q, scsi_prep_fn);
1799 blk_queue_softirq_done(q, scsi_softirq_done);
1800 blk_queue_rq_timed_out(q, scsi_times_out);
1801 blk_queue_lld_busy(q, scsi_lld_busy);
1802 return q;
1803 }
1804
1805 void scsi_free_queue(struct request_queue *q)
1806 {
1807 blk_cleanup_queue(q);
1808 }
1809
1810 /*
1811 * Function: scsi_block_requests()
1812 *
1813 * Purpose: Utility function used by low-level drivers to prevent further
1814 * commands from being queued to the device.
1815 *
1816 * Arguments: shost - Host in question
1817 *
1818 * Returns: Nothing
1819 *
1820 * Lock status: No locks are assumed held.
1821 *
1822 * Notes: There is no timer nor any other means by which the requests
1823 * get unblocked other than the low-level driver calling
1824 * scsi_unblock_requests().
1825 */
1826 void scsi_block_requests(struct Scsi_Host *shost)
1827 {
1828 shost->host_self_blocked = 1;
1829 }
1830 EXPORT_SYMBOL(scsi_block_requests);
1831
1832 /*
1833 * Function: scsi_unblock_requests()
1834 *
1835 * Purpose: Utility function used by low-level drivers to allow further
1836 * commands from being queued to the device.
1837 *
1838 * Arguments: shost - Host in question
1839 *
1840 * Returns: Nothing
1841 *
1842 * Lock status: No locks are assumed held.
1843 *
1844 * Notes: There is no timer nor any other means by which the requests
1845 * get unblocked other than the low-level driver calling
1846 * scsi_unblock_requests().
1847 *
1848 * This is done as an API function so that changes to the
1849 * internals of the scsi mid-layer won't require wholesale
1850 * changes to drivers that use this feature.
1851 */
1852 void scsi_unblock_requests(struct Scsi_Host *shost)
1853 {
1854 shost->host_self_blocked = 0;
1855 scsi_run_host_queues(shost);
1856 }
1857 EXPORT_SYMBOL(scsi_unblock_requests);
1858
1859 int __init scsi_init_queue(void)
1860 {
1861 int i;
1862
1863 scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1864 sizeof(struct scsi_io_context),
1865 0, 0, NULL);
1866 if (!scsi_io_context_cache) {
1867 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1868 return -ENOMEM;
1869 }
1870
1871 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1872 sizeof(struct scsi_data_buffer),
1873 0, 0, NULL);
1874 if (!scsi_sdb_cache) {
1875 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1876 goto cleanup_io_context;
1877 }
1878
1879 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1880 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1881 int size = sgp->size * sizeof(struct scatterlist);
1882
1883 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1884 SLAB_HWCACHE_ALIGN, NULL);
1885 if (!sgp->slab) {
1886 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1887 sgp->name);
1888 goto cleanup_sdb;
1889 }
1890
1891 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1892 sgp->slab);
1893 if (!sgp->pool) {
1894 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1895 sgp->name);
1896 goto cleanup_sdb;
1897 }
1898 }
1899
1900 return 0;
1901
1902 cleanup_sdb:
1903 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1904 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1905 if (sgp->pool)
1906 mempool_destroy(sgp->pool);
1907 if (sgp->slab)
1908 kmem_cache_destroy(sgp->slab);
1909 }
1910 kmem_cache_destroy(scsi_sdb_cache);
1911 cleanup_io_context:
1912 kmem_cache_destroy(scsi_io_context_cache);
1913
1914 return -ENOMEM;
1915 }
1916
1917 void scsi_exit_queue(void)
1918 {
1919 int i;
1920
1921 kmem_cache_destroy(scsi_io_context_cache);
1922 kmem_cache_destroy(scsi_sdb_cache);
1923
1924 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1925 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1926 mempool_destroy(sgp->pool);
1927 kmem_cache_destroy(sgp->slab);
1928 }
1929 }
1930
1931 /**
1932 * scsi_mode_select - issue a mode select
1933 * @sdev: SCSI device to be queried
1934 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1935 * @sp: Save page bit (0 == don't save, 1 == save)
1936 * @modepage: mode page being requested
1937 * @buffer: request buffer (may not be smaller than eight bytes)
1938 * @len: length of request buffer.
1939 * @timeout: command timeout
1940 * @retries: number of retries before failing
1941 * @data: returns a structure abstracting the mode header data
1942 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1943 * must be SCSI_SENSE_BUFFERSIZE big.
1944 *
1945 * Returns zero if successful; negative error number or scsi
1946 * status on error
1947 *
1948 */
1949 int
1950 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1951 unsigned char *buffer, int len, int timeout, int retries,
1952 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1953 {
1954 unsigned char cmd[10];
1955 unsigned char *real_buffer;
1956 int ret;
1957
1958 memset(cmd, 0, sizeof(cmd));
1959 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1960
1961 if (sdev->use_10_for_ms) {
1962 if (len > 65535)
1963 return -EINVAL;
1964 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1965 if (!real_buffer)
1966 return -ENOMEM;
1967 memcpy(real_buffer + 8, buffer, len);
1968 len += 8;
1969 real_buffer[0] = 0;
1970 real_buffer[1] = 0;
1971 real_buffer[2] = data->medium_type;
1972 real_buffer[3] = data->device_specific;
1973 real_buffer[4] = data->longlba ? 0x01 : 0;
1974 real_buffer[5] = 0;
1975 real_buffer[6] = data->block_descriptor_length >> 8;
1976 real_buffer[7] = data->block_descriptor_length;
1977
1978 cmd[0] = MODE_SELECT_10;
1979 cmd[7] = len >> 8;
1980 cmd[8] = len;
1981 } else {
1982 if (len > 255 || data->block_descriptor_length > 255 ||
1983 data->longlba)
1984 return -EINVAL;
1985
1986 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1987 if (!real_buffer)
1988 return -ENOMEM;
1989 memcpy(real_buffer + 4, buffer, len);
1990 len += 4;
1991 real_buffer[0] = 0;
1992 real_buffer[1] = data->medium_type;
1993 real_buffer[2] = data->device_specific;
1994 real_buffer[3] = data->block_descriptor_length;
1995
1996
1997 cmd[0] = MODE_SELECT;
1998 cmd[4] = len;
1999 }
2000
2001 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2002 sshdr, timeout, retries);
2003 kfree(real_buffer);
2004 return ret;
2005 }
2006 EXPORT_SYMBOL_GPL(scsi_mode_select);
2007
2008 /**
2009 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2010 * @sdev: SCSI device to be queried
2011 * @dbd: set if mode sense will allow block descriptors to be returned
2012 * @modepage: mode page being requested
2013 * @buffer: request buffer (may not be smaller than eight bytes)
2014 * @len: length of request buffer.
2015 * @timeout: command timeout
2016 * @retries: number of retries before failing
2017 * @data: returns a structure abstracting the mode header data
2018 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2019 * must be SCSI_SENSE_BUFFERSIZE big.
2020 *
2021 * Returns zero if unsuccessful, or the header offset (either 4
2022 * or 8 depending on whether a six or ten byte command was
2023 * issued) if successful.
2024 */
2025 int
2026 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2027 unsigned char *buffer, int len, int timeout, int retries,
2028 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2029 {
2030 unsigned char cmd[12];
2031 int use_10_for_ms;
2032 int header_length;
2033 int result;
2034 struct scsi_sense_hdr my_sshdr;
2035
2036 memset(data, 0, sizeof(*data));
2037 memset(&cmd[0], 0, 12);
2038 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2039 cmd[2] = modepage;
2040
2041 /* caller might not be interested in sense, but we need it */
2042 if (!sshdr)
2043 sshdr = &my_sshdr;
2044
2045 retry:
2046 use_10_for_ms = sdev->use_10_for_ms;
2047
2048 if (use_10_for_ms) {
2049 if (len < 8)
2050 len = 8;
2051
2052 cmd[0] = MODE_SENSE_10;
2053 cmd[8] = len;
2054 header_length = 8;
2055 } else {
2056 if (len < 4)
2057 len = 4;
2058
2059 cmd[0] = MODE_SENSE;
2060 cmd[4] = len;
2061 header_length = 4;
2062 }
2063
2064 memset(buffer, 0, len);
2065
2066 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2067 sshdr, timeout, retries);
2068
2069 /* This code looks awful: what it's doing is making sure an
2070 * ILLEGAL REQUEST sense return identifies the actual command
2071 * byte as the problem. MODE_SENSE commands can return
2072 * ILLEGAL REQUEST if the code page isn't supported */
2073
2074 if (use_10_for_ms && !scsi_status_is_good(result) &&
2075 (driver_byte(result) & DRIVER_SENSE)) {
2076 if (scsi_sense_valid(sshdr)) {
2077 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2078 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2079 /*
2080 * Invalid command operation code
2081 */
2082 sdev->use_10_for_ms = 0;
2083 goto retry;
2084 }
2085 }
2086 }
2087
2088 if(scsi_status_is_good(result)) {
2089 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2090 (modepage == 6 || modepage == 8))) {
2091 /* Initio breakage? */
2092 header_length = 0;
2093 data->length = 13;
2094 data->medium_type = 0;
2095 data->device_specific = 0;
2096 data->longlba = 0;
2097 data->block_descriptor_length = 0;
2098 } else if(use_10_for_ms) {
2099 data->length = buffer[0]*256 + buffer[1] + 2;
2100 data->medium_type = buffer[2];
2101 data->device_specific = buffer[3];
2102 data->longlba = buffer[4] & 0x01;
2103 data->block_descriptor_length = buffer[6]*256
2104 + buffer[7];
2105 } else {
2106 data->length = buffer[0] + 1;
2107 data->medium_type = buffer[1];
2108 data->device_specific = buffer[2];
2109 data->block_descriptor_length = buffer[3];
2110 }
2111 data->header_length = header_length;
2112 }
2113
2114 return result;
2115 }
2116 EXPORT_SYMBOL(scsi_mode_sense);
2117
2118 /**
2119 * scsi_test_unit_ready - test if unit is ready
2120 * @sdev: scsi device to change the state of.
2121 * @timeout: command timeout
2122 * @retries: number of retries before failing
2123 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2124 * returning sense. Make sure that this is cleared before passing
2125 * in.
2126 *
2127 * Returns zero if unsuccessful or an error if TUR failed. For
2128 * removable media, a return of NOT_READY or UNIT_ATTENTION is
2129 * translated to success, with the ->changed flag updated.
2130 **/
2131 int
2132 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2133 struct scsi_sense_hdr *sshdr_external)
2134 {
2135 char cmd[] = {
2136 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2137 };
2138 struct scsi_sense_hdr *sshdr;
2139 int result;
2140
2141 if (!sshdr_external)
2142 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2143 else
2144 sshdr = sshdr_external;
2145
2146 /* try to eat the UNIT_ATTENTION if there are enough retries */
2147 do {
2148 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2149 timeout, retries);
2150 if (sdev->removable && scsi_sense_valid(sshdr) &&
2151 sshdr->sense_key == UNIT_ATTENTION)
2152 sdev->changed = 1;
2153 } while (scsi_sense_valid(sshdr) &&
2154 sshdr->sense_key == UNIT_ATTENTION && --retries);
2155
2156 if (!sshdr)
2157 /* could not allocate sense buffer, so can't process it */
2158 return result;
2159
2160 if (sdev->removable && scsi_sense_valid(sshdr) &&
2161 (sshdr->sense_key == UNIT_ATTENTION ||
2162 sshdr->sense_key == NOT_READY)) {
2163 sdev->changed = 1;
2164 result = 0;
2165 }
2166 if (!sshdr_external)
2167 kfree(sshdr);
2168 return result;
2169 }
2170 EXPORT_SYMBOL(scsi_test_unit_ready);
2171
2172 /**
2173 * scsi_device_set_state - Take the given device through the device state model.
2174 * @sdev: scsi device to change the state of.
2175 * @state: state to change to.
2176 *
2177 * Returns zero if unsuccessful or an error if the requested
2178 * transition is illegal.
2179 */
2180 int
2181 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2182 {
2183 enum scsi_device_state oldstate = sdev->sdev_state;
2184
2185 if (state == oldstate)
2186 return 0;
2187
2188 switch (state) {
2189 case SDEV_CREATED:
2190 switch (oldstate) {
2191 case SDEV_CREATED_BLOCK:
2192 break;
2193 default:
2194 goto illegal;
2195 }
2196 break;
2197
2198 case SDEV_RUNNING:
2199 switch (oldstate) {
2200 case SDEV_CREATED:
2201 case SDEV_OFFLINE:
2202 case SDEV_QUIESCE:
2203 case SDEV_BLOCK:
2204 break;
2205 default:
2206 goto illegal;
2207 }
2208 break;
2209
2210 case SDEV_QUIESCE:
2211 switch (oldstate) {
2212 case SDEV_RUNNING:
2213 case SDEV_OFFLINE:
2214 break;
2215 default:
2216 goto illegal;
2217 }
2218 break;
2219
2220 case SDEV_OFFLINE:
2221 switch (oldstate) {
2222 case SDEV_CREATED:
2223 case SDEV_RUNNING:
2224 case SDEV_QUIESCE:
2225 case SDEV_BLOCK:
2226 break;
2227 default:
2228 goto illegal;
2229 }
2230 break;
2231
2232 case SDEV_BLOCK:
2233 switch (oldstate) {
2234 case SDEV_RUNNING:
2235 case SDEV_CREATED_BLOCK:
2236 break;
2237 default:
2238 goto illegal;
2239 }
2240 break;
2241
2242 case SDEV_CREATED_BLOCK:
2243 switch (oldstate) {
2244 case SDEV_CREATED:
2245 break;
2246 default:
2247 goto illegal;
2248 }
2249 break;
2250
2251 case SDEV_CANCEL:
2252 switch (oldstate) {
2253 case SDEV_CREATED:
2254 case SDEV_RUNNING:
2255 case SDEV_QUIESCE:
2256 case SDEV_OFFLINE:
2257 case SDEV_BLOCK:
2258 break;
2259 default:
2260 goto illegal;
2261 }
2262 break;
2263
2264 case SDEV_DEL:
2265 switch (oldstate) {
2266 case SDEV_CREATED:
2267 case SDEV_RUNNING:
2268 case SDEV_OFFLINE:
2269 case SDEV_CANCEL:
2270 break;
2271 default:
2272 goto illegal;
2273 }
2274 break;
2275
2276 }
2277 sdev->sdev_state = state;
2278 return 0;
2279
2280 illegal:
2281 SCSI_LOG_ERROR_RECOVERY(1,
2282 sdev_printk(KERN_ERR, sdev,
2283 "Illegal state transition %s->%s\n",
2284 scsi_device_state_name(oldstate),
2285 scsi_device_state_name(state))
2286 );
2287 return -EINVAL;
2288 }
2289 EXPORT_SYMBOL(scsi_device_set_state);
2290
2291 /**
2292 * sdev_evt_emit - emit a single SCSI device uevent
2293 * @sdev: associated SCSI device
2294 * @evt: event to emit
2295 *
2296 * Send a single uevent (scsi_event) to the associated scsi_device.
2297 */
2298 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2299 {
2300 int idx = 0;
2301 char *envp[3];
2302
2303 switch (evt->evt_type) {
2304 case SDEV_EVT_MEDIA_CHANGE:
2305 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2306 break;
2307
2308 default:
2309 /* do nothing */
2310 break;
2311 }
2312
2313 envp[idx++] = NULL;
2314
2315 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2316 }
2317
2318 /**
2319 * sdev_evt_thread - send a uevent for each scsi event
2320 * @work: work struct for scsi_device
2321 *
2322 * Dispatch queued events to their associated scsi_device kobjects
2323 * as uevents.
2324 */
2325 void scsi_evt_thread(struct work_struct *work)
2326 {
2327 struct scsi_device *sdev;
2328 LIST_HEAD(event_list);
2329
2330 sdev = container_of(work, struct scsi_device, event_work);
2331
2332 while (1) {
2333 struct scsi_event *evt;
2334 struct list_head *this, *tmp;
2335 unsigned long flags;
2336
2337 spin_lock_irqsave(&sdev->list_lock, flags);
2338 list_splice_init(&sdev->event_list, &event_list);
2339 spin_unlock_irqrestore(&sdev->list_lock, flags);
2340
2341 if (list_empty(&event_list))
2342 break;
2343
2344 list_for_each_safe(this, tmp, &event_list) {
2345 evt = list_entry(this, struct scsi_event, node);
2346 list_del(&evt->node);
2347 scsi_evt_emit(sdev, evt);
2348 kfree(evt);
2349 }
2350 }
2351 }
2352
2353 /**
2354 * sdev_evt_send - send asserted event to uevent thread
2355 * @sdev: scsi_device event occurred on
2356 * @evt: event to send
2357 *
2358 * Assert scsi device event asynchronously.
2359 */
2360 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2361 {
2362 unsigned long flags;
2363
2364 #if 0
2365 /* FIXME: currently this check eliminates all media change events
2366 * for polled devices. Need to update to discriminate between AN
2367 * and polled events */
2368 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2369 kfree(evt);
2370 return;
2371 }
2372 #endif
2373
2374 spin_lock_irqsave(&sdev->list_lock, flags);
2375 list_add_tail(&evt->node, &sdev->event_list);
2376 schedule_work(&sdev->event_work);
2377 spin_unlock_irqrestore(&sdev->list_lock, flags);
2378 }
2379 EXPORT_SYMBOL_GPL(sdev_evt_send);
2380
2381 /**
2382 * sdev_evt_alloc - allocate a new scsi event
2383 * @evt_type: type of event to allocate
2384 * @gfpflags: GFP flags for allocation
2385 *
2386 * Allocates and returns a new scsi_event.
2387 */
2388 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2389 gfp_t gfpflags)
2390 {
2391 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2392 if (!evt)
2393 return NULL;
2394
2395 evt->evt_type = evt_type;
2396 INIT_LIST_HEAD(&evt->node);
2397
2398 /* evt_type-specific initialization, if any */
2399 switch (evt_type) {
2400 case SDEV_EVT_MEDIA_CHANGE:
2401 default:
2402 /* do nothing */
2403 break;
2404 }
2405
2406 return evt;
2407 }
2408 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2409
2410 /**
2411 * sdev_evt_send_simple - send asserted event to uevent thread
2412 * @sdev: scsi_device event occurred on
2413 * @evt_type: type of event to send
2414 * @gfpflags: GFP flags for allocation
2415 *
2416 * Assert scsi device event asynchronously, given an event type.
2417 */
2418 void sdev_evt_send_simple(struct scsi_device *sdev,
2419 enum scsi_device_event evt_type, gfp_t gfpflags)
2420 {
2421 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2422 if (!evt) {
2423 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2424 evt_type);
2425 return;
2426 }
2427
2428 sdev_evt_send(sdev, evt);
2429 }
2430 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2431
2432 /**
2433 * scsi_device_quiesce - Block user issued commands.
2434 * @sdev: scsi device to quiesce.
2435 *
2436 * This works by trying to transition to the SDEV_QUIESCE state
2437 * (which must be a legal transition). When the device is in this
2438 * state, only special requests will be accepted, all others will
2439 * be deferred. Since special requests may also be requeued requests,
2440 * a successful return doesn't guarantee the device will be
2441 * totally quiescent.
2442 *
2443 * Must be called with user context, may sleep.
2444 *
2445 * Returns zero if unsuccessful or an error if not.
2446 */
2447 int
2448 scsi_device_quiesce(struct scsi_device *sdev)
2449 {
2450 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2451 if (err)
2452 return err;
2453
2454 scsi_run_queue(sdev->request_queue);
2455 while (sdev->device_busy) {
2456 msleep_interruptible(200);
2457 scsi_run_queue(sdev->request_queue);
2458 }
2459 return 0;
2460 }
2461 EXPORT_SYMBOL(scsi_device_quiesce);
2462
2463 /**
2464 * scsi_device_resume - Restart user issued commands to a quiesced device.
2465 * @sdev: scsi device to resume.
2466 *
2467 * Moves the device from quiesced back to running and restarts the
2468 * queues.
2469 *
2470 * Must be called with user context, may sleep.
2471 */
2472 void
2473 scsi_device_resume(struct scsi_device *sdev)
2474 {
2475 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2476 return;
2477 scsi_run_queue(sdev->request_queue);
2478 }
2479 EXPORT_SYMBOL(scsi_device_resume);
2480
2481 static void
2482 device_quiesce_fn(struct scsi_device *sdev, void *data)
2483 {
2484 scsi_device_quiesce(sdev);
2485 }
2486
2487 void
2488 scsi_target_quiesce(struct scsi_target *starget)
2489 {
2490 starget_for_each_device(starget, NULL, device_quiesce_fn);
2491 }
2492 EXPORT_SYMBOL(scsi_target_quiesce);
2493
2494 static void
2495 device_resume_fn(struct scsi_device *sdev, void *data)
2496 {
2497 scsi_device_resume(sdev);
2498 }
2499
2500 void
2501 scsi_target_resume(struct scsi_target *starget)
2502 {
2503 starget_for_each_device(starget, NULL, device_resume_fn);
2504 }
2505 EXPORT_SYMBOL(scsi_target_resume);
2506
2507 /**
2508 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2509 * @sdev: device to block
2510 *
2511 * Block request made by scsi lld's to temporarily stop all
2512 * scsi commands on the specified device. Called from interrupt
2513 * or normal process context.
2514 *
2515 * Returns zero if successful or error if not
2516 *
2517 * Notes:
2518 * This routine transitions the device to the SDEV_BLOCK state
2519 * (which must be a legal transition). When the device is in this
2520 * state, all commands are deferred until the scsi lld reenables
2521 * the device with scsi_device_unblock or device_block_tmo fires.
2522 * This routine assumes the host_lock is held on entry.
2523 */
2524 int
2525 scsi_internal_device_block(struct scsi_device *sdev)
2526 {
2527 struct request_queue *q = sdev->request_queue;
2528 unsigned long flags;
2529 int err = 0;
2530
2531 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2532 if (err) {
2533 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2534
2535 if (err)
2536 return err;
2537 }
2538
2539 /*
2540 * The device has transitioned to SDEV_BLOCK. Stop the
2541 * block layer from calling the midlayer with this device's
2542 * request queue.
2543 */
2544 spin_lock_irqsave(q->queue_lock, flags);
2545 blk_stop_queue(q);
2546 spin_unlock_irqrestore(q->queue_lock, flags);
2547
2548 return 0;
2549 }
2550 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2551
2552 /**
2553 * scsi_internal_device_unblock - resume a device after a block request
2554 * @sdev: device to resume
2555 *
2556 * Called by scsi lld's or the midlayer to restart the device queue
2557 * for the previously suspended scsi device. Called from interrupt or
2558 * normal process context.
2559 *
2560 * Returns zero if successful or error if not.
2561 *
2562 * Notes:
2563 * This routine transitions the device to the SDEV_RUNNING state
2564 * (which must be a legal transition) allowing the midlayer to
2565 * goose the queue for this device. This routine assumes the
2566 * host_lock is held upon entry.
2567 */
2568 int
2569 scsi_internal_device_unblock(struct scsi_device *sdev)
2570 {
2571 struct request_queue *q = sdev->request_queue;
2572 int err;
2573 unsigned long flags;
2574
2575 /*
2576 * Try to transition the scsi device to SDEV_RUNNING
2577 * and goose the device queue if successful.
2578 */
2579 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2580 if (err) {
2581 err = scsi_device_set_state(sdev, SDEV_CREATED);
2582
2583 if (err)
2584 return err;
2585 }
2586
2587 spin_lock_irqsave(q->queue_lock, flags);
2588 blk_start_queue(q);
2589 spin_unlock_irqrestore(q->queue_lock, flags);
2590
2591 return 0;
2592 }
2593 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2594
2595 static void
2596 device_block(struct scsi_device *sdev, void *data)
2597 {
2598 scsi_internal_device_block(sdev);
2599 }
2600
2601 static int
2602 target_block(struct device *dev, void *data)
2603 {
2604 if (scsi_is_target_device(dev))
2605 starget_for_each_device(to_scsi_target(dev), NULL,
2606 device_block);
2607 return 0;
2608 }
2609
2610 void
2611 scsi_target_block(struct device *dev)
2612 {
2613 if (scsi_is_target_device(dev))
2614 starget_for_each_device(to_scsi_target(dev), NULL,
2615 device_block);
2616 else
2617 device_for_each_child(dev, NULL, target_block);
2618 }
2619 EXPORT_SYMBOL_GPL(scsi_target_block);
2620
2621 static void
2622 device_unblock(struct scsi_device *sdev, void *data)
2623 {
2624 scsi_internal_device_unblock(sdev);
2625 }
2626
2627 static int
2628 target_unblock(struct device *dev, void *data)
2629 {
2630 if (scsi_is_target_device(dev))
2631 starget_for_each_device(to_scsi_target(dev), NULL,
2632 device_unblock);
2633 return 0;
2634 }
2635
2636 void
2637 scsi_target_unblock(struct device *dev)
2638 {
2639 if (scsi_is_target_device(dev))
2640 starget_for_each_device(to_scsi_target(dev), NULL,
2641 device_unblock);
2642 else
2643 device_for_each_child(dev, NULL, target_unblock);
2644 }
2645 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2646
2647 /**
2648 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2649 * @sgl: scatter-gather list
2650 * @sg_count: number of segments in sg
2651 * @offset: offset in bytes into sg, on return offset into the mapped area
2652 * @len: bytes to map, on return number of bytes mapped
2653 *
2654 * Returns virtual address of the start of the mapped page
2655 */
2656 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2657 size_t *offset, size_t *len)
2658 {
2659 int i;
2660 size_t sg_len = 0, len_complete = 0;
2661 struct scatterlist *sg;
2662 struct page *page;
2663
2664 WARN_ON(!irqs_disabled());
2665
2666 for_each_sg(sgl, sg, sg_count, i) {
2667 len_complete = sg_len; /* Complete sg-entries */
2668 sg_len += sg->length;
2669 if (sg_len > *offset)
2670 break;
2671 }
2672
2673 if (unlikely(i == sg_count)) {
2674 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2675 "elements %d\n",
2676 __func__, sg_len, *offset, sg_count);
2677 WARN_ON(1);
2678 return NULL;
2679 }
2680
2681 /* Offset starting from the beginning of first page in this sg-entry */
2682 *offset = *offset - len_complete + sg->offset;
2683
2684 /* Assumption: contiguous pages can be accessed as "page + i" */
2685 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2686 *offset &= ~PAGE_MASK;
2687
2688 /* Bytes in this sg-entry from *offset to the end of the page */
2689 sg_len = PAGE_SIZE - *offset;
2690 if (*len > sg_len)
2691 *len = sg_len;
2692
2693 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2694 }
2695 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2696
2697 /**
2698 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2699 * @virt: virtual address to be unmapped
2700 */
2701 void scsi_kunmap_atomic_sg(void *virt)
2702 {
2703 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2704 }
2705 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
This page took 0.130071 seconds and 6 git commands to generate.