Merge branch 'from-linus' into upstream
[deliverable/linux.git] / drivers / scsi / scsi_lib.c
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
9
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_cmnd.h>
23 #include <scsi/scsi_dbg.h>
24 #include <scsi/scsi_device.h>
25 #include <scsi/scsi_driver.h>
26 #include <scsi/scsi_eh.h>
27 #include <scsi/scsi_host.h>
28
29 #include "scsi_priv.h"
30 #include "scsi_logging.h"
31
32
33 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
34 #define SG_MEMPOOL_SIZE 32
35
36 struct scsi_host_sg_pool {
37 size_t size;
38 char *name;
39 kmem_cache_t *slab;
40 mempool_t *pool;
41 };
42
43 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
44 #error SCSI_MAX_PHYS_SEGMENTS is too small
45 #endif
46
47 #define SP(x) { x, "sgpool-" #x }
48 static struct scsi_host_sg_pool scsi_sg_pools[] = {
49 SP(8),
50 SP(16),
51 SP(32),
52 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
53 SP(64),
54 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
55 SP(128),
56 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
57 SP(256),
58 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
59 #error SCSI_MAX_PHYS_SEGMENTS is too large
60 #endif
61 #endif
62 #endif
63 #endif
64 };
65 #undef SP
66
67 static void scsi_run_queue(struct request_queue *q);
68
69 /*
70 * Function: scsi_unprep_request()
71 *
72 * Purpose: Remove all preparation done for a request, including its
73 * associated scsi_cmnd, so that it can be requeued.
74 *
75 * Arguments: req - request to unprepare
76 *
77 * Lock status: Assumed that no locks are held upon entry.
78 *
79 * Returns: Nothing.
80 */
81 static void scsi_unprep_request(struct request *req)
82 {
83 struct scsi_cmnd *cmd = req->special;
84
85 req->flags &= ~REQ_DONTPREP;
86 req->special = NULL;
87
88 scsi_put_command(cmd);
89 }
90
91 /*
92 * Function: scsi_queue_insert()
93 *
94 * Purpose: Insert a command in the midlevel queue.
95 *
96 * Arguments: cmd - command that we are adding to queue.
97 * reason - why we are inserting command to queue.
98 *
99 * Lock status: Assumed that lock is not held upon entry.
100 *
101 * Returns: Nothing.
102 *
103 * Notes: We do this for one of two cases. Either the host is busy
104 * and it cannot accept any more commands for the time being,
105 * or the device returned QUEUE_FULL and can accept no more
106 * commands.
107 * Notes: This could be called either from an interrupt context or a
108 * normal process context.
109 */
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111 {
112 struct Scsi_Host *host = cmd->device->host;
113 struct scsi_device *device = cmd->device;
114 struct request_queue *q = device->request_queue;
115 unsigned long flags;
116
117 SCSI_LOG_MLQUEUE(1,
118 printk("Inserting command %p into mlqueue\n", cmd));
119
120 /*
121 * Set the appropriate busy bit for the device/host.
122 *
123 * If the host/device isn't busy, assume that something actually
124 * completed, and that we should be able to queue a command now.
125 *
126 * Note that the prior mid-layer assumption that any host could
127 * always queue at least one command is now broken. The mid-layer
128 * will implement a user specifiable stall (see
129 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130 * if a command is requeued with no other commands outstanding
131 * either for the device or for the host.
132 */
133 if (reason == SCSI_MLQUEUE_HOST_BUSY)
134 host->host_blocked = host->max_host_blocked;
135 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136 device->device_blocked = device->max_device_blocked;
137
138 /*
139 * Decrement the counters, since these commands are no longer
140 * active on the host/device.
141 */
142 scsi_device_unbusy(device);
143
144 /*
145 * Requeue this command. It will go before all other commands
146 * that are already in the queue.
147 *
148 * NOTE: there is magic here about the way the queue is plugged if
149 * we have no outstanding commands.
150 *
151 * Although we *don't* plug the queue, we call the request
152 * function. The SCSI request function detects the blocked condition
153 * and plugs the queue appropriately.
154 */
155 spin_lock_irqsave(q->queue_lock, flags);
156 blk_requeue_request(q, cmd->request);
157 spin_unlock_irqrestore(q->queue_lock, flags);
158
159 scsi_run_queue(q);
160
161 return 0;
162 }
163
164 /**
165 * scsi_execute - insert request and wait for the result
166 * @sdev: scsi device
167 * @cmd: scsi command
168 * @data_direction: data direction
169 * @buffer: data buffer
170 * @bufflen: len of buffer
171 * @sense: optional sense buffer
172 * @timeout: request timeout in seconds
173 * @retries: number of times to retry request
174 * @flags: or into request flags;
175 *
176 * returns the req->errors value which is the the scsi_cmnd result
177 * field.
178 **/
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180 int data_direction, void *buffer, unsigned bufflen,
181 unsigned char *sense, int timeout, int retries, int flags)
182 {
183 struct request *req;
184 int write = (data_direction == DMA_TO_DEVICE);
185 int ret = DRIVER_ERROR << 24;
186
187 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188
189 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
190 buffer, bufflen, __GFP_WAIT))
191 goto out;
192
193 req->cmd_len = COMMAND_SIZE(cmd[0]);
194 memcpy(req->cmd, cmd, req->cmd_len);
195 req->sense = sense;
196 req->sense_len = 0;
197 req->retries = retries;
198 req->timeout = timeout;
199 req->flags |= flags | REQ_BLOCK_PC | REQ_SPECIAL | REQ_QUIET;
200
201 /*
202 * head injection *required* here otherwise quiesce won't work
203 */
204 blk_execute_rq(req->q, NULL, req, 1);
205
206 ret = req->errors;
207 out:
208 blk_put_request(req);
209
210 return ret;
211 }
212 EXPORT_SYMBOL(scsi_execute);
213
214
215 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
216 int data_direction, void *buffer, unsigned bufflen,
217 struct scsi_sense_hdr *sshdr, int timeout, int retries)
218 {
219 char *sense = NULL;
220 int result;
221
222 if (sshdr) {
223 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
224 if (!sense)
225 return DRIVER_ERROR << 24;
226 }
227 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
228 sense, timeout, retries, 0);
229 if (sshdr)
230 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
231
232 kfree(sense);
233 return result;
234 }
235 EXPORT_SYMBOL(scsi_execute_req);
236
237 struct scsi_io_context {
238 void *data;
239 void (*done)(void *data, char *sense, int result, int resid);
240 char sense[SCSI_SENSE_BUFFERSIZE];
241 };
242
243 static kmem_cache_t *scsi_io_context_cache;
244
245 static void scsi_end_async(struct request *req, int uptodate)
246 {
247 struct scsi_io_context *sioc = req->end_io_data;
248
249 if (sioc->done)
250 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
251
252 kmem_cache_free(scsi_io_context_cache, sioc);
253 __blk_put_request(req->q, req);
254 }
255
256 static int scsi_merge_bio(struct request *rq, struct bio *bio)
257 {
258 struct request_queue *q = rq->q;
259
260 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
261 if (rq_data_dir(rq) == WRITE)
262 bio->bi_rw |= (1 << BIO_RW);
263 blk_queue_bounce(q, &bio);
264
265 if (!rq->bio)
266 blk_rq_bio_prep(q, rq, bio);
267 else if (!q->back_merge_fn(q, rq, bio))
268 return -EINVAL;
269 else {
270 rq->biotail->bi_next = bio;
271 rq->biotail = bio;
272 rq->hard_nr_sectors += bio_sectors(bio);
273 rq->nr_sectors = rq->hard_nr_sectors;
274 }
275
276 return 0;
277 }
278
279 static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error)
280 {
281 if (bio->bi_size)
282 return 1;
283
284 bio_put(bio);
285 return 0;
286 }
287
288 /**
289 * scsi_req_map_sg - map a scatterlist into a request
290 * @rq: request to fill
291 * @sg: scatterlist
292 * @nsegs: number of elements
293 * @bufflen: len of buffer
294 * @gfp: memory allocation flags
295 *
296 * scsi_req_map_sg maps a scatterlist into a request so that the
297 * request can be sent to the block layer. We do not trust the scatterlist
298 * sent to use, as some ULDs use that struct to only organize the pages.
299 */
300 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
301 int nsegs, unsigned bufflen, gfp_t gfp)
302 {
303 struct request_queue *q = rq->q;
304 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
305 unsigned int data_len = 0, len, bytes, off;
306 struct page *page;
307 struct bio *bio = NULL;
308 int i, err, nr_vecs = 0;
309
310 for (i = 0; i < nsegs; i++) {
311 page = sgl[i].page;
312 off = sgl[i].offset;
313 len = sgl[i].length;
314 data_len += len;
315
316 while (len > 0) {
317 bytes = min_t(unsigned int, len, PAGE_SIZE - off);
318
319 if (!bio) {
320 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
321 nr_pages -= nr_vecs;
322
323 bio = bio_alloc(gfp, nr_vecs);
324 if (!bio) {
325 err = -ENOMEM;
326 goto free_bios;
327 }
328 bio->bi_end_io = scsi_bi_endio;
329 }
330
331 if (bio_add_pc_page(q, bio, page, bytes, off) !=
332 bytes) {
333 bio_put(bio);
334 err = -EINVAL;
335 goto free_bios;
336 }
337
338 if (bio->bi_vcnt >= nr_vecs) {
339 err = scsi_merge_bio(rq, bio);
340 if (err) {
341 bio_endio(bio, bio->bi_size, 0);
342 goto free_bios;
343 }
344 bio = NULL;
345 }
346
347 page++;
348 len -= bytes;
349 off = 0;
350 }
351 }
352
353 rq->buffer = rq->data = NULL;
354 rq->data_len = data_len;
355 return 0;
356
357 free_bios:
358 while ((bio = rq->bio) != NULL) {
359 rq->bio = bio->bi_next;
360 /*
361 * call endio instead of bio_put incase it was bounced
362 */
363 bio_endio(bio, bio->bi_size, 0);
364 }
365
366 return err;
367 }
368
369 /**
370 * scsi_execute_async - insert request
371 * @sdev: scsi device
372 * @cmd: scsi command
373 * @cmd_len: length of scsi cdb
374 * @data_direction: data direction
375 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
376 * @bufflen: len of buffer
377 * @use_sg: if buffer is a scatterlist this is the number of elements
378 * @timeout: request timeout in seconds
379 * @retries: number of times to retry request
380 * @flags: or into request flags
381 **/
382 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
383 int cmd_len, int data_direction, void *buffer, unsigned bufflen,
384 int use_sg, int timeout, int retries, void *privdata,
385 void (*done)(void *, char *, int, int), gfp_t gfp)
386 {
387 struct request *req;
388 struct scsi_io_context *sioc;
389 int err = 0;
390 int write = (data_direction == DMA_TO_DEVICE);
391
392 sioc = kmem_cache_alloc(scsi_io_context_cache, gfp);
393 if (!sioc)
394 return DRIVER_ERROR << 24;
395 memset(sioc, 0, sizeof(*sioc));
396
397 req = blk_get_request(sdev->request_queue, write, gfp);
398 if (!req)
399 goto free_sense;
400 req->flags |= REQ_BLOCK_PC | REQ_QUIET;
401
402 if (use_sg)
403 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
404 else if (bufflen)
405 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
406
407 if (err)
408 goto free_req;
409
410 req->cmd_len = cmd_len;
411 memcpy(req->cmd, cmd, req->cmd_len);
412 req->sense = sioc->sense;
413 req->sense_len = 0;
414 req->timeout = timeout;
415 req->retries = retries;
416 req->end_io_data = sioc;
417
418 sioc->data = privdata;
419 sioc->done = done;
420
421 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
422 return 0;
423
424 free_req:
425 blk_put_request(req);
426 free_sense:
427 kfree(sioc);
428 return DRIVER_ERROR << 24;
429 }
430 EXPORT_SYMBOL_GPL(scsi_execute_async);
431
432 /*
433 * Function: scsi_init_cmd_errh()
434 *
435 * Purpose: Initialize cmd fields related to error handling.
436 *
437 * Arguments: cmd - command that is ready to be queued.
438 *
439 * Notes: This function has the job of initializing a number of
440 * fields related to error handling. Typically this will
441 * be called once for each command, as required.
442 */
443 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
444 {
445 cmd->serial_number = 0;
446 memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
447 if (cmd->cmd_len == 0)
448 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
449 }
450
451 void scsi_device_unbusy(struct scsi_device *sdev)
452 {
453 struct Scsi_Host *shost = sdev->host;
454 unsigned long flags;
455
456 spin_lock_irqsave(shost->host_lock, flags);
457 shost->host_busy--;
458 if (unlikely(scsi_host_in_recovery(shost) &&
459 (shost->host_failed || shost->host_eh_scheduled)))
460 scsi_eh_wakeup(shost);
461 spin_unlock(shost->host_lock);
462 spin_lock(sdev->request_queue->queue_lock);
463 sdev->device_busy--;
464 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
465 }
466
467 /*
468 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
469 * and call blk_run_queue for all the scsi_devices on the target -
470 * including current_sdev first.
471 *
472 * Called with *no* scsi locks held.
473 */
474 static void scsi_single_lun_run(struct scsi_device *current_sdev)
475 {
476 struct Scsi_Host *shost = current_sdev->host;
477 struct scsi_device *sdev, *tmp;
478 struct scsi_target *starget = scsi_target(current_sdev);
479 unsigned long flags;
480
481 spin_lock_irqsave(shost->host_lock, flags);
482 starget->starget_sdev_user = NULL;
483 spin_unlock_irqrestore(shost->host_lock, flags);
484
485 /*
486 * Call blk_run_queue for all LUNs on the target, starting with
487 * current_sdev. We race with others (to set starget_sdev_user),
488 * but in most cases, we will be first. Ideally, each LU on the
489 * target would get some limited time or requests on the target.
490 */
491 blk_run_queue(current_sdev->request_queue);
492
493 spin_lock_irqsave(shost->host_lock, flags);
494 if (starget->starget_sdev_user)
495 goto out;
496 list_for_each_entry_safe(sdev, tmp, &starget->devices,
497 same_target_siblings) {
498 if (sdev == current_sdev)
499 continue;
500 if (scsi_device_get(sdev))
501 continue;
502
503 spin_unlock_irqrestore(shost->host_lock, flags);
504 blk_run_queue(sdev->request_queue);
505 spin_lock_irqsave(shost->host_lock, flags);
506
507 scsi_device_put(sdev);
508 }
509 out:
510 spin_unlock_irqrestore(shost->host_lock, flags);
511 }
512
513 /*
514 * Function: scsi_run_queue()
515 *
516 * Purpose: Select a proper request queue to serve next
517 *
518 * Arguments: q - last request's queue
519 *
520 * Returns: Nothing
521 *
522 * Notes: The previous command was completely finished, start
523 * a new one if possible.
524 */
525 static void scsi_run_queue(struct request_queue *q)
526 {
527 struct scsi_device *sdev = q->queuedata;
528 struct Scsi_Host *shost = sdev->host;
529 unsigned long flags;
530
531 if (sdev->single_lun)
532 scsi_single_lun_run(sdev);
533
534 spin_lock_irqsave(shost->host_lock, flags);
535 while (!list_empty(&shost->starved_list) &&
536 !shost->host_blocked && !shost->host_self_blocked &&
537 !((shost->can_queue > 0) &&
538 (shost->host_busy >= shost->can_queue))) {
539 /*
540 * As long as shost is accepting commands and we have
541 * starved queues, call blk_run_queue. scsi_request_fn
542 * drops the queue_lock and can add us back to the
543 * starved_list.
544 *
545 * host_lock protects the starved_list and starved_entry.
546 * scsi_request_fn must get the host_lock before checking
547 * or modifying starved_list or starved_entry.
548 */
549 sdev = list_entry(shost->starved_list.next,
550 struct scsi_device, starved_entry);
551 list_del_init(&sdev->starved_entry);
552 spin_unlock_irqrestore(shost->host_lock, flags);
553
554 blk_run_queue(sdev->request_queue);
555
556 spin_lock_irqsave(shost->host_lock, flags);
557 if (unlikely(!list_empty(&sdev->starved_entry)))
558 /*
559 * sdev lost a race, and was put back on the
560 * starved list. This is unlikely but without this
561 * in theory we could loop forever.
562 */
563 break;
564 }
565 spin_unlock_irqrestore(shost->host_lock, flags);
566
567 blk_run_queue(q);
568 }
569
570 /*
571 * Function: scsi_requeue_command()
572 *
573 * Purpose: Handle post-processing of completed commands.
574 *
575 * Arguments: q - queue to operate on
576 * cmd - command that may need to be requeued.
577 *
578 * Returns: Nothing
579 *
580 * Notes: After command completion, there may be blocks left
581 * over which weren't finished by the previous command
582 * this can be for a number of reasons - the main one is
583 * I/O errors in the middle of the request, in which case
584 * we need to request the blocks that come after the bad
585 * sector.
586 * Notes: Upon return, cmd is a stale pointer.
587 */
588 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
589 {
590 struct request *req = cmd->request;
591 unsigned long flags;
592
593 scsi_unprep_request(req);
594 spin_lock_irqsave(q->queue_lock, flags);
595 blk_requeue_request(q, req);
596 spin_unlock_irqrestore(q->queue_lock, flags);
597
598 scsi_run_queue(q);
599 }
600
601 void scsi_next_command(struct scsi_cmnd *cmd)
602 {
603 struct scsi_device *sdev = cmd->device;
604 struct request_queue *q = sdev->request_queue;
605
606 /* need to hold a reference on the device before we let go of the cmd */
607 get_device(&sdev->sdev_gendev);
608
609 scsi_put_command(cmd);
610 scsi_run_queue(q);
611
612 /* ok to remove device now */
613 put_device(&sdev->sdev_gendev);
614 }
615
616 void scsi_run_host_queues(struct Scsi_Host *shost)
617 {
618 struct scsi_device *sdev;
619
620 shost_for_each_device(sdev, shost)
621 scsi_run_queue(sdev->request_queue);
622 }
623
624 /*
625 * Function: scsi_end_request()
626 *
627 * Purpose: Post-processing of completed commands (usually invoked at end
628 * of upper level post-processing and scsi_io_completion).
629 *
630 * Arguments: cmd - command that is complete.
631 * uptodate - 1 if I/O indicates success, <= 0 for I/O error.
632 * bytes - number of bytes of completed I/O
633 * requeue - indicates whether we should requeue leftovers.
634 *
635 * Lock status: Assumed that lock is not held upon entry.
636 *
637 * Returns: cmd if requeue required, NULL otherwise.
638 *
639 * Notes: This is called for block device requests in order to
640 * mark some number of sectors as complete.
641 *
642 * We are guaranteeing that the request queue will be goosed
643 * at some point during this call.
644 * Notes: If cmd was requeued, upon return it will be a stale pointer.
645 */
646 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
647 int bytes, int requeue)
648 {
649 request_queue_t *q = cmd->device->request_queue;
650 struct request *req = cmd->request;
651 unsigned long flags;
652
653 /*
654 * If there are blocks left over at the end, set up the command
655 * to queue the remainder of them.
656 */
657 if (end_that_request_chunk(req, uptodate, bytes)) {
658 int leftover = (req->hard_nr_sectors << 9);
659
660 if (blk_pc_request(req))
661 leftover = req->data_len;
662
663 /* kill remainder if no retrys */
664 if (!uptodate && blk_noretry_request(req))
665 end_that_request_chunk(req, 0, leftover);
666 else {
667 if (requeue) {
668 /*
669 * Bleah. Leftovers again. Stick the
670 * leftovers in the front of the
671 * queue, and goose the queue again.
672 */
673 scsi_requeue_command(q, cmd);
674 cmd = NULL;
675 }
676 return cmd;
677 }
678 }
679
680 add_disk_randomness(req->rq_disk);
681
682 spin_lock_irqsave(q->queue_lock, flags);
683 if (blk_rq_tagged(req))
684 blk_queue_end_tag(q, req);
685 end_that_request_last(req, uptodate);
686 spin_unlock_irqrestore(q->queue_lock, flags);
687
688 /*
689 * This will goose the queue request function at the end, so we don't
690 * need to worry about launching another command.
691 */
692 scsi_next_command(cmd);
693 return NULL;
694 }
695
696 static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
697 {
698 struct scsi_host_sg_pool *sgp;
699 struct scatterlist *sgl;
700
701 BUG_ON(!cmd->use_sg);
702
703 switch (cmd->use_sg) {
704 case 1 ... 8:
705 cmd->sglist_len = 0;
706 break;
707 case 9 ... 16:
708 cmd->sglist_len = 1;
709 break;
710 case 17 ... 32:
711 cmd->sglist_len = 2;
712 break;
713 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
714 case 33 ... 64:
715 cmd->sglist_len = 3;
716 break;
717 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
718 case 65 ... 128:
719 cmd->sglist_len = 4;
720 break;
721 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
722 case 129 ... 256:
723 cmd->sglist_len = 5;
724 break;
725 #endif
726 #endif
727 #endif
728 default:
729 return NULL;
730 }
731
732 sgp = scsi_sg_pools + cmd->sglist_len;
733 sgl = mempool_alloc(sgp->pool, gfp_mask);
734 return sgl;
735 }
736
737 static void scsi_free_sgtable(struct scatterlist *sgl, int index)
738 {
739 struct scsi_host_sg_pool *sgp;
740
741 BUG_ON(index >= SG_MEMPOOL_NR);
742
743 sgp = scsi_sg_pools + index;
744 mempool_free(sgl, sgp->pool);
745 }
746
747 /*
748 * Function: scsi_release_buffers()
749 *
750 * Purpose: Completion processing for block device I/O requests.
751 *
752 * Arguments: cmd - command that we are bailing.
753 *
754 * Lock status: Assumed that no lock is held upon entry.
755 *
756 * Returns: Nothing
757 *
758 * Notes: In the event that an upper level driver rejects a
759 * command, we must release resources allocated during
760 * the __init_io() function. Primarily this would involve
761 * the scatter-gather table, and potentially any bounce
762 * buffers.
763 */
764 static void scsi_release_buffers(struct scsi_cmnd *cmd)
765 {
766 if (cmd->use_sg)
767 scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
768
769 /*
770 * Zero these out. They now point to freed memory, and it is
771 * dangerous to hang onto the pointers.
772 */
773 cmd->request_buffer = NULL;
774 cmd->request_bufflen = 0;
775 }
776
777 /*
778 * Function: scsi_io_completion()
779 *
780 * Purpose: Completion processing for block device I/O requests.
781 *
782 * Arguments: cmd - command that is finished.
783 *
784 * Lock status: Assumed that no lock is held upon entry.
785 *
786 * Returns: Nothing
787 *
788 * Notes: This function is matched in terms of capabilities to
789 * the function that created the scatter-gather list.
790 * In other words, if there are no bounce buffers
791 * (the normal case for most drivers), we don't need
792 * the logic to deal with cleaning up afterwards.
793 *
794 * We must do one of several things here:
795 *
796 * a) Call scsi_end_request. This will finish off the
797 * specified number of sectors. If we are done, the
798 * command block will be released, and the queue
799 * function will be goosed. If we are not done, then
800 * scsi_end_request will directly goose the queue.
801 *
802 * b) We can just use scsi_requeue_command() here. This would
803 * be used if we just wanted to retry, for example.
804 */
805 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
806 {
807 int result = cmd->result;
808 int this_count = cmd->request_bufflen;
809 request_queue_t *q = cmd->device->request_queue;
810 struct request *req = cmd->request;
811 int clear_errors = 1;
812 struct scsi_sense_hdr sshdr;
813 int sense_valid = 0;
814 int sense_deferred = 0;
815
816 scsi_release_buffers(cmd);
817
818 if (result) {
819 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
820 if (sense_valid)
821 sense_deferred = scsi_sense_is_deferred(&sshdr);
822 }
823
824 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
825 req->errors = result;
826 if (result) {
827 clear_errors = 0;
828 if (sense_valid && req->sense) {
829 /*
830 * SG_IO wants current and deferred errors
831 */
832 int len = 8 + cmd->sense_buffer[7];
833
834 if (len > SCSI_SENSE_BUFFERSIZE)
835 len = SCSI_SENSE_BUFFERSIZE;
836 memcpy(req->sense, cmd->sense_buffer, len);
837 req->sense_len = len;
838 }
839 } else
840 req->data_len = cmd->resid;
841 }
842
843 /*
844 * Next deal with any sectors which we were able to correctly
845 * handle.
846 */
847 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
848 "%d bytes done.\n",
849 req->nr_sectors, good_bytes));
850 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
851
852 if (clear_errors)
853 req->errors = 0;
854
855 /* A number of bytes were successfully read. If there
856 * are leftovers and there is some kind of error
857 * (result != 0), retry the rest.
858 */
859 if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
860 return;
861
862 /* good_bytes = 0, or (inclusive) there were leftovers and
863 * result = 0, so scsi_end_request couldn't retry.
864 */
865 if (sense_valid && !sense_deferred) {
866 switch (sshdr.sense_key) {
867 case UNIT_ATTENTION:
868 if (cmd->device->removable) {
869 /* Detected disc change. Set a bit
870 * and quietly refuse further access.
871 */
872 cmd->device->changed = 1;
873 scsi_end_request(cmd, 0, this_count, 1);
874 return;
875 } else {
876 /* Must have been a power glitch, or a
877 * bus reset. Could not have been a
878 * media change, so we just retry the
879 * request and see what happens.
880 */
881 scsi_requeue_command(q, cmd);
882 return;
883 }
884 break;
885 case ILLEGAL_REQUEST:
886 /* If we had an ILLEGAL REQUEST returned, then
887 * we may have performed an unsupported
888 * command. The only thing this should be
889 * would be a ten byte read where only a six
890 * byte read was supported. Also, on a system
891 * where READ CAPACITY failed, we may have
892 * read past the end of the disk.
893 */
894 if ((cmd->device->use_10_for_rw &&
895 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
896 (cmd->cmnd[0] == READ_10 ||
897 cmd->cmnd[0] == WRITE_10)) {
898 cmd->device->use_10_for_rw = 0;
899 /* This will cause a retry with a
900 * 6-byte command.
901 */
902 scsi_requeue_command(q, cmd);
903 return;
904 } else {
905 scsi_end_request(cmd, 0, this_count, 1);
906 return;
907 }
908 break;
909 case NOT_READY:
910 /* If the device is in the process of becoming
911 * ready, or has a temporary blockage, retry.
912 */
913 if (sshdr.asc == 0x04) {
914 switch (sshdr.ascq) {
915 case 0x01: /* becoming ready */
916 case 0x04: /* format in progress */
917 case 0x05: /* rebuild in progress */
918 case 0x06: /* recalculation in progress */
919 case 0x07: /* operation in progress */
920 case 0x08: /* Long write in progress */
921 case 0x09: /* self test in progress */
922 scsi_requeue_command(q, cmd);
923 return;
924 default:
925 break;
926 }
927 }
928 if (!(req->flags & REQ_QUIET)) {
929 scmd_printk(KERN_INFO, cmd,
930 "Device not ready: ");
931 scsi_print_sense_hdr("", &sshdr);
932 }
933 scsi_end_request(cmd, 0, this_count, 1);
934 return;
935 case VOLUME_OVERFLOW:
936 if (!(req->flags & REQ_QUIET)) {
937 scmd_printk(KERN_INFO, cmd,
938 "Volume overflow, CDB: ");
939 __scsi_print_command(cmd->cmnd);
940 scsi_print_sense("", cmd);
941 }
942 /* See SSC3rXX or current. */
943 scsi_end_request(cmd, 0, this_count, 1);
944 return;
945 default:
946 break;
947 }
948 }
949 if (host_byte(result) == DID_RESET) {
950 /* Third party bus reset or reset for error recovery
951 * reasons. Just retry the request and see what
952 * happens.
953 */
954 scsi_requeue_command(q, cmd);
955 return;
956 }
957 if (result) {
958 if (!(req->flags & REQ_QUIET)) {
959 scmd_printk(KERN_INFO, cmd,
960 "SCSI error: return code = 0x%08x\n",
961 result);
962 if (driver_byte(result) & DRIVER_SENSE)
963 scsi_print_sense("", cmd);
964 }
965 }
966 scsi_end_request(cmd, 0, this_count, !result);
967 }
968 EXPORT_SYMBOL(scsi_io_completion);
969
970 /*
971 * Function: scsi_init_io()
972 *
973 * Purpose: SCSI I/O initialize function.
974 *
975 * Arguments: cmd - Command descriptor we wish to initialize
976 *
977 * Returns: 0 on success
978 * BLKPREP_DEFER if the failure is retryable
979 * BLKPREP_KILL if the failure is fatal
980 */
981 static int scsi_init_io(struct scsi_cmnd *cmd)
982 {
983 struct request *req = cmd->request;
984 struct scatterlist *sgpnt;
985 int count;
986
987 /*
988 * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
989 */
990 if ((req->flags & REQ_BLOCK_PC) && !req->bio) {
991 cmd->request_bufflen = req->data_len;
992 cmd->request_buffer = req->data;
993 req->buffer = req->data;
994 cmd->use_sg = 0;
995 return 0;
996 }
997
998 /*
999 * we used to not use scatter-gather for single segment request,
1000 * but now we do (it makes highmem I/O easier to support without
1001 * kmapping pages)
1002 */
1003 cmd->use_sg = req->nr_phys_segments;
1004
1005 /*
1006 * if sg table allocation fails, requeue request later.
1007 */
1008 sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1009 if (unlikely(!sgpnt)) {
1010 scsi_unprep_request(req);
1011 return BLKPREP_DEFER;
1012 }
1013
1014 cmd->request_buffer = (char *) sgpnt;
1015 cmd->request_bufflen = req->nr_sectors << 9;
1016 if (blk_pc_request(req))
1017 cmd->request_bufflen = req->data_len;
1018 req->buffer = NULL;
1019
1020 /*
1021 * Next, walk the list, and fill in the addresses and sizes of
1022 * each segment.
1023 */
1024 count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1025
1026 /*
1027 * mapped well, send it off
1028 */
1029 if (likely(count <= cmd->use_sg)) {
1030 cmd->use_sg = count;
1031 return 0;
1032 }
1033
1034 printk(KERN_ERR "Incorrect number of segments after building list\n");
1035 printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1036 printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1037 req->current_nr_sectors);
1038
1039 /* release the command and kill it */
1040 scsi_release_buffers(cmd);
1041 scsi_put_command(cmd);
1042 return BLKPREP_KILL;
1043 }
1044
1045 static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1046 sector_t *error_sector)
1047 {
1048 struct scsi_device *sdev = q->queuedata;
1049 struct scsi_driver *drv;
1050
1051 if (sdev->sdev_state != SDEV_RUNNING)
1052 return -ENXIO;
1053
1054 drv = *(struct scsi_driver **) disk->private_data;
1055 if (drv->issue_flush)
1056 return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1057
1058 return -EOPNOTSUPP;
1059 }
1060
1061 static void scsi_blk_pc_done(struct scsi_cmnd *cmd)
1062 {
1063 BUG_ON(!blk_pc_request(cmd->request));
1064 /*
1065 * This will complete the whole command with uptodate=1 so
1066 * as far as the block layer is concerned the command completed
1067 * successfully. Since this is a REQ_BLOCK_PC command the
1068 * caller should check the request's errors value
1069 */
1070 scsi_io_completion(cmd, cmd->request_bufflen);
1071 }
1072
1073 static void scsi_setup_blk_pc_cmnd(struct scsi_cmnd *cmd)
1074 {
1075 struct request *req = cmd->request;
1076
1077 BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1078 memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1079 cmd->cmd_len = req->cmd_len;
1080 if (!req->data_len)
1081 cmd->sc_data_direction = DMA_NONE;
1082 else if (rq_data_dir(req) == WRITE)
1083 cmd->sc_data_direction = DMA_TO_DEVICE;
1084 else
1085 cmd->sc_data_direction = DMA_FROM_DEVICE;
1086
1087 cmd->transfersize = req->data_len;
1088 cmd->allowed = req->retries;
1089 cmd->timeout_per_command = req->timeout;
1090 cmd->done = scsi_blk_pc_done;
1091 }
1092
1093 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1094 {
1095 struct scsi_device *sdev = q->queuedata;
1096 struct scsi_cmnd *cmd;
1097 int specials_only = 0;
1098
1099 /*
1100 * Just check to see if the device is online. If it isn't, we
1101 * refuse to process any commands. The device must be brought
1102 * online before trying any recovery commands
1103 */
1104 if (unlikely(!scsi_device_online(sdev))) {
1105 sdev_printk(KERN_ERR, sdev,
1106 "rejecting I/O to offline device\n");
1107 goto kill;
1108 }
1109 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1110 /* OK, we're not in a running state don't prep
1111 * user commands */
1112 if (sdev->sdev_state == SDEV_DEL) {
1113 /* Device is fully deleted, no commands
1114 * at all allowed down */
1115 sdev_printk(KERN_ERR, sdev,
1116 "rejecting I/O to dead device\n");
1117 goto kill;
1118 }
1119 /* OK, we only allow special commands (i.e. not
1120 * user initiated ones */
1121 specials_only = sdev->sdev_state;
1122 }
1123
1124 /*
1125 * Find the actual device driver associated with this command.
1126 * The SPECIAL requests are things like character device or
1127 * ioctls, which did not originate from ll_rw_blk. Note that
1128 * the special field is also used to indicate the cmd for
1129 * the remainder of a partially fulfilled request that can
1130 * come up when there is a medium error. We have to treat
1131 * these two cases differently. We differentiate by looking
1132 * at request->cmd, as this tells us the real story.
1133 */
1134 if (req->flags & REQ_SPECIAL && req->special) {
1135 cmd = req->special;
1136 } else if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1137
1138 if(unlikely(specials_only) && !(req->flags & REQ_SPECIAL)) {
1139 if(specials_only == SDEV_QUIESCE ||
1140 specials_only == SDEV_BLOCK)
1141 goto defer;
1142
1143 sdev_printk(KERN_ERR, sdev,
1144 "rejecting I/O to device being removed\n");
1145 goto kill;
1146 }
1147
1148
1149 /*
1150 * Now try and find a command block that we can use.
1151 */
1152 if (!req->special) {
1153 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1154 if (unlikely(!cmd))
1155 goto defer;
1156 } else
1157 cmd = req->special;
1158
1159 /* pull a tag out of the request if we have one */
1160 cmd->tag = req->tag;
1161 } else {
1162 blk_dump_rq_flags(req, "SCSI bad req");
1163 goto kill;
1164 }
1165
1166 /* note the overloading of req->special. When the tag
1167 * is active it always means cmd. If the tag goes
1168 * back for re-queueing, it may be reset */
1169 req->special = cmd;
1170 cmd->request = req;
1171
1172 /*
1173 * FIXME: drop the lock here because the functions below
1174 * expect to be called without the queue lock held. Also,
1175 * previously, we dequeued the request before dropping the
1176 * lock. We hope REQ_STARTED prevents anything untoward from
1177 * happening now.
1178 */
1179 if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1180 int ret;
1181
1182 /*
1183 * This will do a couple of things:
1184 * 1) Fill in the actual SCSI command.
1185 * 2) Fill in any other upper-level specific fields
1186 * (timeout).
1187 *
1188 * If this returns 0, it means that the request failed
1189 * (reading past end of disk, reading offline device,
1190 * etc). This won't actually talk to the device, but
1191 * some kinds of consistency checking may cause the
1192 * request to be rejected immediately.
1193 */
1194
1195 /*
1196 * This sets up the scatter-gather table (allocating if
1197 * required).
1198 */
1199 ret = scsi_init_io(cmd);
1200 switch(ret) {
1201 /* For BLKPREP_KILL/DEFER the cmd was released */
1202 case BLKPREP_KILL:
1203 goto kill;
1204 case BLKPREP_DEFER:
1205 goto defer;
1206 }
1207
1208 /*
1209 * Initialize the actual SCSI command for this request.
1210 */
1211 if (req->flags & REQ_BLOCK_PC) {
1212 scsi_setup_blk_pc_cmnd(cmd);
1213 } else if (req->rq_disk) {
1214 struct scsi_driver *drv;
1215
1216 drv = *(struct scsi_driver **)req->rq_disk->private_data;
1217 if (unlikely(!drv->init_command(cmd))) {
1218 scsi_release_buffers(cmd);
1219 scsi_put_command(cmd);
1220 goto kill;
1221 }
1222 }
1223 }
1224
1225 /*
1226 * The request is now prepped, no need to come back here
1227 */
1228 req->flags |= REQ_DONTPREP;
1229 return BLKPREP_OK;
1230
1231 defer:
1232 /* If we defer, the elv_next_request() returns NULL, but the
1233 * queue must be restarted, so we plug here if no returning
1234 * command will automatically do that. */
1235 if (sdev->device_busy == 0)
1236 blk_plug_device(q);
1237 return BLKPREP_DEFER;
1238 kill:
1239 req->errors = DID_NO_CONNECT << 16;
1240 return BLKPREP_KILL;
1241 }
1242
1243 /*
1244 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1245 * return 0.
1246 *
1247 * Called with the queue_lock held.
1248 */
1249 static inline int scsi_dev_queue_ready(struct request_queue *q,
1250 struct scsi_device *sdev)
1251 {
1252 if (sdev->device_busy >= sdev->queue_depth)
1253 return 0;
1254 if (sdev->device_busy == 0 && sdev->device_blocked) {
1255 /*
1256 * unblock after device_blocked iterates to zero
1257 */
1258 if (--sdev->device_blocked == 0) {
1259 SCSI_LOG_MLQUEUE(3,
1260 sdev_printk(KERN_INFO, sdev,
1261 "unblocking device at zero depth\n"));
1262 } else {
1263 blk_plug_device(q);
1264 return 0;
1265 }
1266 }
1267 if (sdev->device_blocked)
1268 return 0;
1269
1270 return 1;
1271 }
1272
1273 /*
1274 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1275 * return 0. We must end up running the queue again whenever 0 is
1276 * returned, else IO can hang.
1277 *
1278 * Called with host_lock held.
1279 */
1280 static inline int scsi_host_queue_ready(struct request_queue *q,
1281 struct Scsi_Host *shost,
1282 struct scsi_device *sdev)
1283 {
1284 if (scsi_host_in_recovery(shost))
1285 return 0;
1286 if (shost->host_busy == 0 && shost->host_blocked) {
1287 /*
1288 * unblock after host_blocked iterates to zero
1289 */
1290 if (--shost->host_blocked == 0) {
1291 SCSI_LOG_MLQUEUE(3,
1292 printk("scsi%d unblocking host at zero depth\n",
1293 shost->host_no));
1294 } else {
1295 blk_plug_device(q);
1296 return 0;
1297 }
1298 }
1299 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1300 shost->host_blocked || shost->host_self_blocked) {
1301 if (list_empty(&sdev->starved_entry))
1302 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1303 return 0;
1304 }
1305
1306 /* We're OK to process the command, so we can't be starved */
1307 if (!list_empty(&sdev->starved_entry))
1308 list_del_init(&sdev->starved_entry);
1309
1310 return 1;
1311 }
1312
1313 /*
1314 * Kill a request for a dead device
1315 */
1316 static void scsi_kill_request(struct request *req, request_queue_t *q)
1317 {
1318 struct scsi_cmnd *cmd = req->special;
1319 struct scsi_device *sdev = cmd->device;
1320 struct Scsi_Host *shost = sdev->host;
1321
1322 blkdev_dequeue_request(req);
1323
1324 if (unlikely(cmd == NULL)) {
1325 printk(KERN_CRIT "impossible request in %s.\n",
1326 __FUNCTION__);
1327 BUG();
1328 }
1329
1330 scsi_init_cmd_errh(cmd);
1331 cmd->result = DID_NO_CONNECT << 16;
1332 atomic_inc(&cmd->device->iorequest_cnt);
1333
1334 /*
1335 * SCSI request completion path will do scsi_device_unbusy(),
1336 * bump busy counts. To bump the counters, we need to dance
1337 * with the locks as normal issue path does.
1338 */
1339 sdev->device_busy++;
1340 spin_unlock(sdev->request_queue->queue_lock);
1341 spin_lock(shost->host_lock);
1342 shost->host_busy++;
1343 spin_unlock(shost->host_lock);
1344 spin_lock(sdev->request_queue->queue_lock);
1345
1346 __scsi_done(cmd);
1347 }
1348
1349 static void scsi_softirq_done(struct request *rq)
1350 {
1351 struct scsi_cmnd *cmd = rq->completion_data;
1352 unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1353 int disposition;
1354
1355 INIT_LIST_HEAD(&cmd->eh_entry);
1356
1357 disposition = scsi_decide_disposition(cmd);
1358 if (disposition != SUCCESS &&
1359 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1360 sdev_printk(KERN_ERR, cmd->device,
1361 "timing out command, waited %lus\n",
1362 wait_for/HZ);
1363 disposition = SUCCESS;
1364 }
1365
1366 scsi_log_completion(cmd, disposition);
1367
1368 switch (disposition) {
1369 case SUCCESS:
1370 scsi_finish_command(cmd);
1371 break;
1372 case NEEDS_RETRY:
1373 scsi_retry_command(cmd);
1374 break;
1375 case ADD_TO_MLQUEUE:
1376 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1377 break;
1378 default:
1379 if (!scsi_eh_scmd_add(cmd, 0))
1380 scsi_finish_command(cmd);
1381 }
1382 }
1383
1384 /*
1385 * Function: scsi_request_fn()
1386 *
1387 * Purpose: Main strategy routine for SCSI.
1388 *
1389 * Arguments: q - Pointer to actual queue.
1390 *
1391 * Returns: Nothing
1392 *
1393 * Lock status: IO request lock assumed to be held when called.
1394 */
1395 static void scsi_request_fn(struct request_queue *q)
1396 {
1397 struct scsi_device *sdev = q->queuedata;
1398 struct Scsi_Host *shost;
1399 struct scsi_cmnd *cmd;
1400 struct request *req;
1401
1402 if (!sdev) {
1403 printk("scsi: killing requests for dead queue\n");
1404 while ((req = elv_next_request(q)) != NULL)
1405 scsi_kill_request(req, q);
1406 return;
1407 }
1408
1409 if(!get_device(&sdev->sdev_gendev))
1410 /* We must be tearing the block queue down already */
1411 return;
1412
1413 /*
1414 * To start with, we keep looping until the queue is empty, or until
1415 * the host is no longer able to accept any more requests.
1416 */
1417 shost = sdev->host;
1418 while (!blk_queue_plugged(q)) {
1419 int rtn;
1420 /*
1421 * get next queueable request. We do this early to make sure
1422 * that the request is fully prepared even if we cannot
1423 * accept it.
1424 */
1425 req = elv_next_request(q);
1426 if (!req || !scsi_dev_queue_ready(q, sdev))
1427 break;
1428
1429 if (unlikely(!scsi_device_online(sdev))) {
1430 sdev_printk(KERN_ERR, sdev,
1431 "rejecting I/O to offline device\n");
1432 scsi_kill_request(req, q);
1433 continue;
1434 }
1435
1436
1437 /*
1438 * Remove the request from the request list.
1439 */
1440 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1441 blkdev_dequeue_request(req);
1442 sdev->device_busy++;
1443
1444 spin_unlock(q->queue_lock);
1445 cmd = req->special;
1446 if (unlikely(cmd == NULL)) {
1447 printk(KERN_CRIT "impossible request in %s.\n"
1448 "please mail a stack trace to "
1449 "linux-scsi@vger.kernel.org",
1450 __FUNCTION__);
1451 BUG();
1452 }
1453 spin_lock(shost->host_lock);
1454
1455 if (!scsi_host_queue_ready(q, shost, sdev))
1456 goto not_ready;
1457 if (sdev->single_lun) {
1458 if (scsi_target(sdev)->starget_sdev_user &&
1459 scsi_target(sdev)->starget_sdev_user != sdev)
1460 goto not_ready;
1461 scsi_target(sdev)->starget_sdev_user = sdev;
1462 }
1463 shost->host_busy++;
1464
1465 /*
1466 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1467 * take the lock again.
1468 */
1469 spin_unlock_irq(shost->host_lock);
1470
1471 /*
1472 * Finally, initialize any error handling parameters, and set up
1473 * the timers for timeouts.
1474 */
1475 scsi_init_cmd_errh(cmd);
1476
1477 /*
1478 * Dispatch the command to the low-level driver.
1479 */
1480 rtn = scsi_dispatch_cmd(cmd);
1481 spin_lock_irq(q->queue_lock);
1482 if(rtn) {
1483 /* we're refusing the command; because of
1484 * the way locks get dropped, we need to
1485 * check here if plugging is required */
1486 if(sdev->device_busy == 0)
1487 blk_plug_device(q);
1488
1489 break;
1490 }
1491 }
1492
1493 goto out;
1494
1495 not_ready:
1496 spin_unlock_irq(shost->host_lock);
1497
1498 /*
1499 * lock q, handle tag, requeue req, and decrement device_busy. We
1500 * must return with queue_lock held.
1501 *
1502 * Decrementing device_busy without checking it is OK, as all such
1503 * cases (host limits or settings) should run the queue at some
1504 * later time.
1505 */
1506 spin_lock_irq(q->queue_lock);
1507 blk_requeue_request(q, req);
1508 sdev->device_busy--;
1509 if(sdev->device_busy == 0)
1510 blk_plug_device(q);
1511 out:
1512 /* must be careful here...if we trigger the ->remove() function
1513 * we cannot be holding the q lock */
1514 spin_unlock_irq(q->queue_lock);
1515 put_device(&sdev->sdev_gendev);
1516 spin_lock_irq(q->queue_lock);
1517 }
1518
1519 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1520 {
1521 struct device *host_dev;
1522 u64 bounce_limit = 0xffffffff;
1523
1524 if (shost->unchecked_isa_dma)
1525 return BLK_BOUNCE_ISA;
1526 /*
1527 * Platforms with virtual-DMA translation
1528 * hardware have no practical limit.
1529 */
1530 if (!PCI_DMA_BUS_IS_PHYS)
1531 return BLK_BOUNCE_ANY;
1532
1533 host_dev = scsi_get_device(shost);
1534 if (host_dev && host_dev->dma_mask)
1535 bounce_limit = *host_dev->dma_mask;
1536
1537 return bounce_limit;
1538 }
1539 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1540
1541 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1542 {
1543 struct Scsi_Host *shost = sdev->host;
1544 struct request_queue *q;
1545
1546 q = blk_init_queue(scsi_request_fn, NULL);
1547 if (!q)
1548 return NULL;
1549
1550 blk_queue_prep_rq(q, scsi_prep_fn);
1551
1552 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1553 blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1554 blk_queue_max_sectors(q, shost->max_sectors);
1555 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1556 blk_queue_segment_boundary(q, shost->dma_boundary);
1557 blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1558 blk_queue_softirq_done(q, scsi_softirq_done);
1559
1560 if (!shost->use_clustering)
1561 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1562 return q;
1563 }
1564
1565 void scsi_free_queue(struct request_queue *q)
1566 {
1567 blk_cleanup_queue(q);
1568 }
1569
1570 /*
1571 * Function: scsi_block_requests()
1572 *
1573 * Purpose: Utility function used by low-level drivers to prevent further
1574 * commands from being queued to the device.
1575 *
1576 * Arguments: shost - Host in question
1577 *
1578 * Returns: Nothing
1579 *
1580 * Lock status: No locks are assumed held.
1581 *
1582 * Notes: There is no timer nor any other means by which the requests
1583 * get unblocked other than the low-level driver calling
1584 * scsi_unblock_requests().
1585 */
1586 void scsi_block_requests(struct Scsi_Host *shost)
1587 {
1588 shost->host_self_blocked = 1;
1589 }
1590 EXPORT_SYMBOL(scsi_block_requests);
1591
1592 /*
1593 * Function: scsi_unblock_requests()
1594 *
1595 * Purpose: Utility function used by low-level drivers to allow further
1596 * commands from being queued to the device.
1597 *
1598 * Arguments: shost - Host in question
1599 *
1600 * Returns: Nothing
1601 *
1602 * Lock status: No locks are assumed held.
1603 *
1604 * Notes: There is no timer nor any other means by which the requests
1605 * get unblocked other than the low-level driver calling
1606 * scsi_unblock_requests().
1607 *
1608 * This is done as an API function so that changes to the
1609 * internals of the scsi mid-layer won't require wholesale
1610 * changes to drivers that use this feature.
1611 */
1612 void scsi_unblock_requests(struct Scsi_Host *shost)
1613 {
1614 shost->host_self_blocked = 0;
1615 scsi_run_host_queues(shost);
1616 }
1617 EXPORT_SYMBOL(scsi_unblock_requests);
1618
1619 int __init scsi_init_queue(void)
1620 {
1621 int i;
1622
1623 scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1624 sizeof(struct scsi_io_context),
1625 0, 0, NULL, NULL);
1626 if (!scsi_io_context_cache) {
1627 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1628 return -ENOMEM;
1629 }
1630
1631 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1632 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1633 int size = sgp->size * sizeof(struct scatterlist);
1634
1635 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1636 SLAB_HWCACHE_ALIGN, NULL, NULL);
1637 if (!sgp->slab) {
1638 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1639 sgp->name);
1640 }
1641
1642 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1643 sgp->slab);
1644 if (!sgp->pool) {
1645 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1646 sgp->name);
1647 }
1648 }
1649
1650 return 0;
1651 }
1652
1653 void scsi_exit_queue(void)
1654 {
1655 int i;
1656
1657 kmem_cache_destroy(scsi_io_context_cache);
1658
1659 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1660 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1661 mempool_destroy(sgp->pool);
1662 kmem_cache_destroy(sgp->slab);
1663 }
1664 }
1665
1666 /**
1667 * scsi_mode_select - issue a mode select
1668 * @sdev: SCSI device to be queried
1669 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1670 * @sp: Save page bit (0 == don't save, 1 == save)
1671 * @modepage: mode page being requested
1672 * @buffer: request buffer (may not be smaller than eight bytes)
1673 * @len: length of request buffer.
1674 * @timeout: command timeout
1675 * @retries: number of retries before failing
1676 * @data: returns a structure abstracting the mode header data
1677 * @sense: place to put sense data (or NULL if no sense to be collected).
1678 * must be SCSI_SENSE_BUFFERSIZE big.
1679 *
1680 * Returns zero if successful; negative error number or scsi
1681 * status on error
1682 *
1683 */
1684 int
1685 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1686 unsigned char *buffer, int len, int timeout, int retries,
1687 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1688 {
1689 unsigned char cmd[10];
1690 unsigned char *real_buffer;
1691 int ret;
1692
1693 memset(cmd, 0, sizeof(cmd));
1694 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1695
1696 if (sdev->use_10_for_ms) {
1697 if (len > 65535)
1698 return -EINVAL;
1699 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1700 if (!real_buffer)
1701 return -ENOMEM;
1702 memcpy(real_buffer + 8, buffer, len);
1703 len += 8;
1704 real_buffer[0] = 0;
1705 real_buffer[1] = 0;
1706 real_buffer[2] = data->medium_type;
1707 real_buffer[3] = data->device_specific;
1708 real_buffer[4] = data->longlba ? 0x01 : 0;
1709 real_buffer[5] = 0;
1710 real_buffer[6] = data->block_descriptor_length >> 8;
1711 real_buffer[7] = data->block_descriptor_length;
1712
1713 cmd[0] = MODE_SELECT_10;
1714 cmd[7] = len >> 8;
1715 cmd[8] = len;
1716 } else {
1717 if (len > 255 || data->block_descriptor_length > 255 ||
1718 data->longlba)
1719 return -EINVAL;
1720
1721 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1722 if (!real_buffer)
1723 return -ENOMEM;
1724 memcpy(real_buffer + 4, buffer, len);
1725 len += 4;
1726 real_buffer[0] = 0;
1727 real_buffer[1] = data->medium_type;
1728 real_buffer[2] = data->device_specific;
1729 real_buffer[3] = data->block_descriptor_length;
1730
1731
1732 cmd[0] = MODE_SELECT;
1733 cmd[4] = len;
1734 }
1735
1736 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1737 sshdr, timeout, retries);
1738 kfree(real_buffer);
1739 return ret;
1740 }
1741 EXPORT_SYMBOL_GPL(scsi_mode_select);
1742
1743 /**
1744 * scsi_mode_sense - issue a mode sense, falling back from 10 to
1745 * six bytes if necessary.
1746 * @sdev: SCSI device to be queried
1747 * @dbd: set if mode sense will allow block descriptors to be returned
1748 * @modepage: mode page being requested
1749 * @buffer: request buffer (may not be smaller than eight bytes)
1750 * @len: length of request buffer.
1751 * @timeout: command timeout
1752 * @retries: number of retries before failing
1753 * @data: returns a structure abstracting the mode header data
1754 * @sense: place to put sense data (or NULL if no sense to be collected).
1755 * must be SCSI_SENSE_BUFFERSIZE big.
1756 *
1757 * Returns zero if unsuccessful, or the header offset (either 4
1758 * or 8 depending on whether a six or ten byte command was
1759 * issued) if successful.
1760 **/
1761 int
1762 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1763 unsigned char *buffer, int len, int timeout, int retries,
1764 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1765 {
1766 unsigned char cmd[12];
1767 int use_10_for_ms;
1768 int header_length;
1769 int result;
1770 struct scsi_sense_hdr my_sshdr;
1771
1772 memset(data, 0, sizeof(*data));
1773 memset(&cmd[0], 0, 12);
1774 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1775 cmd[2] = modepage;
1776
1777 /* caller might not be interested in sense, but we need it */
1778 if (!sshdr)
1779 sshdr = &my_sshdr;
1780
1781 retry:
1782 use_10_for_ms = sdev->use_10_for_ms;
1783
1784 if (use_10_for_ms) {
1785 if (len < 8)
1786 len = 8;
1787
1788 cmd[0] = MODE_SENSE_10;
1789 cmd[8] = len;
1790 header_length = 8;
1791 } else {
1792 if (len < 4)
1793 len = 4;
1794
1795 cmd[0] = MODE_SENSE;
1796 cmd[4] = len;
1797 header_length = 4;
1798 }
1799
1800 memset(buffer, 0, len);
1801
1802 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1803 sshdr, timeout, retries);
1804
1805 /* This code looks awful: what it's doing is making sure an
1806 * ILLEGAL REQUEST sense return identifies the actual command
1807 * byte as the problem. MODE_SENSE commands can return
1808 * ILLEGAL REQUEST if the code page isn't supported */
1809
1810 if (use_10_for_ms && !scsi_status_is_good(result) &&
1811 (driver_byte(result) & DRIVER_SENSE)) {
1812 if (scsi_sense_valid(sshdr)) {
1813 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1814 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1815 /*
1816 * Invalid command operation code
1817 */
1818 sdev->use_10_for_ms = 0;
1819 goto retry;
1820 }
1821 }
1822 }
1823
1824 if(scsi_status_is_good(result)) {
1825 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1826 (modepage == 6 || modepage == 8))) {
1827 /* Initio breakage? */
1828 header_length = 0;
1829 data->length = 13;
1830 data->medium_type = 0;
1831 data->device_specific = 0;
1832 data->longlba = 0;
1833 data->block_descriptor_length = 0;
1834 } else if(use_10_for_ms) {
1835 data->length = buffer[0]*256 + buffer[1] + 2;
1836 data->medium_type = buffer[2];
1837 data->device_specific = buffer[3];
1838 data->longlba = buffer[4] & 0x01;
1839 data->block_descriptor_length = buffer[6]*256
1840 + buffer[7];
1841 } else {
1842 data->length = buffer[0] + 1;
1843 data->medium_type = buffer[1];
1844 data->device_specific = buffer[2];
1845 data->block_descriptor_length = buffer[3];
1846 }
1847 data->header_length = header_length;
1848 }
1849
1850 return result;
1851 }
1852 EXPORT_SYMBOL(scsi_mode_sense);
1853
1854 int
1855 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1856 {
1857 char cmd[] = {
1858 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1859 };
1860 struct scsi_sense_hdr sshdr;
1861 int result;
1862
1863 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1864 timeout, retries);
1865
1866 if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1867
1868 if ((scsi_sense_valid(&sshdr)) &&
1869 ((sshdr.sense_key == UNIT_ATTENTION) ||
1870 (sshdr.sense_key == NOT_READY))) {
1871 sdev->changed = 1;
1872 result = 0;
1873 }
1874 }
1875 return result;
1876 }
1877 EXPORT_SYMBOL(scsi_test_unit_ready);
1878
1879 /**
1880 * scsi_device_set_state - Take the given device through the device
1881 * state model.
1882 * @sdev: scsi device to change the state of.
1883 * @state: state to change to.
1884 *
1885 * Returns zero if unsuccessful or an error if the requested
1886 * transition is illegal.
1887 **/
1888 int
1889 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1890 {
1891 enum scsi_device_state oldstate = sdev->sdev_state;
1892
1893 if (state == oldstate)
1894 return 0;
1895
1896 switch (state) {
1897 case SDEV_CREATED:
1898 /* There are no legal states that come back to
1899 * created. This is the manually initialised start
1900 * state */
1901 goto illegal;
1902
1903 case SDEV_RUNNING:
1904 switch (oldstate) {
1905 case SDEV_CREATED:
1906 case SDEV_OFFLINE:
1907 case SDEV_QUIESCE:
1908 case SDEV_BLOCK:
1909 break;
1910 default:
1911 goto illegal;
1912 }
1913 break;
1914
1915 case SDEV_QUIESCE:
1916 switch (oldstate) {
1917 case SDEV_RUNNING:
1918 case SDEV_OFFLINE:
1919 break;
1920 default:
1921 goto illegal;
1922 }
1923 break;
1924
1925 case SDEV_OFFLINE:
1926 switch (oldstate) {
1927 case SDEV_CREATED:
1928 case SDEV_RUNNING:
1929 case SDEV_QUIESCE:
1930 case SDEV_BLOCK:
1931 break;
1932 default:
1933 goto illegal;
1934 }
1935 break;
1936
1937 case SDEV_BLOCK:
1938 switch (oldstate) {
1939 case SDEV_CREATED:
1940 case SDEV_RUNNING:
1941 break;
1942 default:
1943 goto illegal;
1944 }
1945 break;
1946
1947 case SDEV_CANCEL:
1948 switch (oldstate) {
1949 case SDEV_CREATED:
1950 case SDEV_RUNNING:
1951 case SDEV_QUIESCE:
1952 case SDEV_OFFLINE:
1953 case SDEV_BLOCK:
1954 break;
1955 default:
1956 goto illegal;
1957 }
1958 break;
1959
1960 case SDEV_DEL:
1961 switch (oldstate) {
1962 case SDEV_CREATED:
1963 case SDEV_RUNNING:
1964 case SDEV_OFFLINE:
1965 case SDEV_CANCEL:
1966 break;
1967 default:
1968 goto illegal;
1969 }
1970 break;
1971
1972 }
1973 sdev->sdev_state = state;
1974 return 0;
1975
1976 illegal:
1977 SCSI_LOG_ERROR_RECOVERY(1,
1978 sdev_printk(KERN_ERR, sdev,
1979 "Illegal state transition %s->%s\n",
1980 scsi_device_state_name(oldstate),
1981 scsi_device_state_name(state))
1982 );
1983 return -EINVAL;
1984 }
1985 EXPORT_SYMBOL(scsi_device_set_state);
1986
1987 /**
1988 * scsi_device_quiesce - Block user issued commands.
1989 * @sdev: scsi device to quiesce.
1990 *
1991 * This works by trying to transition to the SDEV_QUIESCE state
1992 * (which must be a legal transition). When the device is in this
1993 * state, only special requests will be accepted, all others will
1994 * be deferred. Since special requests may also be requeued requests,
1995 * a successful return doesn't guarantee the device will be
1996 * totally quiescent.
1997 *
1998 * Must be called with user context, may sleep.
1999 *
2000 * Returns zero if unsuccessful or an error if not.
2001 **/
2002 int
2003 scsi_device_quiesce(struct scsi_device *sdev)
2004 {
2005 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2006 if (err)
2007 return err;
2008
2009 scsi_run_queue(sdev->request_queue);
2010 while (sdev->device_busy) {
2011 msleep_interruptible(200);
2012 scsi_run_queue(sdev->request_queue);
2013 }
2014 return 0;
2015 }
2016 EXPORT_SYMBOL(scsi_device_quiesce);
2017
2018 /**
2019 * scsi_device_resume - Restart user issued commands to a quiesced device.
2020 * @sdev: scsi device to resume.
2021 *
2022 * Moves the device from quiesced back to running and restarts the
2023 * queues.
2024 *
2025 * Must be called with user context, may sleep.
2026 **/
2027 void
2028 scsi_device_resume(struct scsi_device *sdev)
2029 {
2030 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2031 return;
2032 scsi_run_queue(sdev->request_queue);
2033 }
2034 EXPORT_SYMBOL(scsi_device_resume);
2035
2036 static void
2037 device_quiesce_fn(struct scsi_device *sdev, void *data)
2038 {
2039 scsi_device_quiesce(sdev);
2040 }
2041
2042 void
2043 scsi_target_quiesce(struct scsi_target *starget)
2044 {
2045 starget_for_each_device(starget, NULL, device_quiesce_fn);
2046 }
2047 EXPORT_SYMBOL(scsi_target_quiesce);
2048
2049 static void
2050 device_resume_fn(struct scsi_device *sdev, void *data)
2051 {
2052 scsi_device_resume(sdev);
2053 }
2054
2055 void
2056 scsi_target_resume(struct scsi_target *starget)
2057 {
2058 starget_for_each_device(starget, NULL, device_resume_fn);
2059 }
2060 EXPORT_SYMBOL(scsi_target_resume);
2061
2062 /**
2063 * scsi_internal_device_block - internal function to put a device
2064 * temporarily into the SDEV_BLOCK state
2065 * @sdev: device to block
2066 *
2067 * Block request made by scsi lld's to temporarily stop all
2068 * scsi commands on the specified device. Called from interrupt
2069 * or normal process context.
2070 *
2071 * Returns zero if successful or error if not
2072 *
2073 * Notes:
2074 * This routine transitions the device to the SDEV_BLOCK state
2075 * (which must be a legal transition). When the device is in this
2076 * state, all commands are deferred until the scsi lld reenables
2077 * the device with scsi_device_unblock or device_block_tmo fires.
2078 * This routine assumes the host_lock is held on entry.
2079 **/
2080 int
2081 scsi_internal_device_block(struct scsi_device *sdev)
2082 {
2083 request_queue_t *q = sdev->request_queue;
2084 unsigned long flags;
2085 int err = 0;
2086
2087 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2088 if (err)
2089 return err;
2090
2091 /*
2092 * The device has transitioned to SDEV_BLOCK. Stop the
2093 * block layer from calling the midlayer with this device's
2094 * request queue.
2095 */
2096 spin_lock_irqsave(q->queue_lock, flags);
2097 blk_stop_queue(q);
2098 spin_unlock_irqrestore(q->queue_lock, flags);
2099
2100 return 0;
2101 }
2102 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2103
2104 /**
2105 * scsi_internal_device_unblock - resume a device after a block request
2106 * @sdev: device to resume
2107 *
2108 * Called by scsi lld's or the midlayer to restart the device queue
2109 * for the previously suspended scsi device. Called from interrupt or
2110 * normal process context.
2111 *
2112 * Returns zero if successful or error if not.
2113 *
2114 * Notes:
2115 * This routine transitions the device to the SDEV_RUNNING state
2116 * (which must be a legal transition) allowing the midlayer to
2117 * goose the queue for this device. This routine assumes the
2118 * host_lock is held upon entry.
2119 **/
2120 int
2121 scsi_internal_device_unblock(struct scsi_device *sdev)
2122 {
2123 request_queue_t *q = sdev->request_queue;
2124 int err;
2125 unsigned long flags;
2126
2127 /*
2128 * Try to transition the scsi device to SDEV_RUNNING
2129 * and goose the device queue if successful.
2130 */
2131 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2132 if (err)
2133 return err;
2134
2135 spin_lock_irqsave(q->queue_lock, flags);
2136 blk_start_queue(q);
2137 spin_unlock_irqrestore(q->queue_lock, flags);
2138
2139 return 0;
2140 }
2141 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2142
2143 static void
2144 device_block(struct scsi_device *sdev, void *data)
2145 {
2146 scsi_internal_device_block(sdev);
2147 }
2148
2149 static int
2150 target_block(struct device *dev, void *data)
2151 {
2152 if (scsi_is_target_device(dev))
2153 starget_for_each_device(to_scsi_target(dev), NULL,
2154 device_block);
2155 return 0;
2156 }
2157
2158 void
2159 scsi_target_block(struct device *dev)
2160 {
2161 if (scsi_is_target_device(dev))
2162 starget_for_each_device(to_scsi_target(dev), NULL,
2163 device_block);
2164 else
2165 device_for_each_child(dev, NULL, target_block);
2166 }
2167 EXPORT_SYMBOL_GPL(scsi_target_block);
2168
2169 static void
2170 device_unblock(struct scsi_device *sdev, void *data)
2171 {
2172 scsi_internal_device_unblock(sdev);
2173 }
2174
2175 static int
2176 target_unblock(struct device *dev, void *data)
2177 {
2178 if (scsi_is_target_device(dev))
2179 starget_for_each_device(to_scsi_target(dev), NULL,
2180 device_unblock);
2181 return 0;
2182 }
2183
2184 void
2185 scsi_target_unblock(struct device *dev)
2186 {
2187 if (scsi_is_target_device(dev))
2188 starget_for_each_device(to_scsi_target(dev), NULL,
2189 device_unblock);
2190 else
2191 device_for_each_child(dev, NULL, target_unblock);
2192 }
2193 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2194
2195 /**
2196 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2197 * @sg: scatter-gather list
2198 * @sg_count: number of segments in sg
2199 * @offset: offset in bytes into sg, on return offset into the mapped area
2200 * @len: bytes to map, on return number of bytes mapped
2201 *
2202 * Returns virtual address of the start of the mapped page
2203 */
2204 void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count,
2205 size_t *offset, size_t *len)
2206 {
2207 int i;
2208 size_t sg_len = 0, len_complete = 0;
2209 struct page *page;
2210
2211 for (i = 0; i < sg_count; i++) {
2212 len_complete = sg_len; /* Complete sg-entries */
2213 sg_len += sg[i].length;
2214 if (sg_len > *offset)
2215 break;
2216 }
2217
2218 if (unlikely(i == sg_count)) {
2219 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2220 "elements %d\n",
2221 __FUNCTION__, sg_len, *offset, sg_count);
2222 WARN_ON(1);
2223 return NULL;
2224 }
2225
2226 /* Offset starting from the beginning of first page in this sg-entry */
2227 *offset = *offset - len_complete + sg[i].offset;
2228
2229 /* Assumption: contiguous pages can be accessed as "page + i" */
2230 page = nth_page(sg[i].page, (*offset >> PAGE_SHIFT));
2231 *offset &= ~PAGE_MASK;
2232
2233 /* Bytes in this sg-entry from *offset to the end of the page */
2234 sg_len = PAGE_SIZE - *offset;
2235 if (*len > sg_len)
2236 *len = sg_len;
2237
2238 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2239 }
2240 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2241
2242 /**
2243 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2244 * mapped with scsi_kmap_atomic_sg
2245 * @virt: virtual address to be unmapped
2246 */
2247 void scsi_kunmap_atomic_sg(void *virt)
2248 {
2249 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2250 }
2251 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
This page took 0.078706 seconds and 6 git commands to generate.