Merge http://oss.oracle.com/git/ocfs2
[deliverable/linux.git] / drivers / scsi / scsi_lib.c
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
9
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19
20 #include <scsi/scsi.h>
21 #include <scsi/scsi_dbg.h>
22 #include <scsi/scsi_device.h>
23 #include <scsi/scsi_driver.h>
24 #include <scsi/scsi_eh.h>
25 #include <scsi/scsi_host.h>
26 #include <scsi/scsi_request.h>
27
28 #include "scsi_priv.h"
29 #include "scsi_logging.h"
30
31
32 #define SG_MEMPOOL_NR (sizeof(scsi_sg_pools)/sizeof(struct scsi_host_sg_pool))
33 #define SG_MEMPOOL_SIZE 32
34
35 struct scsi_host_sg_pool {
36 size_t size;
37 char *name;
38 kmem_cache_t *slab;
39 mempool_t *pool;
40 };
41
42 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
43 #error SCSI_MAX_PHYS_SEGMENTS is too small
44 #endif
45
46 #define SP(x) { x, "sgpool-" #x }
47 static struct scsi_host_sg_pool scsi_sg_pools[] = {
48 SP(8),
49 SP(16),
50 SP(32),
51 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
52 SP(64),
53 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
54 SP(128),
55 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
56 SP(256),
57 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
58 #error SCSI_MAX_PHYS_SEGMENTS is too large
59 #endif
60 #endif
61 #endif
62 #endif
63 };
64 #undef SP
65
66 static void scsi_run_queue(struct request_queue *q);
67
68 /*
69 * Function: scsi_unprep_request()
70 *
71 * Purpose: Remove all preparation done for a request, including its
72 * associated scsi_cmnd, so that it can be requeued.
73 *
74 * Arguments: req - request to unprepare
75 *
76 * Lock status: Assumed that no locks are held upon entry.
77 *
78 * Returns: Nothing.
79 */
80 static void scsi_unprep_request(struct request *req)
81 {
82 struct scsi_cmnd *cmd = req->special;
83
84 req->flags &= ~REQ_DONTPREP;
85 req->special = (req->flags & REQ_SPECIAL) ? cmd->sc_request : NULL;
86
87 scsi_put_command(cmd);
88 }
89
90 /*
91 * Function: scsi_queue_insert()
92 *
93 * Purpose: Insert a command in the midlevel queue.
94 *
95 * Arguments: cmd - command that we are adding to queue.
96 * reason - why we are inserting command to queue.
97 *
98 * Lock status: Assumed that lock is not held upon entry.
99 *
100 * Returns: Nothing.
101 *
102 * Notes: We do this for one of two cases. Either the host is busy
103 * and it cannot accept any more commands for the time being,
104 * or the device returned QUEUE_FULL and can accept no more
105 * commands.
106 * Notes: This could be called either from an interrupt context or a
107 * normal process context.
108 */
109 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
110 {
111 struct Scsi_Host *host = cmd->device->host;
112 struct scsi_device *device = cmd->device;
113 struct request_queue *q = device->request_queue;
114 unsigned long flags;
115
116 SCSI_LOG_MLQUEUE(1,
117 printk("Inserting command %p into mlqueue\n", cmd));
118
119 /*
120 * Set the appropriate busy bit for the device/host.
121 *
122 * If the host/device isn't busy, assume that something actually
123 * completed, and that we should be able to queue a command now.
124 *
125 * Note that the prior mid-layer assumption that any host could
126 * always queue at least one command is now broken. The mid-layer
127 * will implement a user specifiable stall (see
128 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
129 * if a command is requeued with no other commands outstanding
130 * either for the device or for the host.
131 */
132 if (reason == SCSI_MLQUEUE_HOST_BUSY)
133 host->host_blocked = host->max_host_blocked;
134 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
135 device->device_blocked = device->max_device_blocked;
136
137 /*
138 * Decrement the counters, since these commands are no longer
139 * active on the host/device.
140 */
141 scsi_device_unbusy(device);
142
143 /*
144 * Requeue this command. It will go before all other commands
145 * that are already in the queue.
146 *
147 * NOTE: there is magic here about the way the queue is plugged if
148 * we have no outstanding commands.
149 *
150 * Although we *don't* plug the queue, we call the request
151 * function. The SCSI request function detects the blocked condition
152 * and plugs the queue appropriately.
153 */
154 spin_lock_irqsave(q->queue_lock, flags);
155 blk_requeue_request(q, cmd->request);
156 spin_unlock_irqrestore(q->queue_lock, flags);
157
158 scsi_run_queue(q);
159
160 return 0;
161 }
162
163 /*
164 * Function: scsi_do_req
165 *
166 * Purpose: Queue a SCSI request
167 *
168 * Arguments: sreq - command descriptor.
169 * cmnd - actual SCSI command to be performed.
170 * buffer - data buffer.
171 * bufflen - size of data buffer.
172 * done - completion function to be run.
173 * timeout - how long to let it run before timeout.
174 * retries - number of retries we allow.
175 *
176 * Lock status: No locks held upon entry.
177 *
178 * Returns: Nothing.
179 *
180 * Notes: This function is only used for queueing requests for things
181 * like ioctls and character device requests - this is because
182 * we essentially just inject a request into the queue for the
183 * device.
184 *
185 * In order to support the scsi_device_quiesce function, we
186 * now inject requests on the *head* of the device queue
187 * rather than the tail.
188 */
189 void scsi_do_req(struct scsi_request *sreq, const void *cmnd,
190 void *buffer, unsigned bufflen,
191 void (*done)(struct scsi_cmnd *),
192 int timeout, int retries)
193 {
194 /*
195 * If the upper level driver is reusing these things, then
196 * we should release the low-level block now. Another one will
197 * be allocated later when this request is getting queued.
198 */
199 __scsi_release_request(sreq);
200
201 /*
202 * Our own function scsi_done (which marks the host as not busy,
203 * disables the timeout counter, etc) will be called by us or by the
204 * scsi_hosts[host].queuecommand() function needs to also call
205 * the completion function for the high level driver.
206 */
207 memcpy(sreq->sr_cmnd, cmnd, sizeof(sreq->sr_cmnd));
208 sreq->sr_bufflen = bufflen;
209 sreq->sr_buffer = buffer;
210 sreq->sr_allowed = retries;
211 sreq->sr_done = done;
212 sreq->sr_timeout_per_command = timeout;
213
214 if (sreq->sr_cmd_len == 0)
215 sreq->sr_cmd_len = COMMAND_SIZE(sreq->sr_cmnd[0]);
216
217 /*
218 * head injection *required* here otherwise quiesce won't work
219 *
220 * Because users of this function are apt to reuse requests with no
221 * modification, we have to sanitise the request flags here
222 */
223 sreq->sr_request->flags &= ~REQ_DONTPREP;
224 blk_insert_request(sreq->sr_device->request_queue, sreq->sr_request,
225 1, sreq);
226 }
227 EXPORT_SYMBOL(scsi_do_req);
228
229 /**
230 * scsi_execute - insert request and wait for the result
231 * @sdev: scsi device
232 * @cmd: scsi command
233 * @data_direction: data direction
234 * @buffer: data buffer
235 * @bufflen: len of buffer
236 * @sense: optional sense buffer
237 * @timeout: request timeout in seconds
238 * @retries: number of times to retry request
239 * @flags: or into request flags;
240 *
241 * returns the req->errors value which is the the scsi_cmnd result
242 * field.
243 **/
244 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
245 int data_direction, void *buffer, unsigned bufflen,
246 unsigned char *sense, int timeout, int retries, int flags)
247 {
248 struct request *req;
249 int write = (data_direction == DMA_TO_DEVICE);
250 int ret = DRIVER_ERROR << 24;
251
252 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
253
254 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
255 buffer, bufflen, __GFP_WAIT))
256 goto out;
257
258 req->cmd_len = COMMAND_SIZE(cmd[0]);
259 memcpy(req->cmd, cmd, req->cmd_len);
260 req->sense = sense;
261 req->sense_len = 0;
262 req->retries = retries;
263 req->timeout = timeout;
264 req->flags |= flags | REQ_BLOCK_PC | REQ_SPECIAL | REQ_QUIET;
265
266 /*
267 * head injection *required* here otherwise quiesce won't work
268 */
269 blk_execute_rq(req->q, NULL, req, 1);
270
271 ret = req->errors;
272 out:
273 blk_put_request(req);
274
275 return ret;
276 }
277 EXPORT_SYMBOL(scsi_execute);
278
279
280 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
281 int data_direction, void *buffer, unsigned bufflen,
282 struct scsi_sense_hdr *sshdr, int timeout, int retries)
283 {
284 char *sense = NULL;
285 int result;
286
287 if (sshdr) {
288 sense = kmalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
289 if (!sense)
290 return DRIVER_ERROR << 24;
291 memset(sense, 0, SCSI_SENSE_BUFFERSIZE);
292 }
293 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
294 sense, timeout, retries, 0);
295 if (sshdr)
296 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
297
298 kfree(sense);
299 return result;
300 }
301 EXPORT_SYMBOL(scsi_execute_req);
302
303 struct scsi_io_context {
304 void *data;
305 void (*done)(void *data, char *sense, int result, int resid);
306 char sense[SCSI_SENSE_BUFFERSIZE];
307 };
308
309 static kmem_cache_t *scsi_io_context_cache;
310
311 static void scsi_end_async(struct request *req)
312 {
313 struct scsi_io_context *sioc = req->end_io_data;
314
315 if (sioc->done)
316 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
317
318 kmem_cache_free(scsi_io_context_cache, sioc);
319 __blk_put_request(req->q, req);
320 }
321
322 static int scsi_merge_bio(struct request *rq, struct bio *bio)
323 {
324 struct request_queue *q = rq->q;
325
326 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
327 if (rq_data_dir(rq) == WRITE)
328 bio->bi_rw |= (1 << BIO_RW);
329 blk_queue_bounce(q, &bio);
330
331 if (!rq->bio)
332 blk_rq_bio_prep(q, rq, bio);
333 else if (!q->back_merge_fn(q, rq, bio))
334 return -EINVAL;
335 else {
336 rq->biotail->bi_next = bio;
337 rq->biotail = bio;
338 rq->hard_nr_sectors += bio_sectors(bio);
339 rq->nr_sectors = rq->hard_nr_sectors;
340 }
341
342 return 0;
343 }
344
345 static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error)
346 {
347 if (bio->bi_size)
348 return 1;
349
350 bio_put(bio);
351 return 0;
352 }
353
354 /**
355 * scsi_req_map_sg - map a scatterlist into a request
356 * @rq: request to fill
357 * @sg: scatterlist
358 * @nsegs: number of elements
359 * @bufflen: len of buffer
360 * @gfp: memory allocation flags
361 *
362 * scsi_req_map_sg maps a scatterlist into a request so that the
363 * request can be sent to the block layer. We do not trust the scatterlist
364 * sent to use, as some ULDs use that struct to only organize the pages.
365 */
366 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
367 int nsegs, unsigned bufflen, gfp_t gfp)
368 {
369 struct request_queue *q = rq->q;
370 int nr_pages = (bufflen + PAGE_SIZE - 1) >> PAGE_SHIFT;
371 unsigned int data_len = 0, len, bytes, off;
372 struct page *page;
373 struct bio *bio = NULL;
374 int i, err, nr_vecs = 0;
375
376 for (i = 0; i < nsegs; i++) {
377 page = sgl[i].page;
378 off = sgl[i].offset;
379 len = sgl[i].length;
380 data_len += len;
381
382 while (len > 0) {
383 bytes = min_t(unsigned int, len, PAGE_SIZE - off);
384
385 if (!bio) {
386 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
387 nr_pages -= nr_vecs;
388
389 bio = bio_alloc(gfp, nr_vecs);
390 if (!bio) {
391 err = -ENOMEM;
392 goto free_bios;
393 }
394 bio->bi_end_io = scsi_bi_endio;
395 }
396
397 if (bio_add_pc_page(q, bio, page, bytes, off) !=
398 bytes) {
399 bio_put(bio);
400 err = -EINVAL;
401 goto free_bios;
402 }
403
404 if (bio->bi_vcnt >= nr_vecs) {
405 err = scsi_merge_bio(rq, bio);
406 if (err) {
407 bio_endio(bio, bio->bi_size, 0);
408 goto free_bios;
409 }
410 bio = NULL;
411 }
412
413 page++;
414 len -= bytes;
415 off = 0;
416 }
417 }
418
419 rq->buffer = rq->data = NULL;
420 rq->data_len = data_len;
421 return 0;
422
423 free_bios:
424 while ((bio = rq->bio) != NULL) {
425 rq->bio = bio->bi_next;
426 /*
427 * call endio instead of bio_put incase it was bounced
428 */
429 bio_endio(bio, bio->bi_size, 0);
430 }
431
432 return err;
433 }
434
435 /**
436 * scsi_execute_async - insert request
437 * @sdev: scsi device
438 * @cmd: scsi command
439 * @data_direction: data direction
440 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
441 * @bufflen: len of buffer
442 * @use_sg: if buffer is a scatterlist this is the number of elements
443 * @timeout: request timeout in seconds
444 * @retries: number of times to retry request
445 * @flags: or into request flags
446 **/
447 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
448 int data_direction, void *buffer, unsigned bufflen,
449 int use_sg, int timeout, int retries, void *privdata,
450 void (*done)(void *, char *, int, int), gfp_t gfp)
451 {
452 struct request *req;
453 struct scsi_io_context *sioc;
454 int err = 0;
455 int write = (data_direction == DMA_TO_DEVICE);
456
457 sioc = kmem_cache_alloc(scsi_io_context_cache, gfp);
458 if (!sioc)
459 return DRIVER_ERROR << 24;
460 memset(sioc, 0, sizeof(*sioc));
461
462 req = blk_get_request(sdev->request_queue, write, gfp);
463 if (!req)
464 goto free_sense;
465 req->flags |= REQ_BLOCK_PC | REQ_QUIET;
466
467 if (use_sg)
468 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
469 else if (bufflen)
470 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
471
472 if (err)
473 goto free_req;
474
475 req->cmd_len = COMMAND_SIZE(cmd[0]);
476 memcpy(req->cmd, cmd, req->cmd_len);
477 req->sense = sioc->sense;
478 req->sense_len = 0;
479 req->timeout = timeout;
480 req->retries = retries;
481 req->end_io_data = sioc;
482
483 sioc->data = privdata;
484 sioc->done = done;
485
486 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
487 return 0;
488
489 free_req:
490 blk_put_request(req);
491 free_sense:
492 kfree(sioc);
493 return DRIVER_ERROR << 24;
494 }
495 EXPORT_SYMBOL_GPL(scsi_execute_async);
496
497 /*
498 * Function: scsi_init_cmd_errh()
499 *
500 * Purpose: Initialize cmd fields related to error handling.
501 *
502 * Arguments: cmd - command that is ready to be queued.
503 *
504 * Returns: Nothing
505 *
506 * Notes: This function has the job of initializing a number of
507 * fields related to error handling. Typically this will
508 * be called once for each command, as required.
509 */
510 static int scsi_init_cmd_errh(struct scsi_cmnd *cmd)
511 {
512 cmd->serial_number = 0;
513
514 memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
515
516 if (cmd->cmd_len == 0)
517 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
518
519 /*
520 * We need saved copies of a number of fields - this is because
521 * error handling may need to overwrite these with different values
522 * to run different commands, and once error handling is complete,
523 * we will need to restore these values prior to running the actual
524 * command.
525 */
526 cmd->old_use_sg = cmd->use_sg;
527 cmd->old_cmd_len = cmd->cmd_len;
528 cmd->sc_old_data_direction = cmd->sc_data_direction;
529 cmd->old_underflow = cmd->underflow;
530 memcpy(cmd->data_cmnd, cmd->cmnd, sizeof(cmd->cmnd));
531 cmd->buffer = cmd->request_buffer;
532 cmd->bufflen = cmd->request_bufflen;
533
534 return 1;
535 }
536
537 /*
538 * Function: scsi_setup_cmd_retry()
539 *
540 * Purpose: Restore the command state for a retry
541 *
542 * Arguments: cmd - command to be restored
543 *
544 * Returns: Nothing
545 *
546 * Notes: Immediately prior to retrying a command, we need
547 * to restore certain fields that we saved above.
548 */
549 void scsi_setup_cmd_retry(struct scsi_cmnd *cmd)
550 {
551 memcpy(cmd->cmnd, cmd->data_cmnd, sizeof(cmd->data_cmnd));
552 cmd->request_buffer = cmd->buffer;
553 cmd->request_bufflen = cmd->bufflen;
554 cmd->use_sg = cmd->old_use_sg;
555 cmd->cmd_len = cmd->old_cmd_len;
556 cmd->sc_data_direction = cmd->sc_old_data_direction;
557 cmd->underflow = cmd->old_underflow;
558 }
559
560 void scsi_device_unbusy(struct scsi_device *sdev)
561 {
562 struct Scsi_Host *shost = sdev->host;
563 unsigned long flags;
564
565 spin_lock_irqsave(shost->host_lock, flags);
566 shost->host_busy--;
567 if (unlikely(scsi_host_in_recovery(shost) &&
568 shost->host_failed))
569 scsi_eh_wakeup(shost);
570 spin_unlock(shost->host_lock);
571 spin_lock(sdev->request_queue->queue_lock);
572 sdev->device_busy--;
573 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
574 }
575
576 /*
577 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
578 * and call blk_run_queue for all the scsi_devices on the target -
579 * including current_sdev first.
580 *
581 * Called with *no* scsi locks held.
582 */
583 static void scsi_single_lun_run(struct scsi_device *current_sdev)
584 {
585 struct Scsi_Host *shost = current_sdev->host;
586 struct scsi_device *sdev, *tmp;
587 struct scsi_target *starget = scsi_target(current_sdev);
588 unsigned long flags;
589
590 spin_lock_irqsave(shost->host_lock, flags);
591 starget->starget_sdev_user = NULL;
592 spin_unlock_irqrestore(shost->host_lock, flags);
593
594 /*
595 * Call blk_run_queue for all LUNs on the target, starting with
596 * current_sdev. We race with others (to set starget_sdev_user),
597 * but in most cases, we will be first. Ideally, each LU on the
598 * target would get some limited time or requests on the target.
599 */
600 blk_run_queue(current_sdev->request_queue);
601
602 spin_lock_irqsave(shost->host_lock, flags);
603 if (starget->starget_sdev_user)
604 goto out;
605 list_for_each_entry_safe(sdev, tmp, &starget->devices,
606 same_target_siblings) {
607 if (sdev == current_sdev)
608 continue;
609 if (scsi_device_get(sdev))
610 continue;
611
612 spin_unlock_irqrestore(shost->host_lock, flags);
613 blk_run_queue(sdev->request_queue);
614 spin_lock_irqsave(shost->host_lock, flags);
615
616 scsi_device_put(sdev);
617 }
618 out:
619 spin_unlock_irqrestore(shost->host_lock, flags);
620 }
621
622 /*
623 * Function: scsi_run_queue()
624 *
625 * Purpose: Select a proper request queue to serve next
626 *
627 * Arguments: q - last request's queue
628 *
629 * Returns: Nothing
630 *
631 * Notes: The previous command was completely finished, start
632 * a new one if possible.
633 */
634 static void scsi_run_queue(struct request_queue *q)
635 {
636 struct scsi_device *sdev = q->queuedata;
637 struct Scsi_Host *shost = sdev->host;
638 unsigned long flags;
639
640 if (sdev->single_lun)
641 scsi_single_lun_run(sdev);
642
643 spin_lock_irqsave(shost->host_lock, flags);
644 while (!list_empty(&shost->starved_list) &&
645 !shost->host_blocked && !shost->host_self_blocked &&
646 !((shost->can_queue > 0) &&
647 (shost->host_busy >= shost->can_queue))) {
648 /*
649 * As long as shost is accepting commands and we have
650 * starved queues, call blk_run_queue. scsi_request_fn
651 * drops the queue_lock and can add us back to the
652 * starved_list.
653 *
654 * host_lock protects the starved_list and starved_entry.
655 * scsi_request_fn must get the host_lock before checking
656 * or modifying starved_list or starved_entry.
657 */
658 sdev = list_entry(shost->starved_list.next,
659 struct scsi_device, starved_entry);
660 list_del_init(&sdev->starved_entry);
661 spin_unlock_irqrestore(shost->host_lock, flags);
662
663 blk_run_queue(sdev->request_queue);
664
665 spin_lock_irqsave(shost->host_lock, flags);
666 if (unlikely(!list_empty(&sdev->starved_entry)))
667 /*
668 * sdev lost a race, and was put back on the
669 * starved list. This is unlikely but without this
670 * in theory we could loop forever.
671 */
672 break;
673 }
674 spin_unlock_irqrestore(shost->host_lock, flags);
675
676 blk_run_queue(q);
677 }
678
679 /*
680 * Function: scsi_requeue_command()
681 *
682 * Purpose: Handle post-processing of completed commands.
683 *
684 * Arguments: q - queue to operate on
685 * cmd - command that may need to be requeued.
686 *
687 * Returns: Nothing
688 *
689 * Notes: After command completion, there may be blocks left
690 * over which weren't finished by the previous command
691 * this can be for a number of reasons - the main one is
692 * I/O errors in the middle of the request, in which case
693 * we need to request the blocks that come after the bad
694 * sector.
695 * Notes: Upon return, cmd is a stale pointer.
696 */
697 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
698 {
699 struct request *req = cmd->request;
700 unsigned long flags;
701
702 scsi_unprep_request(req);
703 spin_lock_irqsave(q->queue_lock, flags);
704 blk_requeue_request(q, req);
705 spin_unlock_irqrestore(q->queue_lock, flags);
706
707 scsi_run_queue(q);
708 }
709
710 void scsi_next_command(struct scsi_cmnd *cmd)
711 {
712 struct scsi_device *sdev = cmd->device;
713 struct request_queue *q = sdev->request_queue;
714
715 /* need to hold a reference on the device before we let go of the cmd */
716 get_device(&sdev->sdev_gendev);
717
718 scsi_put_command(cmd);
719 scsi_run_queue(q);
720
721 /* ok to remove device now */
722 put_device(&sdev->sdev_gendev);
723 }
724
725 void scsi_run_host_queues(struct Scsi_Host *shost)
726 {
727 struct scsi_device *sdev;
728
729 shost_for_each_device(sdev, shost)
730 scsi_run_queue(sdev->request_queue);
731 }
732
733 /*
734 * Function: scsi_end_request()
735 *
736 * Purpose: Post-processing of completed commands (usually invoked at end
737 * of upper level post-processing and scsi_io_completion).
738 *
739 * Arguments: cmd - command that is complete.
740 * uptodate - 1 if I/O indicates success, <= 0 for I/O error.
741 * bytes - number of bytes of completed I/O
742 * requeue - indicates whether we should requeue leftovers.
743 *
744 * Lock status: Assumed that lock is not held upon entry.
745 *
746 * Returns: cmd if requeue required, NULL otherwise.
747 *
748 * Notes: This is called for block device requests in order to
749 * mark some number of sectors as complete.
750 *
751 * We are guaranteeing that the request queue will be goosed
752 * at some point during this call.
753 * Notes: If cmd was requeued, upon return it will be a stale pointer.
754 */
755 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
756 int bytes, int requeue)
757 {
758 request_queue_t *q = cmd->device->request_queue;
759 struct request *req = cmd->request;
760 unsigned long flags;
761
762 /*
763 * If there are blocks left over at the end, set up the command
764 * to queue the remainder of them.
765 */
766 if (end_that_request_chunk(req, uptodate, bytes)) {
767 int leftover = (req->hard_nr_sectors << 9);
768
769 if (blk_pc_request(req))
770 leftover = req->data_len;
771
772 /* kill remainder if no retrys */
773 if (!uptodate && blk_noretry_request(req))
774 end_that_request_chunk(req, 0, leftover);
775 else {
776 if (requeue) {
777 /*
778 * Bleah. Leftovers again. Stick the
779 * leftovers in the front of the
780 * queue, and goose the queue again.
781 */
782 scsi_requeue_command(q, cmd);
783 cmd = NULL;
784 }
785 return cmd;
786 }
787 }
788
789 add_disk_randomness(req->rq_disk);
790
791 spin_lock_irqsave(q->queue_lock, flags);
792 if (blk_rq_tagged(req))
793 blk_queue_end_tag(q, req);
794 end_that_request_last(req);
795 spin_unlock_irqrestore(q->queue_lock, flags);
796
797 /*
798 * This will goose the queue request function at the end, so we don't
799 * need to worry about launching another command.
800 */
801 scsi_next_command(cmd);
802 return NULL;
803 }
804
805 static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
806 {
807 struct scsi_host_sg_pool *sgp;
808 struct scatterlist *sgl;
809
810 BUG_ON(!cmd->use_sg);
811
812 switch (cmd->use_sg) {
813 case 1 ... 8:
814 cmd->sglist_len = 0;
815 break;
816 case 9 ... 16:
817 cmd->sglist_len = 1;
818 break;
819 case 17 ... 32:
820 cmd->sglist_len = 2;
821 break;
822 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
823 case 33 ... 64:
824 cmd->sglist_len = 3;
825 break;
826 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
827 case 65 ... 128:
828 cmd->sglist_len = 4;
829 break;
830 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
831 case 129 ... 256:
832 cmd->sglist_len = 5;
833 break;
834 #endif
835 #endif
836 #endif
837 default:
838 return NULL;
839 }
840
841 sgp = scsi_sg_pools + cmd->sglist_len;
842 sgl = mempool_alloc(sgp->pool, gfp_mask);
843 return sgl;
844 }
845
846 static void scsi_free_sgtable(struct scatterlist *sgl, int index)
847 {
848 struct scsi_host_sg_pool *sgp;
849
850 BUG_ON(index >= SG_MEMPOOL_NR);
851
852 sgp = scsi_sg_pools + index;
853 mempool_free(sgl, sgp->pool);
854 }
855
856 /*
857 * Function: scsi_release_buffers()
858 *
859 * Purpose: Completion processing for block device I/O requests.
860 *
861 * Arguments: cmd - command that we are bailing.
862 *
863 * Lock status: Assumed that no lock is held upon entry.
864 *
865 * Returns: Nothing
866 *
867 * Notes: In the event that an upper level driver rejects a
868 * command, we must release resources allocated during
869 * the __init_io() function. Primarily this would involve
870 * the scatter-gather table, and potentially any bounce
871 * buffers.
872 */
873 static void scsi_release_buffers(struct scsi_cmnd *cmd)
874 {
875 struct request *req = cmd->request;
876
877 /*
878 * Free up any indirection buffers we allocated for DMA purposes.
879 */
880 if (cmd->use_sg)
881 scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
882 else if (cmd->request_buffer != req->buffer)
883 kfree(cmd->request_buffer);
884
885 /*
886 * Zero these out. They now point to freed memory, and it is
887 * dangerous to hang onto the pointers.
888 */
889 cmd->buffer = NULL;
890 cmd->bufflen = 0;
891 cmd->request_buffer = NULL;
892 cmd->request_bufflen = 0;
893 }
894
895 /*
896 * Function: scsi_io_completion()
897 *
898 * Purpose: Completion processing for block device I/O requests.
899 *
900 * Arguments: cmd - command that is finished.
901 *
902 * Lock status: Assumed that no lock is held upon entry.
903 *
904 * Returns: Nothing
905 *
906 * Notes: This function is matched in terms of capabilities to
907 * the function that created the scatter-gather list.
908 * In other words, if there are no bounce buffers
909 * (the normal case for most drivers), we don't need
910 * the logic to deal with cleaning up afterwards.
911 *
912 * We must do one of several things here:
913 *
914 * a) Call scsi_end_request. This will finish off the
915 * specified number of sectors. If we are done, the
916 * command block will be released, and the queue
917 * function will be goosed. If we are not done, then
918 * scsi_end_request will directly goose the queue.
919 *
920 * b) We can just use scsi_requeue_command() here. This would
921 * be used if we just wanted to retry, for example.
922 */
923 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes,
924 unsigned int block_bytes)
925 {
926 int result = cmd->result;
927 int this_count = cmd->bufflen;
928 request_queue_t *q = cmd->device->request_queue;
929 struct request *req = cmd->request;
930 int clear_errors = 1;
931 struct scsi_sense_hdr sshdr;
932 int sense_valid = 0;
933 int sense_deferred = 0;
934
935 if (blk_complete_barrier_rq(q, req, good_bytes >> 9))
936 return;
937
938 /*
939 * Free up any indirection buffers we allocated for DMA purposes.
940 * For the case of a READ, we need to copy the data out of the
941 * bounce buffer and into the real buffer.
942 */
943 if (cmd->use_sg)
944 scsi_free_sgtable(cmd->buffer, cmd->sglist_len);
945 else if (cmd->buffer != req->buffer) {
946 if (rq_data_dir(req) == READ) {
947 unsigned long flags;
948 char *to = bio_kmap_irq(req->bio, &flags);
949 memcpy(to, cmd->buffer, cmd->bufflen);
950 bio_kunmap_irq(to, &flags);
951 }
952 kfree(cmd->buffer);
953 }
954
955 if (result) {
956 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
957 if (sense_valid)
958 sense_deferred = scsi_sense_is_deferred(&sshdr);
959 }
960 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
961 req->errors = result;
962 if (result) {
963 clear_errors = 0;
964 if (sense_valid && req->sense) {
965 /*
966 * SG_IO wants current and deferred errors
967 */
968 int len = 8 + cmd->sense_buffer[7];
969
970 if (len > SCSI_SENSE_BUFFERSIZE)
971 len = SCSI_SENSE_BUFFERSIZE;
972 memcpy(req->sense, cmd->sense_buffer, len);
973 req->sense_len = len;
974 }
975 } else
976 req->data_len = cmd->resid;
977 }
978
979 /*
980 * Zero these out. They now point to freed memory, and it is
981 * dangerous to hang onto the pointers.
982 */
983 cmd->buffer = NULL;
984 cmd->bufflen = 0;
985 cmd->request_buffer = NULL;
986 cmd->request_bufflen = 0;
987
988 /*
989 * Next deal with any sectors which we were able to correctly
990 * handle.
991 */
992 if (good_bytes >= 0) {
993 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, %d bytes done.\n",
994 req->nr_sectors, good_bytes));
995 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
996
997 if (clear_errors)
998 req->errors = 0;
999 /*
1000 * If multiple sectors are requested in one buffer, then
1001 * they will have been finished off by the first command.
1002 * If not, then we have a multi-buffer command.
1003 *
1004 * If block_bytes != 0, it means we had a medium error
1005 * of some sort, and that we want to mark some number of
1006 * sectors as not uptodate. Thus we want to inhibit
1007 * requeueing right here - we will requeue down below
1008 * when we handle the bad sectors.
1009 */
1010
1011 /*
1012 * If the command completed without error, then either
1013 * finish off the rest of the command, or start a new one.
1014 */
1015 if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
1016 return;
1017 }
1018 /*
1019 * Now, if we were good little boys and girls, Santa left us a request
1020 * sense buffer. We can extract information from this, so we
1021 * can choose a block to remap, etc.
1022 */
1023 if (sense_valid && !sense_deferred) {
1024 switch (sshdr.sense_key) {
1025 case UNIT_ATTENTION:
1026 if (cmd->device->removable) {
1027 /* detected disc change. set a bit
1028 * and quietly refuse further access.
1029 */
1030 cmd->device->changed = 1;
1031 scsi_end_request(cmd, 0,
1032 this_count, 1);
1033 return;
1034 } else {
1035 /*
1036 * Must have been a power glitch, or a
1037 * bus reset. Could not have been a
1038 * media change, so we just retry the
1039 * request and see what happens.
1040 */
1041 scsi_requeue_command(q, cmd);
1042 return;
1043 }
1044 break;
1045 case ILLEGAL_REQUEST:
1046 /*
1047 * If we had an ILLEGAL REQUEST returned, then we may
1048 * have performed an unsupported command. The only
1049 * thing this should be would be a ten byte read where
1050 * only a six byte read was supported. Also, on a
1051 * system where READ CAPACITY failed, we may have read
1052 * past the end of the disk.
1053 */
1054 if ((cmd->device->use_10_for_rw &&
1055 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
1056 (cmd->cmnd[0] == READ_10 ||
1057 cmd->cmnd[0] == WRITE_10)) {
1058 cmd->device->use_10_for_rw = 0;
1059 /*
1060 * This will cause a retry with a 6-byte
1061 * command.
1062 */
1063 scsi_requeue_command(q, cmd);
1064 result = 0;
1065 } else {
1066 scsi_end_request(cmd, 0, this_count, 1);
1067 return;
1068 }
1069 break;
1070 case NOT_READY:
1071 /*
1072 * If the device is in the process of becoming ready,
1073 * retry.
1074 */
1075 if (sshdr.asc == 0x04 && sshdr.ascq == 0x01) {
1076 scsi_requeue_command(q, cmd);
1077 return;
1078 }
1079 if (!(req->flags & REQ_QUIET))
1080 scmd_printk(KERN_INFO, cmd,
1081 "Device not ready.\n");
1082 scsi_end_request(cmd, 0, this_count, 1);
1083 return;
1084 case VOLUME_OVERFLOW:
1085 if (!(req->flags & REQ_QUIET)) {
1086 scmd_printk(KERN_INFO, cmd,
1087 "Volume overflow, CDB: ");
1088 __scsi_print_command(cmd->data_cmnd);
1089 scsi_print_sense("", cmd);
1090 }
1091 scsi_end_request(cmd, 0, block_bytes, 1);
1092 return;
1093 default:
1094 break;
1095 }
1096 } /* driver byte != 0 */
1097 if (host_byte(result) == DID_RESET) {
1098 /*
1099 * Third party bus reset or reset for error
1100 * recovery reasons. Just retry the request
1101 * and see what happens.
1102 */
1103 scsi_requeue_command(q, cmd);
1104 return;
1105 }
1106 if (result) {
1107 if (!(req->flags & REQ_QUIET)) {
1108 scmd_printk(KERN_INFO, cmd,
1109 "SCSI error: return code = 0x%x\n", result);
1110
1111 if (driver_byte(result) & DRIVER_SENSE)
1112 scsi_print_sense("", cmd);
1113 }
1114 /*
1115 * Mark a single buffer as not uptodate. Queue the remainder.
1116 * We sometimes get this cruft in the event that a medium error
1117 * isn't properly reported.
1118 */
1119 block_bytes = req->hard_cur_sectors << 9;
1120 if (!block_bytes)
1121 block_bytes = req->data_len;
1122 scsi_end_request(cmd, 0, block_bytes, 1);
1123 }
1124 }
1125 EXPORT_SYMBOL(scsi_io_completion);
1126
1127 /*
1128 * Function: scsi_init_io()
1129 *
1130 * Purpose: SCSI I/O initialize function.
1131 *
1132 * Arguments: cmd - Command descriptor we wish to initialize
1133 *
1134 * Returns: 0 on success
1135 * BLKPREP_DEFER if the failure is retryable
1136 * BLKPREP_KILL if the failure is fatal
1137 */
1138 static int scsi_init_io(struct scsi_cmnd *cmd)
1139 {
1140 struct request *req = cmd->request;
1141 struct scatterlist *sgpnt;
1142 int count;
1143
1144 /*
1145 * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
1146 */
1147 if ((req->flags & REQ_BLOCK_PC) && !req->bio) {
1148 cmd->request_bufflen = req->data_len;
1149 cmd->request_buffer = req->data;
1150 req->buffer = req->data;
1151 cmd->use_sg = 0;
1152 return 0;
1153 }
1154
1155 /*
1156 * we used to not use scatter-gather for single segment request,
1157 * but now we do (it makes highmem I/O easier to support without
1158 * kmapping pages)
1159 */
1160 cmd->use_sg = req->nr_phys_segments;
1161
1162 /*
1163 * if sg table allocation fails, requeue request later.
1164 */
1165 sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1166 if (unlikely(!sgpnt)) {
1167 scsi_unprep_request(req);
1168 return BLKPREP_DEFER;
1169 }
1170
1171 cmd->request_buffer = (char *) sgpnt;
1172 cmd->request_bufflen = req->nr_sectors << 9;
1173 if (blk_pc_request(req))
1174 cmd->request_bufflen = req->data_len;
1175 req->buffer = NULL;
1176
1177 /*
1178 * Next, walk the list, and fill in the addresses and sizes of
1179 * each segment.
1180 */
1181 count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1182
1183 /*
1184 * mapped well, send it off
1185 */
1186 if (likely(count <= cmd->use_sg)) {
1187 cmd->use_sg = count;
1188 return 0;
1189 }
1190
1191 printk(KERN_ERR "Incorrect number of segments after building list\n");
1192 printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1193 printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1194 req->current_nr_sectors);
1195
1196 /* release the command and kill it */
1197 scsi_release_buffers(cmd);
1198 scsi_put_command(cmd);
1199 return BLKPREP_KILL;
1200 }
1201
1202 static int scsi_prepare_flush_fn(request_queue_t *q, struct request *rq)
1203 {
1204 struct scsi_device *sdev = q->queuedata;
1205 struct scsi_driver *drv;
1206
1207 if (sdev->sdev_state == SDEV_RUNNING) {
1208 drv = *(struct scsi_driver **) rq->rq_disk->private_data;
1209
1210 if (drv->prepare_flush)
1211 return drv->prepare_flush(q, rq);
1212 }
1213
1214 return 0;
1215 }
1216
1217 static void scsi_end_flush_fn(request_queue_t *q, struct request *rq)
1218 {
1219 struct scsi_device *sdev = q->queuedata;
1220 struct request *flush_rq = rq->end_io_data;
1221 struct scsi_driver *drv;
1222
1223 if (flush_rq->errors) {
1224 printk("scsi: barrier error, disabling flush support\n");
1225 blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1226 }
1227
1228 if (sdev->sdev_state == SDEV_RUNNING) {
1229 drv = *(struct scsi_driver **) rq->rq_disk->private_data;
1230 drv->end_flush(q, rq);
1231 }
1232 }
1233
1234 static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1235 sector_t *error_sector)
1236 {
1237 struct scsi_device *sdev = q->queuedata;
1238 struct scsi_driver *drv;
1239
1240 if (sdev->sdev_state != SDEV_RUNNING)
1241 return -ENXIO;
1242
1243 drv = *(struct scsi_driver **) disk->private_data;
1244 if (drv->issue_flush)
1245 return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1246
1247 return -EOPNOTSUPP;
1248 }
1249
1250 static void scsi_generic_done(struct scsi_cmnd *cmd)
1251 {
1252 BUG_ON(!blk_pc_request(cmd->request));
1253 /*
1254 * This will complete the whole command with uptodate=1 so
1255 * as far as the block layer is concerned the command completed
1256 * successfully. Since this is a REQ_BLOCK_PC command the
1257 * caller should check the request's errors value
1258 */
1259 scsi_io_completion(cmd, cmd->bufflen, 0);
1260 }
1261
1262 void scsi_setup_blk_pc_cmnd(struct scsi_cmnd *cmd)
1263 {
1264 struct request *req = cmd->request;
1265
1266 BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1267 memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1268 cmd->cmd_len = req->cmd_len;
1269 if (!req->data_len)
1270 cmd->sc_data_direction = DMA_NONE;
1271 else if (rq_data_dir(req) == WRITE)
1272 cmd->sc_data_direction = DMA_TO_DEVICE;
1273 else
1274 cmd->sc_data_direction = DMA_FROM_DEVICE;
1275
1276 cmd->transfersize = req->data_len;
1277 cmd->allowed = req->retries;
1278 cmd->timeout_per_command = req->timeout;
1279 }
1280 EXPORT_SYMBOL_GPL(scsi_setup_blk_pc_cmnd);
1281
1282 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1283 {
1284 struct scsi_device *sdev = q->queuedata;
1285 struct scsi_cmnd *cmd;
1286 int specials_only = 0;
1287
1288 /*
1289 * Just check to see if the device is online. If it isn't, we
1290 * refuse to process any commands. The device must be brought
1291 * online before trying any recovery commands
1292 */
1293 if (unlikely(!scsi_device_online(sdev))) {
1294 sdev_printk(KERN_ERR, sdev,
1295 "rejecting I/O to offline device\n");
1296 goto kill;
1297 }
1298 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1299 /* OK, we're not in a running state don't prep
1300 * user commands */
1301 if (sdev->sdev_state == SDEV_DEL) {
1302 /* Device is fully deleted, no commands
1303 * at all allowed down */
1304 sdev_printk(KERN_ERR, sdev,
1305 "rejecting I/O to dead device\n");
1306 goto kill;
1307 }
1308 /* OK, we only allow special commands (i.e. not
1309 * user initiated ones */
1310 specials_only = sdev->sdev_state;
1311 }
1312
1313 /*
1314 * Find the actual device driver associated with this command.
1315 * The SPECIAL requests are things like character device or
1316 * ioctls, which did not originate from ll_rw_blk. Note that
1317 * the special field is also used to indicate the cmd for
1318 * the remainder of a partially fulfilled request that can
1319 * come up when there is a medium error. We have to treat
1320 * these two cases differently. We differentiate by looking
1321 * at request->cmd, as this tells us the real story.
1322 */
1323 if (req->flags & REQ_SPECIAL && req->special) {
1324 struct scsi_request *sreq = req->special;
1325
1326 if (sreq->sr_magic == SCSI_REQ_MAGIC) {
1327 cmd = scsi_get_command(sreq->sr_device, GFP_ATOMIC);
1328 if (unlikely(!cmd))
1329 goto defer;
1330 scsi_init_cmd_from_req(cmd, sreq);
1331 } else
1332 cmd = req->special;
1333 } else if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1334
1335 if(unlikely(specials_only) && !(req->flags & REQ_SPECIAL)) {
1336 if(specials_only == SDEV_QUIESCE ||
1337 specials_only == SDEV_BLOCK)
1338 goto defer;
1339
1340 sdev_printk(KERN_ERR, sdev,
1341 "rejecting I/O to device being removed\n");
1342 goto kill;
1343 }
1344
1345
1346 /*
1347 * Now try and find a command block that we can use.
1348 */
1349 if (!req->special) {
1350 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1351 if (unlikely(!cmd))
1352 goto defer;
1353 } else
1354 cmd = req->special;
1355
1356 /* pull a tag out of the request if we have one */
1357 cmd->tag = req->tag;
1358 } else {
1359 blk_dump_rq_flags(req, "SCSI bad req");
1360 goto kill;
1361 }
1362
1363 /* note the overloading of req->special. When the tag
1364 * is active it always means cmd. If the tag goes
1365 * back for re-queueing, it may be reset */
1366 req->special = cmd;
1367 cmd->request = req;
1368
1369 /*
1370 * FIXME: drop the lock here because the functions below
1371 * expect to be called without the queue lock held. Also,
1372 * previously, we dequeued the request before dropping the
1373 * lock. We hope REQ_STARTED prevents anything untoward from
1374 * happening now.
1375 */
1376 if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1377 struct scsi_driver *drv;
1378 int ret;
1379
1380 /*
1381 * This will do a couple of things:
1382 * 1) Fill in the actual SCSI command.
1383 * 2) Fill in any other upper-level specific fields
1384 * (timeout).
1385 *
1386 * If this returns 0, it means that the request failed
1387 * (reading past end of disk, reading offline device,
1388 * etc). This won't actually talk to the device, but
1389 * some kinds of consistency checking may cause the
1390 * request to be rejected immediately.
1391 */
1392
1393 /*
1394 * This sets up the scatter-gather table (allocating if
1395 * required).
1396 */
1397 ret = scsi_init_io(cmd);
1398 switch(ret) {
1399 /* For BLKPREP_KILL/DEFER the cmd was released */
1400 case BLKPREP_KILL:
1401 goto kill;
1402 case BLKPREP_DEFER:
1403 goto defer;
1404 }
1405
1406 /*
1407 * Initialize the actual SCSI command for this request.
1408 */
1409 if (req->rq_disk) {
1410 drv = *(struct scsi_driver **)req->rq_disk->private_data;
1411 if (unlikely(!drv->init_command(cmd))) {
1412 scsi_release_buffers(cmd);
1413 scsi_put_command(cmd);
1414 goto kill;
1415 }
1416 } else {
1417 scsi_setup_blk_pc_cmnd(cmd);
1418 cmd->done = scsi_generic_done;
1419 }
1420 }
1421
1422 /*
1423 * The request is now prepped, no need to come back here
1424 */
1425 req->flags |= REQ_DONTPREP;
1426 return BLKPREP_OK;
1427
1428 defer:
1429 /* If we defer, the elv_next_request() returns NULL, but the
1430 * queue must be restarted, so we plug here if no returning
1431 * command will automatically do that. */
1432 if (sdev->device_busy == 0)
1433 blk_plug_device(q);
1434 return BLKPREP_DEFER;
1435 kill:
1436 req->errors = DID_NO_CONNECT << 16;
1437 return BLKPREP_KILL;
1438 }
1439
1440 /*
1441 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1442 * return 0.
1443 *
1444 * Called with the queue_lock held.
1445 */
1446 static inline int scsi_dev_queue_ready(struct request_queue *q,
1447 struct scsi_device *sdev)
1448 {
1449 if (sdev->device_busy >= sdev->queue_depth)
1450 return 0;
1451 if (sdev->device_busy == 0 && sdev->device_blocked) {
1452 /*
1453 * unblock after device_blocked iterates to zero
1454 */
1455 if (--sdev->device_blocked == 0) {
1456 SCSI_LOG_MLQUEUE(3,
1457 sdev_printk(KERN_INFO, sdev,
1458 "unblocking device at zero depth\n"));
1459 } else {
1460 blk_plug_device(q);
1461 return 0;
1462 }
1463 }
1464 if (sdev->device_blocked)
1465 return 0;
1466
1467 return 1;
1468 }
1469
1470 /*
1471 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1472 * return 0. We must end up running the queue again whenever 0 is
1473 * returned, else IO can hang.
1474 *
1475 * Called with host_lock held.
1476 */
1477 static inline int scsi_host_queue_ready(struct request_queue *q,
1478 struct Scsi_Host *shost,
1479 struct scsi_device *sdev)
1480 {
1481 if (scsi_host_in_recovery(shost))
1482 return 0;
1483 if (shost->host_busy == 0 && shost->host_blocked) {
1484 /*
1485 * unblock after host_blocked iterates to zero
1486 */
1487 if (--shost->host_blocked == 0) {
1488 SCSI_LOG_MLQUEUE(3,
1489 printk("scsi%d unblocking host at zero depth\n",
1490 shost->host_no));
1491 } else {
1492 blk_plug_device(q);
1493 return 0;
1494 }
1495 }
1496 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1497 shost->host_blocked || shost->host_self_blocked) {
1498 if (list_empty(&sdev->starved_entry))
1499 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1500 return 0;
1501 }
1502
1503 /* We're OK to process the command, so we can't be starved */
1504 if (!list_empty(&sdev->starved_entry))
1505 list_del_init(&sdev->starved_entry);
1506
1507 return 1;
1508 }
1509
1510 /*
1511 * Kill a request for a dead device
1512 */
1513 static void scsi_kill_request(struct request *req, request_queue_t *q)
1514 {
1515 struct scsi_cmnd *cmd = req->special;
1516
1517 blkdev_dequeue_request(req);
1518
1519 if (unlikely(cmd == NULL)) {
1520 printk(KERN_CRIT "impossible request in %s.\n",
1521 __FUNCTION__);
1522 BUG();
1523 }
1524
1525 scsi_init_cmd_errh(cmd);
1526 cmd->result = DID_NO_CONNECT << 16;
1527 atomic_inc(&cmd->device->iorequest_cnt);
1528 __scsi_done(cmd);
1529 }
1530
1531 /*
1532 * Function: scsi_request_fn()
1533 *
1534 * Purpose: Main strategy routine for SCSI.
1535 *
1536 * Arguments: q - Pointer to actual queue.
1537 *
1538 * Returns: Nothing
1539 *
1540 * Lock status: IO request lock assumed to be held when called.
1541 */
1542 static void scsi_request_fn(struct request_queue *q)
1543 {
1544 struct scsi_device *sdev = q->queuedata;
1545 struct Scsi_Host *shost;
1546 struct scsi_cmnd *cmd;
1547 struct request *req;
1548
1549 if (!sdev) {
1550 printk("scsi: killing requests for dead queue\n");
1551 while ((req = elv_next_request(q)) != NULL)
1552 scsi_kill_request(req, q);
1553 return;
1554 }
1555
1556 if(!get_device(&sdev->sdev_gendev))
1557 /* We must be tearing the block queue down already */
1558 return;
1559
1560 /*
1561 * To start with, we keep looping until the queue is empty, or until
1562 * the host is no longer able to accept any more requests.
1563 */
1564 shost = sdev->host;
1565 while (!blk_queue_plugged(q)) {
1566 int rtn;
1567 /*
1568 * get next queueable request. We do this early to make sure
1569 * that the request is fully prepared even if we cannot
1570 * accept it.
1571 */
1572 req = elv_next_request(q);
1573 if (!req || !scsi_dev_queue_ready(q, sdev))
1574 break;
1575
1576 if (unlikely(!scsi_device_online(sdev))) {
1577 sdev_printk(KERN_ERR, sdev,
1578 "rejecting I/O to offline device\n");
1579 scsi_kill_request(req, q);
1580 continue;
1581 }
1582
1583
1584 /*
1585 * Remove the request from the request list.
1586 */
1587 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1588 blkdev_dequeue_request(req);
1589 sdev->device_busy++;
1590
1591 spin_unlock(q->queue_lock);
1592 cmd = req->special;
1593 if (unlikely(cmd == NULL)) {
1594 printk(KERN_CRIT "impossible request in %s.\n"
1595 "please mail a stack trace to "
1596 "linux-scsi@vger.kernel.org",
1597 __FUNCTION__);
1598 BUG();
1599 }
1600 spin_lock(shost->host_lock);
1601
1602 if (!scsi_host_queue_ready(q, shost, sdev))
1603 goto not_ready;
1604 if (sdev->single_lun) {
1605 if (scsi_target(sdev)->starget_sdev_user &&
1606 scsi_target(sdev)->starget_sdev_user != sdev)
1607 goto not_ready;
1608 scsi_target(sdev)->starget_sdev_user = sdev;
1609 }
1610 shost->host_busy++;
1611
1612 /*
1613 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1614 * take the lock again.
1615 */
1616 spin_unlock_irq(shost->host_lock);
1617
1618 /*
1619 * Finally, initialize any error handling parameters, and set up
1620 * the timers for timeouts.
1621 */
1622 scsi_init_cmd_errh(cmd);
1623
1624 /*
1625 * Dispatch the command to the low-level driver.
1626 */
1627 rtn = scsi_dispatch_cmd(cmd);
1628 spin_lock_irq(q->queue_lock);
1629 if(rtn) {
1630 /* we're refusing the command; because of
1631 * the way locks get dropped, we need to
1632 * check here if plugging is required */
1633 if(sdev->device_busy == 0)
1634 blk_plug_device(q);
1635
1636 break;
1637 }
1638 }
1639
1640 goto out;
1641
1642 not_ready:
1643 spin_unlock_irq(shost->host_lock);
1644
1645 /*
1646 * lock q, handle tag, requeue req, and decrement device_busy. We
1647 * must return with queue_lock held.
1648 *
1649 * Decrementing device_busy without checking it is OK, as all such
1650 * cases (host limits or settings) should run the queue at some
1651 * later time.
1652 */
1653 spin_lock_irq(q->queue_lock);
1654 blk_requeue_request(q, req);
1655 sdev->device_busy--;
1656 if(sdev->device_busy == 0)
1657 blk_plug_device(q);
1658 out:
1659 /* must be careful here...if we trigger the ->remove() function
1660 * we cannot be holding the q lock */
1661 spin_unlock_irq(q->queue_lock);
1662 put_device(&sdev->sdev_gendev);
1663 spin_lock_irq(q->queue_lock);
1664 }
1665
1666 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1667 {
1668 struct device *host_dev;
1669 u64 bounce_limit = 0xffffffff;
1670
1671 if (shost->unchecked_isa_dma)
1672 return BLK_BOUNCE_ISA;
1673 /*
1674 * Platforms with virtual-DMA translation
1675 * hardware have no practical limit.
1676 */
1677 if (!PCI_DMA_BUS_IS_PHYS)
1678 return BLK_BOUNCE_ANY;
1679
1680 host_dev = scsi_get_device(shost);
1681 if (host_dev && host_dev->dma_mask)
1682 bounce_limit = *host_dev->dma_mask;
1683
1684 return bounce_limit;
1685 }
1686 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1687
1688 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1689 {
1690 struct Scsi_Host *shost = sdev->host;
1691 struct request_queue *q;
1692
1693 q = blk_init_queue(scsi_request_fn, NULL);
1694 if (!q)
1695 return NULL;
1696
1697 blk_queue_prep_rq(q, scsi_prep_fn);
1698
1699 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1700 blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1701 blk_queue_max_sectors(q, shost->max_sectors);
1702 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1703 blk_queue_segment_boundary(q, shost->dma_boundary);
1704 blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1705
1706 /*
1707 * ordered tags are superior to flush ordering
1708 */
1709 if (shost->ordered_tag)
1710 blk_queue_ordered(q, QUEUE_ORDERED_TAG);
1711 else if (shost->ordered_flush) {
1712 blk_queue_ordered(q, QUEUE_ORDERED_FLUSH);
1713 q->prepare_flush_fn = scsi_prepare_flush_fn;
1714 q->end_flush_fn = scsi_end_flush_fn;
1715 }
1716
1717 if (!shost->use_clustering)
1718 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1719 return q;
1720 }
1721
1722 void scsi_free_queue(struct request_queue *q)
1723 {
1724 blk_cleanup_queue(q);
1725 }
1726
1727 /*
1728 * Function: scsi_block_requests()
1729 *
1730 * Purpose: Utility function used by low-level drivers to prevent further
1731 * commands from being queued to the device.
1732 *
1733 * Arguments: shost - Host in question
1734 *
1735 * Returns: Nothing
1736 *
1737 * Lock status: No locks are assumed held.
1738 *
1739 * Notes: There is no timer nor any other means by which the requests
1740 * get unblocked other than the low-level driver calling
1741 * scsi_unblock_requests().
1742 */
1743 void scsi_block_requests(struct Scsi_Host *shost)
1744 {
1745 shost->host_self_blocked = 1;
1746 }
1747 EXPORT_SYMBOL(scsi_block_requests);
1748
1749 /*
1750 * Function: scsi_unblock_requests()
1751 *
1752 * Purpose: Utility function used by low-level drivers to allow further
1753 * commands from being queued to the device.
1754 *
1755 * Arguments: shost - Host in question
1756 *
1757 * Returns: Nothing
1758 *
1759 * Lock status: No locks are assumed held.
1760 *
1761 * Notes: There is no timer nor any other means by which the requests
1762 * get unblocked other than the low-level driver calling
1763 * scsi_unblock_requests().
1764 *
1765 * This is done as an API function so that changes to the
1766 * internals of the scsi mid-layer won't require wholesale
1767 * changes to drivers that use this feature.
1768 */
1769 void scsi_unblock_requests(struct Scsi_Host *shost)
1770 {
1771 shost->host_self_blocked = 0;
1772 scsi_run_host_queues(shost);
1773 }
1774 EXPORT_SYMBOL(scsi_unblock_requests);
1775
1776 int __init scsi_init_queue(void)
1777 {
1778 int i;
1779
1780 scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1781 sizeof(struct scsi_io_context),
1782 0, 0, NULL, NULL);
1783 if (!scsi_io_context_cache) {
1784 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1785 return -ENOMEM;
1786 }
1787
1788 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1789 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1790 int size = sgp->size * sizeof(struct scatterlist);
1791
1792 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1793 SLAB_HWCACHE_ALIGN, NULL, NULL);
1794 if (!sgp->slab) {
1795 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1796 sgp->name);
1797 }
1798
1799 sgp->pool = mempool_create(SG_MEMPOOL_SIZE,
1800 mempool_alloc_slab, mempool_free_slab,
1801 sgp->slab);
1802 if (!sgp->pool) {
1803 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1804 sgp->name);
1805 }
1806 }
1807
1808 return 0;
1809 }
1810
1811 void scsi_exit_queue(void)
1812 {
1813 int i;
1814
1815 kmem_cache_destroy(scsi_io_context_cache);
1816
1817 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1818 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1819 mempool_destroy(sgp->pool);
1820 kmem_cache_destroy(sgp->slab);
1821 }
1822 }
1823 /**
1824 * scsi_mode_sense - issue a mode sense, falling back from 10 to
1825 * six bytes if necessary.
1826 * @sdev: SCSI device to be queried
1827 * @dbd: set if mode sense will allow block descriptors to be returned
1828 * @modepage: mode page being requested
1829 * @buffer: request buffer (may not be smaller than eight bytes)
1830 * @len: length of request buffer.
1831 * @timeout: command timeout
1832 * @retries: number of retries before failing
1833 * @data: returns a structure abstracting the mode header data
1834 * @sense: place to put sense data (or NULL if no sense to be collected).
1835 * must be SCSI_SENSE_BUFFERSIZE big.
1836 *
1837 * Returns zero if unsuccessful, or the header offset (either 4
1838 * or 8 depending on whether a six or ten byte command was
1839 * issued) if successful.
1840 **/
1841 int
1842 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1843 unsigned char *buffer, int len, int timeout, int retries,
1844 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr) {
1845 unsigned char cmd[12];
1846 int use_10_for_ms;
1847 int header_length;
1848 int result;
1849 struct scsi_sense_hdr my_sshdr;
1850
1851 memset(data, 0, sizeof(*data));
1852 memset(&cmd[0], 0, 12);
1853 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1854 cmd[2] = modepage;
1855
1856 /* caller might not be interested in sense, but we need it */
1857 if (!sshdr)
1858 sshdr = &my_sshdr;
1859
1860 retry:
1861 use_10_for_ms = sdev->use_10_for_ms;
1862
1863 if (use_10_for_ms) {
1864 if (len < 8)
1865 len = 8;
1866
1867 cmd[0] = MODE_SENSE_10;
1868 cmd[8] = len;
1869 header_length = 8;
1870 } else {
1871 if (len < 4)
1872 len = 4;
1873
1874 cmd[0] = MODE_SENSE;
1875 cmd[4] = len;
1876 header_length = 4;
1877 }
1878
1879 memset(buffer, 0, len);
1880
1881 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1882 sshdr, timeout, retries);
1883
1884 /* This code looks awful: what it's doing is making sure an
1885 * ILLEGAL REQUEST sense return identifies the actual command
1886 * byte as the problem. MODE_SENSE commands can return
1887 * ILLEGAL REQUEST if the code page isn't supported */
1888
1889 if (use_10_for_ms && !scsi_status_is_good(result) &&
1890 (driver_byte(result) & DRIVER_SENSE)) {
1891 if (scsi_sense_valid(sshdr)) {
1892 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1893 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1894 /*
1895 * Invalid command operation code
1896 */
1897 sdev->use_10_for_ms = 0;
1898 goto retry;
1899 }
1900 }
1901 }
1902
1903 if(scsi_status_is_good(result)) {
1904 data->header_length = header_length;
1905 if(use_10_for_ms) {
1906 data->length = buffer[0]*256 + buffer[1] + 2;
1907 data->medium_type = buffer[2];
1908 data->device_specific = buffer[3];
1909 data->longlba = buffer[4] & 0x01;
1910 data->block_descriptor_length = buffer[6]*256
1911 + buffer[7];
1912 } else {
1913 data->length = buffer[0] + 1;
1914 data->medium_type = buffer[1];
1915 data->device_specific = buffer[2];
1916 data->block_descriptor_length = buffer[3];
1917 }
1918 }
1919
1920 return result;
1921 }
1922 EXPORT_SYMBOL(scsi_mode_sense);
1923
1924 int
1925 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1926 {
1927 char cmd[] = {
1928 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1929 };
1930 struct scsi_sense_hdr sshdr;
1931 int result;
1932
1933 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1934 timeout, retries);
1935
1936 if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1937
1938 if ((scsi_sense_valid(&sshdr)) &&
1939 ((sshdr.sense_key == UNIT_ATTENTION) ||
1940 (sshdr.sense_key == NOT_READY))) {
1941 sdev->changed = 1;
1942 result = 0;
1943 }
1944 }
1945 return result;
1946 }
1947 EXPORT_SYMBOL(scsi_test_unit_ready);
1948
1949 /**
1950 * scsi_device_set_state - Take the given device through the device
1951 * state model.
1952 * @sdev: scsi device to change the state of.
1953 * @state: state to change to.
1954 *
1955 * Returns zero if unsuccessful or an error if the requested
1956 * transition is illegal.
1957 **/
1958 int
1959 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1960 {
1961 enum scsi_device_state oldstate = sdev->sdev_state;
1962
1963 if (state == oldstate)
1964 return 0;
1965
1966 switch (state) {
1967 case SDEV_CREATED:
1968 /* There are no legal states that come back to
1969 * created. This is the manually initialised start
1970 * state */
1971 goto illegal;
1972
1973 case SDEV_RUNNING:
1974 switch (oldstate) {
1975 case SDEV_CREATED:
1976 case SDEV_OFFLINE:
1977 case SDEV_QUIESCE:
1978 case SDEV_BLOCK:
1979 break;
1980 default:
1981 goto illegal;
1982 }
1983 break;
1984
1985 case SDEV_QUIESCE:
1986 switch (oldstate) {
1987 case SDEV_RUNNING:
1988 case SDEV_OFFLINE:
1989 break;
1990 default:
1991 goto illegal;
1992 }
1993 break;
1994
1995 case SDEV_OFFLINE:
1996 switch (oldstate) {
1997 case SDEV_CREATED:
1998 case SDEV_RUNNING:
1999 case SDEV_QUIESCE:
2000 case SDEV_BLOCK:
2001 break;
2002 default:
2003 goto illegal;
2004 }
2005 break;
2006
2007 case SDEV_BLOCK:
2008 switch (oldstate) {
2009 case SDEV_CREATED:
2010 case SDEV_RUNNING:
2011 break;
2012 default:
2013 goto illegal;
2014 }
2015 break;
2016
2017 case SDEV_CANCEL:
2018 switch (oldstate) {
2019 case SDEV_CREATED:
2020 case SDEV_RUNNING:
2021 case SDEV_OFFLINE:
2022 case SDEV_BLOCK:
2023 break;
2024 default:
2025 goto illegal;
2026 }
2027 break;
2028
2029 case SDEV_DEL:
2030 switch (oldstate) {
2031 case SDEV_CANCEL:
2032 break;
2033 default:
2034 goto illegal;
2035 }
2036 break;
2037
2038 }
2039 sdev->sdev_state = state;
2040 return 0;
2041
2042 illegal:
2043 SCSI_LOG_ERROR_RECOVERY(1,
2044 sdev_printk(KERN_ERR, sdev,
2045 "Illegal state transition %s->%s\n",
2046 scsi_device_state_name(oldstate),
2047 scsi_device_state_name(state))
2048 );
2049 return -EINVAL;
2050 }
2051 EXPORT_SYMBOL(scsi_device_set_state);
2052
2053 /**
2054 * scsi_device_quiesce - Block user issued commands.
2055 * @sdev: scsi device to quiesce.
2056 *
2057 * This works by trying to transition to the SDEV_QUIESCE state
2058 * (which must be a legal transition). When the device is in this
2059 * state, only special requests will be accepted, all others will
2060 * be deferred. Since special requests may also be requeued requests,
2061 * a successful return doesn't guarantee the device will be
2062 * totally quiescent.
2063 *
2064 * Must be called with user context, may sleep.
2065 *
2066 * Returns zero if unsuccessful or an error if not.
2067 **/
2068 int
2069 scsi_device_quiesce(struct scsi_device *sdev)
2070 {
2071 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2072 if (err)
2073 return err;
2074
2075 scsi_run_queue(sdev->request_queue);
2076 while (sdev->device_busy) {
2077 msleep_interruptible(200);
2078 scsi_run_queue(sdev->request_queue);
2079 }
2080 return 0;
2081 }
2082 EXPORT_SYMBOL(scsi_device_quiesce);
2083
2084 /**
2085 * scsi_device_resume - Restart user issued commands to a quiesced device.
2086 * @sdev: scsi device to resume.
2087 *
2088 * Moves the device from quiesced back to running and restarts the
2089 * queues.
2090 *
2091 * Must be called with user context, may sleep.
2092 **/
2093 void
2094 scsi_device_resume(struct scsi_device *sdev)
2095 {
2096 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2097 return;
2098 scsi_run_queue(sdev->request_queue);
2099 }
2100 EXPORT_SYMBOL(scsi_device_resume);
2101
2102 static void
2103 device_quiesce_fn(struct scsi_device *sdev, void *data)
2104 {
2105 scsi_device_quiesce(sdev);
2106 }
2107
2108 void
2109 scsi_target_quiesce(struct scsi_target *starget)
2110 {
2111 starget_for_each_device(starget, NULL, device_quiesce_fn);
2112 }
2113 EXPORT_SYMBOL(scsi_target_quiesce);
2114
2115 static void
2116 device_resume_fn(struct scsi_device *sdev, void *data)
2117 {
2118 scsi_device_resume(sdev);
2119 }
2120
2121 void
2122 scsi_target_resume(struct scsi_target *starget)
2123 {
2124 starget_for_each_device(starget, NULL, device_resume_fn);
2125 }
2126 EXPORT_SYMBOL(scsi_target_resume);
2127
2128 /**
2129 * scsi_internal_device_block - internal function to put a device
2130 * temporarily into the SDEV_BLOCK state
2131 * @sdev: device to block
2132 *
2133 * Block request made by scsi lld's to temporarily stop all
2134 * scsi commands on the specified device. Called from interrupt
2135 * or normal process context.
2136 *
2137 * Returns zero if successful or error if not
2138 *
2139 * Notes:
2140 * This routine transitions the device to the SDEV_BLOCK state
2141 * (which must be a legal transition). When the device is in this
2142 * state, all commands are deferred until the scsi lld reenables
2143 * the device with scsi_device_unblock or device_block_tmo fires.
2144 * This routine assumes the host_lock is held on entry.
2145 **/
2146 int
2147 scsi_internal_device_block(struct scsi_device *sdev)
2148 {
2149 request_queue_t *q = sdev->request_queue;
2150 unsigned long flags;
2151 int err = 0;
2152
2153 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2154 if (err)
2155 return err;
2156
2157 /*
2158 * The device has transitioned to SDEV_BLOCK. Stop the
2159 * block layer from calling the midlayer with this device's
2160 * request queue.
2161 */
2162 spin_lock_irqsave(q->queue_lock, flags);
2163 blk_stop_queue(q);
2164 spin_unlock_irqrestore(q->queue_lock, flags);
2165
2166 return 0;
2167 }
2168 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2169
2170 /**
2171 * scsi_internal_device_unblock - resume a device after a block request
2172 * @sdev: device to resume
2173 *
2174 * Called by scsi lld's or the midlayer to restart the device queue
2175 * for the previously suspended scsi device. Called from interrupt or
2176 * normal process context.
2177 *
2178 * Returns zero if successful or error if not.
2179 *
2180 * Notes:
2181 * This routine transitions the device to the SDEV_RUNNING state
2182 * (which must be a legal transition) allowing the midlayer to
2183 * goose the queue for this device. This routine assumes the
2184 * host_lock is held upon entry.
2185 **/
2186 int
2187 scsi_internal_device_unblock(struct scsi_device *sdev)
2188 {
2189 request_queue_t *q = sdev->request_queue;
2190 int err;
2191 unsigned long flags;
2192
2193 /*
2194 * Try to transition the scsi device to SDEV_RUNNING
2195 * and goose the device queue if successful.
2196 */
2197 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2198 if (err)
2199 return err;
2200
2201 spin_lock_irqsave(q->queue_lock, flags);
2202 blk_start_queue(q);
2203 spin_unlock_irqrestore(q->queue_lock, flags);
2204
2205 return 0;
2206 }
2207 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2208
2209 static void
2210 device_block(struct scsi_device *sdev, void *data)
2211 {
2212 scsi_internal_device_block(sdev);
2213 }
2214
2215 static int
2216 target_block(struct device *dev, void *data)
2217 {
2218 if (scsi_is_target_device(dev))
2219 starget_for_each_device(to_scsi_target(dev), NULL,
2220 device_block);
2221 return 0;
2222 }
2223
2224 void
2225 scsi_target_block(struct device *dev)
2226 {
2227 if (scsi_is_target_device(dev))
2228 starget_for_each_device(to_scsi_target(dev), NULL,
2229 device_block);
2230 else
2231 device_for_each_child(dev, NULL, target_block);
2232 }
2233 EXPORT_SYMBOL_GPL(scsi_target_block);
2234
2235 static void
2236 device_unblock(struct scsi_device *sdev, void *data)
2237 {
2238 scsi_internal_device_unblock(sdev);
2239 }
2240
2241 static int
2242 target_unblock(struct device *dev, void *data)
2243 {
2244 if (scsi_is_target_device(dev))
2245 starget_for_each_device(to_scsi_target(dev), NULL,
2246 device_unblock);
2247 return 0;
2248 }
2249
2250 void
2251 scsi_target_unblock(struct device *dev)
2252 {
2253 if (scsi_is_target_device(dev))
2254 starget_for_each_device(to_scsi_target(dev), NULL,
2255 device_unblock);
2256 else
2257 device_for_each_child(dev, NULL, target_unblock);
2258 }
2259 EXPORT_SYMBOL_GPL(scsi_target_unblock);
This page took 0.075547 seconds and 6 git commands to generate.