Merge ../linux-2.6
[deliverable/linux.git] / drivers / scsi / scsi_lib.c
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
9
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_cmnd.h>
23 #include <scsi/scsi_dbg.h>
24 #include <scsi/scsi_device.h>
25 #include <scsi/scsi_driver.h>
26 #include <scsi/scsi_eh.h>
27 #include <scsi/scsi_host.h>
28
29 #include "scsi_priv.h"
30 #include "scsi_logging.h"
31
32
33 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
34 #define SG_MEMPOOL_SIZE 32
35
36 struct scsi_host_sg_pool {
37 size_t size;
38 char *name;
39 kmem_cache_t *slab;
40 mempool_t *pool;
41 };
42
43 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
44 #error SCSI_MAX_PHYS_SEGMENTS is too small
45 #endif
46
47 #define SP(x) { x, "sgpool-" #x }
48 static struct scsi_host_sg_pool scsi_sg_pools[] = {
49 SP(8),
50 SP(16),
51 SP(32),
52 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
53 SP(64),
54 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
55 SP(128),
56 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
57 SP(256),
58 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
59 #error SCSI_MAX_PHYS_SEGMENTS is too large
60 #endif
61 #endif
62 #endif
63 #endif
64 };
65 #undef SP
66
67 static void scsi_run_queue(struct request_queue *q);
68
69 /*
70 * Function: scsi_unprep_request()
71 *
72 * Purpose: Remove all preparation done for a request, including its
73 * associated scsi_cmnd, so that it can be requeued.
74 *
75 * Arguments: req - request to unprepare
76 *
77 * Lock status: Assumed that no locks are held upon entry.
78 *
79 * Returns: Nothing.
80 */
81 static void scsi_unprep_request(struct request *req)
82 {
83 struct scsi_cmnd *cmd = req->special;
84
85 req->flags &= ~REQ_DONTPREP;
86 req->special = NULL;
87
88 scsi_put_command(cmd);
89 }
90
91 /*
92 * Function: scsi_queue_insert()
93 *
94 * Purpose: Insert a command in the midlevel queue.
95 *
96 * Arguments: cmd - command that we are adding to queue.
97 * reason - why we are inserting command to queue.
98 *
99 * Lock status: Assumed that lock is not held upon entry.
100 *
101 * Returns: Nothing.
102 *
103 * Notes: We do this for one of two cases. Either the host is busy
104 * and it cannot accept any more commands for the time being,
105 * or the device returned QUEUE_FULL and can accept no more
106 * commands.
107 * Notes: This could be called either from an interrupt context or a
108 * normal process context.
109 */
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111 {
112 struct Scsi_Host *host = cmd->device->host;
113 struct scsi_device *device = cmd->device;
114 struct request_queue *q = device->request_queue;
115 unsigned long flags;
116
117 SCSI_LOG_MLQUEUE(1,
118 printk("Inserting command %p into mlqueue\n", cmd));
119
120 /*
121 * Set the appropriate busy bit for the device/host.
122 *
123 * If the host/device isn't busy, assume that something actually
124 * completed, and that we should be able to queue a command now.
125 *
126 * Note that the prior mid-layer assumption that any host could
127 * always queue at least one command is now broken. The mid-layer
128 * will implement a user specifiable stall (see
129 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130 * if a command is requeued with no other commands outstanding
131 * either for the device or for the host.
132 */
133 if (reason == SCSI_MLQUEUE_HOST_BUSY)
134 host->host_blocked = host->max_host_blocked;
135 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136 device->device_blocked = device->max_device_blocked;
137
138 /*
139 * Decrement the counters, since these commands are no longer
140 * active on the host/device.
141 */
142 scsi_device_unbusy(device);
143
144 /*
145 * Requeue this command. It will go before all other commands
146 * that are already in the queue.
147 *
148 * NOTE: there is magic here about the way the queue is plugged if
149 * we have no outstanding commands.
150 *
151 * Although we *don't* plug the queue, we call the request
152 * function. The SCSI request function detects the blocked condition
153 * and plugs the queue appropriately.
154 */
155 spin_lock_irqsave(q->queue_lock, flags);
156 blk_requeue_request(q, cmd->request);
157 spin_unlock_irqrestore(q->queue_lock, flags);
158
159 scsi_run_queue(q);
160
161 return 0;
162 }
163
164 /**
165 * scsi_execute - insert request and wait for the result
166 * @sdev: scsi device
167 * @cmd: scsi command
168 * @data_direction: data direction
169 * @buffer: data buffer
170 * @bufflen: len of buffer
171 * @sense: optional sense buffer
172 * @timeout: request timeout in seconds
173 * @retries: number of times to retry request
174 * @flags: or into request flags;
175 *
176 * returns the req->errors value which is the the scsi_cmnd result
177 * field.
178 **/
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180 int data_direction, void *buffer, unsigned bufflen,
181 unsigned char *sense, int timeout, int retries, int flags)
182 {
183 struct request *req;
184 int write = (data_direction == DMA_TO_DEVICE);
185 int ret = DRIVER_ERROR << 24;
186
187 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188
189 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
190 buffer, bufflen, __GFP_WAIT))
191 goto out;
192
193 req->cmd_len = COMMAND_SIZE(cmd[0]);
194 memcpy(req->cmd, cmd, req->cmd_len);
195 req->sense = sense;
196 req->sense_len = 0;
197 req->retries = retries;
198 req->timeout = timeout;
199 req->flags |= flags | REQ_BLOCK_PC | REQ_SPECIAL | REQ_QUIET;
200
201 /*
202 * head injection *required* here otherwise quiesce won't work
203 */
204 blk_execute_rq(req->q, NULL, req, 1);
205
206 ret = req->errors;
207 out:
208 blk_put_request(req);
209
210 return ret;
211 }
212 EXPORT_SYMBOL(scsi_execute);
213
214
215 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
216 int data_direction, void *buffer, unsigned bufflen,
217 struct scsi_sense_hdr *sshdr, int timeout, int retries)
218 {
219 char *sense = NULL;
220 int result;
221
222 if (sshdr) {
223 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
224 if (!sense)
225 return DRIVER_ERROR << 24;
226 }
227 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
228 sense, timeout, retries, 0);
229 if (sshdr)
230 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
231
232 kfree(sense);
233 return result;
234 }
235 EXPORT_SYMBOL(scsi_execute_req);
236
237 struct scsi_io_context {
238 void *data;
239 void (*done)(void *data, char *sense, int result, int resid);
240 char sense[SCSI_SENSE_BUFFERSIZE];
241 };
242
243 static kmem_cache_t *scsi_io_context_cache;
244
245 static void scsi_end_async(struct request *req, int uptodate)
246 {
247 struct scsi_io_context *sioc = req->end_io_data;
248
249 if (sioc->done)
250 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
251
252 kmem_cache_free(scsi_io_context_cache, sioc);
253 __blk_put_request(req->q, req);
254 }
255
256 static int scsi_merge_bio(struct request *rq, struct bio *bio)
257 {
258 struct request_queue *q = rq->q;
259
260 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
261 if (rq_data_dir(rq) == WRITE)
262 bio->bi_rw |= (1 << BIO_RW);
263 blk_queue_bounce(q, &bio);
264
265 if (!rq->bio)
266 blk_rq_bio_prep(q, rq, bio);
267 else if (!q->back_merge_fn(q, rq, bio))
268 return -EINVAL;
269 else {
270 rq->biotail->bi_next = bio;
271 rq->biotail = bio;
272 rq->hard_nr_sectors += bio_sectors(bio);
273 rq->nr_sectors = rq->hard_nr_sectors;
274 }
275
276 return 0;
277 }
278
279 static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error)
280 {
281 if (bio->bi_size)
282 return 1;
283
284 bio_put(bio);
285 return 0;
286 }
287
288 /**
289 * scsi_req_map_sg - map a scatterlist into a request
290 * @rq: request to fill
291 * @sg: scatterlist
292 * @nsegs: number of elements
293 * @bufflen: len of buffer
294 * @gfp: memory allocation flags
295 *
296 * scsi_req_map_sg maps a scatterlist into a request so that the
297 * request can be sent to the block layer. We do not trust the scatterlist
298 * sent to use, as some ULDs use that struct to only organize the pages.
299 */
300 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
301 int nsegs, unsigned bufflen, gfp_t gfp)
302 {
303 struct request_queue *q = rq->q;
304 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
305 unsigned int data_len = 0, len, bytes, off;
306 struct page *page;
307 struct bio *bio = NULL;
308 int i, err, nr_vecs = 0;
309
310 for (i = 0; i < nsegs; i++) {
311 page = sgl[i].page;
312 off = sgl[i].offset;
313 len = sgl[i].length;
314 data_len += len;
315
316 while (len > 0) {
317 bytes = min_t(unsigned int, len, PAGE_SIZE - off);
318
319 if (!bio) {
320 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
321 nr_pages -= nr_vecs;
322
323 bio = bio_alloc(gfp, nr_vecs);
324 if (!bio) {
325 err = -ENOMEM;
326 goto free_bios;
327 }
328 bio->bi_end_io = scsi_bi_endio;
329 }
330
331 if (bio_add_pc_page(q, bio, page, bytes, off) !=
332 bytes) {
333 bio_put(bio);
334 err = -EINVAL;
335 goto free_bios;
336 }
337
338 if (bio->bi_vcnt >= nr_vecs) {
339 err = scsi_merge_bio(rq, bio);
340 if (err) {
341 bio_endio(bio, bio->bi_size, 0);
342 goto free_bios;
343 }
344 bio = NULL;
345 }
346
347 page++;
348 len -= bytes;
349 off = 0;
350 }
351 }
352
353 rq->buffer = rq->data = NULL;
354 rq->data_len = data_len;
355 return 0;
356
357 free_bios:
358 while ((bio = rq->bio) != NULL) {
359 rq->bio = bio->bi_next;
360 /*
361 * call endio instead of bio_put incase it was bounced
362 */
363 bio_endio(bio, bio->bi_size, 0);
364 }
365
366 return err;
367 }
368
369 /**
370 * scsi_execute_async - insert request
371 * @sdev: scsi device
372 * @cmd: scsi command
373 * @cmd_len: length of scsi cdb
374 * @data_direction: data direction
375 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
376 * @bufflen: len of buffer
377 * @use_sg: if buffer is a scatterlist this is the number of elements
378 * @timeout: request timeout in seconds
379 * @retries: number of times to retry request
380 * @flags: or into request flags
381 **/
382 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
383 int cmd_len, int data_direction, void *buffer, unsigned bufflen,
384 int use_sg, int timeout, int retries, void *privdata,
385 void (*done)(void *, char *, int, int), gfp_t gfp)
386 {
387 struct request *req;
388 struct scsi_io_context *sioc;
389 int err = 0;
390 int write = (data_direction == DMA_TO_DEVICE);
391
392 sioc = kmem_cache_alloc(scsi_io_context_cache, gfp);
393 if (!sioc)
394 return DRIVER_ERROR << 24;
395 memset(sioc, 0, sizeof(*sioc));
396
397 req = blk_get_request(sdev->request_queue, write, gfp);
398 if (!req)
399 goto free_sense;
400 req->flags |= REQ_BLOCK_PC | REQ_QUIET;
401
402 if (use_sg)
403 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
404 else if (bufflen)
405 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
406
407 if (err)
408 goto free_req;
409
410 req->cmd_len = cmd_len;
411 memcpy(req->cmd, cmd, req->cmd_len);
412 req->sense = sioc->sense;
413 req->sense_len = 0;
414 req->timeout = timeout;
415 req->retries = retries;
416 req->end_io_data = sioc;
417
418 sioc->data = privdata;
419 sioc->done = done;
420
421 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
422 return 0;
423
424 free_req:
425 blk_put_request(req);
426 free_sense:
427 kfree(sioc);
428 return DRIVER_ERROR << 24;
429 }
430 EXPORT_SYMBOL_GPL(scsi_execute_async);
431
432 /*
433 * Function: scsi_init_cmd_errh()
434 *
435 * Purpose: Initialize cmd fields related to error handling.
436 *
437 * Arguments: cmd - command that is ready to be queued.
438 *
439 * Notes: This function has the job of initializing a number of
440 * fields related to error handling. Typically this will
441 * be called once for each command, as required.
442 */
443 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
444 {
445 cmd->serial_number = 0;
446 memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
447 if (cmd->cmd_len == 0)
448 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
449 }
450
451 void scsi_device_unbusy(struct scsi_device *sdev)
452 {
453 struct Scsi_Host *shost = sdev->host;
454 unsigned long flags;
455
456 spin_lock_irqsave(shost->host_lock, flags);
457 shost->host_busy--;
458 if (unlikely(scsi_host_in_recovery(shost) &&
459 (shost->host_failed || shost->host_eh_scheduled)))
460 scsi_eh_wakeup(shost);
461 spin_unlock(shost->host_lock);
462 spin_lock(sdev->request_queue->queue_lock);
463 sdev->device_busy--;
464 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
465 }
466
467 /*
468 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
469 * and call blk_run_queue for all the scsi_devices on the target -
470 * including current_sdev first.
471 *
472 * Called with *no* scsi locks held.
473 */
474 static void scsi_single_lun_run(struct scsi_device *current_sdev)
475 {
476 struct Scsi_Host *shost = current_sdev->host;
477 struct scsi_device *sdev, *tmp;
478 struct scsi_target *starget = scsi_target(current_sdev);
479 unsigned long flags;
480
481 spin_lock_irqsave(shost->host_lock, flags);
482 starget->starget_sdev_user = NULL;
483 spin_unlock_irqrestore(shost->host_lock, flags);
484
485 /*
486 * Call blk_run_queue for all LUNs on the target, starting with
487 * current_sdev. We race with others (to set starget_sdev_user),
488 * but in most cases, we will be first. Ideally, each LU on the
489 * target would get some limited time or requests on the target.
490 */
491 blk_run_queue(current_sdev->request_queue);
492
493 spin_lock_irqsave(shost->host_lock, flags);
494 if (starget->starget_sdev_user)
495 goto out;
496 list_for_each_entry_safe(sdev, tmp, &starget->devices,
497 same_target_siblings) {
498 if (sdev == current_sdev)
499 continue;
500 if (scsi_device_get(sdev))
501 continue;
502
503 spin_unlock_irqrestore(shost->host_lock, flags);
504 blk_run_queue(sdev->request_queue);
505 spin_lock_irqsave(shost->host_lock, flags);
506
507 scsi_device_put(sdev);
508 }
509 out:
510 spin_unlock_irqrestore(shost->host_lock, flags);
511 }
512
513 /*
514 * Function: scsi_run_queue()
515 *
516 * Purpose: Select a proper request queue to serve next
517 *
518 * Arguments: q - last request's queue
519 *
520 * Returns: Nothing
521 *
522 * Notes: The previous command was completely finished, start
523 * a new one if possible.
524 */
525 static void scsi_run_queue(struct request_queue *q)
526 {
527 struct scsi_device *sdev = q->queuedata;
528 struct Scsi_Host *shost = sdev->host;
529 unsigned long flags;
530
531 if (sdev->single_lun)
532 scsi_single_lun_run(sdev);
533
534 spin_lock_irqsave(shost->host_lock, flags);
535 while (!list_empty(&shost->starved_list) &&
536 !shost->host_blocked && !shost->host_self_blocked &&
537 !((shost->can_queue > 0) &&
538 (shost->host_busy >= shost->can_queue))) {
539 /*
540 * As long as shost is accepting commands and we have
541 * starved queues, call blk_run_queue. scsi_request_fn
542 * drops the queue_lock and can add us back to the
543 * starved_list.
544 *
545 * host_lock protects the starved_list and starved_entry.
546 * scsi_request_fn must get the host_lock before checking
547 * or modifying starved_list or starved_entry.
548 */
549 sdev = list_entry(shost->starved_list.next,
550 struct scsi_device, starved_entry);
551 list_del_init(&sdev->starved_entry);
552 spin_unlock_irqrestore(shost->host_lock, flags);
553
554
555 if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
556 !test_and_set_bit(QUEUE_FLAG_REENTER,
557 &sdev->request_queue->queue_flags)) {
558 blk_run_queue(sdev->request_queue);
559 clear_bit(QUEUE_FLAG_REENTER,
560 &sdev->request_queue->queue_flags);
561 } else
562 blk_run_queue(sdev->request_queue);
563
564 spin_lock_irqsave(shost->host_lock, flags);
565 if (unlikely(!list_empty(&sdev->starved_entry)))
566 /*
567 * sdev lost a race, and was put back on the
568 * starved list. This is unlikely but without this
569 * in theory we could loop forever.
570 */
571 break;
572 }
573 spin_unlock_irqrestore(shost->host_lock, flags);
574
575 blk_run_queue(q);
576 }
577
578 /*
579 * Function: scsi_requeue_command()
580 *
581 * Purpose: Handle post-processing of completed commands.
582 *
583 * Arguments: q - queue to operate on
584 * cmd - command that may need to be requeued.
585 *
586 * Returns: Nothing
587 *
588 * Notes: After command completion, there may be blocks left
589 * over which weren't finished by the previous command
590 * this can be for a number of reasons - the main one is
591 * I/O errors in the middle of the request, in which case
592 * we need to request the blocks that come after the bad
593 * sector.
594 * Notes: Upon return, cmd is a stale pointer.
595 */
596 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
597 {
598 struct request *req = cmd->request;
599 unsigned long flags;
600
601 scsi_unprep_request(req);
602 spin_lock_irqsave(q->queue_lock, flags);
603 blk_requeue_request(q, req);
604 spin_unlock_irqrestore(q->queue_lock, flags);
605
606 scsi_run_queue(q);
607 }
608
609 void scsi_next_command(struct scsi_cmnd *cmd)
610 {
611 struct scsi_device *sdev = cmd->device;
612 struct request_queue *q = sdev->request_queue;
613
614 /* need to hold a reference on the device before we let go of the cmd */
615 get_device(&sdev->sdev_gendev);
616
617 scsi_put_command(cmd);
618 scsi_run_queue(q);
619
620 /* ok to remove device now */
621 put_device(&sdev->sdev_gendev);
622 }
623
624 void scsi_run_host_queues(struct Scsi_Host *shost)
625 {
626 struct scsi_device *sdev;
627
628 shost_for_each_device(sdev, shost)
629 scsi_run_queue(sdev->request_queue);
630 }
631
632 /*
633 * Function: scsi_end_request()
634 *
635 * Purpose: Post-processing of completed commands (usually invoked at end
636 * of upper level post-processing and scsi_io_completion).
637 *
638 * Arguments: cmd - command that is complete.
639 * uptodate - 1 if I/O indicates success, <= 0 for I/O error.
640 * bytes - number of bytes of completed I/O
641 * requeue - indicates whether we should requeue leftovers.
642 *
643 * Lock status: Assumed that lock is not held upon entry.
644 *
645 * Returns: cmd if requeue required, NULL otherwise.
646 *
647 * Notes: This is called for block device requests in order to
648 * mark some number of sectors as complete.
649 *
650 * We are guaranteeing that the request queue will be goosed
651 * at some point during this call.
652 * Notes: If cmd was requeued, upon return it will be a stale pointer.
653 */
654 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
655 int bytes, int requeue)
656 {
657 request_queue_t *q = cmd->device->request_queue;
658 struct request *req = cmd->request;
659 unsigned long flags;
660
661 /*
662 * If there are blocks left over at the end, set up the command
663 * to queue the remainder of them.
664 */
665 if (end_that_request_chunk(req, uptodate, bytes)) {
666 int leftover = (req->hard_nr_sectors << 9);
667
668 if (blk_pc_request(req))
669 leftover = req->data_len;
670
671 /* kill remainder if no retrys */
672 if (!uptodate && blk_noretry_request(req))
673 end_that_request_chunk(req, 0, leftover);
674 else {
675 if (requeue) {
676 /*
677 * Bleah. Leftovers again. Stick the
678 * leftovers in the front of the
679 * queue, and goose the queue again.
680 */
681 scsi_requeue_command(q, cmd);
682 cmd = NULL;
683 }
684 return cmd;
685 }
686 }
687
688 add_disk_randomness(req->rq_disk);
689
690 spin_lock_irqsave(q->queue_lock, flags);
691 if (blk_rq_tagged(req))
692 blk_queue_end_tag(q, req);
693 end_that_request_last(req, uptodate);
694 spin_unlock_irqrestore(q->queue_lock, flags);
695
696 /*
697 * This will goose the queue request function at the end, so we don't
698 * need to worry about launching another command.
699 */
700 scsi_next_command(cmd);
701 return NULL;
702 }
703
704 static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
705 {
706 struct scsi_host_sg_pool *sgp;
707 struct scatterlist *sgl;
708
709 BUG_ON(!cmd->use_sg);
710
711 switch (cmd->use_sg) {
712 case 1 ... 8:
713 cmd->sglist_len = 0;
714 break;
715 case 9 ... 16:
716 cmd->sglist_len = 1;
717 break;
718 case 17 ... 32:
719 cmd->sglist_len = 2;
720 break;
721 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
722 case 33 ... 64:
723 cmd->sglist_len = 3;
724 break;
725 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
726 case 65 ... 128:
727 cmd->sglist_len = 4;
728 break;
729 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
730 case 129 ... 256:
731 cmd->sglist_len = 5;
732 break;
733 #endif
734 #endif
735 #endif
736 default:
737 return NULL;
738 }
739
740 sgp = scsi_sg_pools + cmd->sglist_len;
741 sgl = mempool_alloc(sgp->pool, gfp_mask);
742 return sgl;
743 }
744
745 static void scsi_free_sgtable(struct scatterlist *sgl, int index)
746 {
747 struct scsi_host_sg_pool *sgp;
748
749 BUG_ON(index >= SG_MEMPOOL_NR);
750
751 sgp = scsi_sg_pools + index;
752 mempool_free(sgl, sgp->pool);
753 }
754
755 /*
756 * Function: scsi_release_buffers()
757 *
758 * Purpose: Completion processing for block device I/O requests.
759 *
760 * Arguments: cmd - command that we are bailing.
761 *
762 * Lock status: Assumed that no lock is held upon entry.
763 *
764 * Returns: Nothing
765 *
766 * Notes: In the event that an upper level driver rejects a
767 * command, we must release resources allocated during
768 * the __init_io() function. Primarily this would involve
769 * the scatter-gather table, and potentially any bounce
770 * buffers.
771 */
772 static void scsi_release_buffers(struct scsi_cmnd *cmd)
773 {
774 if (cmd->use_sg)
775 scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
776
777 /*
778 * Zero these out. They now point to freed memory, and it is
779 * dangerous to hang onto the pointers.
780 */
781 cmd->request_buffer = NULL;
782 cmd->request_bufflen = 0;
783 }
784
785 /*
786 * Function: scsi_io_completion()
787 *
788 * Purpose: Completion processing for block device I/O requests.
789 *
790 * Arguments: cmd - command that is finished.
791 *
792 * Lock status: Assumed that no lock is held upon entry.
793 *
794 * Returns: Nothing
795 *
796 * Notes: This function is matched in terms of capabilities to
797 * the function that created the scatter-gather list.
798 * In other words, if there are no bounce buffers
799 * (the normal case for most drivers), we don't need
800 * the logic to deal with cleaning up afterwards.
801 *
802 * We must do one of several things here:
803 *
804 * a) Call scsi_end_request. This will finish off the
805 * specified number of sectors. If we are done, the
806 * command block will be released, and the queue
807 * function will be goosed. If we are not done, then
808 * scsi_end_request will directly goose the queue.
809 *
810 * b) We can just use scsi_requeue_command() here. This would
811 * be used if we just wanted to retry, for example.
812 */
813 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
814 {
815 int result = cmd->result;
816 int this_count = cmd->request_bufflen;
817 request_queue_t *q = cmd->device->request_queue;
818 struct request *req = cmd->request;
819 int clear_errors = 1;
820 struct scsi_sense_hdr sshdr;
821 int sense_valid = 0;
822 int sense_deferred = 0;
823
824 scsi_release_buffers(cmd);
825
826 if (result) {
827 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
828 if (sense_valid)
829 sense_deferred = scsi_sense_is_deferred(&sshdr);
830 }
831
832 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
833 req->errors = result;
834 if (result) {
835 clear_errors = 0;
836 if (sense_valid && req->sense) {
837 /*
838 * SG_IO wants current and deferred errors
839 */
840 int len = 8 + cmd->sense_buffer[7];
841
842 if (len > SCSI_SENSE_BUFFERSIZE)
843 len = SCSI_SENSE_BUFFERSIZE;
844 memcpy(req->sense, cmd->sense_buffer, len);
845 req->sense_len = len;
846 }
847 } else
848 req->data_len = cmd->resid;
849 }
850
851 /*
852 * Next deal with any sectors which we were able to correctly
853 * handle.
854 */
855 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
856 "%d bytes done.\n",
857 req->nr_sectors, good_bytes));
858 SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
859
860 if (clear_errors)
861 req->errors = 0;
862
863 /* A number of bytes were successfully read. If there
864 * are leftovers and there is some kind of error
865 * (result != 0), retry the rest.
866 */
867 if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
868 return;
869
870 /* good_bytes = 0, or (inclusive) there were leftovers and
871 * result = 0, so scsi_end_request couldn't retry.
872 */
873 if (sense_valid && !sense_deferred) {
874 switch (sshdr.sense_key) {
875 case UNIT_ATTENTION:
876 if (cmd->device->removable) {
877 /* Detected disc change. Set a bit
878 * and quietly refuse further access.
879 */
880 cmd->device->changed = 1;
881 scsi_end_request(cmd, 0, this_count, 1);
882 return;
883 } else {
884 /* Must have been a power glitch, or a
885 * bus reset. Could not have been a
886 * media change, so we just retry the
887 * request and see what happens.
888 */
889 scsi_requeue_command(q, cmd);
890 return;
891 }
892 break;
893 case ILLEGAL_REQUEST:
894 /* If we had an ILLEGAL REQUEST returned, then
895 * we may have performed an unsupported
896 * command. The only thing this should be
897 * would be a ten byte read where only a six
898 * byte read was supported. Also, on a system
899 * where READ CAPACITY failed, we may have
900 * read past the end of the disk.
901 */
902 if ((cmd->device->use_10_for_rw &&
903 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
904 (cmd->cmnd[0] == READ_10 ||
905 cmd->cmnd[0] == WRITE_10)) {
906 cmd->device->use_10_for_rw = 0;
907 /* This will cause a retry with a
908 * 6-byte command.
909 */
910 scsi_requeue_command(q, cmd);
911 return;
912 } else {
913 scsi_end_request(cmd, 0, this_count, 1);
914 return;
915 }
916 break;
917 case NOT_READY:
918 /* If the device is in the process of becoming
919 * ready, or has a temporary blockage, retry.
920 */
921 if (sshdr.asc == 0x04) {
922 switch (sshdr.ascq) {
923 case 0x01: /* becoming ready */
924 case 0x04: /* format in progress */
925 case 0x05: /* rebuild in progress */
926 case 0x06: /* recalculation in progress */
927 case 0x07: /* operation in progress */
928 case 0x08: /* Long write in progress */
929 case 0x09: /* self test in progress */
930 scsi_requeue_command(q, cmd);
931 return;
932 default:
933 break;
934 }
935 }
936 if (!(req->flags & REQ_QUIET)) {
937 scmd_printk(KERN_INFO, cmd,
938 "Device not ready: ");
939 scsi_print_sense_hdr("", &sshdr);
940 }
941 scsi_end_request(cmd, 0, this_count, 1);
942 return;
943 case VOLUME_OVERFLOW:
944 if (!(req->flags & REQ_QUIET)) {
945 scmd_printk(KERN_INFO, cmd,
946 "Volume overflow, CDB: ");
947 __scsi_print_command(cmd->cmnd);
948 scsi_print_sense("", cmd);
949 }
950 /* See SSC3rXX or current. */
951 scsi_end_request(cmd, 0, this_count, 1);
952 return;
953 default:
954 break;
955 }
956 }
957 if (host_byte(result) == DID_RESET) {
958 /* Third party bus reset or reset for error recovery
959 * reasons. Just retry the request and see what
960 * happens.
961 */
962 scsi_requeue_command(q, cmd);
963 return;
964 }
965 if (result) {
966 if (!(req->flags & REQ_QUIET)) {
967 scmd_printk(KERN_INFO, cmd,
968 "SCSI error: return code = 0x%08x\n",
969 result);
970 if (driver_byte(result) & DRIVER_SENSE)
971 scsi_print_sense("", cmd);
972 }
973 }
974 scsi_end_request(cmd, 0, this_count, !result);
975 }
976 EXPORT_SYMBOL(scsi_io_completion);
977
978 /*
979 * Function: scsi_init_io()
980 *
981 * Purpose: SCSI I/O initialize function.
982 *
983 * Arguments: cmd - Command descriptor we wish to initialize
984 *
985 * Returns: 0 on success
986 * BLKPREP_DEFER if the failure is retryable
987 * BLKPREP_KILL if the failure is fatal
988 */
989 static int scsi_init_io(struct scsi_cmnd *cmd)
990 {
991 struct request *req = cmd->request;
992 struct scatterlist *sgpnt;
993 int count;
994
995 /*
996 * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
997 */
998 if ((req->flags & REQ_BLOCK_PC) && !req->bio) {
999 cmd->request_bufflen = req->data_len;
1000 cmd->request_buffer = req->data;
1001 req->buffer = req->data;
1002 cmd->use_sg = 0;
1003 return 0;
1004 }
1005
1006 /*
1007 * we used to not use scatter-gather for single segment request,
1008 * but now we do (it makes highmem I/O easier to support without
1009 * kmapping pages)
1010 */
1011 cmd->use_sg = req->nr_phys_segments;
1012
1013 /*
1014 * if sg table allocation fails, requeue request later.
1015 */
1016 sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1017 if (unlikely(!sgpnt)) {
1018 scsi_unprep_request(req);
1019 return BLKPREP_DEFER;
1020 }
1021
1022 cmd->request_buffer = (char *) sgpnt;
1023 cmd->request_bufflen = req->nr_sectors << 9;
1024 if (blk_pc_request(req))
1025 cmd->request_bufflen = req->data_len;
1026 req->buffer = NULL;
1027
1028 /*
1029 * Next, walk the list, and fill in the addresses and sizes of
1030 * each segment.
1031 */
1032 count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1033
1034 /*
1035 * mapped well, send it off
1036 */
1037 if (likely(count <= cmd->use_sg)) {
1038 cmd->use_sg = count;
1039 return 0;
1040 }
1041
1042 printk(KERN_ERR "Incorrect number of segments after building list\n");
1043 printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1044 printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1045 req->current_nr_sectors);
1046
1047 /* release the command and kill it */
1048 scsi_release_buffers(cmd);
1049 scsi_put_command(cmd);
1050 return BLKPREP_KILL;
1051 }
1052
1053 static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1054 sector_t *error_sector)
1055 {
1056 struct scsi_device *sdev = q->queuedata;
1057 struct scsi_driver *drv;
1058
1059 if (sdev->sdev_state != SDEV_RUNNING)
1060 return -ENXIO;
1061
1062 drv = *(struct scsi_driver **) disk->private_data;
1063 if (drv->issue_flush)
1064 return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1065
1066 return -EOPNOTSUPP;
1067 }
1068
1069 static void scsi_blk_pc_done(struct scsi_cmnd *cmd)
1070 {
1071 BUG_ON(!blk_pc_request(cmd->request));
1072 /*
1073 * This will complete the whole command with uptodate=1 so
1074 * as far as the block layer is concerned the command completed
1075 * successfully. Since this is a REQ_BLOCK_PC command the
1076 * caller should check the request's errors value
1077 */
1078 scsi_io_completion(cmd, cmd->request_bufflen);
1079 }
1080
1081 static void scsi_setup_blk_pc_cmnd(struct scsi_cmnd *cmd)
1082 {
1083 struct request *req = cmd->request;
1084
1085 BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1086 memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1087 cmd->cmd_len = req->cmd_len;
1088 if (!req->data_len)
1089 cmd->sc_data_direction = DMA_NONE;
1090 else if (rq_data_dir(req) == WRITE)
1091 cmd->sc_data_direction = DMA_TO_DEVICE;
1092 else
1093 cmd->sc_data_direction = DMA_FROM_DEVICE;
1094
1095 cmd->transfersize = req->data_len;
1096 cmd->allowed = req->retries;
1097 cmd->timeout_per_command = req->timeout;
1098 cmd->done = scsi_blk_pc_done;
1099 }
1100
1101 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1102 {
1103 struct scsi_device *sdev = q->queuedata;
1104 struct scsi_cmnd *cmd;
1105 int specials_only = 0;
1106
1107 /*
1108 * Just check to see if the device is online. If it isn't, we
1109 * refuse to process any commands. The device must be brought
1110 * online before trying any recovery commands
1111 */
1112 if (unlikely(!scsi_device_online(sdev))) {
1113 sdev_printk(KERN_ERR, sdev,
1114 "rejecting I/O to offline device\n");
1115 goto kill;
1116 }
1117 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1118 /* OK, we're not in a running state don't prep
1119 * user commands */
1120 if (sdev->sdev_state == SDEV_DEL) {
1121 /* Device is fully deleted, no commands
1122 * at all allowed down */
1123 sdev_printk(KERN_ERR, sdev,
1124 "rejecting I/O to dead device\n");
1125 goto kill;
1126 }
1127 /* OK, we only allow special commands (i.e. not
1128 * user initiated ones */
1129 specials_only = sdev->sdev_state;
1130 }
1131
1132 /*
1133 * Find the actual device driver associated with this command.
1134 * The SPECIAL requests are things like character device or
1135 * ioctls, which did not originate from ll_rw_blk. Note that
1136 * the special field is also used to indicate the cmd for
1137 * the remainder of a partially fulfilled request that can
1138 * come up when there is a medium error. We have to treat
1139 * these two cases differently. We differentiate by looking
1140 * at request->cmd, as this tells us the real story.
1141 */
1142 if (req->flags & REQ_SPECIAL && req->special) {
1143 cmd = req->special;
1144 } else if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1145
1146 if(unlikely(specials_only) && !(req->flags & REQ_SPECIAL)) {
1147 if(specials_only == SDEV_QUIESCE ||
1148 specials_only == SDEV_BLOCK)
1149 goto defer;
1150
1151 sdev_printk(KERN_ERR, sdev,
1152 "rejecting I/O to device being removed\n");
1153 goto kill;
1154 }
1155
1156
1157 /*
1158 * Now try and find a command block that we can use.
1159 */
1160 if (!req->special) {
1161 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1162 if (unlikely(!cmd))
1163 goto defer;
1164 } else
1165 cmd = req->special;
1166
1167 /* pull a tag out of the request if we have one */
1168 cmd->tag = req->tag;
1169 } else {
1170 blk_dump_rq_flags(req, "SCSI bad req");
1171 goto kill;
1172 }
1173
1174 /* note the overloading of req->special. When the tag
1175 * is active it always means cmd. If the tag goes
1176 * back for re-queueing, it may be reset */
1177 req->special = cmd;
1178 cmd->request = req;
1179
1180 /*
1181 * FIXME: drop the lock here because the functions below
1182 * expect to be called without the queue lock held. Also,
1183 * previously, we dequeued the request before dropping the
1184 * lock. We hope REQ_STARTED prevents anything untoward from
1185 * happening now.
1186 */
1187 if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
1188 int ret;
1189
1190 /*
1191 * This will do a couple of things:
1192 * 1) Fill in the actual SCSI command.
1193 * 2) Fill in any other upper-level specific fields
1194 * (timeout).
1195 *
1196 * If this returns 0, it means that the request failed
1197 * (reading past end of disk, reading offline device,
1198 * etc). This won't actually talk to the device, but
1199 * some kinds of consistency checking may cause the
1200 * request to be rejected immediately.
1201 */
1202
1203 /*
1204 * This sets up the scatter-gather table (allocating if
1205 * required).
1206 */
1207 ret = scsi_init_io(cmd);
1208 switch(ret) {
1209 /* For BLKPREP_KILL/DEFER the cmd was released */
1210 case BLKPREP_KILL:
1211 goto kill;
1212 case BLKPREP_DEFER:
1213 goto defer;
1214 }
1215
1216 /*
1217 * Initialize the actual SCSI command for this request.
1218 */
1219 if (req->flags & REQ_BLOCK_PC) {
1220 scsi_setup_blk_pc_cmnd(cmd);
1221 } else if (req->rq_disk) {
1222 struct scsi_driver *drv;
1223
1224 drv = *(struct scsi_driver **)req->rq_disk->private_data;
1225 if (unlikely(!drv->init_command(cmd))) {
1226 scsi_release_buffers(cmd);
1227 scsi_put_command(cmd);
1228 goto kill;
1229 }
1230 }
1231 }
1232
1233 /*
1234 * The request is now prepped, no need to come back here
1235 */
1236 req->flags |= REQ_DONTPREP;
1237 return BLKPREP_OK;
1238
1239 defer:
1240 /* If we defer, the elv_next_request() returns NULL, but the
1241 * queue must be restarted, so we plug here if no returning
1242 * command will automatically do that. */
1243 if (sdev->device_busy == 0)
1244 blk_plug_device(q);
1245 return BLKPREP_DEFER;
1246 kill:
1247 req->errors = DID_NO_CONNECT << 16;
1248 return BLKPREP_KILL;
1249 }
1250
1251 /*
1252 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1253 * return 0.
1254 *
1255 * Called with the queue_lock held.
1256 */
1257 static inline int scsi_dev_queue_ready(struct request_queue *q,
1258 struct scsi_device *sdev)
1259 {
1260 if (sdev->device_busy >= sdev->queue_depth)
1261 return 0;
1262 if (sdev->device_busy == 0 && sdev->device_blocked) {
1263 /*
1264 * unblock after device_blocked iterates to zero
1265 */
1266 if (--sdev->device_blocked == 0) {
1267 SCSI_LOG_MLQUEUE(3,
1268 sdev_printk(KERN_INFO, sdev,
1269 "unblocking device at zero depth\n"));
1270 } else {
1271 blk_plug_device(q);
1272 return 0;
1273 }
1274 }
1275 if (sdev->device_blocked)
1276 return 0;
1277
1278 return 1;
1279 }
1280
1281 /*
1282 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1283 * return 0. We must end up running the queue again whenever 0 is
1284 * returned, else IO can hang.
1285 *
1286 * Called with host_lock held.
1287 */
1288 static inline int scsi_host_queue_ready(struct request_queue *q,
1289 struct Scsi_Host *shost,
1290 struct scsi_device *sdev)
1291 {
1292 if (scsi_host_in_recovery(shost))
1293 return 0;
1294 if (shost->host_busy == 0 && shost->host_blocked) {
1295 /*
1296 * unblock after host_blocked iterates to zero
1297 */
1298 if (--shost->host_blocked == 0) {
1299 SCSI_LOG_MLQUEUE(3,
1300 printk("scsi%d unblocking host at zero depth\n",
1301 shost->host_no));
1302 } else {
1303 blk_plug_device(q);
1304 return 0;
1305 }
1306 }
1307 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1308 shost->host_blocked || shost->host_self_blocked) {
1309 if (list_empty(&sdev->starved_entry))
1310 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1311 return 0;
1312 }
1313
1314 /* We're OK to process the command, so we can't be starved */
1315 if (!list_empty(&sdev->starved_entry))
1316 list_del_init(&sdev->starved_entry);
1317
1318 return 1;
1319 }
1320
1321 /*
1322 * Kill a request for a dead device
1323 */
1324 static void scsi_kill_request(struct request *req, request_queue_t *q)
1325 {
1326 struct scsi_cmnd *cmd = req->special;
1327 struct scsi_device *sdev = cmd->device;
1328 struct Scsi_Host *shost = sdev->host;
1329
1330 blkdev_dequeue_request(req);
1331
1332 if (unlikely(cmd == NULL)) {
1333 printk(KERN_CRIT "impossible request in %s.\n",
1334 __FUNCTION__);
1335 BUG();
1336 }
1337
1338 scsi_init_cmd_errh(cmd);
1339 cmd->result = DID_NO_CONNECT << 16;
1340 atomic_inc(&cmd->device->iorequest_cnt);
1341
1342 /*
1343 * SCSI request completion path will do scsi_device_unbusy(),
1344 * bump busy counts. To bump the counters, we need to dance
1345 * with the locks as normal issue path does.
1346 */
1347 sdev->device_busy++;
1348 spin_unlock(sdev->request_queue->queue_lock);
1349 spin_lock(shost->host_lock);
1350 shost->host_busy++;
1351 spin_unlock(shost->host_lock);
1352 spin_lock(sdev->request_queue->queue_lock);
1353
1354 __scsi_done(cmd);
1355 }
1356
1357 static void scsi_softirq_done(struct request *rq)
1358 {
1359 struct scsi_cmnd *cmd = rq->completion_data;
1360 unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1361 int disposition;
1362
1363 INIT_LIST_HEAD(&cmd->eh_entry);
1364
1365 disposition = scsi_decide_disposition(cmd);
1366 if (disposition != SUCCESS &&
1367 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1368 sdev_printk(KERN_ERR, cmd->device,
1369 "timing out command, waited %lus\n",
1370 wait_for/HZ);
1371 disposition = SUCCESS;
1372 }
1373
1374 scsi_log_completion(cmd, disposition);
1375
1376 switch (disposition) {
1377 case SUCCESS:
1378 scsi_finish_command(cmd);
1379 break;
1380 case NEEDS_RETRY:
1381 scsi_retry_command(cmd);
1382 break;
1383 case ADD_TO_MLQUEUE:
1384 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1385 break;
1386 default:
1387 if (!scsi_eh_scmd_add(cmd, 0))
1388 scsi_finish_command(cmd);
1389 }
1390 }
1391
1392 /*
1393 * Function: scsi_request_fn()
1394 *
1395 * Purpose: Main strategy routine for SCSI.
1396 *
1397 * Arguments: q - Pointer to actual queue.
1398 *
1399 * Returns: Nothing
1400 *
1401 * Lock status: IO request lock assumed to be held when called.
1402 */
1403 static void scsi_request_fn(struct request_queue *q)
1404 {
1405 struct scsi_device *sdev = q->queuedata;
1406 struct Scsi_Host *shost;
1407 struct scsi_cmnd *cmd;
1408 struct request *req;
1409
1410 if (!sdev) {
1411 printk("scsi: killing requests for dead queue\n");
1412 while ((req = elv_next_request(q)) != NULL)
1413 scsi_kill_request(req, q);
1414 return;
1415 }
1416
1417 if(!get_device(&sdev->sdev_gendev))
1418 /* We must be tearing the block queue down already */
1419 return;
1420
1421 /*
1422 * To start with, we keep looping until the queue is empty, or until
1423 * the host is no longer able to accept any more requests.
1424 */
1425 shost = sdev->host;
1426 while (!blk_queue_plugged(q)) {
1427 int rtn;
1428 /*
1429 * get next queueable request. We do this early to make sure
1430 * that the request is fully prepared even if we cannot
1431 * accept it.
1432 */
1433 req = elv_next_request(q);
1434 if (!req || !scsi_dev_queue_ready(q, sdev))
1435 break;
1436
1437 if (unlikely(!scsi_device_online(sdev))) {
1438 sdev_printk(KERN_ERR, sdev,
1439 "rejecting I/O to offline device\n");
1440 scsi_kill_request(req, q);
1441 continue;
1442 }
1443
1444
1445 /*
1446 * Remove the request from the request list.
1447 */
1448 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1449 blkdev_dequeue_request(req);
1450 sdev->device_busy++;
1451
1452 spin_unlock(q->queue_lock);
1453 cmd = req->special;
1454 if (unlikely(cmd == NULL)) {
1455 printk(KERN_CRIT "impossible request in %s.\n"
1456 "please mail a stack trace to "
1457 "linux-scsi@vger.kernel.org",
1458 __FUNCTION__);
1459 BUG();
1460 }
1461 spin_lock(shost->host_lock);
1462
1463 if (!scsi_host_queue_ready(q, shost, sdev))
1464 goto not_ready;
1465 if (sdev->single_lun) {
1466 if (scsi_target(sdev)->starget_sdev_user &&
1467 scsi_target(sdev)->starget_sdev_user != sdev)
1468 goto not_ready;
1469 scsi_target(sdev)->starget_sdev_user = sdev;
1470 }
1471 shost->host_busy++;
1472
1473 /*
1474 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1475 * take the lock again.
1476 */
1477 spin_unlock_irq(shost->host_lock);
1478
1479 /*
1480 * Finally, initialize any error handling parameters, and set up
1481 * the timers for timeouts.
1482 */
1483 scsi_init_cmd_errh(cmd);
1484
1485 /*
1486 * Dispatch the command to the low-level driver.
1487 */
1488 rtn = scsi_dispatch_cmd(cmd);
1489 spin_lock_irq(q->queue_lock);
1490 if(rtn) {
1491 /* we're refusing the command; because of
1492 * the way locks get dropped, we need to
1493 * check here if plugging is required */
1494 if(sdev->device_busy == 0)
1495 blk_plug_device(q);
1496
1497 break;
1498 }
1499 }
1500
1501 goto out;
1502
1503 not_ready:
1504 spin_unlock_irq(shost->host_lock);
1505
1506 /*
1507 * lock q, handle tag, requeue req, and decrement device_busy. We
1508 * must return with queue_lock held.
1509 *
1510 * Decrementing device_busy without checking it is OK, as all such
1511 * cases (host limits or settings) should run the queue at some
1512 * later time.
1513 */
1514 spin_lock_irq(q->queue_lock);
1515 blk_requeue_request(q, req);
1516 sdev->device_busy--;
1517 if(sdev->device_busy == 0)
1518 blk_plug_device(q);
1519 out:
1520 /* must be careful here...if we trigger the ->remove() function
1521 * we cannot be holding the q lock */
1522 spin_unlock_irq(q->queue_lock);
1523 put_device(&sdev->sdev_gendev);
1524 spin_lock_irq(q->queue_lock);
1525 }
1526
1527 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1528 {
1529 struct device *host_dev;
1530 u64 bounce_limit = 0xffffffff;
1531
1532 if (shost->unchecked_isa_dma)
1533 return BLK_BOUNCE_ISA;
1534 /*
1535 * Platforms with virtual-DMA translation
1536 * hardware have no practical limit.
1537 */
1538 if (!PCI_DMA_BUS_IS_PHYS)
1539 return BLK_BOUNCE_ANY;
1540
1541 host_dev = scsi_get_device(shost);
1542 if (host_dev && host_dev->dma_mask)
1543 bounce_limit = *host_dev->dma_mask;
1544
1545 return bounce_limit;
1546 }
1547 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1548
1549 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1550 {
1551 struct Scsi_Host *shost = sdev->host;
1552 struct request_queue *q;
1553
1554 q = blk_init_queue(scsi_request_fn, NULL);
1555 if (!q)
1556 return NULL;
1557
1558 blk_queue_prep_rq(q, scsi_prep_fn);
1559
1560 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1561 blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1562 blk_queue_max_sectors(q, shost->max_sectors);
1563 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1564 blk_queue_segment_boundary(q, shost->dma_boundary);
1565 blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1566 blk_queue_softirq_done(q, scsi_softirq_done);
1567
1568 if (!shost->use_clustering)
1569 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1570 return q;
1571 }
1572
1573 void scsi_free_queue(struct request_queue *q)
1574 {
1575 blk_cleanup_queue(q);
1576 }
1577
1578 /*
1579 * Function: scsi_block_requests()
1580 *
1581 * Purpose: Utility function used by low-level drivers to prevent further
1582 * commands from being queued to the device.
1583 *
1584 * Arguments: shost - Host in question
1585 *
1586 * Returns: Nothing
1587 *
1588 * Lock status: No locks are assumed held.
1589 *
1590 * Notes: There is no timer nor any other means by which the requests
1591 * get unblocked other than the low-level driver calling
1592 * scsi_unblock_requests().
1593 */
1594 void scsi_block_requests(struct Scsi_Host *shost)
1595 {
1596 shost->host_self_blocked = 1;
1597 }
1598 EXPORT_SYMBOL(scsi_block_requests);
1599
1600 /*
1601 * Function: scsi_unblock_requests()
1602 *
1603 * Purpose: Utility function used by low-level drivers to allow further
1604 * commands from being queued to the device.
1605 *
1606 * Arguments: shost - Host in question
1607 *
1608 * Returns: Nothing
1609 *
1610 * Lock status: No locks are assumed held.
1611 *
1612 * Notes: There is no timer nor any other means by which the requests
1613 * get unblocked other than the low-level driver calling
1614 * scsi_unblock_requests().
1615 *
1616 * This is done as an API function so that changes to the
1617 * internals of the scsi mid-layer won't require wholesale
1618 * changes to drivers that use this feature.
1619 */
1620 void scsi_unblock_requests(struct Scsi_Host *shost)
1621 {
1622 shost->host_self_blocked = 0;
1623 scsi_run_host_queues(shost);
1624 }
1625 EXPORT_SYMBOL(scsi_unblock_requests);
1626
1627 int __init scsi_init_queue(void)
1628 {
1629 int i;
1630
1631 scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1632 sizeof(struct scsi_io_context),
1633 0, 0, NULL, NULL);
1634 if (!scsi_io_context_cache) {
1635 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1636 return -ENOMEM;
1637 }
1638
1639 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1640 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1641 int size = sgp->size * sizeof(struct scatterlist);
1642
1643 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1644 SLAB_HWCACHE_ALIGN, NULL, NULL);
1645 if (!sgp->slab) {
1646 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1647 sgp->name);
1648 }
1649
1650 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1651 sgp->slab);
1652 if (!sgp->pool) {
1653 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1654 sgp->name);
1655 }
1656 }
1657
1658 return 0;
1659 }
1660
1661 void scsi_exit_queue(void)
1662 {
1663 int i;
1664
1665 kmem_cache_destroy(scsi_io_context_cache);
1666
1667 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1668 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1669 mempool_destroy(sgp->pool);
1670 kmem_cache_destroy(sgp->slab);
1671 }
1672 }
1673
1674 /**
1675 * scsi_mode_select - issue a mode select
1676 * @sdev: SCSI device to be queried
1677 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1678 * @sp: Save page bit (0 == don't save, 1 == save)
1679 * @modepage: mode page being requested
1680 * @buffer: request buffer (may not be smaller than eight bytes)
1681 * @len: length of request buffer.
1682 * @timeout: command timeout
1683 * @retries: number of retries before failing
1684 * @data: returns a structure abstracting the mode header data
1685 * @sense: place to put sense data (or NULL if no sense to be collected).
1686 * must be SCSI_SENSE_BUFFERSIZE big.
1687 *
1688 * Returns zero if successful; negative error number or scsi
1689 * status on error
1690 *
1691 */
1692 int
1693 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1694 unsigned char *buffer, int len, int timeout, int retries,
1695 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1696 {
1697 unsigned char cmd[10];
1698 unsigned char *real_buffer;
1699 int ret;
1700
1701 memset(cmd, 0, sizeof(cmd));
1702 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1703
1704 if (sdev->use_10_for_ms) {
1705 if (len > 65535)
1706 return -EINVAL;
1707 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1708 if (!real_buffer)
1709 return -ENOMEM;
1710 memcpy(real_buffer + 8, buffer, len);
1711 len += 8;
1712 real_buffer[0] = 0;
1713 real_buffer[1] = 0;
1714 real_buffer[2] = data->medium_type;
1715 real_buffer[3] = data->device_specific;
1716 real_buffer[4] = data->longlba ? 0x01 : 0;
1717 real_buffer[5] = 0;
1718 real_buffer[6] = data->block_descriptor_length >> 8;
1719 real_buffer[7] = data->block_descriptor_length;
1720
1721 cmd[0] = MODE_SELECT_10;
1722 cmd[7] = len >> 8;
1723 cmd[8] = len;
1724 } else {
1725 if (len > 255 || data->block_descriptor_length > 255 ||
1726 data->longlba)
1727 return -EINVAL;
1728
1729 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1730 if (!real_buffer)
1731 return -ENOMEM;
1732 memcpy(real_buffer + 4, buffer, len);
1733 len += 4;
1734 real_buffer[0] = 0;
1735 real_buffer[1] = data->medium_type;
1736 real_buffer[2] = data->device_specific;
1737 real_buffer[3] = data->block_descriptor_length;
1738
1739
1740 cmd[0] = MODE_SELECT;
1741 cmd[4] = len;
1742 }
1743
1744 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1745 sshdr, timeout, retries);
1746 kfree(real_buffer);
1747 return ret;
1748 }
1749 EXPORT_SYMBOL_GPL(scsi_mode_select);
1750
1751 /**
1752 * scsi_mode_sense - issue a mode sense, falling back from 10 to
1753 * six bytes if necessary.
1754 * @sdev: SCSI device to be queried
1755 * @dbd: set if mode sense will allow block descriptors to be returned
1756 * @modepage: mode page being requested
1757 * @buffer: request buffer (may not be smaller than eight bytes)
1758 * @len: length of request buffer.
1759 * @timeout: command timeout
1760 * @retries: number of retries before failing
1761 * @data: returns a structure abstracting the mode header data
1762 * @sense: place to put sense data (or NULL if no sense to be collected).
1763 * must be SCSI_SENSE_BUFFERSIZE big.
1764 *
1765 * Returns zero if unsuccessful, or the header offset (either 4
1766 * or 8 depending on whether a six or ten byte command was
1767 * issued) if successful.
1768 **/
1769 int
1770 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1771 unsigned char *buffer, int len, int timeout, int retries,
1772 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1773 {
1774 unsigned char cmd[12];
1775 int use_10_for_ms;
1776 int header_length;
1777 int result;
1778 struct scsi_sense_hdr my_sshdr;
1779
1780 memset(data, 0, sizeof(*data));
1781 memset(&cmd[0], 0, 12);
1782 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1783 cmd[2] = modepage;
1784
1785 /* caller might not be interested in sense, but we need it */
1786 if (!sshdr)
1787 sshdr = &my_sshdr;
1788
1789 retry:
1790 use_10_for_ms = sdev->use_10_for_ms;
1791
1792 if (use_10_for_ms) {
1793 if (len < 8)
1794 len = 8;
1795
1796 cmd[0] = MODE_SENSE_10;
1797 cmd[8] = len;
1798 header_length = 8;
1799 } else {
1800 if (len < 4)
1801 len = 4;
1802
1803 cmd[0] = MODE_SENSE;
1804 cmd[4] = len;
1805 header_length = 4;
1806 }
1807
1808 memset(buffer, 0, len);
1809
1810 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1811 sshdr, timeout, retries);
1812
1813 /* This code looks awful: what it's doing is making sure an
1814 * ILLEGAL REQUEST sense return identifies the actual command
1815 * byte as the problem. MODE_SENSE commands can return
1816 * ILLEGAL REQUEST if the code page isn't supported */
1817
1818 if (use_10_for_ms && !scsi_status_is_good(result) &&
1819 (driver_byte(result) & DRIVER_SENSE)) {
1820 if (scsi_sense_valid(sshdr)) {
1821 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1822 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1823 /*
1824 * Invalid command operation code
1825 */
1826 sdev->use_10_for_ms = 0;
1827 goto retry;
1828 }
1829 }
1830 }
1831
1832 if(scsi_status_is_good(result)) {
1833 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1834 (modepage == 6 || modepage == 8))) {
1835 /* Initio breakage? */
1836 header_length = 0;
1837 data->length = 13;
1838 data->medium_type = 0;
1839 data->device_specific = 0;
1840 data->longlba = 0;
1841 data->block_descriptor_length = 0;
1842 } else if(use_10_for_ms) {
1843 data->length = buffer[0]*256 + buffer[1] + 2;
1844 data->medium_type = buffer[2];
1845 data->device_specific = buffer[3];
1846 data->longlba = buffer[4] & 0x01;
1847 data->block_descriptor_length = buffer[6]*256
1848 + buffer[7];
1849 } else {
1850 data->length = buffer[0] + 1;
1851 data->medium_type = buffer[1];
1852 data->device_specific = buffer[2];
1853 data->block_descriptor_length = buffer[3];
1854 }
1855 data->header_length = header_length;
1856 }
1857
1858 return result;
1859 }
1860 EXPORT_SYMBOL(scsi_mode_sense);
1861
1862 int
1863 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1864 {
1865 char cmd[] = {
1866 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1867 };
1868 struct scsi_sense_hdr sshdr;
1869 int result;
1870
1871 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1872 timeout, retries);
1873
1874 if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1875
1876 if ((scsi_sense_valid(&sshdr)) &&
1877 ((sshdr.sense_key == UNIT_ATTENTION) ||
1878 (sshdr.sense_key == NOT_READY))) {
1879 sdev->changed = 1;
1880 result = 0;
1881 }
1882 }
1883 return result;
1884 }
1885 EXPORT_SYMBOL(scsi_test_unit_ready);
1886
1887 /**
1888 * scsi_device_set_state - Take the given device through the device
1889 * state model.
1890 * @sdev: scsi device to change the state of.
1891 * @state: state to change to.
1892 *
1893 * Returns zero if unsuccessful or an error if the requested
1894 * transition is illegal.
1895 **/
1896 int
1897 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1898 {
1899 enum scsi_device_state oldstate = sdev->sdev_state;
1900
1901 if (state == oldstate)
1902 return 0;
1903
1904 switch (state) {
1905 case SDEV_CREATED:
1906 /* There are no legal states that come back to
1907 * created. This is the manually initialised start
1908 * state */
1909 goto illegal;
1910
1911 case SDEV_RUNNING:
1912 switch (oldstate) {
1913 case SDEV_CREATED:
1914 case SDEV_OFFLINE:
1915 case SDEV_QUIESCE:
1916 case SDEV_BLOCK:
1917 break;
1918 default:
1919 goto illegal;
1920 }
1921 break;
1922
1923 case SDEV_QUIESCE:
1924 switch (oldstate) {
1925 case SDEV_RUNNING:
1926 case SDEV_OFFLINE:
1927 break;
1928 default:
1929 goto illegal;
1930 }
1931 break;
1932
1933 case SDEV_OFFLINE:
1934 switch (oldstate) {
1935 case SDEV_CREATED:
1936 case SDEV_RUNNING:
1937 case SDEV_QUIESCE:
1938 case SDEV_BLOCK:
1939 break;
1940 default:
1941 goto illegal;
1942 }
1943 break;
1944
1945 case SDEV_BLOCK:
1946 switch (oldstate) {
1947 case SDEV_CREATED:
1948 case SDEV_RUNNING:
1949 break;
1950 default:
1951 goto illegal;
1952 }
1953 break;
1954
1955 case SDEV_CANCEL:
1956 switch (oldstate) {
1957 case SDEV_CREATED:
1958 case SDEV_RUNNING:
1959 case SDEV_QUIESCE:
1960 case SDEV_OFFLINE:
1961 case SDEV_BLOCK:
1962 break;
1963 default:
1964 goto illegal;
1965 }
1966 break;
1967
1968 case SDEV_DEL:
1969 switch (oldstate) {
1970 case SDEV_CREATED:
1971 case SDEV_RUNNING:
1972 case SDEV_OFFLINE:
1973 case SDEV_CANCEL:
1974 break;
1975 default:
1976 goto illegal;
1977 }
1978 break;
1979
1980 }
1981 sdev->sdev_state = state;
1982 return 0;
1983
1984 illegal:
1985 SCSI_LOG_ERROR_RECOVERY(1,
1986 sdev_printk(KERN_ERR, sdev,
1987 "Illegal state transition %s->%s\n",
1988 scsi_device_state_name(oldstate),
1989 scsi_device_state_name(state))
1990 );
1991 return -EINVAL;
1992 }
1993 EXPORT_SYMBOL(scsi_device_set_state);
1994
1995 /**
1996 * scsi_device_quiesce - Block user issued commands.
1997 * @sdev: scsi device to quiesce.
1998 *
1999 * This works by trying to transition to the SDEV_QUIESCE state
2000 * (which must be a legal transition). When the device is in this
2001 * state, only special requests will be accepted, all others will
2002 * be deferred. Since special requests may also be requeued requests,
2003 * a successful return doesn't guarantee the device will be
2004 * totally quiescent.
2005 *
2006 * Must be called with user context, may sleep.
2007 *
2008 * Returns zero if unsuccessful or an error if not.
2009 **/
2010 int
2011 scsi_device_quiesce(struct scsi_device *sdev)
2012 {
2013 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2014 if (err)
2015 return err;
2016
2017 scsi_run_queue(sdev->request_queue);
2018 while (sdev->device_busy) {
2019 msleep_interruptible(200);
2020 scsi_run_queue(sdev->request_queue);
2021 }
2022 return 0;
2023 }
2024 EXPORT_SYMBOL(scsi_device_quiesce);
2025
2026 /**
2027 * scsi_device_resume - Restart user issued commands to a quiesced device.
2028 * @sdev: scsi device to resume.
2029 *
2030 * Moves the device from quiesced back to running and restarts the
2031 * queues.
2032 *
2033 * Must be called with user context, may sleep.
2034 **/
2035 void
2036 scsi_device_resume(struct scsi_device *sdev)
2037 {
2038 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2039 return;
2040 scsi_run_queue(sdev->request_queue);
2041 }
2042 EXPORT_SYMBOL(scsi_device_resume);
2043
2044 static void
2045 device_quiesce_fn(struct scsi_device *sdev, void *data)
2046 {
2047 scsi_device_quiesce(sdev);
2048 }
2049
2050 void
2051 scsi_target_quiesce(struct scsi_target *starget)
2052 {
2053 starget_for_each_device(starget, NULL, device_quiesce_fn);
2054 }
2055 EXPORT_SYMBOL(scsi_target_quiesce);
2056
2057 static void
2058 device_resume_fn(struct scsi_device *sdev, void *data)
2059 {
2060 scsi_device_resume(sdev);
2061 }
2062
2063 void
2064 scsi_target_resume(struct scsi_target *starget)
2065 {
2066 starget_for_each_device(starget, NULL, device_resume_fn);
2067 }
2068 EXPORT_SYMBOL(scsi_target_resume);
2069
2070 /**
2071 * scsi_internal_device_block - internal function to put a device
2072 * temporarily into the SDEV_BLOCK state
2073 * @sdev: device to block
2074 *
2075 * Block request made by scsi lld's to temporarily stop all
2076 * scsi commands on the specified device. Called from interrupt
2077 * or normal process context.
2078 *
2079 * Returns zero if successful or error if not
2080 *
2081 * Notes:
2082 * This routine transitions the device to the SDEV_BLOCK state
2083 * (which must be a legal transition). When the device is in this
2084 * state, all commands are deferred until the scsi lld reenables
2085 * the device with scsi_device_unblock or device_block_tmo fires.
2086 * This routine assumes the host_lock is held on entry.
2087 **/
2088 int
2089 scsi_internal_device_block(struct scsi_device *sdev)
2090 {
2091 request_queue_t *q = sdev->request_queue;
2092 unsigned long flags;
2093 int err = 0;
2094
2095 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2096 if (err)
2097 return err;
2098
2099 /*
2100 * The device has transitioned to SDEV_BLOCK. Stop the
2101 * block layer from calling the midlayer with this device's
2102 * request queue.
2103 */
2104 spin_lock_irqsave(q->queue_lock, flags);
2105 blk_stop_queue(q);
2106 spin_unlock_irqrestore(q->queue_lock, flags);
2107
2108 return 0;
2109 }
2110 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2111
2112 /**
2113 * scsi_internal_device_unblock - resume a device after a block request
2114 * @sdev: device to resume
2115 *
2116 * Called by scsi lld's or the midlayer to restart the device queue
2117 * for the previously suspended scsi device. Called from interrupt or
2118 * normal process context.
2119 *
2120 * Returns zero if successful or error if not.
2121 *
2122 * Notes:
2123 * This routine transitions the device to the SDEV_RUNNING state
2124 * (which must be a legal transition) allowing the midlayer to
2125 * goose the queue for this device. This routine assumes the
2126 * host_lock is held upon entry.
2127 **/
2128 int
2129 scsi_internal_device_unblock(struct scsi_device *sdev)
2130 {
2131 request_queue_t *q = sdev->request_queue;
2132 int err;
2133 unsigned long flags;
2134
2135 /*
2136 * Try to transition the scsi device to SDEV_RUNNING
2137 * and goose the device queue if successful.
2138 */
2139 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2140 if (err)
2141 return err;
2142
2143 spin_lock_irqsave(q->queue_lock, flags);
2144 blk_start_queue(q);
2145 spin_unlock_irqrestore(q->queue_lock, flags);
2146
2147 return 0;
2148 }
2149 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2150
2151 static void
2152 device_block(struct scsi_device *sdev, void *data)
2153 {
2154 scsi_internal_device_block(sdev);
2155 }
2156
2157 static int
2158 target_block(struct device *dev, void *data)
2159 {
2160 if (scsi_is_target_device(dev))
2161 starget_for_each_device(to_scsi_target(dev), NULL,
2162 device_block);
2163 return 0;
2164 }
2165
2166 void
2167 scsi_target_block(struct device *dev)
2168 {
2169 if (scsi_is_target_device(dev))
2170 starget_for_each_device(to_scsi_target(dev), NULL,
2171 device_block);
2172 else
2173 device_for_each_child(dev, NULL, target_block);
2174 }
2175 EXPORT_SYMBOL_GPL(scsi_target_block);
2176
2177 static void
2178 device_unblock(struct scsi_device *sdev, void *data)
2179 {
2180 scsi_internal_device_unblock(sdev);
2181 }
2182
2183 static int
2184 target_unblock(struct device *dev, void *data)
2185 {
2186 if (scsi_is_target_device(dev))
2187 starget_for_each_device(to_scsi_target(dev), NULL,
2188 device_unblock);
2189 return 0;
2190 }
2191
2192 void
2193 scsi_target_unblock(struct device *dev)
2194 {
2195 if (scsi_is_target_device(dev))
2196 starget_for_each_device(to_scsi_target(dev), NULL,
2197 device_unblock);
2198 else
2199 device_for_each_child(dev, NULL, target_unblock);
2200 }
2201 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2202
2203 /**
2204 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2205 * @sg: scatter-gather list
2206 * @sg_count: number of segments in sg
2207 * @offset: offset in bytes into sg, on return offset into the mapped area
2208 * @len: bytes to map, on return number of bytes mapped
2209 *
2210 * Returns virtual address of the start of the mapped page
2211 */
2212 void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count,
2213 size_t *offset, size_t *len)
2214 {
2215 int i;
2216 size_t sg_len = 0, len_complete = 0;
2217 struct page *page;
2218
2219 for (i = 0; i < sg_count; i++) {
2220 len_complete = sg_len; /* Complete sg-entries */
2221 sg_len += sg[i].length;
2222 if (sg_len > *offset)
2223 break;
2224 }
2225
2226 if (unlikely(i == sg_count)) {
2227 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2228 "elements %d\n",
2229 __FUNCTION__, sg_len, *offset, sg_count);
2230 WARN_ON(1);
2231 return NULL;
2232 }
2233
2234 /* Offset starting from the beginning of first page in this sg-entry */
2235 *offset = *offset - len_complete + sg[i].offset;
2236
2237 /* Assumption: contiguous pages can be accessed as "page + i" */
2238 page = nth_page(sg[i].page, (*offset >> PAGE_SHIFT));
2239 *offset &= ~PAGE_MASK;
2240
2241 /* Bytes in this sg-entry from *offset to the end of the page */
2242 sg_len = PAGE_SIZE - *offset;
2243 if (*len > sg_len)
2244 *len = sg_len;
2245
2246 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2247 }
2248 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2249
2250 /**
2251 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2252 * mapped with scsi_kmap_atomic_sg
2253 * @virt: virtual address to be unmapped
2254 */
2255 void scsi_kunmap_atomic_sg(void *virt)
2256 {
2257 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2258 }
2259 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
This page took 0.075478 seconds and 6 git commands to generate.