[SCSI] refactor sdev/starget/shost busy checking
[deliverable/linux.git] / drivers / scsi / scsi_lib.c
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33
34
35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE 2
37
38 struct scsi_host_sg_pool {
39 size_t size;
40 char *name;
41 struct kmem_cache *slab;
42 mempool_t *pool;
43 };
44
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 SP(8),
51 SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67
68 struct kmem_cache *scsi_sdb_cache;
69
70 static void scsi_run_queue(struct request_queue *q);
71
72 /*
73 * Function: scsi_unprep_request()
74 *
75 * Purpose: Remove all preparation done for a request, including its
76 * associated scsi_cmnd, so that it can be requeued.
77 *
78 * Arguments: req - request to unprepare
79 *
80 * Lock status: Assumed that no locks are held upon entry.
81 *
82 * Returns: Nothing.
83 */
84 static void scsi_unprep_request(struct request *req)
85 {
86 struct scsi_cmnd *cmd = req->special;
87
88 req->cmd_flags &= ~REQ_DONTPREP;
89 req->special = NULL;
90
91 scsi_put_command(cmd);
92 }
93
94 /*
95 * Function: scsi_queue_insert()
96 *
97 * Purpose: Insert a command in the midlevel queue.
98 *
99 * Arguments: cmd - command that we are adding to queue.
100 * reason - why we are inserting command to queue.
101 *
102 * Lock status: Assumed that lock is not held upon entry.
103 *
104 * Returns: Nothing.
105 *
106 * Notes: We do this for one of two cases. Either the host is busy
107 * and it cannot accept any more commands for the time being,
108 * or the device returned QUEUE_FULL and can accept no more
109 * commands.
110 * Notes: This could be called either from an interrupt context or a
111 * normal process context.
112 */
113 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
114 {
115 struct Scsi_Host *host = cmd->device->host;
116 struct scsi_device *device = cmd->device;
117 struct scsi_target *starget = scsi_target(device);
118 struct request_queue *q = device->request_queue;
119 unsigned long flags;
120
121 SCSI_LOG_MLQUEUE(1,
122 printk("Inserting command %p into mlqueue\n", cmd));
123
124 /*
125 * Set the appropriate busy bit for the device/host.
126 *
127 * If the host/device isn't busy, assume that something actually
128 * completed, and that we should be able to queue a command now.
129 *
130 * Note that the prior mid-layer assumption that any host could
131 * always queue at least one command is now broken. The mid-layer
132 * will implement a user specifiable stall (see
133 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
134 * if a command is requeued with no other commands outstanding
135 * either for the device or for the host.
136 */
137 switch (reason) {
138 case SCSI_MLQUEUE_HOST_BUSY:
139 host->host_blocked = host->max_host_blocked;
140 break;
141 case SCSI_MLQUEUE_DEVICE_BUSY:
142 device->device_blocked = device->max_device_blocked;
143 break;
144 case SCSI_MLQUEUE_TARGET_BUSY:
145 starget->target_blocked = starget->max_target_blocked;
146 break;
147 }
148
149 /*
150 * Decrement the counters, since these commands are no longer
151 * active on the host/device.
152 */
153 scsi_device_unbusy(device);
154
155 /*
156 * Requeue this command. It will go before all other commands
157 * that are already in the queue.
158 *
159 * NOTE: there is magic here about the way the queue is plugged if
160 * we have no outstanding commands.
161 *
162 * Although we *don't* plug the queue, we call the request
163 * function. The SCSI request function detects the blocked condition
164 * and plugs the queue appropriately.
165 */
166 spin_lock_irqsave(q->queue_lock, flags);
167 blk_requeue_request(q, cmd->request);
168 spin_unlock_irqrestore(q->queue_lock, flags);
169
170 scsi_run_queue(q);
171
172 return 0;
173 }
174
175 /**
176 * scsi_execute - insert request and wait for the result
177 * @sdev: scsi device
178 * @cmd: scsi command
179 * @data_direction: data direction
180 * @buffer: data buffer
181 * @bufflen: len of buffer
182 * @sense: optional sense buffer
183 * @timeout: request timeout in seconds
184 * @retries: number of times to retry request
185 * @flags: or into request flags;
186 *
187 * returns the req->errors value which is the scsi_cmnd result
188 * field.
189 */
190 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
191 int data_direction, void *buffer, unsigned bufflen,
192 unsigned char *sense, int timeout, int retries, int flags)
193 {
194 struct request *req;
195 int write = (data_direction == DMA_TO_DEVICE);
196 int ret = DRIVER_ERROR << 24;
197
198 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
199
200 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
201 buffer, bufflen, __GFP_WAIT))
202 goto out;
203
204 req->cmd_len = COMMAND_SIZE(cmd[0]);
205 memcpy(req->cmd, cmd, req->cmd_len);
206 req->sense = sense;
207 req->sense_len = 0;
208 req->retries = retries;
209 req->timeout = timeout;
210 req->cmd_type = REQ_TYPE_BLOCK_PC;
211 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
212
213 /*
214 * head injection *required* here otherwise quiesce won't work
215 */
216 blk_execute_rq(req->q, NULL, req, 1);
217
218 /*
219 * Some devices (USB mass-storage in particular) may transfer
220 * garbage data together with a residue indicating that the data
221 * is invalid. Prevent the garbage from being misinterpreted
222 * and prevent security leaks by zeroing out the excess data.
223 */
224 if (unlikely(req->data_len > 0 && req->data_len <= bufflen))
225 memset(buffer + (bufflen - req->data_len), 0, req->data_len);
226
227 ret = req->errors;
228 out:
229 blk_put_request(req);
230
231 return ret;
232 }
233 EXPORT_SYMBOL(scsi_execute);
234
235
236 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
237 int data_direction, void *buffer, unsigned bufflen,
238 struct scsi_sense_hdr *sshdr, int timeout, int retries)
239 {
240 char *sense = NULL;
241 int result;
242
243 if (sshdr) {
244 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
245 if (!sense)
246 return DRIVER_ERROR << 24;
247 }
248 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
249 sense, timeout, retries, 0);
250 if (sshdr)
251 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
252
253 kfree(sense);
254 return result;
255 }
256 EXPORT_SYMBOL(scsi_execute_req);
257
258 struct scsi_io_context {
259 void *data;
260 void (*done)(void *data, char *sense, int result, int resid);
261 char sense[SCSI_SENSE_BUFFERSIZE];
262 };
263
264 static struct kmem_cache *scsi_io_context_cache;
265
266 static void scsi_end_async(struct request *req, int uptodate)
267 {
268 struct scsi_io_context *sioc = req->end_io_data;
269
270 if (sioc->done)
271 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
272
273 kmem_cache_free(scsi_io_context_cache, sioc);
274 __blk_put_request(req->q, req);
275 }
276
277 static int scsi_merge_bio(struct request *rq, struct bio *bio)
278 {
279 struct request_queue *q = rq->q;
280
281 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
282 if (rq_data_dir(rq) == WRITE)
283 bio->bi_rw |= (1 << BIO_RW);
284 blk_queue_bounce(q, &bio);
285
286 return blk_rq_append_bio(q, rq, bio);
287 }
288
289 static void scsi_bi_endio(struct bio *bio, int error)
290 {
291 bio_put(bio);
292 }
293
294 /**
295 * scsi_req_map_sg - map a scatterlist into a request
296 * @rq: request to fill
297 * @sgl: scatterlist
298 * @nsegs: number of elements
299 * @bufflen: len of buffer
300 * @gfp: memory allocation flags
301 *
302 * scsi_req_map_sg maps a scatterlist into a request so that the
303 * request can be sent to the block layer. We do not trust the scatterlist
304 * sent to use, as some ULDs use that struct to only organize the pages.
305 */
306 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
307 int nsegs, unsigned bufflen, gfp_t gfp)
308 {
309 struct request_queue *q = rq->q;
310 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
311 unsigned int data_len = bufflen, len, bytes, off;
312 struct scatterlist *sg;
313 struct page *page;
314 struct bio *bio = NULL;
315 int i, err, nr_vecs = 0;
316
317 for_each_sg(sgl, sg, nsegs, i) {
318 page = sg_page(sg);
319 off = sg->offset;
320 len = sg->length;
321
322 while (len > 0 && data_len > 0) {
323 /*
324 * sg sends a scatterlist that is larger than
325 * the data_len it wants transferred for certain
326 * IO sizes
327 */
328 bytes = min_t(unsigned int, len, PAGE_SIZE - off);
329 bytes = min(bytes, data_len);
330
331 if (!bio) {
332 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
333 nr_pages -= nr_vecs;
334
335 bio = bio_alloc(gfp, nr_vecs);
336 if (!bio) {
337 err = -ENOMEM;
338 goto free_bios;
339 }
340 bio->bi_end_io = scsi_bi_endio;
341 }
342
343 if (bio_add_pc_page(q, bio, page, bytes, off) !=
344 bytes) {
345 bio_put(bio);
346 err = -EINVAL;
347 goto free_bios;
348 }
349
350 if (bio->bi_vcnt >= nr_vecs) {
351 err = scsi_merge_bio(rq, bio);
352 if (err) {
353 bio_endio(bio, 0);
354 goto free_bios;
355 }
356 bio = NULL;
357 }
358
359 page++;
360 len -= bytes;
361 data_len -=bytes;
362 off = 0;
363 }
364 }
365
366 rq->buffer = rq->data = NULL;
367 rq->data_len = bufflen;
368 return 0;
369
370 free_bios:
371 while ((bio = rq->bio) != NULL) {
372 rq->bio = bio->bi_next;
373 /*
374 * call endio instead of bio_put incase it was bounced
375 */
376 bio_endio(bio, 0);
377 }
378
379 return err;
380 }
381
382 /**
383 * scsi_execute_async - insert request
384 * @sdev: scsi device
385 * @cmd: scsi command
386 * @cmd_len: length of scsi cdb
387 * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
388 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
389 * @bufflen: len of buffer
390 * @use_sg: if buffer is a scatterlist this is the number of elements
391 * @timeout: request timeout in seconds
392 * @retries: number of times to retry request
393 * @privdata: data passed to done()
394 * @done: callback function when done
395 * @gfp: memory allocation flags
396 */
397 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
398 int cmd_len, int data_direction, void *buffer, unsigned bufflen,
399 int use_sg, int timeout, int retries, void *privdata,
400 void (*done)(void *, char *, int, int), gfp_t gfp)
401 {
402 struct request *req;
403 struct scsi_io_context *sioc;
404 int err = 0;
405 int write = (data_direction == DMA_TO_DEVICE);
406
407 sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
408 if (!sioc)
409 return DRIVER_ERROR << 24;
410
411 req = blk_get_request(sdev->request_queue, write, gfp);
412 if (!req)
413 goto free_sense;
414 req->cmd_type = REQ_TYPE_BLOCK_PC;
415 req->cmd_flags |= REQ_QUIET;
416
417 if (use_sg)
418 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
419 else if (bufflen)
420 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
421
422 if (err)
423 goto free_req;
424
425 req->cmd_len = cmd_len;
426 memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
427 memcpy(req->cmd, cmd, req->cmd_len);
428 req->sense = sioc->sense;
429 req->sense_len = 0;
430 req->timeout = timeout;
431 req->retries = retries;
432 req->end_io_data = sioc;
433
434 sioc->data = privdata;
435 sioc->done = done;
436
437 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
438 return 0;
439
440 free_req:
441 blk_put_request(req);
442 free_sense:
443 kmem_cache_free(scsi_io_context_cache, sioc);
444 return DRIVER_ERROR << 24;
445 }
446 EXPORT_SYMBOL_GPL(scsi_execute_async);
447
448 /*
449 * Function: scsi_init_cmd_errh()
450 *
451 * Purpose: Initialize cmd fields related to error handling.
452 *
453 * Arguments: cmd - command that is ready to be queued.
454 *
455 * Notes: This function has the job of initializing a number of
456 * fields related to error handling. Typically this will
457 * be called once for each command, as required.
458 */
459 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
460 {
461 cmd->serial_number = 0;
462 scsi_set_resid(cmd, 0);
463 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
464 if (cmd->cmd_len == 0)
465 cmd->cmd_len = scsi_command_size(cmd->cmnd);
466 }
467
468 void scsi_device_unbusy(struct scsi_device *sdev)
469 {
470 struct Scsi_Host *shost = sdev->host;
471 struct scsi_target *starget = scsi_target(sdev);
472 unsigned long flags;
473
474 spin_lock_irqsave(shost->host_lock, flags);
475 shost->host_busy--;
476 starget->target_busy--;
477 if (unlikely(scsi_host_in_recovery(shost) &&
478 (shost->host_failed || shost->host_eh_scheduled)))
479 scsi_eh_wakeup(shost);
480 spin_unlock(shost->host_lock);
481 spin_lock(sdev->request_queue->queue_lock);
482 sdev->device_busy--;
483 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
484 }
485
486 /*
487 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
488 * and call blk_run_queue for all the scsi_devices on the target -
489 * including current_sdev first.
490 *
491 * Called with *no* scsi locks held.
492 */
493 static void scsi_single_lun_run(struct scsi_device *current_sdev)
494 {
495 struct Scsi_Host *shost = current_sdev->host;
496 struct scsi_device *sdev, *tmp;
497 struct scsi_target *starget = scsi_target(current_sdev);
498 unsigned long flags;
499
500 spin_lock_irqsave(shost->host_lock, flags);
501 starget->starget_sdev_user = NULL;
502 spin_unlock_irqrestore(shost->host_lock, flags);
503
504 /*
505 * Call blk_run_queue for all LUNs on the target, starting with
506 * current_sdev. We race with others (to set starget_sdev_user),
507 * but in most cases, we will be first. Ideally, each LU on the
508 * target would get some limited time or requests on the target.
509 */
510 blk_run_queue(current_sdev->request_queue);
511
512 spin_lock_irqsave(shost->host_lock, flags);
513 if (starget->starget_sdev_user)
514 goto out;
515 list_for_each_entry_safe(sdev, tmp, &starget->devices,
516 same_target_siblings) {
517 if (sdev == current_sdev)
518 continue;
519 if (scsi_device_get(sdev))
520 continue;
521
522 spin_unlock_irqrestore(shost->host_lock, flags);
523 blk_run_queue(sdev->request_queue);
524 spin_lock_irqsave(shost->host_lock, flags);
525
526 scsi_device_put(sdev);
527 }
528 out:
529 spin_unlock_irqrestore(shost->host_lock, flags);
530 }
531
532 static inline int scsi_device_is_busy(struct scsi_device *sdev)
533 {
534 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
535 return 1;
536
537 return 0;
538 }
539
540 static inline int scsi_target_is_busy(struct scsi_target *starget)
541 {
542 return ((starget->can_queue > 0 &&
543 starget->target_busy >= starget->can_queue) ||
544 starget->target_blocked);
545 }
546
547 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
548 {
549 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
550 shost->host_blocked || shost->host_self_blocked)
551 return 1;
552
553 return 0;
554 }
555
556 /*
557 * Function: scsi_run_queue()
558 *
559 * Purpose: Select a proper request queue to serve next
560 *
561 * Arguments: q - last request's queue
562 *
563 * Returns: Nothing
564 *
565 * Notes: The previous command was completely finished, start
566 * a new one if possible.
567 */
568 static void scsi_run_queue(struct request_queue *q)
569 {
570 struct scsi_device *starved_head = NULL, *sdev = q->queuedata;
571 struct Scsi_Host *shost = sdev->host;
572 unsigned long flags;
573
574 if (scsi_target(sdev)->single_lun)
575 scsi_single_lun_run(sdev);
576
577 spin_lock_irqsave(shost->host_lock, flags);
578 while (!list_empty(&shost->starved_list) && !scsi_host_is_busy(shost)) {
579 int flagset;
580
581 /*
582 * As long as shost is accepting commands and we have
583 * starved queues, call blk_run_queue. scsi_request_fn
584 * drops the queue_lock and can add us back to the
585 * starved_list.
586 *
587 * host_lock protects the starved_list and starved_entry.
588 * scsi_request_fn must get the host_lock before checking
589 * or modifying starved_list or starved_entry.
590 */
591 sdev = list_entry(shost->starved_list.next,
592 struct scsi_device, starved_entry);
593 /*
594 * The *queue_ready functions can add a device back onto the
595 * starved list's tail, so we must check for a infinite loop.
596 */
597 if (sdev == starved_head)
598 break;
599 if (!starved_head)
600 starved_head = sdev;
601
602 if (scsi_target_is_busy(scsi_target(sdev))) {
603 list_move_tail(&sdev->starved_entry,
604 &shost->starved_list);
605 continue;
606 }
607
608 list_del_init(&sdev->starved_entry);
609 spin_unlock(shost->host_lock);
610
611 spin_lock(sdev->request_queue->queue_lock);
612 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
613 !test_bit(QUEUE_FLAG_REENTER,
614 &sdev->request_queue->queue_flags);
615 if (flagset)
616 queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
617 __blk_run_queue(sdev->request_queue);
618 if (flagset)
619 queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
620 spin_unlock(sdev->request_queue->queue_lock);
621
622 spin_lock(shost->host_lock);
623 }
624 spin_unlock_irqrestore(shost->host_lock, flags);
625
626 blk_run_queue(q);
627 }
628
629 /*
630 * Function: scsi_requeue_command()
631 *
632 * Purpose: Handle post-processing of completed commands.
633 *
634 * Arguments: q - queue to operate on
635 * cmd - command that may need to be requeued.
636 *
637 * Returns: Nothing
638 *
639 * Notes: After command completion, there may be blocks left
640 * over which weren't finished by the previous command
641 * this can be for a number of reasons - the main one is
642 * I/O errors in the middle of the request, in which case
643 * we need to request the blocks that come after the bad
644 * sector.
645 * Notes: Upon return, cmd is a stale pointer.
646 */
647 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
648 {
649 struct request *req = cmd->request;
650 unsigned long flags;
651
652 scsi_unprep_request(req);
653 spin_lock_irqsave(q->queue_lock, flags);
654 blk_requeue_request(q, req);
655 spin_unlock_irqrestore(q->queue_lock, flags);
656
657 scsi_run_queue(q);
658 }
659
660 void scsi_next_command(struct scsi_cmnd *cmd)
661 {
662 struct scsi_device *sdev = cmd->device;
663 struct request_queue *q = sdev->request_queue;
664
665 /* need to hold a reference on the device before we let go of the cmd */
666 get_device(&sdev->sdev_gendev);
667
668 scsi_put_command(cmd);
669 scsi_run_queue(q);
670
671 /* ok to remove device now */
672 put_device(&sdev->sdev_gendev);
673 }
674
675 void scsi_run_host_queues(struct Scsi_Host *shost)
676 {
677 struct scsi_device *sdev;
678
679 shost_for_each_device(sdev, shost)
680 scsi_run_queue(sdev->request_queue);
681 }
682
683 /*
684 * Function: scsi_end_request()
685 *
686 * Purpose: Post-processing of completed commands (usually invoked at end
687 * of upper level post-processing and scsi_io_completion).
688 *
689 * Arguments: cmd - command that is complete.
690 * error - 0 if I/O indicates success, < 0 for I/O error.
691 * bytes - number of bytes of completed I/O
692 * requeue - indicates whether we should requeue leftovers.
693 *
694 * Lock status: Assumed that lock is not held upon entry.
695 *
696 * Returns: cmd if requeue required, NULL otherwise.
697 *
698 * Notes: This is called for block device requests in order to
699 * mark some number of sectors as complete.
700 *
701 * We are guaranteeing that the request queue will be goosed
702 * at some point during this call.
703 * Notes: If cmd was requeued, upon return it will be a stale pointer.
704 */
705 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
706 int bytes, int requeue)
707 {
708 struct request_queue *q = cmd->device->request_queue;
709 struct request *req = cmd->request;
710
711 /*
712 * If there are blocks left over at the end, set up the command
713 * to queue the remainder of them.
714 */
715 if (blk_end_request(req, error, bytes)) {
716 int leftover = (req->hard_nr_sectors << 9);
717
718 if (blk_pc_request(req))
719 leftover = req->data_len;
720
721 /* kill remainder if no retrys */
722 if (error && scsi_noretry_cmd(cmd))
723 blk_end_request(req, error, leftover);
724 else {
725 if (requeue) {
726 /*
727 * Bleah. Leftovers again. Stick the
728 * leftovers in the front of the
729 * queue, and goose the queue again.
730 */
731 scsi_requeue_command(q, cmd);
732 cmd = NULL;
733 }
734 return cmd;
735 }
736 }
737
738 /*
739 * This will goose the queue request function at the end, so we don't
740 * need to worry about launching another command.
741 */
742 scsi_next_command(cmd);
743 return NULL;
744 }
745
746 static inline unsigned int scsi_sgtable_index(unsigned short nents)
747 {
748 unsigned int index;
749
750 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
751
752 if (nents <= 8)
753 index = 0;
754 else
755 index = get_count_order(nents) - 3;
756
757 return index;
758 }
759
760 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
761 {
762 struct scsi_host_sg_pool *sgp;
763
764 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
765 mempool_free(sgl, sgp->pool);
766 }
767
768 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
769 {
770 struct scsi_host_sg_pool *sgp;
771
772 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
773 return mempool_alloc(sgp->pool, gfp_mask);
774 }
775
776 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
777 gfp_t gfp_mask)
778 {
779 int ret;
780
781 BUG_ON(!nents);
782
783 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
784 gfp_mask, scsi_sg_alloc);
785 if (unlikely(ret))
786 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
787 scsi_sg_free);
788
789 return ret;
790 }
791
792 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
793 {
794 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
795 }
796
797 /*
798 * Function: scsi_release_buffers()
799 *
800 * Purpose: Completion processing for block device I/O requests.
801 *
802 * Arguments: cmd - command that we are bailing.
803 *
804 * Lock status: Assumed that no lock is held upon entry.
805 *
806 * Returns: Nothing
807 *
808 * Notes: In the event that an upper level driver rejects a
809 * command, we must release resources allocated during
810 * the __init_io() function. Primarily this would involve
811 * the scatter-gather table, and potentially any bounce
812 * buffers.
813 */
814 void scsi_release_buffers(struct scsi_cmnd *cmd)
815 {
816 if (cmd->sdb.table.nents)
817 scsi_free_sgtable(&cmd->sdb);
818
819 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
820
821 if (scsi_bidi_cmnd(cmd)) {
822 struct scsi_data_buffer *bidi_sdb =
823 cmd->request->next_rq->special;
824 scsi_free_sgtable(bidi_sdb);
825 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
826 cmd->request->next_rq->special = NULL;
827 }
828
829 if (scsi_prot_sg_count(cmd))
830 scsi_free_sgtable(cmd->prot_sdb);
831 }
832 EXPORT_SYMBOL(scsi_release_buffers);
833
834 /*
835 * Bidi commands Must be complete as a whole, both sides at once.
836 * If part of the bytes were written and lld returned
837 * scsi_in()->resid and/or scsi_out()->resid this information will be left
838 * in req->data_len and req->next_rq->data_len. The upper-layer driver can
839 * decide what to do with this information.
840 */
841 static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
842 {
843 struct request *req = cmd->request;
844 unsigned int dlen = req->data_len;
845 unsigned int next_dlen = req->next_rq->data_len;
846
847 req->data_len = scsi_out(cmd)->resid;
848 req->next_rq->data_len = scsi_in(cmd)->resid;
849
850 /* The req and req->next_rq have not been completed */
851 BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
852
853 scsi_release_buffers(cmd);
854
855 /*
856 * This will goose the queue request function at the end, so we don't
857 * need to worry about launching another command.
858 */
859 scsi_next_command(cmd);
860 }
861
862 /*
863 * Function: scsi_io_completion()
864 *
865 * Purpose: Completion processing for block device I/O requests.
866 *
867 * Arguments: cmd - command that is finished.
868 *
869 * Lock status: Assumed that no lock is held upon entry.
870 *
871 * Returns: Nothing
872 *
873 * Notes: This function is matched in terms of capabilities to
874 * the function that created the scatter-gather list.
875 * In other words, if there are no bounce buffers
876 * (the normal case for most drivers), we don't need
877 * the logic to deal with cleaning up afterwards.
878 *
879 * We must do one of several things here:
880 *
881 * a) Call scsi_end_request. This will finish off the
882 * specified number of sectors. If we are done, the
883 * command block will be released, and the queue
884 * function will be goosed. If we are not done, then
885 * scsi_end_request will directly goose the queue.
886 *
887 * b) We can just use scsi_requeue_command() here. This would
888 * be used if we just wanted to retry, for example.
889 */
890 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
891 {
892 int result = cmd->result;
893 int this_count;
894 struct request_queue *q = cmd->device->request_queue;
895 struct request *req = cmd->request;
896 int error = 0;
897 struct scsi_sense_hdr sshdr;
898 int sense_valid = 0;
899 int sense_deferred = 0;
900
901 if (result) {
902 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
903 if (sense_valid)
904 sense_deferred = scsi_sense_is_deferred(&sshdr);
905 }
906
907 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
908 req->errors = result;
909 if (result) {
910 if (sense_valid && req->sense) {
911 /*
912 * SG_IO wants current and deferred errors
913 */
914 int len = 8 + cmd->sense_buffer[7];
915
916 if (len > SCSI_SENSE_BUFFERSIZE)
917 len = SCSI_SENSE_BUFFERSIZE;
918 memcpy(req->sense, cmd->sense_buffer, len);
919 req->sense_len = len;
920 }
921 if (!sense_deferred)
922 error = -EIO;
923 }
924 if (scsi_bidi_cmnd(cmd)) {
925 /* will also release_buffers */
926 scsi_end_bidi_request(cmd);
927 return;
928 }
929 req->data_len = scsi_get_resid(cmd);
930 }
931
932 BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
933 scsi_release_buffers(cmd);
934
935 /*
936 * Next deal with any sectors which we were able to correctly
937 * handle.
938 */
939 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
940 "%d bytes done.\n",
941 req->nr_sectors, good_bytes));
942
943 /* A number of bytes were successfully read. If there
944 * are leftovers and there is some kind of error
945 * (result != 0), retry the rest.
946 */
947 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
948 return;
949 this_count = blk_rq_bytes(req);
950
951 /* good_bytes = 0, or (inclusive) there were leftovers and
952 * result = 0, so scsi_end_request couldn't retry.
953 */
954 if (sense_valid && !sense_deferred) {
955 switch (sshdr.sense_key) {
956 case UNIT_ATTENTION:
957 if (cmd->device->removable) {
958 /* Detected disc change. Set a bit
959 * and quietly refuse further access.
960 */
961 cmd->device->changed = 1;
962 scsi_end_request(cmd, -EIO, this_count, 1);
963 return;
964 } else {
965 /* Must have been a power glitch, or a
966 * bus reset. Could not have been a
967 * media change, so we just retry the
968 * request and see what happens.
969 */
970 scsi_requeue_command(q, cmd);
971 return;
972 }
973 break;
974 case ILLEGAL_REQUEST:
975 /* If we had an ILLEGAL REQUEST returned, then
976 * we may have performed an unsupported
977 * command. The only thing this should be
978 * would be a ten byte read where only a six
979 * byte read was supported. Also, on a system
980 * where READ CAPACITY failed, we may have
981 * read past the end of the disk.
982 */
983 if ((cmd->device->use_10_for_rw &&
984 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
985 (cmd->cmnd[0] == READ_10 ||
986 cmd->cmnd[0] == WRITE_10)) {
987 cmd->device->use_10_for_rw = 0;
988 /* This will cause a retry with a
989 * 6-byte command.
990 */
991 scsi_requeue_command(q, cmd);
992 } else if (sshdr.asc == 0x10) /* DIX */
993 scsi_end_request(cmd, -EIO, this_count, 0);
994 else
995 scsi_end_request(cmd, -EIO, this_count, 1);
996 return;
997 case ABORTED_COMMAND:
998 if (sshdr.asc == 0x10) { /* DIF */
999 scsi_end_request(cmd, -EIO, this_count, 0);
1000 return;
1001 }
1002 break;
1003 case NOT_READY:
1004 /* If the device is in the process of becoming
1005 * ready, or has a temporary blockage, retry.
1006 */
1007 if (sshdr.asc == 0x04) {
1008 switch (sshdr.ascq) {
1009 case 0x01: /* becoming ready */
1010 case 0x04: /* format in progress */
1011 case 0x05: /* rebuild in progress */
1012 case 0x06: /* recalculation in progress */
1013 case 0x07: /* operation in progress */
1014 case 0x08: /* Long write in progress */
1015 case 0x09: /* self test in progress */
1016 scsi_requeue_command(q, cmd);
1017 return;
1018 default:
1019 break;
1020 }
1021 }
1022 if (!(req->cmd_flags & REQ_QUIET))
1023 scsi_cmd_print_sense_hdr(cmd,
1024 "Device not ready",
1025 &sshdr);
1026
1027 scsi_end_request(cmd, -EIO, this_count, 1);
1028 return;
1029 case VOLUME_OVERFLOW:
1030 if (!(req->cmd_flags & REQ_QUIET)) {
1031 scmd_printk(KERN_INFO, cmd,
1032 "Volume overflow, CDB: ");
1033 __scsi_print_command(cmd->cmnd);
1034 scsi_print_sense("", cmd);
1035 }
1036 /* See SSC3rXX or current. */
1037 scsi_end_request(cmd, -EIO, this_count, 1);
1038 return;
1039 default:
1040 break;
1041 }
1042 }
1043 if (host_byte(result) == DID_RESET) {
1044 /* Third party bus reset or reset for error recovery
1045 * reasons. Just retry the request and see what
1046 * happens.
1047 */
1048 scsi_requeue_command(q, cmd);
1049 return;
1050 }
1051 if (result) {
1052 if (!(req->cmd_flags & REQ_QUIET)) {
1053 scsi_print_result(cmd);
1054 if (driver_byte(result) & DRIVER_SENSE)
1055 scsi_print_sense("", cmd);
1056 }
1057 }
1058 scsi_end_request(cmd, -EIO, this_count, !result);
1059 }
1060
1061 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1062 gfp_t gfp_mask)
1063 {
1064 int count;
1065
1066 /*
1067 * If sg table allocation fails, requeue request later.
1068 */
1069 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1070 gfp_mask))) {
1071 return BLKPREP_DEFER;
1072 }
1073
1074 req->buffer = NULL;
1075
1076 /*
1077 * Next, walk the list, and fill in the addresses and sizes of
1078 * each segment.
1079 */
1080 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1081 BUG_ON(count > sdb->table.nents);
1082 sdb->table.nents = count;
1083 if (blk_pc_request(req))
1084 sdb->length = req->data_len;
1085 else
1086 sdb->length = req->nr_sectors << 9;
1087 return BLKPREP_OK;
1088 }
1089
1090 /*
1091 * Function: scsi_init_io()
1092 *
1093 * Purpose: SCSI I/O initialize function.
1094 *
1095 * Arguments: cmd - Command descriptor we wish to initialize
1096 *
1097 * Returns: 0 on success
1098 * BLKPREP_DEFER if the failure is retryable
1099 * BLKPREP_KILL if the failure is fatal
1100 */
1101 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1102 {
1103 int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
1104 if (error)
1105 goto err_exit;
1106
1107 if (blk_bidi_rq(cmd->request)) {
1108 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1109 scsi_sdb_cache, GFP_ATOMIC);
1110 if (!bidi_sdb) {
1111 error = BLKPREP_DEFER;
1112 goto err_exit;
1113 }
1114
1115 cmd->request->next_rq->special = bidi_sdb;
1116 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1117 GFP_ATOMIC);
1118 if (error)
1119 goto err_exit;
1120 }
1121
1122 if (blk_integrity_rq(cmd->request)) {
1123 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1124 int ivecs, count;
1125
1126 BUG_ON(prot_sdb == NULL);
1127 ivecs = blk_rq_count_integrity_sg(cmd->request);
1128
1129 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1130 error = BLKPREP_DEFER;
1131 goto err_exit;
1132 }
1133
1134 count = blk_rq_map_integrity_sg(cmd->request,
1135 prot_sdb->table.sgl);
1136 BUG_ON(unlikely(count > ivecs));
1137
1138 cmd->prot_sdb = prot_sdb;
1139 cmd->prot_sdb->table.nents = count;
1140 }
1141
1142 return BLKPREP_OK ;
1143
1144 err_exit:
1145 scsi_release_buffers(cmd);
1146 if (error == BLKPREP_KILL)
1147 scsi_put_command(cmd);
1148 else /* BLKPREP_DEFER */
1149 scsi_unprep_request(cmd->request);
1150
1151 return error;
1152 }
1153 EXPORT_SYMBOL(scsi_init_io);
1154
1155 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1156 struct request *req)
1157 {
1158 struct scsi_cmnd *cmd;
1159
1160 if (!req->special) {
1161 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1162 if (unlikely(!cmd))
1163 return NULL;
1164 req->special = cmd;
1165 } else {
1166 cmd = req->special;
1167 }
1168
1169 /* pull a tag out of the request if we have one */
1170 cmd->tag = req->tag;
1171 cmd->request = req;
1172
1173 cmd->cmnd = req->cmd;
1174
1175 return cmd;
1176 }
1177
1178 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1179 {
1180 struct scsi_cmnd *cmd;
1181 int ret = scsi_prep_state_check(sdev, req);
1182
1183 if (ret != BLKPREP_OK)
1184 return ret;
1185
1186 cmd = scsi_get_cmd_from_req(sdev, req);
1187 if (unlikely(!cmd))
1188 return BLKPREP_DEFER;
1189
1190 /*
1191 * BLOCK_PC requests may transfer data, in which case they must
1192 * a bio attached to them. Or they might contain a SCSI command
1193 * that does not transfer data, in which case they may optionally
1194 * submit a request without an attached bio.
1195 */
1196 if (req->bio) {
1197 int ret;
1198
1199 BUG_ON(!req->nr_phys_segments);
1200
1201 ret = scsi_init_io(cmd, GFP_ATOMIC);
1202 if (unlikely(ret))
1203 return ret;
1204 } else {
1205 BUG_ON(req->data_len);
1206 BUG_ON(req->data);
1207
1208 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1209 req->buffer = NULL;
1210 }
1211
1212 cmd->cmd_len = req->cmd_len;
1213 if (!req->data_len)
1214 cmd->sc_data_direction = DMA_NONE;
1215 else if (rq_data_dir(req) == WRITE)
1216 cmd->sc_data_direction = DMA_TO_DEVICE;
1217 else
1218 cmd->sc_data_direction = DMA_FROM_DEVICE;
1219
1220 cmd->transfersize = req->data_len;
1221 cmd->allowed = req->retries;
1222 return BLKPREP_OK;
1223 }
1224 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1225
1226 /*
1227 * Setup a REQ_TYPE_FS command. These are simple read/write request
1228 * from filesystems that still need to be translated to SCSI CDBs from
1229 * the ULD.
1230 */
1231 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1232 {
1233 struct scsi_cmnd *cmd;
1234 int ret = scsi_prep_state_check(sdev, req);
1235
1236 if (ret != BLKPREP_OK)
1237 return ret;
1238
1239 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1240 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1241 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1242 if (ret != BLKPREP_OK)
1243 return ret;
1244 }
1245
1246 /*
1247 * Filesystem requests must transfer data.
1248 */
1249 BUG_ON(!req->nr_phys_segments);
1250
1251 cmd = scsi_get_cmd_from_req(sdev, req);
1252 if (unlikely(!cmd))
1253 return BLKPREP_DEFER;
1254
1255 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1256 return scsi_init_io(cmd, GFP_ATOMIC);
1257 }
1258 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1259
1260 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1261 {
1262 int ret = BLKPREP_OK;
1263
1264 /*
1265 * If the device is not in running state we will reject some
1266 * or all commands.
1267 */
1268 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1269 switch (sdev->sdev_state) {
1270 case SDEV_OFFLINE:
1271 /*
1272 * If the device is offline we refuse to process any
1273 * commands. The device must be brought online
1274 * before trying any recovery commands.
1275 */
1276 sdev_printk(KERN_ERR, sdev,
1277 "rejecting I/O to offline device\n");
1278 ret = BLKPREP_KILL;
1279 break;
1280 case SDEV_DEL:
1281 /*
1282 * If the device is fully deleted, we refuse to
1283 * process any commands as well.
1284 */
1285 sdev_printk(KERN_ERR, sdev,
1286 "rejecting I/O to dead device\n");
1287 ret = BLKPREP_KILL;
1288 break;
1289 case SDEV_QUIESCE:
1290 case SDEV_BLOCK:
1291 case SDEV_CREATED_BLOCK:
1292 /*
1293 * If the devices is blocked we defer normal commands.
1294 */
1295 if (!(req->cmd_flags & REQ_PREEMPT))
1296 ret = BLKPREP_DEFER;
1297 break;
1298 default:
1299 /*
1300 * For any other not fully online state we only allow
1301 * special commands. In particular any user initiated
1302 * command is not allowed.
1303 */
1304 if (!(req->cmd_flags & REQ_PREEMPT))
1305 ret = BLKPREP_KILL;
1306 break;
1307 }
1308 }
1309 return ret;
1310 }
1311 EXPORT_SYMBOL(scsi_prep_state_check);
1312
1313 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1314 {
1315 struct scsi_device *sdev = q->queuedata;
1316
1317 switch (ret) {
1318 case BLKPREP_KILL:
1319 req->errors = DID_NO_CONNECT << 16;
1320 /* release the command and kill it */
1321 if (req->special) {
1322 struct scsi_cmnd *cmd = req->special;
1323 scsi_release_buffers(cmd);
1324 scsi_put_command(cmd);
1325 req->special = NULL;
1326 }
1327 break;
1328 case BLKPREP_DEFER:
1329 /*
1330 * If we defer, the elv_next_request() returns NULL, but the
1331 * queue must be restarted, so we plug here if no returning
1332 * command will automatically do that.
1333 */
1334 if (sdev->device_busy == 0)
1335 blk_plug_device(q);
1336 break;
1337 default:
1338 req->cmd_flags |= REQ_DONTPREP;
1339 }
1340
1341 return ret;
1342 }
1343 EXPORT_SYMBOL(scsi_prep_return);
1344
1345 int scsi_prep_fn(struct request_queue *q, struct request *req)
1346 {
1347 struct scsi_device *sdev = q->queuedata;
1348 int ret = BLKPREP_KILL;
1349
1350 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1351 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1352 return scsi_prep_return(q, req, ret);
1353 }
1354
1355 /*
1356 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1357 * return 0.
1358 *
1359 * Called with the queue_lock held.
1360 */
1361 static inline int scsi_dev_queue_ready(struct request_queue *q,
1362 struct scsi_device *sdev)
1363 {
1364 if (sdev->device_busy == 0 && sdev->device_blocked) {
1365 /*
1366 * unblock after device_blocked iterates to zero
1367 */
1368 if (--sdev->device_blocked == 0) {
1369 SCSI_LOG_MLQUEUE(3,
1370 sdev_printk(KERN_INFO, sdev,
1371 "unblocking device at zero depth\n"));
1372 } else {
1373 blk_plug_device(q);
1374 return 0;
1375 }
1376 }
1377 if (scsi_device_is_busy(sdev))
1378 return 0;
1379
1380 return 1;
1381 }
1382
1383
1384 /*
1385 * scsi_target_queue_ready: checks if there we can send commands to target
1386 * @sdev: scsi device on starget to check.
1387 *
1388 * Called with the host lock held.
1389 */
1390 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1391 struct scsi_device *sdev)
1392 {
1393 struct scsi_target *starget = scsi_target(sdev);
1394
1395 if (starget->single_lun) {
1396 if (starget->starget_sdev_user &&
1397 starget->starget_sdev_user != sdev)
1398 return 0;
1399 starget->starget_sdev_user = sdev;
1400 }
1401
1402 if (starget->target_busy == 0 && starget->target_blocked) {
1403 /*
1404 * unblock after target_blocked iterates to zero
1405 */
1406 if (--starget->target_blocked == 0) {
1407 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1408 "unblocking target at zero depth\n"));
1409 } else {
1410 blk_plug_device(sdev->request_queue);
1411 return 0;
1412 }
1413 }
1414
1415 if (scsi_target_is_busy(starget)) {
1416 if (list_empty(&sdev->starved_entry)) {
1417 list_add_tail(&sdev->starved_entry,
1418 &shost->starved_list);
1419 return 0;
1420 }
1421 }
1422
1423 /* We're OK to process the command, so we can't be starved */
1424 if (!list_empty(&sdev->starved_entry))
1425 list_del_init(&sdev->starved_entry);
1426 return 1;
1427 }
1428
1429 /*
1430 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1431 * return 0. We must end up running the queue again whenever 0 is
1432 * returned, else IO can hang.
1433 *
1434 * Called with host_lock held.
1435 */
1436 static inline int scsi_host_queue_ready(struct request_queue *q,
1437 struct Scsi_Host *shost,
1438 struct scsi_device *sdev)
1439 {
1440 if (scsi_host_in_recovery(shost))
1441 return 0;
1442 if (shost->host_busy == 0 && shost->host_blocked) {
1443 /*
1444 * unblock after host_blocked iterates to zero
1445 */
1446 if (--shost->host_blocked == 0) {
1447 SCSI_LOG_MLQUEUE(3,
1448 printk("scsi%d unblocking host at zero depth\n",
1449 shost->host_no));
1450 } else {
1451 return 0;
1452 }
1453 }
1454 if (scsi_host_is_busy(shost)) {
1455 if (list_empty(&sdev->starved_entry))
1456 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1457 return 0;
1458 }
1459
1460 /* We're OK to process the command, so we can't be starved */
1461 if (!list_empty(&sdev->starved_entry))
1462 list_del_init(&sdev->starved_entry);
1463
1464 return 1;
1465 }
1466
1467 /*
1468 * Kill a request for a dead device
1469 */
1470 static void scsi_kill_request(struct request *req, struct request_queue *q)
1471 {
1472 struct scsi_cmnd *cmd = req->special;
1473 struct scsi_device *sdev = cmd->device;
1474 struct scsi_target *starget = scsi_target(sdev);
1475 struct Scsi_Host *shost = sdev->host;
1476
1477 blkdev_dequeue_request(req);
1478
1479 if (unlikely(cmd == NULL)) {
1480 printk(KERN_CRIT "impossible request in %s.\n",
1481 __func__);
1482 BUG();
1483 }
1484
1485 scsi_init_cmd_errh(cmd);
1486 cmd->result = DID_NO_CONNECT << 16;
1487 atomic_inc(&cmd->device->iorequest_cnt);
1488
1489 /*
1490 * SCSI request completion path will do scsi_device_unbusy(),
1491 * bump busy counts. To bump the counters, we need to dance
1492 * with the locks as normal issue path does.
1493 */
1494 sdev->device_busy++;
1495 spin_unlock(sdev->request_queue->queue_lock);
1496 spin_lock(shost->host_lock);
1497 shost->host_busy++;
1498 starget->target_busy++;
1499 spin_unlock(shost->host_lock);
1500 spin_lock(sdev->request_queue->queue_lock);
1501
1502 blk_complete_request(req);
1503 }
1504
1505 static void scsi_softirq_done(struct request *rq)
1506 {
1507 struct scsi_cmnd *cmd = rq->special;
1508 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1509 int disposition;
1510
1511 INIT_LIST_HEAD(&cmd->eh_entry);
1512
1513 /*
1514 * Set the serial numbers back to zero
1515 */
1516 cmd->serial_number = 0;
1517
1518 atomic_inc(&cmd->device->iodone_cnt);
1519 if (cmd->result)
1520 atomic_inc(&cmd->device->ioerr_cnt);
1521
1522 disposition = scsi_decide_disposition(cmd);
1523 if (disposition != SUCCESS &&
1524 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1525 sdev_printk(KERN_ERR, cmd->device,
1526 "timing out command, waited %lus\n",
1527 wait_for/HZ);
1528 disposition = SUCCESS;
1529 }
1530
1531 scsi_log_completion(cmd, disposition);
1532
1533 switch (disposition) {
1534 case SUCCESS:
1535 scsi_finish_command(cmd);
1536 break;
1537 case NEEDS_RETRY:
1538 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1539 break;
1540 case ADD_TO_MLQUEUE:
1541 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1542 break;
1543 default:
1544 if (!scsi_eh_scmd_add(cmd, 0))
1545 scsi_finish_command(cmd);
1546 }
1547 }
1548
1549 /*
1550 * Function: scsi_request_fn()
1551 *
1552 * Purpose: Main strategy routine for SCSI.
1553 *
1554 * Arguments: q - Pointer to actual queue.
1555 *
1556 * Returns: Nothing
1557 *
1558 * Lock status: IO request lock assumed to be held when called.
1559 */
1560 static void scsi_request_fn(struct request_queue *q)
1561 {
1562 struct scsi_device *sdev = q->queuedata;
1563 struct Scsi_Host *shost;
1564 struct scsi_cmnd *cmd;
1565 struct request *req;
1566
1567 if (!sdev) {
1568 printk("scsi: killing requests for dead queue\n");
1569 while ((req = elv_next_request(q)) != NULL)
1570 scsi_kill_request(req, q);
1571 return;
1572 }
1573
1574 if(!get_device(&sdev->sdev_gendev))
1575 /* We must be tearing the block queue down already */
1576 return;
1577
1578 /*
1579 * To start with, we keep looping until the queue is empty, or until
1580 * the host is no longer able to accept any more requests.
1581 */
1582 shost = sdev->host;
1583 while (!blk_queue_plugged(q)) {
1584 int rtn;
1585 /*
1586 * get next queueable request. We do this early to make sure
1587 * that the request is fully prepared even if we cannot
1588 * accept it.
1589 */
1590 req = elv_next_request(q);
1591 if (!req || !scsi_dev_queue_ready(q, sdev))
1592 break;
1593
1594 if (unlikely(!scsi_device_online(sdev))) {
1595 sdev_printk(KERN_ERR, sdev,
1596 "rejecting I/O to offline device\n");
1597 scsi_kill_request(req, q);
1598 continue;
1599 }
1600
1601
1602 /*
1603 * Remove the request from the request list.
1604 */
1605 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1606 blkdev_dequeue_request(req);
1607 sdev->device_busy++;
1608
1609 spin_unlock(q->queue_lock);
1610 cmd = req->special;
1611 if (unlikely(cmd == NULL)) {
1612 printk(KERN_CRIT "impossible request in %s.\n"
1613 "please mail a stack trace to "
1614 "linux-scsi@vger.kernel.org\n",
1615 __func__);
1616 blk_dump_rq_flags(req, "foo");
1617 BUG();
1618 }
1619 spin_lock(shost->host_lock);
1620
1621 /*
1622 * We hit this when the driver is using a host wide
1623 * tag map. For device level tag maps the queue_depth check
1624 * in the device ready fn would prevent us from trying
1625 * to allocate a tag. Since the map is a shared host resource
1626 * we add the dev to the starved list so it eventually gets
1627 * a run when a tag is freed.
1628 */
1629 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1630 if (list_empty(&sdev->starved_entry))
1631 list_add_tail(&sdev->starved_entry,
1632 &shost->starved_list);
1633 goto not_ready;
1634 }
1635
1636 if (!scsi_target_queue_ready(shost, sdev))
1637 goto not_ready;
1638
1639 if (!scsi_host_queue_ready(q, shost, sdev))
1640 goto not_ready;
1641
1642 scsi_target(sdev)->target_busy++;
1643 shost->host_busy++;
1644
1645 /*
1646 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1647 * take the lock again.
1648 */
1649 spin_unlock_irq(shost->host_lock);
1650
1651 /*
1652 * Finally, initialize any error handling parameters, and set up
1653 * the timers for timeouts.
1654 */
1655 scsi_init_cmd_errh(cmd);
1656
1657 /*
1658 * Dispatch the command to the low-level driver.
1659 */
1660 rtn = scsi_dispatch_cmd(cmd);
1661 spin_lock_irq(q->queue_lock);
1662 if(rtn) {
1663 /* we're refusing the command; because of
1664 * the way locks get dropped, we need to
1665 * check here if plugging is required */
1666 if(sdev->device_busy == 0)
1667 blk_plug_device(q);
1668
1669 break;
1670 }
1671 }
1672
1673 goto out;
1674
1675 not_ready:
1676 spin_unlock_irq(shost->host_lock);
1677
1678 /*
1679 * lock q, handle tag, requeue req, and decrement device_busy. We
1680 * must return with queue_lock held.
1681 *
1682 * Decrementing device_busy without checking it is OK, as all such
1683 * cases (host limits or settings) should run the queue at some
1684 * later time.
1685 */
1686 spin_lock_irq(q->queue_lock);
1687 blk_requeue_request(q, req);
1688 sdev->device_busy--;
1689 if(sdev->device_busy == 0)
1690 blk_plug_device(q);
1691 out:
1692 /* must be careful here...if we trigger the ->remove() function
1693 * we cannot be holding the q lock */
1694 spin_unlock_irq(q->queue_lock);
1695 put_device(&sdev->sdev_gendev);
1696 spin_lock_irq(q->queue_lock);
1697 }
1698
1699 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1700 {
1701 struct device *host_dev;
1702 u64 bounce_limit = 0xffffffff;
1703
1704 if (shost->unchecked_isa_dma)
1705 return BLK_BOUNCE_ISA;
1706 /*
1707 * Platforms with virtual-DMA translation
1708 * hardware have no practical limit.
1709 */
1710 if (!PCI_DMA_BUS_IS_PHYS)
1711 return BLK_BOUNCE_ANY;
1712
1713 host_dev = scsi_get_device(shost);
1714 if (host_dev && host_dev->dma_mask)
1715 bounce_limit = *host_dev->dma_mask;
1716
1717 return bounce_limit;
1718 }
1719 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1720
1721 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1722 request_fn_proc *request_fn)
1723 {
1724 struct request_queue *q;
1725 struct device *dev = shost->shost_gendev.parent;
1726
1727 q = blk_init_queue(request_fn, NULL);
1728 if (!q)
1729 return NULL;
1730
1731 /*
1732 * this limit is imposed by hardware restrictions
1733 */
1734 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1735 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1736
1737 blk_queue_max_sectors(q, shost->max_sectors);
1738 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1739 blk_queue_segment_boundary(q, shost->dma_boundary);
1740 dma_set_seg_boundary(dev, shost->dma_boundary);
1741
1742 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1743
1744 /* New queue, no concurrency on queue_flags */
1745 if (!shost->use_clustering)
1746 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1747
1748 /*
1749 * set a reasonable default alignment on word boundaries: the
1750 * host and device may alter it using
1751 * blk_queue_update_dma_alignment() later.
1752 */
1753 blk_queue_dma_alignment(q, 0x03);
1754
1755 return q;
1756 }
1757 EXPORT_SYMBOL(__scsi_alloc_queue);
1758
1759 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1760 {
1761 struct request_queue *q;
1762
1763 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1764 if (!q)
1765 return NULL;
1766
1767 blk_queue_prep_rq(q, scsi_prep_fn);
1768 blk_queue_softirq_done(q, scsi_softirq_done);
1769 blk_queue_rq_timed_out(q, scsi_times_out);
1770 return q;
1771 }
1772
1773 void scsi_free_queue(struct request_queue *q)
1774 {
1775 blk_cleanup_queue(q);
1776 }
1777
1778 /*
1779 * Function: scsi_block_requests()
1780 *
1781 * Purpose: Utility function used by low-level drivers to prevent further
1782 * commands from being queued to the device.
1783 *
1784 * Arguments: shost - Host in question
1785 *
1786 * Returns: Nothing
1787 *
1788 * Lock status: No locks are assumed held.
1789 *
1790 * Notes: There is no timer nor any other means by which the requests
1791 * get unblocked other than the low-level driver calling
1792 * scsi_unblock_requests().
1793 */
1794 void scsi_block_requests(struct Scsi_Host *shost)
1795 {
1796 shost->host_self_blocked = 1;
1797 }
1798 EXPORT_SYMBOL(scsi_block_requests);
1799
1800 /*
1801 * Function: scsi_unblock_requests()
1802 *
1803 * Purpose: Utility function used by low-level drivers to allow further
1804 * commands from being queued to the device.
1805 *
1806 * Arguments: shost - Host in question
1807 *
1808 * Returns: Nothing
1809 *
1810 * Lock status: No locks are assumed held.
1811 *
1812 * Notes: There is no timer nor any other means by which the requests
1813 * get unblocked other than the low-level driver calling
1814 * scsi_unblock_requests().
1815 *
1816 * This is done as an API function so that changes to the
1817 * internals of the scsi mid-layer won't require wholesale
1818 * changes to drivers that use this feature.
1819 */
1820 void scsi_unblock_requests(struct Scsi_Host *shost)
1821 {
1822 shost->host_self_blocked = 0;
1823 scsi_run_host_queues(shost);
1824 }
1825 EXPORT_SYMBOL(scsi_unblock_requests);
1826
1827 int __init scsi_init_queue(void)
1828 {
1829 int i;
1830
1831 scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1832 sizeof(struct scsi_io_context),
1833 0, 0, NULL);
1834 if (!scsi_io_context_cache) {
1835 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1836 return -ENOMEM;
1837 }
1838
1839 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1840 sizeof(struct scsi_data_buffer),
1841 0, 0, NULL);
1842 if (!scsi_sdb_cache) {
1843 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1844 goto cleanup_io_context;
1845 }
1846
1847 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1848 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1849 int size = sgp->size * sizeof(struct scatterlist);
1850
1851 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1852 SLAB_HWCACHE_ALIGN, NULL);
1853 if (!sgp->slab) {
1854 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1855 sgp->name);
1856 goto cleanup_sdb;
1857 }
1858
1859 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1860 sgp->slab);
1861 if (!sgp->pool) {
1862 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1863 sgp->name);
1864 goto cleanup_sdb;
1865 }
1866 }
1867
1868 return 0;
1869
1870 cleanup_sdb:
1871 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1872 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1873 if (sgp->pool)
1874 mempool_destroy(sgp->pool);
1875 if (sgp->slab)
1876 kmem_cache_destroy(sgp->slab);
1877 }
1878 kmem_cache_destroy(scsi_sdb_cache);
1879 cleanup_io_context:
1880 kmem_cache_destroy(scsi_io_context_cache);
1881
1882 return -ENOMEM;
1883 }
1884
1885 void scsi_exit_queue(void)
1886 {
1887 int i;
1888
1889 kmem_cache_destroy(scsi_io_context_cache);
1890 kmem_cache_destroy(scsi_sdb_cache);
1891
1892 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1893 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1894 mempool_destroy(sgp->pool);
1895 kmem_cache_destroy(sgp->slab);
1896 }
1897 }
1898
1899 /**
1900 * scsi_mode_select - issue a mode select
1901 * @sdev: SCSI device to be queried
1902 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1903 * @sp: Save page bit (0 == don't save, 1 == save)
1904 * @modepage: mode page being requested
1905 * @buffer: request buffer (may not be smaller than eight bytes)
1906 * @len: length of request buffer.
1907 * @timeout: command timeout
1908 * @retries: number of retries before failing
1909 * @data: returns a structure abstracting the mode header data
1910 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1911 * must be SCSI_SENSE_BUFFERSIZE big.
1912 *
1913 * Returns zero if successful; negative error number or scsi
1914 * status on error
1915 *
1916 */
1917 int
1918 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1919 unsigned char *buffer, int len, int timeout, int retries,
1920 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1921 {
1922 unsigned char cmd[10];
1923 unsigned char *real_buffer;
1924 int ret;
1925
1926 memset(cmd, 0, sizeof(cmd));
1927 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1928
1929 if (sdev->use_10_for_ms) {
1930 if (len > 65535)
1931 return -EINVAL;
1932 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1933 if (!real_buffer)
1934 return -ENOMEM;
1935 memcpy(real_buffer + 8, buffer, len);
1936 len += 8;
1937 real_buffer[0] = 0;
1938 real_buffer[1] = 0;
1939 real_buffer[2] = data->medium_type;
1940 real_buffer[3] = data->device_specific;
1941 real_buffer[4] = data->longlba ? 0x01 : 0;
1942 real_buffer[5] = 0;
1943 real_buffer[6] = data->block_descriptor_length >> 8;
1944 real_buffer[7] = data->block_descriptor_length;
1945
1946 cmd[0] = MODE_SELECT_10;
1947 cmd[7] = len >> 8;
1948 cmd[8] = len;
1949 } else {
1950 if (len > 255 || data->block_descriptor_length > 255 ||
1951 data->longlba)
1952 return -EINVAL;
1953
1954 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1955 if (!real_buffer)
1956 return -ENOMEM;
1957 memcpy(real_buffer + 4, buffer, len);
1958 len += 4;
1959 real_buffer[0] = 0;
1960 real_buffer[1] = data->medium_type;
1961 real_buffer[2] = data->device_specific;
1962 real_buffer[3] = data->block_descriptor_length;
1963
1964
1965 cmd[0] = MODE_SELECT;
1966 cmd[4] = len;
1967 }
1968
1969 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1970 sshdr, timeout, retries);
1971 kfree(real_buffer);
1972 return ret;
1973 }
1974 EXPORT_SYMBOL_GPL(scsi_mode_select);
1975
1976 /**
1977 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1978 * @sdev: SCSI device to be queried
1979 * @dbd: set if mode sense will allow block descriptors to be returned
1980 * @modepage: mode page being requested
1981 * @buffer: request buffer (may not be smaller than eight bytes)
1982 * @len: length of request buffer.
1983 * @timeout: command timeout
1984 * @retries: number of retries before failing
1985 * @data: returns a structure abstracting the mode header data
1986 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1987 * must be SCSI_SENSE_BUFFERSIZE big.
1988 *
1989 * Returns zero if unsuccessful, or the header offset (either 4
1990 * or 8 depending on whether a six or ten byte command was
1991 * issued) if successful.
1992 */
1993 int
1994 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1995 unsigned char *buffer, int len, int timeout, int retries,
1996 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1997 {
1998 unsigned char cmd[12];
1999 int use_10_for_ms;
2000 int header_length;
2001 int result;
2002 struct scsi_sense_hdr my_sshdr;
2003
2004 memset(data, 0, sizeof(*data));
2005 memset(&cmd[0], 0, 12);
2006 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2007 cmd[2] = modepage;
2008
2009 /* caller might not be interested in sense, but we need it */
2010 if (!sshdr)
2011 sshdr = &my_sshdr;
2012
2013 retry:
2014 use_10_for_ms = sdev->use_10_for_ms;
2015
2016 if (use_10_for_ms) {
2017 if (len < 8)
2018 len = 8;
2019
2020 cmd[0] = MODE_SENSE_10;
2021 cmd[8] = len;
2022 header_length = 8;
2023 } else {
2024 if (len < 4)
2025 len = 4;
2026
2027 cmd[0] = MODE_SENSE;
2028 cmd[4] = len;
2029 header_length = 4;
2030 }
2031
2032 memset(buffer, 0, len);
2033
2034 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2035 sshdr, timeout, retries);
2036
2037 /* This code looks awful: what it's doing is making sure an
2038 * ILLEGAL REQUEST sense return identifies the actual command
2039 * byte as the problem. MODE_SENSE commands can return
2040 * ILLEGAL REQUEST if the code page isn't supported */
2041
2042 if (use_10_for_ms && !scsi_status_is_good(result) &&
2043 (driver_byte(result) & DRIVER_SENSE)) {
2044 if (scsi_sense_valid(sshdr)) {
2045 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2046 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2047 /*
2048 * Invalid command operation code
2049 */
2050 sdev->use_10_for_ms = 0;
2051 goto retry;
2052 }
2053 }
2054 }
2055
2056 if(scsi_status_is_good(result)) {
2057 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2058 (modepage == 6 || modepage == 8))) {
2059 /* Initio breakage? */
2060 header_length = 0;
2061 data->length = 13;
2062 data->medium_type = 0;
2063 data->device_specific = 0;
2064 data->longlba = 0;
2065 data->block_descriptor_length = 0;
2066 } else if(use_10_for_ms) {
2067 data->length = buffer[0]*256 + buffer[1] + 2;
2068 data->medium_type = buffer[2];
2069 data->device_specific = buffer[3];
2070 data->longlba = buffer[4] & 0x01;
2071 data->block_descriptor_length = buffer[6]*256
2072 + buffer[7];
2073 } else {
2074 data->length = buffer[0] + 1;
2075 data->medium_type = buffer[1];
2076 data->device_specific = buffer[2];
2077 data->block_descriptor_length = buffer[3];
2078 }
2079 data->header_length = header_length;
2080 }
2081
2082 return result;
2083 }
2084 EXPORT_SYMBOL(scsi_mode_sense);
2085
2086 /**
2087 * scsi_test_unit_ready - test if unit is ready
2088 * @sdev: scsi device to change the state of.
2089 * @timeout: command timeout
2090 * @retries: number of retries before failing
2091 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2092 * returning sense. Make sure that this is cleared before passing
2093 * in.
2094 *
2095 * Returns zero if unsuccessful or an error if TUR failed. For
2096 * removable media, a return of NOT_READY or UNIT_ATTENTION is
2097 * translated to success, with the ->changed flag updated.
2098 **/
2099 int
2100 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2101 struct scsi_sense_hdr *sshdr_external)
2102 {
2103 char cmd[] = {
2104 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2105 };
2106 struct scsi_sense_hdr *sshdr;
2107 int result;
2108
2109 if (!sshdr_external)
2110 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2111 else
2112 sshdr = sshdr_external;
2113
2114 /* try to eat the UNIT_ATTENTION if there are enough retries */
2115 do {
2116 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2117 timeout, retries);
2118 if (sdev->removable && scsi_sense_valid(sshdr) &&
2119 sshdr->sense_key == UNIT_ATTENTION)
2120 sdev->changed = 1;
2121 } while (scsi_sense_valid(sshdr) &&
2122 sshdr->sense_key == UNIT_ATTENTION && --retries);
2123
2124 if (!sshdr)
2125 /* could not allocate sense buffer, so can't process it */
2126 return result;
2127
2128 if (sdev->removable && scsi_sense_valid(sshdr) &&
2129 (sshdr->sense_key == UNIT_ATTENTION ||
2130 sshdr->sense_key == NOT_READY)) {
2131 sdev->changed = 1;
2132 result = 0;
2133 }
2134 if (!sshdr_external)
2135 kfree(sshdr);
2136 return result;
2137 }
2138 EXPORT_SYMBOL(scsi_test_unit_ready);
2139
2140 /**
2141 * scsi_device_set_state - Take the given device through the device state model.
2142 * @sdev: scsi device to change the state of.
2143 * @state: state to change to.
2144 *
2145 * Returns zero if unsuccessful or an error if the requested
2146 * transition is illegal.
2147 */
2148 int
2149 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2150 {
2151 enum scsi_device_state oldstate = sdev->sdev_state;
2152
2153 if (state == oldstate)
2154 return 0;
2155
2156 switch (state) {
2157 case SDEV_CREATED:
2158 switch (oldstate) {
2159 case SDEV_CREATED_BLOCK:
2160 break;
2161 default:
2162 goto illegal;
2163 }
2164 break;
2165
2166 case SDEV_RUNNING:
2167 switch (oldstate) {
2168 case SDEV_CREATED:
2169 case SDEV_OFFLINE:
2170 case SDEV_QUIESCE:
2171 case SDEV_BLOCK:
2172 break;
2173 default:
2174 goto illegal;
2175 }
2176 break;
2177
2178 case SDEV_QUIESCE:
2179 switch (oldstate) {
2180 case SDEV_RUNNING:
2181 case SDEV_OFFLINE:
2182 break;
2183 default:
2184 goto illegal;
2185 }
2186 break;
2187
2188 case SDEV_OFFLINE:
2189 switch (oldstate) {
2190 case SDEV_CREATED:
2191 case SDEV_RUNNING:
2192 case SDEV_QUIESCE:
2193 case SDEV_BLOCK:
2194 break;
2195 default:
2196 goto illegal;
2197 }
2198 break;
2199
2200 case SDEV_BLOCK:
2201 switch (oldstate) {
2202 case SDEV_RUNNING:
2203 case SDEV_CREATED_BLOCK:
2204 break;
2205 default:
2206 goto illegal;
2207 }
2208 break;
2209
2210 case SDEV_CREATED_BLOCK:
2211 switch (oldstate) {
2212 case SDEV_CREATED:
2213 break;
2214 default:
2215 goto illegal;
2216 }
2217 break;
2218
2219 case SDEV_CANCEL:
2220 switch (oldstate) {
2221 case SDEV_CREATED:
2222 case SDEV_RUNNING:
2223 case SDEV_QUIESCE:
2224 case SDEV_OFFLINE:
2225 case SDEV_BLOCK:
2226 break;
2227 default:
2228 goto illegal;
2229 }
2230 break;
2231
2232 case SDEV_DEL:
2233 switch (oldstate) {
2234 case SDEV_CREATED:
2235 case SDEV_RUNNING:
2236 case SDEV_OFFLINE:
2237 case SDEV_CANCEL:
2238 break;
2239 default:
2240 goto illegal;
2241 }
2242 break;
2243
2244 }
2245 sdev->sdev_state = state;
2246 return 0;
2247
2248 illegal:
2249 SCSI_LOG_ERROR_RECOVERY(1,
2250 sdev_printk(KERN_ERR, sdev,
2251 "Illegal state transition %s->%s\n",
2252 scsi_device_state_name(oldstate),
2253 scsi_device_state_name(state))
2254 );
2255 return -EINVAL;
2256 }
2257 EXPORT_SYMBOL(scsi_device_set_state);
2258
2259 /**
2260 * sdev_evt_emit - emit a single SCSI device uevent
2261 * @sdev: associated SCSI device
2262 * @evt: event to emit
2263 *
2264 * Send a single uevent (scsi_event) to the associated scsi_device.
2265 */
2266 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2267 {
2268 int idx = 0;
2269 char *envp[3];
2270
2271 switch (evt->evt_type) {
2272 case SDEV_EVT_MEDIA_CHANGE:
2273 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2274 break;
2275
2276 default:
2277 /* do nothing */
2278 break;
2279 }
2280
2281 envp[idx++] = NULL;
2282
2283 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2284 }
2285
2286 /**
2287 * sdev_evt_thread - send a uevent for each scsi event
2288 * @work: work struct for scsi_device
2289 *
2290 * Dispatch queued events to their associated scsi_device kobjects
2291 * as uevents.
2292 */
2293 void scsi_evt_thread(struct work_struct *work)
2294 {
2295 struct scsi_device *sdev;
2296 LIST_HEAD(event_list);
2297
2298 sdev = container_of(work, struct scsi_device, event_work);
2299
2300 while (1) {
2301 struct scsi_event *evt;
2302 struct list_head *this, *tmp;
2303 unsigned long flags;
2304
2305 spin_lock_irqsave(&sdev->list_lock, flags);
2306 list_splice_init(&sdev->event_list, &event_list);
2307 spin_unlock_irqrestore(&sdev->list_lock, flags);
2308
2309 if (list_empty(&event_list))
2310 break;
2311
2312 list_for_each_safe(this, tmp, &event_list) {
2313 evt = list_entry(this, struct scsi_event, node);
2314 list_del(&evt->node);
2315 scsi_evt_emit(sdev, evt);
2316 kfree(evt);
2317 }
2318 }
2319 }
2320
2321 /**
2322 * sdev_evt_send - send asserted event to uevent thread
2323 * @sdev: scsi_device event occurred on
2324 * @evt: event to send
2325 *
2326 * Assert scsi device event asynchronously.
2327 */
2328 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2329 {
2330 unsigned long flags;
2331
2332 #if 0
2333 /* FIXME: currently this check eliminates all media change events
2334 * for polled devices. Need to update to discriminate between AN
2335 * and polled events */
2336 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2337 kfree(evt);
2338 return;
2339 }
2340 #endif
2341
2342 spin_lock_irqsave(&sdev->list_lock, flags);
2343 list_add_tail(&evt->node, &sdev->event_list);
2344 schedule_work(&sdev->event_work);
2345 spin_unlock_irqrestore(&sdev->list_lock, flags);
2346 }
2347 EXPORT_SYMBOL_GPL(sdev_evt_send);
2348
2349 /**
2350 * sdev_evt_alloc - allocate a new scsi event
2351 * @evt_type: type of event to allocate
2352 * @gfpflags: GFP flags for allocation
2353 *
2354 * Allocates and returns a new scsi_event.
2355 */
2356 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2357 gfp_t gfpflags)
2358 {
2359 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2360 if (!evt)
2361 return NULL;
2362
2363 evt->evt_type = evt_type;
2364 INIT_LIST_HEAD(&evt->node);
2365
2366 /* evt_type-specific initialization, if any */
2367 switch (evt_type) {
2368 case SDEV_EVT_MEDIA_CHANGE:
2369 default:
2370 /* do nothing */
2371 break;
2372 }
2373
2374 return evt;
2375 }
2376 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2377
2378 /**
2379 * sdev_evt_send_simple - send asserted event to uevent thread
2380 * @sdev: scsi_device event occurred on
2381 * @evt_type: type of event to send
2382 * @gfpflags: GFP flags for allocation
2383 *
2384 * Assert scsi device event asynchronously, given an event type.
2385 */
2386 void sdev_evt_send_simple(struct scsi_device *sdev,
2387 enum scsi_device_event evt_type, gfp_t gfpflags)
2388 {
2389 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2390 if (!evt) {
2391 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2392 evt_type);
2393 return;
2394 }
2395
2396 sdev_evt_send(sdev, evt);
2397 }
2398 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2399
2400 /**
2401 * scsi_device_quiesce - Block user issued commands.
2402 * @sdev: scsi device to quiesce.
2403 *
2404 * This works by trying to transition to the SDEV_QUIESCE state
2405 * (which must be a legal transition). When the device is in this
2406 * state, only special requests will be accepted, all others will
2407 * be deferred. Since special requests may also be requeued requests,
2408 * a successful return doesn't guarantee the device will be
2409 * totally quiescent.
2410 *
2411 * Must be called with user context, may sleep.
2412 *
2413 * Returns zero if unsuccessful or an error if not.
2414 */
2415 int
2416 scsi_device_quiesce(struct scsi_device *sdev)
2417 {
2418 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2419 if (err)
2420 return err;
2421
2422 scsi_run_queue(sdev->request_queue);
2423 while (sdev->device_busy) {
2424 msleep_interruptible(200);
2425 scsi_run_queue(sdev->request_queue);
2426 }
2427 return 0;
2428 }
2429 EXPORT_SYMBOL(scsi_device_quiesce);
2430
2431 /**
2432 * scsi_device_resume - Restart user issued commands to a quiesced device.
2433 * @sdev: scsi device to resume.
2434 *
2435 * Moves the device from quiesced back to running and restarts the
2436 * queues.
2437 *
2438 * Must be called with user context, may sleep.
2439 */
2440 void
2441 scsi_device_resume(struct scsi_device *sdev)
2442 {
2443 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2444 return;
2445 scsi_run_queue(sdev->request_queue);
2446 }
2447 EXPORT_SYMBOL(scsi_device_resume);
2448
2449 static void
2450 device_quiesce_fn(struct scsi_device *sdev, void *data)
2451 {
2452 scsi_device_quiesce(sdev);
2453 }
2454
2455 void
2456 scsi_target_quiesce(struct scsi_target *starget)
2457 {
2458 starget_for_each_device(starget, NULL, device_quiesce_fn);
2459 }
2460 EXPORT_SYMBOL(scsi_target_quiesce);
2461
2462 static void
2463 device_resume_fn(struct scsi_device *sdev, void *data)
2464 {
2465 scsi_device_resume(sdev);
2466 }
2467
2468 void
2469 scsi_target_resume(struct scsi_target *starget)
2470 {
2471 starget_for_each_device(starget, NULL, device_resume_fn);
2472 }
2473 EXPORT_SYMBOL(scsi_target_resume);
2474
2475 /**
2476 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2477 * @sdev: device to block
2478 *
2479 * Block request made by scsi lld's to temporarily stop all
2480 * scsi commands on the specified device. Called from interrupt
2481 * or normal process context.
2482 *
2483 * Returns zero if successful or error if not
2484 *
2485 * Notes:
2486 * This routine transitions the device to the SDEV_BLOCK state
2487 * (which must be a legal transition). When the device is in this
2488 * state, all commands are deferred until the scsi lld reenables
2489 * the device with scsi_device_unblock or device_block_tmo fires.
2490 * This routine assumes the host_lock is held on entry.
2491 */
2492 int
2493 scsi_internal_device_block(struct scsi_device *sdev)
2494 {
2495 struct request_queue *q = sdev->request_queue;
2496 unsigned long flags;
2497 int err = 0;
2498
2499 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2500 if (err) {
2501 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2502
2503 if (err)
2504 return err;
2505 }
2506
2507 /*
2508 * The device has transitioned to SDEV_BLOCK. Stop the
2509 * block layer from calling the midlayer with this device's
2510 * request queue.
2511 */
2512 spin_lock_irqsave(q->queue_lock, flags);
2513 blk_stop_queue(q);
2514 spin_unlock_irqrestore(q->queue_lock, flags);
2515
2516 return 0;
2517 }
2518 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2519
2520 /**
2521 * scsi_internal_device_unblock - resume a device after a block request
2522 * @sdev: device to resume
2523 *
2524 * Called by scsi lld's or the midlayer to restart the device queue
2525 * for the previously suspended scsi device. Called from interrupt or
2526 * normal process context.
2527 *
2528 * Returns zero if successful or error if not.
2529 *
2530 * Notes:
2531 * This routine transitions the device to the SDEV_RUNNING state
2532 * (which must be a legal transition) allowing the midlayer to
2533 * goose the queue for this device. This routine assumes the
2534 * host_lock is held upon entry.
2535 */
2536 int
2537 scsi_internal_device_unblock(struct scsi_device *sdev)
2538 {
2539 struct request_queue *q = sdev->request_queue;
2540 int err;
2541 unsigned long flags;
2542
2543 /*
2544 * Try to transition the scsi device to SDEV_RUNNING
2545 * and goose the device queue if successful.
2546 */
2547 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2548 if (err) {
2549 err = scsi_device_set_state(sdev, SDEV_CREATED);
2550
2551 if (err)
2552 return err;
2553 }
2554
2555 spin_lock_irqsave(q->queue_lock, flags);
2556 blk_start_queue(q);
2557 spin_unlock_irqrestore(q->queue_lock, flags);
2558
2559 return 0;
2560 }
2561 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2562
2563 static void
2564 device_block(struct scsi_device *sdev, void *data)
2565 {
2566 scsi_internal_device_block(sdev);
2567 }
2568
2569 static int
2570 target_block(struct device *dev, void *data)
2571 {
2572 if (scsi_is_target_device(dev))
2573 starget_for_each_device(to_scsi_target(dev), NULL,
2574 device_block);
2575 return 0;
2576 }
2577
2578 void
2579 scsi_target_block(struct device *dev)
2580 {
2581 if (scsi_is_target_device(dev))
2582 starget_for_each_device(to_scsi_target(dev), NULL,
2583 device_block);
2584 else
2585 device_for_each_child(dev, NULL, target_block);
2586 }
2587 EXPORT_SYMBOL_GPL(scsi_target_block);
2588
2589 static void
2590 device_unblock(struct scsi_device *sdev, void *data)
2591 {
2592 scsi_internal_device_unblock(sdev);
2593 }
2594
2595 static int
2596 target_unblock(struct device *dev, void *data)
2597 {
2598 if (scsi_is_target_device(dev))
2599 starget_for_each_device(to_scsi_target(dev), NULL,
2600 device_unblock);
2601 return 0;
2602 }
2603
2604 void
2605 scsi_target_unblock(struct device *dev)
2606 {
2607 if (scsi_is_target_device(dev))
2608 starget_for_each_device(to_scsi_target(dev), NULL,
2609 device_unblock);
2610 else
2611 device_for_each_child(dev, NULL, target_unblock);
2612 }
2613 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2614
2615 /**
2616 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2617 * @sgl: scatter-gather list
2618 * @sg_count: number of segments in sg
2619 * @offset: offset in bytes into sg, on return offset into the mapped area
2620 * @len: bytes to map, on return number of bytes mapped
2621 *
2622 * Returns virtual address of the start of the mapped page
2623 */
2624 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2625 size_t *offset, size_t *len)
2626 {
2627 int i;
2628 size_t sg_len = 0, len_complete = 0;
2629 struct scatterlist *sg;
2630 struct page *page;
2631
2632 WARN_ON(!irqs_disabled());
2633
2634 for_each_sg(sgl, sg, sg_count, i) {
2635 len_complete = sg_len; /* Complete sg-entries */
2636 sg_len += sg->length;
2637 if (sg_len > *offset)
2638 break;
2639 }
2640
2641 if (unlikely(i == sg_count)) {
2642 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2643 "elements %d\n",
2644 __func__, sg_len, *offset, sg_count);
2645 WARN_ON(1);
2646 return NULL;
2647 }
2648
2649 /* Offset starting from the beginning of first page in this sg-entry */
2650 *offset = *offset - len_complete + sg->offset;
2651
2652 /* Assumption: contiguous pages can be accessed as "page + i" */
2653 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2654 *offset &= ~PAGE_MASK;
2655
2656 /* Bytes in this sg-entry from *offset to the end of the page */
2657 sg_len = PAGE_SIZE - *offset;
2658 if (*len > sg_len)
2659 *len = sg_len;
2660
2661 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2662 }
2663 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2664
2665 /**
2666 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2667 * @virt: virtual address to be unmapped
2668 */
2669 void scsi_kunmap_atomic_sg(void *virt)
2670 {
2671 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2672 }
2673 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
This page took 0.138805 seconds and 6 git commands to generate.