Merge branch 'linux-next' of git://git.infradead.org/ubi-2.6
[deliverable/linux.git] / drivers / spi / amba-pl022.c
1 /*
2 * drivers/spi/amba-pl022.c
3 *
4 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
5 *
6 * Copyright (C) 2008-2009 ST-Ericsson AB
7 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
8 *
9 * Author: Linus Walleij <linus.walleij@stericsson.com>
10 *
11 * Initial version inspired by:
12 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
13 * Initial adoption to PL022 by:
14 * Sachin Verma <sachin.verma@st.com>
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
20 *
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
25 */
26
27 /*
28 * TODO:
29 * - add timeout on polled transfers
30 */
31
32 #include <linux/init.h>
33 #include <linux/module.h>
34 #include <linux/device.h>
35 #include <linux/ioport.h>
36 #include <linux/errno.h>
37 #include <linux/interrupt.h>
38 #include <linux/spi/spi.h>
39 #include <linux/workqueue.h>
40 #include <linux/delay.h>
41 #include <linux/clk.h>
42 #include <linux/err.h>
43 #include <linux/amba/bus.h>
44 #include <linux/amba/pl022.h>
45 #include <linux/io.h>
46 #include <linux/slab.h>
47 #include <linux/dmaengine.h>
48 #include <linux/dma-mapping.h>
49 #include <linux/scatterlist.h>
50
51 /*
52 * This macro is used to define some register default values.
53 * reg is masked with mask, the OR:ed with an (again masked)
54 * val shifted sb steps to the left.
55 */
56 #define SSP_WRITE_BITS(reg, val, mask, sb) \
57 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
58
59 /*
60 * This macro is also used to define some default values.
61 * It will just shift val by sb steps to the left and mask
62 * the result with mask.
63 */
64 #define GEN_MASK_BITS(val, mask, sb) \
65 (((val)<<(sb)) & (mask))
66
67 #define DRIVE_TX 0
68 #define DO_NOT_DRIVE_TX 1
69
70 #define DO_NOT_QUEUE_DMA 0
71 #define QUEUE_DMA 1
72
73 #define RX_TRANSFER 1
74 #define TX_TRANSFER 2
75
76 /*
77 * Macros to access SSP Registers with their offsets
78 */
79 #define SSP_CR0(r) (r + 0x000)
80 #define SSP_CR1(r) (r + 0x004)
81 #define SSP_DR(r) (r + 0x008)
82 #define SSP_SR(r) (r + 0x00C)
83 #define SSP_CPSR(r) (r + 0x010)
84 #define SSP_IMSC(r) (r + 0x014)
85 #define SSP_RIS(r) (r + 0x018)
86 #define SSP_MIS(r) (r + 0x01C)
87 #define SSP_ICR(r) (r + 0x020)
88 #define SSP_DMACR(r) (r + 0x024)
89 #define SSP_ITCR(r) (r + 0x080)
90 #define SSP_ITIP(r) (r + 0x084)
91 #define SSP_ITOP(r) (r + 0x088)
92 #define SSP_TDR(r) (r + 0x08C)
93
94 #define SSP_PID0(r) (r + 0xFE0)
95 #define SSP_PID1(r) (r + 0xFE4)
96 #define SSP_PID2(r) (r + 0xFE8)
97 #define SSP_PID3(r) (r + 0xFEC)
98
99 #define SSP_CID0(r) (r + 0xFF0)
100 #define SSP_CID1(r) (r + 0xFF4)
101 #define SSP_CID2(r) (r + 0xFF8)
102 #define SSP_CID3(r) (r + 0xFFC)
103
104 /*
105 * SSP Control Register 0 - SSP_CR0
106 */
107 #define SSP_CR0_MASK_DSS (0x0FUL << 0)
108 #define SSP_CR0_MASK_FRF (0x3UL << 4)
109 #define SSP_CR0_MASK_SPO (0x1UL << 6)
110 #define SSP_CR0_MASK_SPH (0x1UL << 7)
111 #define SSP_CR0_MASK_SCR (0xFFUL << 8)
112
113 /*
114 * The ST version of this block moves som bits
115 * in SSP_CR0 and extends it to 32 bits
116 */
117 #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
118 #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
119 #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
120 #define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
121
122
123 /*
124 * SSP Control Register 0 - SSP_CR1
125 */
126 #define SSP_CR1_MASK_LBM (0x1UL << 0)
127 #define SSP_CR1_MASK_SSE (0x1UL << 1)
128 #define SSP_CR1_MASK_MS (0x1UL << 2)
129 #define SSP_CR1_MASK_SOD (0x1UL << 3)
130
131 /*
132 * The ST version of this block adds some bits
133 * in SSP_CR1
134 */
135 #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
136 #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
137 #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
138 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
139 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
140 /* This one is only in the PL023 variant */
141 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
142
143 /*
144 * SSP Status Register - SSP_SR
145 */
146 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
147 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
148 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
149 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
150 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
151
152 /*
153 * SSP Clock Prescale Register - SSP_CPSR
154 */
155 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
156
157 /*
158 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
159 */
160 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
161 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
162 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
163 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
164
165 /*
166 * SSP Raw Interrupt Status Register - SSP_RIS
167 */
168 /* Receive Overrun Raw Interrupt status */
169 #define SSP_RIS_MASK_RORRIS (0x1UL << 0)
170 /* Receive Timeout Raw Interrupt status */
171 #define SSP_RIS_MASK_RTRIS (0x1UL << 1)
172 /* Receive FIFO Raw Interrupt status */
173 #define SSP_RIS_MASK_RXRIS (0x1UL << 2)
174 /* Transmit FIFO Raw Interrupt status */
175 #define SSP_RIS_MASK_TXRIS (0x1UL << 3)
176
177 /*
178 * SSP Masked Interrupt Status Register - SSP_MIS
179 */
180 /* Receive Overrun Masked Interrupt status */
181 #define SSP_MIS_MASK_RORMIS (0x1UL << 0)
182 /* Receive Timeout Masked Interrupt status */
183 #define SSP_MIS_MASK_RTMIS (0x1UL << 1)
184 /* Receive FIFO Masked Interrupt status */
185 #define SSP_MIS_MASK_RXMIS (0x1UL << 2)
186 /* Transmit FIFO Masked Interrupt status */
187 #define SSP_MIS_MASK_TXMIS (0x1UL << 3)
188
189 /*
190 * SSP Interrupt Clear Register - SSP_ICR
191 */
192 /* Receive Overrun Raw Clear Interrupt bit */
193 #define SSP_ICR_MASK_RORIC (0x1UL << 0)
194 /* Receive Timeout Clear Interrupt bit */
195 #define SSP_ICR_MASK_RTIC (0x1UL << 1)
196
197 /*
198 * SSP DMA Control Register - SSP_DMACR
199 */
200 /* Receive DMA Enable bit */
201 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
202 /* Transmit DMA Enable bit */
203 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
204
205 /*
206 * SSP Integration Test control Register - SSP_ITCR
207 */
208 #define SSP_ITCR_MASK_ITEN (0x1UL << 0)
209 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
210
211 /*
212 * SSP Integration Test Input Register - SSP_ITIP
213 */
214 #define ITIP_MASK_SSPRXD (0x1UL << 0)
215 #define ITIP_MASK_SSPFSSIN (0x1UL << 1)
216 #define ITIP_MASK_SSPCLKIN (0x1UL << 2)
217 #define ITIP_MASK_RXDMAC (0x1UL << 3)
218 #define ITIP_MASK_TXDMAC (0x1UL << 4)
219 #define ITIP_MASK_SSPTXDIN (0x1UL << 5)
220
221 /*
222 * SSP Integration Test output Register - SSP_ITOP
223 */
224 #define ITOP_MASK_SSPTXD (0x1UL << 0)
225 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
226 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
227 #define ITOP_MASK_SSPOEn (0x1UL << 3)
228 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
229 #define ITOP_MASK_RORINTR (0x1UL << 5)
230 #define ITOP_MASK_RTINTR (0x1UL << 6)
231 #define ITOP_MASK_RXINTR (0x1UL << 7)
232 #define ITOP_MASK_TXINTR (0x1UL << 8)
233 #define ITOP_MASK_INTR (0x1UL << 9)
234 #define ITOP_MASK_RXDMABREQ (0x1UL << 10)
235 #define ITOP_MASK_RXDMASREQ (0x1UL << 11)
236 #define ITOP_MASK_TXDMABREQ (0x1UL << 12)
237 #define ITOP_MASK_TXDMASREQ (0x1UL << 13)
238
239 /*
240 * SSP Test Data Register - SSP_TDR
241 */
242 #define TDR_MASK_TESTDATA (0xFFFFFFFF)
243
244 /*
245 * Message State
246 * we use the spi_message.state (void *) pointer to
247 * hold a single state value, that's why all this
248 * (void *) casting is done here.
249 */
250 #define STATE_START ((void *) 0)
251 #define STATE_RUNNING ((void *) 1)
252 #define STATE_DONE ((void *) 2)
253 #define STATE_ERROR ((void *) -1)
254
255 /*
256 * SSP State - Whether Enabled or Disabled
257 */
258 #define SSP_DISABLED (0)
259 #define SSP_ENABLED (1)
260
261 /*
262 * SSP DMA State - Whether DMA Enabled or Disabled
263 */
264 #define SSP_DMA_DISABLED (0)
265 #define SSP_DMA_ENABLED (1)
266
267 /*
268 * SSP Clock Defaults
269 */
270 #define SSP_DEFAULT_CLKRATE 0x2
271 #define SSP_DEFAULT_PRESCALE 0x40
272
273 /*
274 * SSP Clock Parameter ranges
275 */
276 #define CPSDVR_MIN 0x02
277 #define CPSDVR_MAX 0xFE
278 #define SCR_MIN 0x00
279 #define SCR_MAX 0xFF
280
281 /*
282 * SSP Interrupt related Macros
283 */
284 #define DEFAULT_SSP_REG_IMSC 0x0UL
285 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
286 #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
287
288 #define CLEAR_ALL_INTERRUPTS 0x3
289
290
291 /*
292 * The type of reading going on on this chip
293 */
294 enum ssp_reading {
295 READING_NULL,
296 READING_U8,
297 READING_U16,
298 READING_U32
299 };
300
301 /**
302 * The type of writing going on on this chip
303 */
304 enum ssp_writing {
305 WRITING_NULL,
306 WRITING_U8,
307 WRITING_U16,
308 WRITING_U32
309 };
310
311 /**
312 * struct vendor_data - vendor-specific config parameters
313 * for PL022 derivates
314 * @fifodepth: depth of FIFOs (both)
315 * @max_bpw: maximum number of bits per word
316 * @unidir: supports unidirection transfers
317 * @extended_cr: 32 bit wide control register 0 with extra
318 * features and extra features in CR1 as found in the ST variants
319 * @pl023: supports a subset of the ST extensions called "PL023"
320 */
321 struct vendor_data {
322 int fifodepth;
323 int max_bpw;
324 bool unidir;
325 bool extended_cr;
326 bool pl023;
327 };
328
329 /**
330 * struct pl022 - This is the private SSP driver data structure
331 * @adev: AMBA device model hookup
332 * @vendor: Vendor data for the IP block
333 * @phybase: The physical memory where the SSP device resides
334 * @virtbase: The virtual memory where the SSP is mapped
335 * @master: SPI framework hookup
336 * @master_info: controller-specific data from machine setup
337 * @regs: SSP controller register's virtual address
338 * @pump_messages: Work struct for scheduling work to the workqueue
339 * @lock: spinlock to syncronise access to driver data
340 * @workqueue: a workqueue on which any spi_message request is queued
341 * @busy: workqueue is busy
342 * @running: workqueue is running
343 * @pump_transfers: Tasklet used in Interrupt Transfer mode
344 * @cur_msg: Pointer to current spi_message being processed
345 * @cur_transfer: Pointer to current spi_transfer
346 * @cur_chip: pointer to current clients chip(assigned from controller_state)
347 * @tx: current position in TX buffer to be read
348 * @tx_end: end position in TX buffer to be read
349 * @rx: current position in RX buffer to be written
350 * @rx_end: end position in RX buffer to be written
351 * @readingtype: the type of read currently going on
352 * @writingtype: the type or write currently going on
353 */
354 struct pl022 {
355 struct amba_device *adev;
356 struct vendor_data *vendor;
357 resource_size_t phybase;
358 void __iomem *virtbase;
359 struct clk *clk;
360 struct spi_master *master;
361 struct pl022_ssp_controller *master_info;
362 /* Driver message queue */
363 struct workqueue_struct *workqueue;
364 struct work_struct pump_messages;
365 spinlock_t queue_lock;
366 struct list_head queue;
367 bool busy;
368 bool running;
369 /* Message transfer pump */
370 struct tasklet_struct pump_transfers;
371 struct spi_message *cur_msg;
372 struct spi_transfer *cur_transfer;
373 struct chip_data *cur_chip;
374 void *tx;
375 void *tx_end;
376 void *rx;
377 void *rx_end;
378 enum ssp_reading read;
379 enum ssp_writing write;
380 u32 exp_fifo_level;
381 /* DMA settings */
382 #ifdef CONFIG_DMA_ENGINE
383 struct dma_chan *dma_rx_channel;
384 struct dma_chan *dma_tx_channel;
385 struct sg_table sgt_rx;
386 struct sg_table sgt_tx;
387 char *dummypage;
388 #endif
389 };
390
391 /**
392 * struct chip_data - To maintain runtime state of SSP for each client chip
393 * @cr0: Value of control register CR0 of SSP - on later ST variants this
394 * register is 32 bits wide rather than just 16
395 * @cr1: Value of control register CR1 of SSP
396 * @dmacr: Value of DMA control Register of SSP
397 * @cpsr: Value of Clock prescale register
398 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
399 * @enable_dma: Whether to enable DMA or not
400 * @write: function ptr to be used to write when doing xfer for this chip
401 * @read: function ptr to be used to read when doing xfer for this chip
402 * @cs_control: chip select callback provided by chip
403 * @xfer_type: polling/interrupt/DMA
404 *
405 * Runtime state of the SSP controller, maintained per chip,
406 * This would be set according to the current message that would be served
407 */
408 struct chip_data {
409 u32 cr0;
410 u16 cr1;
411 u16 dmacr;
412 u16 cpsr;
413 u8 n_bytes;
414 bool enable_dma;
415 enum ssp_reading read;
416 enum ssp_writing write;
417 void (*cs_control) (u32 command);
418 int xfer_type;
419 };
420
421 /**
422 * null_cs_control - Dummy chip select function
423 * @command: select/delect the chip
424 *
425 * If no chip select function is provided by client this is used as dummy
426 * chip select
427 */
428 static void null_cs_control(u32 command)
429 {
430 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
431 }
432
433 /**
434 * giveback - current spi_message is over, schedule next message and call
435 * callback of this message. Assumes that caller already
436 * set message->status; dma and pio irqs are blocked
437 * @pl022: SSP driver private data structure
438 */
439 static void giveback(struct pl022 *pl022)
440 {
441 struct spi_transfer *last_transfer;
442 unsigned long flags;
443 struct spi_message *msg;
444 void (*curr_cs_control) (u32 command);
445
446 /*
447 * This local reference to the chip select function
448 * is needed because we set curr_chip to NULL
449 * as a step toward termininating the message.
450 */
451 curr_cs_control = pl022->cur_chip->cs_control;
452 spin_lock_irqsave(&pl022->queue_lock, flags);
453 msg = pl022->cur_msg;
454 pl022->cur_msg = NULL;
455 pl022->cur_transfer = NULL;
456 pl022->cur_chip = NULL;
457 queue_work(pl022->workqueue, &pl022->pump_messages);
458 spin_unlock_irqrestore(&pl022->queue_lock, flags);
459
460 last_transfer = list_entry(msg->transfers.prev,
461 struct spi_transfer,
462 transfer_list);
463
464 /* Delay if requested before any change in chip select */
465 if (last_transfer->delay_usecs)
466 /*
467 * FIXME: This runs in interrupt context.
468 * Is this really smart?
469 */
470 udelay(last_transfer->delay_usecs);
471
472 /*
473 * Drop chip select UNLESS cs_change is true or we are returning
474 * a message with an error, or next message is for another chip
475 */
476 if (!last_transfer->cs_change)
477 curr_cs_control(SSP_CHIP_DESELECT);
478 else {
479 struct spi_message *next_msg;
480
481 /* Holding of cs was hinted, but we need to make sure
482 * the next message is for the same chip. Don't waste
483 * time with the following tests unless this was hinted.
484 *
485 * We cannot postpone this until pump_messages, because
486 * after calling msg->complete (below) the driver that
487 * sent the current message could be unloaded, which
488 * could invalidate the cs_control() callback...
489 */
490
491 /* get a pointer to the next message, if any */
492 spin_lock_irqsave(&pl022->queue_lock, flags);
493 if (list_empty(&pl022->queue))
494 next_msg = NULL;
495 else
496 next_msg = list_entry(pl022->queue.next,
497 struct spi_message, queue);
498 spin_unlock_irqrestore(&pl022->queue_lock, flags);
499
500 /* see if the next and current messages point
501 * to the same chip
502 */
503 if (next_msg && next_msg->spi != msg->spi)
504 next_msg = NULL;
505 if (!next_msg || msg->state == STATE_ERROR)
506 curr_cs_control(SSP_CHIP_DESELECT);
507 }
508 msg->state = NULL;
509 if (msg->complete)
510 msg->complete(msg->context);
511 /* This message is completed, so let's turn off the clocks! */
512 clk_disable(pl022->clk);
513 amba_pclk_disable(pl022->adev);
514 }
515
516 /**
517 * flush - flush the FIFO to reach a clean state
518 * @pl022: SSP driver private data structure
519 */
520 static int flush(struct pl022 *pl022)
521 {
522 unsigned long limit = loops_per_jiffy << 1;
523
524 dev_dbg(&pl022->adev->dev, "flush\n");
525 do {
526 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
527 readw(SSP_DR(pl022->virtbase));
528 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
529
530 pl022->exp_fifo_level = 0;
531
532 return limit;
533 }
534
535 /**
536 * restore_state - Load configuration of current chip
537 * @pl022: SSP driver private data structure
538 */
539 static void restore_state(struct pl022 *pl022)
540 {
541 struct chip_data *chip = pl022->cur_chip;
542
543 if (pl022->vendor->extended_cr)
544 writel(chip->cr0, SSP_CR0(pl022->virtbase));
545 else
546 writew(chip->cr0, SSP_CR0(pl022->virtbase));
547 writew(chip->cr1, SSP_CR1(pl022->virtbase));
548 writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
549 writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
550 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
551 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
552 }
553
554 /*
555 * Default SSP Register Values
556 */
557 #define DEFAULT_SSP_REG_CR0 ( \
558 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
559 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
560 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
561 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
562 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
563 )
564
565 /* ST versions have slightly different bit layout */
566 #define DEFAULT_SSP_REG_CR0_ST ( \
567 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
568 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
569 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
570 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
571 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
572 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
573 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
574 )
575
576 /* The PL023 version is slightly different again */
577 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
578 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
579 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
580 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
581 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
582 )
583
584 #define DEFAULT_SSP_REG_CR1 ( \
585 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
586 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
587 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
588 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
589 )
590
591 /* ST versions extend this register to use all 16 bits */
592 #define DEFAULT_SSP_REG_CR1_ST ( \
593 DEFAULT_SSP_REG_CR1 | \
594 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
595 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
596 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
597 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
598 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
599 )
600
601 /*
602 * The PL023 variant has further differences: no loopback mode, no microwire
603 * support, and a new clock feedback delay setting.
604 */
605 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
606 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
607 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
608 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
609 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
610 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
611 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
612 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
613 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
614 )
615
616 #define DEFAULT_SSP_REG_CPSR ( \
617 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
618 )
619
620 #define DEFAULT_SSP_REG_DMACR (\
621 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
622 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
623 )
624
625 /**
626 * load_ssp_default_config - Load default configuration for SSP
627 * @pl022: SSP driver private data structure
628 */
629 static void load_ssp_default_config(struct pl022 *pl022)
630 {
631 if (pl022->vendor->pl023) {
632 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
633 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
634 } else if (pl022->vendor->extended_cr) {
635 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
636 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
637 } else {
638 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
639 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
640 }
641 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
642 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
643 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
644 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
645 }
646
647 /**
648 * This will write to TX and read from RX according to the parameters
649 * set in pl022.
650 */
651 static void readwriter(struct pl022 *pl022)
652 {
653
654 /*
655 * The FIFO depth is different inbetween primecell variants.
656 * I believe filling in too much in the FIFO might cause
657 * errons in 8bit wide transfers on ARM variants (just 8 words
658 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
659 *
660 * To prevent this issue, the TX FIFO is only filled to the
661 * unused RX FIFO fill length, regardless of what the TX
662 * FIFO status flag indicates.
663 */
664 dev_dbg(&pl022->adev->dev,
665 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
666 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
667
668 /* Read as much as you can */
669 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
670 && (pl022->rx < pl022->rx_end)) {
671 switch (pl022->read) {
672 case READING_NULL:
673 readw(SSP_DR(pl022->virtbase));
674 break;
675 case READING_U8:
676 *(u8 *) (pl022->rx) =
677 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
678 break;
679 case READING_U16:
680 *(u16 *) (pl022->rx) =
681 (u16) readw(SSP_DR(pl022->virtbase));
682 break;
683 case READING_U32:
684 *(u32 *) (pl022->rx) =
685 readl(SSP_DR(pl022->virtbase));
686 break;
687 }
688 pl022->rx += (pl022->cur_chip->n_bytes);
689 pl022->exp_fifo_level--;
690 }
691 /*
692 * Write as much as possible up to the RX FIFO size
693 */
694 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
695 && (pl022->tx < pl022->tx_end)) {
696 switch (pl022->write) {
697 case WRITING_NULL:
698 writew(0x0, SSP_DR(pl022->virtbase));
699 break;
700 case WRITING_U8:
701 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
702 break;
703 case WRITING_U16:
704 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
705 break;
706 case WRITING_U32:
707 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
708 break;
709 }
710 pl022->tx += (pl022->cur_chip->n_bytes);
711 pl022->exp_fifo_level++;
712 /*
713 * This inner reader takes care of things appearing in the RX
714 * FIFO as we're transmitting. This will happen a lot since the
715 * clock starts running when you put things into the TX FIFO,
716 * and then things are continously clocked into the RX FIFO.
717 */
718 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
719 && (pl022->rx < pl022->rx_end)) {
720 switch (pl022->read) {
721 case READING_NULL:
722 readw(SSP_DR(pl022->virtbase));
723 break;
724 case READING_U8:
725 *(u8 *) (pl022->rx) =
726 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
727 break;
728 case READING_U16:
729 *(u16 *) (pl022->rx) =
730 (u16) readw(SSP_DR(pl022->virtbase));
731 break;
732 case READING_U32:
733 *(u32 *) (pl022->rx) =
734 readl(SSP_DR(pl022->virtbase));
735 break;
736 }
737 pl022->rx += (pl022->cur_chip->n_bytes);
738 pl022->exp_fifo_level--;
739 }
740 }
741 /*
742 * When we exit here the TX FIFO should be full and the RX FIFO
743 * should be empty
744 */
745 }
746
747
748 /**
749 * next_transfer - Move to the Next transfer in the current spi message
750 * @pl022: SSP driver private data structure
751 *
752 * This function moves though the linked list of spi transfers in the
753 * current spi message and returns with the state of current spi
754 * message i.e whether its last transfer is done(STATE_DONE) or
755 * Next transfer is ready(STATE_RUNNING)
756 */
757 static void *next_transfer(struct pl022 *pl022)
758 {
759 struct spi_message *msg = pl022->cur_msg;
760 struct spi_transfer *trans = pl022->cur_transfer;
761
762 /* Move to next transfer */
763 if (trans->transfer_list.next != &msg->transfers) {
764 pl022->cur_transfer =
765 list_entry(trans->transfer_list.next,
766 struct spi_transfer, transfer_list);
767 return STATE_RUNNING;
768 }
769 return STATE_DONE;
770 }
771
772 /*
773 * This DMA functionality is only compiled in if we have
774 * access to the generic DMA devices/DMA engine.
775 */
776 #ifdef CONFIG_DMA_ENGINE
777 static void unmap_free_dma_scatter(struct pl022 *pl022)
778 {
779 /* Unmap and free the SG tables */
780 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
781 pl022->sgt_tx.nents, DMA_TO_DEVICE);
782 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
783 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
784 sg_free_table(&pl022->sgt_rx);
785 sg_free_table(&pl022->sgt_tx);
786 }
787
788 static void dma_callback(void *data)
789 {
790 struct pl022 *pl022 = data;
791 struct spi_message *msg = pl022->cur_msg;
792
793 BUG_ON(!pl022->sgt_rx.sgl);
794
795 #ifdef VERBOSE_DEBUG
796 /*
797 * Optionally dump out buffers to inspect contents, this is
798 * good if you want to convince yourself that the loopback
799 * read/write contents are the same, when adopting to a new
800 * DMA engine.
801 */
802 {
803 struct scatterlist *sg;
804 unsigned int i;
805
806 dma_sync_sg_for_cpu(&pl022->adev->dev,
807 pl022->sgt_rx.sgl,
808 pl022->sgt_rx.nents,
809 DMA_FROM_DEVICE);
810
811 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
812 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
813 print_hex_dump(KERN_ERR, "SPI RX: ",
814 DUMP_PREFIX_OFFSET,
815 16,
816 1,
817 sg_virt(sg),
818 sg_dma_len(sg),
819 1);
820 }
821 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
822 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
823 print_hex_dump(KERN_ERR, "SPI TX: ",
824 DUMP_PREFIX_OFFSET,
825 16,
826 1,
827 sg_virt(sg),
828 sg_dma_len(sg),
829 1);
830 }
831 }
832 #endif
833
834 unmap_free_dma_scatter(pl022);
835
836 /* Update total bytes transfered */
837 msg->actual_length += pl022->cur_transfer->len;
838 if (pl022->cur_transfer->cs_change)
839 pl022->cur_chip->
840 cs_control(SSP_CHIP_DESELECT);
841
842 /* Move to next transfer */
843 msg->state = next_transfer(pl022);
844 tasklet_schedule(&pl022->pump_transfers);
845 }
846
847 static void setup_dma_scatter(struct pl022 *pl022,
848 void *buffer,
849 unsigned int length,
850 struct sg_table *sgtab)
851 {
852 struct scatterlist *sg;
853 int bytesleft = length;
854 void *bufp = buffer;
855 int mapbytes;
856 int i;
857
858 if (buffer) {
859 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
860 /*
861 * If there are less bytes left than what fits
862 * in the current page (plus page alignment offset)
863 * we just feed in this, else we stuff in as much
864 * as we can.
865 */
866 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
867 mapbytes = bytesleft;
868 else
869 mapbytes = PAGE_SIZE - offset_in_page(bufp);
870 sg_set_page(sg, virt_to_page(bufp),
871 mapbytes, offset_in_page(bufp));
872 bufp += mapbytes;
873 bytesleft -= mapbytes;
874 dev_dbg(&pl022->adev->dev,
875 "set RX/TX target page @ %p, %d bytes, %d left\n",
876 bufp, mapbytes, bytesleft);
877 }
878 } else {
879 /* Map the dummy buffer on every page */
880 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
881 if (bytesleft < PAGE_SIZE)
882 mapbytes = bytesleft;
883 else
884 mapbytes = PAGE_SIZE;
885 sg_set_page(sg, virt_to_page(pl022->dummypage),
886 mapbytes, 0);
887 bytesleft -= mapbytes;
888 dev_dbg(&pl022->adev->dev,
889 "set RX/TX to dummy page %d bytes, %d left\n",
890 mapbytes, bytesleft);
891
892 }
893 }
894 BUG_ON(bytesleft);
895 }
896
897 /**
898 * configure_dma - configures the channels for the next transfer
899 * @pl022: SSP driver's private data structure
900 */
901 static int configure_dma(struct pl022 *pl022)
902 {
903 struct dma_slave_config rx_conf = {
904 .src_addr = SSP_DR(pl022->phybase),
905 .direction = DMA_FROM_DEVICE,
906 .src_maxburst = pl022->vendor->fifodepth >> 1,
907 };
908 struct dma_slave_config tx_conf = {
909 .dst_addr = SSP_DR(pl022->phybase),
910 .direction = DMA_TO_DEVICE,
911 .dst_maxburst = pl022->vendor->fifodepth >> 1,
912 };
913 unsigned int pages;
914 int ret;
915 int rx_sglen, tx_sglen;
916 struct dma_chan *rxchan = pl022->dma_rx_channel;
917 struct dma_chan *txchan = pl022->dma_tx_channel;
918 struct dma_async_tx_descriptor *rxdesc;
919 struct dma_async_tx_descriptor *txdesc;
920 dma_cookie_t cookie;
921
922 /* Check that the channels are available */
923 if (!rxchan || !txchan)
924 return -ENODEV;
925
926 switch (pl022->read) {
927 case READING_NULL:
928 /* Use the same as for writing */
929 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
930 break;
931 case READING_U8:
932 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
933 break;
934 case READING_U16:
935 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
936 break;
937 case READING_U32:
938 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
939 break;
940 }
941
942 switch (pl022->write) {
943 case WRITING_NULL:
944 /* Use the same as for reading */
945 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
946 break;
947 case WRITING_U8:
948 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
949 break;
950 case WRITING_U16:
951 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
952 break;
953 case WRITING_U32:
954 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
955 break;
956 }
957
958 /* SPI pecularity: we need to read and write the same width */
959 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
960 rx_conf.src_addr_width = tx_conf.dst_addr_width;
961 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
962 tx_conf.dst_addr_width = rx_conf.src_addr_width;
963 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
964
965 rxchan->device->device_control(rxchan, DMA_SLAVE_CONFIG,
966 (unsigned long) &rx_conf);
967 txchan->device->device_control(txchan, DMA_SLAVE_CONFIG,
968 (unsigned long) &tx_conf);
969
970 /* Create sglists for the transfers */
971 pages = (pl022->cur_transfer->len >> PAGE_SHIFT) + 1;
972 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
973
974 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_KERNEL);
975 if (ret)
976 goto err_alloc_rx_sg;
977
978 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_KERNEL);
979 if (ret)
980 goto err_alloc_tx_sg;
981
982 /* Fill in the scatterlists for the RX+TX buffers */
983 setup_dma_scatter(pl022, pl022->rx,
984 pl022->cur_transfer->len, &pl022->sgt_rx);
985 setup_dma_scatter(pl022, pl022->tx,
986 pl022->cur_transfer->len, &pl022->sgt_tx);
987
988 /* Map DMA buffers */
989 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
990 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
991 if (!rx_sglen)
992 goto err_rx_sgmap;
993
994 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
995 pl022->sgt_tx.nents, DMA_TO_DEVICE);
996 if (!tx_sglen)
997 goto err_tx_sgmap;
998
999 /* Send both scatterlists */
1000 rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
1001 pl022->sgt_rx.sgl,
1002 rx_sglen,
1003 DMA_FROM_DEVICE,
1004 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1005 if (!rxdesc)
1006 goto err_rxdesc;
1007
1008 txdesc = txchan->device->device_prep_slave_sg(txchan,
1009 pl022->sgt_tx.sgl,
1010 tx_sglen,
1011 DMA_TO_DEVICE,
1012 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1013 if (!txdesc)
1014 goto err_txdesc;
1015
1016 /* Put the callback on the RX transfer only, that should finish last */
1017 rxdesc->callback = dma_callback;
1018 rxdesc->callback_param = pl022;
1019
1020 /* Submit and fire RX and TX with TX last so we're ready to read! */
1021 cookie = rxdesc->tx_submit(rxdesc);
1022 if (dma_submit_error(cookie))
1023 goto err_submit_rx;
1024 cookie = txdesc->tx_submit(txdesc);
1025 if (dma_submit_error(cookie))
1026 goto err_submit_tx;
1027 rxchan->device->device_issue_pending(rxchan);
1028 txchan->device->device_issue_pending(txchan);
1029
1030 return 0;
1031
1032 err_submit_tx:
1033 err_submit_rx:
1034 err_txdesc:
1035 txchan->device->device_control(txchan, DMA_TERMINATE_ALL, 0);
1036 err_rxdesc:
1037 rxchan->device->device_control(rxchan, DMA_TERMINATE_ALL, 0);
1038 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1039 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1040 err_tx_sgmap:
1041 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1042 pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1043 err_rx_sgmap:
1044 sg_free_table(&pl022->sgt_tx);
1045 err_alloc_tx_sg:
1046 sg_free_table(&pl022->sgt_rx);
1047 err_alloc_rx_sg:
1048 return -ENOMEM;
1049 }
1050
1051 static int __init pl022_dma_probe(struct pl022 *pl022)
1052 {
1053 dma_cap_mask_t mask;
1054
1055 /* Try to acquire a generic DMA engine slave channel */
1056 dma_cap_zero(mask);
1057 dma_cap_set(DMA_SLAVE, mask);
1058 /*
1059 * We need both RX and TX channels to do DMA, else do none
1060 * of them.
1061 */
1062 pl022->dma_rx_channel = dma_request_channel(mask,
1063 pl022->master_info->dma_filter,
1064 pl022->master_info->dma_rx_param);
1065 if (!pl022->dma_rx_channel) {
1066 dev_err(&pl022->adev->dev, "no RX DMA channel!\n");
1067 goto err_no_rxchan;
1068 }
1069
1070 pl022->dma_tx_channel = dma_request_channel(mask,
1071 pl022->master_info->dma_filter,
1072 pl022->master_info->dma_tx_param);
1073 if (!pl022->dma_tx_channel) {
1074 dev_err(&pl022->adev->dev, "no TX DMA channel!\n");
1075 goto err_no_txchan;
1076 }
1077
1078 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1079 if (!pl022->dummypage) {
1080 dev_err(&pl022->adev->dev, "no DMA dummypage!\n");
1081 goto err_no_dummypage;
1082 }
1083
1084 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1085 dma_chan_name(pl022->dma_rx_channel),
1086 dma_chan_name(pl022->dma_tx_channel));
1087
1088 return 0;
1089
1090 err_no_dummypage:
1091 dma_release_channel(pl022->dma_tx_channel);
1092 err_no_txchan:
1093 dma_release_channel(pl022->dma_rx_channel);
1094 pl022->dma_rx_channel = NULL;
1095 err_no_rxchan:
1096 return -ENODEV;
1097 }
1098
1099 static void terminate_dma(struct pl022 *pl022)
1100 {
1101 struct dma_chan *rxchan = pl022->dma_rx_channel;
1102 struct dma_chan *txchan = pl022->dma_tx_channel;
1103
1104 rxchan->device->device_control(rxchan, DMA_TERMINATE_ALL, 0);
1105 txchan->device->device_control(txchan, DMA_TERMINATE_ALL, 0);
1106 unmap_free_dma_scatter(pl022);
1107 }
1108
1109 static void pl022_dma_remove(struct pl022 *pl022)
1110 {
1111 if (pl022->busy)
1112 terminate_dma(pl022);
1113 if (pl022->dma_tx_channel)
1114 dma_release_channel(pl022->dma_tx_channel);
1115 if (pl022->dma_rx_channel)
1116 dma_release_channel(pl022->dma_rx_channel);
1117 kfree(pl022->dummypage);
1118 }
1119
1120 #else
1121 static inline int configure_dma(struct pl022 *pl022)
1122 {
1123 return -ENODEV;
1124 }
1125
1126 static inline int pl022_dma_probe(struct pl022 *pl022)
1127 {
1128 return 0;
1129 }
1130
1131 static inline void pl022_dma_remove(struct pl022 *pl022)
1132 {
1133 }
1134 #endif
1135
1136 /**
1137 * pl022_interrupt_handler - Interrupt handler for SSP controller
1138 *
1139 * This function handles interrupts generated for an interrupt based transfer.
1140 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1141 * current message's state as STATE_ERROR and schedule the tasklet
1142 * pump_transfers which will do the postprocessing of the current message by
1143 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1144 * more data, and writes data in TX FIFO till it is not full. If we complete
1145 * the transfer we move to the next transfer and schedule the tasklet.
1146 */
1147 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1148 {
1149 struct pl022 *pl022 = dev_id;
1150 struct spi_message *msg = pl022->cur_msg;
1151 u16 irq_status = 0;
1152 u16 flag = 0;
1153
1154 if (unlikely(!msg)) {
1155 dev_err(&pl022->adev->dev,
1156 "bad message state in interrupt handler");
1157 /* Never fail */
1158 return IRQ_HANDLED;
1159 }
1160
1161 /* Read the Interrupt Status Register */
1162 irq_status = readw(SSP_MIS(pl022->virtbase));
1163
1164 if (unlikely(!irq_status))
1165 return IRQ_NONE;
1166
1167 /*
1168 * This handles the FIFO interrupts, the timeout
1169 * interrupts are flatly ignored, they cannot be
1170 * trusted.
1171 */
1172 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1173 /*
1174 * Overrun interrupt - bail out since our Data has been
1175 * corrupted
1176 */
1177 dev_err(&pl022->adev->dev, "FIFO overrun\n");
1178 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1179 dev_err(&pl022->adev->dev,
1180 "RXFIFO is full\n");
1181 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1182 dev_err(&pl022->adev->dev,
1183 "TXFIFO is full\n");
1184
1185 /*
1186 * Disable and clear interrupts, disable SSP,
1187 * mark message with bad status so it can be
1188 * retried.
1189 */
1190 writew(DISABLE_ALL_INTERRUPTS,
1191 SSP_IMSC(pl022->virtbase));
1192 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1193 writew((readw(SSP_CR1(pl022->virtbase)) &
1194 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1195 msg->state = STATE_ERROR;
1196
1197 /* Schedule message queue handler */
1198 tasklet_schedule(&pl022->pump_transfers);
1199 return IRQ_HANDLED;
1200 }
1201
1202 readwriter(pl022);
1203
1204 if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1205 flag = 1;
1206 /* Disable Transmit interrupt */
1207 writew(readw(SSP_IMSC(pl022->virtbase)) &
1208 (~SSP_IMSC_MASK_TXIM),
1209 SSP_IMSC(pl022->virtbase));
1210 }
1211
1212 /*
1213 * Since all transactions must write as much as shall be read,
1214 * we can conclude the entire transaction once RX is complete.
1215 * At this point, all TX will always be finished.
1216 */
1217 if (pl022->rx >= pl022->rx_end) {
1218 writew(DISABLE_ALL_INTERRUPTS,
1219 SSP_IMSC(pl022->virtbase));
1220 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1221 if (unlikely(pl022->rx > pl022->rx_end)) {
1222 dev_warn(&pl022->adev->dev, "read %u surplus "
1223 "bytes (did you request an odd "
1224 "number of bytes on a 16bit bus?)\n",
1225 (u32) (pl022->rx - pl022->rx_end));
1226 }
1227 /* Update total bytes transfered */
1228 msg->actual_length += pl022->cur_transfer->len;
1229 if (pl022->cur_transfer->cs_change)
1230 pl022->cur_chip->
1231 cs_control(SSP_CHIP_DESELECT);
1232 /* Move to next transfer */
1233 msg->state = next_transfer(pl022);
1234 tasklet_schedule(&pl022->pump_transfers);
1235 return IRQ_HANDLED;
1236 }
1237
1238 return IRQ_HANDLED;
1239 }
1240
1241 /**
1242 * This sets up the pointers to memory for the next message to
1243 * send out on the SPI bus.
1244 */
1245 static int set_up_next_transfer(struct pl022 *pl022,
1246 struct spi_transfer *transfer)
1247 {
1248 int residue;
1249
1250 /* Sanity check the message for this bus width */
1251 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1252 if (unlikely(residue != 0)) {
1253 dev_err(&pl022->adev->dev,
1254 "message of %u bytes to transmit but the current "
1255 "chip bus has a data width of %u bytes!\n",
1256 pl022->cur_transfer->len,
1257 pl022->cur_chip->n_bytes);
1258 dev_err(&pl022->adev->dev, "skipping this message\n");
1259 return -EIO;
1260 }
1261 pl022->tx = (void *)transfer->tx_buf;
1262 pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1263 pl022->rx = (void *)transfer->rx_buf;
1264 pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1265 pl022->write =
1266 pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1267 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1268 return 0;
1269 }
1270
1271 /**
1272 * pump_transfers - Tasklet function which schedules next transfer
1273 * when running in interrupt or DMA transfer mode.
1274 * @data: SSP driver private data structure
1275 *
1276 */
1277 static void pump_transfers(unsigned long data)
1278 {
1279 struct pl022 *pl022 = (struct pl022 *) data;
1280 struct spi_message *message = NULL;
1281 struct spi_transfer *transfer = NULL;
1282 struct spi_transfer *previous = NULL;
1283
1284 /* Get current state information */
1285 message = pl022->cur_msg;
1286 transfer = pl022->cur_transfer;
1287
1288 /* Handle for abort */
1289 if (message->state == STATE_ERROR) {
1290 message->status = -EIO;
1291 giveback(pl022);
1292 return;
1293 }
1294
1295 /* Handle end of message */
1296 if (message->state == STATE_DONE) {
1297 message->status = 0;
1298 giveback(pl022);
1299 return;
1300 }
1301
1302 /* Delay if requested at end of transfer before CS change */
1303 if (message->state == STATE_RUNNING) {
1304 previous = list_entry(transfer->transfer_list.prev,
1305 struct spi_transfer,
1306 transfer_list);
1307 if (previous->delay_usecs)
1308 /*
1309 * FIXME: This runs in interrupt context.
1310 * Is this really smart?
1311 */
1312 udelay(previous->delay_usecs);
1313
1314 /* Drop chip select only if cs_change is requested */
1315 if (previous->cs_change)
1316 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1317 } else {
1318 /* STATE_START */
1319 message->state = STATE_RUNNING;
1320 }
1321
1322 if (set_up_next_transfer(pl022, transfer)) {
1323 message->state = STATE_ERROR;
1324 message->status = -EIO;
1325 giveback(pl022);
1326 return;
1327 }
1328 /* Flush the FIFOs and let's go! */
1329 flush(pl022);
1330
1331 if (pl022->cur_chip->enable_dma) {
1332 if (configure_dma(pl022)) {
1333 dev_dbg(&pl022->adev->dev,
1334 "configuration of DMA failed, fall back to interrupt mode\n");
1335 goto err_config_dma;
1336 }
1337 return;
1338 }
1339
1340 err_config_dma:
1341 writew(ENABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
1342 }
1343
1344 static void do_interrupt_dma_transfer(struct pl022 *pl022)
1345 {
1346 u32 irqflags = ENABLE_ALL_INTERRUPTS;
1347
1348 /* Enable target chip */
1349 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1350 if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1351 /* Error path */
1352 pl022->cur_msg->state = STATE_ERROR;
1353 pl022->cur_msg->status = -EIO;
1354 giveback(pl022);
1355 return;
1356 }
1357 /* If we're using DMA, set up DMA here */
1358 if (pl022->cur_chip->enable_dma) {
1359 /* Configure DMA transfer */
1360 if (configure_dma(pl022)) {
1361 dev_dbg(&pl022->adev->dev,
1362 "configuration of DMA failed, fall back to interrupt mode\n");
1363 goto err_config_dma;
1364 }
1365 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1366 irqflags = DISABLE_ALL_INTERRUPTS;
1367 }
1368 err_config_dma:
1369 /* Enable SSP, turn on interrupts */
1370 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1371 SSP_CR1(pl022->virtbase));
1372 writew(irqflags, SSP_IMSC(pl022->virtbase));
1373 }
1374
1375 static void do_polling_transfer(struct pl022 *pl022)
1376 {
1377 struct spi_message *message = NULL;
1378 struct spi_transfer *transfer = NULL;
1379 struct spi_transfer *previous = NULL;
1380 struct chip_data *chip;
1381
1382 chip = pl022->cur_chip;
1383 message = pl022->cur_msg;
1384
1385 while (message->state != STATE_DONE) {
1386 /* Handle for abort */
1387 if (message->state == STATE_ERROR)
1388 break;
1389 transfer = pl022->cur_transfer;
1390
1391 /* Delay if requested at end of transfer */
1392 if (message->state == STATE_RUNNING) {
1393 previous =
1394 list_entry(transfer->transfer_list.prev,
1395 struct spi_transfer, transfer_list);
1396 if (previous->delay_usecs)
1397 udelay(previous->delay_usecs);
1398 if (previous->cs_change)
1399 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1400 } else {
1401 /* STATE_START */
1402 message->state = STATE_RUNNING;
1403 pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1404 }
1405
1406 /* Configuration Changing Per Transfer */
1407 if (set_up_next_transfer(pl022, transfer)) {
1408 /* Error path */
1409 message->state = STATE_ERROR;
1410 break;
1411 }
1412 /* Flush FIFOs and enable SSP */
1413 flush(pl022);
1414 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1415 SSP_CR1(pl022->virtbase));
1416
1417 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1418 /* FIXME: insert a timeout so we don't hang here indefinately */
1419 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end)
1420 readwriter(pl022);
1421
1422 /* Update total byte transfered */
1423 message->actual_length += pl022->cur_transfer->len;
1424 if (pl022->cur_transfer->cs_change)
1425 pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
1426 /* Move to next transfer */
1427 message->state = next_transfer(pl022);
1428 }
1429
1430 /* Handle end of message */
1431 if (message->state == STATE_DONE)
1432 message->status = 0;
1433 else
1434 message->status = -EIO;
1435
1436 giveback(pl022);
1437 return;
1438 }
1439
1440 /**
1441 * pump_messages - Workqueue function which processes spi message queue
1442 * @data: pointer to private data of SSP driver
1443 *
1444 * This function checks if there is any spi message in the queue that
1445 * needs processing and delegate control to appropriate function
1446 * do_polling_transfer()/do_interrupt_dma_transfer()
1447 * based on the kind of the transfer
1448 *
1449 */
1450 static void pump_messages(struct work_struct *work)
1451 {
1452 struct pl022 *pl022 =
1453 container_of(work, struct pl022, pump_messages);
1454 unsigned long flags;
1455
1456 /* Lock queue and check for queue work */
1457 spin_lock_irqsave(&pl022->queue_lock, flags);
1458 if (list_empty(&pl022->queue) || !pl022->running) {
1459 pl022->busy = false;
1460 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1461 return;
1462 }
1463 /* Make sure we are not already running a message */
1464 if (pl022->cur_msg) {
1465 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1466 return;
1467 }
1468 /* Extract head of queue */
1469 pl022->cur_msg =
1470 list_entry(pl022->queue.next, struct spi_message, queue);
1471
1472 list_del_init(&pl022->cur_msg->queue);
1473 pl022->busy = true;
1474 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1475
1476 /* Initial message state */
1477 pl022->cur_msg->state = STATE_START;
1478 pl022->cur_transfer = list_entry(pl022->cur_msg->transfers.next,
1479 struct spi_transfer,
1480 transfer_list);
1481
1482 /* Setup the SPI using the per chip configuration */
1483 pl022->cur_chip = spi_get_ctldata(pl022->cur_msg->spi);
1484 /*
1485 * We enable the clocks here, then the clocks will be disabled when
1486 * giveback() is called in each method (poll/interrupt/DMA)
1487 */
1488 amba_pclk_enable(pl022->adev);
1489 clk_enable(pl022->clk);
1490 restore_state(pl022);
1491 flush(pl022);
1492
1493 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1494 do_polling_transfer(pl022);
1495 else
1496 do_interrupt_dma_transfer(pl022);
1497 }
1498
1499
1500 static int __init init_queue(struct pl022 *pl022)
1501 {
1502 INIT_LIST_HEAD(&pl022->queue);
1503 spin_lock_init(&pl022->queue_lock);
1504
1505 pl022->running = false;
1506 pl022->busy = false;
1507
1508 tasklet_init(&pl022->pump_transfers,
1509 pump_transfers, (unsigned long)pl022);
1510
1511 INIT_WORK(&pl022->pump_messages, pump_messages);
1512 pl022->workqueue = create_singlethread_workqueue(
1513 dev_name(pl022->master->dev.parent));
1514 if (pl022->workqueue == NULL)
1515 return -EBUSY;
1516
1517 return 0;
1518 }
1519
1520
1521 static int start_queue(struct pl022 *pl022)
1522 {
1523 unsigned long flags;
1524
1525 spin_lock_irqsave(&pl022->queue_lock, flags);
1526
1527 if (pl022->running || pl022->busy) {
1528 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1529 return -EBUSY;
1530 }
1531
1532 pl022->running = true;
1533 pl022->cur_msg = NULL;
1534 pl022->cur_transfer = NULL;
1535 pl022->cur_chip = NULL;
1536 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1537
1538 queue_work(pl022->workqueue, &pl022->pump_messages);
1539
1540 return 0;
1541 }
1542
1543
1544 static int stop_queue(struct pl022 *pl022)
1545 {
1546 unsigned long flags;
1547 unsigned limit = 500;
1548 int status = 0;
1549
1550 spin_lock_irqsave(&pl022->queue_lock, flags);
1551
1552 /* This is a bit lame, but is optimized for the common execution path.
1553 * A wait_queue on the pl022->busy could be used, but then the common
1554 * execution path (pump_messages) would be required to call wake_up or
1555 * friends on every SPI message. Do this instead */
1556 while (!list_empty(&pl022->queue) && pl022->busy && limit--) {
1557 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1558 msleep(10);
1559 spin_lock_irqsave(&pl022->queue_lock, flags);
1560 }
1561
1562 if (!list_empty(&pl022->queue) || pl022->busy)
1563 status = -EBUSY;
1564 else
1565 pl022->running = false;
1566
1567 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1568
1569 return status;
1570 }
1571
1572 static int destroy_queue(struct pl022 *pl022)
1573 {
1574 int status;
1575
1576 status = stop_queue(pl022);
1577 /* we are unloading the module or failing to load (only two calls
1578 * to this routine), and neither call can handle a return value.
1579 * However, destroy_workqueue calls flush_workqueue, and that will
1580 * block until all work is done. If the reason that stop_queue
1581 * timed out is that the work will never finish, then it does no
1582 * good to call destroy_workqueue, so return anyway. */
1583 if (status != 0)
1584 return status;
1585
1586 destroy_workqueue(pl022->workqueue);
1587
1588 return 0;
1589 }
1590
1591 static int verify_controller_parameters(struct pl022 *pl022,
1592 struct pl022_config_chip const *chip_info)
1593 {
1594 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1595 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1596 dev_err(&pl022->adev->dev,
1597 "interface is configured incorrectly\n");
1598 return -EINVAL;
1599 }
1600 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1601 (!pl022->vendor->unidir)) {
1602 dev_err(&pl022->adev->dev,
1603 "unidirectional mode not supported in this "
1604 "hardware version\n");
1605 return -EINVAL;
1606 }
1607 if ((chip_info->hierarchy != SSP_MASTER)
1608 && (chip_info->hierarchy != SSP_SLAVE)) {
1609 dev_err(&pl022->adev->dev,
1610 "hierarchy is configured incorrectly\n");
1611 return -EINVAL;
1612 }
1613 if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1614 && (chip_info->com_mode != DMA_TRANSFER)
1615 && (chip_info->com_mode != POLLING_TRANSFER)) {
1616 dev_err(&pl022->adev->dev,
1617 "Communication mode is configured incorrectly\n");
1618 return -EINVAL;
1619 }
1620 if ((chip_info->rx_lev_trig < SSP_RX_1_OR_MORE_ELEM)
1621 || (chip_info->rx_lev_trig > SSP_RX_32_OR_MORE_ELEM)) {
1622 dev_err(&pl022->adev->dev,
1623 "RX FIFO Trigger Level is configured incorrectly\n");
1624 return -EINVAL;
1625 }
1626 if ((chip_info->tx_lev_trig < SSP_TX_1_OR_MORE_EMPTY_LOC)
1627 || (chip_info->tx_lev_trig > SSP_TX_32_OR_MORE_EMPTY_LOC)) {
1628 dev_err(&pl022->adev->dev,
1629 "TX FIFO Trigger Level is configured incorrectly\n");
1630 return -EINVAL;
1631 }
1632 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1633 if ((chip_info->ctrl_len < SSP_BITS_4)
1634 || (chip_info->ctrl_len > SSP_BITS_32)) {
1635 dev_err(&pl022->adev->dev,
1636 "CTRL LEN is configured incorrectly\n");
1637 return -EINVAL;
1638 }
1639 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1640 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1641 dev_err(&pl022->adev->dev,
1642 "Wait State is configured incorrectly\n");
1643 return -EINVAL;
1644 }
1645 /* Half duplex is only available in the ST Micro version */
1646 if (pl022->vendor->extended_cr) {
1647 if ((chip_info->duplex !=
1648 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1649 && (chip_info->duplex !=
1650 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1651 dev_err(&pl022->adev->dev,
1652 "Microwire duplex mode is configured incorrectly\n");
1653 return -EINVAL;
1654 }
1655 } else {
1656 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1657 dev_err(&pl022->adev->dev,
1658 "Microwire half duplex mode requested,"
1659 " but this is only available in the"
1660 " ST version of PL022\n");
1661 return -EINVAL;
1662 }
1663 }
1664 return 0;
1665 }
1666
1667 /**
1668 * pl022_transfer - transfer function registered to SPI master framework
1669 * @spi: spi device which is requesting transfer
1670 * @msg: spi message which is to handled is queued to driver queue
1671 *
1672 * This function is registered to the SPI framework for this SPI master
1673 * controller. It will queue the spi_message in the queue of driver if
1674 * the queue is not stopped and return.
1675 */
1676 static int pl022_transfer(struct spi_device *spi, struct spi_message *msg)
1677 {
1678 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1679 unsigned long flags;
1680
1681 spin_lock_irqsave(&pl022->queue_lock, flags);
1682
1683 if (!pl022->running) {
1684 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1685 return -ESHUTDOWN;
1686 }
1687 msg->actual_length = 0;
1688 msg->status = -EINPROGRESS;
1689 msg->state = STATE_START;
1690
1691 list_add_tail(&msg->queue, &pl022->queue);
1692 if (pl022->running && !pl022->busy)
1693 queue_work(pl022->workqueue, &pl022->pump_messages);
1694
1695 spin_unlock_irqrestore(&pl022->queue_lock, flags);
1696 return 0;
1697 }
1698
1699 static int calculate_effective_freq(struct pl022 *pl022,
1700 int freq,
1701 struct ssp_clock_params *clk_freq)
1702 {
1703 /* Lets calculate the frequency parameters */
1704 u16 cpsdvsr = 2;
1705 u16 scr = 0;
1706 bool freq_found = false;
1707 u32 rate;
1708 u32 max_tclk;
1709 u32 min_tclk;
1710
1711 rate = clk_get_rate(pl022->clk);
1712 /* cpsdvscr = 2 & scr 0 */
1713 max_tclk = (rate / (CPSDVR_MIN * (1 + SCR_MIN)));
1714 /* cpsdvsr = 254 & scr = 255 */
1715 min_tclk = (rate / (CPSDVR_MAX * (1 + SCR_MAX)));
1716
1717 if ((freq <= max_tclk) && (freq >= min_tclk)) {
1718 while (cpsdvsr <= CPSDVR_MAX && !freq_found) {
1719 while (scr <= SCR_MAX && !freq_found) {
1720 if ((rate /
1721 (cpsdvsr * (1 + scr))) > freq)
1722 scr += 1;
1723 else {
1724 /*
1725 * This bool is made true when
1726 * effective frequency >=
1727 * target frequency is found
1728 */
1729 freq_found = true;
1730 if ((rate /
1731 (cpsdvsr * (1 + scr))) != freq) {
1732 if (scr == SCR_MIN) {
1733 cpsdvsr -= 2;
1734 scr = SCR_MAX;
1735 } else
1736 scr -= 1;
1737 }
1738 }
1739 }
1740 if (!freq_found) {
1741 cpsdvsr += 2;
1742 scr = SCR_MIN;
1743 }
1744 }
1745 if (cpsdvsr != 0) {
1746 dev_dbg(&pl022->adev->dev,
1747 "SSP Effective Frequency is %u\n",
1748 (rate / (cpsdvsr * (1 + scr))));
1749 clk_freq->cpsdvsr = (u8) (cpsdvsr & 0xFF);
1750 clk_freq->scr = (u8) (scr & 0xFF);
1751 dev_dbg(&pl022->adev->dev,
1752 "SSP cpsdvsr = %d, scr = %d\n",
1753 clk_freq->cpsdvsr, clk_freq->scr);
1754 }
1755 } else {
1756 dev_err(&pl022->adev->dev,
1757 "controller data is incorrect: out of range frequency");
1758 return -EINVAL;
1759 }
1760 return 0;
1761 }
1762
1763
1764 /*
1765 * A piece of default chip info unless the platform
1766 * supplies it.
1767 */
1768 static const struct pl022_config_chip pl022_default_chip_info = {
1769 .com_mode = POLLING_TRANSFER,
1770 .iface = SSP_INTERFACE_MOTOROLA_SPI,
1771 .hierarchy = SSP_SLAVE,
1772 .slave_tx_disable = DO_NOT_DRIVE_TX,
1773 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1774 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1775 .ctrl_len = SSP_BITS_8,
1776 .wait_state = SSP_MWIRE_WAIT_ZERO,
1777 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1778 .cs_control = null_cs_control,
1779 };
1780
1781
1782 /**
1783 * pl022_setup - setup function registered to SPI master framework
1784 * @spi: spi device which is requesting setup
1785 *
1786 * This function is registered to the SPI framework for this SPI master
1787 * controller. If it is the first time when setup is called by this device,
1788 * this function will initialize the runtime state for this chip and save
1789 * the same in the device structure. Else it will update the runtime info
1790 * with the updated chip info. Nothing is really being written to the
1791 * controller hardware here, that is not done until the actual transfer
1792 * commence.
1793 */
1794 static int pl022_setup(struct spi_device *spi)
1795 {
1796 struct pl022_config_chip const *chip_info;
1797 struct chip_data *chip;
1798 struct ssp_clock_params clk_freq = {0, };
1799 int status = 0;
1800 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1801 unsigned int bits = spi->bits_per_word;
1802 u32 tmp;
1803
1804 if (!spi->max_speed_hz)
1805 return -EINVAL;
1806
1807 /* Get controller_state if one is supplied */
1808 chip = spi_get_ctldata(spi);
1809
1810 if (chip == NULL) {
1811 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1812 if (!chip) {
1813 dev_err(&spi->dev,
1814 "cannot allocate controller state\n");
1815 return -ENOMEM;
1816 }
1817 dev_dbg(&spi->dev,
1818 "allocated memory for controller's runtime state\n");
1819 }
1820
1821 /* Get controller data if one is supplied */
1822 chip_info = spi->controller_data;
1823
1824 if (chip_info == NULL) {
1825 chip_info = &pl022_default_chip_info;
1826 /* spi_board_info.controller_data not is supplied */
1827 dev_dbg(&spi->dev,
1828 "using default controller_data settings\n");
1829 } else
1830 dev_dbg(&spi->dev,
1831 "using user supplied controller_data settings\n");
1832
1833 /*
1834 * We can override with custom divisors, else we use the board
1835 * frequency setting
1836 */
1837 if ((0 == chip_info->clk_freq.cpsdvsr)
1838 && (0 == chip_info->clk_freq.scr)) {
1839 status = calculate_effective_freq(pl022,
1840 spi->max_speed_hz,
1841 &clk_freq);
1842 if (status < 0)
1843 goto err_config_params;
1844 } else {
1845 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1846 if ((clk_freq.cpsdvsr % 2) != 0)
1847 clk_freq.cpsdvsr =
1848 clk_freq.cpsdvsr - 1;
1849 }
1850 if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1851 || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1852 dev_err(&spi->dev,
1853 "cpsdvsr is configured incorrectly\n");
1854 goto err_config_params;
1855 }
1856
1857
1858 status = verify_controller_parameters(pl022, chip_info);
1859 if (status) {
1860 dev_err(&spi->dev, "controller data is incorrect");
1861 goto err_config_params;
1862 }
1863
1864 /* Now set controller state based on controller data */
1865 chip->xfer_type = chip_info->com_mode;
1866 if (!chip_info->cs_control) {
1867 chip->cs_control = null_cs_control;
1868 dev_warn(&spi->dev,
1869 "chip select function is NULL for this chip\n");
1870 } else
1871 chip->cs_control = chip_info->cs_control;
1872
1873 if (bits <= 3) {
1874 /* PL022 doesn't support less than 4-bits */
1875 status = -ENOTSUPP;
1876 goto err_config_params;
1877 } else if (bits <= 8) {
1878 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1879 chip->n_bytes = 1;
1880 chip->read = READING_U8;
1881 chip->write = WRITING_U8;
1882 } else if (bits <= 16) {
1883 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1884 chip->n_bytes = 2;
1885 chip->read = READING_U16;
1886 chip->write = WRITING_U16;
1887 } else {
1888 if (pl022->vendor->max_bpw >= 32) {
1889 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1890 chip->n_bytes = 4;
1891 chip->read = READING_U32;
1892 chip->write = WRITING_U32;
1893 } else {
1894 dev_err(&spi->dev,
1895 "illegal data size for this controller!\n");
1896 dev_err(&spi->dev,
1897 "a standard pl022 can only handle "
1898 "1 <= n <= 16 bit words\n");
1899 status = -ENOTSUPP;
1900 goto err_config_params;
1901 }
1902 }
1903
1904 /* Now Initialize all register settings required for this chip */
1905 chip->cr0 = 0;
1906 chip->cr1 = 0;
1907 chip->dmacr = 0;
1908 chip->cpsr = 0;
1909 if ((chip_info->com_mode == DMA_TRANSFER)
1910 && ((pl022->master_info)->enable_dma)) {
1911 chip->enable_dma = true;
1912 dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1913 if (status < 0)
1914 goto err_config_params;
1915 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1916 SSP_DMACR_MASK_RXDMAE, 0);
1917 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1918 SSP_DMACR_MASK_TXDMAE, 1);
1919 } else {
1920 chip->enable_dma = false;
1921 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1922 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1923 SSP_DMACR_MASK_RXDMAE, 0);
1924 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1925 SSP_DMACR_MASK_TXDMAE, 1);
1926 }
1927
1928 chip->cpsr = clk_freq.cpsdvsr;
1929
1930 /* Special setup for the ST micro extended control registers */
1931 if (pl022->vendor->extended_cr) {
1932 u32 etx;
1933
1934 if (pl022->vendor->pl023) {
1935 /* These bits are only in the PL023 */
1936 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1937 SSP_CR1_MASK_FBCLKDEL_ST, 13);
1938 } else {
1939 /* These bits are in the PL022 but not PL023 */
1940 SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1941 SSP_CR0_MASK_HALFDUP_ST, 5);
1942 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1943 SSP_CR0_MASK_CSS_ST, 16);
1944 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1945 SSP_CR0_MASK_FRF_ST, 21);
1946 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1947 SSP_CR1_MASK_MWAIT_ST, 6);
1948 }
1949 SSP_WRITE_BITS(chip->cr0, bits - 1,
1950 SSP_CR0_MASK_DSS_ST, 0);
1951
1952 if (spi->mode & SPI_LSB_FIRST) {
1953 tmp = SSP_RX_LSB;
1954 etx = SSP_TX_LSB;
1955 } else {
1956 tmp = SSP_RX_MSB;
1957 etx = SSP_TX_MSB;
1958 }
1959 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
1960 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
1961 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
1962 SSP_CR1_MASK_RXIFLSEL_ST, 7);
1963 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
1964 SSP_CR1_MASK_TXIFLSEL_ST, 10);
1965 } else {
1966 SSP_WRITE_BITS(chip->cr0, bits - 1,
1967 SSP_CR0_MASK_DSS, 0);
1968 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1969 SSP_CR0_MASK_FRF, 4);
1970 }
1971
1972 /* Stuff that is common for all versions */
1973 if (spi->mode & SPI_CPOL)
1974 tmp = SSP_CLK_POL_IDLE_HIGH;
1975 else
1976 tmp = SSP_CLK_POL_IDLE_LOW;
1977 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
1978
1979 if (spi->mode & SPI_CPHA)
1980 tmp = SSP_CLK_SECOND_EDGE;
1981 else
1982 tmp = SSP_CLK_FIRST_EDGE;
1983 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
1984
1985 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
1986 /* Loopback is available on all versions except PL023 */
1987 if (!pl022->vendor->pl023) {
1988 if (spi->mode & SPI_LOOP)
1989 tmp = LOOPBACK_ENABLED;
1990 else
1991 tmp = LOOPBACK_DISABLED;
1992 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
1993 }
1994 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
1995 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
1996 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD, 3);
1997
1998 /* Save controller_state */
1999 spi_set_ctldata(spi, chip);
2000 return status;
2001 err_config_params:
2002 spi_set_ctldata(spi, NULL);
2003 kfree(chip);
2004 return status;
2005 }
2006
2007 /**
2008 * pl022_cleanup - cleanup function registered to SPI master framework
2009 * @spi: spi device which is requesting cleanup
2010 *
2011 * This function is registered to the SPI framework for this SPI master
2012 * controller. It will free the runtime state of chip.
2013 */
2014 static void pl022_cleanup(struct spi_device *spi)
2015 {
2016 struct chip_data *chip = spi_get_ctldata(spi);
2017
2018 spi_set_ctldata(spi, NULL);
2019 kfree(chip);
2020 }
2021
2022
2023 static int __devinit
2024 pl022_probe(struct amba_device *adev, const struct amba_id *id)
2025 {
2026 struct device *dev = &adev->dev;
2027 struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
2028 struct spi_master *master;
2029 struct pl022 *pl022 = NULL; /*Data for this driver */
2030 int status = 0;
2031
2032 dev_info(&adev->dev,
2033 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2034 if (platform_info == NULL) {
2035 dev_err(&adev->dev, "probe - no platform data supplied\n");
2036 status = -ENODEV;
2037 goto err_no_pdata;
2038 }
2039
2040 /* Allocate master with space for data */
2041 master = spi_alloc_master(dev, sizeof(struct pl022));
2042 if (master == NULL) {
2043 dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2044 status = -ENOMEM;
2045 goto err_no_master;
2046 }
2047
2048 pl022 = spi_master_get_devdata(master);
2049 pl022->master = master;
2050 pl022->master_info = platform_info;
2051 pl022->adev = adev;
2052 pl022->vendor = id->data;
2053
2054 /*
2055 * Bus Number Which has been Assigned to this SSP controller
2056 * on this board
2057 */
2058 master->bus_num = platform_info->bus_id;
2059 master->num_chipselect = platform_info->num_chipselect;
2060 master->cleanup = pl022_cleanup;
2061 master->setup = pl022_setup;
2062 master->transfer = pl022_transfer;
2063
2064 /*
2065 * Supports mode 0-3, loopback, and active low CS. Transfers are
2066 * always MS bit first on the original pl022.
2067 */
2068 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2069 if (pl022->vendor->extended_cr)
2070 master->mode_bits |= SPI_LSB_FIRST;
2071
2072 dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2073
2074 status = amba_request_regions(adev, NULL);
2075 if (status)
2076 goto err_no_ioregion;
2077
2078 pl022->phybase = adev->res.start;
2079 pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
2080 if (pl022->virtbase == NULL) {
2081 status = -ENOMEM;
2082 goto err_no_ioremap;
2083 }
2084 printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
2085 adev->res.start, pl022->virtbase);
2086
2087 pl022->clk = clk_get(&adev->dev, NULL);
2088 if (IS_ERR(pl022->clk)) {
2089 status = PTR_ERR(pl022->clk);
2090 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2091 goto err_no_clk;
2092 }
2093
2094 /* Disable SSP */
2095 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2096 SSP_CR1(pl022->virtbase));
2097 load_ssp_default_config(pl022);
2098
2099 status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
2100 pl022);
2101 if (status < 0) {
2102 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2103 goto err_no_irq;
2104 }
2105
2106 /* Get DMA channels */
2107 if (platform_info->enable_dma) {
2108 status = pl022_dma_probe(pl022);
2109 if (status != 0)
2110 goto err_no_dma;
2111 }
2112
2113 /* Initialize and start queue */
2114 status = init_queue(pl022);
2115 if (status != 0) {
2116 dev_err(&adev->dev, "probe - problem initializing queue\n");
2117 goto err_init_queue;
2118 }
2119 status = start_queue(pl022);
2120 if (status != 0) {
2121 dev_err(&adev->dev, "probe - problem starting queue\n");
2122 goto err_start_queue;
2123 }
2124 /* Register with the SPI framework */
2125 amba_set_drvdata(adev, pl022);
2126 status = spi_register_master(master);
2127 if (status != 0) {
2128 dev_err(&adev->dev,
2129 "probe - problem registering spi master\n");
2130 goto err_spi_register;
2131 }
2132 dev_dbg(dev, "probe succeded\n");
2133 /* Disable the silicon block pclk and clock it when needed */
2134 amba_pclk_disable(adev);
2135 return 0;
2136
2137 err_spi_register:
2138 err_start_queue:
2139 err_init_queue:
2140 destroy_queue(pl022);
2141 pl022_dma_remove(pl022);
2142 err_no_dma:
2143 free_irq(adev->irq[0], pl022);
2144 err_no_irq:
2145 clk_put(pl022->clk);
2146 err_no_clk:
2147 iounmap(pl022->virtbase);
2148 err_no_ioremap:
2149 amba_release_regions(adev);
2150 err_no_ioregion:
2151 spi_master_put(master);
2152 err_no_master:
2153 err_no_pdata:
2154 return status;
2155 }
2156
2157 static int __devexit
2158 pl022_remove(struct amba_device *adev)
2159 {
2160 struct pl022 *pl022 = amba_get_drvdata(adev);
2161 int status = 0;
2162 if (!pl022)
2163 return 0;
2164
2165 /* Remove the queue */
2166 status = destroy_queue(pl022);
2167 if (status != 0) {
2168 dev_err(&adev->dev,
2169 "queue remove failed (%d)\n", status);
2170 return status;
2171 }
2172 load_ssp_default_config(pl022);
2173 pl022_dma_remove(pl022);
2174 free_irq(adev->irq[0], pl022);
2175 clk_disable(pl022->clk);
2176 clk_put(pl022->clk);
2177 iounmap(pl022->virtbase);
2178 amba_release_regions(adev);
2179 tasklet_disable(&pl022->pump_transfers);
2180 spi_unregister_master(pl022->master);
2181 spi_master_put(pl022->master);
2182 amba_set_drvdata(adev, NULL);
2183 dev_dbg(&adev->dev, "remove succeded\n");
2184 return 0;
2185 }
2186
2187 #ifdef CONFIG_PM
2188 static int pl022_suspend(struct amba_device *adev, pm_message_t state)
2189 {
2190 struct pl022 *pl022 = amba_get_drvdata(adev);
2191 int status = 0;
2192
2193 status = stop_queue(pl022);
2194 if (status) {
2195 dev_warn(&adev->dev, "suspend cannot stop queue\n");
2196 return status;
2197 }
2198
2199 amba_pclk_enable(adev);
2200 load_ssp_default_config(pl022);
2201 amba_pclk_disable(adev);
2202 dev_dbg(&adev->dev, "suspended\n");
2203 return 0;
2204 }
2205
2206 static int pl022_resume(struct amba_device *adev)
2207 {
2208 struct pl022 *pl022 = amba_get_drvdata(adev);
2209 int status = 0;
2210
2211 /* Start the queue running */
2212 status = start_queue(pl022);
2213 if (status)
2214 dev_err(&adev->dev, "problem starting queue (%d)\n", status);
2215 else
2216 dev_dbg(&adev->dev, "resumed\n");
2217
2218 return status;
2219 }
2220 #else
2221 #define pl022_suspend NULL
2222 #define pl022_resume NULL
2223 #endif /* CONFIG_PM */
2224
2225 static struct vendor_data vendor_arm = {
2226 .fifodepth = 8,
2227 .max_bpw = 16,
2228 .unidir = false,
2229 .extended_cr = false,
2230 .pl023 = false,
2231 };
2232
2233
2234 static struct vendor_data vendor_st = {
2235 .fifodepth = 32,
2236 .max_bpw = 32,
2237 .unidir = false,
2238 .extended_cr = true,
2239 .pl023 = false,
2240 };
2241
2242 static struct vendor_data vendor_st_pl023 = {
2243 .fifodepth = 32,
2244 .max_bpw = 32,
2245 .unidir = false,
2246 .extended_cr = true,
2247 .pl023 = true,
2248 };
2249
2250 static struct amba_id pl022_ids[] = {
2251 {
2252 /*
2253 * ARM PL022 variant, this has a 16bit wide
2254 * and 8 locations deep TX/RX FIFO
2255 */
2256 .id = 0x00041022,
2257 .mask = 0x000fffff,
2258 .data = &vendor_arm,
2259 },
2260 {
2261 /*
2262 * ST Micro derivative, this has 32bit wide
2263 * and 32 locations deep TX/RX FIFO
2264 */
2265 .id = 0x01080022,
2266 .mask = 0xffffffff,
2267 .data = &vendor_st,
2268 },
2269 {
2270 /*
2271 * ST-Ericsson derivative "PL023" (this is not
2272 * an official ARM number), this is a PL022 SSP block
2273 * stripped to SPI mode only, it has 32bit wide
2274 * and 32 locations deep TX/RX FIFO but no extended
2275 * CR0/CR1 register
2276 */
2277 .id = 0x00080023,
2278 .mask = 0xffffffff,
2279 .data = &vendor_st_pl023,
2280 },
2281 { 0, 0 },
2282 };
2283
2284 static struct amba_driver pl022_driver = {
2285 .drv = {
2286 .name = "ssp-pl022",
2287 },
2288 .id_table = pl022_ids,
2289 .probe = pl022_probe,
2290 .remove = __devexit_p(pl022_remove),
2291 .suspend = pl022_suspend,
2292 .resume = pl022_resume,
2293 };
2294
2295
2296 static int __init pl022_init(void)
2297 {
2298 return amba_driver_register(&pl022_driver);
2299 }
2300
2301 subsys_initcall(pl022_init);
2302
2303 static void __exit pl022_exit(void)
2304 {
2305 amba_driver_unregister(&pl022_driver);
2306 }
2307
2308 module_exit(pl022_exit);
2309
2310 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2311 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2312 MODULE_LICENSE("GPL");
This page took 0.112188 seconds and 6 git commands to generate.