Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[deliverable/linux.git] / drivers / spi / spi-bcm2835.c
1 /*
2 * Driver for Broadcom BCM2835 SPI Controllers
3 *
4 * Copyright (C) 2012 Chris Boot
5 * Copyright (C) 2013 Stephen Warren
6 *
7 * This driver is inspired by:
8 * spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
9 * spi-atmel.c, Copyright (C) 2006 Atmel Corporation
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 */
21
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/delay.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/of.h>
31 #include <linux/of_irq.h>
32 #include <linux/of_device.h>
33 #include <linux/spi/spi.h>
34
35 /* SPI register offsets */
36 #define BCM2835_SPI_CS 0x00
37 #define BCM2835_SPI_FIFO 0x04
38 #define BCM2835_SPI_CLK 0x08
39 #define BCM2835_SPI_DLEN 0x0c
40 #define BCM2835_SPI_LTOH 0x10
41 #define BCM2835_SPI_DC 0x14
42
43 /* Bitfields in CS */
44 #define BCM2835_SPI_CS_LEN_LONG 0x02000000
45 #define BCM2835_SPI_CS_DMA_LEN 0x01000000
46 #define BCM2835_SPI_CS_CSPOL2 0x00800000
47 #define BCM2835_SPI_CS_CSPOL1 0x00400000
48 #define BCM2835_SPI_CS_CSPOL0 0x00200000
49 #define BCM2835_SPI_CS_RXF 0x00100000
50 #define BCM2835_SPI_CS_RXR 0x00080000
51 #define BCM2835_SPI_CS_TXD 0x00040000
52 #define BCM2835_SPI_CS_RXD 0x00020000
53 #define BCM2835_SPI_CS_DONE 0x00010000
54 #define BCM2835_SPI_CS_LEN 0x00002000
55 #define BCM2835_SPI_CS_REN 0x00001000
56 #define BCM2835_SPI_CS_ADCS 0x00000800
57 #define BCM2835_SPI_CS_INTR 0x00000400
58 #define BCM2835_SPI_CS_INTD 0x00000200
59 #define BCM2835_SPI_CS_DMAEN 0x00000100
60 #define BCM2835_SPI_CS_TA 0x00000080
61 #define BCM2835_SPI_CS_CSPOL 0x00000040
62 #define BCM2835_SPI_CS_CLEAR_RX 0x00000020
63 #define BCM2835_SPI_CS_CLEAR_TX 0x00000010
64 #define BCM2835_SPI_CS_CPOL 0x00000008
65 #define BCM2835_SPI_CS_CPHA 0x00000004
66 #define BCM2835_SPI_CS_CS_10 0x00000002
67 #define BCM2835_SPI_CS_CS_01 0x00000001
68
69 #define BCM2835_SPI_TIMEOUT_MS 30000
70 #define BCM2835_SPI_MODE_BITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_NO_CS)
71
72 #define DRV_NAME "spi-bcm2835"
73
74 struct bcm2835_spi {
75 void __iomem *regs;
76 struct clk *clk;
77 int irq;
78 struct completion done;
79 const u8 *tx_buf;
80 u8 *rx_buf;
81 int len;
82 };
83
84 static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned reg)
85 {
86 return readl(bs->regs + reg);
87 }
88
89 static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned reg, u32 val)
90 {
91 writel(val, bs->regs + reg);
92 }
93
94 static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs, int len)
95 {
96 u8 byte;
97
98 while (len--) {
99 byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
100 if (bs->rx_buf)
101 *bs->rx_buf++ = byte;
102 }
103 }
104
105 static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs, int len)
106 {
107 u8 byte;
108
109 if (len > bs->len)
110 len = bs->len;
111
112 while (len--) {
113 byte = bs->tx_buf ? *bs->tx_buf++ : 0;
114 bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
115 bs->len--;
116 }
117 }
118
119 static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
120 {
121 struct spi_master *master = dev_id;
122 struct bcm2835_spi *bs = spi_master_get_devdata(master);
123 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
124
125 /*
126 * RXR - RX needs Reading. This means 12 (or more) bytes have been
127 * transmitted and hence 12 (or more) bytes have been received.
128 *
129 * The FIFO is 16-bytes deep. We check for this interrupt to keep the
130 * FIFO full; we have a 4-byte-time buffer for IRQ latency. We check
131 * this before DONE (TX empty) just in case we delayed processing this
132 * interrupt for some reason.
133 *
134 * We only check for this case if we have more bytes to TX; at the end
135 * of the transfer, we ignore this pipelining optimization, and let
136 * bcm2835_spi_finish_transfer() drain the RX FIFO.
137 */
138 if (bs->len && (cs & BCM2835_SPI_CS_RXR)) {
139 /* Read 12 bytes of data */
140 bcm2835_rd_fifo(bs, 12);
141
142 /* Write up to 12 bytes */
143 bcm2835_wr_fifo(bs, 12);
144
145 /*
146 * We must have written something to the TX FIFO due to the
147 * bs->len check above, so cannot be DONE. Hence, return
148 * early. Note that DONE could also be set if we serviced an
149 * RXR interrupt really late.
150 */
151 return IRQ_HANDLED;
152 }
153
154 /*
155 * DONE - TX empty. This occurs when we first enable the transfer
156 * since we do not pre-fill the TX FIFO. At any other time, given that
157 * we refill the TX FIFO above based on RXR, and hence ignore DONE if
158 * RXR is set, DONE really does mean end-of-transfer.
159 */
160 if (cs & BCM2835_SPI_CS_DONE) {
161 if (bs->len) { /* First interrupt in a transfer */
162 bcm2835_wr_fifo(bs, 16);
163 } else { /* Transfer complete */
164 /* Disable SPI interrupts */
165 cs &= ~(BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD);
166 bcm2835_wr(bs, BCM2835_SPI_CS, cs);
167
168 /*
169 * Wake up bcm2835_spi_transfer_one(), which will call
170 * bcm2835_spi_finish_transfer(), to drain the RX FIFO.
171 */
172 complete(&bs->done);
173 }
174
175 return IRQ_HANDLED;
176 }
177
178 return IRQ_NONE;
179 }
180
181 static int bcm2835_spi_start_transfer(struct spi_device *spi,
182 struct spi_transfer *tfr)
183 {
184 struct bcm2835_spi *bs = spi_master_get_devdata(spi->master);
185 unsigned long spi_hz, clk_hz, cdiv;
186 u32 cs = BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
187
188 spi_hz = tfr->speed_hz;
189 clk_hz = clk_get_rate(bs->clk);
190
191 if (spi_hz >= clk_hz / 2) {
192 cdiv = 2; /* clk_hz/2 is the fastest we can go */
193 } else if (spi_hz) {
194 /* CDIV must be a power of two */
195 cdiv = roundup_pow_of_two(DIV_ROUND_UP(clk_hz, spi_hz));
196
197 if (cdiv >= 65536)
198 cdiv = 0; /* 0 is the slowest we can go */
199 } else
200 cdiv = 0; /* 0 is the slowest we can go */
201
202 if (spi->mode & SPI_CPOL)
203 cs |= BCM2835_SPI_CS_CPOL;
204 if (spi->mode & SPI_CPHA)
205 cs |= BCM2835_SPI_CS_CPHA;
206
207 if (!(spi->mode & SPI_NO_CS)) {
208 if (spi->mode & SPI_CS_HIGH) {
209 cs |= BCM2835_SPI_CS_CSPOL;
210 cs |= BCM2835_SPI_CS_CSPOL0 << spi->chip_select;
211 }
212
213 cs |= spi->chip_select;
214 }
215
216 reinit_completion(&bs->done);
217 bs->tx_buf = tfr->tx_buf;
218 bs->rx_buf = tfr->rx_buf;
219 bs->len = tfr->len;
220
221 bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
222 /*
223 * Enable the HW block. This will immediately trigger a DONE (TX
224 * empty) interrupt, upon which we will fill the TX FIFO with the
225 * first TX bytes. Pre-filling the TX FIFO here to avoid the
226 * interrupt doesn't work:-(
227 */
228 bcm2835_wr(bs, BCM2835_SPI_CS, cs);
229
230 return 0;
231 }
232
233 static int bcm2835_spi_finish_transfer(struct spi_device *spi,
234 struct spi_transfer *tfr, bool cs_change)
235 {
236 struct bcm2835_spi *bs = spi_master_get_devdata(spi->master);
237 u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
238
239 /* Drain RX FIFO */
240 while (cs & BCM2835_SPI_CS_RXD) {
241 bcm2835_rd_fifo(bs, 1);
242 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
243 }
244
245 if (tfr->delay_usecs)
246 udelay(tfr->delay_usecs);
247
248 if (cs_change)
249 /* Clear TA flag */
250 bcm2835_wr(bs, BCM2835_SPI_CS, cs & ~BCM2835_SPI_CS_TA);
251
252 return 0;
253 }
254
255 static int bcm2835_spi_transfer_one(struct spi_master *master,
256 struct spi_message *mesg)
257 {
258 struct bcm2835_spi *bs = spi_master_get_devdata(master);
259 struct spi_transfer *tfr;
260 struct spi_device *spi = mesg->spi;
261 int err = 0;
262 unsigned int timeout;
263 bool cs_change;
264
265 list_for_each_entry(tfr, &mesg->transfers, transfer_list) {
266 err = bcm2835_spi_start_transfer(spi, tfr);
267 if (err)
268 goto out;
269
270 timeout = wait_for_completion_timeout(&bs->done,
271 msecs_to_jiffies(BCM2835_SPI_TIMEOUT_MS));
272 if (!timeout) {
273 err = -ETIMEDOUT;
274 goto out;
275 }
276
277 cs_change = tfr->cs_change ||
278 list_is_last(&tfr->transfer_list, &mesg->transfers);
279
280 err = bcm2835_spi_finish_transfer(spi, tfr, cs_change);
281 if (err)
282 goto out;
283
284 mesg->actual_length += (tfr->len - bs->len);
285 }
286
287 out:
288 /* Clear FIFOs, and disable the HW block */
289 bcm2835_wr(bs, BCM2835_SPI_CS,
290 BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
291 mesg->status = err;
292 spi_finalize_current_message(master);
293
294 return 0;
295 }
296
297 static int bcm2835_spi_probe(struct platform_device *pdev)
298 {
299 struct spi_master *master;
300 struct bcm2835_spi *bs;
301 struct resource *res;
302 int err;
303
304 master = spi_alloc_master(&pdev->dev, sizeof(*bs));
305 if (!master) {
306 dev_err(&pdev->dev, "spi_alloc_master() failed\n");
307 return -ENOMEM;
308 }
309
310 platform_set_drvdata(pdev, master);
311
312 master->mode_bits = BCM2835_SPI_MODE_BITS;
313 master->bits_per_word_mask = SPI_BPW_MASK(8);
314 master->num_chipselect = 3;
315 master->transfer_one_message = bcm2835_spi_transfer_one;
316 master->dev.of_node = pdev->dev.of_node;
317
318 bs = spi_master_get_devdata(master);
319
320 init_completion(&bs->done);
321
322 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
323 bs->regs = devm_ioremap_resource(&pdev->dev, res);
324 if (IS_ERR(bs->regs)) {
325 err = PTR_ERR(bs->regs);
326 goto out_master_put;
327 }
328
329 bs->clk = devm_clk_get(&pdev->dev, NULL);
330 if (IS_ERR(bs->clk)) {
331 err = PTR_ERR(bs->clk);
332 dev_err(&pdev->dev, "could not get clk: %d\n", err);
333 goto out_master_put;
334 }
335
336 bs->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
337 if (bs->irq <= 0) {
338 dev_err(&pdev->dev, "could not get IRQ: %d\n", bs->irq);
339 err = bs->irq ? bs->irq : -ENODEV;
340 goto out_master_put;
341 }
342
343 clk_prepare_enable(bs->clk);
344
345 err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt, 0,
346 dev_name(&pdev->dev), master);
347 if (err) {
348 dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
349 goto out_clk_disable;
350 }
351
352 /* initialise the hardware */
353 bcm2835_wr(bs, BCM2835_SPI_CS,
354 BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
355
356 err = devm_spi_register_master(&pdev->dev, master);
357 if (err) {
358 dev_err(&pdev->dev, "could not register SPI master: %d\n", err);
359 goto out_clk_disable;
360 }
361
362 return 0;
363
364 out_clk_disable:
365 clk_disable_unprepare(bs->clk);
366 out_master_put:
367 spi_master_put(master);
368 return err;
369 }
370
371 static int bcm2835_spi_remove(struct platform_device *pdev)
372 {
373 struct spi_master *master = platform_get_drvdata(pdev);
374 struct bcm2835_spi *bs = spi_master_get_devdata(master);
375
376 /* Clear FIFOs, and disable the HW block */
377 bcm2835_wr(bs, BCM2835_SPI_CS,
378 BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
379
380 clk_disable_unprepare(bs->clk);
381
382 return 0;
383 }
384
385 static const struct of_device_id bcm2835_spi_match[] = {
386 { .compatible = "brcm,bcm2835-spi", },
387 {}
388 };
389 MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
390
391 static struct platform_driver bcm2835_spi_driver = {
392 .driver = {
393 .name = DRV_NAME,
394 .of_match_table = bcm2835_spi_match,
395 },
396 .probe = bcm2835_spi_probe,
397 .remove = bcm2835_spi_remove,
398 };
399 module_platform_driver(bcm2835_spi_driver);
400
401 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
402 MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
403 MODULE_LICENSE("GPL v2");
This page took 0.076145 seconds and 6 git commands to generate.