Merge branch 'misc' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[deliverable/linux.git] / drivers / spi / spi-pl022.c
1 /*
2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
3 *
4 * Copyright (C) 2008-2012 ST-Ericsson AB
5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
6 *
7 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 *
9 * Initial version inspired by:
10 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11 * Initial adoption to PL022 by:
12 * Sachin Verma <sachin.verma@st.com>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/ioport.h>
29 #include <linux/errno.h>
30 #include <linux/interrupt.h>
31 #include <linux/spi/spi.h>
32 #include <linux/delay.h>
33 #include <linux/clk.h>
34 #include <linux/err.h>
35 #include <linux/amba/bus.h>
36 #include <linux/amba/pl022.h>
37 #include <linux/io.h>
38 #include <linux/slab.h>
39 #include <linux/dmaengine.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/scatterlist.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/gpio.h>
44 #include <linux/of_gpio.h>
45 #include <linux/pinctrl/consumer.h>
46
47 /*
48 * This macro is used to define some register default values.
49 * reg is masked with mask, the OR:ed with an (again masked)
50 * val shifted sb steps to the left.
51 */
52 #define SSP_WRITE_BITS(reg, val, mask, sb) \
53 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
54
55 /*
56 * This macro is also used to define some default values.
57 * It will just shift val by sb steps to the left and mask
58 * the result with mask.
59 */
60 #define GEN_MASK_BITS(val, mask, sb) \
61 (((val)<<(sb)) & (mask))
62
63 #define DRIVE_TX 0
64 #define DO_NOT_DRIVE_TX 1
65
66 #define DO_NOT_QUEUE_DMA 0
67 #define QUEUE_DMA 1
68
69 #define RX_TRANSFER 1
70 #define TX_TRANSFER 2
71
72 /*
73 * Macros to access SSP Registers with their offsets
74 */
75 #define SSP_CR0(r) (r + 0x000)
76 #define SSP_CR1(r) (r + 0x004)
77 #define SSP_DR(r) (r + 0x008)
78 #define SSP_SR(r) (r + 0x00C)
79 #define SSP_CPSR(r) (r + 0x010)
80 #define SSP_IMSC(r) (r + 0x014)
81 #define SSP_RIS(r) (r + 0x018)
82 #define SSP_MIS(r) (r + 0x01C)
83 #define SSP_ICR(r) (r + 0x020)
84 #define SSP_DMACR(r) (r + 0x024)
85 #define SSP_ITCR(r) (r + 0x080)
86 #define SSP_ITIP(r) (r + 0x084)
87 #define SSP_ITOP(r) (r + 0x088)
88 #define SSP_TDR(r) (r + 0x08C)
89
90 #define SSP_PID0(r) (r + 0xFE0)
91 #define SSP_PID1(r) (r + 0xFE4)
92 #define SSP_PID2(r) (r + 0xFE8)
93 #define SSP_PID3(r) (r + 0xFEC)
94
95 #define SSP_CID0(r) (r + 0xFF0)
96 #define SSP_CID1(r) (r + 0xFF4)
97 #define SSP_CID2(r) (r + 0xFF8)
98 #define SSP_CID3(r) (r + 0xFFC)
99
100 /*
101 * SSP Control Register 0 - SSP_CR0
102 */
103 #define SSP_CR0_MASK_DSS (0x0FUL << 0)
104 #define SSP_CR0_MASK_FRF (0x3UL << 4)
105 #define SSP_CR0_MASK_SPO (0x1UL << 6)
106 #define SSP_CR0_MASK_SPH (0x1UL << 7)
107 #define SSP_CR0_MASK_SCR (0xFFUL << 8)
108
109 /*
110 * The ST version of this block moves som bits
111 * in SSP_CR0 and extends it to 32 bits
112 */
113 #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
114 #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
115 #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
116 #define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
117
118 /*
119 * SSP Control Register 0 - SSP_CR1
120 */
121 #define SSP_CR1_MASK_LBM (0x1UL << 0)
122 #define SSP_CR1_MASK_SSE (0x1UL << 1)
123 #define SSP_CR1_MASK_MS (0x1UL << 2)
124 #define SSP_CR1_MASK_SOD (0x1UL << 3)
125
126 /*
127 * The ST version of this block adds some bits
128 * in SSP_CR1
129 */
130 #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
131 #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
132 #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
133 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
134 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
135 /* This one is only in the PL023 variant */
136 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
137
138 /*
139 * SSP Status Register - SSP_SR
140 */
141 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
142 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
143 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
144 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
145 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
146
147 /*
148 * SSP Clock Prescale Register - SSP_CPSR
149 */
150 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
151
152 /*
153 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
154 */
155 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
156 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
157 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
158 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
159
160 /*
161 * SSP Raw Interrupt Status Register - SSP_RIS
162 */
163 /* Receive Overrun Raw Interrupt status */
164 #define SSP_RIS_MASK_RORRIS (0x1UL << 0)
165 /* Receive Timeout Raw Interrupt status */
166 #define SSP_RIS_MASK_RTRIS (0x1UL << 1)
167 /* Receive FIFO Raw Interrupt status */
168 #define SSP_RIS_MASK_RXRIS (0x1UL << 2)
169 /* Transmit FIFO Raw Interrupt status */
170 #define SSP_RIS_MASK_TXRIS (0x1UL << 3)
171
172 /*
173 * SSP Masked Interrupt Status Register - SSP_MIS
174 */
175 /* Receive Overrun Masked Interrupt status */
176 #define SSP_MIS_MASK_RORMIS (0x1UL << 0)
177 /* Receive Timeout Masked Interrupt status */
178 #define SSP_MIS_MASK_RTMIS (0x1UL << 1)
179 /* Receive FIFO Masked Interrupt status */
180 #define SSP_MIS_MASK_RXMIS (0x1UL << 2)
181 /* Transmit FIFO Masked Interrupt status */
182 #define SSP_MIS_MASK_TXMIS (0x1UL << 3)
183
184 /*
185 * SSP Interrupt Clear Register - SSP_ICR
186 */
187 /* Receive Overrun Raw Clear Interrupt bit */
188 #define SSP_ICR_MASK_RORIC (0x1UL << 0)
189 /* Receive Timeout Clear Interrupt bit */
190 #define SSP_ICR_MASK_RTIC (0x1UL << 1)
191
192 /*
193 * SSP DMA Control Register - SSP_DMACR
194 */
195 /* Receive DMA Enable bit */
196 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
197 /* Transmit DMA Enable bit */
198 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
199
200 /*
201 * SSP Integration Test control Register - SSP_ITCR
202 */
203 #define SSP_ITCR_MASK_ITEN (0x1UL << 0)
204 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
205
206 /*
207 * SSP Integration Test Input Register - SSP_ITIP
208 */
209 #define ITIP_MASK_SSPRXD (0x1UL << 0)
210 #define ITIP_MASK_SSPFSSIN (0x1UL << 1)
211 #define ITIP_MASK_SSPCLKIN (0x1UL << 2)
212 #define ITIP_MASK_RXDMAC (0x1UL << 3)
213 #define ITIP_MASK_TXDMAC (0x1UL << 4)
214 #define ITIP_MASK_SSPTXDIN (0x1UL << 5)
215
216 /*
217 * SSP Integration Test output Register - SSP_ITOP
218 */
219 #define ITOP_MASK_SSPTXD (0x1UL << 0)
220 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
221 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
222 #define ITOP_MASK_SSPOEn (0x1UL << 3)
223 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
224 #define ITOP_MASK_RORINTR (0x1UL << 5)
225 #define ITOP_MASK_RTINTR (0x1UL << 6)
226 #define ITOP_MASK_RXINTR (0x1UL << 7)
227 #define ITOP_MASK_TXINTR (0x1UL << 8)
228 #define ITOP_MASK_INTR (0x1UL << 9)
229 #define ITOP_MASK_RXDMABREQ (0x1UL << 10)
230 #define ITOP_MASK_RXDMASREQ (0x1UL << 11)
231 #define ITOP_MASK_TXDMABREQ (0x1UL << 12)
232 #define ITOP_MASK_TXDMASREQ (0x1UL << 13)
233
234 /*
235 * SSP Test Data Register - SSP_TDR
236 */
237 #define TDR_MASK_TESTDATA (0xFFFFFFFF)
238
239 /*
240 * Message State
241 * we use the spi_message.state (void *) pointer to
242 * hold a single state value, that's why all this
243 * (void *) casting is done here.
244 */
245 #define STATE_START ((void *) 0)
246 #define STATE_RUNNING ((void *) 1)
247 #define STATE_DONE ((void *) 2)
248 #define STATE_ERROR ((void *) -1)
249
250 /*
251 * SSP State - Whether Enabled or Disabled
252 */
253 #define SSP_DISABLED (0)
254 #define SSP_ENABLED (1)
255
256 /*
257 * SSP DMA State - Whether DMA Enabled or Disabled
258 */
259 #define SSP_DMA_DISABLED (0)
260 #define SSP_DMA_ENABLED (1)
261
262 /*
263 * SSP Clock Defaults
264 */
265 #define SSP_DEFAULT_CLKRATE 0x2
266 #define SSP_DEFAULT_PRESCALE 0x40
267
268 /*
269 * SSP Clock Parameter ranges
270 */
271 #define CPSDVR_MIN 0x02
272 #define CPSDVR_MAX 0xFE
273 #define SCR_MIN 0x00
274 #define SCR_MAX 0xFF
275
276 /*
277 * SSP Interrupt related Macros
278 */
279 #define DEFAULT_SSP_REG_IMSC 0x0UL
280 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
281 #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
282
283 #define CLEAR_ALL_INTERRUPTS 0x3
284
285 #define SPI_POLLING_TIMEOUT 1000
286
287 /*
288 * The type of reading going on on this chip
289 */
290 enum ssp_reading {
291 READING_NULL,
292 READING_U8,
293 READING_U16,
294 READING_U32
295 };
296
297 /**
298 * The type of writing going on on this chip
299 */
300 enum ssp_writing {
301 WRITING_NULL,
302 WRITING_U8,
303 WRITING_U16,
304 WRITING_U32
305 };
306
307 /**
308 * struct vendor_data - vendor-specific config parameters
309 * for PL022 derivates
310 * @fifodepth: depth of FIFOs (both)
311 * @max_bpw: maximum number of bits per word
312 * @unidir: supports unidirection transfers
313 * @extended_cr: 32 bit wide control register 0 with extra
314 * features and extra features in CR1 as found in the ST variants
315 * @pl023: supports a subset of the ST extensions called "PL023"
316 */
317 struct vendor_data {
318 int fifodepth;
319 int max_bpw;
320 bool unidir;
321 bool extended_cr;
322 bool pl023;
323 bool loopback;
324 };
325
326 /**
327 * struct pl022 - This is the private SSP driver data structure
328 * @adev: AMBA device model hookup
329 * @vendor: vendor data for the IP block
330 * @phybase: the physical memory where the SSP device resides
331 * @virtbase: the virtual memory where the SSP is mapped
332 * @clk: outgoing clock "SPICLK" for the SPI bus
333 * @master: SPI framework hookup
334 * @master_info: controller-specific data from machine setup
335 * @kworker: thread struct for message pump
336 * @kworker_task: pointer to task for message pump kworker thread
337 * @pump_messages: work struct for scheduling work to the message pump
338 * @queue_lock: spinlock to syncronise access to message queue
339 * @queue: message queue
340 * @busy: message pump is busy
341 * @running: message pump is running
342 * @pump_transfers: Tasklet used in Interrupt Transfer mode
343 * @cur_msg: Pointer to current spi_message being processed
344 * @cur_transfer: Pointer to current spi_transfer
345 * @cur_chip: pointer to current clients chip(assigned from controller_state)
346 * @next_msg_cs_active: the next message in the queue has been examined
347 * and it was found that it uses the same chip select as the previous
348 * message, so we left it active after the previous transfer, and it's
349 * active already.
350 * @tx: current position in TX buffer to be read
351 * @tx_end: end position in TX buffer to be read
352 * @rx: current position in RX buffer to be written
353 * @rx_end: end position in RX buffer to be written
354 * @read: the type of read currently going on
355 * @write: the type of write currently going on
356 * @exp_fifo_level: expected FIFO level
357 * @dma_rx_channel: optional channel for RX DMA
358 * @dma_tx_channel: optional channel for TX DMA
359 * @sgt_rx: scattertable for the RX transfer
360 * @sgt_tx: scattertable for the TX transfer
361 * @dummypage: a dummy page used for driving data on the bus with DMA
362 * @cur_cs: current chip select (gpio)
363 * @chipselects: list of chipselects (gpios)
364 */
365 struct pl022 {
366 struct amba_device *adev;
367 struct vendor_data *vendor;
368 resource_size_t phybase;
369 void __iomem *virtbase;
370 struct clk *clk;
371 /* Two optional pin states - default & sleep */
372 struct pinctrl *pinctrl;
373 struct pinctrl_state *pins_default;
374 struct pinctrl_state *pins_idle;
375 struct pinctrl_state *pins_sleep;
376 struct spi_master *master;
377 struct pl022_ssp_controller *master_info;
378 /* Message per-transfer pump */
379 struct tasklet_struct pump_transfers;
380 struct spi_message *cur_msg;
381 struct spi_transfer *cur_transfer;
382 struct chip_data *cur_chip;
383 bool next_msg_cs_active;
384 void *tx;
385 void *tx_end;
386 void *rx;
387 void *rx_end;
388 enum ssp_reading read;
389 enum ssp_writing write;
390 u32 exp_fifo_level;
391 enum ssp_rx_level_trig rx_lev_trig;
392 enum ssp_tx_level_trig tx_lev_trig;
393 /* DMA settings */
394 #ifdef CONFIG_DMA_ENGINE
395 struct dma_chan *dma_rx_channel;
396 struct dma_chan *dma_tx_channel;
397 struct sg_table sgt_rx;
398 struct sg_table sgt_tx;
399 char *dummypage;
400 bool dma_running;
401 #endif
402 int cur_cs;
403 int *chipselects;
404 };
405
406 /**
407 * struct chip_data - To maintain runtime state of SSP for each client chip
408 * @cr0: Value of control register CR0 of SSP - on later ST variants this
409 * register is 32 bits wide rather than just 16
410 * @cr1: Value of control register CR1 of SSP
411 * @dmacr: Value of DMA control Register of SSP
412 * @cpsr: Value of Clock prescale register
413 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
414 * @enable_dma: Whether to enable DMA or not
415 * @read: function ptr to be used to read when doing xfer for this chip
416 * @write: function ptr to be used to write when doing xfer for this chip
417 * @cs_control: chip select callback provided by chip
418 * @xfer_type: polling/interrupt/DMA
419 *
420 * Runtime state of the SSP controller, maintained per chip,
421 * This would be set according to the current message that would be served
422 */
423 struct chip_data {
424 u32 cr0;
425 u16 cr1;
426 u16 dmacr;
427 u16 cpsr;
428 u8 n_bytes;
429 bool enable_dma;
430 enum ssp_reading read;
431 enum ssp_writing write;
432 void (*cs_control) (u32 command);
433 int xfer_type;
434 };
435
436 /**
437 * null_cs_control - Dummy chip select function
438 * @command: select/delect the chip
439 *
440 * If no chip select function is provided by client this is used as dummy
441 * chip select
442 */
443 static void null_cs_control(u32 command)
444 {
445 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
446 }
447
448 static void pl022_cs_control(struct pl022 *pl022, u32 command)
449 {
450 if (gpio_is_valid(pl022->cur_cs))
451 gpio_set_value(pl022->cur_cs, command);
452 else
453 pl022->cur_chip->cs_control(command);
454 }
455
456 /**
457 * giveback - current spi_message is over, schedule next message and call
458 * callback of this message. Assumes that caller already
459 * set message->status; dma and pio irqs are blocked
460 * @pl022: SSP driver private data structure
461 */
462 static void giveback(struct pl022 *pl022)
463 {
464 struct spi_transfer *last_transfer;
465 pl022->next_msg_cs_active = false;
466
467 last_transfer = list_entry(pl022->cur_msg->transfers.prev,
468 struct spi_transfer,
469 transfer_list);
470
471 /* Delay if requested before any change in chip select */
472 if (last_transfer->delay_usecs)
473 /*
474 * FIXME: This runs in interrupt context.
475 * Is this really smart?
476 */
477 udelay(last_transfer->delay_usecs);
478
479 if (!last_transfer->cs_change) {
480 struct spi_message *next_msg;
481
482 /*
483 * cs_change was not set. We can keep the chip select
484 * enabled if there is message in the queue and it is
485 * for the same spi device.
486 *
487 * We cannot postpone this until pump_messages, because
488 * after calling msg->complete (below) the driver that
489 * sent the current message could be unloaded, which
490 * could invalidate the cs_control() callback...
491 */
492 /* get a pointer to the next message, if any */
493 next_msg = spi_get_next_queued_message(pl022->master);
494
495 /*
496 * see if the next and current messages point
497 * to the same spi device.
498 */
499 if (next_msg && next_msg->spi != pl022->cur_msg->spi)
500 next_msg = NULL;
501 if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
502 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
503 else
504 pl022->next_msg_cs_active = true;
505
506 }
507
508 pl022->cur_msg = NULL;
509 pl022->cur_transfer = NULL;
510 pl022->cur_chip = NULL;
511 spi_finalize_current_message(pl022->master);
512
513 /* disable the SPI/SSP operation */
514 writew((readw(SSP_CR1(pl022->virtbase)) &
515 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
516
517 }
518
519 /**
520 * flush - flush the FIFO to reach a clean state
521 * @pl022: SSP driver private data structure
522 */
523 static int flush(struct pl022 *pl022)
524 {
525 unsigned long limit = loops_per_jiffy << 1;
526
527 dev_dbg(&pl022->adev->dev, "flush\n");
528 do {
529 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
530 readw(SSP_DR(pl022->virtbase));
531 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
532
533 pl022->exp_fifo_level = 0;
534
535 return limit;
536 }
537
538 /**
539 * restore_state - Load configuration of current chip
540 * @pl022: SSP driver private data structure
541 */
542 static void restore_state(struct pl022 *pl022)
543 {
544 struct chip_data *chip = pl022->cur_chip;
545
546 if (pl022->vendor->extended_cr)
547 writel(chip->cr0, SSP_CR0(pl022->virtbase));
548 else
549 writew(chip->cr0, SSP_CR0(pl022->virtbase));
550 writew(chip->cr1, SSP_CR1(pl022->virtbase));
551 writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
552 writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
553 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
554 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
555 }
556
557 /*
558 * Default SSP Register Values
559 */
560 #define DEFAULT_SSP_REG_CR0 ( \
561 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
562 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
563 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
564 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
565 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
566 )
567
568 /* ST versions have slightly different bit layout */
569 #define DEFAULT_SSP_REG_CR0_ST ( \
570 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
571 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
572 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
573 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
574 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
575 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
576 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
577 )
578
579 /* The PL023 version is slightly different again */
580 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
581 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
582 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
583 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
584 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
585 )
586
587 #define DEFAULT_SSP_REG_CR1 ( \
588 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
589 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
590 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
591 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
592 )
593
594 /* ST versions extend this register to use all 16 bits */
595 #define DEFAULT_SSP_REG_CR1_ST ( \
596 DEFAULT_SSP_REG_CR1 | \
597 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
598 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
599 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
600 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
601 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
602 )
603
604 /*
605 * The PL023 variant has further differences: no loopback mode, no microwire
606 * support, and a new clock feedback delay setting.
607 */
608 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
609 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
610 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
611 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
612 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
613 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
614 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
615 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
616 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
617 )
618
619 #define DEFAULT_SSP_REG_CPSR ( \
620 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
621 )
622
623 #define DEFAULT_SSP_REG_DMACR (\
624 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
625 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
626 )
627
628 /**
629 * load_ssp_default_config - Load default configuration for SSP
630 * @pl022: SSP driver private data structure
631 */
632 static void load_ssp_default_config(struct pl022 *pl022)
633 {
634 if (pl022->vendor->pl023) {
635 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
636 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
637 } else if (pl022->vendor->extended_cr) {
638 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
639 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
640 } else {
641 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
642 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
643 }
644 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
645 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
646 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
647 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
648 }
649
650 /**
651 * This will write to TX and read from RX according to the parameters
652 * set in pl022.
653 */
654 static void readwriter(struct pl022 *pl022)
655 {
656
657 /*
658 * The FIFO depth is different between primecell variants.
659 * I believe filling in too much in the FIFO might cause
660 * errons in 8bit wide transfers on ARM variants (just 8 words
661 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
662 *
663 * To prevent this issue, the TX FIFO is only filled to the
664 * unused RX FIFO fill length, regardless of what the TX
665 * FIFO status flag indicates.
666 */
667 dev_dbg(&pl022->adev->dev,
668 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
669 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
670
671 /* Read as much as you can */
672 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
673 && (pl022->rx < pl022->rx_end)) {
674 switch (pl022->read) {
675 case READING_NULL:
676 readw(SSP_DR(pl022->virtbase));
677 break;
678 case READING_U8:
679 *(u8 *) (pl022->rx) =
680 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
681 break;
682 case READING_U16:
683 *(u16 *) (pl022->rx) =
684 (u16) readw(SSP_DR(pl022->virtbase));
685 break;
686 case READING_U32:
687 *(u32 *) (pl022->rx) =
688 readl(SSP_DR(pl022->virtbase));
689 break;
690 }
691 pl022->rx += (pl022->cur_chip->n_bytes);
692 pl022->exp_fifo_level--;
693 }
694 /*
695 * Write as much as possible up to the RX FIFO size
696 */
697 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
698 && (pl022->tx < pl022->tx_end)) {
699 switch (pl022->write) {
700 case WRITING_NULL:
701 writew(0x0, SSP_DR(pl022->virtbase));
702 break;
703 case WRITING_U8:
704 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
705 break;
706 case WRITING_U16:
707 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
708 break;
709 case WRITING_U32:
710 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
711 break;
712 }
713 pl022->tx += (pl022->cur_chip->n_bytes);
714 pl022->exp_fifo_level++;
715 /*
716 * This inner reader takes care of things appearing in the RX
717 * FIFO as we're transmitting. This will happen a lot since the
718 * clock starts running when you put things into the TX FIFO,
719 * and then things are continuously clocked into the RX FIFO.
720 */
721 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
722 && (pl022->rx < pl022->rx_end)) {
723 switch (pl022->read) {
724 case READING_NULL:
725 readw(SSP_DR(pl022->virtbase));
726 break;
727 case READING_U8:
728 *(u8 *) (pl022->rx) =
729 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
730 break;
731 case READING_U16:
732 *(u16 *) (pl022->rx) =
733 (u16) readw(SSP_DR(pl022->virtbase));
734 break;
735 case READING_U32:
736 *(u32 *) (pl022->rx) =
737 readl(SSP_DR(pl022->virtbase));
738 break;
739 }
740 pl022->rx += (pl022->cur_chip->n_bytes);
741 pl022->exp_fifo_level--;
742 }
743 }
744 /*
745 * When we exit here the TX FIFO should be full and the RX FIFO
746 * should be empty
747 */
748 }
749
750 /**
751 * next_transfer - Move to the Next transfer in the current spi message
752 * @pl022: SSP driver private data structure
753 *
754 * This function moves though the linked list of spi transfers in the
755 * current spi message and returns with the state of current spi
756 * message i.e whether its last transfer is done(STATE_DONE) or
757 * Next transfer is ready(STATE_RUNNING)
758 */
759 static void *next_transfer(struct pl022 *pl022)
760 {
761 struct spi_message *msg = pl022->cur_msg;
762 struct spi_transfer *trans = pl022->cur_transfer;
763
764 /* Move to next transfer */
765 if (trans->transfer_list.next != &msg->transfers) {
766 pl022->cur_transfer =
767 list_entry(trans->transfer_list.next,
768 struct spi_transfer, transfer_list);
769 return STATE_RUNNING;
770 }
771 return STATE_DONE;
772 }
773
774 /*
775 * This DMA functionality is only compiled in if we have
776 * access to the generic DMA devices/DMA engine.
777 */
778 #ifdef CONFIG_DMA_ENGINE
779 static void unmap_free_dma_scatter(struct pl022 *pl022)
780 {
781 /* Unmap and free the SG tables */
782 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
783 pl022->sgt_tx.nents, DMA_TO_DEVICE);
784 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
785 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
786 sg_free_table(&pl022->sgt_rx);
787 sg_free_table(&pl022->sgt_tx);
788 }
789
790 static void dma_callback(void *data)
791 {
792 struct pl022 *pl022 = data;
793 struct spi_message *msg = pl022->cur_msg;
794
795 BUG_ON(!pl022->sgt_rx.sgl);
796
797 #ifdef VERBOSE_DEBUG
798 /*
799 * Optionally dump out buffers to inspect contents, this is
800 * good if you want to convince yourself that the loopback
801 * read/write contents are the same, when adopting to a new
802 * DMA engine.
803 */
804 {
805 struct scatterlist *sg;
806 unsigned int i;
807
808 dma_sync_sg_for_cpu(&pl022->adev->dev,
809 pl022->sgt_rx.sgl,
810 pl022->sgt_rx.nents,
811 DMA_FROM_DEVICE);
812
813 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
814 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
815 print_hex_dump(KERN_ERR, "SPI RX: ",
816 DUMP_PREFIX_OFFSET,
817 16,
818 1,
819 sg_virt(sg),
820 sg_dma_len(sg),
821 1);
822 }
823 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
824 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
825 print_hex_dump(KERN_ERR, "SPI TX: ",
826 DUMP_PREFIX_OFFSET,
827 16,
828 1,
829 sg_virt(sg),
830 sg_dma_len(sg),
831 1);
832 }
833 }
834 #endif
835
836 unmap_free_dma_scatter(pl022);
837
838 /* Update total bytes transferred */
839 msg->actual_length += pl022->cur_transfer->len;
840 if (pl022->cur_transfer->cs_change)
841 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
842
843 /* Move to next transfer */
844 msg->state = next_transfer(pl022);
845 tasklet_schedule(&pl022->pump_transfers);
846 }
847
848 static void setup_dma_scatter(struct pl022 *pl022,
849 void *buffer,
850 unsigned int length,
851 struct sg_table *sgtab)
852 {
853 struct scatterlist *sg;
854 int bytesleft = length;
855 void *bufp = buffer;
856 int mapbytes;
857 int i;
858
859 if (buffer) {
860 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
861 /*
862 * If there are less bytes left than what fits
863 * in the current page (plus page alignment offset)
864 * we just feed in this, else we stuff in as much
865 * as we can.
866 */
867 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
868 mapbytes = bytesleft;
869 else
870 mapbytes = PAGE_SIZE - offset_in_page(bufp);
871 sg_set_page(sg, virt_to_page(bufp),
872 mapbytes, offset_in_page(bufp));
873 bufp += mapbytes;
874 bytesleft -= mapbytes;
875 dev_dbg(&pl022->adev->dev,
876 "set RX/TX target page @ %p, %d bytes, %d left\n",
877 bufp, mapbytes, bytesleft);
878 }
879 } else {
880 /* Map the dummy buffer on every page */
881 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
882 if (bytesleft < PAGE_SIZE)
883 mapbytes = bytesleft;
884 else
885 mapbytes = PAGE_SIZE;
886 sg_set_page(sg, virt_to_page(pl022->dummypage),
887 mapbytes, 0);
888 bytesleft -= mapbytes;
889 dev_dbg(&pl022->adev->dev,
890 "set RX/TX to dummy page %d bytes, %d left\n",
891 mapbytes, bytesleft);
892
893 }
894 }
895 BUG_ON(bytesleft);
896 }
897
898 /**
899 * configure_dma - configures the channels for the next transfer
900 * @pl022: SSP driver's private data structure
901 */
902 static int configure_dma(struct pl022 *pl022)
903 {
904 struct dma_slave_config rx_conf = {
905 .src_addr = SSP_DR(pl022->phybase),
906 .direction = DMA_DEV_TO_MEM,
907 .device_fc = false,
908 };
909 struct dma_slave_config tx_conf = {
910 .dst_addr = SSP_DR(pl022->phybase),
911 .direction = DMA_MEM_TO_DEV,
912 .device_fc = false,
913 };
914 unsigned int pages;
915 int ret;
916 int rx_sglen, tx_sglen;
917 struct dma_chan *rxchan = pl022->dma_rx_channel;
918 struct dma_chan *txchan = pl022->dma_tx_channel;
919 struct dma_async_tx_descriptor *rxdesc;
920 struct dma_async_tx_descriptor *txdesc;
921
922 /* Check that the channels are available */
923 if (!rxchan || !txchan)
924 return -ENODEV;
925
926 /*
927 * If supplied, the DMA burstsize should equal the FIFO trigger level.
928 * Notice that the DMA engine uses one-to-one mapping. Since we can
929 * not trigger on 2 elements this needs explicit mapping rather than
930 * calculation.
931 */
932 switch (pl022->rx_lev_trig) {
933 case SSP_RX_1_OR_MORE_ELEM:
934 rx_conf.src_maxburst = 1;
935 break;
936 case SSP_RX_4_OR_MORE_ELEM:
937 rx_conf.src_maxburst = 4;
938 break;
939 case SSP_RX_8_OR_MORE_ELEM:
940 rx_conf.src_maxburst = 8;
941 break;
942 case SSP_RX_16_OR_MORE_ELEM:
943 rx_conf.src_maxburst = 16;
944 break;
945 case SSP_RX_32_OR_MORE_ELEM:
946 rx_conf.src_maxburst = 32;
947 break;
948 default:
949 rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
950 break;
951 }
952
953 switch (pl022->tx_lev_trig) {
954 case SSP_TX_1_OR_MORE_EMPTY_LOC:
955 tx_conf.dst_maxburst = 1;
956 break;
957 case SSP_TX_4_OR_MORE_EMPTY_LOC:
958 tx_conf.dst_maxburst = 4;
959 break;
960 case SSP_TX_8_OR_MORE_EMPTY_LOC:
961 tx_conf.dst_maxburst = 8;
962 break;
963 case SSP_TX_16_OR_MORE_EMPTY_LOC:
964 tx_conf.dst_maxburst = 16;
965 break;
966 case SSP_TX_32_OR_MORE_EMPTY_LOC:
967 tx_conf.dst_maxburst = 32;
968 break;
969 default:
970 tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
971 break;
972 }
973
974 switch (pl022->read) {
975 case READING_NULL:
976 /* Use the same as for writing */
977 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
978 break;
979 case READING_U8:
980 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
981 break;
982 case READING_U16:
983 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
984 break;
985 case READING_U32:
986 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
987 break;
988 }
989
990 switch (pl022->write) {
991 case WRITING_NULL:
992 /* Use the same as for reading */
993 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
994 break;
995 case WRITING_U8:
996 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
997 break;
998 case WRITING_U16:
999 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1000 break;
1001 case WRITING_U32:
1002 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1003 break;
1004 }
1005
1006 /* SPI pecularity: we need to read and write the same width */
1007 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1008 rx_conf.src_addr_width = tx_conf.dst_addr_width;
1009 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1010 tx_conf.dst_addr_width = rx_conf.src_addr_width;
1011 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1012
1013 dmaengine_slave_config(rxchan, &rx_conf);
1014 dmaengine_slave_config(txchan, &tx_conf);
1015
1016 /* Create sglists for the transfers */
1017 pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1018 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1019
1020 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1021 if (ret)
1022 goto err_alloc_rx_sg;
1023
1024 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1025 if (ret)
1026 goto err_alloc_tx_sg;
1027
1028 /* Fill in the scatterlists for the RX+TX buffers */
1029 setup_dma_scatter(pl022, pl022->rx,
1030 pl022->cur_transfer->len, &pl022->sgt_rx);
1031 setup_dma_scatter(pl022, pl022->tx,
1032 pl022->cur_transfer->len, &pl022->sgt_tx);
1033
1034 /* Map DMA buffers */
1035 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1036 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1037 if (!rx_sglen)
1038 goto err_rx_sgmap;
1039
1040 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1041 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1042 if (!tx_sglen)
1043 goto err_tx_sgmap;
1044
1045 /* Send both scatterlists */
1046 rxdesc = dmaengine_prep_slave_sg(rxchan,
1047 pl022->sgt_rx.sgl,
1048 rx_sglen,
1049 DMA_DEV_TO_MEM,
1050 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1051 if (!rxdesc)
1052 goto err_rxdesc;
1053
1054 txdesc = dmaengine_prep_slave_sg(txchan,
1055 pl022->sgt_tx.sgl,
1056 tx_sglen,
1057 DMA_MEM_TO_DEV,
1058 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1059 if (!txdesc)
1060 goto err_txdesc;
1061
1062 /* Put the callback on the RX transfer only, that should finish last */
1063 rxdesc->callback = dma_callback;
1064 rxdesc->callback_param = pl022;
1065
1066 /* Submit and fire RX and TX with TX last so we're ready to read! */
1067 dmaengine_submit(rxdesc);
1068 dmaengine_submit(txdesc);
1069 dma_async_issue_pending(rxchan);
1070 dma_async_issue_pending(txchan);
1071 pl022->dma_running = true;
1072
1073 return 0;
1074
1075 err_txdesc:
1076 dmaengine_terminate_all(txchan);
1077 err_rxdesc:
1078 dmaengine_terminate_all(rxchan);
1079 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1080 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1081 err_tx_sgmap:
1082 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1083 pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1084 err_rx_sgmap:
1085 sg_free_table(&pl022->sgt_tx);
1086 err_alloc_tx_sg:
1087 sg_free_table(&pl022->sgt_rx);
1088 err_alloc_rx_sg:
1089 return -ENOMEM;
1090 }
1091
1092 static int pl022_dma_probe(struct pl022 *pl022)
1093 {
1094 dma_cap_mask_t mask;
1095
1096 /* Try to acquire a generic DMA engine slave channel */
1097 dma_cap_zero(mask);
1098 dma_cap_set(DMA_SLAVE, mask);
1099 /*
1100 * We need both RX and TX channels to do DMA, else do none
1101 * of them.
1102 */
1103 pl022->dma_rx_channel = dma_request_channel(mask,
1104 pl022->master_info->dma_filter,
1105 pl022->master_info->dma_rx_param);
1106 if (!pl022->dma_rx_channel) {
1107 dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1108 goto err_no_rxchan;
1109 }
1110
1111 pl022->dma_tx_channel = dma_request_channel(mask,
1112 pl022->master_info->dma_filter,
1113 pl022->master_info->dma_tx_param);
1114 if (!pl022->dma_tx_channel) {
1115 dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1116 goto err_no_txchan;
1117 }
1118
1119 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1120 if (!pl022->dummypage) {
1121 dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
1122 goto err_no_dummypage;
1123 }
1124
1125 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1126 dma_chan_name(pl022->dma_rx_channel),
1127 dma_chan_name(pl022->dma_tx_channel));
1128
1129 return 0;
1130
1131 err_no_dummypage:
1132 dma_release_channel(pl022->dma_tx_channel);
1133 err_no_txchan:
1134 dma_release_channel(pl022->dma_rx_channel);
1135 pl022->dma_rx_channel = NULL;
1136 err_no_rxchan:
1137 dev_err(&pl022->adev->dev,
1138 "Failed to work in dma mode, work without dma!\n");
1139 return -ENODEV;
1140 }
1141
1142 static void terminate_dma(struct pl022 *pl022)
1143 {
1144 struct dma_chan *rxchan = pl022->dma_rx_channel;
1145 struct dma_chan *txchan = pl022->dma_tx_channel;
1146
1147 dmaengine_terminate_all(rxchan);
1148 dmaengine_terminate_all(txchan);
1149 unmap_free_dma_scatter(pl022);
1150 pl022->dma_running = false;
1151 }
1152
1153 static void pl022_dma_remove(struct pl022 *pl022)
1154 {
1155 if (pl022->dma_running)
1156 terminate_dma(pl022);
1157 if (pl022->dma_tx_channel)
1158 dma_release_channel(pl022->dma_tx_channel);
1159 if (pl022->dma_rx_channel)
1160 dma_release_channel(pl022->dma_rx_channel);
1161 kfree(pl022->dummypage);
1162 }
1163
1164 #else
1165 static inline int configure_dma(struct pl022 *pl022)
1166 {
1167 return -ENODEV;
1168 }
1169
1170 static inline int pl022_dma_probe(struct pl022 *pl022)
1171 {
1172 return 0;
1173 }
1174
1175 static inline void pl022_dma_remove(struct pl022 *pl022)
1176 {
1177 }
1178 #endif
1179
1180 /**
1181 * pl022_interrupt_handler - Interrupt handler for SSP controller
1182 *
1183 * This function handles interrupts generated for an interrupt based transfer.
1184 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1185 * current message's state as STATE_ERROR and schedule the tasklet
1186 * pump_transfers which will do the postprocessing of the current message by
1187 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1188 * more data, and writes data in TX FIFO till it is not full. If we complete
1189 * the transfer we move to the next transfer and schedule the tasklet.
1190 */
1191 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1192 {
1193 struct pl022 *pl022 = dev_id;
1194 struct spi_message *msg = pl022->cur_msg;
1195 u16 irq_status = 0;
1196 u16 flag = 0;
1197
1198 if (unlikely(!msg)) {
1199 dev_err(&pl022->adev->dev,
1200 "bad message state in interrupt handler");
1201 /* Never fail */
1202 return IRQ_HANDLED;
1203 }
1204
1205 /* Read the Interrupt Status Register */
1206 irq_status = readw(SSP_MIS(pl022->virtbase));
1207
1208 if (unlikely(!irq_status))
1209 return IRQ_NONE;
1210
1211 /*
1212 * This handles the FIFO interrupts, the timeout
1213 * interrupts are flatly ignored, they cannot be
1214 * trusted.
1215 */
1216 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1217 /*
1218 * Overrun interrupt - bail out since our Data has been
1219 * corrupted
1220 */
1221 dev_err(&pl022->adev->dev, "FIFO overrun\n");
1222 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1223 dev_err(&pl022->adev->dev,
1224 "RXFIFO is full\n");
1225 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1226 dev_err(&pl022->adev->dev,
1227 "TXFIFO is full\n");
1228
1229 /*
1230 * Disable and clear interrupts, disable SSP,
1231 * mark message with bad status so it can be
1232 * retried.
1233 */
1234 writew(DISABLE_ALL_INTERRUPTS,
1235 SSP_IMSC(pl022->virtbase));
1236 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1237 writew((readw(SSP_CR1(pl022->virtbase)) &
1238 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1239 msg->state = STATE_ERROR;
1240
1241 /* Schedule message queue handler */
1242 tasklet_schedule(&pl022->pump_transfers);
1243 return IRQ_HANDLED;
1244 }
1245
1246 readwriter(pl022);
1247
1248 if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1249 flag = 1;
1250 /* Disable Transmit interrupt, enable receive interrupt */
1251 writew((readw(SSP_IMSC(pl022->virtbase)) &
1252 ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1253 SSP_IMSC(pl022->virtbase));
1254 }
1255
1256 /*
1257 * Since all transactions must write as much as shall be read,
1258 * we can conclude the entire transaction once RX is complete.
1259 * At this point, all TX will always be finished.
1260 */
1261 if (pl022->rx >= pl022->rx_end) {
1262 writew(DISABLE_ALL_INTERRUPTS,
1263 SSP_IMSC(pl022->virtbase));
1264 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1265 if (unlikely(pl022->rx > pl022->rx_end)) {
1266 dev_warn(&pl022->adev->dev, "read %u surplus "
1267 "bytes (did you request an odd "
1268 "number of bytes on a 16bit bus?)\n",
1269 (u32) (pl022->rx - pl022->rx_end));
1270 }
1271 /* Update total bytes transferred */
1272 msg->actual_length += pl022->cur_transfer->len;
1273 if (pl022->cur_transfer->cs_change)
1274 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1275 /* Move to next transfer */
1276 msg->state = next_transfer(pl022);
1277 tasklet_schedule(&pl022->pump_transfers);
1278 return IRQ_HANDLED;
1279 }
1280
1281 return IRQ_HANDLED;
1282 }
1283
1284 /**
1285 * This sets up the pointers to memory for the next message to
1286 * send out on the SPI bus.
1287 */
1288 static int set_up_next_transfer(struct pl022 *pl022,
1289 struct spi_transfer *transfer)
1290 {
1291 int residue;
1292
1293 /* Sanity check the message for this bus width */
1294 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1295 if (unlikely(residue != 0)) {
1296 dev_err(&pl022->adev->dev,
1297 "message of %u bytes to transmit but the current "
1298 "chip bus has a data width of %u bytes!\n",
1299 pl022->cur_transfer->len,
1300 pl022->cur_chip->n_bytes);
1301 dev_err(&pl022->adev->dev, "skipping this message\n");
1302 return -EIO;
1303 }
1304 pl022->tx = (void *)transfer->tx_buf;
1305 pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1306 pl022->rx = (void *)transfer->rx_buf;
1307 pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1308 pl022->write =
1309 pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1310 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1311 return 0;
1312 }
1313
1314 /**
1315 * pump_transfers - Tasklet function which schedules next transfer
1316 * when running in interrupt or DMA transfer mode.
1317 * @data: SSP driver private data structure
1318 *
1319 */
1320 static void pump_transfers(unsigned long data)
1321 {
1322 struct pl022 *pl022 = (struct pl022 *) data;
1323 struct spi_message *message = NULL;
1324 struct spi_transfer *transfer = NULL;
1325 struct spi_transfer *previous = NULL;
1326
1327 /* Get current state information */
1328 message = pl022->cur_msg;
1329 transfer = pl022->cur_transfer;
1330
1331 /* Handle for abort */
1332 if (message->state == STATE_ERROR) {
1333 message->status = -EIO;
1334 giveback(pl022);
1335 return;
1336 }
1337
1338 /* Handle end of message */
1339 if (message->state == STATE_DONE) {
1340 message->status = 0;
1341 giveback(pl022);
1342 return;
1343 }
1344
1345 /* Delay if requested at end of transfer before CS change */
1346 if (message->state == STATE_RUNNING) {
1347 previous = list_entry(transfer->transfer_list.prev,
1348 struct spi_transfer,
1349 transfer_list);
1350 if (previous->delay_usecs)
1351 /*
1352 * FIXME: This runs in interrupt context.
1353 * Is this really smart?
1354 */
1355 udelay(previous->delay_usecs);
1356
1357 /* Reselect chip select only if cs_change was requested */
1358 if (previous->cs_change)
1359 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1360 } else {
1361 /* STATE_START */
1362 message->state = STATE_RUNNING;
1363 }
1364
1365 if (set_up_next_transfer(pl022, transfer)) {
1366 message->state = STATE_ERROR;
1367 message->status = -EIO;
1368 giveback(pl022);
1369 return;
1370 }
1371 /* Flush the FIFOs and let's go! */
1372 flush(pl022);
1373
1374 if (pl022->cur_chip->enable_dma) {
1375 if (configure_dma(pl022)) {
1376 dev_dbg(&pl022->adev->dev,
1377 "configuration of DMA failed, fall back to interrupt mode\n");
1378 goto err_config_dma;
1379 }
1380 return;
1381 }
1382
1383 err_config_dma:
1384 /* enable all interrupts except RX */
1385 writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1386 }
1387
1388 static void do_interrupt_dma_transfer(struct pl022 *pl022)
1389 {
1390 /*
1391 * Default is to enable all interrupts except RX -
1392 * this will be enabled once TX is complete
1393 */
1394 u32 irqflags = ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM;
1395
1396 /* Enable target chip, if not already active */
1397 if (!pl022->next_msg_cs_active)
1398 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1399
1400 if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1401 /* Error path */
1402 pl022->cur_msg->state = STATE_ERROR;
1403 pl022->cur_msg->status = -EIO;
1404 giveback(pl022);
1405 return;
1406 }
1407 /* If we're using DMA, set up DMA here */
1408 if (pl022->cur_chip->enable_dma) {
1409 /* Configure DMA transfer */
1410 if (configure_dma(pl022)) {
1411 dev_dbg(&pl022->adev->dev,
1412 "configuration of DMA failed, fall back to interrupt mode\n");
1413 goto err_config_dma;
1414 }
1415 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1416 irqflags = DISABLE_ALL_INTERRUPTS;
1417 }
1418 err_config_dma:
1419 /* Enable SSP, turn on interrupts */
1420 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1421 SSP_CR1(pl022->virtbase));
1422 writew(irqflags, SSP_IMSC(pl022->virtbase));
1423 }
1424
1425 static void do_polling_transfer(struct pl022 *pl022)
1426 {
1427 struct spi_message *message = NULL;
1428 struct spi_transfer *transfer = NULL;
1429 struct spi_transfer *previous = NULL;
1430 struct chip_data *chip;
1431 unsigned long time, timeout;
1432
1433 chip = pl022->cur_chip;
1434 message = pl022->cur_msg;
1435
1436 while (message->state != STATE_DONE) {
1437 /* Handle for abort */
1438 if (message->state == STATE_ERROR)
1439 break;
1440 transfer = pl022->cur_transfer;
1441
1442 /* Delay if requested at end of transfer */
1443 if (message->state == STATE_RUNNING) {
1444 previous =
1445 list_entry(transfer->transfer_list.prev,
1446 struct spi_transfer, transfer_list);
1447 if (previous->delay_usecs)
1448 udelay(previous->delay_usecs);
1449 if (previous->cs_change)
1450 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1451 } else {
1452 /* STATE_START */
1453 message->state = STATE_RUNNING;
1454 if (!pl022->next_msg_cs_active)
1455 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1456 }
1457
1458 /* Configuration Changing Per Transfer */
1459 if (set_up_next_transfer(pl022, transfer)) {
1460 /* Error path */
1461 message->state = STATE_ERROR;
1462 break;
1463 }
1464 /* Flush FIFOs and enable SSP */
1465 flush(pl022);
1466 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1467 SSP_CR1(pl022->virtbase));
1468
1469 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1470
1471 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1472 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1473 time = jiffies;
1474 readwriter(pl022);
1475 if (time_after(time, timeout)) {
1476 dev_warn(&pl022->adev->dev,
1477 "%s: timeout!\n", __func__);
1478 message->state = STATE_ERROR;
1479 goto out;
1480 }
1481 cpu_relax();
1482 }
1483
1484 /* Update total byte transferred */
1485 message->actual_length += pl022->cur_transfer->len;
1486 if (pl022->cur_transfer->cs_change)
1487 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1488 /* Move to next transfer */
1489 message->state = next_transfer(pl022);
1490 }
1491 out:
1492 /* Handle end of message */
1493 if (message->state == STATE_DONE)
1494 message->status = 0;
1495 else
1496 message->status = -EIO;
1497
1498 giveback(pl022);
1499 return;
1500 }
1501
1502 static int pl022_transfer_one_message(struct spi_master *master,
1503 struct spi_message *msg)
1504 {
1505 struct pl022 *pl022 = spi_master_get_devdata(master);
1506
1507 /* Initial message state */
1508 pl022->cur_msg = msg;
1509 msg->state = STATE_START;
1510
1511 pl022->cur_transfer = list_entry(msg->transfers.next,
1512 struct spi_transfer, transfer_list);
1513
1514 /* Setup the SPI using the per chip configuration */
1515 pl022->cur_chip = spi_get_ctldata(msg->spi);
1516 pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
1517
1518 restore_state(pl022);
1519 flush(pl022);
1520
1521 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1522 do_polling_transfer(pl022);
1523 else
1524 do_interrupt_dma_transfer(pl022);
1525
1526 return 0;
1527 }
1528
1529 static int pl022_prepare_transfer_hardware(struct spi_master *master)
1530 {
1531 struct pl022 *pl022 = spi_master_get_devdata(master);
1532
1533 /*
1534 * Just make sure we have all we need to run the transfer by syncing
1535 * with the runtime PM framework.
1536 */
1537 pm_runtime_get_sync(&pl022->adev->dev);
1538 return 0;
1539 }
1540
1541 static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1542 {
1543 struct pl022 *pl022 = spi_master_get_devdata(master);
1544
1545 /* nothing more to do - disable spi/ssp and power off */
1546 writew((readw(SSP_CR1(pl022->virtbase)) &
1547 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1548
1549 if (pl022->master_info->autosuspend_delay > 0) {
1550 pm_runtime_mark_last_busy(&pl022->adev->dev);
1551 pm_runtime_put_autosuspend(&pl022->adev->dev);
1552 } else {
1553 pm_runtime_put(&pl022->adev->dev);
1554 }
1555
1556 return 0;
1557 }
1558
1559 static int verify_controller_parameters(struct pl022 *pl022,
1560 struct pl022_config_chip const *chip_info)
1561 {
1562 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1563 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1564 dev_err(&pl022->adev->dev,
1565 "interface is configured incorrectly\n");
1566 return -EINVAL;
1567 }
1568 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1569 (!pl022->vendor->unidir)) {
1570 dev_err(&pl022->adev->dev,
1571 "unidirectional mode not supported in this "
1572 "hardware version\n");
1573 return -EINVAL;
1574 }
1575 if ((chip_info->hierarchy != SSP_MASTER)
1576 && (chip_info->hierarchy != SSP_SLAVE)) {
1577 dev_err(&pl022->adev->dev,
1578 "hierarchy is configured incorrectly\n");
1579 return -EINVAL;
1580 }
1581 if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1582 && (chip_info->com_mode != DMA_TRANSFER)
1583 && (chip_info->com_mode != POLLING_TRANSFER)) {
1584 dev_err(&pl022->adev->dev,
1585 "Communication mode is configured incorrectly\n");
1586 return -EINVAL;
1587 }
1588 switch (chip_info->rx_lev_trig) {
1589 case SSP_RX_1_OR_MORE_ELEM:
1590 case SSP_RX_4_OR_MORE_ELEM:
1591 case SSP_RX_8_OR_MORE_ELEM:
1592 /* These are always OK, all variants can handle this */
1593 break;
1594 case SSP_RX_16_OR_MORE_ELEM:
1595 if (pl022->vendor->fifodepth < 16) {
1596 dev_err(&pl022->adev->dev,
1597 "RX FIFO Trigger Level is configured incorrectly\n");
1598 return -EINVAL;
1599 }
1600 break;
1601 case SSP_RX_32_OR_MORE_ELEM:
1602 if (pl022->vendor->fifodepth < 32) {
1603 dev_err(&pl022->adev->dev,
1604 "RX FIFO Trigger Level is configured incorrectly\n");
1605 return -EINVAL;
1606 }
1607 break;
1608 default:
1609 dev_err(&pl022->adev->dev,
1610 "RX FIFO Trigger Level is configured incorrectly\n");
1611 return -EINVAL;
1612 break;
1613 }
1614 switch (chip_info->tx_lev_trig) {
1615 case SSP_TX_1_OR_MORE_EMPTY_LOC:
1616 case SSP_TX_4_OR_MORE_EMPTY_LOC:
1617 case SSP_TX_8_OR_MORE_EMPTY_LOC:
1618 /* These are always OK, all variants can handle this */
1619 break;
1620 case SSP_TX_16_OR_MORE_EMPTY_LOC:
1621 if (pl022->vendor->fifodepth < 16) {
1622 dev_err(&pl022->adev->dev,
1623 "TX FIFO Trigger Level is configured incorrectly\n");
1624 return -EINVAL;
1625 }
1626 break;
1627 case SSP_TX_32_OR_MORE_EMPTY_LOC:
1628 if (pl022->vendor->fifodepth < 32) {
1629 dev_err(&pl022->adev->dev,
1630 "TX FIFO Trigger Level is configured incorrectly\n");
1631 return -EINVAL;
1632 }
1633 break;
1634 default:
1635 dev_err(&pl022->adev->dev,
1636 "TX FIFO Trigger Level is configured incorrectly\n");
1637 return -EINVAL;
1638 break;
1639 }
1640 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1641 if ((chip_info->ctrl_len < SSP_BITS_4)
1642 || (chip_info->ctrl_len > SSP_BITS_32)) {
1643 dev_err(&pl022->adev->dev,
1644 "CTRL LEN is configured incorrectly\n");
1645 return -EINVAL;
1646 }
1647 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1648 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1649 dev_err(&pl022->adev->dev,
1650 "Wait State is configured incorrectly\n");
1651 return -EINVAL;
1652 }
1653 /* Half duplex is only available in the ST Micro version */
1654 if (pl022->vendor->extended_cr) {
1655 if ((chip_info->duplex !=
1656 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1657 && (chip_info->duplex !=
1658 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1659 dev_err(&pl022->adev->dev,
1660 "Microwire duplex mode is configured incorrectly\n");
1661 return -EINVAL;
1662 }
1663 } else {
1664 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1665 dev_err(&pl022->adev->dev,
1666 "Microwire half duplex mode requested,"
1667 " but this is only available in the"
1668 " ST version of PL022\n");
1669 return -EINVAL;
1670 }
1671 }
1672 return 0;
1673 }
1674
1675 static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1676 {
1677 return rate / (cpsdvsr * (1 + scr));
1678 }
1679
1680 static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1681 ssp_clock_params * clk_freq)
1682 {
1683 /* Lets calculate the frequency parameters */
1684 u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1685 u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1686 best_scr = 0, tmp, found = 0;
1687
1688 rate = clk_get_rate(pl022->clk);
1689 /* cpsdvscr = 2 & scr 0 */
1690 max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1691 /* cpsdvsr = 254 & scr = 255 */
1692 min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1693
1694 if (freq > max_tclk)
1695 dev_warn(&pl022->adev->dev,
1696 "Max speed that can be programmed is %d Hz, you requested %d\n",
1697 max_tclk, freq);
1698
1699 if (freq < min_tclk) {
1700 dev_err(&pl022->adev->dev,
1701 "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1702 freq, min_tclk);
1703 return -EINVAL;
1704 }
1705
1706 /*
1707 * best_freq will give closest possible available rate (<= requested
1708 * freq) for all values of scr & cpsdvsr.
1709 */
1710 while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1711 while (scr <= SCR_MAX) {
1712 tmp = spi_rate(rate, cpsdvsr, scr);
1713
1714 if (tmp > freq) {
1715 /* we need lower freq */
1716 scr++;
1717 continue;
1718 }
1719
1720 /*
1721 * If found exact value, mark found and break.
1722 * If found more closer value, update and break.
1723 */
1724 if (tmp > best_freq) {
1725 best_freq = tmp;
1726 best_cpsdvsr = cpsdvsr;
1727 best_scr = scr;
1728
1729 if (tmp == freq)
1730 found = 1;
1731 }
1732 /*
1733 * increased scr will give lower rates, which are not
1734 * required
1735 */
1736 break;
1737 }
1738 cpsdvsr += 2;
1739 scr = SCR_MIN;
1740 }
1741
1742 WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1743 freq);
1744
1745 clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1746 clk_freq->scr = (u8) (best_scr & 0xFF);
1747 dev_dbg(&pl022->adev->dev,
1748 "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1749 freq, best_freq);
1750 dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1751 clk_freq->cpsdvsr, clk_freq->scr);
1752
1753 return 0;
1754 }
1755
1756 /*
1757 * A piece of default chip info unless the platform
1758 * supplies it.
1759 */
1760 static const struct pl022_config_chip pl022_default_chip_info = {
1761 .com_mode = POLLING_TRANSFER,
1762 .iface = SSP_INTERFACE_MOTOROLA_SPI,
1763 .hierarchy = SSP_SLAVE,
1764 .slave_tx_disable = DO_NOT_DRIVE_TX,
1765 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1766 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1767 .ctrl_len = SSP_BITS_8,
1768 .wait_state = SSP_MWIRE_WAIT_ZERO,
1769 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1770 .cs_control = null_cs_control,
1771 };
1772
1773 /**
1774 * pl022_setup - setup function registered to SPI master framework
1775 * @spi: spi device which is requesting setup
1776 *
1777 * This function is registered to the SPI framework for this SPI master
1778 * controller. If it is the first time when setup is called by this device,
1779 * this function will initialize the runtime state for this chip and save
1780 * the same in the device structure. Else it will update the runtime info
1781 * with the updated chip info. Nothing is really being written to the
1782 * controller hardware here, that is not done until the actual transfer
1783 * commence.
1784 */
1785 static int pl022_setup(struct spi_device *spi)
1786 {
1787 struct pl022_config_chip const *chip_info;
1788 struct pl022_config_chip chip_info_dt;
1789 struct chip_data *chip;
1790 struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1791 int status = 0;
1792 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1793 unsigned int bits = spi->bits_per_word;
1794 u32 tmp;
1795 struct device_node *np = spi->dev.of_node;
1796
1797 if (!spi->max_speed_hz)
1798 return -EINVAL;
1799
1800 /* Get controller_state if one is supplied */
1801 chip = spi_get_ctldata(spi);
1802
1803 if (chip == NULL) {
1804 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1805 if (!chip) {
1806 dev_err(&spi->dev,
1807 "cannot allocate controller state\n");
1808 return -ENOMEM;
1809 }
1810 dev_dbg(&spi->dev,
1811 "allocated memory for controller's runtime state\n");
1812 }
1813
1814 /* Get controller data if one is supplied */
1815 chip_info = spi->controller_data;
1816
1817 if (chip_info == NULL) {
1818 if (np) {
1819 chip_info_dt = pl022_default_chip_info;
1820
1821 chip_info_dt.hierarchy = SSP_MASTER;
1822 of_property_read_u32(np, "pl022,interface",
1823 &chip_info_dt.iface);
1824 of_property_read_u32(np, "pl022,com-mode",
1825 &chip_info_dt.com_mode);
1826 of_property_read_u32(np, "pl022,rx-level-trig",
1827 &chip_info_dt.rx_lev_trig);
1828 of_property_read_u32(np, "pl022,tx-level-trig",
1829 &chip_info_dt.tx_lev_trig);
1830 of_property_read_u32(np, "pl022,ctrl-len",
1831 &chip_info_dt.ctrl_len);
1832 of_property_read_u32(np, "pl022,wait-state",
1833 &chip_info_dt.wait_state);
1834 of_property_read_u32(np, "pl022,duplex",
1835 &chip_info_dt.duplex);
1836
1837 chip_info = &chip_info_dt;
1838 } else {
1839 chip_info = &pl022_default_chip_info;
1840 /* spi_board_info.controller_data not is supplied */
1841 dev_dbg(&spi->dev,
1842 "using default controller_data settings\n");
1843 }
1844 } else
1845 dev_dbg(&spi->dev,
1846 "using user supplied controller_data settings\n");
1847
1848 /*
1849 * We can override with custom divisors, else we use the board
1850 * frequency setting
1851 */
1852 if ((0 == chip_info->clk_freq.cpsdvsr)
1853 && (0 == chip_info->clk_freq.scr)) {
1854 status = calculate_effective_freq(pl022,
1855 spi->max_speed_hz,
1856 &clk_freq);
1857 if (status < 0)
1858 goto err_config_params;
1859 } else {
1860 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1861 if ((clk_freq.cpsdvsr % 2) != 0)
1862 clk_freq.cpsdvsr =
1863 clk_freq.cpsdvsr - 1;
1864 }
1865 if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1866 || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1867 status = -EINVAL;
1868 dev_err(&spi->dev,
1869 "cpsdvsr is configured incorrectly\n");
1870 goto err_config_params;
1871 }
1872
1873 status = verify_controller_parameters(pl022, chip_info);
1874 if (status) {
1875 dev_err(&spi->dev, "controller data is incorrect");
1876 goto err_config_params;
1877 }
1878
1879 pl022->rx_lev_trig = chip_info->rx_lev_trig;
1880 pl022->tx_lev_trig = chip_info->tx_lev_trig;
1881
1882 /* Now set controller state based on controller data */
1883 chip->xfer_type = chip_info->com_mode;
1884 if (!chip_info->cs_control) {
1885 chip->cs_control = null_cs_control;
1886 if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
1887 dev_warn(&spi->dev,
1888 "invalid chip select\n");
1889 } else
1890 chip->cs_control = chip_info->cs_control;
1891
1892 /* Check bits per word with vendor specific range */
1893 if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1894 status = -ENOTSUPP;
1895 dev_err(&spi->dev, "illegal data size for this controller!\n");
1896 dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1897 pl022->vendor->max_bpw);
1898 goto err_config_params;
1899 } else if (bits <= 8) {
1900 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1901 chip->n_bytes = 1;
1902 chip->read = READING_U8;
1903 chip->write = WRITING_U8;
1904 } else if (bits <= 16) {
1905 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1906 chip->n_bytes = 2;
1907 chip->read = READING_U16;
1908 chip->write = WRITING_U16;
1909 } else {
1910 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1911 chip->n_bytes = 4;
1912 chip->read = READING_U32;
1913 chip->write = WRITING_U32;
1914 }
1915
1916 /* Now Initialize all register settings required for this chip */
1917 chip->cr0 = 0;
1918 chip->cr1 = 0;
1919 chip->dmacr = 0;
1920 chip->cpsr = 0;
1921 if ((chip_info->com_mode == DMA_TRANSFER)
1922 && ((pl022->master_info)->enable_dma)) {
1923 chip->enable_dma = true;
1924 dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1925 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1926 SSP_DMACR_MASK_RXDMAE, 0);
1927 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1928 SSP_DMACR_MASK_TXDMAE, 1);
1929 } else {
1930 chip->enable_dma = false;
1931 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1932 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1933 SSP_DMACR_MASK_RXDMAE, 0);
1934 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1935 SSP_DMACR_MASK_TXDMAE, 1);
1936 }
1937
1938 chip->cpsr = clk_freq.cpsdvsr;
1939
1940 /* Special setup for the ST micro extended control registers */
1941 if (pl022->vendor->extended_cr) {
1942 u32 etx;
1943
1944 if (pl022->vendor->pl023) {
1945 /* These bits are only in the PL023 */
1946 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1947 SSP_CR1_MASK_FBCLKDEL_ST, 13);
1948 } else {
1949 /* These bits are in the PL022 but not PL023 */
1950 SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1951 SSP_CR0_MASK_HALFDUP_ST, 5);
1952 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1953 SSP_CR0_MASK_CSS_ST, 16);
1954 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1955 SSP_CR0_MASK_FRF_ST, 21);
1956 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1957 SSP_CR1_MASK_MWAIT_ST, 6);
1958 }
1959 SSP_WRITE_BITS(chip->cr0, bits - 1,
1960 SSP_CR0_MASK_DSS_ST, 0);
1961
1962 if (spi->mode & SPI_LSB_FIRST) {
1963 tmp = SSP_RX_LSB;
1964 etx = SSP_TX_LSB;
1965 } else {
1966 tmp = SSP_RX_MSB;
1967 etx = SSP_TX_MSB;
1968 }
1969 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
1970 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
1971 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
1972 SSP_CR1_MASK_RXIFLSEL_ST, 7);
1973 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
1974 SSP_CR1_MASK_TXIFLSEL_ST, 10);
1975 } else {
1976 SSP_WRITE_BITS(chip->cr0, bits - 1,
1977 SSP_CR0_MASK_DSS, 0);
1978 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1979 SSP_CR0_MASK_FRF, 4);
1980 }
1981
1982 /* Stuff that is common for all versions */
1983 if (spi->mode & SPI_CPOL)
1984 tmp = SSP_CLK_POL_IDLE_HIGH;
1985 else
1986 tmp = SSP_CLK_POL_IDLE_LOW;
1987 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
1988
1989 if (spi->mode & SPI_CPHA)
1990 tmp = SSP_CLK_SECOND_EDGE;
1991 else
1992 tmp = SSP_CLK_FIRST_EDGE;
1993 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
1994
1995 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
1996 /* Loopback is available on all versions except PL023 */
1997 if (pl022->vendor->loopback) {
1998 if (spi->mode & SPI_LOOP)
1999 tmp = LOOPBACK_ENABLED;
2000 else
2001 tmp = LOOPBACK_DISABLED;
2002 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2003 }
2004 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2005 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2006 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2007 3);
2008
2009 /* Save controller_state */
2010 spi_set_ctldata(spi, chip);
2011 return status;
2012 err_config_params:
2013 spi_set_ctldata(spi, NULL);
2014 kfree(chip);
2015 return status;
2016 }
2017
2018 /**
2019 * pl022_cleanup - cleanup function registered to SPI master framework
2020 * @spi: spi device which is requesting cleanup
2021 *
2022 * This function is registered to the SPI framework for this SPI master
2023 * controller. It will free the runtime state of chip.
2024 */
2025 static void pl022_cleanup(struct spi_device *spi)
2026 {
2027 struct chip_data *chip = spi_get_ctldata(spi);
2028
2029 spi_set_ctldata(spi, NULL);
2030 kfree(chip);
2031 }
2032
2033 static struct pl022_ssp_controller *
2034 pl022_platform_data_dt_get(struct device *dev)
2035 {
2036 struct device_node *np = dev->of_node;
2037 struct pl022_ssp_controller *pd;
2038 u32 tmp;
2039
2040 if (!np) {
2041 dev_err(dev, "no dt node defined\n");
2042 return NULL;
2043 }
2044
2045 pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2046 if (!pd) {
2047 dev_err(dev, "cannot allocate platform data memory\n");
2048 return NULL;
2049 }
2050
2051 pd->bus_id = -1;
2052 of_property_read_u32(np, "num-cs", &tmp);
2053 pd->num_chipselect = tmp;
2054 of_property_read_u32(np, "pl022,autosuspend-delay",
2055 &pd->autosuspend_delay);
2056 pd->rt = of_property_read_bool(np, "pl022,rt");
2057
2058 return pd;
2059 }
2060
2061 static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2062 {
2063 struct device *dev = &adev->dev;
2064 struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
2065 struct spi_master *master;
2066 struct pl022 *pl022 = NULL; /*Data for this driver */
2067 struct device_node *np = adev->dev.of_node;
2068 int status = 0, i, num_cs;
2069
2070 dev_info(&adev->dev,
2071 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2072 if (!platform_info && IS_ENABLED(CONFIG_OF))
2073 platform_info = pl022_platform_data_dt_get(dev);
2074
2075 if (!platform_info) {
2076 dev_err(dev, "probe: no platform data defined\n");
2077 return -ENODEV;
2078 }
2079
2080 if (platform_info->num_chipselect) {
2081 num_cs = platform_info->num_chipselect;
2082 } else {
2083 dev_err(dev, "probe: no chip select defined\n");
2084 return -ENODEV;
2085 }
2086
2087 /* Allocate master with space for data */
2088 master = spi_alloc_master(dev, sizeof(struct pl022));
2089 if (master == NULL) {
2090 dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2091 return -ENOMEM;
2092 }
2093
2094 pl022 = spi_master_get_devdata(master);
2095 pl022->master = master;
2096 pl022->master_info = platform_info;
2097 pl022->adev = adev;
2098 pl022->vendor = id->data;
2099 pl022->chipselects = devm_kzalloc(dev, num_cs * sizeof(int),
2100 GFP_KERNEL);
2101
2102 pl022->pinctrl = devm_pinctrl_get(dev);
2103 if (IS_ERR(pl022->pinctrl)) {
2104 status = PTR_ERR(pl022->pinctrl);
2105 goto err_no_pinctrl;
2106 }
2107
2108 pl022->pins_default = pinctrl_lookup_state(pl022->pinctrl,
2109 PINCTRL_STATE_DEFAULT);
2110 /* enable pins to be muxed in and configured */
2111 if (!IS_ERR(pl022->pins_default)) {
2112 status = pinctrl_select_state(pl022->pinctrl,
2113 pl022->pins_default);
2114 if (status)
2115 dev_err(dev, "could not set default pins\n");
2116 } else
2117 dev_err(dev, "could not get default pinstate\n");
2118
2119 pl022->pins_idle = pinctrl_lookup_state(pl022->pinctrl,
2120 PINCTRL_STATE_IDLE);
2121 if (IS_ERR(pl022->pins_idle))
2122 dev_dbg(dev, "could not get idle pinstate\n");
2123
2124 pl022->pins_sleep = pinctrl_lookup_state(pl022->pinctrl,
2125 PINCTRL_STATE_SLEEP);
2126 if (IS_ERR(pl022->pins_sleep))
2127 dev_dbg(dev, "could not get sleep pinstate\n");
2128
2129 /*
2130 * Bus Number Which has been Assigned to this SSP controller
2131 * on this board
2132 */
2133 master->bus_num = platform_info->bus_id;
2134 master->num_chipselect = num_cs;
2135 master->cleanup = pl022_cleanup;
2136 master->setup = pl022_setup;
2137 master->prepare_transfer_hardware = pl022_prepare_transfer_hardware;
2138 master->transfer_one_message = pl022_transfer_one_message;
2139 master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2140 master->rt = platform_info->rt;
2141 master->dev.of_node = dev->of_node;
2142
2143 if (platform_info->num_chipselect && platform_info->chipselects) {
2144 for (i = 0; i < num_cs; i++)
2145 pl022->chipselects[i] = platform_info->chipselects[i];
2146 } else if (IS_ENABLED(CONFIG_OF)) {
2147 for (i = 0; i < num_cs; i++) {
2148 int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
2149
2150 if (cs_gpio == -EPROBE_DEFER) {
2151 status = -EPROBE_DEFER;
2152 goto err_no_gpio;
2153 }
2154
2155 pl022->chipselects[i] = cs_gpio;
2156
2157 if (gpio_is_valid(cs_gpio)) {
2158 if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
2159 dev_err(&adev->dev,
2160 "could not request %d gpio\n",
2161 cs_gpio);
2162 else if (gpio_direction_output(cs_gpio, 1))
2163 dev_err(&adev->dev,
2164 "could set gpio %d as output\n",
2165 cs_gpio);
2166 }
2167 }
2168 }
2169
2170 /*
2171 * Supports mode 0-3, loopback, and active low CS. Transfers are
2172 * always MS bit first on the original pl022.
2173 */
2174 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2175 if (pl022->vendor->extended_cr)
2176 master->mode_bits |= SPI_LSB_FIRST;
2177
2178 dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2179
2180 status = amba_request_regions(adev, NULL);
2181 if (status)
2182 goto err_no_ioregion;
2183
2184 pl022->phybase = adev->res.start;
2185 pl022->virtbase = devm_ioremap(dev, adev->res.start,
2186 resource_size(&adev->res));
2187 if (pl022->virtbase == NULL) {
2188 status = -ENOMEM;
2189 goto err_no_ioremap;
2190 }
2191 printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
2192 adev->res.start, pl022->virtbase);
2193
2194 pl022->clk = devm_clk_get(&adev->dev, NULL);
2195 if (IS_ERR(pl022->clk)) {
2196 status = PTR_ERR(pl022->clk);
2197 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2198 goto err_no_clk;
2199 }
2200
2201 status = clk_prepare(pl022->clk);
2202 if (status) {
2203 dev_err(&adev->dev, "could not prepare SSP/SPI bus clock\n");
2204 goto err_clk_prep;
2205 }
2206
2207 status = clk_enable(pl022->clk);
2208 if (status) {
2209 dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2210 goto err_no_clk_en;
2211 }
2212
2213 /* Initialize transfer pump */
2214 tasklet_init(&pl022->pump_transfers, pump_transfers,
2215 (unsigned long)pl022);
2216
2217 /* Disable SSP */
2218 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2219 SSP_CR1(pl022->virtbase));
2220 load_ssp_default_config(pl022);
2221
2222 status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2223 0, "pl022", pl022);
2224 if (status < 0) {
2225 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2226 goto err_no_irq;
2227 }
2228
2229 /* Get DMA channels */
2230 if (platform_info->enable_dma) {
2231 status = pl022_dma_probe(pl022);
2232 if (status != 0)
2233 platform_info->enable_dma = 0;
2234 }
2235
2236 /* Register with the SPI framework */
2237 amba_set_drvdata(adev, pl022);
2238 status = spi_register_master(master);
2239 if (status != 0) {
2240 dev_err(&adev->dev,
2241 "probe - problem registering spi master\n");
2242 goto err_spi_register;
2243 }
2244 dev_dbg(dev, "probe succeeded\n");
2245
2246 /* let runtime pm put suspend */
2247 if (platform_info->autosuspend_delay > 0) {
2248 dev_info(&adev->dev,
2249 "will use autosuspend for runtime pm, delay %dms\n",
2250 platform_info->autosuspend_delay);
2251 pm_runtime_set_autosuspend_delay(dev,
2252 platform_info->autosuspend_delay);
2253 pm_runtime_use_autosuspend(dev);
2254 }
2255 pm_runtime_put(dev);
2256
2257 return 0;
2258
2259 err_spi_register:
2260 if (platform_info->enable_dma)
2261 pl022_dma_remove(pl022);
2262 err_no_irq:
2263 clk_disable(pl022->clk);
2264 err_no_clk_en:
2265 clk_unprepare(pl022->clk);
2266 err_clk_prep:
2267 err_no_clk:
2268 err_no_ioremap:
2269 amba_release_regions(adev);
2270 err_no_ioregion:
2271 err_no_gpio:
2272 err_no_pinctrl:
2273 spi_master_put(master);
2274 return status;
2275 }
2276
2277 static int
2278 pl022_remove(struct amba_device *adev)
2279 {
2280 struct pl022 *pl022 = amba_get_drvdata(adev);
2281
2282 if (!pl022)
2283 return 0;
2284
2285 /*
2286 * undo pm_runtime_put() in probe. I assume that we're not
2287 * accessing the primecell here.
2288 */
2289 pm_runtime_get_noresume(&adev->dev);
2290
2291 load_ssp_default_config(pl022);
2292 if (pl022->master_info->enable_dma)
2293 pl022_dma_remove(pl022);
2294
2295 clk_disable(pl022->clk);
2296 clk_unprepare(pl022->clk);
2297 amba_release_regions(adev);
2298 tasklet_disable(&pl022->pump_transfers);
2299 spi_unregister_master(pl022->master);
2300 amba_set_drvdata(adev, NULL);
2301 return 0;
2302 }
2303
2304 #if defined(CONFIG_SUSPEND) || defined(CONFIG_PM_RUNTIME)
2305 /*
2306 * These two functions are used from both suspend/resume and
2307 * the runtime counterparts to handle external resources like
2308 * clocks, pins and regulators when going to sleep.
2309 */
2310 static void pl022_suspend_resources(struct pl022 *pl022, bool runtime)
2311 {
2312 int ret;
2313 struct pinctrl_state *pins_state;
2314
2315 clk_disable(pl022->clk);
2316
2317 pins_state = runtime ? pl022->pins_idle : pl022->pins_sleep;
2318 /* Optionally let pins go into sleep states */
2319 if (!IS_ERR(pins_state)) {
2320 ret = pinctrl_select_state(pl022->pinctrl, pins_state);
2321 if (ret)
2322 dev_err(&pl022->adev->dev, "could not set %s pins\n",
2323 runtime ? "idle" : "sleep");
2324 }
2325 }
2326
2327 static void pl022_resume_resources(struct pl022 *pl022, bool runtime)
2328 {
2329 int ret;
2330
2331 /* Optionaly enable pins to be muxed in and configured */
2332 /* First go to the default state */
2333 if (!IS_ERR(pl022->pins_default)) {
2334 ret = pinctrl_select_state(pl022->pinctrl, pl022->pins_default);
2335 if (ret)
2336 dev_err(&pl022->adev->dev,
2337 "could not set default pins\n");
2338 }
2339
2340 if (!runtime) {
2341 /* Then let's idle the pins until the next transfer happens */
2342 if (!IS_ERR(pl022->pins_idle)) {
2343 ret = pinctrl_select_state(pl022->pinctrl,
2344 pl022->pins_idle);
2345 if (ret)
2346 dev_err(&pl022->adev->dev,
2347 "could not set idle pins\n");
2348 }
2349 }
2350
2351 clk_enable(pl022->clk);
2352 }
2353 #endif
2354
2355 #ifdef CONFIG_SUSPEND
2356 static int pl022_suspend(struct device *dev)
2357 {
2358 struct pl022 *pl022 = dev_get_drvdata(dev);
2359 int ret;
2360
2361 ret = spi_master_suspend(pl022->master);
2362 if (ret) {
2363 dev_warn(dev, "cannot suspend master\n");
2364 return ret;
2365 }
2366
2367 pm_runtime_get_sync(dev);
2368 pl022_suspend_resources(pl022, false);
2369
2370 dev_dbg(dev, "suspended\n");
2371 return 0;
2372 }
2373
2374 static int pl022_resume(struct device *dev)
2375 {
2376 struct pl022 *pl022 = dev_get_drvdata(dev);
2377 int ret;
2378
2379 pl022_resume_resources(pl022, false);
2380 pm_runtime_put(dev);
2381
2382 /* Start the queue running */
2383 ret = spi_master_resume(pl022->master);
2384 if (ret)
2385 dev_err(dev, "problem starting queue (%d)\n", ret);
2386 else
2387 dev_dbg(dev, "resumed\n");
2388
2389 return ret;
2390 }
2391 #endif /* CONFIG_PM */
2392
2393 #ifdef CONFIG_PM_RUNTIME
2394 static int pl022_runtime_suspend(struct device *dev)
2395 {
2396 struct pl022 *pl022 = dev_get_drvdata(dev);
2397
2398 pl022_suspend_resources(pl022, true);
2399 return 0;
2400 }
2401
2402 static int pl022_runtime_resume(struct device *dev)
2403 {
2404 struct pl022 *pl022 = dev_get_drvdata(dev);
2405
2406 pl022_resume_resources(pl022, true);
2407 return 0;
2408 }
2409 #endif
2410
2411 static const struct dev_pm_ops pl022_dev_pm_ops = {
2412 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2413 SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2414 };
2415
2416 static struct vendor_data vendor_arm = {
2417 .fifodepth = 8,
2418 .max_bpw = 16,
2419 .unidir = false,
2420 .extended_cr = false,
2421 .pl023 = false,
2422 .loopback = true,
2423 };
2424
2425 static struct vendor_data vendor_st = {
2426 .fifodepth = 32,
2427 .max_bpw = 32,
2428 .unidir = false,
2429 .extended_cr = true,
2430 .pl023 = false,
2431 .loopback = true,
2432 };
2433
2434 static struct vendor_data vendor_st_pl023 = {
2435 .fifodepth = 32,
2436 .max_bpw = 32,
2437 .unidir = false,
2438 .extended_cr = true,
2439 .pl023 = true,
2440 .loopback = false,
2441 };
2442
2443 static struct amba_id pl022_ids[] = {
2444 {
2445 /*
2446 * ARM PL022 variant, this has a 16bit wide
2447 * and 8 locations deep TX/RX FIFO
2448 */
2449 .id = 0x00041022,
2450 .mask = 0x000fffff,
2451 .data = &vendor_arm,
2452 },
2453 {
2454 /*
2455 * ST Micro derivative, this has 32bit wide
2456 * and 32 locations deep TX/RX FIFO
2457 */
2458 .id = 0x01080022,
2459 .mask = 0xffffffff,
2460 .data = &vendor_st,
2461 },
2462 {
2463 /*
2464 * ST-Ericsson derivative "PL023" (this is not
2465 * an official ARM number), this is a PL022 SSP block
2466 * stripped to SPI mode only, it has 32bit wide
2467 * and 32 locations deep TX/RX FIFO but no extended
2468 * CR0/CR1 register
2469 */
2470 .id = 0x00080023,
2471 .mask = 0xffffffff,
2472 .data = &vendor_st_pl023,
2473 },
2474 { 0, 0 },
2475 };
2476
2477 MODULE_DEVICE_TABLE(amba, pl022_ids);
2478
2479 static struct amba_driver pl022_driver = {
2480 .drv = {
2481 .name = "ssp-pl022",
2482 .pm = &pl022_dev_pm_ops,
2483 },
2484 .id_table = pl022_ids,
2485 .probe = pl022_probe,
2486 .remove = pl022_remove,
2487 };
2488
2489 static int __init pl022_init(void)
2490 {
2491 return amba_driver_register(&pl022_driver);
2492 }
2493 subsys_initcall(pl022_init);
2494
2495 static void __exit pl022_exit(void)
2496 {
2497 amba_driver_unregister(&pl022_driver);
2498 }
2499 module_exit(pl022_exit);
2500
2501 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2502 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2503 MODULE_LICENSE("GPL");
This page took 0.082063 seconds and 5 git commands to generate.