Merge branch 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / spi / spi-pl022.c
1 /*
2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
3 *
4 * Copyright (C) 2008-2012 ST-Ericsson AB
5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
6 *
7 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 *
9 * Initial version inspired by:
10 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11 * Initial adoption to PL022 by:
12 * Sachin Verma <sachin.verma@st.com>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/ioport.h>
29 #include <linux/errno.h>
30 #include <linux/interrupt.h>
31 #include <linux/spi/spi.h>
32 #include <linux/delay.h>
33 #include <linux/clk.h>
34 #include <linux/err.h>
35 #include <linux/amba/bus.h>
36 #include <linux/amba/pl022.h>
37 #include <linux/io.h>
38 #include <linux/slab.h>
39 #include <linux/dmaengine.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/scatterlist.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/gpio.h>
44 #include <linux/of_gpio.h>
45 #include <linux/pinctrl/consumer.h>
46
47 /*
48 * This macro is used to define some register default values.
49 * reg is masked with mask, the OR:ed with an (again masked)
50 * val shifted sb steps to the left.
51 */
52 #define SSP_WRITE_BITS(reg, val, mask, sb) \
53 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
54
55 /*
56 * This macro is also used to define some default values.
57 * It will just shift val by sb steps to the left and mask
58 * the result with mask.
59 */
60 #define GEN_MASK_BITS(val, mask, sb) \
61 (((val)<<(sb)) & (mask))
62
63 #define DRIVE_TX 0
64 #define DO_NOT_DRIVE_TX 1
65
66 #define DO_NOT_QUEUE_DMA 0
67 #define QUEUE_DMA 1
68
69 #define RX_TRANSFER 1
70 #define TX_TRANSFER 2
71
72 /*
73 * Macros to access SSP Registers with their offsets
74 */
75 #define SSP_CR0(r) (r + 0x000)
76 #define SSP_CR1(r) (r + 0x004)
77 #define SSP_DR(r) (r + 0x008)
78 #define SSP_SR(r) (r + 0x00C)
79 #define SSP_CPSR(r) (r + 0x010)
80 #define SSP_IMSC(r) (r + 0x014)
81 #define SSP_RIS(r) (r + 0x018)
82 #define SSP_MIS(r) (r + 0x01C)
83 #define SSP_ICR(r) (r + 0x020)
84 #define SSP_DMACR(r) (r + 0x024)
85 #define SSP_ITCR(r) (r + 0x080)
86 #define SSP_ITIP(r) (r + 0x084)
87 #define SSP_ITOP(r) (r + 0x088)
88 #define SSP_TDR(r) (r + 0x08C)
89
90 #define SSP_PID0(r) (r + 0xFE0)
91 #define SSP_PID1(r) (r + 0xFE4)
92 #define SSP_PID2(r) (r + 0xFE8)
93 #define SSP_PID3(r) (r + 0xFEC)
94
95 #define SSP_CID0(r) (r + 0xFF0)
96 #define SSP_CID1(r) (r + 0xFF4)
97 #define SSP_CID2(r) (r + 0xFF8)
98 #define SSP_CID3(r) (r + 0xFFC)
99
100 /*
101 * SSP Control Register 0 - SSP_CR0
102 */
103 #define SSP_CR0_MASK_DSS (0x0FUL << 0)
104 #define SSP_CR0_MASK_FRF (0x3UL << 4)
105 #define SSP_CR0_MASK_SPO (0x1UL << 6)
106 #define SSP_CR0_MASK_SPH (0x1UL << 7)
107 #define SSP_CR0_MASK_SCR (0xFFUL << 8)
108
109 /*
110 * The ST version of this block moves som bits
111 * in SSP_CR0 and extends it to 32 bits
112 */
113 #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
114 #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
115 #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
116 #define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
117
118 /*
119 * SSP Control Register 0 - SSP_CR1
120 */
121 #define SSP_CR1_MASK_LBM (0x1UL << 0)
122 #define SSP_CR1_MASK_SSE (0x1UL << 1)
123 #define SSP_CR1_MASK_MS (0x1UL << 2)
124 #define SSP_CR1_MASK_SOD (0x1UL << 3)
125
126 /*
127 * The ST version of this block adds some bits
128 * in SSP_CR1
129 */
130 #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
131 #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
132 #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
133 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
134 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
135 /* This one is only in the PL023 variant */
136 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
137
138 /*
139 * SSP Status Register - SSP_SR
140 */
141 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
142 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
143 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
144 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
145 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
146
147 /*
148 * SSP Clock Prescale Register - SSP_CPSR
149 */
150 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
151
152 /*
153 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
154 */
155 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
156 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
157 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
158 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
159
160 /*
161 * SSP Raw Interrupt Status Register - SSP_RIS
162 */
163 /* Receive Overrun Raw Interrupt status */
164 #define SSP_RIS_MASK_RORRIS (0x1UL << 0)
165 /* Receive Timeout Raw Interrupt status */
166 #define SSP_RIS_MASK_RTRIS (0x1UL << 1)
167 /* Receive FIFO Raw Interrupt status */
168 #define SSP_RIS_MASK_RXRIS (0x1UL << 2)
169 /* Transmit FIFO Raw Interrupt status */
170 #define SSP_RIS_MASK_TXRIS (0x1UL << 3)
171
172 /*
173 * SSP Masked Interrupt Status Register - SSP_MIS
174 */
175 /* Receive Overrun Masked Interrupt status */
176 #define SSP_MIS_MASK_RORMIS (0x1UL << 0)
177 /* Receive Timeout Masked Interrupt status */
178 #define SSP_MIS_MASK_RTMIS (0x1UL << 1)
179 /* Receive FIFO Masked Interrupt status */
180 #define SSP_MIS_MASK_RXMIS (0x1UL << 2)
181 /* Transmit FIFO Masked Interrupt status */
182 #define SSP_MIS_MASK_TXMIS (0x1UL << 3)
183
184 /*
185 * SSP Interrupt Clear Register - SSP_ICR
186 */
187 /* Receive Overrun Raw Clear Interrupt bit */
188 #define SSP_ICR_MASK_RORIC (0x1UL << 0)
189 /* Receive Timeout Clear Interrupt bit */
190 #define SSP_ICR_MASK_RTIC (0x1UL << 1)
191
192 /*
193 * SSP DMA Control Register - SSP_DMACR
194 */
195 /* Receive DMA Enable bit */
196 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
197 /* Transmit DMA Enable bit */
198 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
199
200 /*
201 * SSP Integration Test control Register - SSP_ITCR
202 */
203 #define SSP_ITCR_MASK_ITEN (0x1UL << 0)
204 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
205
206 /*
207 * SSP Integration Test Input Register - SSP_ITIP
208 */
209 #define ITIP_MASK_SSPRXD (0x1UL << 0)
210 #define ITIP_MASK_SSPFSSIN (0x1UL << 1)
211 #define ITIP_MASK_SSPCLKIN (0x1UL << 2)
212 #define ITIP_MASK_RXDMAC (0x1UL << 3)
213 #define ITIP_MASK_TXDMAC (0x1UL << 4)
214 #define ITIP_MASK_SSPTXDIN (0x1UL << 5)
215
216 /*
217 * SSP Integration Test output Register - SSP_ITOP
218 */
219 #define ITOP_MASK_SSPTXD (0x1UL << 0)
220 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
221 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
222 #define ITOP_MASK_SSPOEn (0x1UL << 3)
223 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
224 #define ITOP_MASK_RORINTR (0x1UL << 5)
225 #define ITOP_MASK_RTINTR (0x1UL << 6)
226 #define ITOP_MASK_RXINTR (0x1UL << 7)
227 #define ITOP_MASK_TXINTR (0x1UL << 8)
228 #define ITOP_MASK_INTR (0x1UL << 9)
229 #define ITOP_MASK_RXDMABREQ (0x1UL << 10)
230 #define ITOP_MASK_RXDMASREQ (0x1UL << 11)
231 #define ITOP_MASK_TXDMABREQ (0x1UL << 12)
232 #define ITOP_MASK_TXDMASREQ (0x1UL << 13)
233
234 /*
235 * SSP Test Data Register - SSP_TDR
236 */
237 #define TDR_MASK_TESTDATA (0xFFFFFFFF)
238
239 /*
240 * Message State
241 * we use the spi_message.state (void *) pointer to
242 * hold a single state value, that's why all this
243 * (void *) casting is done here.
244 */
245 #define STATE_START ((void *) 0)
246 #define STATE_RUNNING ((void *) 1)
247 #define STATE_DONE ((void *) 2)
248 #define STATE_ERROR ((void *) -1)
249
250 /*
251 * SSP State - Whether Enabled or Disabled
252 */
253 #define SSP_DISABLED (0)
254 #define SSP_ENABLED (1)
255
256 /*
257 * SSP DMA State - Whether DMA Enabled or Disabled
258 */
259 #define SSP_DMA_DISABLED (0)
260 #define SSP_DMA_ENABLED (1)
261
262 /*
263 * SSP Clock Defaults
264 */
265 #define SSP_DEFAULT_CLKRATE 0x2
266 #define SSP_DEFAULT_PRESCALE 0x40
267
268 /*
269 * SSP Clock Parameter ranges
270 */
271 #define CPSDVR_MIN 0x02
272 #define CPSDVR_MAX 0xFE
273 #define SCR_MIN 0x00
274 #define SCR_MAX 0xFF
275
276 /*
277 * SSP Interrupt related Macros
278 */
279 #define DEFAULT_SSP_REG_IMSC 0x0UL
280 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
281 #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
282
283 #define CLEAR_ALL_INTERRUPTS 0x3
284
285 #define SPI_POLLING_TIMEOUT 1000
286
287 /*
288 * The type of reading going on on this chip
289 */
290 enum ssp_reading {
291 READING_NULL,
292 READING_U8,
293 READING_U16,
294 READING_U32
295 };
296
297 /**
298 * The type of writing going on on this chip
299 */
300 enum ssp_writing {
301 WRITING_NULL,
302 WRITING_U8,
303 WRITING_U16,
304 WRITING_U32
305 };
306
307 /**
308 * struct vendor_data - vendor-specific config parameters
309 * for PL022 derivates
310 * @fifodepth: depth of FIFOs (both)
311 * @max_bpw: maximum number of bits per word
312 * @unidir: supports unidirection transfers
313 * @extended_cr: 32 bit wide control register 0 with extra
314 * features and extra features in CR1 as found in the ST variants
315 * @pl023: supports a subset of the ST extensions called "PL023"
316 */
317 struct vendor_data {
318 int fifodepth;
319 int max_bpw;
320 bool unidir;
321 bool extended_cr;
322 bool pl023;
323 bool loopback;
324 };
325
326 /**
327 * struct pl022 - This is the private SSP driver data structure
328 * @adev: AMBA device model hookup
329 * @vendor: vendor data for the IP block
330 * @phybase: the physical memory where the SSP device resides
331 * @virtbase: the virtual memory where the SSP is mapped
332 * @clk: outgoing clock "SPICLK" for the SPI bus
333 * @master: SPI framework hookup
334 * @master_info: controller-specific data from machine setup
335 * @kworker: thread struct for message pump
336 * @kworker_task: pointer to task for message pump kworker thread
337 * @pump_messages: work struct for scheduling work to the message pump
338 * @queue_lock: spinlock to syncronise access to message queue
339 * @queue: message queue
340 * @busy: message pump is busy
341 * @running: message pump is running
342 * @pump_transfers: Tasklet used in Interrupt Transfer mode
343 * @cur_msg: Pointer to current spi_message being processed
344 * @cur_transfer: Pointer to current spi_transfer
345 * @cur_chip: pointer to current clients chip(assigned from controller_state)
346 * @next_msg_cs_active: the next message in the queue has been examined
347 * and it was found that it uses the same chip select as the previous
348 * message, so we left it active after the previous transfer, and it's
349 * active already.
350 * @tx: current position in TX buffer to be read
351 * @tx_end: end position in TX buffer to be read
352 * @rx: current position in RX buffer to be written
353 * @rx_end: end position in RX buffer to be written
354 * @read: the type of read currently going on
355 * @write: the type of write currently going on
356 * @exp_fifo_level: expected FIFO level
357 * @dma_rx_channel: optional channel for RX DMA
358 * @dma_tx_channel: optional channel for TX DMA
359 * @sgt_rx: scattertable for the RX transfer
360 * @sgt_tx: scattertable for the TX transfer
361 * @dummypage: a dummy page used for driving data on the bus with DMA
362 * @cur_cs: current chip select (gpio)
363 * @chipselects: list of chipselects (gpios)
364 */
365 struct pl022 {
366 struct amba_device *adev;
367 struct vendor_data *vendor;
368 resource_size_t phybase;
369 void __iomem *virtbase;
370 struct clk *clk;
371 struct spi_master *master;
372 struct pl022_ssp_controller *master_info;
373 /* Message per-transfer pump */
374 struct tasklet_struct pump_transfers;
375 struct spi_message *cur_msg;
376 struct spi_transfer *cur_transfer;
377 struct chip_data *cur_chip;
378 bool next_msg_cs_active;
379 void *tx;
380 void *tx_end;
381 void *rx;
382 void *rx_end;
383 enum ssp_reading read;
384 enum ssp_writing write;
385 u32 exp_fifo_level;
386 enum ssp_rx_level_trig rx_lev_trig;
387 enum ssp_tx_level_trig tx_lev_trig;
388 /* DMA settings */
389 #ifdef CONFIG_DMA_ENGINE
390 struct dma_chan *dma_rx_channel;
391 struct dma_chan *dma_tx_channel;
392 struct sg_table sgt_rx;
393 struct sg_table sgt_tx;
394 char *dummypage;
395 bool dma_running;
396 #endif
397 int cur_cs;
398 int *chipselects;
399 };
400
401 /**
402 * struct chip_data - To maintain runtime state of SSP for each client chip
403 * @cr0: Value of control register CR0 of SSP - on later ST variants this
404 * register is 32 bits wide rather than just 16
405 * @cr1: Value of control register CR1 of SSP
406 * @dmacr: Value of DMA control Register of SSP
407 * @cpsr: Value of Clock prescale register
408 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
409 * @enable_dma: Whether to enable DMA or not
410 * @read: function ptr to be used to read when doing xfer for this chip
411 * @write: function ptr to be used to write when doing xfer for this chip
412 * @cs_control: chip select callback provided by chip
413 * @xfer_type: polling/interrupt/DMA
414 *
415 * Runtime state of the SSP controller, maintained per chip,
416 * This would be set according to the current message that would be served
417 */
418 struct chip_data {
419 u32 cr0;
420 u16 cr1;
421 u16 dmacr;
422 u16 cpsr;
423 u8 n_bytes;
424 bool enable_dma;
425 enum ssp_reading read;
426 enum ssp_writing write;
427 void (*cs_control) (u32 command);
428 int xfer_type;
429 };
430
431 /**
432 * null_cs_control - Dummy chip select function
433 * @command: select/delect the chip
434 *
435 * If no chip select function is provided by client this is used as dummy
436 * chip select
437 */
438 static void null_cs_control(u32 command)
439 {
440 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
441 }
442
443 static void pl022_cs_control(struct pl022 *pl022, u32 command)
444 {
445 if (gpio_is_valid(pl022->cur_cs))
446 gpio_set_value(pl022->cur_cs, command);
447 else
448 pl022->cur_chip->cs_control(command);
449 }
450
451 /**
452 * giveback - current spi_message is over, schedule next message and call
453 * callback of this message. Assumes that caller already
454 * set message->status; dma and pio irqs are blocked
455 * @pl022: SSP driver private data structure
456 */
457 static void giveback(struct pl022 *pl022)
458 {
459 struct spi_transfer *last_transfer;
460 pl022->next_msg_cs_active = false;
461
462 last_transfer = list_last_entry(&pl022->cur_msg->transfers,
463 struct spi_transfer, transfer_list);
464
465 /* Delay if requested before any change in chip select */
466 if (last_transfer->delay_usecs)
467 /*
468 * FIXME: This runs in interrupt context.
469 * Is this really smart?
470 */
471 udelay(last_transfer->delay_usecs);
472
473 if (!last_transfer->cs_change) {
474 struct spi_message *next_msg;
475
476 /*
477 * cs_change was not set. We can keep the chip select
478 * enabled if there is message in the queue and it is
479 * for the same spi device.
480 *
481 * We cannot postpone this until pump_messages, because
482 * after calling msg->complete (below) the driver that
483 * sent the current message could be unloaded, which
484 * could invalidate the cs_control() callback...
485 */
486 /* get a pointer to the next message, if any */
487 next_msg = spi_get_next_queued_message(pl022->master);
488
489 /*
490 * see if the next and current messages point
491 * to the same spi device.
492 */
493 if (next_msg && next_msg->spi != pl022->cur_msg->spi)
494 next_msg = NULL;
495 if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
496 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
497 else
498 pl022->next_msg_cs_active = true;
499
500 }
501
502 pl022->cur_msg = NULL;
503 pl022->cur_transfer = NULL;
504 pl022->cur_chip = NULL;
505 spi_finalize_current_message(pl022->master);
506
507 /* disable the SPI/SSP operation */
508 writew((readw(SSP_CR1(pl022->virtbase)) &
509 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
510
511 }
512
513 /**
514 * flush - flush the FIFO to reach a clean state
515 * @pl022: SSP driver private data structure
516 */
517 static int flush(struct pl022 *pl022)
518 {
519 unsigned long limit = loops_per_jiffy << 1;
520
521 dev_dbg(&pl022->adev->dev, "flush\n");
522 do {
523 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
524 readw(SSP_DR(pl022->virtbase));
525 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
526
527 pl022->exp_fifo_level = 0;
528
529 return limit;
530 }
531
532 /**
533 * restore_state - Load configuration of current chip
534 * @pl022: SSP driver private data structure
535 */
536 static void restore_state(struct pl022 *pl022)
537 {
538 struct chip_data *chip = pl022->cur_chip;
539
540 if (pl022->vendor->extended_cr)
541 writel(chip->cr0, SSP_CR0(pl022->virtbase));
542 else
543 writew(chip->cr0, SSP_CR0(pl022->virtbase));
544 writew(chip->cr1, SSP_CR1(pl022->virtbase));
545 writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
546 writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
547 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
548 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
549 }
550
551 /*
552 * Default SSP Register Values
553 */
554 #define DEFAULT_SSP_REG_CR0 ( \
555 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
556 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
557 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
558 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
559 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
560 )
561
562 /* ST versions have slightly different bit layout */
563 #define DEFAULT_SSP_REG_CR0_ST ( \
564 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
565 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
566 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
567 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
568 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
569 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
570 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
571 )
572
573 /* The PL023 version is slightly different again */
574 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
575 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
576 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
577 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
578 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
579 )
580
581 #define DEFAULT_SSP_REG_CR1 ( \
582 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
583 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
584 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
585 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
586 )
587
588 /* ST versions extend this register to use all 16 bits */
589 #define DEFAULT_SSP_REG_CR1_ST ( \
590 DEFAULT_SSP_REG_CR1 | \
591 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
592 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
593 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
594 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
595 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
596 )
597
598 /*
599 * The PL023 variant has further differences: no loopback mode, no microwire
600 * support, and a new clock feedback delay setting.
601 */
602 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
603 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
604 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
605 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
606 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
607 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
608 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
609 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
610 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
611 )
612
613 #define DEFAULT_SSP_REG_CPSR ( \
614 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
615 )
616
617 #define DEFAULT_SSP_REG_DMACR (\
618 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
619 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
620 )
621
622 /**
623 * load_ssp_default_config - Load default configuration for SSP
624 * @pl022: SSP driver private data structure
625 */
626 static void load_ssp_default_config(struct pl022 *pl022)
627 {
628 if (pl022->vendor->pl023) {
629 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
630 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
631 } else if (pl022->vendor->extended_cr) {
632 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
633 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
634 } else {
635 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
636 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
637 }
638 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
639 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
640 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
641 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
642 }
643
644 /**
645 * This will write to TX and read from RX according to the parameters
646 * set in pl022.
647 */
648 static void readwriter(struct pl022 *pl022)
649 {
650
651 /*
652 * The FIFO depth is different between primecell variants.
653 * I believe filling in too much in the FIFO might cause
654 * errons in 8bit wide transfers on ARM variants (just 8 words
655 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
656 *
657 * To prevent this issue, the TX FIFO is only filled to the
658 * unused RX FIFO fill length, regardless of what the TX
659 * FIFO status flag indicates.
660 */
661 dev_dbg(&pl022->adev->dev,
662 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
663 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
664
665 /* Read as much as you can */
666 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
667 && (pl022->rx < pl022->rx_end)) {
668 switch (pl022->read) {
669 case READING_NULL:
670 readw(SSP_DR(pl022->virtbase));
671 break;
672 case READING_U8:
673 *(u8 *) (pl022->rx) =
674 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
675 break;
676 case READING_U16:
677 *(u16 *) (pl022->rx) =
678 (u16) readw(SSP_DR(pl022->virtbase));
679 break;
680 case READING_U32:
681 *(u32 *) (pl022->rx) =
682 readl(SSP_DR(pl022->virtbase));
683 break;
684 }
685 pl022->rx += (pl022->cur_chip->n_bytes);
686 pl022->exp_fifo_level--;
687 }
688 /*
689 * Write as much as possible up to the RX FIFO size
690 */
691 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
692 && (pl022->tx < pl022->tx_end)) {
693 switch (pl022->write) {
694 case WRITING_NULL:
695 writew(0x0, SSP_DR(pl022->virtbase));
696 break;
697 case WRITING_U8:
698 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
699 break;
700 case WRITING_U16:
701 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
702 break;
703 case WRITING_U32:
704 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
705 break;
706 }
707 pl022->tx += (pl022->cur_chip->n_bytes);
708 pl022->exp_fifo_level++;
709 /*
710 * This inner reader takes care of things appearing in the RX
711 * FIFO as we're transmitting. This will happen a lot since the
712 * clock starts running when you put things into the TX FIFO,
713 * and then things are continuously clocked into the RX FIFO.
714 */
715 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
716 && (pl022->rx < pl022->rx_end)) {
717 switch (pl022->read) {
718 case READING_NULL:
719 readw(SSP_DR(pl022->virtbase));
720 break;
721 case READING_U8:
722 *(u8 *) (pl022->rx) =
723 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
724 break;
725 case READING_U16:
726 *(u16 *) (pl022->rx) =
727 (u16) readw(SSP_DR(pl022->virtbase));
728 break;
729 case READING_U32:
730 *(u32 *) (pl022->rx) =
731 readl(SSP_DR(pl022->virtbase));
732 break;
733 }
734 pl022->rx += (pl022->cur_chip->n_bytes);
735 pl022->exp_fifo_level--;
736 }
737 }
738 /*
739 * When we exit here the TX FIFO should be full and the RX FIFO
740 * should be empty
741 */
742 }
743
744 /**
745 * next_transfer - Move to the Next transfer in the current spi message
746 * @pl022: SSP driver private data structure
747 *
748 * This function moves though the linked list of spi transfers in the
749 * current spi message and returns with the state of current spi
750 * message i.e whether its last transfer is done(STATE_DONE) or
751 * Next transfer is ready(STATE_RUNNING)
752 */
753 static void *next_transfer(struct pl022 *pl022)
754 {
755 struct spi_message *msg = pl022->cur_msg;
756 struct spi_transfer *trans = pl022->cur_transfer;
757
758 /* Move to next transfer */
759 if (trans->transfer_list.next != &msg->transfers) {
760 pl022->cur_transfer =
761 list_entry(trans->transfer_list.next,
762 struct spi_transfer, transfer_list);
763 return STATE_RUNNING;
764 }
765 return STATE_DONE;
766 }
767
768 /*
769 * This DMA functionality is only compiled in if we have
770 * access to the generic DMA devices/DMA engine.
771 */
772 #ifdef CONFIG_DMA_ENGINE
773 static void unmap_free_dma_scatter(struct pl022 *pl022)
774 {
775 /* Unmap and free the SG tables */
776 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
777 pl022->sgt_tx.nents, DMA_TO_DEVICE);
778 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
779 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
780 sg_free_table(&pl022->sgt_rx);
781 sg_free_table(&pl022->sgt_tx);
782 }
783
784 static void dma_callback(void *data)
785 {
786 struct pl022 *pl022 = data;
787 struct spi_message *msg = pl022->cur_msg;
788
789 BUG_ON(!pl022->sgt_rx.sgl);
790
791 #ifdef VERBOSE_DEBUG
792 /*
793 * Optionally dump out buffers to inspect contents, this is
794 * good if you want to convince yourself that the loopback
795 * read/write contents are the same, when adopting to a new
796 * DMA engine.
797 */
798 {
799 struct scatterlist *sg;
800 unsigned int i;
801
802 dma_sync_sg_for_cpu(&pl022->adev->dev,
803 pl022->sgt_rx.sgl,
804 pl022->sgt_rx.nents,
805 DMA_FROM_DEVICE);
806
807 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
808 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
809 print_hex_dump(KERN_ERR, "SPI RX: ",
810 DUMP_PREFIX_OFFSET,
811 16,
812 1,
813 sg_virt(sg),
814 sg_dma_len(sg),
815 1);
816 }
817 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
818 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
819 print_hex_dump(KERN_ERR, "SPI TX: ",
820 DUMP_PREFIX_OFFSET,
821 16,
822 1,
823 sg_virt(sg),
824 sg_dma_len(sg),
825 1);
826 }
827 }
828 #endif
829
830 unmap_free_dma_scatter(pl022);
831
832 /* Update total bytes transferred */
833 msg->actual_length += pl022->cur_transfer->len;
834 if (pl022->cur_transfer->cs_change)
835 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
836
837 /* Move to next transfer */
838 msg->state = next_transfer(pl022);
839 tasklet_schedule(&pl022->pump_transfers);
840 }
841
842 static void setup_dma_scatter(struct pl022 *pl022,
843 void *buffer,
844 unsigned int length,
845 struct sg_table *sgtab)
846 {
847 struct scatterlist *sg;
848 int bytesleft = length;
849 void *bufp = buffer;
850 int mapbytes;
851 int i;
852
853 if (buffer) {
854 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
855 /*
856 * If there are less bytes left than what fits
857 * in the current page (plus page alignment offset)
858 * we just feed in this, else we stuff in as much
859 * as we can.
860 */
861 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
862 mapbytes = bytesleft;
863 else
864 mapbytes = PAGE_SIZE - offset_in_page(bufp);
865 sg_set_page(sg, virt_to_page(bufp),
866 mapbytes, offset_in_page(bufp));
867 bufp += mapbytes;
868 bytesleft -= mapbytes;
869 dev_dbg(&pl022->adev->dev,
870 "set RX/TX target page @ %p, %d bytes, %d left\n",
871 bufp, mapbytes, bytesleft);
872 }
873 } else {
874 /* Map the dummy buffer on every page */
875 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
876 if (bytesleft < PAGE_SIZE)
877 mapbytes = bytesleft;
878 else
879 mapbytes = PAGE_SIZE;
880 sg_set_page(sg, virt_to_page(pl022->dummypage),
881 mapbytes, 0);
882 bytesleft -= mapbytes;
883 dev_dbg(&pl022->adev->dev,
884 "set RX/TX to dummy page %d bytes, %d left\n",
885 mapbytes, bytesleft);
886
887 }
888 }
889 BUG_ON(bytesleft);
890 }
891
892 /**
893 * configure_dma - configures the channels for the next transfer
894 * @pl022: SSP driver's private data structure
895 */
896 static int configure_dma(struct pl022 *pl022)
897 {
898 struct dma_slave_config rx_conf = {
899 .src_addr = SSP_DR(pl022->phybase),
900 .direction = DMA_DEV_TO_MEM,
901 .device_fc = false,
902 };
903 struct dma_slave_config tx_conf = {
904 .dst_addr = SSP_DR(pl022->phybase),
905 .direction = DMA_MEM_TO_DEV,
906 .device_fc = false,
907 };
908 unsigned int pages;
909 int ret;
910 int rx_sglen, tx_sglen;
911 struct dma_chan *rxchan = pl022->dma_rx_channel;
912 struct dma_chan *txchan = pl022->dma_tx_channel;
913 struct dma_async_tx_descriptor *rxdesc;
914 struct dma_async_tx_descriptor *txdesc;
915
916 /* Check that the channels are available */
917 if (!rxchan || !txchan)
918 return -ENODEV;
919
920 /*
921 * If supplied, the DMA burstsize should equal the FIFO trigger level.
922 * Notice that the DMA engine uses one-to-one mapping. Since we can
923 * not trigger on 2 elements this needs explicit mapping rather than
924 * calculation.
925 */
926 switch (pl022->rx_lev_trig) {
927 case SSP_RX_1_OR_MORE_ELEM:
928 rx_conf.src_maxburst = 1;
929 break;
930 case SSP_RX_4_OR_MORE_ELEM:
931 rx_conf.src_maxburst = 4;
932 break;
933 case SSP_RX_8_OR_MORE_ELEM:
934 rx_conf.src_maxburst = 8;
935 break;
936 case SSP_RX_16_OR_MORE_ELEM:
937 rx_conf.src_maxburst = 16;
938 break;
939 case SSP_RX_32_OR_MORE_ELEM:
940 rx_conf.src_maxburst = 32;
941 break;
942 default:
943 rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
944 break;
945 }
946
947 switch (pl022->tx_lev_trig) {
948 case SSP_TX_1_OR_MORE_EMPTY_LOC:
949 tx_conf.dst_maxburst = 1;
950 break;
951 case SSP_TX_4_OR_MORE_EMPTY_LOC:
952 tx_conf.dst_maxburst = 4;
953 break;
954 case SSP_TX_8_OR_MORE_EMPTY_LOC:
955 tx_conf.dst_maxburst = 8;
956 break;
957 case SSP_TX_16_OR_MORE_EMPTY_LOC:
958 tx_conf.dst_maxburst = 16;
959 break;
960 case SSP_TX_32_OR_MORE_EMPTY_LOC:
961 tx_conf.dst_maxburst = 32;
962 break;
963 default:
964 tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
965 break;
966 }
967
968 switch (pl022->read) {
969 case READING_NULL:
970 /* Use the same as for writing */
971 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
972 break;
973 case READING_U8:
974 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
975 break;
976 case READING_U16:
977 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
978 break;
979 case READING_U32:
980 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
981 break;
982 }
983
984 switch (pl022->write) {
985 case WRITING_NULL:
986 /* Use the same as for reading */
987 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
988 break;
989 case WRITING_U8:
990 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
991 break;
992 case WRITING_U16:
993 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
994 break;
995 case WRITING_U32:
996 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
997 break;
998 }
999
1000 /* SPI pecularity: we need to read and write the same width */
1001 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1002 rx_conf.src_addr_width = tx_conf.dst_addr_width;
1003 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1004 tx_conf.dst_addr_width = rx_conf.src_addr_width;
1005 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1006
1007 dmaengine_slave_config(rxchan, &rx_conf);
1008 dmaengine_slave_config(txchan, &tx_conf);
1009
1010 /* Create sglists for the transfers */
1011 pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1012 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1013
1014 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1015 if (ret)
1016 goto err_alloc_rx_sg;
1017
1018 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1019 if (ret)
1020 goto err_alloc_tx_sg;
1021
1022 /* Fill in the scatterlists for the RX+TX buffers */
1023 setup_dma_scatter(pl022, pl022->rx,
1024 pl022->cur_transfer->len, &pl022->sgt_rx);
1025 setup_dma_scatter(pl022, pl022->tx,
1026 pl022->cur_transfer->len, &pl022->sgt_tx);
1027
1028 /* Map DMA buffers */
1029 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1030 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1031 if (!rx_sglen)
1032 goto err_rx_sgmap;
1033
1034 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1035 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1036 if (!tx_sglen)
1037 goto err_tx_sgmap;
1038
1039 /* Send both scatterlists */
1040 rxdesc = dmaengine_prep_slave_sg(rxchan,
1041 pl022->sgt_rx.sgl,
1042 rx_sglen,
1043 DMA_DEV_TO_MEM,
1044 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1045 if (!rxdesc)
1046 goto err_rxdesc;
1047
1048 txdesc = dmaengine_prep_slave_sg(txchan,
1049 pl022->sgt_tx.sgl,
1050 tx_sglen,
1051 DMA_MEM_TO_DEV,
1052 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1053 if (!txdesc)
1054 goto err_txdesc;
1055
1056 /* Put the callback on the RX transfer only, that should finish last */
1057 rxdesc->callback = dma_callback;
1058 rxdesc->callback_param = pl022;
1059
1060 /* Submit and fire RX and TX with TX last so we're ready to read! */
1061 dmaengine_submit(rxdesc);
1062 dmaengine_submit(txdesc);
1063 dma_async_issue_pending(rxchan);
1064 dma_async_issue_pending(txchan);
1065 pl022->dma_running = true;
1066
1067 return 0;
1068
1069 err_txdesc:
1070 dmaengine_terminate_all(txchan);
1071 err_rxdesc:
1072 dmaengine_terminate_all(rxchan);
1073 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1074 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1075 err_tx_sgmap:
1076 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1077 pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1078 err_rx_sgmap:
1079 sg_free_table(&pl022->sgt_tx);
1080 err_alloc_tx_sg:
1081 sg_free_table(&pl022->sgt_rx);
1082 err_alloc_rx_sg:
1083 return -ENOMEM;
1084 }
1085
1086 static int pl022_dma_probe(struct pl022 *pl022)
1087 {
1088 dma_cap_mask_t mask;
1089
1090 /* Try to acquire a generic DMA engine slave channel */
1091 dma_cap_zero(mask);
1092 dma_cap_set(DMA_SLAVE, mask);
1093 /*
1094 * We need both RX and TX channels to do DMA, else do none
1095 * of them.
1096 */
1097 pl022->dma_rx_channel = dma_request_channel(mask,
1098 pl022->master_info->dma_filter,
1099 pl022->master_info->dma_rx_param);
1100 if (!pl022->dma_rx_channel) {
1101 dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1102 goto err_no_rxchan;
1103 }
1104
1105 pl022->dma_tx_channel = dma_request_channel(mask,
1106 pl022->master_info->dma_filter,
1107 pl022->master_info->dma_tx_param);
1108 if (!pl022->dma_tx_channel) {
1109 dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1110 goto err_no_txchan;
1111 }
1112
1113 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1114 if (!pl022->dummypage)
1115 goto err_no_dummypage;
1116
1117 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1118 dma_chan_name(pl022->dma_rx_channel),
1119 dma_chan_name(pl022->dma_tx_channel));
1120
1121 return 0;
1122
1123 err_no_dummypage:
1124 dma_release_channel(pl022->dma_tx_channel);
1125 err_no_txchan:
1126 dma_release_channel(pl022->dma_rx_channel);
1127 pl022->dma_rx_channel = NULL;
1128 err_no_rxchan:
1129 dev_err(&pl022->adev->dev,
1130 "Failed to work in dma mode, work without dma!\n");
1131 return -ENODEV;
1132 }
1133
1134 static int pl022_dma_autoprobe(struct pl022 *pl022)
1135 {
1136 struct device *dev = &pl022->adev->dev;
1137
1138 /* automatically configure DMA channels from platform, normally using DT */
1139 pl022->dma_rx_channel = dma_request_slave_channel(dev, "rx");
1140 if (!pl022->dma_rx_channel)
1141 goto err_no_rxchan;
1142
1143 pl022->dma_tx_channel = dma_request_slave_channel(dev, "tx");
1144 if (!pl022->dma_tx_channel)
1145 goto err_no_txchan;
1146
1147 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1148 if (!pl022->dummypage)
1149 goto err_no_dummypage;
1150
1151 return 0;
1152
1153 err_no_dummypage:
1154 dma_release_channel(pl022->dma_tx_channel);
1155 pl022->dma_tx_channel = NULL;
1156 err_no_txchan:
1157 dma_release_channel(pl022->dma_rx_channel);
1158 pl022->dma_rx_channel = NULL;
1159 err_no_rxchan:
1160 return -ENODEV;
1161 }
1162
1163 static void terminate_dma(struct pl022 *pl022)
1164 {
1165 struct dma_chan *rxchan = pl022->dma_rx_channel;
1166 struct dma_chan *txchan = pl022->dma_tx_channel;
1167
1168 dmaengine_terminate_all(rxchan);
1169 dmaengine_terminate_all(txchan);
1170 unmap_free_dma_scatter(pl022);
1171 pl022->dma_running = false;
1172 }
1173
1174 static void pl022_dma_remove(struct pl022 *pl022)
1175 {
1176 if (pl022->dma_running)
1177 terminate_dma(pl022);
1178 if (pl022->dma_tx_channel)
1179 dma_release_channel(pl022->dma_tx_channel);
1180 if (pl022->dma_rx_channel)
1181 dma_release_channel(pl022->dma_rx_channel);
1182 kfree(pl022->dummypage);
1183 }
1184
1185 #else
1186 static inline int configure_dma(struct pl022 *pl022)
1187 {
1188 return -ENODEV;
1189 }
1190
1191 static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1192 {
1193 return 0;
1194 }
1195
1196 static inline int pl022_dma_probe(struct pl022 *pl022)
1197 {
1198 return 0;
1199 }
1200
1201 static inline void pl022_dma_remove(struct pl022 *pl022)
1202 {
1203 }
1204 #endif
1205
1206 /**
1207 * pl022_interrupt_handler - Interrupt handler for SSP controller
1208 *
1209 * This function handles interrupts generated for an interrupt based transfer.
1210 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1211 * current message's state as STATE_ERROR and schedule the tasklet
1212 * pump_transfers which will do the postprocessing of the current message by
1213 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1214 * more data, and writes data in TX FIFO till it is not full. If we complete
1215 * the transfer we move to the next transfer and schedule the tasklet.
1216 */
1217 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1218 {
1219 struct pl022 *pl022 = dev_id;
1220 struct spi_message *msg = pl022->cur_msg;
1221 u16 irq_status = 0;
1222 u16 flag = 0;
1223
1224 if (unlikely(!msg)) {
1225 dev_err(&pl022->adev->dev,
1226 "bad message state in interrupt handler");
1227 /* Never fail */
1228 return IRQ_HANDLED;
1229 }
1230
1231 /* Read the Interrupt Status Register */
1232 irq_status = readw(SSP_MIS(pl022->virtbase));
1233
1234 if (unlikely(!irq_status))
1235 return IRQ_NONE;
1236
1237 /*
1238 * This handles the FIFO interrupts, the timeout
1239 * interrupts are flatly ignored, they cannot be
1240 * trusted.
1241 */
1242 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1243 /*
1244 * Overrun interrupt - bail out since our Data has been
1245 * corrupted
1246 */
1247 dev_err(&pl022->adev->dev, "FIFO overrun\n");
1248 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1249 dev_err(&pl022->adev->dev,
1250 "RXFIFO is full\n");
1251 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1252 dev_err(&pl022->adev->dev,
1253 "TXFIFO is full\n");
1254
1255 /*
1256 * Disable and clear interrupts, disable SSP,
1257 * mark message with bad status so it can be
1258 * retried.
1259 */
1260 writew(DISABLE_ALL_INTERRUPTS,
1261 SSP_IMSC(pl022->virtbase));
1262 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1263 writew((readw(SSP_CR1(pl022->virtbase)) &
1264 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1265 msg->state = STATE_ERROR;
1266
1267 /* Schedule message queue handler */
1268 tasklet_schedule(&pl022->pump_transfers);
1269 return IRQ_HANDLED;
1270 }
1271
1272 readwriter(pl022);
1273
1274 if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1275 flag = 1;
1276 /* Disable Transmit interrupt, enable receive interrupt */
1277 writew((readw(SSP_IMSC(pl022->virtbase)) &
1278 ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1279 SSP_IMSC(pl022->virtbase));
1280 }
1281
1282 /*
1283 * Since all transactions must write as much as shall be read,
1284 * we can conclude the entire transaction once RX is complete.
1285 * At this point, all TX will always be finished.
1286 */
1287 if (pl022->rx >= pl022->rx_end) {
1288 writew(DISABLE_ALL_INTERRUPTS,
1289 SSP_IMSC(pl022->virtbase));
1290 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1291 if (unlikely(pl022->rx > pl022->rx_end)) {
1292 dev_warn(&pl022->adev->dev, "read %u surplus "
1293 "bytes (did you request an odd "
1294 "number of bytes on a 16bit bus?)\n",
1295 (u32) (pl022->rx - pl022->rx_end));
1296 }
1297 /* Update total bytes transferred */
1298 msg->actual_length += pl022->cur_transfer->len;
1299 if (pl022->cur_transfer->cs_change)
1300 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1301 /* Move to next transfer */
1302 msg->state = next_transfer(pl022);
1303 tasklet_schedule(&pl022->pump_transfers);
1304 return IRQ_HANDLED;
1305 }
1306
1307 return IRQ_HANDLED;
1308 }
1309
1310 /**
1311 * This sets up the pointers to memory for the next message to
1312 * send out on the SPI bus.
1313 */
1314 static int set_up_next_transfer(struct pl022 *pl022,
1315 struct spi_transfer *transfer)
1316 {
1317 int residue;
1318
1319 /* Sanity check the message for this bus width */
1320 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1321 if (unlikely(residue != 0)) {
1322 dev_err(&pl022->adev->dev,
1323 "message of %u bytes to transmit but the current "
1324 "chip bus has a data width of %u bytes!\n",
1325 pl022->cur_transfer->len,
1326 pl022->cur_chip->n_bytes);
1327 dev_err(&pl022->adev->dev, "skipping this message\n");
1328 return -EIO;
1329 }
1330 pl022->tx = (void *)transfer->tx_buf;
1331 pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1332 pl022->rx = (void *)transfer->rx_buf;
1333 pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1334 pl022->write =
1335 pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1336 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1337 return 0;
1338 }
1339
1340 /**
1341 * pump_transfers - Tasklet function which schedules next transfer
1342 * when running in interrupt or DMA transfer mode.
1343 * @data: SSP driver private data structure
1344 *
1345 */
1346 static void pump_transfers(unsigned long data)
1347 {
1348 struct pl022 *pl022 = (struct pl022 *) data;
1349 struct spi_message *message = NULL;
1350 struct spi_transfer *transfer = NULL;
1351 struct spi_transfer *previous = NULL;
1352
1353 /* Get current state information */
1354 message = pl022->cur_msg;
1355 transfer = pl022->cur_transfer;
1356
1357 /* Handle for abort */
1358 if (message->state == STATE_ERROR) {
1359 message->status = -EIO;
1360 giveback(pl022);
1361 return;
1362 }
1363
1364 /* Handle end of message */
1365 if (message->state == STATE_DONE) {
1366 message->status = 0;
1367 giveback(pl022);
1368 return;
1369 }
1370
1371 /* Delay if requested at end of transfer before CS change */
1372 if (message->state == STATE_RUNNING) {
1373 previous = list_entry(transfer->transfer_list.prev,
1374 struct spi_transfer,
1375 transfer_list);
1376 if (previous->delay_usecs)
1377 /*
1378 * FIXME: This runs in interrupt context.
1379 * Is this really smart?
1380 */
1381 udelay(previous->delay_usecs);
1382
1383 /* Reselect chip select only if cs_change was requested */
1384 if (previous->cs_change)
1385 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1386 } else {
1387 /* STATE_START */
1388 message->state = STATE_RUNNING;
1389 }
1390
1391 if (set_up_next_transfer(pl022, transfer)) {
1392 message->state = STATE_ERROR;
1393 message->status = -EIO;
1394 giveback(pl022);
1395 return;
1396 }
1397 /* Flush the FIFOs and let's go! */
1398 flush(pl022);
1399
1400 if (pl022->cur_chip->enable_dma) {
1401 if (configure_dma(pl022)) {
1402 dev_dbg(&pl022->adev->dev,
1403 "configuration of DMA failed, fall back to interrupt mode\n");
1404 goto err_config_dma;
1405 }
1406 return;
1407 }
1408
1409 err_config_dma:
1410 /* enable all interrupts except RX */
1411 writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1412 }
1413
1414 static void do_interrupt_dma_transfer(struct pl022 *pl022)
1415 {
1416 /*
1417 * Default is to enable all interrupts except RX -
1418 * this will be enabled once TX is complete
1419 */
1420 u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1421
1422 /* Enable target chip, if not already active */
1423 if (!pl022->next_msg_cs_active)
1424 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1425
1426 if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1427 /* Error path */
1428 pl022->cur_msg->state = STATE_ERROR;
1429 pl022->cur_msg->status = -EIO;
1430 giveback(pl022);
1431 return;
1432 }
1433 /* If we're using DMA, set up DMA here */
1434 if (pl022->cur_chip->enable_dma) {
1435 /* Configure DMA transfer */
1436 if (configure_dma(pl022)) {
1437 dev_dbg(&pl022->adev->dev,
1438 "configuration of DMA failed, fall back to interrupt mode\n");
1439 goto err_config_dma;
1440 }
1441 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1442 irqflags = DISABLE_ALL_INTERRUPTS;
1443 }
1444 err_config_dma:
1445 /* Enable SSP, turn on interrupts */
1446 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1447 SSP_CR1(pl022->virtbase));
1448 writew(irqflags, SSP_IMSC(pl022->virtbase));
1449 }
1450
1451 static void do_polling_transfer(struct pl022 *pl022)
1452 {
1453 struct spi_message *message = NULL;
1454 struct spi_transfer *transfer = NULL;
1455 struct spi_transfer *previous = NULL;
1456 struct chip_data *chip;
1457 unsigned long time, timeout;
1458
1459 chip = pl022->cur_chip;
1460 message = pl022->cur_msg;
1461
1462 while (message->state != STATE_DONE) {
1463 /* Handle for abort */
1464 if (message->state == STATE_ERROR)
1465 break;
1466 transfer = pl022->cur_transfer;
1467
1468 /* Delay if requested at end of transfer */
1469 if (message->state == STATE_RUNNING) {
1470 previous =
1471 list_entry(transfer->transfer_list.prev,
1472 struct spi_transfer, transfer_list);
1473 if (previous->delay_usecs)
1474 udelay(previous->delay_usecs);
1475 if (previous->cs_change)
1476 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1477 } else {
1478 /* STATE_START */
1479 message->state = STATE_RUNNING;
1480 if (!pl022->next_msg_cs_active)
1481 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1482 }
1483
1484 /* Configuration Changing Per Transfer */
1485 if (set_up_next_transfer(pl022, transfer)) {
1486 /* Error path */
1487 message->state = STATE_ERROR;
1488 break;
1489 }
1490 /* Flush FIFOs and enable SSP */
1491 flush(pl022);
1492 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1493 SSP_CR1(pl022->virtbase));
1494
1495 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1496
1497 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1498 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1499 time = jiffies;
1500 readwriter(pl022);
1501 if (time_after(time, timeout)) {
1502 dev_warn(&pl022->adev->dev,
1503 "%s: timeout!\n", __func__);
1504 message->state = STATE_ERROR;
1505 goto out;
1506 }
1507 cpu_relax();
1508 }
1509
1510 /* Update total byte transferred */
1511 message->actual_length += pl022->cur_transfer->len;
1512 if (pl022->cur_transfer->cs_change)
1513 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1514 /* Move to next transfer */
1515 message->state = next_transfer(pl022);
1516 }
1517 out:
1518 /* Handle end of message */
1519 if (message->state == STATE_DONE)
1520 message->status = 0;
1521 else
1522 message->status = -EIO;
1523
1524 giveback(pl022);
1525 return;
1526 }
1527
1528 static int pl022_transfer_one_message(struct spi_master *master,
1529 struct spi_message *msg)
1530 {
1531 struct pl022 *pl022 = spi_master_get_devdata(master);
1532
1533 /* Initial message state */
1534 pl022->cur_msg = msg;
1535 msg->state = STATE_START;
1536
1537 pl022->cur_transfer = list_entry(msg->transfers.next,
1538 struct spi_transfer, transfer_list);
1539
1540 /* Setup the SPI using the per chip configuration */
1541 pl022->cur_chip = spi_get_ctldata(msg->spi);
1542 pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
1543
1544 restore_state(pl022);
1545 flush(pl022);
1546
1547 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1548 do_polling_transfer(pl022);
1549 else
1550 do_interrupt_dma_transfer(pl022);
1551
1552 return 0;
1553 }
1554
1555 static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1556 {
1557 struct pl022 *pl022 = spi_master_get_devdata(master);
1558
1559 /* nothing more to do - disable spi/ssp and power off */
1560 writew((readw(SSP_CR1(pl022->virtbase)) &
1561 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1562
1563 return 0;
1564 }
1565
1566 static int verify_controller_parameters(struct pl022 *pl022,
1567 struct pl022_config_chip const *chip_info)
1568 {
1569 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1570 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1571 dev_err(&pl022->adev->dev,
1572 "interface is configured incorrectly\n");
1573 return -EINVAL;
1574 }
1575 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1576 (!pl022->vendor->unidir)) {
1577 dev_err(&pl022->adev->dev,
1578 "unidirectional mode not supported in this "
1579 "hardware version\n");
1580 return -EINVAL;
1581 }
1582 if ((chip_info->hierarchy != SSP_MASTER)
1583 && (chip_info->hierarchy != SSP_SLAVE)) {
1584 dev_err(&pl022->adev->dev,
1585 "hierarchy is configured incorrectly\n");
1586 return -EINVAL;
1587 }
1588 if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1589 && (chip_info->com_mode != DMA_TRANSFER)
1590 && (chip_info->com_mode != POLLING_TRANSFER)) {
1591 dev_err(&pl022->adev->dev,
1592 "Communication mode is configured incorrectly\n");
1593 return -EINVAL;
1594 }
1595 switch (chip_info->rx_lev_trig) {
1596 case SSP_RX_1_OR_MORE_ELEM:
1597 case SSP_RX_4_OR_MORE_ELEM:
1598 case SSP_RX_8_OR_MORE_ELEM:
1599 /* These are always OK, all variants can handle this */
1600 break;
1601 case SSP_RX_16_OR_MORE_ELEM:
1602 if (pl022->vendor->fifodepth < 16) {
1603 dev_err(&pl022->adev->dev,
1604 "RX FIFO Trigger Level is configured incorrectly\n");
1605 return -EINVAL;
1606 }
1607 break;
1608 case SSP_RX_32_OR_MORE_ELEM:
1609 if (pl022->vendor->fifodepth < 32) {
1610 dev_err(&pl022->adev->dev,
1611 "RX FIFO Trigger Level is configured incorrectly\n");
1612 return -EINVAL;
1613 }
1614 break;
1615 default:
1616 dev_err(&pl022->adev->dev,
1617 "RX FIFO Trigger Level is configured incorrectly\n");
1618 return -EINVAL;
1619 }
1620 switch (chip_info->tx_lev_trig) {
1621 case SSP_TX_1_OR_MORE_EMPTY_LOC:
1622 case SSP_TX_4_OR_MORE_EMPTY_LOC:
1623 case SSP_TX_8_OR_MORE_EMPTY_LOC:
1624 /* These are always OK, all variants can handle this */
1625 break;
1626 case SSP_TX_16_OR_MORE_EMPTY_LOC:
1627 if (pl022->vendor->fifodepth < 16) {
1628 dev_err(&pl022->adev->dev,
1629 "TX FIFO Trigger Level is configured incorrectly\n");
1630 return -EINVAL;
1631 }
1632 break;
1633 case SSP_TX_32_OR_MORE_EMPTY_LOC:
1634 if (pl022->vendor->fifodepth < 32) {
1635 dev_err(&pl022->adev->dev,
1636 "TX FIFO Trigger Level is configured incorrectly\n");
1637 return -EINVAL;
1638 }
1639 break;
1640 default:
1641 dev_err(&pl022->adev->dev,
1642 "TX FIFO Trigger Level is configured incorrectly\n");
1643 return -EINVAL;
1644 }
1645 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1646 if ((chip_info->ctrl_len < SSP_BITS_4)
1647 || (chip_info->ctrl_len > SSP_BITS_32)) {
1648 dev_err(&pl022->adev->dev,
1649 "CTRL LEN is configured incorrectly\n");
1650 return -EINVAL;
1651 }
1652 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1653 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1654 dev_err(&pl022->adev->dev,
1655 "Wait State is configured incorrectly\n");
1656 return -EINVAL;
1657 }
1658 /* Half duplex is only available in the ST Micro version */
1659 if (pl022->vendor->extended_cr) {
1660 if ((chip_info->duplex !=
1661 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1662 && (chip_info->duplex !=
1663 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1664 dev_err(&pl022->adev->dev,
1665 "Microwire duplex mode is configured incorrectly\n");
1666 return -EINVAL;
1667 }
1668 } else {
1669 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1670 dev_err(&pl022->adev->dev,
1671 "Microwire half duplex mode requested,"
1672 " but this is only available in the"
1673 " ST version of PL022\n");
1674 return -EINVAL;
1675 }
1676 }
1677 return 0;
1678 }
1679
1680 static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1681 {
1682 return rate / (cpsdvsr * (1 + scr));
1683 }
1684
1685 static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1686 ssp_clock_params * clk_freq)
1687 {
1688 /* Lets calculate the frequency parameters */
1689 u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1690 u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1691 best_scr = 0, tmp, found = 0;
1692
1693 rate = clk_get_rate(pl022->clk);
1694 /* cpsdvscr = 2 & scr 0 */
1695 max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1696 /* cpsdvsr = 254 & scr = 255 */
1697 min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1698
1699 if (freq > max_tclk)
1700 dev_warn(&pl022->adev->dev,
1701 "Max speed that can be programmed is %d Hz, you requested %d\n",
1702 max_tclk, freq);
1703
1704 if (freq < min_tclk) {
1705 dev_err(&pl022->adev->dev,
1706 "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1707 freq, min_tclk);
1708 return -EINVAL;
1709 }
1710
1711 /*
1712 * best_freq will give closest possible available rate (<= requested
1713 * freq) for all values of scr & cpsdvsr.
1714 */
1715 while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1716 while (scr <= SCR_MAX) {
1717 tmp = spi_rate(rate, cpsdvsr, scr);
1718
1719 if (tmp > freq) {
1720 /* we need lower freq */
1721 scr++;
1722 continue;
1723 }
1724
1725 /*
1726 * If found exact value, mark found and break.
1727 * If found more closer value, update and break.
1728 */
1729 if (tmp > best_freq) {
1730 best_freq = tmp;
1731 best_cpsdvsr = cpsdvsr;
1732 best_scr = scr;
1733
1734 if (tmp == freq)
1735 found = 1;
1736 }
1737 /*
1738 * increased scr will give lower rates, which are not
1739 * required
1740 */
1741 break;
1742 }
1743 cpsdvsr += 2;
1744 scr = SCR_MIN;
1745 }
1746
1747 WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1748 freq);
1749
1750 clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1751 clk_freq->scr = (u8) (best_scr & 0xFF);
1752 dev_dbg(&pl022->adev->dev,
1753 "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1754 freq, best_freq);
1755 dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1756 clk_freq->cpsdvsr, clk_freq->scr);
1757
1758 return 0;
1759 }
1760
1761 /*
1762 * A piece of default chip info unless the platform
1763 * supplies it.
1764 */
1765 static const struct pl022_config_chip pl022_default_chip_info = {
1766 .com_mode = POLLING_TRANSFER,
1767 .iface = SSP_INTERFACE_MOTOROLA_SPI,
1768 .hierarchy = SSP_SLAVE,
1769 .slave_tx_disable = DO_NOT_DRIVE_TX,
1770 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1771 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1772 .ctrl_len = SSP_BITS_8,
1773 .wait_state = SSP_MWIRE_WAIT_ZERO,
1774 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1775 .cs_control = null_cs_control,
1776 };
1777
1778 /**
1779 * pl022_setup - setup function registered to SPI master framework
1780 * @spi: spi device which is requesting setup
1781 *
1782 * This function is registered to the SPI framework for this SPI master
1783 * controller. If it is the first time when setup is called by this device,
1784 * this function will initialize the runtime state for this chip and save
1785 * the same in the device structure. Else it will update the runtime info
1786 * with the updated chip info. Nothing is really being written to the
1787 * controller hardware here, that is not done until the actual transfer
1788 * commence.
1789 */
1790 static int pl022_setup(struct spi_device *spi)
1791 {
1792 struct pl022_config_chip const *chip_info;
1793 struct pl022_config_chip chip_info_dt;
1794 struct chip_data *chip;
1795 struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1796 int status = 0;
1797 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1798 unsigned int bits = spi->bits_per_word;
1799 u32 tmp;
1800 struct device_node *np = spi->dev.of_node;
1801
1802 if (!spi->max_speed_hz)
1803 return -EINVAL;
1804
1805 /* Get controller_state if one is supplied */
1806 chip = spi_get_ctldata(spi);
1807
1808 if (chip == NULL) {
1809 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1810 if (!chip)
1811 return -ENOMEM;
1812 dev_dbg(&spi->dev,
1813 "allocated memory for controller's runtime state\n");
1814 }
1815
1816 /* Get controller data if one is supplied */
1817 chip_info = spi->controller_data;
1818
1819 if (chip_info == NULL) {
1820 if (np) {
1821 chip_info_dt = pl022_default_chip_info;
1822
1823 chip_info_dt.hierarchy = SSP_MASTER;
1824 of_property_read_u32(np, "pl022,interface",
1825 &chip_info_dt.iface);
1826 of_property_read_u32(np, "pl022,com-mode",
1827 &chip_info_dt.com_mode);
1828 of_property_read_u32(np, "pl022,rx-level-trig",
1829 &chip_info_dt.rx_lev_trig);
1830 of_property_read_u32(np, "pl022,tx-level-trig",
1831 &chip_info_dt.tx_lev_trig);
1832 of_property_read_u32(np, "pl022,ctrl-len",
1833 &chip_info_dt.ctrl_len);
1834 of_property_read_u32(np, "pl022,wait-state",
1835 &chip_info_dt.wait_state);
1836 of_property_read_u32(np, "pl022,duplex",
1837 &chip_info_dt.duplex);
1838
1839 chip_info = &chip_info_dt;
1840 } else {
1841 chip_info = &pl022_default_chip_info;
1842 /* spi_board_info.controller_data not is supplied */
1843 dev_dbg(&spi->dev,
1844 "using default controller_data settings\n");
1845 }
1846 } else
1847 dev_dbg(&spi->dev,
1848 "using user supplied controller_data settings\n");
1849
1850 /*
1851 * We can override with custom divisors, else we use the board
1852 * frequency setting
1853 */
1854 if ((0 == chip_info->clk_freq.cpsdvsr)
1855 && (0 == chip_info->clk_freq.scr)) {
1856 status = calculate_effective_freq(pl022,
1857 spi->max_speed_hz,
1858 &clk_freq);
1859 if (status < 0)
1860 goto err_config_params;
1861 } else {
1862 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1863 if ((clk_freq.cpsdvsr % 2) != 0)
1864 clk_freq.cpsdvsr =
1865 clk_freq.cpsdvsr - 1;
1866 }
1867 if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1868 || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1869 status = -EINVAL;
1870 dev_err(&spi->dev,
1871 "cpsdvsr is configured incorrectly\n");
1872 goto err_config_params;
1873 }
1874
1875 status = verify_controller_parameters(pl022, chip_info);
1876 if (status) {
1877 dev_err(&spi->dev, "controller data is incorrect");
1878 goto err_config_params;
1879 }
1880
1881 pl022->rx_lev_trig = chip_info->rx_lev_trig;
1882 pl022->tx_lev_trig = chip_info->tx_lev_trig;
1883
1884 /* Now set controller state based on controller data */
1885 chip->xfer_type = chip_info->com_mode;
1886 if (!chip_info->cs_control) {
1887 chip->cs_control = null_cs_control;
1888 if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
1889 dev_warn(&spi->dev,
1890 "invalid chip select\n");
1891 } else
1892 chip->cs_control = chip_info->cs_control;
1893
1894 /* Check bits per word with vendor specific range */
1895 if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1896 status = -ENOTSUPP;
1897 dev_err(&spi->dev, "illegal data size for this controller!\n");
1898 dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1899 pl022->vendor->max_bpw);
1900 goto err_config_params;
1901 } else if (bits <= 8) {
1902 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1903 chip->n_bytes = 1;
1904 chip->read = READING_U8;
1905 chip->write = WRITING_U8;
1906 } else if (bits <= 16) {
1907 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1908 chip->n_bytes = 2;
1909 chip->read = READING_U16;
1910 chip->write = WRITING_U16;
1911 } else {
1912 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1913 chip->n_bytes = 4;
1914 chip->read = READING_U32;
1915 chip->write = WRITING_U32;
1916 }
1917
1918 /* Now Initialize all register settings required for this chip */
1919 chip->cr0 = 0;
1920 chip->cr1 = 0;
1921 chip->dmacr = 0;
1922 chip->cpsr = 0;
1923 if ((chip_info->com_mode == DMA_TRANSFER)
1924 && ((pl022->master_info)->enable_dma)) {
1925 chip->enable_dma = true;
1926 dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1927 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1928 SSP_DMACR_MASK_RXDMAE, 0);
1929 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1930 SSP_DMACR_MASK_TXDMAE, 1);
1931 } else {
1932 chip->enable_dma = false;
1933 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1934 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1935 SSP_DMACR_MASK_RXDMAE, 0);
1936 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1937 SSP_DMACR_MASK_TXDMAE, 1);
1938 }
1939
1940 chip->cpsr = clk_freq.cpsdvsr;
1941
1942 /* Special setup for the ST micro extended control registers */
1943 if (pl022->vendor->extended_cr) {
1944 u32 etx;
1945
1946 if (pl022->vendor->pl023) {
1947 /* These bits are only in the PL023 */
1948 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1949 SSP_CR1_MASK_FBCLKDEL_ST, 13);
1950 } else {
1951 /* These bits are in the PL022 but not PL023 */
1952 SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1953 SSP_CR0_MASK_HALFDUP_ST, 5);
1954 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1955 SSP_CR0_MASK_CSS_ST, 16);
1956 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1957 SSP_CR0_MASK_FRF_ST, 21);
1958 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1959 SSP_CR1_MASK_MWAIT_ST, 6);
1960 }
1961 SSP_WRITE_BITS(chip->cr0, bits - 1,
1962 SSP_CR0_MASK_DSS_ST, 0);
1963
1964 if (spi->mode & SPI_LSB_FIRST) {
1965 tmp = SSP_RX_LSB;
1966 etx = SSP_TX_LSB;
1967 } else {
1968 tmp = SSP_RX_MSB;
1969 etx = SSP_TX_MSB;
1970 }
1971 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
1972 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
1973 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
1974 SSP_CR1_MASK_RXIFLSEL_ST, 7);
1975 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
1976 SSP_CR1_MASK_TXIFLSEL_ST, 10);
1977 } else {
1978 SSP_WRITE_BITS(chip->cr0, bits - 1,
1979 SSP_CR0_MASK_DSS, 0);
1980 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1981 SSP_CR0_MASK_FRF, 4);
1982 }
1983
1984 /* Stuff that is common for all versions */
1985 if (spi->mode & SPI_CPOL)
1986 tmp = SSP_CLK_POL_IDLE_HIGH;
1987 else
1988 tmp = SSP_CLK_POL_IDLE_LOW;
1989 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
1990
1991 if (spi->mode & SPI_CPHA)
1992 tmp = SSP_CLK_SECOND_EDGE;
1993 else
1994 tmp = SSP_CLK_FIRST_EDGE;
1995 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
1996
1997 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
1998 /* Loopback is available on all versions except PL023 */
1999 if (pl022->vendor->loopback) {
2000 if (spi->mode & SPI_LOOP)
2001 tmp = LOOPBACK_ENABLED;
2002 else
2003 tmp = LOOPBACK_DISABLED;
2004 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2005 }
2006 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2007 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2008 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2009 3);
2010
2011 /* Save controller_state */
2012 spi_set_ctldata(spi, chip);
2013 return status;
2014 err_config_params:
2015 spi_set_ctldata(spi, NULL);
2016 kfree(chip);
2017 return status;
2018 }
2019
2020 /**
2021 * pl022_cleanup - cleanup function registered to SPI master framework
2022 * @spi: spi device which is requesting cleanup
2023 *
2024 * This function is registered to the SPI framework for this SPI master
2025 * controller. It will free the runtime state of chip.
2026 */
2027 static void pl022_cleanup(struct spi_device *spi)
2028 {
2029 struct chip_data *chip = spi_get_ctldata(spi);
2030
2031 spi_set_ctldata(spi, NULL);
2032 kfree(chip);
2033 }
2034
2035 static struct pl022_ssp_controller *
2036 pl022_platform_data_dt_get(struct device *dev)
2037 {
2038 struct device_node *np = dev->of_node;
2039 struct pl022_ssp_controller *pd;
2040 u32 tmp;
2041
2042 if (!np) {
2043 dev_err(dev, "no dt node defined\n");
2044 return NULL;
2045 }
2046
2047 pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2048 if (!pd)
2049 return NULL;
2050
2051 pd->bus_id = -1;
2052 pd->enable_dma = 1;
2053 of_property_read_u32(np, "num-cs", &tmp);
2054 pd->num_chipselect = tmp;
2055 of_property_read_u32(np, "pl022,autosuspend-delay",
2056 &pd->autosuspend_delay);
2057 pd->rt = of_property_read_bool(np, "pl022,rt");
2058
2059 return pd;
2060 }
2061
2062 static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2063 {
2064 struct device *dev = &adev->dev;
2065 struct pl022_ssp_controller *platform_info =
2066 dev_get_platdata(&adev->dev);
2067 struct spi_master *master;
2068 struct pl022 *pl022 = NULL; /*Data for this driver */
2069 struct device_node *np = adev->dev.of_node;
2070 int status = 0, i, num_cs;
2071
2072 dev_info(&adev->dev,
2073 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2074 if (!platform_info && IS_ENABLED(CONFIG_OF))
2075 platform_info = pl022_platform_data_dt_get(dev);
2076
2077 if (!platform_info) {
2078 dev_err(dev, "probe: no platform data defined\n");
2079 return -ENODEV;
2080 }
2081
2082 if (platform_info->num_chipselect) {
2083 num_cs = platform_info->num_chipselect;
2084 } else {
2085 dev_err(dev, "probe: no chip select defined\n");
2086 return -ENODEV;
2087 }
2088
2089 /* Allocate master with space for data */
2090 master = spi_alloc_master(dev, sizeof(struct pl022));
2091 if (master == NULL) {
2092 dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2093 return -ENOMEM;
2094 }
2095
2096 pl022 = spi_master_get_devdata(master);
2097 pl022->master = master;
2098 pl022->master_info = platform_info;
2099 pl022->adev = adev;
2100 pl022->vendor = id->data;
2101 pl022->chipselects = devm_kzalloc(dev, num_cs * sizeof(int),
2102 GFP_KERNEL);
2103
2104 /*
2105 * Bus Number Which has been Assigned to this SSP controller
2106 * on this board
2107 */
2108 master->bus_num = platform_info->bus_id;
2109 master->num_chipselect = num_cs;
2110 master->cleanup = pl022_cleanup;
2111 master->setup = pl022_setup;
2112 master->auto_runtime_pm = true;
2113 master->transfer_one_message = pl022_transfer_one_message;
2114 master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2115 master->rt = platform_info->rt;
2116 master->dev.of_node = dev->of_node;
2117
2118 if (platform_info->num_chipselect && platform_info->chipselects) {
2119 for (i = 0; i < num_cs; i++)
2120 pl022->chipselects[i] = platform_info->chipselects[i];
2121 } else if (IS_ENABLED(CONFIG_OF)) {
2122 for (i = 0; i < num_cs; i++) {
2123 int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
2124
2125 if (cs_gpio == -EPROBE_DEFER) {
2126 status = -EPROBE_DEFER;
2127 goto err_no_gpio;
2128 }
2129
2130 pl022->chipselects[i] = cs_gpio;
2131
2132 if (gpio_is_valid(cs_gpio)) {
2133 if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
2134 dev_err(&adev->dev,
2135 "could not request %d gpio\n",
2136 cs_gpio);
2137 else if (gpio_direction_output(cs_gpio, 1))
2138 dev_err(&adev->dev,
2139 "could set gpio %d as output\n",
2140 cs_gpio);
2141 }
2142 }
2143 }
2144
2145 /*
2146 * Supports mode 0-3, loopback, and active low CS. Transfers are
2147 * always MS bit first on the original pl022.
2148 */
2149 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2150 if (pl022->vendor->extended_cr)
2151 master->mode_bits |= SPI_LSB_FIRST;
2152
2153 dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2154
2155 status = amba_request_regions(adev, NULL);
2156 if (status)
2157 goto err_no_ioregion;
2158
2159 pl022->phybase = adev->res.start;
2160 pl022->virtbase = devm_ioremap(dev, adev->res.start,
2161 resource_size(&adev->res));
2162 if (pl022->virtbase == NULL) {
2163 status = -ENOMEM;
2164 goto err_no_ioremap;
2165 }
2166 dev_info(&adev->dev, "mapped registers from %pa to %p\n",
2167 &adev->res.start, pl022->virtbase);
2168
2169 pl022->clk = devm_clk_get(&adev->dev, NULL);
2170 if (IS_ERR(pl022->clk)) {
2171 status = PTR_ERR(pl022->clk);
2172 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2173 goto err_no_clk;
2174 }
2175
2176 status = clk_prepare_enable(pl022->clk);
2177 if (status) {
2178 dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2179 goto err_no_clk_en;
2180 }
2181
2182 /* Initialize transfer pump */
2183 tasklet_init(&pl022->pump_transfers, pump_transfers,
2184 (unsigned long)pl022);
2185
2186 /* Disable SSP */
2187 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2188 SSP_CR1(pl022->virtbase));
2189 load_ssp_default_config(pl022);
2190
2191 status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2192 0, "pl022", pl022);
2193 if (status < 0) {
2194 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2195 goto err_no_irq;
2196 }
2197
2198 /* Get DMA channels, try autoconfiguration first */
2199 status = pl022_dma_autoprobe(pl022);
2200
2201 /* If that failed, use channels from platform_info */
2202 if (status == 0)
2203 platform_info->enable_dma = 1;
2204 else if (platform_info->enable_dma) {
2205 status = pl022_dma_probe(pl022);
2206 if (status != 0)
2207 platform_info->enable_dma = 0;
2208 }
2209
2210 /* Register with the SPI framework */
2211 amba_set_drvdata(adev, pl022);
2212 status = devm_spi_register_master(&adev->dev, master);
2213 if (status != 0) {
2214 dev_err(&adev->dev,
2215 "probe - problem registering spi master\n");
2216 goto err_spi_register;
2217 }
2218 dev_dbg(dev, "probe succeeded\n");
2219
2220 /* let runtime pm put suspend */
2221 if (platform_info->autosuspend_delay > 0) {
2222 dev_info(&adev->dev,
2223 "will use autosuspend for runtime pm, delay %dms\n",
2224 platform_info->autosuspend_delay);
2225 pm_runtime_set_autosuspend_delay(dev,
2226 platform_info->autosuspend_delay);
2227 pm_runtime_use_autosuspend(dev);
2228 }
2229 pm_runtime_put(dev);
2230
2231 return 0;
2232
2233 err_spi_register:
2234 if (platform_info->enable_dma)
2235 pl022_dma_remove(pl022);
2236 err_no_irq:
2237 clk_disable_unprepare(pl022->clk);
2238 err_no_clk_en:
2239 err_no_clk:
2240 err_no_ioremap:
2241 amba_release_regions(adev);
2242 err_no_ioregion:
2243 err_no_gpio:
2244 spi_master_put(master);
2245 return status;
2246 }
2247
2248 static int
2249 pl022_remove(struct amba_device *adev)
2250 {
2251 struct pl022 *pl022 = amba_get_drvdata(adev);
2252
2253 if (!pl022)
2254 return 0;
2255
2256 /*
2257 * undo pm_runtime_put() in probe. I assume that we're not
2258 * accessing the primecell here.
2259 */
2260 pm_runtime_get_noresume(&adev->dev);
2261
2262 load_ssp_default_config(pl022);
2263 if (pl022->master_info->enable_dma)
2264 pl022_dma_remove(pl022);
2265
2266 clk_disable_unprepare(pl022->clk);
2267 amba_release_regions(adev);
2268 tasklet_disable(&pl022->pump_transfers);
2269 return 0;
2270 }
2271
2272 #ifdef CONFIG_PM_SLEEP
2273 static int pl022_suspend(struct device *dev)
2274 {
2275 struct pl022 *pl022 = dev_get_drvdata(dev);
2276 int ret;
2277
2278 ret = spi_master_suspend(pl022->master);
2279 if (ret) {
2280 dev_warn(dev, "cannot suspend master\n");
2281 return ret;
2282 }
2283
2284 ret = pm_runtime_force_suspend(dev);
2285 if (ret) {
2286 spi_master_resume(pl022->master);
2287 return ret;
2288 }
2289
2290 pinctrl_pm_select_sleep_state(dev);
2291
2292 dev_dbg(dev, "suspended\n");
2293 return 0;
2294 }
2295
2296 static int pl022_resume(struct device *dev)
2297 {
2298 struct pl022 *pl022 = dev_get_drvdata(dev);
2299 int ret;
2300
2301 ret = pm_runtime_force_resume(dev);
2302 if (ret)
2303 dev_err(dev, "problem resuming\n");
2304
2305 /* Start the queue running */
2306 ret = spi_master_resume(pl022->master);
2307 if (ret)
2308 dev_err(dev, "problem starting queue (%d)\n", ret);
2309 else
2310 dev_dbg(dev, "resumed\n");
2311
2312 return ret;
2313 }
2314 #endif
2315
2316 #ifdef CONFIG_PM
2317 static int pl022_runtime_suspend(struct device *dev)
2318 {
2319 struct pl022 *pl022 = dev_get_drvdata(dev);
2320
2321 clk_disable_unprepare(pl022->clk);
2322 pinctrl_pm_select_idle_state(dev);
2323
2324 return 0;
2325 }
2326
2327 static int pl022_runtime_resume(struct device *dev)
2328 {
2329 struct pl022 *pl022 = dev_get_drvdata(dev);
2330
2331 pinctrl_pm_select_default_state(dev);
2332 clk_prepare_enable(pl022->clk);
2333
2334 return 0;
2335 }
2336 #endif
2337
2338 static const struct dev_pm_ops pl022_dev_pm_ops = {
2339 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2340 SET_PM_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2341 };
2342
2343 static struct vendor_data vendor_arm = {
2344 .fifodepth = 8,
2345 .max_bpw = 16,
2346 .unidir = false,
2347 .extended_cr = false,
2348 .pl023 = false,
2349 .loopback = true,
2350 };
2351
2352 static struct vendor_data vendor_st = {
2353 .fifodepth = 32,
2354 .max_bpw = 32,
2355 .unidir = false,
2356 .extended_cr = true,
2357 .pl023 = false,
2358 .loopback = true,
2359 };
2360
2361 static struct vendor_data vendor_st_pl023 = {
2362 .fifodepth = 32,
2363 .max_bpw = 32,
2364 .unidir = false,
2365 .extended_cr = true,
2366 .pl023 = true,
2367 .loopback = false,
2368 };
2369
2370 static struct amba_id pl022_ids[] = {
2371 {
2372 /*
2373 * ARM PL022 variant, this has a 16bit wide
2374 * and 8 locations deep TX/RX FIFO
2375 */
2376 .id = 0x00041022,
2377 .mask = 0x000fffff,
2378 .data = &vendor_arm,
2379 },
2380 {
2381 /*
2382 * ST Micro derivative, this has 32bit wide
2383 * and 32 locations deep TX/RX FIFO
2384 */
2385 .id = 0x01080022,
2386 .mask = 0xffffffff,
2387 .data = &vendor_st,
2388 },
2389 {
2390 /*
2391 * ST-Ericsson derivative "PL023" (this is not
2392 * an official ARM number), this is a PL022 SSP block
2393 * stripped to SPI mode only, it has 32bit wide
2394 * and 32 locations deep TX/RX FIFO but no extended
2395 * CR0/CR1 register
2396 */
2397 .id = 0x00080023,
2398 .mask = 0xffffffff,
2399 .data = &vendor_st_pl023,
2400 },
2401 { 0, 0 },
2402 };
2403
2404 MODULE_DEVICE_TABLE(amba, pl022_ids);
2405
2406 static struct amba_driver pl022_driver = {
2407 .drv = {
2408 .name = "ssp-pl022",
2409 .pm = &pl022_dev_pm_ops,
2410 },
2411 .id_table = pl022_ids,
2412 .probe = pl022_probe,
2413 .remove = pl022_remove,
2414 };
2415
2416 static int __init pl022_init(void)
2417 {
2418 return amba_driver_register(&pl022_driver);
2419 }
2420 subsys_initcall(pl022_init);
2421
2422 static void __exit pl022_exit(void)
2423 {
2424 amba_driver_unregister(&pl022_driver);
2425 }
2426 module_exit(pl022_exit);
2427
2428 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2429 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2430 MODULE_LICENSE("GPL");
This page took 0.131143 seconds and 6 git commands to generate.